

Handbook of Artificial Intelligence

—.Z*M*^~

f?UJj?~

%Jd*A

■&"^

U^fa/jC,

CUIJUSt, t*79

Handbook of Artificial Intelligence

Edited by Avron Ban and Edward A. Feigenbaum

PRELIMINARY EDITION

Computer Science Department

Stanford University

August 1979
Stanford, California

This research was supported by both the Defense Advanced Research Projects Agency
(ARPA Order No. 3423, Contract No. MDA 903-77-C-0322) and the National Institutes of
Health (Contract No. NIH RR-00785-06). The views and conclusions of this document should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency, the National Institutes of
Health, or the United States Government.

Copyright Notice: The material herein Is copyright protected. Permission to quote or
reproduce in any form must be obtained from the Editors. Such permission is hereby granted
to agendas of the United States Government.

Contents

The material in this preliminary edition will appear in thefirst
two volumes of the Handbook, to be published in Winter 1979-80.

Foreword 9
List of Contributors 1 1

Search
A. Overview 15
B. Problem representation 23

T. State-space representation 23
2. Problem-reduction representation 26
3. Game trees 32

C. SearchmMethods 34
1 . Blind state-space search 34
2. Blind AND/OR graph search 41
3. Heuristic state-space search 45

a. Basic concepts in heuristic search 45
b. A*: optimal search for an optimal solution 49
c. Relaxing the optimality requirement 61
d. Bidirectional search 55

4. Heuristic search of an AND/OR graph 57
5. Game tree search 65

a. Minimax 66
b. Alpha-beta 68
c. Heuristics in game tree search 72

D. Example search programs 83
1 . Logic Theorist 83
2. General Problem Solver 86
3. Gelernter's geometry theorem-proving machine 91
4. Symbolic Integration Programs 94
5. STRIPS 98
6. ABSTRIPS 104

Representation -of Knowledge

A. Issues and problems in representation theory 121
B. Survey of representation techniques 1 29
C. Representation schemes 137

1. Logic 137
2. Semantic nets 151
3. Production systems 1 60
4. Procedural representations 1 73
5. Semantic primitives 183
6. Direct (Analogical) representations 191
7. Higher-level knowledge structures 199

Natural Language Understanding

A. Overview . 223
B. Mechanical translation 228
C. Grammars 233

1 . Formal grammars . 233
2. Transformational grammar 238
3. Systemic grammar 242
4. Case Grammars 244

D. Parsing techniques 247
1 . Overview of parsing techniques 247
2. Augmented transition nets 252
3. GSP 256

E. Text generation 261
F. Natural languageprocessing systems 267

1 . Early NL systems 267
2. Wilks's machine translation work 273
3. LUNAR 276
4. SHRDLU 279
5. MARGIE 283
6. SAM and PAM 287
7. LIFER 296

Speech Understanding Systems

A. Overview 319
1 . HEARSAY I 326

B. Some early ARPA speech systems 329
I . DRAGON 329
2. SPEECHLIS 329

C. Recent Speech Systems 335
I. HARPY 335
2. HEARSAY II 338
3. HWIM 342
4. SRI-SDC System 345

Al Programming Languages

A. Historical Overview of Al Languages 356
B. Al Language Features 370

1 . Overview of Language Features 370
2. Data Structures 376
3. Control Structures 388
4. Pattern Matching 399
5. Environment 407

C. Example Al Programming Languages 416
1. LISP 416
2. PLANNER and CONNIVER 433
3. QLrSP 435
4. SAIL 436
5. POP-2 437

Applications-oriented Al Research ~ Part 1

A. Overview of Applications-oriented Al Research
B. TEIRESIAS - Issues in Expert Systems Design
C. Mathematics

443

462
1 . MACSYMA 4&2
2. AM 468

D. Miscellaneous Applications Research 482
1 . SRI Computer-basedconsultant 482
2. PROSPECTOR 487
3. RITA 495
4. Al Applications In Information Retrieval 500

Applications-oriented Al Research — Part 2: Chemistry

A. Overview of Applications in Chemistry 521
B. Applications in Chemical Analysis 624
C. The DENDRAL Programs 627

1. DENDRAL 527
2. CONGEN and its extensions 531
3. Meta-DENDRAL °36

D. CRYSALIS 646
E. Applications in-Organic Synthesis 556

Applications-oriented Al Research — Part 3: Medicine

A. Overview of Medical Applications Research 575
B. MYCIN SBl
C. CASNET 589
D. INTERNIST 593
E. Present Illness Program (PIP) 598
F. Digitalis Advisor 602
G. IRIS 60S

Applications-oriented Al Research — Part 4« Education

A. Historical Overview 61 7
B. Components of Intelligent CAI Systems 620
C ICAI Systems 62e

1 . SCHOLAR 626
2. WHY 631
3*. SOPHIE 636
4. WEST 642
5. WUMPUS 649
6. BUGGY 655
7. EXCHECK 659

Automatic Programming
A. Automatic Programming Overview 675
B. Techniques for Program Specification 684
C. Approaches to AP 689
D. AP Systems 699

I.PSI 699
2. SAFE 708
3. Programmer's Apprentice 714
4. PECOS 721
5. DAEDALUS 726
6. PROTOSYSTEM-1 734
7. NLPQ 739
8. LIBRA - Program Optimization 744

I

%

Thefollowing sections are not in the preliminary edition.
They, will appear in the third volume of the Handbook.

Theorem Proving

Vision

Robotics

Learning and Inductive Inference

Information Processing Psychology

Planning 'and Related Problem-solving Techniques

9

Foreword

Those of us involved in the creation of the Handbook of Artificial Intelligence, both
writers and editors, have attempted to make the concepts, methods, tools, and main results
of artificial intelligence research accessible to a broad scientific and engineering audience.
Currently, Al work is familiar mainly to its practicing specialists and other interested
computer scientists. Yet the field is of growing Interdisciplinary interest and practical
importance. With this book we are trying to build bridges that are easily - crossed by
engineers, scientists in other fields, and our own computer science colleagues.

t

In the Handbook we intend to cover the breadth and depth of Al, presenting general
overviews of the scientific issues, as well as detailed discussions of particular techniques
and important Al systems. Throughout we have tried to keep in mind the reader who is not a
specialist in Al.

As the cost of computation continues to fall, new areas of computer applications
become potentially viable. For many of these areas, there do not exist mathematical "cores"
to structure calculations use of the computer. Such areas will inevitably be served by
symbolic models and symbolic inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is
urgent for Al to "go public" in the manner intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fill the vacuum. Lay reviews, in particular Margaret Boden's
Artificial Intelligence and Natural Man, have tried to explain what is important and
interesting about Al, and how research in Al progresses through our programs. In addition,
there are a few textbooks that attempt to present a more detailed view of selected areas
°f Al, for the serious student of computer science. But no textbook can hope to describe all
of the sub-areas, to present brief explanations of the Important Ideas and techniques, and to
review the forty or fifty most important Al systems.

The Handbook contains several different types of articles. Key Al ideas and techniques
are described in core articles (e.g., basic concepts in heuristic search, semantic nets),
'mportant individual Al programs (e.g., SHRDLU) are described in separate articles that
indicate, among other things, the designer's goal, the techniques employed, and the reasons
why the program is important. Overview articles discuss the problems and approaches in
Qach major area. The overview articles should be particularly useful to those who seek a
summary of the underlying issues that motivate Al research.

10

Eventually the Handbook will contain approximately two hundred articles. We hope that
the appearance of this material will stimulate interaction and cooperation with other Al
research sites. We look forward to being advised of errors of omission and commission. For a
field as fast moving as Al, it is important that its practitioners alert us to important
developments, so that future editions will reflect this new material. We intend that the
Handbook of Artificial Intelligence be a living and changing reference work.

The articles in this edition of the Handbook were written primarily by graduate students
In Al at Stanford University, with assistance from graduate students and Al professionals at
other institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

Avron Barr Stanford University
Edward Feigenbaum August, 1979

Contributors
The following people made the Handbook a reality. Together, over the last four years,

they have combed the entire literature of Al and attempted to make a coherent presentation
of this very diverse field.

Section Editors

James Bennett
Victor Ciesielskl,Rutgers
William Clancey
Paul Cohen
James Davidson
Robert Elschlager

Lawrence Fagan
Anne Gardner
Jorge Phillips
Steve Tappel
Stephen Westfold

and HelenTognetti, Publications Editor

Contributors
Jan Aikins
Robert Anderson, RAND
Douglas Appelt
David Arnold
Donald Biesel, Rutgers
Lee Blame, IMSSS
Rodney Brooks
Richard Chestek
Randall Davis, MIT
Gerard Dechen
Richard Duda, SRI
Ramez El-Masri
Robert Filman
Fritz Fisher
Christian Freksa, UC Berkeley
Peter Friedland
Richard Gabriel
Michael Genesereth,MIT
Neil Goldman, ISI
Ira Goldstein, Xerox PARC

George Heidorn, IBM
Douglas Hofstadter
Elaine Kant
William Laaser
Douglas Lenat
Pamela McCorduck
Richard Pattls
Gregory Ruth, MIT

■ Daniel Sagalowicz, SRI
Behrokh Samadi
William Scherlis
Andrew Silverman
Donald Smith, Rutgers
Phillip Smith, Waterloo
Reid Smith
William Swartout, MIT
William Van Melle
Richard Waldinger, SRI
Richard Waters, MIT
David Wilkins

Reviewers
Saui Amarel, Rutgers
Robert Balzer, ISI
David Barstow, Yale
Thomas Binford
Daniel Bobrow, Xerox PARC
John Seeiy Brown, Xerox PARC
Bruce Buchanan
Richard Burton, Xerox PARC
Lewis Creary
Daniel Dolata, UC Santa Cruz
"Lee Erman, ISI
Corded Green, SCI
Casimir Kulikowsky, Rutgers

Brian McCune
Donald Michie, Edinburgh
Nils Nilsson, SRI
Glen Ouchi, UC Santa Cruz
Ira Pohl, UC Santa Cruz
Herbert Simon, CMU
Mark Stefik
Albert Stevens, BBN
Perry Thorndyke, RAND
Don Walker, SRI
Keith Wescourt, ONR
Terry Winograd

>

Search

%

Search

Table of Contents

A.. Overview
B. Problem Representation ..!!!." \\1. State-space Representation ...!.' ff2. Problem-reduction Representation . . ' .*"""" «

3. Game Trees
C. Search Methods ' | 32

1. Blind State-space Search ...''' * **2. Blind AND/OR Graph Search ... ??3. Heuristic State-space Search ... 21a. Basic Concepts 1n Heuristic Search '.'.'. * tlb. A*--Optlmal Search for an Optimal Solution .*!"'**"* 2_
c. Relaxing the Optimality Requirement ... cTd. Bidirectional Search j?_

4. Heuristic Search of an AND/OR Graph „
5. Game Tree Search j-a. Minimax Procedure . . . ['. J?j?

b. Alpha-beta Pruning".* * * 5„
c. Heuristics 1n Game Tree Search . " 68

D. Example Search Programs ' * '%1. Lo&ic Theorist .' jjj»
2. General Problem Solver °f3. Gelernter's Geometry Theorem-provlng'Machlne !!!.*"*'*" S?t: lirTpl *itegratlor» Prosrams "" " ::: : : 116.' ABSTRIPS !.'.*!.' 98

184
References 108
Index

116

A. Overview

In Artificial Intelligence the terms problem solving and search refer to a lar^e body of core
ideas that deal with deduction,

inference,

planning, commonsense reasoning, theorem proving,
and related processes. Applications of these general ideas are found in programs for natural
language understanding, information retrieval, automatic programming, robotics, scene
analysis, game playing, expert systems, and mathematical theorem proving. In this chapter
we examine search as a tool for problem solving in a more limited area. Most of the
examples to be considered in detail are problems that are relatively easy to formalize. Some
typical problems are

finding the solution to a puzzle;

finding a proof for a theorem in logic or mathematics;

finding the shortest path connecting a set of nonequidistantpoints
(the traveling-salesmanproblem);

finding a sequence of moves that will win a game, or the best move
to make at a given point in a game; and

finding a sequence of transformations that will solve a symbolic
integration problem.

Organization of the Chapter

This overview takes a general look at search in problem solving, indicating some
connections with topics considered in other chapters. The articles in the next section,
Section B, describe the problem representations that form the basis of search techniques.'
The detailed examples there of state-space and problem-reduction representations will
clarify what is meant by words like "search" and "problem solving" in Al. Readers to whom
the subject of search Is new are encouraged to turn to those articles for more concrete
presentations of the fundamental ideas. Section B also discusses game trees, which are ahistorically and conceptually important class of representations.

Section C, Search Methods, deals with the algorithms that use these various problem
representations. Blind search algorithms, which treat the search space syntactically, are
contrasted with heuristic methods, which use Information about the nature and structure ofthe problem domain to limit the search. Various search algorithms are presented in full.

Finally, Section 0 reviews some well-known early programs based on search. It alsodescribes two programs, STRIPS and ABSTRIPS, that Introduce the closely related topic of
planning in problem solving. This general topic, however, is treated more fully under Planning.

Components of Search Systems

Problem-solving systems can usually be described in terms of three main components.
The first of these is a database, which describes both the current task-domain situation and

%
16 Search

the goal. The database can consist of a variety of different kinds of data structures
including arrays, lists, sets of predicate calculus expressions, property list structures, and
semantic networks. In theorem proving, for example, the current task-domain situation
consists of assertions representing axioms, lemmas, and theorems already proved; the goal is
an assertion representing the theorem to be proved. In information retrieval applications, the
current situation consists of a set of facts, and the goal is the query to be answered. In
robot problem solving, a current situation is a world model consisting of statements describing
the physical surroundings of the robot, and the goal is a description that is to be made true
by a sequence of robot actions.

The second component of problem-solving systems is a set of operators that are used to
manipulate the database. Some examples of operators include:

in theorem proving, rules of inference such as modus ponens and
resolution;

in chess, rules for moving chessmen;

in symbolic Integration, rules for simplifying the forms to be
integrated, such as integration by parts or trigonometric
substitution.

Sometimes the set of operators consists of only a few general rules of inference that
generate new assertions from existing ones. Usually it is more efficient to use a large
number of very specialized operators that generate new assertions only from very specific
existing ones.

The third component of a problem-solving system is a control strategy for deciding what
to do next—in particular, what operator to apply and where to apply it. Sometimes control is
highly centralized, in a separate control executive that decides how problem-solving
resources should be expended. Sometimes control is diffusely spread among the operators
themselves.

Another aspectof control strategy is its effect on the contents and organizationof the
database. In general, the object is to achieve the goal by applying an appropriate sequence
of operators to an initial task-domain situation. Each application of an operator modifies the
situation in some way. If several different operator sequences are worth considering, the
representation often maintains data structures showing the effects on the task situation of
each alternative sequence. Such a representation permits a control strategy that
investigates various operator sequences in parallel or that alternates attention among a
number of sequences that look relatively promising. This is the character of most of the
algorithms considered in this chapter; they assume a database containing descriptions of
multiple task-domain situations or states (see, e.g., Cl, Blind State-space Search). It may be,
however, that the description of a task-domain situation is too large for multiple versions to
be stored explicitly; in this case, a backtracking control strategy may be used (see Al
Programming Languages). A third possibility, available in some types of problems such as
theorem proving, exists where the application of operators can add new assertions to the
description of the task-domain situation but never can require the deletion of existing
assertions. In this case, the database can describe a single, incrementally changing task-
domain situation; multiple or alternative descriptions are unnecessary. (See Theorem
Proving.)

A Overview 17

Reasoning Forward and ReasoningBackward

The application of operators to those structures in the database that describe thetask-domain situation—to produce a modified situation—is often called reasoning forward. Theobject is to bring the situation, or problem state, forward from its initial configuration to one
satisfying a goal condition. For example, an initial situation might be the placement ofchessmen on the board at the beginning of the game; the desired goal, any board
configuration that is a checkmate; and the operators, rules for the legalmoves in chess.

An alternative strategy, reasoning backward, involves using another type of operator,
which is applied not to a current task-domain situation but to the goal. The goal statement,'
or problem statement, is converted to one or more subgoals that are (one hopes) easier to
solve and whose solutions are sufficient to solve the original problem. These subgoals may in
turn be reduced to sub-subgoals, and so on, until each of them is either accepted to be a
trivial problem or its solution is accomplished by the solution of its subproblems. For example,
given an initial goal of integrating 1/(cos x)2 dx, and an operator permitting 1/(cos x) to berewritten as (sec x), one can work backward toward a restatement of the goal in a form
whose solution is immediate: The integral of (sec x)2 is tan x.

The former approach is said to use forward reasoning and to be data-driven or bottom-up.
The latter uses backward reasoning and is goal-directed or top-down. The distinction between
forward and backward reasoning assumes that the current task-domain situation or state is
distinct from the goal, if one chooses to say that a current state is the state of having a
particular goal, the distinction naturally vanishes.

Much human problem-solving behavior is observed to involve reasoning backward, andmany artificial intelligence programs are based on this general strategy. In addition,
combinations of forward and backward reasoning are possible. One important Al technique'
involving forward and backward reasoning is called means-ends analysis; it involves comparing
the current goal with a current task-domain situation to extract a difference between them.This difference is then used to index that (forward) operatormost relevant to reducing thedifference. If this especiallyrelevant operatorcannot be immediately applied to the present
problem state, subgoals are set up to change the problem state so that the relevant
operator can be applied. After these subgoals are solved, the relevant operator is applied
and the resulting, modified situation becomes a new starting point from which to solve for theoriginal goal. (See D2, GPS; and 05, STRIPS.)

State Spaces and Problem Reduction

A problem-solving system that uses forward reasoning and whose operators each workby producing a single new object—a new state—in the database is said to represent
problems in a state-space representation (see B1).

A distinction may be drawn between two cases of backward reasoning. In one, eachapplication of an operator to a problem yields exactly one new problem, whose size ordifficulty is typically slightly less than that of the previous problem. Systems of this kind willalso be referred to, in this chapter, as employing state-space representations. Twoinstances of such representations are presented later In the chapter. One example is theLogic Theorist program (D1); the other is the backward-reasoning part of Pohl's bidirectionalsearch (CI and C3d).

%
18 Search

A more complex kind of backward reasoning occurs if applying an operator may divide
the problem into a set of subproblems, perhaps each significantlysmaller than the original. An
example would be an operator changing the problem of integrating 2/(x2-1) dx into the threesubproblems of integrating 1/(x-I)dx, integrating -1/(x+l)dx, and adding the results. A
system using this kind of backward reasoning, distinguished by the fact that its operators
can change a single object into a conjunction of objects, will be said to employ a problem-
reduction representation. The relationship between problem-reduction and state-space
representationsis examined further at the end of Article 82.

There may or may not be constraints on the order in which the subproblems generated
by a problem-reduction system can be solved. Suppose, for example, that the originalproblem Is to integrate (f(x) + g(x)) dx. Applying the obvious operator changes it to the new
problem consisting of two integrations, f(x) dx and g(x) dx. Depending on the
representation, the new problem can be viewed as made up of either (a) two integration
subproblems that can be solved in any order, or (b) two integration subproblems plus thethird subproblem of summing the integrals. In the latter case, the third task cannot be doneuntil the first two have been completed.

Besides the state-space and problem-reduction representation approaches, other
variations on problem representation are possible. One occurs in connection with game-
playing problems, which differ from most other problems by virtue of the existence ofadversary moves. A game-playing problem must be represented so as to take into accountthe opponent's possible moves as well as the player's own. The usual representation is agame tree (see B3), which shares many features of a problem-reduction representation.
Another variation is relevant to theorem-proving systems, many of which use forwardreasoning and operators (rules of inference) that act on conjunctions of objects in thedatabase. Although the representations discussed here assume that each operator takesonly a single object as input, it is possible to define a theorem-proving representation thatprovides for multiple-input, single-outputoperators (Kowalski, 1972; see Theorem Proving).

Graph Representation

In either a state-space or a problem-reduction representation, achieving the desiredgoal can be equated with finding an appropriate finite sequence of applications of availableoperators. While what one is primarily interested in—the goal situation or the sequence thatleads to it—may depend on the problem, the term search can always be understood, withoutmisleading consequences, as referring to the search for an appropriate operator sequence.

Tree structures are commonly used in implementing control strategies for the search.In a state-space representation, a tree may be used to represent the set of problem statesproduced by operator applications. In such a representation, the root node of the tree
represents the initial problem situation or state. Each of the new states that can beproduced from this initial state by the application of just one operator is represented by asuccessor node of the root node. Subsequent operator applications produce successors ofthese nodes, etc. Each operator application is represented by a directed arc of the tree. Ingeneral, the states are represented by a graph rather than by a tree since there may existdifferent paths from the root to any given node. Trees are an important special case,however, and it is usually easier to explain their use than that of graphs. (See 81, State-space Representation.)

A Overview 19

In addition to these ordinary trees and graphs used for state-space representations,
specialized ones called AND/OR graphs are used for problem-reduction problem-solving
methods. For problems in which the goal can be reduced to sets of subgoals, AND/OR graphs
provide a means for keeping track of which subgoals have been attempted and of whichcombinations of subgoals are sufficient to achieve the original goal (see Article B3).

The Search Space

The problem of producing a state that satisfies a goal condition can now be formulatedas the problem of searching a graph to find a node whose associated state description
satisfies the goal. Similarly, search based on a problem-reduction representation can beformulated as the search of an AND/OR graph.

It should be noted that there is a distinction between the graph to be searched andthe tree or graph that is constructed as the search proceeds. In the latter, nodes and arcscan be represented by explicit data structures; the only nodes included are those for which
paths from the initial state have actually been discovered. This explicit graph, which grows
as the search proceeds, will be referred to as a search graph or search tree.

In contrast, the graph to be searched is ordinarily not explicit. It may be thought of ashaving one node for every state to which there exists a path from the root. It may even bethought of, less commonly, as having one node for every state that can be described,
whether or not a path to it exists. The implicit graph will be called the state space or, ifgeneralized to cover non-state-space representations such as AND/OR graphs or gametrees, the search space. Clearly, many problem domains (such as theorem proving) have aninfinite search space, and the search space in others, though finite, is unimaginably large.Estimates of search space size may be based on the total number of nodes (however
defined)or on other measures. In chess, for example,the number of different complete plays
of the average-length game has been estimated at iO 120 (Shannon/ 1950, 1956), althoughthe number of "good" games is much smaller (see Good, 1968). Even for checkers the size
of the search space has been estimated at 1040 (Samuel, 1963).

Searching now becomes a problem of making just enough of the search space explicitin a search graph to contain a solution of the original goal. If the search space is a generalgraph, the search graph may be either a subgraph, or a subgraph that is also a tree, or atree obtained by representing distinct paths to one search space node with duplicate searchgraph nodes.

Limiting Search

The critical problem of search is the amount of time and space necessary to find asolution. As the chess and checkers estimates suggest, exhaustive search is rarely feasiblefor nontrivlal problems. Examining all sequences of n moves, for example, would require
operating in a search space in which the number of nodes grows exponentially with n. Sucha phenomenon is called a combinatorial explosion.

There are several complementary approaches to reducing the number of nodes that asearch must examine. One important way is to recast the problem so as to reduce the size ofthe search space. A dramatic, if well-known, exampleis the mutilated chessboard problem:

20 Search%

L

Suppose two diagonally opposite corner squares are removed from a
standard 8 by 8 square chessboard. Can 31 rectangular dominoes,
each the size of exactly two squares, be so placed as to cover
precisely the remaining board? (Raphael, 1976, p. 31)

If states are defined to be configurations of dominoes on the mutilated board, and an
operator has the effect of placing a domino, the search space for this problem is very large.
If, however, one observes that every domino placed must cover both a red square and a
black one and that the squares removed are both of one color, the answer is immediate.
Unfortunately, little theory exists about how to find good problem representations. Some of
the sorts of things such a theory would need to take into account are explored by Amarel(1968), who gives a sequence of six representations for a single problem, each reducing the
search space size by redefining the states and operators.

A second aspect concerns search efficiency within a given search space. Several
graph- and tree-searching methods have been developed,and these play an important role in
the control of problem-solving processes. Of special Interest are those graph-searching
methods that use heuristic knowledge from the problem domain to help focus the search. In
some types of problems, these heuristic search techniques can prevent a combinatorial
explosion of possible solutions. Heuristic search is one of the key contributions of Al to
efficient problem solving. Various theorems have been proved about the properties of search
techniques, both those that do and those that do not use heuristic information. Briefly, it has
been shown that certain types of search methods are guaranteed to find optimal solutions(when such exist). Some of these methods, under certain comparisons, have also been
shown to find solutions with a minimal amount of search effort. Graph- and tree-searching
algorithms, with and without the use of heuristic information, are discussed at length in
Section C.

A third approach addresses the question: Given one representation of a search
problem, can a problem-solving system be programmed to find a better representation
automatically? The question differs from that of the first approach to limiting search in that
here it is the program, not the program designer, that is asked to find the improved
representation. One start on answering the question was made by the STRIPS program (D5).
STRIPS augments its initial set of operators by discovering, generalizing, and remembering
macro-operators, composed of sequences of primitive operators, as it gains problem-solving
experience. Another idea was used in the ABSTRIPS program (D6), which implements theidea of planning, in the sense of defining and solving problems in a search space from which
unimportant details have been omitted. The details of the solution are filled in (by smaller
searches within the more detailed space) only after a satisfactory outline of a solution, orplan, has been found. Planning is a major topic itself; for further discussion, see Planning.

The Meaning of "Heuristic" and "Heuristic Search"

Although the term "heuristic" has long been a key word in Al, its meaning has variedboth among authors and over time. In general, its usage is illustrated by examplebetter thanby definition, and several of the prime examples are included in the programs of Section D.However, a brief review of the ways "heuristic" and "heuristic search" have been used may
provide a useful warning against taking any single definition too seriously.

A Overview 21

As an adjective, the most frequently quoted dictionary definition for "heuristic" is
"serving to discover." As a noun, referring to an obscure branch of philosophy, the word
meant the study of the methods and rules of discovery and invention (see Polya, 1 957, p.
112).

When the term came into use to describe Al techniques, some writers made a
distinction between methods for discovering solutions and algorithms for producing them.
Thus Newell,

Shaw,

and Simon stated In 1957: "A process that may solve a given problem,
but offers no guarantees of doing so, is called a heuristic tor that problem" (Newell, Shaw, &
Simon, 1 963b, p. 1 14). But this meaning was not universally accepted. Minsky, for example,
said in a 1961 paper:

The adjective "heuristic," as used here and widely in the literature, means related
to improving problem-solving performance; as a noun it is also used in regard to any
method or trick used to improve the efficiency of a problem-solving program. . . .
But imperfect methods are not necessarily heuristic, nor vice versa. Hence
"heuristic" should not be regarded as opposite to "foolproof"; this has caused
some confusion in the literature. (Minsky, 1963, p. 407n.)

These two definitions refer, though vaguely, to two different sets: devices that improve
efficiency and devices that are not guaranteed. Feigenbaum and Feldman (1963, p. 6)
apparently limit "heuristic" to devices with both properties:

A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, trick,
simplification, or any other kind of device which drastically limits search for
solutions in large problem spaces. Heuristics do not guarantee optimal solutions;
in fact, they do not guarantee any solution at all; all that can be said for a usefulheuristic is that it offers solutions which are good enough most of the time.

Even this definition, however, does not always agree with common usage, because it lacks a
historical dimension. A device originally introduced as a heuristic in Feigenbaum andFeldman's sense may later be shown to guarantee an optimal solution after ail. When this
happens, the label "heuristic" may or may not be dropped. It has not been dropped, for
example, with respect to the A* algorithm (C3b). Alpha-beta pruning (Csb), on the other
hand, is no longer called a heuristic.

It should be noted that the definitions quoted above, ranging in time from 1957 to
1963, refer to heuristic rules, methods, and programs, but they do not use the term
"heuristic search." This composite term appears to have been first introduced in 1965 in a
paper by Newell and Ernst, "The Search for Generality" (see Newell & Simon, 1972, p. 888).
The paper presented a framework for comparing the methods used in problem-solving
programs up to that time. The basic framework, there called heuristic search, was the one
called state-space search in the present chapter. Blind search methods were included within
the heuristic search paradigm.

A similar meaning for heuristic search appears in Newell and Simon, 1972 (pp. 91-105).
Again no contrast is drawn between heuristic search and blind search; rather, heuristic
search is distinguished from a problem-solving method called generate-and-test. The
difference between the two is that the latter simply generates elements of the search
space (i.e., states) and tests each In turn until it finds one satisfying the goal condition;

%

Search22

whereas in heuristic search the order of generation can depend both on information gained in
previous tests and on the characteristics of the goal. But the Newell and Simon distinction is
not a hard and fast one. By their 1 976 Turing Lecture, they seem to have collapsed the two
methods into one:

Heuristic Search. A second law of qualitative structure for Al is that symbol
systems solve problems by generating potential solutions and testing them, that
is, by searching. (Newell &

Simon,

1976, p. 126)

In the present chapter, the meaning attached to "heuristic search" stems not from
Newell and Simon but from Nilsson, whose 1971 book provides the most detailed and
influential treatment of the subject that has yet appeared. For Nilsson, the distinction
between heuristic search and blind search is the important one. Blind search corresponds
approximately to the systematic generation and testing of search space elements, but it
operates within a formalism that leaves room for additional information about the specific
problem domain to be introduced, rather than excluding it by definition. If such

information,

going beyond that needed merely to formulate a class of problems as search problems, is in
fact introduced, it may be possible to restrict search drastically. Whether or not the
restriction is foolproof, the search is then called heuristic rather than blind.

References

See Amarel (1968), Feigenbaum & Feldman (1963), Good (1968), Jackson (1974),
Kowalski (1972), Minsky (1963), Newell & Ernst (1965), Newell, Shaw, & Simon (1963b),
Newell & Simon (1972), Newell & Simon (1976), Nilsson (1971), Polya (1957), Raphael
(1976), Samuel (1963), Shannon (1950), Shannon (1956), and Vanderbrug & Minker (1975).

Problem Representation 23

Problem Representation

81. State-space Representation

A state-space representation of a problem uses two kinds of entities: states, which are
data structures giving "snapshots" of the condition of the problem at each stage of its
solution, and operators, which are means for transforming the problem from one state to
another.

A straightforward example of state-space representation is the simple, well-known
puzzle called the 8-puzzle. An 8-puzzle is a square tray containing 8 square tiles of equal
size, numbered 1 to 8. The space for the 9th tile is vacant (see Figure 1).

Figure 1 . An 8-puzzle.

A tile may be moved by sliding it vertically or horizontally into the empty square. The problem
is to transform one tile configuration, say that of Figure 1, into another given tile
configuration, say that of Figure 2.

Figure 2. A solution configuration of
the 8-puzzle.

A state is a particular configuration of tiles; each state might be represented by a 3 x 3
matrix, similar to Figures 1 and 2. The operators, corresponding to possible moves, might be
defined with separate operators for each of tiles 1 through 8. However, a more concise
definition is made possible by viewing the empty square as the object to be moved and
stating the operators in terms of the movements of this square. In this formulation, only four
operators are used:

»
"UP" (move the blank up one square),

blank down one square),
blank left one square),
blank right one square).

"DOWN" (move the
"LEFT" move themove the
"RIGHT" (move the

An operator may be inapplicable in certain states, as when it would move the blank outside
the tray of tiles.

The set of all attainable states of a problem Is often called its state space. The 8-

% 24 Search

puzzle, for example, has a state space of size 9!/2--since there are 9! configurations of the
tiles but only half this number can be reached from any given starting configuration. This
comes to only 181,440 possible states. For comparison, see the discussion of chess and
checkers in the Overviewarticle.

The four operators defined for the 8-puzzleform a set of partial functions on the state
space: Each operator, if it applies to a given state at all, returns exactly one new state as
its result. In more complex problems, however, the operators often contain variables. If, for
a particular state and operator, the variables can be instantiated in more than one way, then
each instantiation yields one new state, and the operators of the problem, if they are to be
considered as defining functions, are more accurately termed operator schemata.

The complete specification of a state-space problem has three components. One is a
set 0 of operators or operatorschemata. In addition, one must define a set S of one or more
initial states and find a predicate defining a set G of goal states. A state-space problem is
then the triple (S, 0, G). A solution to the problem is a finite sequence of applications of
operators that changes an initial state into a goal state.

A state space can be treated as a directed graph whose nodes are states and whose
arcs are operators transforming one state to another. For example, if state 1 is a state to
which any of three operators can be applied, transforming it to state 2, 3, or 4, then the
corresponding graph would be as In Figure 3. Nodes 2, 3, and 4 are called the successors of
node 1.

node
1

node node node
2 3 4

Figure 3. Directed arcs

In graph notation, a solution to a state-space problem is a path from an initial node to a goal
node. In Figure 4, one solution would be an application of operator B twice, followed by
operator D, to reach the indicated goal node or final state. There may be other final states
and multiple ways to reach a particular final state.

initial state

Figure 4. A state-space graph.

B1 State-space Representation 25

A common variation on state-space problems requires finding not just any path but one
of minimum cost between an initial node and a goal node. In this case, each arc of the graph
is labeled with its cost. An example is the traveling-salesman problem: Given a number of
cities to be visited and the mileage between each pair of cities, find a minimum-mileage trip
beginning and ending at city A that visits each of the other cities exactly once. An example
mileage chart and the corresponding state-space graph are shown in Figure 5. Because
different paths to the same city represent distinct partial solutions, each state is identified
not just as a city name but as a list of the cities visited so far.

5
ABCO
10
ABCDA

5
ABOC

6
ABOCA

10
ACBO
10
ACBDA

10
ACOB
4

ACOBA

7
AOBC

6
AOBCA

7
ADCB

4
AOCBA

State-space graph

Figure 5. A traveling-salesman problem.

The desired solution is A-B-D-C-A, or its reversal, with a total mileage of 25. (The two
bottom levels of the graph could be omitted, since the mileage of each tour of n cities is
determined by the first n-1 cities chosen to be visited.)

Because the state-space graph is usually too large to represent explicitly, the problem
of searching for a solution becomes one of generating just enough of the graph to contain
the desired solution path. Search methods are discussed in Article Cl, Blind State-space
Search, and Section C3, Heuristic State-spaceSearch.

References

See Nilsson (1971).

4 6
7

1
1

Mlleagge chart

%

Search26

82. Problem-reduction Representation

Often distinguished from the state-space representation of problems is a technique

called problem-reduction representation. In the problem-reduction approach, the principal data

structures are problem descriptions or goals. An initial problem description is given; it is

solved by a sequence of transformations that ultimately change it into a set of subproblems

whose solutions are immediate. The transformations permitted are defined as operators. An
operator may change a single problem into several subproblems; to solve the

former,

all the
subproblems must be solved. In addition, several different operators may be applicable to a
single problem, or the same operator may be applicable in several different ways. In this
case it suffices to solve the subproblems produced by any one of the operator applications.

A problem whose solution is immediate is called a primitive problem. Thus, a problem
representation using problem reduction is defined by a triple consisting of

(a) an initial problem description,
(b) a set of operators for transforming problems to subproblems, and
(c) a set of primitive problem descriptions.

Reasoning proceeds backward from the initial goal.

An Example

An example that lends itself nicely to problem-reduction representation is the famous

Tower of Hanoi puzzle. In one common version there are three disks, A, B, and

C,

of
graduated sizes. There are also three pegs, 1, 2, and 3. Initially the disks are stacked on
peg 1 , with A, the smallest, on top and C, the largest, at the bottom. The problem is to

transfer the stack to peg 3, as in Figure 1, given that (a) only one disk can be moved at a
time, and (b) no disk may be placed on top of a smaller disk.

Initial State Goal State

AA
B B
C —|— | I

peg 1 peg 2 peg 3 peg 1 peg 2 peg 3

Figure 1. The Tower of Hanoi puzzle.

Only one operator need be used in the solution: Given distinct pegs i, j, and k, the
problem of moving a stack of size n > 1 from peg i to peg k can be replaced by the three
problems:

(a) moving a stack of size n-1 from i to J,
(b) moving a stack of size 1 from i to k, and
(c) moving a stack of size n-1 from j to k.

The only primitive problem is that of moving a single disk from one peg to another, provided
no smaller disk is on the receiving peg. If a smaller disk were present, this problem would be

unsolvable (in view of the definition of the only available operator).

B2 Problem-reduction Representation 27

Each problem description can now be given by specifying the size n of the stack to be
moved, the number of the sending peg, and the number of the receiving peg. The original
problem, moving a stack of three disks from peg 1 to peg 3, would then be represented as
(n = 3, 1 to 3), and the transformation of the original problem to primitive problems can be
represented by a tree:

Figure 2. Solution of the Tower of Hanoi puzzle.

There happen to be two possible operator sequences that transform the original
problem to primitive problems: Apply the operator to node 1, then node 2, and then node 4;
or apply the operator to node 1, then node 4, and then node 2. Since node 3 is a primitive
problem, it needs no further attention. Node 2 represents the subproblem of moving the top
two disks on peg 1 to peg 2. This subproblem Is solved by expanding it to the primitive
problems at nodes (5), (6), and (7)—which are solved by moving the smallest disk to peg 3,
moving the middle disk to peg 2, and finally putting the small disk back on top of the middle
one.

The sequence of operators to be appliedshould be distinguished from the sequence of
actions to be taken to achieve the goal. In the Tower of Hanoi example, the actions are the
actual movements of the disks. This sequence is given by the terminal nodes of the tree,
read left to right. Whether or not it is considered important to assemble such a sequence of
actions depends on the particular problem domain.

ANO/OR Graphs

In the example above, a tree was used to display a problem-reduction solution to the
Tower of Hanoi puzzle. The tree notation must be generalized if it is to represent the full
variety of situations that may occur in problem reduction. This generalized notation for
problem reduction is called an ANDIOR graph.

According to one common formulation (Nilsson, 1971), an AND/OR graph is constructed
according to the following rules:

1. Each node represents either a single problem or a set of problems to be
solved. The graph contains a start node corresponding to the original problem.

*
Search28

2. A node representing a primitive problem, called a terminal node, has no
descendants.

3. For each possible application of an operator to problem P, transforming it to a

set of subproblems, there is a directed arc from P to a node representing the
resulting subproblem set. For example, Figure 3 illustrates the reduction of P
to three different subproblem sets: A, B, and C. Since P can be solved if any
one of sets A, B, or C can be solved, A, B, and C are called OR nodes.

D E F H

Figure 3. An AND/OR tree.

4. Figure 3 illustrates further the composition of sets A, B, and C: A = {D, E}, B
consists of a single (unnamed) problem, and C = {F, G, H>. In general, for each
node representing a set of two or more subproblems, there are directed arcs
from the node for the set to individual nodes for each subproblem. Since a set

of subproblems can be solved only if Its members can all be solved, the
subproblem nodes are called AND nodes. To distinguish them from OR nodes,

the arcs leading to AND node successors of a common parent are joined by a
horizontal line.

5. A simplification of the graph produced by rules 3 and 4 may be made in the
special case where only one application of an operator is possible for problem

P and where this operator produces a set of more than one subproblem. As
Figure 4 illustrates, the intermediate OR node representing the subproblem set
may then be omitted:

Figure 4. An AND/OR tree with one
operator at problem P.

Another example of this construction was given in Figure 2.

In the figures above, every node represents a distinct problem or set of problems.

Since each node except the start node has just one parent, the graphs are in fact ANDIOR
trees. As a variation on Figure 3, assume that problem A is reducible to D and E; and problem
C, to E, G, and H. Then E may be represented either by two distinct nodes, or by a single

B2 Problem-reduction Representation 29

node as shown in Figure 5. The choice makes a difference in the search algorithms which
are discussed later in the chapter. For example, if node E is in turn reducible to C, the
general graph representation simply adds another directed arc to Figure 5, but the
corresponding tree becomes infinite.

P

A C

D E

Figure 5. An AND/OR graph.

The constructions discussed so far concern graphs depicting the entire problem search
space. To find a solution to the initial problem, one need only build enough of the graph to
demonstrate that the start node can be solved. Such a subgraph is called a solution graph or,
in the more restricted case of an AND/OR tree, a solution tree. The following rules apply:

A node is solvable if:

(a) it is a terminal node (a primitive problem);
(b) it is a nonterminal node whose successors are AND nodes that are

all solvable;or
(c) it is a nonterminal node whose successors are OR nodes and at

least one of them is solvable.

Similarly, a node is unsolvabie if:

(a) it is a nonterminal node that has no successors (a nonprimitive
problem to which no operatorapplies);

(b) it is a nonterminal node whose successors are AND nodes and at
least one of them is unsolvabie;or

(c) it is a nonterminal node whose successors are OR nodes and all of
them are unsolvabie.

Methods of searching an AND/OR graph for such a solution are discussed in Articles CS and
C4.

Relation between Problem-reduction and State-space Representations

Some interesting general relationships can be found between problem-reduction and
state-space representations. In the first place, although one representation often seems
the more natural for a given problem, it is often possible to recast the problem definition so
that it uses the other form. For example, the Tower of Hanoi puzzle can also be solved by a
state-space search using operators that move a single disk and that represent all the legal

%

30 Search

moves in a given configuration. In comparison to the problem-reduction representation, which
in fact gives an algorithm for solving the puzzle, the state-space representation would be a
poor one since it leaves room for searching down unnecessarily long paths.

Second, it is possible to translate mechanically between state-space representations
and problem-reduction representations without any fundamental shift in the way a problem is
viewed. The Ways of making such translations can provide helpful insight into many search
programs in which the concepts of state-space and problem-reductionrepresentation appear
to be intermixed. Several translation schemes are described below. (Some readers may
wish to skip the following material at first reading.)

State space to problem reduction. Two approaches suggest themselves for
translating state-space representations to problem-reduction representations. In one, the
state-space graph is understood as an AND/OR graph containing only OR nodes. Each state
of the state-space version corresponds to the problem of getting from that state to a goal
state; and a goal state of the state space becomes the primitive problem of getting from
that goal state to itself. In other words, data structures representing states are simply
reinterpreted as representing problem descriptions, where a problem consists of state
information together with an implicit goal.

Alternately, there is a slight variation of the first approach that requires redefining the
operators of the state-space representation. Each such operator, taking state i to state j,
becomes an operator applicable to the problem of getting from state i to a goal state. Its
effect is to reduce the problem to a pair of subproblems: (a) go from state i to state j (a
primitive problem), and (b) go from state j to a goal state. Figure 6 illustrates this
correspondence.

Go from state 1 to goal state

Go from state i
to state J

(a primitive problem)
Go from state j

to goal state

(6a) (6b)

Figure 6. (a) Part of a state-space tree; (b) the corresponding
part of an AND/OR (problem-reduction)tree.

Problem reduction to state space. The translation from a problem-reduction
representation to a state-space representation is a little more complex, assuming that the
problem-reduction operators in fact produce AND nodes. The initial problem of the problem-
reduction representation can be understood as having two components: (a) the description
of the goal to be achieved, as discussed at the beginning of this article, and (b) the
description of an initial state of the world. These components will be denoted c__ and sO,
respectively. Some examples are

<_0 = a theorem to be proved, and sO = the axioms from which to prove it;

gO = a configurationof objects to be achieved, and sO = their existing configuration.

State i

State j

B2 Problem-reduction Representation 31

Each state S of the corresponding state-space representation is a pair consisting of a stack
of goals (gi, ..., gO) to be achieved and a current state s of the world. Thus, the initial state
SO of the state-space representation is SO = ((gO), sO). A final state is one in which the
stack of goals to be achieved has been emptied.

For each problem-reduction operator, mapping a problem or goal g to a set of subgoals
{gm, ..., gn), the state-space representation has a corresponding operator mapping state Sl,
where S1 = ((gi, ..., gO), s), to a state S2 in which {gm, ..., gn} have been added to the top
of the goal-stack (in the order in which they should be carried out, if relevant), and the state
of the world sis unchanged; that is, S2 ■ ((gm, ..., gn, gi, ..., gO), s).

The state-space representation also needs a second type of operator, which becomes
applicablewhenever the goal on top of the stack represents a primitive problem. Its function
is to remove that primitive problem from the stack and, at the same time, to change the state
s to reflect its solution. In the Tower of Hanoi puzzle, for example, the new state would
reflect the changed position of a single disk. In a theorem-proving problem, the new state
would differ from the old one by the addition of one formula to those that had been given as
axioms or established from having solved previous subproblems. A representation of this
type is used explicitly in Fikes and Nilsson's STRIPS program, described in Article D5.

References

See Jackson (1974), and Nilsson (1971).

%

32 Search

83. Game Trees

Most games played by computer programs, including checkers, chess, go, and tic-tac-
toe, have several basic features in common. There are two players who alternate in making
moves. At each turn, the rules define both what moves are legal and the effect that each
possible move will have; there is no element of chance. In contrast to card games in which
the players' hands are hidden, each player has complete information about his opponent's
position, including the choices open to him and the moves he has made. The game begins
from a specified state, often a configuration of men on a board. It ends in a win for one
player and a loss for the other, or possibly in a draw.

A complete game tree is a representationof all possible plays of such a game. The root
node is the initial state, in which it is the first player's turn to move. Its successors are the
states he can reach in one move; their successors are the states resulting from the other
player's possible replies; and so on. Terminal states are those representing a win, loss, or
draw. Each path from the root node to a terminal node gives a different complete play of the
game.

An important difference between a game tree and a state-space tree (Article B1) is
that the game tree represents moves of two opposing players, say A and B. An AND/OR tree
(Article B2), however, is sufficient to reflect this opposition. The game tree is ordinarily
drawn to represent only one player's point of view. In a game tree drawn from A's
standpoint, A's possible moves from a given position are represented by OR nodes since they
are alternatives under his own control. The moves that B might make in return are AND
nodes, since they represent sets of moves to which A must be able to respond. Because the
players take turns, OR nodes and AND nodes appearat alternate levels of the tree. In the
language of AND/OR graphs, the tree displays the search space for the problem of showing
that A can win. A node representing a win for A corresponds to a primitive problem; a node
representing a win for B or a draw, to an unsolvabie problem. Unlike the usual AND/OR graph
terminology,both of these kinds of nodes will be called terminal nodes.

As an example, Figure 1 shows a portion of tire game tree for tic-tac-toe. The players
are X and 0, X has the first move, and the tree is drawn from X's standpoint. Positions are
considered identical if one can be obtained from the other by rotation or reflection of the
grid. The tree could also be drawn from O's standpoint, even though X has the first move. In
this case, the AND nodes would become OR nodes, and vice versa, and the labels "win" and
"lose" would be reversed. An alternate formulation of game trees, not explicitly
distinguishing between AND and OR nodes, is given in Article Csa, Minimax.

Methods of searching a game tree for a winning strategy are discussed in Section C5.
As with search in other domains, the source of difficulty in challenging games is the
unimaginably large search space. A complete game tree for checkers, for instance, which is
harder than tic-tac-toe but far simpler than chess or go, has been estimated as having about
1040 nonterminal nodes (Samuel, 1963). If one assumed that these nodes could be
generatedat the rate of 3 billion per second, generationof the whole tree would still require
around 1021 centuries!

B3 Game Trees 33

ox*
x*x

(win)

Figure 1. A game tree for Tic-tac-toe.

References

See Nilsson (1971), and Samuel (1963).

%
34 Search

C. Search Methods

Cl. Blind State-space Search

As discussed in Article 81, a problem in the state-space search paradigm is defined by
a triple (S, 0, G), where

S is a set of one or more initial states,
0 is a set of operatorson states, and
G is a set of goal states.

The state space is commonly identified with a directed graph in which each node is a state
and each arc represents the application of an operator transforming a state to a successor
state. A solution is a path from a start state to a goal state. Goal states may be defined
either explicitly or as the set of states satisfying a given predicate.

The search for a solution is conducted by making just enough of the state-space graph
explicit to contain a solution path. If the order in which potential solution paths are
considered is arbitrary, using no domain-specific information to judge where the solution is
likely to lie, the search is called blind search. Although blind search is impracticable for
nontrivial problems, because of the large proportion of the state space it may explore, it
provides a useful foundation for the understanding of heuristic search techniques, discussed in
Section C3.

Several blind-search methods are described below; they differ from one another mainly
in the order in which nodes are examined. In each case, it is assumed that a procedure
exists for finding all the successors of a given node—that is, all the states that can be
reached from the current state by a single operator application. Such a procedure is said to
expand the given node.

The first three algorithms also make two other assumptions

(a) The state-space graph is a tree. The implication is that there is only one
start state (the root) and that the path from the start node to any other
node is unique. Modifications to the search methods needed for a general
directed graph are noted in Nilsson (1971) and in Article

C3a,

Basic
Concepts in Heuristic Search.

(b) Whenever a node is expanded, creating a node for each of its successors,
the successor nodes contain pointers back to the parent node. When a goal
node is finally generated, this feature makes it possible to trace the solution
path.-

Breadth-first Search

The breadth-first method expands nodes in order of their proximity to the start node,
measured by the number of arcs between them. In other words, it considers every possible
operator sequence of length n before any sequence of length n+l. Thus, although the
search may be an extremely long one, it is guaranteed eventually to find the shortest
possible solution sequence if any solution exists.

C1 Blind State-space Search 35

i.

Breadth-first search is described by the following algorithm:

(1) Put the start node on a list, called OPEN, of unexpended nodes. If the
start node is a goal node, the solution has been found.

(2) If OPEN is empty, no solution exists.
(3) Remove the first node, n, from OPEN and place it in a list, called CLOSED,

of expandednodes.
(4) Expand node n. If it has no successors, go to (2).
(5) Place all successors of node n at the end of the OPEN list.
(6) If any of the successors of node n is a goal node, a solution has been

found. Otherwise, go to (2).

As an example of breadth-first search, consider a worldconsisting of a table and three
toy blocks. The initial state of the world is that blocks 2 and 3 are on the table, and block 1
is on top of block 2 (see Figure 1). We wish to reach a goal state in which the three blocks
are stacked with block 1 on top, block 2 in the middle, and block 3 on the bottom.

Initial state Goal state

1
2
3

Figure 1 . An example problem for breadth-first search.

The only operator is MOVE X to V, which moves object X onto another object, Y. As
preconditions to applying the operator, It is required (a) that X, the object to be moved, be a
block with nothing on top of it, and (b) that if V is a block, there must be nothing on Y.
Finally, the operator is not to be used to generate the same state more than once. (This last
condition can be checked from the lists of expandedand unexpendednodes.)

Figure 2 shows the search tree generated by the breadth-first algorithm. The nodes
are states SO through S10; node Sl, for example, corresponds to the successor state of SO
reached by "MOVE block 1 to the table." The nodes are generated and expanded in the
order given by their state numbers, i. c., SO, Sl, 52, ... , SlO. When the algorithm terminates,
finding SlO to be the goal state, the list of expandednodes contains SO through S5, and the
OPEN list still contains S6 through SlO.

36 Search%

S9: 3 S10: 1
2 2
1 3

Figure 2. The search tree for Figure

Uniform-cost Search

The breadth-first algorithm can be generalizedslightly to solve the problem of finding
the cheapest path from the start state to a goal state. A nonnegative cost is associated
with every arc joining two nodes; the cost of a solution path is then the sum of the arc costs
along the path. The generalized algorithm is called a uniform-cost search. If all arcs have
equal cost, the algorithm reduces to breadth-first search. The need for assigning costs tothe arcs is illustrated by the traveling-salesman problem, described in Article 81, where thedifferent distances between cities correspond to the arc costs and the problem is tominimize the total distance traveled.

In the uniform-cost algorithm given below, the cost of the arc from node i to node j isdenoted by c(i,j). The cost of a path from the start node to any node I is denoted g(i).

(1) Put the start node, s, on a list called OPEN of unexpanded nodes. If the
start node is a goal node, a solution has been found. Otherwise, set
g(s) = 0.

(2) If OPEN is empty, no solution exists.
(3) Select from OPEN a node i such that g(i) is minimum. If several nodes

qualify, choose node i to be a goal node if there is one; otherwise,choose
among them arbitrarily. Move node i from OPEN to a list, CLOSED, of
expanded nodes.

(4) If node i is a goal node, the solution has been found.
(5) Expand node i. If it has no successors, go to (2).
(6) For each successor node j of node i, compute g(j) = g(i) + c(i,j) and place

all the successor nodes j In OPEN.
(7) Go to (2).

C1 Blind State-space Search 37

Depth-first Search

Depth-first search is characterized by the expansion of the most recently generated,
or deepest,node first. Formally, the depth of a node in a tree is defined as follows:

The depth of the start node is 0.
The depth of any other node is one more than the depth of its predecessor.

As a consequence of expanding the deepest node first, the search follows a single path
through the state space downward from the start node; only if it reaches a state that has no
successors does it consider an alternate path. Alternate paths systematically vary those
previously tried, changing only the last n steps while keeping n as small as possible.

In many problems, of course, the state-space tree may be of infinite depth, or at least
may be deeper than some known upper bound on the length of an acceptable solution
sequence. To prevent consideration of paths that are too long, a maximum is often placed on
the depth of nodes to be expanded, and any node at that depth is treated as if it had no
successors. It should be noted that, even if such a depth bound is used, the solution path
found is not necessarily the shortest one.

The following algorithm describes depth-first search with a depth bound

(1) Put the start node on a list, OPEN, of unexpendednodes. If it is a
goal node, a solution has been found.

(2) If OPEN is empty, no solution exists.
(3) Move the first node, n, on OPEN to a list CLOSED of expanded

nodes.
(4) If the depth of node n is equal to the maximum depth, go to (2).
(5) Expand node n. If it has no successors, go to (2).
(6) Place all successors of node n at the beginning of OPEN.
(7) If any of the successors of node n is a goal node, a solution has

been found. Otherwise go to (2).

As an example, consider the following simple problem: A pawn is required to move
through the matrix in Figure 3 from top to bottom. The pawn may enter the matrix anywhere
in the top row. From a square containing 0, the pawn must move downward if the square
below contains 0; otherwise, it must move horizontally. From a square containing 1, no
further moves are possible. The goal is to reach a square containing zero in the bottom row.
A depth bound of 5 Is assumed.

Figure 3. An example problemfor depth-first search.

%

Search38

The search tree generated by the depth-first algorithm is shown in Figure 4. At node
SO, the pawn has not yet entered the grid. At the other nodes, its position is given as a (row
number, column number) pair. The numbering of nodes gives the order in which they are
moved out of the OPEN list of unexpended nodes. When the algorithm terminates, the OPEN
list contains Sl7 (a goal node) and S18; ail other nodes are on the expanded list. The
solution found, which is one move longer than the minimum, calls for the pawn to enter at
(1,3), move one square right, and then go straight down to (4,4). Had no depth bound been
used, the tree would have been one level deeper since node Sl2 has a successor, (4,1).
Since the algorithm treats the state space as a tree, not a general graph, it does not
discover that the distinct nodes S2 and S9 in fact represent the same state. Consequently,
the search downward from S9 duplicates the work already donefrom S2.

Figure 4. The search tree for Figure 3.

Bidirectional Search

Each of the algorithms given above uses forward reasoning, working from the start node
of a state-space tree towards a goal node and using operators that each map a node i to a
successor node J. In some cases, the search could equally well use backward reasoning,
moving from the goal state to the start state. An example of this is the 8-puzzle, in which

(a) the goal state can be fully described in advance, and
(b) it is easy to define inverse operators—each applicable operator mapping

node j to a predecessor node i.

Since backward search through a tree is trivial, it is assumed that node j can have more than
one predecessor—that is, several inverse operators may apply at node j. For example, in
the pawn maze problem, Figure 4, position (1,2) [at nodes S2 and S9] would have both nodes
SO and S8 as predecessors.

Forward and backward reasoning can be combined into a technique called bidirectional

"C1 Blind State-space Search 39

search. The idea is to replace a single search graph, which is likely to grow exponentially,by
two smaller graphs: one starting from the initial state and one starting from the goal. The
search terminates (roughly) when the two graphs Intersect.

A bidirectional version of the uniform-cost algorithm, guaranteedto find the shortest
solution path through a general state-space graph, is due to Pohl (1969, 1971). Empirical
data for randomly generated graphs showed that PohPs algorithm expandedonly about one-
fourth as many nodes as unidirectional search.

An algorithm for blind bidirectional search is given in detail below. A related algorithm
for heuristic bidirectional search is discussed in Article C3d.

The following notation is used in the algorithm:

The start node is s; the goal or terminal node, t.

S-OPEN and S-CLOSED are lists of unexpended and expanded nodes,
respectively, generated from the start node.

T-OPEN and T-CLOSED are lists of unexpended and expanded nodes,
respectively, generated from the terminal node.

The cost associated with the arc from node n to node x is denoted c(n,x).

For a node x generated from the start node, gs(x) measures the shortest
path found so far from a to x.

For a node x generated from the terminal node, gt(x) measures the shortest
path found so far from x to t.

The algorithm is as follows:

(1) Put s in

S-CLOSED,

with gs(s) = 0. Expand node s, creating a node for each
of its successors. For each successor node x, place x on S-OPEN, attach a
pointer back to s, and set gs(x) to c(s,x). Correspondingly, put t in T-

CLOSED,

with gt(t) *0. Expand node t, creating a node for each of its
predecessors. For each predecessor node x, place x on T-OPEN, attach a
pointer forward to t, and set gt(x) = c(x,t).

(2) Decide whether to go forward or backward. If forward, go to (3); if
backward, to (4). (One way to implement this step is to alternate between
forward and backward moves. Another way, which Pohl found to give better
performance, is to move backward if T-OPEN contains fewer nodes than S-

OPEN;

otherwise, forward. It is assumed that a solution path does exist, so
the chosen list will be nonempty.)

(3) Select from S-OPEN a node n at which gs(n) is minimum. Move n to S-
CLOSED. If n is also In T-CLOSED, go to (5). Otherwise, for each successor
x of n :
(a) If x is on neither S-OPEN nor S-CLOSED, then add it to S-OPEN.

Attach a pointer back to n and the path cost gs(x) = gs(n) + c(n,x).

40 Search%

(b) If x was already on S-OPEN, a shorter path to x may have just beenfound. Compare the previous path cost, gs(x), with the new costgs(n) + c(n,x). If the latter Is smaller, set gs(x) to the new path
cost and point x back to n instead of its predecessor on the longer
path.

(c) If x was already on S-CLOSED, do nothing; although a new path to x
has been found, its cost must be at least as great as the cost of the
path already known. (For further consideration of this point, see
Article C3b.)

Return to (2).

(4) Select from T-OPEN a node n at which gt(n) is minimum. Move n to T-CLOSED
If n is also in S-CLOSED, go to (5). Otherwise, for each predecessorx of n:(a) If x is on neither T-OPEN nor T-CLOSED, then add it to T-OPEN.

Attach a pointer forward to n and the path costgt(x) = gt(n) + c(x,n).
(b) If x was already on T-OPEN and a shorter path from x to t has justbeen found, reduce the stored value of gt(x), and point x forward to

n (instead of to its successor on the longer path).
(c) If x was already on T-CLOSED, do nothing.
Return to (2).

(5) Consider the set of nodes that are in both S-CLOSED and either T-CLOSED orT-OPEN. Select from this set a node n for which gs(n) + gt(n) is minimum; andexit with the solution path obtained by tracing the path from n back to s andforward to t.

References

See Nilsson (1971), Pohl (1969), and Pohl (1971).

C2 Blind AND/OR Graph Search 41

C2. Blind AND/OR Graph Search

A problem to be solved using AND/OR-graph search can be defined by specifying a
start node (representing an initial goal or problem description), a set of terminal nodes
(descriptions of primitive problems), and a set of operatorsfor reducing goals to subgoals.
The rules for constructing an AND/OR graph, together with the use of such graphs for
problem-reductionrepresentation,were discussed in Article BS. To recapitulate briefly, each
possible application of an operator at a node n (see Figure 1) is represented by a directed
arc from node n to a successor node; these successor nodes are called OR nodes, since only
one of the operator applications will ever be needed to solve the problem that node n
represents. Each OR node successor of node n represents a set of subproblems. If the set
of subproblems represented by an OR node m has more than one element, then there are
directed arcs from m to nodes representing the individual elements of the set. These
successors are called AND nodes, because all of the elements of the set must be solved in
order to solve the subproblem set represented by node m. To distinguish AND nodes visually
from OR nodes, the arcs in the graph from m to its AND successors are joined by a horizontal
line.

n

m OR nodes

AND nodes

Figure 1. AND/OR graph notation,

Formally, a node or problem is said to be solved if one of the following conditions holds:

1. The node is in the set of terminal nodes (primitive problems). (In this
case, the node has no successors.)

2. The node has AND nodes as successors and all these successors are
solved.

3. The node has OR nodes as successors and any one of these
successors is solved.

A solution to the original problem is given by a subgraph of the AND/OR graph sufficient to
show that the start node is solved. In Figure 2, for example, assuming that nodes 5, 6, 8, 9,
10, and 11 are all terminal, there are three possible solution subgraphs: {1, 2, 4, 8, 9}, {1,
3, 5, 8, 7, 10}, and {1, 3, 6, 6, 7, 11}.

%

42 Search

Figure 2. An AND/OR graph.

A node is said to be unsolvabie if one of the following conditions is true:

1 . The node has no successors and is not in the set of terminal nodes.
That is, it is a nonprimitive problem to which no operator can be
applied.

2. The node has AND nodes as successors and one or more of these
successors is unsolvabie.

3. The node has OR nodes as successors and all of these succesors are
unsolvabie.

Again in Figure 2, node 1 would be unsolvabie if ail nodes in any of the following sets were
unsolvabie: {8,5}, {8,6}, {8,10,11}, {9,5}, {9,6}, {9,10,11}.

Two algorithms for the blind search of an AND/OR tree (breadth-first and depth-first)
are given at the end of this article. They have several features in common with blind state-
space search algorithms (Article CI): The operation of expanding a node is again present,
and again the algorithms differ mainly in the order in which nodes are considered for
expansion. It should be noted that the expansion of a node may differ slightly from the case
of state-space search. In Figure 2, for example, two operators apply at node 1 : One
reduces it to a single equivalent problem (node 2) and the other to a set (node 3) of three
subproblems (nodes 5, 6, and 7). In this case, nodes 2, 3, 5, 6, and 7 would all be generated
in expanding node 1, and each new node would be given a pointer to its immediate
predecessor, but only nodes 2, 5, 6, and 7 would be placed on the list of unexpandednodes.

In contrast to the state-space search algorithms, most of which use forward reasoning,
the search algorithms below reason backward from the initial goal. The algorithms described
here make two important simplifying assumptions: (a) The search space is an AND/OR tree
and not a general graph, and (b) when a problem is transformed to a set of subproblems, the
subproblems may be solved in any order. The first assumption implies that identical
subproblems may arise at different nodes of the search tree and will need to be solved anew
whenever one of them is encountered. Modifications needed for searching a general AND/OR
graph are discussed in Nilsson (1971). A way of eliminating the second assumption, that all
subproblems are independent, is discussed in Article C4, Heuristic Search of an AND/OR
Graph.

C2 Blind AND/OR Graph Search 43

Breadth-first Search of an AND/OR Tree

The following algorithm describes the breadth-first search of an AND/OR tree. If a
solution tree exists, this algorithm finds a solution tree of minimum depth, provided that
intermediate OR nodes are ignored in calculating the depth of the tree. The start node is
assumed not to be a terminal node.

(1) Put the start node on a list,

OPEN,

of unexpended nodes.
(2) Remove the first node, n, from OPEN.
(3) Expand node n—generating all its immediate successors and, for each

successor m, if m represents a set of more than one subproblem, generating
successors of m corresponding to the individual subproblems. Attach, to
each newly generated node, a pointer back to its immediate predecessor.
Place ail the new nodes that do not yet have descendants at the end of
OPEN.

(4) If no successors were generated in (3), then
(a) Label node n unsolvabie.
(b) If the unsolvability of n makes any of its ancestors unsolvabie, label

these ancestors unsolvabie.
(c) If the start node is labeled unsolvabie, exit with failure.
(d) Remove from OPEN any nodes with an unsolvabie ancestor.

(5)

Otherwise,

if any terminal nodes were generated in (3), then
(a) Label these terminal nodes solved.
(b) If the solution of these terminal nodes makes any of their ancestors

solved, label these ancestors solved.
(c) If the start node is labeled solved, exit with success.
(d) Remove from OPEN any nodes that are labeled solved or that have a

solved ancestor.
(6) Go to step 2.

Depth-first Search of an AND/OR Tree

A bounded depth-first search can be obtained by changing only step 3 of the breadth-
first algorithm. The revised step 3 is as follows:

(3') // the depth of nis less than the depth bound, then: Expand node n, generating
all its immediate successors and, for each successor m, if m represents a
set of more than one subproblem, generating successors of m corresponding
to the individual subproblems. Attach, to each newly generated node,
pointer back to its immediate predecessor. Place all the new nodes that do
not yet have descendants at the beginning of OPEN.

The depth-first search will find a solution tree, provided one exists within the depth bound.
As with breadth-first search, the notion of depth is more meaningful if intermediate OR nodes
are not counted. For this purpose one might add the following to the end of step 3':

For each node x added to OPEN, set the depth of x to be the depth
of node n, plus 1 .

%

44 Search

Given that the start node has depth 0, the depth of any node x will then be the length of the
operator sequence that must be applied to reach node x from the start node.

References

See Nilsson (1971).

Heuristic State-space Search 45C3

C3. Heuristic State-space Search
t

C3a. Basic Concepts in Heuristic Search

In the blind search of a state-space (Article C1) or an AND/OR graph (Article C2), the
number of nodes expanded before reaching a solution is likely to be prohibitively large.
Because the order of expanding the nodes is purely arbitrary and does not use any
properties of the problem being solved, one usuallyruns out of space or time (or both) in any
but the simplest problems. This result is a manifestation of the combinatorial explosion.

Information about the particular problem domain can often be brought to bear to help
reduce the search. In this section, it Is assumed that the definitions of initial states,
operators, and goal states all are fixed, thus determining a search space; the question, then,
is how to search the given space efficiently. The techniques for doing so usually require
additional information about the properties of the specific problem domain beyond that which
is built into the state and operator definitions. Information of this sort will be called heuristic
information, and a search method using it (whether or not the method is foolproof) will be
called a heuristic search method (Nilsson, 1971).

The Importance of Heuristic Search Theory

Heuristic search methods were employed by nearly all early problem-solving programs.
Most of these programs, though, were written to solve problems from a single domain, and the
domain-specific Information they used was closely intertwined with the techniques for using
it. Thus the heuristic techniques themselves were not easily accessible for study and
adaptation to new problems, and there was some likelihood that substantially similar
techniques would have to be reinvented repeatedly. Consequently, an interest arose in
developing generalized heuristic search algorithms, whose properties could be studied
independently of the particular programs that might use them. (See Newell & Ernst, 1 965;
Feigenbaum, 1969;

Sandewall,

1971.) This task, in turn, required a way of describing
problems that generalized across many different domains. Such generalized problem
formulations have been discussed in Section B, Problem Representation, in an approach
generally following Nilsson (1971). Given a generalized problem representation, the most
basic heuristic search techniques can be studied as variations on blind search methods for
the same type of problemrepresentation.

The current state of heuristic search theory has been diversely judged. One of the
best known students of the subject has remarked, "The problem of efficiently searching a
graph has essentially been solved and thus no longer occupies Al researchers" (Nilsson,
1974). Other work makes it clear, however, that the theory is far from complete (e.g.,
Gaschnig, 1977; Simon & Kadane, 1975). Its kinship with complexitytheory now tends to be
emphasized (see Pohl, 1977).

Ways of Using Heuristic Information

The points at which heuristic Information can be applied in a search include

(a) deciding which node to expand next, instead of doing the expansions in a
strictly breadth-first or depth-first order;

%

46 Search

(b) in the course of expanding a node, deciding which successor or
successors to generate—instead of blindly generating ail possible
successors at one time; and

(c) deciding that certain nodes should be discarded, or pruned, from the
search tree.

A state-space search algorithm is presented below that uses heuristic information only
at the first of these points, deciding which node to expand next, on the assumption that
nodes are to be expandedfully or not at all. The general idea is always to expand the node
that seems "most promising." A search that implements this idea is called an ordered search or
best-first search. Ordered search has been the subject of considerable theoretical study, and
several variations on the basic algorithm below are reviewed in articles lIC3b through lIC3d
(ordered state-space search) and article lIC4 (ordered AND/OR graph search).

The other two uses of heuristic information can be discussed more briefly. Decisions of
the second kind—determining which successors to generate—are often decisions of operator
selection, determining which operator to apply next to a given node. A node to which some
but not all applicableoperators have been applied is said to have been partially developed or
partially expanded. The use of heuristic information to develop nodes partially, reserving the
possibilityof fuller expansion at a later point in the search, has been investigated by Michie
(1967) and by Michie and Ross (1970). Other applications of the idea of limiting the
successors of a given node occur in game-playing programs (see Csc). Another important
variant of the idea is means-ends analysis, which, instead of deciding on an applicable
operator, chooses an operator most likely to advance the search whether or not it is
immediately applicable. The problem of making the operator applicable, if necessary, is
addressed secondarily. (See D2, GPS; and D5, STRIPS.)

The third use of heuristic information, for pruning, amounts to deciding that some nodes
should never be expanded. In some cases, it can be definitely determined that a node is not
part of a solution, and the node may then be safely discarded, or pruned, from the search
tree. In other cases pruning may be desirable even though the nodes pruned cannot be
guaranteed inessential to a solution. One reason, in conjunction with a best-first search, is
simply to save the space that would be required to retain a large number of apparently
unpromising nodes on a list of candidates for possible future expansion. For examples, see
Doran (1967) and Harris's bandwidth search (article lIC3c). Another reason for pruning is as a
restriction on a search that is otherwise blind. For example, a breadth-first search could be
modified to choose between expansion and pruning for each node it considers. This pruning
to control the search is also very important for problems in which all solutions, rather than
just a single solution, must be found; for finding ail solutions implies an exhaustive
exploration of all unpruned parts of the search space. An example of a search for all
solutions is the DENDRAL program (see Appliestions.Dendrsl).

Ordered State-space Search

An ordered or best-first search, as mentioned above, is one that always selects the most
promising node as the next node to expand. The choice is ordinarily assumed to be global,

C3a Basic Concepts in Heuristic Search 47

that is, to operate on the set of all nodes generated but not yet expanded. A local choice
would also be possible, however;for example, an ordered depth-first search would be one that
always expands the most promising successor of the node last expanded.

The promise of a node can be defined in various ways. One way, in a state-space
problem, Is to estimate its distance from a goal node; another is to assume that the solution
path includes the node being evaluated and estimate the length or difficulty of the entire
path. Along a different dimension, the evaluation may consider only certain predetermined
features of the node in question, or it may determine the relevant features by comparing the
given node with the goal. In all these cases, the measure by which the promise of a node is
estimated is called an evaluationfunction.

A basic algorithm for ordered state-space search is given by Nilsson (1971). The
evaluation function is f*s it is defined so that the more promising a node is, the smaller is the
value of f*. The node selected for expansionIs one at which f" is minimum. The state space
is assumed to be a general graph.

The algorithm is as follows:

(1) Put the start node s on a list, called OPEN, of unexpended nodes. Calculate
f*(s) and associate its value with node s.

(2) If OPEN is empty, exit with

failure;

no solution exists.
(3) Select from OPEN a node I at which f» Is minimum. If several nodes qualify,

choose a goal node if there is one, and otherwise choose among them
arbitrarily.

(4) Remove node I from OPEN and place it on a list, called CLOSED, of expanded
nodes.

(5) If i is a goal node, exit with success; a solution has been found.
(6) Expand node i, creating nodes for all its successors. For every successor

node J of i:
(a) Calculate f*(j).
(b) If j is neither in list OPEN nor in CLOSED, then add it to OPEN, with its

f" value. Attach a pointer from J back to its predecessor i (in order

to trace back a solution path once a goal node is found).

(c) If j was alreadyon either OPEN or

CLOSED,

compare the f" value just
calculated for j with the value previously associated with the node.
If the new value Is lower, then (i) substitute it for the old value,
(ii) point j back to i instead of to its previously found predecessor,
and (ill) if node j was on the CLOSED list, move it back to OPEN.

(7) Go to 2.

Step 6c is necessary for general graphs, in which a node can have more than one
predecessor. The predecessor yielding the smaller value of f"(j) is chosen. For trees, in
which a node has at most one predecessor, step 8c can be ignored. Note that even if the
search space is a general graph, the subgraph that Is made explicit is always a tree since
node J never records more than one predecessor at a time.

Breadth-first,

uniform-cost, and depth-first search (Article Cl, Blind State-space
Search) are all special cases of the ordered search technique. For breadth-first search, we
choose f"(i) to be the depth of node i. For uniform-cost search, f*(i) is the cost of the path

%

48 Search

from the start node to node i. A depth-first search (without a depth bound) can be obtained
by taking f*(i) to be the negative of the depth of the node.

The purpose of ordered search, of course, is to reduce the number of nodes expanded
as compared to blind-search algorithms. Its effectiveness in doing this depends directly on
the choice of f, which should discriminate sharply between promising and unpromising nodes.
If the discrimination is inaccurate, however, the ordered search may miss an optimal solution
or all solutions. If no exact measure of promise is available, therefore, the choice of f"
involves a trade-off between time and space on the one hand and the guarantee of an
optimal solution, or any solution, on the other.

Problem Types and the Choice of f*

The measure of a node's promise—and consequently, the appropriateness of a
particular evaluation function— depends on the problem at hand. Several cases can be
distinguished by the type of solution they require. In one, it is assumed that the state space
contains multiple solution paths with different costs; the problem is to find the optimal (i.e.,
minimum cost) solution. This first case is well understood; see Article C3b on the A*
algorithm.

The second situation is similar to the first but with an added condition: The problem is
hard enough that, if it is treated as an instance of case one, the search will probably exceed
bounds of time and space before finding a solution. The key questions for case two are
(a) how to find good (but not optimal) solutions with reasonable amounts of search effort
and (b) how to bound both the search effort and the extent to which the solution produced
is less than optimal.

A third kind of problem is one in which there is no concern for the optimality of the
solution; perhaps only one solution exists, or any solution is as good as any other. The
question here is how to minimize the search effort—instead of, as in case two, trying to
minimize some combination of search effort and solution cost.

An example of case three comes from theorem proving, where one may well be
satisfied with the most easily found proof, however inelegant. A clear example of case two
is the traveiing-salesman problem, in which finding some circuit through a set of cities is
trivial, and the difficulty, which is very great, is entirely in finding a shortest or ciose-to-
shortest path. Most treatments, however, do not clearly distinguish between the two cases.
A popular test problem, the 8-puzzle, can be treated as being in either class. For further
discussion of cases two and three, see Article C3c, Relaxing the OptimalityRequirement.

References

See Doran (1967), Feigenbaum (1969), Gaschnig (1977), Michie (1967), Michie & Ross
(1970), Newell & Ernst (1965), Newell & Simon (1972), Nilsson (1971), Nilsson (1974), Pohl
(1977), Sandewall(l97l),and Simon & Kadane (1975).

A"—Optimal Search for an Optimal Solution 49C3b

C3b. A*—Optimal Search for an Optimal Solution

The A* algorithm, described by Hart, Nilsson, and Raphael (1968), addresses the
problem of finding a minimal cost path joining the start node and a goal node in a state-space
graph. This problem subsumes the problem of finding the path between such nodes
containing the smallest number of arcs. In the latter problem, each arc (representing the
applicationof an operator) has cost 1

;

in the minimal cost path problem, the costs associated
with arcs can be arbitrary. Historically, the predecessors of A" include Dijkstra's algorithm
(1969) and Moore's algorithm (1959). A class of algorithms similar to A* is used in
operations research under the name branch-and-bound algorithms (see Hall, 1971; Hillier &
Lieberman, 1974; Lawler & Wood, 1966; and Reingold, Nievergelt, & Deo, 1977).

The algorithm used by A* is an ordered state-space search (Article C3a). Its distinctive
feature is its definition of the evaluation function f". As in the usual ordered search, the node
chosen for expansionis always one at which f* is minimum.

Since f* evaluates nodes in light of the need to find a minimal cost solution, it considers
the value of each node n as having two components: the cost of reaching n from the start
node, and the cost of reaching a goal from node n. Accordingly, f" is defined by

where g* estimates the minimum cost of a path from the start node to node n, and h"
estimates the minimum cost from node n to a goal. The value f*(n) thus estimates the minimal
cost of a solution path passing through node n. The actual costs, which f\ g", and h* only
estimate, are denoted by

f,

g, and h, respectively. It is assumed that ail arc costs are
positive.

The function g*. applied to a node n being considered for expansion, is calculated as
the actual cost from the start node s to n along the cheapest path found so far by the
algorithm. If the state space is a tree, then g* gives a perfect estimate since only one path

from s to n exists. In a general state-space graph, g« can err only in the direction of
overestimating the minimal cost; Its value la adjusted downward if a shorter path to n is
found. Even in a general graph, there are certain conditions (mentioned below) under which
g*(n) can be shown to be a perfect estimate by the time node n is chosen for expansion.

The function h* is the carrier of heuristic information and can be defined in any way
appropriate to the problem domain. For the interestingproperties of the A" algorithm to hold,
however, h" should be nonnegative, and It should never overestimate the cost of reaching a
goal node from the node being evaluated. That Is, for any such node n it should always hold
that h"(n) is less than or equal to h(n), the actual cost of an optimal path from n to a goal
node. This last condition is called the admissibility condition.

Admissibility and Optimality of A*

It can be shown that if h* satisfies the admissibility condition and if, in addition, all arc
costs are positive and can be bounded from below by a positive number, then A* is
guaranteed to find a solution path of minimal cost if any solution path exists. This property is
called the property of admissibility.

f*(n) = g*(n) ♦h»(n)

%

50 Search

Although the admissibility condition requires h* to be a lower bound on h, it is to be
expected that the more nearly h* approximates h, the better the algorithm will perform. If h*
were identically equal to h, an optimal solution path would be found without ever expanding a
node off the path (assuming only one optimal solution exists). If h* is identically zero, A*
reduces to the blind uniform-cost algorithm (Article C 1). Two otherwise similar algorithms, say
A 1and A2, can be compared with respect to their choices of the h* function, say hi* and
h2*. Algorithm A 1is said to be more informed than k2 if, whenever a node n (other than a goal
node) is evaluated,

hl*(n) > n2*(n)

On this basis an optimality result for A* can be stated: If A and A* are admissible algorithms
such that A* is more informed than A, then A* never expands a node that is not also
expanded by A. A proof (correcting the proof given in Nilsson, 1971) appears in Gelperin
(1977).

Optimalityand Heuristic Power

The sense in which A* yields an optimal search has to do only with the number of nodes
it expands in the course of finding a minimal-cost solution. But there are other relevant
considerations. First, the difficulty of computing h* also affects the total computational
effort. Second, it may be less important to find a solution whose cost is absolutely minimum
than to find a solution of reasonable cost within a search of moderate length. In such a case
one might prefer an h* that evaluates nodes more accurately in most cases but sometimes
overestimates the distance to a goal, thus yielding an inadmissible algorithm. (See Article
C3c.) The choice of h* and the resulting heuristic power of the algorithm depend upon a
compromise among these considerations.

A final question one might consider is the number of. node expansions, as opposed to
the number of distinct nodes expanded by A*. The two totals will be the same provided that
whenever a node n is expanded(moved to the CLOSED list), an optimal path to n has already
been found. This condition is always satisfied in a state-space tree, where g*(n) = g(n)
necessarily. It will also be satisfied in a general state-space graph if a condition called the
consistency assumption holds (see Hart, Nilsson, & Raphael, 1968). The general idea of the
assumption is that a form of the triangle inequality holds throughout the search space.
Specifically, the assumption is that for any nodes m and n, the estimated distance h*(m) from
m to a goal should always be less than or equal to the actual distance from m to n plus the
estimated remaining distance, h*(n), from n to a goal. For an h* not satisfying the
consistency assumption on a general state-space graph, Martelli (1977) has shown that A*
is not optimal with respect to the number of expansions and has given an algorithm that runs
more efficiently under these circumstances.

References

See Dijkstra (1959), Gelperin (1977), Hall (1971), Hart, Nilsson, & Raphael (1968),
Hart, Nilsson, & Raphael (1972), Hillier & Lieberman (1974), Lawler & Wood (1966), Martelli
(1977), Moore (1969), and Reingold, Nievergelt, & Deo (1977).

Relaxing the OptimalityRequirement 51C3c

C3c. Relaxing the OptimalityRequirement

The A* algorithm (C3b) is an ordered state-space search using the evaluation function
f* = g* + h*. If the appropriateconditions are met, including most importantly tlie admissibility
condition, that the estimate h*(n) is always less than or equal to h(n), then A* is guaranteed
to find an optimal solution path If one exists. Again under suitable conditions, the
performance of A* is optimal in comparison with other similarly defined admissible algorithms.
Still, several questions remain:

(1) One may be more concerned with minimizing search effort than with minimizing
solution cost. Is f* - g* + h* an appropriate evaluation function in this case?

(2) Even if solution cost is important, the combinatorics of the problem may be
such that an admissible A" cannot run to termination. Can speed be gained
at the cost of a bounded decrease in solution quality?

(3) It may be hard to find a good heuristic function h* that satisfies the
admissibility condition; with a poor but admissible heuristic function, A*
deteriorates into blind search. How is the search affected by an inadmissible
heuristic function?

Minimizing Search Effort

An approach to the first question can be stated as follows. The reason for including g*
in the evaluation function is to add a breadth-first component to the search; without g*. the
evaluation function would estimate, at any node n, the remaining distance to a goal and would
ignore the distance already covered in reaching n. If the object is to minimize search effort
instead of solution cost, one might conclude that g* should be omitted from the evaluation
function. An early heuristic search algorithm that did just this was Doran and Michie's Graph
Traverser (Doran & Michie, 1966; Doran, 1967); the evaluation function used was of the
form f* = h", and the object was to minimize total search effort in finding solutions to the B-
puzzle and other problems. A generalization covering the Graph Traverser algorithm, A*, and
others has been defined by Pohl (1969, 1970a, 1970b) as the Heuristic Path Algorithm
(HPA). This algorithm gives an ordered state-space search with an evaluation function of the
form

f« s (1 - w)g« ♦wh"

where w is a constant in [0, 1] giving the relative importance to be attached to g and h.
Choosing w = 1 gives the Graph Traverser algorithm; w = 0 gives breadth-first search; and
w a .5 is equivalent to the A* function f* » g" + h".

Pohl's results concerning HPA indicate that, at least in special cases, omitting g" from
the evaluation function Is a mistake. One case is that in which h* is the most accurate
heuristic function possible: If h*(n) » h(n) at every node n, the evaluation function f" ■ h"
still expands no fewer nodes than f« ■g« + h*. The other case assumes a simplified state
space, whose graph is an infinite m-ary tree, and assumes that the error in h«—which may
underestimate or overestimate h—is bounded by a nonnegative integer c. In this situation it
is shown that the maximum number of nodes expanded with f* = h* is greater than the

*
52 Search

maximum number expanded with f* = g* + h*, and that the difference between the maxima is
exponential in the error bound c. This analysis by Pohl is one of the earliest applications of
oracle or adversary analysis for discovering worst-case algorithmic efficiency. As such it is
an important precursor to work on NP-complete problems and their attempted solution by
heuristics. (For a general introduction to NP-completeness see Aho, Hopcroft, & Ullman,
1974.)

The two functions f" = h* and f" = g* + h* have not been analyzedwith respect to their
average-case, as opposed to worst-case, behavior. Pohl's empirical results suggest that
ordered search may typically expand the fewest nodes, provided the h* function is fairly
good, if g* is included but given less weight than h"—that is, with w greater than .5 but less
than 1. These results were obtained for the 15-puzzle, a task exactly like the 8-puzzle
except that it uses 1 5 tiles in a4x 4 array.

For problems that differ from the 15-puzzle, in that some states lead to dead ends
rather than only to longer solutions, a somewhat different approach has been taken recently
by Simon and Kadane (1975). Whereas the evaluation functions f* = g* + h* and f* = h* are
based on the estimated solution cost at a given node, Simon and Kadane propose that the
function should also take explicit account of the probability that the node is in fact on a
solution path. With such a function, an expected long search with high probability of
success could readily rate just as favorably as one that is potentially shorter but which has
a higher chance of failing.

Solution Quality and Heuristic Error

The second question, of speed vs. solution quality, has been studied by Pohl (1973,
1977) and Harris (1973, 1974). Harris's work concerns the third question (inadmissible
heuristic functions) as well, as do Pohi's results summarized above. Both Harris and Pohl
consider the traveling-salesman problem, which is NP-complete (Karp, 1972).

Pohl's approach is a further generalization of the HPA evaluation function: Now
f*(n) = g*(n) + w(n)h*(n). That is, the relative weight w to be attached to g« and h* is no
longer constant; the function w(n), which may be greater than or equal to 1 , is defined to
vary with the depth of node n. This approach is called dynamic weighting. With a definition of
w that weights h* less heavily as the search goes deeper, and with the assumption that h* is
a lower bound on h, Pohl shows that HPA will find a solution to the traveling-salesman problem
whose cost is bounded by the ratio

cost of tour found

cost of optimal solution

where c is a constant in [0,1) which appears in the definition of w.

Dynamic weighting was tested on an instance of the traveling-salesman problem, known
as the Crocs problem, which involves 20 cities and has a known optimal solution cost of 246.
An admissible A"—which produces an optimal solution if it produces any—had still not
terminated after expanding 500 nodes. With dynamic weighting, however, together with an

<1 + c

C3c Relaxing the OptimalityRequirement 53

appropriate choice of c and the same h" function, a solution with cost 260 was found by
expanding only 53 nodes.

Harris's approach, called bandwidth search, is somewhat different from Pohl's. It
assumes that no good h* function satisfying the admissibility condition is available. In its
place, he introduces the bandwidth condition, which requires that for all non-goal nodes n,

(1) h*(n) £ h(n) +
and

(2) h(n) - d s h«(n)

It is assumed that h" satisfies the consistency assumption (see Article C3b),

With respect to the first part of the condition, it can be shown that if h" never
overestimates the distance to a goal by more than c, the cost of a solution found by A* will
not exceed the cost of an optimal solution by more than c. With such an h*. the algorithm is
said to be e-admissible; and the goal it finds, e-optimal.

Once the bandwidth search finds some solution, a further application of condition (1)
may show that the cost of the solution found is in fact closer than c to an optimal solution.
This is possible because (a) the cost of the solution found is known, and (b) a lower bound on
the cost of every other solution is the minimum, over all nodes n remaining on the OPEN list, of
f*(n) -c. if the difference between these two quantities is too big, the search can be
continued until it finds a solution that is acceptably close to the optimum.

The second part of the bandwidth condition, condition (2), can be used to save storage
space by dropping nodes from the OPEN list, without any risk of dropping a node that is in
fact on an optimal path to a goal. Let node q be a node that, having a minimum value of f",
has been selected for expansion. Then any node m may safely be dropped from OPEN if
f"(m) is hopelesslybig compared to f*(q). Specifically, it can be shown that all nodes m can
be dropped if there is a node q such that

f*(m) - (c ♦ d) > f*(q) .
Harris notes that ft may be difficult to find a heuristic function h* that satisfies both

parts of the bandwidth condition. One may instead define two heuristic functions, one to
order the search and one to determine which nodes can be dropped. Such functions, say hi *
and h2", should then satisfy

(1') hl*(n) _ h(n) + c
and

(2') h(n) - d S h2*(n)

Using two such heuristic

functions,

Harris tested the bandwidth search on several
instances of the traveling-salesman problem including the 20-city Crocs problem mentioned
above. Harris's results, Including a comparison with A* using an admissible heuristic function,
are summarizedbelow. The OPEN list was limited to 500 nodes.

54 Search%

Figure 1. Comparisonof bandwidth search and admissible search.

References

See Aho, Hopcroft, & Ullman (1974), Doran & Michie (1966), Doran (1967), Harris(1973), Harris (1974), Karp (1972), Nilsson (1971), Pohl (1969), Pohl (1970a), Pohl(1970b), Pohl (1973), Pohl (1977), and Simon & Kadane (1975).

Bidirectional Search 55C3d

C3d. Bidirectional Search

Earlier articles in this chapter describe (a) heuristic state-space search methods
using forward reasoning and (b) a blind state-space search combining forward and backward
reasoning into a bidirectional algorithm. The kinds of problems to which a bidirectional state-
space method applies are considered in Article CI; in general, it must be possible in these
problems to search either forward, from the initial state toward the goal, or backward, from
the goal toward the initial state. A bidirectional search pursues both lines of reasoning in
parallel, growing two search trees and terminating when they meet. The motivation is that, in
many cases, the number of nodes in a search tree grows exponentially with its depth; if a
solution can be found by using two trees of half the depth, the search effort should be
reduced significantly. Blind bidirectional search was in fact found to expand far fewer nodes
than its unidirectional counterpart. A natural next question is whether heuristic bidirectional
search can give still greater improvements in efficiency.

This question was investigated by Pohl (1969, 1971). Whereas his blind bidirectional
algorithm used forward and backward uniform-cost search, his heuristic algorithm used
forward and backward ordered search.

Otherwise,

the two algorithms differed mainly in their
termination conditions. In both cases the termination condition was complicated by the fact
that the algorithms were designed to find an optimal path between the start and goal nodes;
they could be simplified if any path would do.

As evolution functions, Pohl's heuristic bidirectional algorithm used functions parallel to
those of A*. For a node x In the forward search tree:

gs(x) measured the shortest path found so far from the start node, s,
to

x;

hs(x) estimated the minimum remaining distance from x to the terminal
node, t; and

Similarly, for a node x generated in the backward search:

gt(x) measured the shortest path found so far from x to t;

ht(x) estimated the minimum distance from s to x; and

ft(x) » gt(x) ♦ ht(x) was the evaluation function.

Constraints were placed on the heuristic functions hs and ht, corresponding to the
admissibility condition and the consistency assumption of A", in order to guarantee the
optimality of the solution.

Pohl's results, in experiments using bidirectional heuristic search on the 15-puzzle,

were disappointing. It was hoped that the search trees rooted at the start and goal nodes
would meet near the middle of the solution path. In blind search, this had happened
necessarily because both trees were expanded breadth-first. (Recall that uniform-cost
search is a generalization of the breadth-first algorithm.) In the heuristic case, however, the

fs(x) = gs(x) + hs(x) was the evaluation function.

56

Search
H

L

different, solution p„„s before intersect ""* '° inC'Ude n"""y °C",'PletS- but

the oe^TofTe^TIT-,^^,^.".T^r*"'"*' Wh"8 "«"*■1975, 1977; Pohl 1077) It ' ' Kowalsk,» 1972; de Champeaux & Sint,
redefines theh^i.^^an^to'foT " ** °f ChamP6aUX WhiCh

treV'^ofa'nod^J'8' J U"expanded
»"*"« of the backward search

the «J" ! a w
S(X) iS the minimum ' over a" n°des yon T-OPEN ofS^r^S^^i^-*-«* .ength or £

""^^^^^"SKK"' T
H
8 " h°rS rePOrt6d' f°r the "- Pr°ble- P°h< n-d

expanded, and thTthelS nr
V .P

""^
Sh°fter

SO,ution

patns- with '»wer nodes
Unfortunately, however hs and ht we- "°" "" meet near the midd,e of tne sea«*be expanded its dtaince m_st h« !,f- S St°

t
c,Xpensive to compute-since for each node x to

-t the aigorithm still Z^XS^XZ^SLS.T2T '""
References

(^J'Zi^tzPohiny 7̂
)
5'- de c,"mpB<"

,x

&sm (,9?7)- K°»"isk| «««>. **

C4 Heuristic Search of an AND/OR Graph 57

C4. Heuristic Search of an AND/OR Graph

This article returns to the problem of searching an AND/OR graph, as opposed to an
ordinary state-space graph. The distinction between the two is the presence of AND nodes,
which add conceptual complications to the search problem. Each node of the AND/OR graph
represents a goal to be achieved. It will be assumed throughout that reasoning is backward,
from an initial goal (the root) toward an equivalent set of subgoals, all of which have
immediate solutions. On this assumption, an AND/OR graph constitutes (in the terminology of
this chapter) a problem-reduction representation. This identification gives another way of
stating the distinction between problem-reduction and state-space representations: State-
space operators always take exactly one input and produce exactly one output; a problem-
reduction operator also takes a single input but may produce multiple outputs (see Section
B).

To put the matter further into perspective, one may also conceive of searching an
AND/OR graph in the forward direction—from the primitive problems, whose solutions are
already known, toward the problem one actually wishes to solve. Just such a graph search is
that typically conducted by a resolution theorem-prover, as it brings together two or more
axioms or previous conclusions and applies to them an operator yielding one new deduction
as its result. (See Theorem Proving.) Forward reasoning in an AND/OR graph, then, would be
distinguished from a state-space search by the presence of multiple-input, single-output
operators. For further discussion, including an algorithm for bidirectional search of an AND/OR
graph, see Kowalski (1972); see also Martelli and Montanari (1973).

The search of an AND/OR graph using backward reasoning raises numerous problems.
Previous articles (B2 and C2) have considered

(a) what constitutes a solution subgraph of an AND/OR graph, and

(b) blind search algorithms for finding a solution subgraph.

This article considers three additional problems:

(c) What might one mean by an optimal solution subgraph?

(d) How can heuristic information be brought to bear on the search for an
optimal solution?

(c) What limitations are there on AND/OR graphs and the associated
search algorithms as general toola for problem solving?

The Definition of an Optimal Solution

A solution of an AND/OR graph is a subgraph demonstrating that the start node is
solved. As in a state-space search, one may ask for a solution of minimal cost. The cost of
a solution tree can be defined in either of two ways (Nilsson, 1971):

%

Search58

k

The sum cost of a solution tree is the sum of all arc costs in the tree.

The max cost of a solution tree is the sum of arc costs along the most
expensivepath from the root to a terminal node.

For example, if every arc in the solution tree has cost 1 , then the sum cost is the number of
arcs In the tree, and the max cost is the depth of the deepestnode.

If the entire search space had been explored, then an optimal solution tree could be
constructed and its cost measured as follows. Let c(n,m) be the cost of the arc from node n
to a successor node m. Define a function h(n) by:

If n is a terminal node (a primitive problem), then h(n) = 0

If n has OR successors, then h(n) is the minimum, over all its
successors m, of c(n,m) + h(m).

If n has AND successors and sum costs are used, then h(n) is the
summation, over all successors m, of c(n,m) + h(m).

If n has AND successors and max costs are used, then h(n) is the
maximum,over all successors m, of c(n,m) + h(m).

If n is a nonterminal node with no successors, then h(n) is infinite.

According to this

definition,

h(n) is finite if and only if the problem represented by node n is

solvable. For each solvable node n, h(n) gives the cost of an optimal solution tree for the

problem represented by node n. If s is the start node, then h(s) is the cost of an optimal

solution to the initial problem.

Consider,

for example, the AND/OR tree of Figure 1, with arc costs as indicated. Each
node without successors is marked t or v according to whether it is terminal or unsolvabie.

Figure 1 . An AND/OR tree

Heuristic Search of an AND/OR Graph 59C4

If sum costs are used, the values of h are as shown in Figure 2, and the optimal solution is the
subgraph comprising nodes

S,

B, D, E, t6, and t6. The abbreviation inf denotes infinity.

Figure 2 Sum costs.

If max costs are used, then the values of h are as shown in Figure 3, and the optimal solution
is the subgraph comprising nodes S, A, tl, t2, and t3.

ul t4 u2 E
hainf h»8 hainf h»l

Figure 3. Max costs

h=9 h«7

VAX "/ \
h=o h*B h=B h=inf h=4

y-v 7 \ul t4 u2 E
hsinf h=B h=lnf h=2

t5 t6
h»8 h=B

h=6 h=6

'/_iL_\2 7 \tl tZ t3 C 0
h=B h«8 h»8 h=lnf h=3

iA: 7 \
'A;t5 t6

h=B h=B

60 Search
%

Ordered Search Algorithms for an AND/OR Graph

In an ordered state-space search, one may use an evaluationfunction f* that, applied to
node n, returns the estimated minimum cost of a solution path passing through node n. The
next node expanded is always one at which f* is minimum—that is, one extends the most
promising potential solution path. The successors of node n are new nodes, but one could
just as well think of them as new potential solution paths, each differing from a parent
(potential solution path) by the inclusion of one more step.

In the extension of heuristic search to AND/OR graphs, there is no longer a one-to-one
correspondence between the choice of a node to expand and the choice of a potential
solution to be extended. Consider, for example, the search graph of Figure 4.

S

A B

C

Figure 4. An AND/OR graph containing two
potential solution trees.

Since C and D are OR nodes, an actual solution of node S will contain only one of them. To
expand node A is thus to extend twopotential solution trees,

S S

A' 'B and A B

C D

Conversely, a decision to extend the potential solution tree on the left can be carried out by
expanding either node A or node C. One must be clear, therefore, about what kind of object
the expansion process is to apply to. This decision will affect the definition of the
evaluation function.

Nilsson's algorithm. An approach taken by Nilsson (1969, 1971) selects individual
nodes to expand by a two-step process: First, identify the most promising potential solution
tree; then choose a node within that tree for expansion. To accomplish the first step, an
evaluation function h* is defined at every node n of the tree that has not been shown to be
unsolvabie. This function is an estimate of h(n); that is, it estimates the cost of an optimal
solution to the problem at node n. If n is known to be a terminal node, then by definition h*(n)
= h(n) = 0. Otherwise, if n has not yet been expanded, then the estimate must be based on
whatever heuristic information is available from the problem domain. For example, in the
search tree of Figure 4, h* would provide heuristic estimates of the cost of solving nodes A,
C, and D. The following rule then permits h* to be computed for each node whose successors
have already been generated(and to be recomputed as the search tree is expanded):

If n has OR successors m, then h*(n) is the minimum, over these
successors, of c(n,m) + h*(m).

C4 Heuristic Search of an AND/OR Graph 61

If n has AND successors m and sum costs are used, then h*(n) is the
summation, over these successors, of c(n,m) + h*(m).

if n has AND successors m and max costs are used, then h*(n) is the
maximum,over these successors, of c(n,m) + h*(m).

Finally; the most promising potential solution tree, T, is defined in terms of h*:

The start node s Is in T.

If the search tree (the part of the search space generated so far) contains a
node n and AND successors of n, then all these successors are in T.

If the search tree contains a node n and OR successors m of n, then one
successor m is in T such that c(n,m) ♦ h*(m) Is minimal.

The estimated cost of T is h*(s). If all the other potential solution trees for the same search
tree were constructed, it would be found that T is one for which h*(s) is minimal.

An ordered-search algorithmfor an AND/OR tree can now be stated as follows:

(1) Put the start node, s, on a list, OPEN, of unexpendednodes.
(2) From the search tree constructed so far (Initially, just s), compute the most

promising potentialsolution tree T.
(3) Select a node n that Is on OPEN and in T. Remove node n from OPEN and

place it on a list called CLOSED.
(4) If n is a terminal node, then

(a) Label node n solved.
(b) If the solution of n makes any of Its ancestors solved, label these

ancestors solved.
(c) If the start node is solved, exit with Tas the solution tree.
(d) Remove from OPEN any nodes with a solved ancestor.

(5) Otherwise, if node n has no successors (i.e., if no operator can be applied),
then
(a) Label node n unsolvabie.
(b) If the unsolvabilityof n makes any of its ancestors unsolvabie, label

all such ancestors unsolvabie as well.
(c) If the start node is labeled unsolvabie,exit with failure.
(d) Remove from OPEN any nodes with an unsolvabie ancestor.

(6)

Otherwise,

expand node n, generating ail its immediate successors and, for
each successor m representing a set of more than one subproblem,
generating successors of m corresponding to the individual subproblems.
Attach, to each newly generated node, a pointer back to its immediate
predecessor, and compute h* for each newly generated node. Place ail the
new nodes that do not yet have descendants on OPEN. Finally, recompute
h«(n) and h* at each ancestor of n.

(7) Go to (2).

The ordered-search algorithm can be shown to be admissible— that is, it will find a
minimum-cost solution tree if any solution exists—provided that: (a) h*(n) is less than or

% 62 Search

equal to h(n) for each open node n, and (b) all arc costs are greater than some small positive
number d. The efficiency of the algorithm, however, depends both on the accuracy of h* and
on the implementationof step 3, in which, having found the most promising potential solution
tree to expand, one must decide to expand a specific node within that tree, if the partial
tree T is in fact part of an optimum solution, the choice is immaterial. If it is not, however,
then the best node to expand would be the one that will earliest reveal the error.

Chang and Slagle's algorithm. A different approach has been taken by Chang and
Slagle (1971). Here the objects expanded are potential solution graphs. A tip node in such a
graph is any node that does not yet have successors. To expand the potential solution
graph, one expands all its nonterminal tip nodes at once and then forms ail the new potential
solution graphs that result. Each graph is represented on the OPEN list by the conjunction of
its tip nodes, representing a set of subproblems to which the start node can be reduced.

For example, suppose that expansion of the initial graph, consisting of only the start
node S, shows that S can be reduced to problems A and B or to problem C. The OPEN list
then becomes (A&B, C). Assume that A&B is selected for expansion, that A can be reduced
to D or E, and that B can be reduced to F or G. There are four new potential solution trees,
and the OPEN list is now (D&F, D&G, E&F, E&G, C). The search succeeds when it selects for
expansion a potential solution graph represented by a conjunction of nodes all of which are
terminal.

The Chang and Slagle approach assimilates AND/OR graph search to the problem of
state-space search. Each distinct conjunction of problems to be solved corresponds to a
distinct state of a state-space graph. The evaluation function used, f", is also parallel to
the function used in A*: It is defined by f" = g* + h* , where g* measures,the cheapest way
found so far to reduce the start node to a given conjunction of subproblems and h* estimates
the minimum remaining cost of a graph sufficient to solve all those subproblems.

The treatment of AND/OR graph search as an instance of state-space search has
several consequences. One is that the search of a general AND/OR graph, as opposed to an
AND/OR tree, now raises no special problems. Another is that the algorithm can be shown
(Chang & Slagle, 1971), under appropriate conditions, to be not only admissible but also
optimal with respect to the number of potential solution graphs expanded. It does not,
however, appear to be optimal (in some reasonable sense of that term) in comparison with
algorithms that expandonly one node at a time (see Kowalski, 1972).

InterdependentSubproblems

The discussion so far has assumed that whenever the start node is reduced to a
conjunction of subproblems, all subproblems can be solved independently, so that the solution
to one has no effect on the solution to any other. This assumption is frequently unjustified,
and much of the chapter on Planning explores ways of dealing with interacting subproblems.
Two kinds of examples, given by Levi and Sirovich (1975, 1976) with explicit reference to
the AND/OR graph formalism, are: (a) problems requiring consistent binding of variables and
(b) problems involving the expenditureof scarce resources.

An illustration of the former is the well-known problem of showing that there exists a
fallible Greek, given that the entire search space is as follows:

Heuristic Search of an AND/OR GraphC4 63

L

Find a fallible Greek

Find something fallible

Find something human

/ \ ,Turing Socrates
is human is human

Find something Greek

Socrates is Greek

Figure 5. An AND/OR graph requiring consistent binding
of the variable "something."

An algorithm like Nilsson's fails here for two reasons. First, it has no mechanism for
discovering that "Turing is human" and "Socrates is Greek" fail to constitute a solution.
Second, even if such a mechanism were introduced, the algorithm has no means for undoing
the solution to a subproblem once it has been solved. If "Turing is human" is the first
problem found to be primitive, then "Find something human" and "Find something fallible" are
marked solved; "Socrates is human" is removed from the OPEN list as no longer in need of
consideration; and "Find something Greek," using the previous value of "something," then
becomes unsolvabie.

An example of the second type of problem is the following: Show that John can seduce
the actress, given that seducing the actress can be reduced to getting a car and getting a
yacht; and that John has $5000, a car costs $5000, and a yacht costs $5000. Here either
of the algorithms given above would wrongly conclude that John can seduce the actress. A
variant of the scarce resource problem arises in robot planning tasks (such as those
performed by STRIPS, Article 05), where application of an operator representing a robot
action solving one subproblem may make inapplicable the operator needed to solve another
subproblem.

To handle problems of these kinds, Levi and Sirovich define a generalized ANDIOR
graph, which differs most importantly from an ordinary AND/OR graph in that reduction
operators are permitted to take two or more nodes as input. For example, let R be a
resource that can be used only once. Then if, in the standard formulation, the original
problem is to accomplish P1 and P2, the problem is reformulated as P1 & P2 & R. Suppose
the following reduction operators are available (where -> means "can be reduced to" and T
denotes a trivial problem):

Then there is only one solution, which is achieved using operators 1 , 3, 4, and 5.

1) S->PI &P2&R
2) P1 &R-> T
3) P1 -> P3
4) P2 &R-> P3
5) P3 -> T
6) R-> T

64 Search*

In the ordered search of a generalizedAND/OR graph, the objects placed on the OPEN
list are potential solution graphs, not individual nodes. Expansion of a potential solution
graph (PSG) consists of applying all possible operators to obtain a new set of

PSGs,

eachdiffering from its parent by virtue of one additional operator application. If the same
subproblem occurs more than once within a PSG, each occurrence is represented by a
separate node. If the same PSG is generated more than once, later occurrences are simply
discarded. Since distinct PSGs are retained, alternate solutions to the same subproblem areavailable.

As in the usual ordered search, the object chosen for expansion next is always onewhere the evaluation function Is minimum. The evaluation function is h«; for each PSG, it is
computed similarly to the h* of Nilsson's algorithm. The value of each potential solution graph
is then the evaluation of the start node, h*(s), as computed for that graph. Both admissibilityand optimality—the latter with respect to the number of PSGs expanded—can be shown.

References

See Chang & Slagle (1971), Kowaiski (1972), Levi & Sirovich (1975), Levi & Sirovich(1976), Martelli & Montanari (1973), Nilsson (1969), and Nilsson (1971).

C5 Game Tree Search 65

C5. Game Tree Search

Csa. Minimax Procedure

The Minimax Formalism

The minimax procedure is a technique for searching game trees (Article B3). As a first
example, Figure 1 gives a simple game tree to which the procedure may be applied. Each
node represents a position in the game. Nonterminal nodes are labeled with the name of the
player, A or B, who is to move from that position. It is A's turn, and the problem is to find his
best move from position 1. Exactly three moves remain in the game. Terminal nodes are
marked with their value to player A by the words "win," "lose," or "draw."

1
A

A 94'_6 7 8 9
A A A A A A

\(fl 12 13 14 15 16 17 18 19 20 21
win win lose win lose lose draw draw win draw lose draw

Fiaure 1. A game tree from the standpoint of
player A, who is to move next.

According to the minimax technique,player A should move to whichever one of positions
2 or 3 has the greater value to him. Given the values of the terminal positions, the value of
a nonterminal position is computed, by backing up from the terminals, as follows:

The value to player A of a node with OR successors (a node from
which A chooses the next move) is the maximum value of any of its
successors.

The value to A of a node with AND successors (a node from which B
chooses the next move) is the minimum value of any of its successors.

In the example, node 2 evaluates to a loss for A (since B can then force a loss by moving to
node 6), and node 3 evaluates to a draw (since the best B can then do is move to node 7 or
9). It will be noted that the prediction of the opponent's behavior assumes he is also using
minimax: In evaluating a node with AND successors, A must assume that B will make his best
possible move The technique ignores the possibility that B might overlook his chance for a

66

Search

sure win if A goes to node 2. Similarly, it supplies no basis on which B might choose to move
to node 9 in preference to node 7.

Because of the way in which nodes are evaluated, player A (whose viewpoint the tree
represents) is often called MAX, and player B, MIN. The names PLUS and MINUS are also
sometimes used. If the tree of Figure 1 were to be evaluated from MlN's standpoint instead
of MAX's, it would appear as in Figure 2. The AND and OR nodes are reversed, and the value
of each node to MIN is the opposite of its value to MAX.

draw

18 11 12 13 14 15 16 17 18 19 28 21lose lose win lose win win draw draw lose draw win draw

Figure 2. The game tree of Figure 1 from B's standpoint.

The Negmax Formalism

Knuth and Moore (1975) have given a game-tree representation that unifies Figures 1
and 2 and convenientlypermits a single procedure to return optimal moves for both players A
and B. In this representation, the value given each node is its value to the player whose
turn it would be to move at that node. If n is a terminal node, its value is an integer denoted
f(n). (The value of n to the other player is -f(n).) The value of every node is then returned
by a function F defined as follows:

The best move for either player is then to a node with maximum value; that is, the player
whose turn it Is at node n should move from node n to a node ni with - F(ni) = F(n). This
formulation, which is equivalent to minimax, is called negmax. The tree it produces for the
game of Figures 1 and 2 is shown in Figure 3. The numerical value of a win is assumed to be
+1

;

of a loss, -1

;

and of a draw, 0.

F(n) = f(n), if n has no successors;
F(n) = max {-F(n1), ... ,-F(nk)}, if n has successors nl, ... ,nk.

Csa Minimax Procedure 67

Figure 3. The game tree of Figure 1 in NEGMAX notation.

Searching a Partial Game Tree

In the above descriptions of the minimax and negmax algorithms, it was assumed that a
complete game tree had already been generated. For most games, however, the tree of
Possibilities is far too large to be generated fully and searched backward from the terminal
nodes for an optimal move. An alternative is to generate a reasonable portion of the tree,
starting from the current position; make a move on the basis of this partial knowledge; let the
opponent reply; and then repeat the process beginning from the new position. A "reasonable
Portion of the tree" might be taken to mean all legal moves within a fixed limit of depth, time,
or storage, or it might be refined in various ways. For discussion of the refinements, see
article Csc.

Once the partial tree exists, minimaxingrequires a means for estimating the value of its
Up nodes, that is, the nodes of the partial tree without successors. A function assigning such
a value is called a static evaluation function; it serves a purpose comparable to that of the
heuristic function h" used in Nilsson's ordered search of an AND/OR tree (Article C4). If the
partial game tree contains any nodes that are terminal for the entire tree, the static
evaluation function conventionally returns positive infinity for a win, negative infinity for a
'oss, and zero for a draw. At other tip nodes, the function has a finite value which, in the
minimax formulation, Is positive for positions favorable to MAX and negative at positions

favorable to MIN. The minimax procedure then assigns backed-up values to the ancestors of
the tip nodes in accordance with the rules given in (1) above. It is assumed that the
backed-up evaluations give a more accurate estimate of the true value of MAX's possible
moves than would be obtained by applying the static evaluation function directly to those
moves and not looking ahead to their consequences.

References

See Knuth & Moore (1975), Nilsson (1971), Slagle (1971), and Winston (1977).

B B
F-*l F««

4 I 6 7 8 9
A A A A A A

F_+l F=+ i F=-l F=o F=+l F=B

\(h 12 13 14 15 16 17 18 19 28 21
F=-l F=-l F=+l F=-l F=+l F=+l F*o F=o F=-l F=o F=+l F=B

%
68 Search

Csb. Alpha-beta Pruning

The minimax procedure described in Article Csa decides on a best move from node n, in
a full or partial game tree, by evaluating every node in the tree that descends from node n.
Frequently, this exhaustive evaluation is a waste of time. Two examples are shown in
Figures 1 and 2. Each node is marked with the name of the player who is to move from that
position.

1
MAX

3
MIN

7
MIN

Figure 1. An alpha cutoff. Figure 2. A beta cutoff.

In Figure 1 , nodes 2 and 4 have been evaluated either by the static evaluation function
or by backing up from descendants omitted from the figure. If MAX moves to node 2, he
achieves a position whose estimated value is 15. If he moves to node 3, MIN can hold him to
10.

Therefore,

the value of node 3is at most 1 0, so MAX should decide to move to node 2.
The important point is that this decision can be made without evaluating node 5 or any of its
possible descendants.

In Figure 2, node 4 has an estimated value to MAX of 20. When node 6 is evaluated at
25, it becomes clear that MIN should avoid moving to node 5. Node 2 can therefore be
assigned a value of 20 without any need to evaluate node 7 or any of its descendants.

The alpha-beta technique for evaluating nodes of a game tree eliminates these
unnecessary evaluations. If, as is usual, the generation of nodes is interleaved with their
evaluation, then nodes such as the descendants of node 5 in Figure 1 and of node 7 in
Figure 2 need never even be generated. The technique uses two parameters, alpha and
beta. In Figure 1, the parameter alpha carries the lower bound of 15 on MAX's achievement
from node 1

;

the elimination of node sis an alpha cutoff. In Figure 2, the parameter beta is
set to 20 at node 4, representing an upper bound on the value to MAX of node 2; the
elimination of node 7 is a beta cutoff. The procedure guarantees that the root node of the
tree will have the same final value as if exhaustive minimaxing were employed.

A concise statement of the alpha-beta procedure has been given by Knuth and Moore
(1975). it uses their negmax representation in which both players are treated as wishing to
maximize (see Article Csa). Figure 3 shows how Figures 1 and 2 are transformed in the
negmax representation.

1
MAX

/ \
MIN MIN

F(2)=ls / \
' «'

X 5
MAX MAX

F(4)=18

2
MIN

4 5
MAX MAX

F(4)=2B / \

MIN I
F(6)=25

Csb Alpha-betaPruning 69

1
MAX

3
MIN

5
MAX

./ \
MIN MIN

Figure 3. The NEGMAX representationof Figures 1 and 2

To evaluate node 1 of either tree, the procedure is called with the parameters POSITION =
node 1 , ALPHA = negative infinity, and BETA = positive infinity. The static evaluation function
is called f. The procedure, here called VALUE, is as follows:

INTEGER PROCEDURE vaIue(POSITION p, INTEGER alpha, INTEGER beta)
BEGIN
INTEGER m, i, t, d

determine the successor positions p,, p 2, "» ,Pd
of position p;

IF d - 0 THEN value :« f(p) ELSE
BEGIN

FOR I := 1 STEP 1 UNTIL d DO
BEGIN t := -value (p„ -beta, -m);
IF t > m THEN m := t;
IF m > beta or m « beta THEN GO TO done;
END;

done: value :■ m;
END;

END;

For an intuitively developedLISP version of the alpha-beta procedure, see Winston (1977).
An excellent review of the historical development of the technique appears in Knuth and
Moore (1975).

Orderingof Successors

The degree to which the alpha-betaprocedure represents an improvement in efficiency
over straight minimaxing varies with the order in which successor nodes are evaluated. For
example, no cutoff would occur in Figure 1 if node 3 were considered before node 2.

In general, it is desirable that the best successor of each node be the first one
evaluated—that is, that the first move MAX considers be his best move, and that the first

2
MIN

4

'

5
MAX MAX

F(4)=18

4
MAX

F(4)=2B

F(6)= -25

m := alpha;

%

70 Search

reply considered for MIN be the move that is best for MIN and worst for MAX. Several
schemes for ordering the successors of a node have been described to try to achieve this
state of affairs. One possibility, an example of fixed ordering, is to apply the static
evaluation function to the successors, taking the results of this preliminary evaluation as an
approximationof their expected backed-up values. A method of this sort will result in depth-
first generation and evaluation of the partial game tree, subject to the depth bound or other
criteria for terminating generation. For some other possibilities, see Article Csc.

Efficiency in Uniform Game Trees

Since the alpha-betaprocedure is more complicated than minimaxing, although it yields
the same result, one may inquire how great an increase it produces in search efficiency.
Most theoretical results on this question deal with uniform game trees: A tree is said to be
uniform if every tip node has depth d and every nontip node has exactlyb successors. Here
b is called the branching factor or degree of the tree.

The results reviewed below come from Knuth and Moore (1975) and, for the best case,
Slagle and Dixon (1969). For other related work, see Fuller et al. (1973), Newborn (1977),
and Baudot (1978).

The best case. A uniform game tree of depth d and degree b contains exactly b d tip
nodes, ail of which must be examined by minimax. In the worst case, alpha-beta also must
examine every tip node. In the best case, alpha-beta examines only about twice the square
root of the number of tip nodes. More precisely, assuming the value of the root is not
infinite, the number of tip nodes examined in the best case is

(where square brackets represent the greatest integer function); and the nodes examined in
the tree as a whole are precisely the critical nodes, defined as follows:

Type 1 critical nodes are the root node and all first successors of type 1 nodes.

Type 2 critical nodes are all further successors (except the first) of type 1
nodes and all successors of type 3 nodes.

Type 3 critical nodes are the first successors of type 2 nodes.

Figure 4 illustrates the distribution of critical nodes in a uniform tree of degree 3 and depth
3.

bC(d+D/2] + b[d/2] . 1

Csb Alpha-betaPruning 71

Figure 4.

Knuth and Moore have shown that the best case occurs for a uniform tree if the best move is
considered first at each critical node of types 1 and 2. Attempts to order the successors of
type 3 positions contribute nothing to efficiency, since these successors are type 2 nodes,
which must all be examined anyway.

Random uniform game trees. Knuth and Moore also show that the alpha-beta
technique is optimal in the sense that no algorithm can evaluate any game tree by examining
fewer nodes than alpha-beta does with an appropriate ordering of successors. Realistically,
of course, one cannot expect to achieve the optimal successor ordering, since this would
imply full knowledge of the game tree before it is generated. Assuming, therefore, that the
tip nodes of the tree have distinct random values, Knuth and Moore show that the expected
number of tip nodes examined, in evaluation of a uniform tree with branching factor b and
depth d, has an asymptotic upperbound of

(b/(logb))d

as d goes to infinity.

Totally dependent uniform game trees. One other type of tree considered by Knuth
and Moore, perhaps more realistic than the one in which tip nodes have random values,
corresponds to games In which each move is critical: If a poor move is ever chosen, there is
no way to recoup. The model is a uniform game tree that Is totally dependent: For any two
successors of node p, these successors can be labeled q and r so that every tip node
descended from node q has greater value than any tip node descended from node r. In this
type of tree, if the degree is at least 3, the expected number of tip positions examined is
bounded by a constant (depending on the degree) multiplied by the number of tip nodes
examined by the alpha-betamethod in the best case.

References

See Baudet (1978), Fuller, Gaschnig & Gillogly (1973), Knuth & Moore (1975), Newborn
(1977), Nilsson (1971), Slagle & Dixon (1969), Slagle (1971), and Winston (1977).

1

/!\ A A
N /J\ A\ A\ A\ A\ A\ A\

Figure 4. Distribution of critical nodes.

%

Search72

Csc. Heuristics in Game Tree Search

In the searctrof a game tree (Article B3), as in other kinds of search, there are various
points at which heuristic information may be applied. The parallel is not exact, however. In
one-person problem solving, the main uses for heuristic information are to decide which node
to expand next, which operator to apply next, and, in some algorithms, which nodes to prune

from the search tree. (See Article C3a.) In game-playing programs, these questions also
exist, but with a shift in emphasis. In addition, some new questions arise: When should the
search be terminated? How should a move be chosen on the basis of the search that has
been made?

The simplest answers to these questions were described in Article Csa: Expand every
node completely, in any convenient order and with no pruning, until every tip node represents
a termination of the game. Then, working back from the end of the game, use the minimax
procedure to find a winning line of play (if one exists), and follow this line of play throughout
the game. Article Csb, Alpha-beta Pruning, described an improvement on this approach that
yields the same final result with greater efficiency.

A program using only these basic techniques would play a theoretically perfect game;
its task would be like searching an AND/OR tree for a solution to a one-person problem. For a
simple game like tic-tac-toe (see Article B3), such a program would no doubt be feasible.
For complex games, however, it has been recognized from the beginning that searching from
the start of the game to its end would be impossible. In chess, for example,with around 30
legal moves from each position and about 40 moves for each player in a typical game, there
are some (302)40 or 10120 different plays of the game (Shannon, 1950).

Because of the magnitude of the search space In chess, checkers, and other nontrivial
games, there is a major difference between programs that play such games and programs
that use the methods of this chapter to solve nonadversary problems. The latter either find
a solution or

fail,

having run out of time or space; much of the research assumes that some
solution can be found and deals with how to guarantee that it is optimal or nearly optimal
(see Section C3, Heuristic State-space Search). The question for a chess program, in
contrast, is how to play a good game even though it has not found a solution to the problem
of winning. Repeatedlythe program must become committed to its next move long before the
end of the game comes into view. Whether the move chosen is in fact part of a winning
strategy is unknown until later in the game.

For a nontrivial game playing program, then, the Issues listed at the beginning of this
article are all aspects of a broader question: Can the basic search techniques, designed for
seeking a guaranteed win, be successfully adapted to the problem of simply choosing the
next move? In addition, one might well ask whether there are alternatives to search as the
basis for move selection. Most of the work exploring these questions has been done in the
specific domain of chess. In general, the discussion below is limited to chess programs and
Samuel's checkers program (1963, 1967).

Alternatives to Search

An example of choosing a move on a basis other than search is the use of "book
moves" in the opening of a chess game (see Frey, 1977, pp. 77-79). More generally, there

Heuristics in Game Tree Search 73Csc

is an emphasis in the recent computer chess literature on treating the problem of move
choice as a problem of recognizing patterns on the board and associating appropriate playing
methods with each pattern (e.g.,

Charness,

1977, p. 52; Bratko et al., 1978; Wilkins, 1979).

It is not expected, however, that search can be eliminated entirely from chess
programs; even human players do some searching. Rather, the choice-of-move problem is
seen as involving a tradeoff between the amount of specialized chess knowledge a program
has and the amount of search it needs to do. (See, e.g., Berliner 1977c; Michie, 1977.) An.
there are limits on the amount of knowledge a program can be given: The combinatorics of
chess preclude storing an exhaustive representation of the game; and even the knowledge
possessed by chess masters, which greatly restricts search in human play, also remains very
far from complete formalization.

The last section of this article reviews several programs that attempt to use human-
like knowledge to eliminate most searching. The sections preceding it concern techniques
used in programs in which search rather than knowledge is predominant.

Search-based Programs

The most successful game-playing programs so far have made search rather than
knowledge their main ingredient. These include, among the earlier programs, Samuel's
checkers program (1963, 1967), which came close to expert play; and Greenblatt's chess
program (1967), which was the first to compete in tournaments and which earned a rating of
1400-1450, making it a Class C player. (Current classes of the United States Chess
Federation are E through A, Expert, Master, and Senior Master. See Hearst, 1977, p. 171.)
Notable later programs include the Soviet program KAISSA (Adelson-Velskiy et al., 1975).
which won the first world computer chess championship in 1974, and Slate and Atkins CHESS
4.5 (1977), whose current standing is mentioned below. (For general reviews of computer

chess competition, see Berliner, 1978a; Mittman, 1977; and Newborn, 1975.)

All the programs referred to above follow the basic search paradigm formulated by
Shannon In 1950. In Its simplest

form,

which was called a Type A program, Shannon's
paradigm made just two changes to the procedure mentioned above that calls for searching
exhaustively all the way to the end of the game. First, the game tree was to be generated
only to a fixed depth. Second, since the nodes at the depth limit would normally be
nonterminal, a means of estimating the promise of these nodes was required. The estimate
was to be given by a static evaluation function, whose values could then be backed up by
minimaxing to determine the next move. After this move was made and the opponent had
replied, the search process would be repeatedbeginning from the new position.

Shannon noted that a simple Type A program would play chess both badly and slowly.
He suggested two directions for improvement in a Type A program, with which the program
would become Type B. The general objectives were, first, to let the explorationof a line of
Play continue to a reasonable stopping point instead of invariably cutting it off at an arbitrary
depth; and, second, to provide some selectivity about the lines of play considered, so that
more time could be spent investigating strong moves and less on pointless ones.

Even a Type B program, Shannon concluded, seemed to rely too much on brute-force
calculation rather than on knowledgeable analysis of the situation to choose a move.

%

Search74

ft

Nevertheless, his proposals established a framework that most competitive game-playing
programs have adopted. The framework raises a large number of interrelated issues, which
are discussed in the following sections.

Static Evaluation

A static evaluation function, by definition, is one that estimates the value of a board
position without looking at any of that position's successors. An ideal function would be one
that reports whether the position leads to a win, a loss, or a draw (provided neither side
makes a mistake). Even more informatively, the function might report the number of moves
required to win, with an arbitrarily large value if no win is possible. But functions that can
distinguish between winning and losing positions are known only for simple games; an
example of such a function for the game Nim Is given in Shannon (1950).

Where perfect evaluation functions are unavailable, the actual static evaluator must
return an estimate. Unlike the evaluation function used in an ordinary state-space or AND/OR
graph search (C3a, C4), the static evaluation function of a game-playing program does not
normally attempt directly to estimate the distance to a win from the position evaluated. (For
a proposal that the function should do just this, see Harris, 1974.) Instead, the function is
usually a linear polynomial whose terms represent various features of the position, high
values being given for features favorable to the program and low ones for those favoring the
opponent. In chess, the most important feature is material, the relative value of each side's
pieces on the board. Other typical

features,

familiar to chess players, include king safety,
mobility, center control, and pawn structure.

The most extended treatment of evaluation functions in the literature is provided by
Samuel (1963, 1967). For checkers, he concluded (1967, p. 611) that the optimal number of
features to be used in the evaluation function was between twenty and thirty. Samuel's main
interest was in machine learning; one approach he took was to provide his checkers program
with a large set of features for possible use in the evaluation function and to let the program
determine, as it gained playing experience,both which of these features should be included
and what their relative weights should be. In a later version of the program, the emphasis
was shifted to taking the interactions among features into account in evaluating positions.
With this change, the evaluation function became nonlinear, and considerable improvement
was reported in its quality as measured by the correlation with moves chosen in master play
(Samuel, 1967; see also Griffith, 1974). For further discussion of Samuel's work, see
Learning.

Reasonably accurate static evaluation, then, requires a rather complex function. But
there is an important limit on the complexity that is feasible, especially for a program that
plays in tournaments, under time limitations. As the total number of tip nodes in the search
tree increases, the time available for evaluating any single tip node goes down. Thus
Gillogly's chess program TECH (1972), which was intended as an experiment in how much
could be accomplished on advanced machines by simple brute force search, and which
generates up to 500,000 tip nodes even with alpha-beta pruning, uses material as the only
factor in its static evaluations.

Heuristics in Game Tree Search 75CSc

Backed-up Evaluation

The Shannon paradigm assumes that the step between static evaluation and the choice
of a move is simply minimaxing: The program moves to any position with the best backed-up
minimax value. This step is indeed very commonly used. But it is worth noting that, since the
static evaluation function may be wrong, the minimax procedure no longer serves its original
purpose of defining and Identifying a move that is theoretically correct. Instead, minimaxing
has itself become a heuristic for the choice of move. Several programs have therefore
experimented with varying or supplementing the minimax procedure. Slagle and Dixon
(1970), for example, in experimentswith the game of kalah, compute the backed-up value of
a node by taking into account not only the value of its best successor but also whether the
node has several good successors or just one. Gillogly's TECH (1972), having computed

minimax values on the basis of an extremely simple static evaluation, breaks ties between
moves with equal minimax values by an analysis of features not considered by the evaluation
function. Newell,

Shaw,

and Simon (1963a) set a value in advance that the search is
expected to achieve; the first move found that meets this standard is made, and only if no
move is goodenough is the best minimax value used to determine the move (see also Newell
& Simon, 1972).

Depth of Search

If perfect evaluation functions were available, a game-playing program could proceed
at each turn by generating all legal moves, evaluating each of the resulting positions, and
choosing the move leading to the best value. The reason for looking farther ahead is to
compensate for errors in the static evaluation. The assumption is that, since static
evaluation has a predictive aspect, there will be less room for mistaken prediction if a deep

tree is generated before the evaluation function is applied.

The controlling fact about search depth is the combinatorial explosion. If the average
number of legal moves from a position, the branchingfactor, is b, the game tree will have about

b d nodes at depth d. According to Shannon's estimate for chess, a complete tree carried to
depth 6—3 moves for each player-would already have about one billion tip nodes. At the
same time, Shannon noted, a world champion may occasionally look ahead, along a single line
of play, to a depth as great as 15 or 20. More recently Hans Berliner, a former World
Correspondence Chess Champion, has said he finds it necessary at least once in a game to
look ahead to a depth of 14 or more (1974, p. I-8). The question, then, is how to get the
needed depth, in the right places, without succumbing to the combinatorial explosion. An
alternative question would be how to avoid the need for so deep a search. The remainder of
this article concerns attempts to solve or at least alleviate these problems. First, however,
experiencewith the use of depth bounds as such will be reviewed.

Fixed-depth search with extensions for quiescence. The simplest lookahead
procedure, which was called for by Shannon's Type A strategy, is to set a fixed depth, or
ply, to which the game tree is to be generated and to apply the static evaluation function
only to nodes at this depth. Thus a 4-ply search would statically evaluate the positions

reached after exactly two turns for each player. There are serious drawbacks in this
procedure, as Shannon observed, and it was used only in very early programs (Kister et al.,
1967; Bernstein et al., 1959). For example, a chess evaluation function based mainly on
material cannot return a realistic value if at the depth limit the players happen to be halfway

%

76 Search

through an exchangeof pieces. The concept of a quiescent or dead position was introduced to
get around such difficulties (Shannon, 1960; see also Turing, 1953): Search would be
extended beyond the normal limit, from nonquiescent positions only, until all tip nodes were
relatively stable or perhaps until some absolute depth-bound had been reached.

This introduction of a quiescence search was one of the two features that changed a
program, in Shannon's terminology, from Type A to Type B. On Shannon's suggested
definition, a position was considered nonquiescent if "any piece is attacked by a piece of
lower value, or by more pieces than defences or if any check exists on a square controlled
by opponent" (1950, p. 271). Many programs have adopted a similar definition, with the
result that the only moves examined beyond the normal limit are checks and immediate
captures (e.g., Glllogly, 1972; Adelson-Velskiy et al., 1975; Slate & Atkin, 1977). If such a
quiescence search is combined with considering all legal moves down to the normal depth
limit, the program is still called Type A in current terminology(e.g., Berliner, 1978a).

The horizon effect. Searching to an arbitrarily limited depth, even with extensions for
checks and captures, creates a phenomenon that Berliner (1973, 1974) has called the
horizon effect. Berliner's general observation is that, whenever search is terminated (short of
the end of the game) and a static evaluation function is applied, the program's "reality
exists in terms of the output of the static evaluation

function,

and anything that is not
detectable at evaluation time does not exist as far as the program is concerned" (1974, p.
1-1).

. Two kinds of errors ensue. The first is called the negative horizon effect: The program
manipulates the timing of moves to force certain positions to appear at the search horizon,
and it thus may conclude that it has avoided some undesirable effect when in fact the effect
has only been delayed to a point beyond the horizon. A second kind of error, the positive
horizon effect, involves reaching for a desirable consequence: Either the program wrongly
concludes that the consequence is achievable, or it fails to realize that the same
consequence could also be achieved later in the game in a more effective form. This last
problem, Berliner believes, can be met only by finding ways to represent and use more chess
knowledge than traditional programs have included (1974, p. I-7).

For most of the errors coming from the horizon effect, however, the diagnosis is that
the typical definitions of quiescence are highly oversimplified. Ideally a position would be
considered quiescent only when the static evaluation function, applied to that position, could
return a realistic value, that is, when the value of every term included in the function had
become stable. A quiescence search that pursues only captures and checking moves,
however, considers only changes in the material term. The material term itself, moreover,
usually reflects only the presence of the pieces on the board; its value will be unchanged by
a move that guarantees a capture later Instead of making a capture now.

To get around the problems arising from inadequate quiescence analysis, a first
approach called secondary search was developed by Greenblatt (1967): Whenever a move
appeared, on the basis of the regular search (including quiescence), to be the best move
considered so far, the predicted line of play was extended by searching another two ply
(plus quiescence) to test the evaluation. Berliner points out, however: "The horizon effect
cannot be dealt with adequately by merely shifting the horizon" (1974, p. I-4). One direction
in current work, therefore, looks toward a much fuller quiescenceanalysis as a substitute for
arbitrary depth bounds. (See Harris, 1975, 1977; Slate & Atkin, 1977, pp. 115-117; and,

Heuristics in Game Tree Search 77Csc

for an early example, Newell &

Simon,

1972, pp. 678-698.) Berliner meanwhile is developing
a general algorithm, not limited to chess, for causing tree search to terminate with a best
move, even though no depth limit has been set and no full path to a win has been found
(Berliner, 1977c, 1978b).

Iterative deepening. Despite its drawbacks, most current programs still use a fixed-
depth search, extended for checks and capture sequences. A variation used by CHESS 4.5
(Slate & Atkin, 1977) is called iterative deepening: A complete search, investigating all legal
moves (subject to alpha-beta pruning), Is done to depth 2, returning a move. The search is
then redone to depth 3, again to depth 4, and so on until a preset time limit is exceeded. For
efficiency, information from earlier Iterations is saved for use in later ones. Running on the
very fast CDC Cyber 178, the program searches to an average depth of 6 plies in
tournament play, with search trees averaging 500,000 nodes (Newborn, 1978). It is the
first program to have achieved an Expert rating in human play. In the fall of 1978 a new
version, CHESS 4.7, was reportedly rated 2160 (Levy, 1979); Master ratings begin at 2200.
It remains an open question how much stronger the program can become.

Ordering of Search

The Shannon paradigm did not specify any particular order in which the nodes of the
search tree were to be explored or in which moves from a given node were to be considered.
For efficient use of space, the order of node expansion is usually depth-first; a depth-first

algorithm needs to store explicitly only those nodes on the path it is currently investigating
and not the parts of the tree where search has been completed.

With the invention of alpha-beta pruning, the order of considering moves within a
depth-first search became highly significant. If the order is ideal, then in a tree with

branching factor b the number of nodes that must be examined at depth d is reduced from b d

to only about 2bd/
2. (See Article Csb.) For example, Shannon's estimated 109 chess

positions at depth 6 would be reduced to around 50,000. It also follows that, for a constant
number of tip nodes examined, correct ordering of the moves for alpha-beta cutoffs would
allow the search depth to be roughly doubled. In general, the desired ordering is one in
which the first move considered at a position is the best move for the player whose turn it is.
Usually, of course, there is no method guaranteed to achieve this ordering, for if there were,
it would enable moves to be chosen with no search at all. Several heuristics have been
used, however, to try to approximateoptimal ordering.

Perhaps the simplest idea for move ordering is the fixed-ordering method mentioned in
Article Csb: For each move from a node, generate a new node for the resulting position,
apply the static evaluation function to the position, and order the nodes according to this
preliminary estimate. For greater efficiency, several programs have used a separate

function for move ordering, which applies to the move itself instead of to the position that
results from it (Greenblatt, 1967; Berliner, 1974, p. 11-16; Adelson-velskiy, 1975). In either
case the game tree is explored by an ordered depth-first search (Article C3a).

A fuller basis for choosing which move to consider first is provided by Slate and Atkins
iterative deepening technique, which makes repeated depth-first searches. Each iteration
constructs a line of play, down to Its depth limit, consisting of apparently best moves. The
following iteration, going one ply deeper, thus has available an estimated best move from
each position along this line of play. (See Slate & Atkin, 1977, pp. 102-103.)

* 78 Search

A further approach to move ordering makes explicit the idea of a refutation move: For
each move that is not a best move, it should be shown as quickly as possible that the move
is bad. To do this, strong replies should be considered first, which may refute the move
proposed. Typical implementationsconsider ail capturing moves first, and then consider killer
moves. The idea here, called the killer heuristic, is that if a move has served as a refutation in
some previously examined position that is similar to the current one, it is likely to be a
refutation in the current position too. For more on the killer heuristic and other refutation
techniques, see Slate and Atkin (1977), Adelson-Velskiy (1975), Gillogly (1972), and Frey
(1977).

Once the moves have been ordered at a given node and the search has moved
downward, following the move that seemed best, it may turn out that this move is actually a
very bad one for reasons that were not apparent earlier. Since accurate move ordering is
important to maximizing alpha-beta cutoffs, it might be worthwhile at this point to go back,
reorder the moves, and start again with a different estimated best move. Such a procedure,
called dynamic ordering, was investigated by Slagle and Dixon (1969), using the game of
kaiah. They reported a modest improvement over fixed ordering for trees of depth at least
6. On the other hand, Berliner's chess program experienced a serious increase in running
time when dynamic ordering was used (1974, p. IV-14). A procedure somewhat similar to
dynamic ordering was also used by Samuel (1967).

If dynamic ordering is carried to its limit, so that reordering is considered every time a
node is expanded instead of only under more limited conditions, the search procedure in
effect changes from depth-first to best-first. That is, the move considered next (or the
position to which it leads) Is on some estimate the most promising in the entire search tree
generated so far, subject to whatever depth limit exists. Nilsson (1968, 1971) implements
this idea by adapting his algorithm for best-first AND/OR tree search (C4) to game trees.
Harris (1975, 1977) suggests another adaptation, in which the motivation of maximizing
alpha-beta pruning no longer plays a role and instead the objective is to expand the most
active positions first, using a thorough quiescence analysis rather than a depth limit as the
criterion for search termination.

Width of Search

The techniques discussed so far are consistent with the Idea that all legal moves from
a position must be examined, at least sufficiently to establish that they can be safelypruned
by alpha-beta. This consideration of all legal moves is referred to as full-width searching.
Some of the earliest programs used a full-width search for simplicity; strong current programs
use it because of the great difficulty in determining, without search, which moves can be
safely ignored (Turing, 1953; Kister et al., 1957; Gillogly, 1972; Adelson-Velskiy et al.,
1975; Slate & Atkin, 1977). The problem, of course, is that an excellent move may look very
poor at first sight.

Yet the average number of legal moves from a chess position is at least 30, and even
with a maximum of alpha-betapruning the tree grows exponentially. Making the search more
selective was Shannon's second requirement to change a program from Type A to Type B.
Many people have been convinced that such selectivity is essential to a strong chess
program, both in order to increase search depth and to permit more sophisticated evaluation
of the nodes remaining in the search tree. Berliner, for example, has advocated reducing the

Heuristics in Game Tree Search 79Csc

total search tree size to at most 5000 nodes, with a branching factor of less than 1.9
(1974, p. 1-16). Although some reconsideration of these ideas has been prompted by the
success of CHESS 4.7 using full-width search, it appears that that program is still weak at
long endgame sequences (see Berliner, 1978a; Michie & Bratko, 1978). Moreover, there are
other games for which it is even clearer that full-width search is not the answer. For the
game of go, for example, the average branching factor has been estimated at perhaps 200
(Thorp & Walden, 1970), and for backgammon, where legal moves depend on the throw of the
dice as well as the board position, the factor is over 800 (Berliner, 1977a).

Various devices have been tried In the effort to increase the selectivity of the search
without missing good moves. Some are conceptually simple, Introducing little or no new
chess-specific knowledge into the program. Others attempt to formulate and use chess
concepts as sophisticated as those a chess master might employ. The remainder of this
section reviews mainly the earlier search-controllingdevices. The following section mentions
work, some of which moves outside the Shannon paradigm, in which the effort to capture

expert chess knowledge becomes primary.

Forward pruning. One way of limiting the number of moves to be considered introduces
no new complications: Simply generate all legal moves at a position, use a fixed-ordering
scheme to sort them according to their apparent goodness, or plausibility, and then discard all
but the best few moves. Such a technique, called plausible-move generation or forward
pruning, was used by Kotok (1962) and Greenblatt (1967); see also Samuel (1967). A

further feature of these programs, sometimes called tapered forward pruning, was that the
number of moves retained was a function of the depth at which they were generated. For
example, Greenblatt's program in tournament play retained 15 moves from a position at either
of the top two levels of the tree, 9 moves at the next two levels, and 7 moves thereafter.
These figures could be Increased in special cases-for example, to be sure that moves of
more than a single piece were considered.

Another form of forward pruning, distinct from plausible move generation,operates not
at the time when moves are originally generated but later, when one of these moves (or the
position to which it leads) is being selected for further exploration.At this point a preliminary

estimate of the value of the move or position may already have been made by the move-
ordering scheme. If this estimate is outside the limits alpha and beta, the currently known
bounds on the outcome of the entire search (see Csb), the node is pruned without further

investigation. It Is possible, of course, that the actual backed-up value of the node would
have turned out to be between alpha and beta. In that case a good move may have been
missed. (See Samuel, 1967; Berliner, 1974, p. IV-T3.)

Still another basis for forward pruning has been explored by Adelson-Velskiy et al.
(1975) They observe that KAISSA's search trees include many lines of play that a human
would consider absurd, not necessarily because the moves are bad a prion, but because the
human player has already considered and rejected the same moves in an analogous position.

The proposal, then, is to remember moves that have been found to be absurd, (on some
definition) and to reject them in other positions too unless there has been an appropriate

change of circumstances. In

effect,

this method of analogies involves trying to establish
conditions under which a refutation is guaranteed to be effective. Then the line of play

constituting the refutation would not need to be explored separately every time it is
applicable. (See Frey, 1977, p. 68.) i

%

80 Search

Goal-directed move generation. Returning to the initial generation of moves, there is
another kind of plausible move generator that comes closer to mimicking the way that humans
might decide which moves are worth considering. Instead of generating all legal moves and
discarding some, this approach does not generate moves at all unless they seem relevant to
some goal. The earliest step in this direction was Bernstein's program (1959), which
contained a sequence of board features to be tested for and a procedure for generating
moves in response to each feature that was present. The first few tests in the sequence
were (1) is the king in check? (2) can material be gained, lost, or exchanged? and (3) is
castling possible? A maximum of 7 plausible moves was returned. Questions later in the
sequence were not asked if earlier questions caused the maximum to be reached. Searching
to a fixed depth of 4 ply, the program generated trees with about 2400 tip nodes.

More explicitly goal-directed move generation was included in Newell,

Shaw,

and
Simon's 1958 chess program (Newell, Shaw, & Simon, 1963a; Newell & Simon, 1972).
Indeed, the entire program was organized in terms of goals, although only three—material,
center control, and piece development—were actually implemented. At each turn, the
program began by making a preliminary analysis to decide which of the goals were relevant
to the situation; these were entered, in order of importance, on a current goal-list. It was
intended, in a more fully developedprogram, that as the game progressed the goals of center
control and developmentwould drop out, since they are important mainly in the opening, and
would be replaced by others more appropriate to later phases of the game.

Each active goal in the Newell, Shaw, and Simon program was responsible for
generatingrelevant moves at the first level of the tree. In addition, each goal contained its
own separate generator for moves at deeper levels, its own criteria for whether a position
was dead, and Its own static evaluation function. The search proceeded, in a highly selective
manner, until the tip nodes were dead with respect to all active goals. Static evaluations
with respect to the various goals were combined lexicographically, so that the highest
priority goal was dominant and the others served only as tiebreakers. Newell and Simon
report that the program's average search tree contained only 13 nodes—with no apparent
loss in playing power compared to other programs up to that time (1972, p. 694).

Knowledge-based Programs

The Bernstein and Newell, Shaw, and Simon programs were early efforts to introduce
significant chess knowledge, organized In human terms, to limit brute-force search. The
actual knowledge was very sketchy; apparently neither program ever won a game (see
Newell & Simon, 1972, pp. 677, 690).

An attempt at fuller use of chess knowledge was made in Berliner's program, CAPS-II
(1974, 1977b). Much of the work involved developing a representation suitable for use in
selectively generating moves, making preliminary evaluations of the moves so proposed, and
describing the actual consequences discovered when a move was tried. The moves
generated depend on the current goal state, which may be King in Check, Aggressive,
Preventive Defense, Nominal Defense, Dynamic Defense, or Strategy. In contrast to the
Newell, Shaw, and Simon program, the goal states are mutually exclusive, and state
transitions occur dynamically as the tree Is searched, in accordance with a complex
flowchart. An important feature of the program, the Causality Facility, relates to both move
generationand move ordering, as well as to pruning in some cases. The problem it attacks is

Heuristics in Game Tree Search 81C6c

a general one in tree searching: When a path has been explored and found unsatisfactory,
most programs have no way to diagnose what went wrong and use this information in deciding
where to search next.

The basic search algorithm in CAPS-II is depth-first, with minimaxing and alpha-beta

pruning. The Causality Facility operates as a refinement on this search. A first new feature is
that, whenever a value is backed up in the search tree as a tentative minimax value, certain
information is accumulated about the consequences of the move or moves that produced the
value. The data structure in which the information is stored Is called a Refutation Description.

As the basis for making use of the Refutation Description, the program uses a variable
representing the expected value of the position at the root of the search tree; this value,
which may be updated during the search, lies somewhere between the bounds given by alpha

and beta. Now, the tentative value newly backed up to a node can be compared with the
expected value. If the comparison is unsatisfactory, the Causality Facility uses the

Refutation Description to decide whether the last move tried from the node could have been
responsible. It generates a list of alternative moves from the node, with the aim of avoiding
the unsatisfactory result. These moves are compared with the list of moves from the node

that had been generated earlier but which have not yet been tried. The comparison is used
to reorder moves already on the untried list and, dependingon the state the program is in, to

add new moves to the list and to prune old ones.

Whereas Berliner's program plays the full game of chess, there a c severe other
recent programs which, in their emphasis on representing chess knowledge, limit their task to

solvino problems that involve only selected aspects of the game. Two of these are theP^a^^PiTrat 0977) and Wi.kins (1979). In each the £** * ** " "«" %^/JXwins material, beginning from a given middle-game position The approach in both programs is
to work backward from the goal of winning material to a structure of subgoals that

constitutes a plan. (See Pfenning.) Wilkins's program,

PARADISE,

for example, has as a main

theme the expression of chess concepts, like making a square safe for a piece or safely
capTuring a Piece?!n to?ms that can be used as subgoals and eventuallyreduced to specific

moves inftiany! a plan is based not on search but on an extensive analysis of he originally

given position; it may contain conditional branches depending on genera. t"^"**"?with which the opponent might reply. The general plan is then used to guide search,

generatina a very small tree. Moves considered for the program to make are only those

?eletan to toe currenrsubgoal; for the simulated opponent, all reasonable defensive moves
are If search shows that the plan has fai.ed, a causality facility simi.ar to

Berliner's is used to analyze the difficulty and suggest a new plan.

R«th

th«,

Pitrat and the Wilkins programs have succeeded in solving problems where the
winning no^ay goes"to, a deP?h of around 20 ply. Pltrat reports, for a set of 11
winning line of piay goes u» k 22,000 nodes; computation timeproblems, that search tree sizes ranged fro*hido

PARADISE generates smallerr""^ -mber °f nodes in the search tree ran

rom^minimum of 3 t aMaximum of 215, and time to find the solution varied from 19
seconds to 33 minutes. WHJIjj■ *» report,,.^.^^^myrpro^mr^^y^^C^an^rL^version^rcTEir^CTrograms o?her than PARADISE, however, were

tested with a time limit of only 5 minutes per problem.

A final example of the use of chess knowledge to solve a class of problems is the work

%

Search82

of Donald Michie and his colleagueson chess endgames (e.g., Bratko, Kopec, & Michie, 1978;
Michie & Bratko, 1978). Here each combination of pieces with which the endgame may be
played is treated as posing a separate problem. One problem, denoted KNKR, is to defend
with king and knight against king and rook, starting from any of some 3 million legal positions
involving only those pieces. The objective is to provide the program with enough knowledge

about this specific class of chess problems to achieve theoretically correct play, even in

situations where chess masters sometimes err, and to accomplish this using only a moderate
amount of search.

The program's knowledge is encoded in a data structure called an Advice Table, within
which patterns occurring on the board may be described. Each pattern has an associated
list of goals, or "pieces of advice," in the order in which they should be attempted. The

object then becomes to find a solution—in the sense of a solution subtree of an AND/OR tree
(C2)—to the problem of satisfying one of the goals. Unlike a standard AND/OR tree search,

however, the "advice" includes not only a definition of when tip nodes should be considered
terminal, but also constraints that every intermediate node in the solution tree must satisfy.

The amount of search required to find a solution using an Advice Table depends on how
much knowledge the table contains. If the only goal provided were avoidance of mate, a

search to the impossible depth of 85 ply would be needed to find the best defense from
some positions. With the additional advice not to lose the knight and to keep king and knight
together, search to about 10 ply is sufficient. With the further refinements included in the

actual Advice Table, the program is reported to play the KNKR endgame at master level using
only a 4-ply search.

References

See Adelson-Velskiy, Arlazarov, & Donskoy (1975), Berliner (1973), Berliner (1974),

Berliner (1977a), Berliner (1977b), Berliner (1977c), Berliner (1978a), Berliner (1978b),

Bernstein et al. (T959), Bratko, Kopec, & Michie (1978), Charness (1977), Frey (1977),

Gillogly(1972),

Greenblatt,

Eastlake, & Crocker (1967.), Griffith (1974), Harris (1974), Harris
(1975), Harris (1977), Hearst (1977), Kister et al. (1957), Kotok (1962), Levy (1979),
Michie (1977), Michie & Bratko (1978), Mittman (1977), Newborn (1975), Newborn (1978),
Newell,

Shaw,

& Simon (1963a), Newell & Simon (1972), Nilsson (1969), Nilsson (1971),
Pitrat (1977), Samuel (1963), Samuel (1967), Shannon (1950), Slagle & Dixon (1969),

Slagle & Dixon (1970), Slate & Atkin (1977), Thorp & Walden (1970), Turing (1953), and
Wilkins (1979).

D Example Search Programs 83

D. Example Search Programs

01. Logic Theorist

The Logic Theorist (LT) was a program written by Allen Newell, J. C. Shaw, and H. A.
Simon in 1956, as a Joint project of the RAND Corporation and the Carnegie Institute of
Technology. It was one of the earliest programs to investigate the use of heuristics in
Problem solving. The term heuristics, as used by Newell, Shaw and Simon, referred to "the
complexprocesses . . . that are effective in problem-solving." They stated,

We are not interested in methods that guarantee solutions, but which
require vast amounts of computation. Rather, we wish to understand
how a mathematician, for example, is able to prove a theorem even
though he does not know when he starts how, or if, he is going to

succeed. (Newell,

Shaw,

&

Simon,

1963b, p. 109)

Heuristics were thus identified with processes "that may solve a given problem, but offer no
guarantee of doing so" (p. 1 1 4; see also Overview).

In descriptionsof the Logic Theorist program, the heuristics discussed by Newell,

Shaw,

and Simon relate principally to limiting the search space by means of an apt problem

formulation. Within the defined space, the search was blind except for some minor

selectivity in the selection of operators (see C3a).

The problem domain of the Logic Theorist is the proof of theorems in the propositional

calculus (see RepresentetioaLogic). The basis is Whitehead and Russell's Pr.nc.pia

Mathematica, from which both axioms and theorems to be proved were taken. There are
five axioms, as follows:

Some typical theorems that LT was given to prove include:

The numbering of the theorems Is taken from Whitehead and Russell, n some cases, the
data given the program included not only the axioms but also previously proved theorems

from that work. When all earlier theorems were included with the axioms, the program
succeeded in proving 38 of the first 52 theorems in Chapter 2 of Principle Mathematica, in

the sequence given there.

The program operates by reasoning backward, from the theorem to be established, to the
axioms and given theorems. Three operators were provided for reducing the theorem to be
Proved, let us say X, to an axiom or theorem. These operators were:

1. (P V p)3 P
2. pa (q vp)
3. (p v q)s (q vp)
4. [p v (q v r)] => [q v (p v r)]
5. (p:q)3 [(r v p) a (r v q)]

2.01. (pa ~p)a~P
2.45. ~(p V q) = ~P
2.31. [pv(qvr)]a[(pvq)vr]

%

84 Search

Detachment: To show X, find an axiom or theorem of the form A = X, and
transform the problem to the problem of showing A.

Forward chaining: To show X where X has the form A a C, find an axiom or
theorem of the form A = B, and transform the problem to the problem of
showing B = C.

Backward chaining: To show X where X has the form A a C, find an axiom
or theorem of the form B o C, and transform the problem to the problem of
showing A o B.

Since the axioms and given theorems contain variables, consideration must be given to
the means for deciding whether a problem has in fact been reduced to something known.
The question is whether a current problem expression X is an instance of an axiom or known
theorem. The test, called the Substitution Test, uses two rules of inference distinct from
those reflected in the operators:

Substitution: A variable in a theorem may be replaced, in all its
occurrences throughout the theorem, by an expression. For example,
substituting the expression "p v q" for the variable "p" transforms

into
(p v q) a [q v (p v q)].

Replacement: The connective "=" is interchangeable with its definition.
That is, if p and q are expressions, then

pa q
can be replaced by

-p v q
and vice versa.

As well as being used to determine whether a proof is complete, the substitution test is also
essential for determining what applications of the three operators are possible with respect
to a given problem expression.

The general algorithm used by the Logic Theorist is a blind, breadth-first state-space
search using backward reasoning. The initial state corresponds to the original theorem to be
proved. To test whether an expression has been proved, the program applies the
substitution test, pairing the problem expression with each axiom and assumed theorem, in
turn. If substitution fails, the expression is placed on a list of open problems; problems are
selected from this list to become the current problem in first-in, first-out order.

To a problem selected from the list, each of the three operators is applied, in fixed
order and in all possible ways, to generate new open problems. The search terminates with
success as soon as a single problem is generated that passes the substitution test, since
this means that a path has been completed between an axiom and the original problem. The
search fails if it exceeds time or space limits, or if it runs out of open problems.

An example of a case in which the latter occurs is the attempted proof of the theorem

P = (q v p)

85D1 Logic Theorist

p or ~~"»p .
To succeed with this proof, LT would have needed more powerful operators; this particular

Problem required the ability, which LT lacked, to transform a problem to a set of subproblems,
or conjunctive subgoals, which all had to be solved in order to solve the original problem.

There are some qualifications to the preceding general description of LT. One concerns
the statement that each operator Is applied to the current problem in every possible way
that is, that the current problem expression is matched against every axiom and assumed
theorem to determine the applicability of any of the operators to that express.on-ax.ompair.

In fact, the program attempted a match for the purpose of discovering an appropriate

substitution only if the pair had passed a test indicating equality of certain gross features,
such as the number of distinct variables in each. This test for similarity occasionally
rejected a pair for which a substitution in fact would have been possible, thus excluding a
Proof the program would otherwise have found. Overall, the utility of this similarity test was
considered rather marginal.

Some other additions, apparently made in a later version of the program (see Newell &

Simon, 1972, pp. 125-128), included (a) ordering the open problems, taking up those
involving simpler expressions first instead of proceeding in a strictly breadth-first order, and
(b) rejecting some subproblems entirely as too complicated or apparently unprovable. In the
Implementation of these features, the latter appeared to be the more effective measure in

reducing search effort. There was also experimentation, as mentioned previously, with the
number of theorems that could be assumed as given in addition to the basic axioms. The

conclusion on this point was that "a problem solver may be encumbered by too much
information, Just as he may be handicapped by too little" (Newell & Simon, 1972, p. 127).

References
See Newell,

Shaw,

& Simon (1963b), Newell & Simon (1972), and Whitehead & Russell

(1925).

% 86 Search

k

D2. General Problem Solver

Simnn
T
h

c Genera' P
<
r °b'em S°

,Vef

(GPS) was developed by Allen Newell, J. C. Shaw, and H AmachinesTsTr "^ r6SearCh had a dUa' intention: (t was aimed »°* -t getting?*»n«T " , ! probiems req«Wno intelligence and at developing a theory of how humanorooSm Zlr mC
nn

Pr°

b,emS

- GPS WaS the SUCCessor of the earlier Logic "heoTist2Z on siml? orrThJ"" m
n

tho<!S *** "*> * S"9ht resembl— to those used'by hum.nsDevelopment of GPS continued through at least ten years and(10e5 was con-r h
The flna' Version' described in detail ■" Ernst and NewellPsychology theory " 6Xtendin9 "» 9enera'ity °f the program ' not with the

solvinl oroi-m tnT /°b,em S°,Ver" °ame fr°m the fact that GPS was the *«** P'°°'em-?h«yp^of Lk at hanrxH?- 9Trai prob,em-solvin9 methods from knowledge specific toTbout the k ind of

ta,k

h 'S* Jh! problem-solvin3 P«t of the system gave no information
structures form inn ,f t9

W°rked knowledge was collected in datatransform?" 1 V ** mmrmmmt - Amon g the data structures were objects and operators forobjecf,nto9^ihC h' A,tafk .WaS n°rmal,y 9iven t0 GPS as an initial object and'a desired"Tml. -to heri tatel 1h WBS t0 b" transformed - GPS °b Jects and operators weresimilar to the states and operatorsof a state-space problem representation (Article B1).

into either the i-t^"9 techn,que introduced by GPS, however, does not fit neatly"om a standard «t 1 PBCe °r tha Prereduction representation formalisms. It differs
next Tht, t„l S"SPaCe S6arCh (c -9- Article "C1) ,n the waV jt decides what path to trypTooram ft \V ""l*""^ mani'endi anal^ is " ">ajor theoretical contribution of the
bePenned snTIV X'S ?! <*7/,?r<7l"S bBtWee " a CUrrent °°J-Ct and a Paired object can
the kin d!d f

and c,assified '"to types and that the operators can be classified according to
operator to trraC

o
e
D ,.hr "^ At SaCh Stage' GPS **^ a *»■*« reievantseopnll V

a !PPy t0 the CUrrent obJect- The search for a successful operatorsho'wrprcm s^^Bt, 6Pth ""* " lOPg 8S the Ch°Sen operators are W«"°* «"d the pathenm7naZ on«'Hi« P,S possible if the current path becomes unpromising-for example! ifeliminating one difference has introduced a new one that is harder to get rid of

rel.v.
AnV{n?d^ iS the faCt that the operat°' elected as

than reiectinn Z i d'fference may in fact be inapplicable to the current object. Ratherrna ob7eJ
c t

CTp9
prZiatoTs°inpVto ST? * "« Curr«nt *'BCt '"*°recursive oZZJIVZhV 1! * Ch°Sen operat°'- The result of this strategy is a

«>" ;as2xr^^ ar* history ,n a- ano/or ■'"pfSr*,..

Goals and Methods

attempts so far to rh-nn- »t *
objects), the desired situation, and a history of thegoals are TrolZet "*" CUrrBnt S' tUati°n int° the desired °ne - Three main types c?

1 . Transform object A into object B.

D2 General Problem Solver 87

Associated with the goal types are methods, or procedures, for achieving them. These
methods, shown in a simplified version in Figure 1, can be understood as problem-reduction

operators that give rise either to AND nodes, in the case of transform or apply, or to OR
nodes in the case of a reduce goal. The initial task presented to GPS is represented as a
transform goal, in which A is the initial object and B the desired object.

TRANSFORM
A TO B

RANSFORM
A' TO BREDUCE DIFFERENCE

BETWEEN A AND B,
GIVING OUTPUT A'

REDUCE DIFFERENCE
BETWEEN A AND B

SELECT A RELEVANT OPERATOR Q
AND APPLY IT TO A

GIVING OUTPUT A'

APPLY OPERATOR 0 TO A

REDUCE DIFFERENCE APPLY Q TO A",
BETWEEN A AND THE GIVING OUTPUT A'
PRECONDITIONS FOR

Q,

GIVING OUTPUT A"

Figure 1 . The three GPS methods for problem reduction.

The recursion stops if the goal is primitive-that is, if for a transform goal thereis no
difference between A and B; and if for an apply goal the operator Q is immediately
applicable. For a reduce goal, the recursion may stop, with

failure,

when all relevant
operators have been tried and have failed.

Selection of Operators

In trying to transform object A to object B, the transform method uses a matching
process to discover the differences between the two objects. The possible types of

SifCncrare predefined and ordered by estimated difficulty for e-h of task Th

most difficult difference found is the one chosen for reduction. A domain-dependentdata
structure called the Table of Connections lists the operators relevant to reducing each

difference type.

Depth Bounds

c_uaral hoiirl «:tir

S

are provided to prevent GPS from following a false path indefinitely.f^^t\\T^^TL^goal may be abandoned, at least temporary, are the
following:

1 . Each goal should be easier than its parent goal.

%

88 Search

2. Of a pair of AND nodes representing subgoals generated by transform or
apply, the second subgoal attempted should be easier than the first.

3. A newly generated object should not be much larger than the objects
occurring in the topmost goal.

4. Once a goal has been generated, the Identical goal should not be
generated again.

An Example

The first task environment to which GPS was applied was the domain of the Logic
Theorist: proving theorems in the propositionalcalculus. The initial and desired objects were
expressions, one to be transformed into the other by means of operatorsrepresenting rules
of inference. There were twelve operators altogether, including the following rules. (The
symbol "==>" means "maybe rewritten as.")

Rule 1. A v B ==> By A
A a B ==> B a A

Rule 5. Ay B <==> -(-A a ~B)

Rule 6. A a B <==> ~A v B

Six possible difference types were recognized:

(a) occurrence of a variable in one expression but not the other,
(b) occurrence of a variable a different number of times in the two

expressions,
(c) difference in sign,
(d) difference in binary connective,
(c) difference in grouping, and
(f) difference in position of components.

The list just given is in decreasing order of assumed difficulty. Every difference between
main expressions, however, was considered more difficult than any difference between
subexpressions.

With this background, a trace (slightly simplified) of GPS's performance on a simple
example can be given. The problem is to transform the initial expression

R a (~P 3 Q) ,
denoted Ll, into the desired expression

(Q v P) a R ,
denoted LO. The trace is shown below.

89General Problem SolverD2

Goal 1 : Transform L 1into LO.
Goal 2: Reduce positional difference betweenL1and LO.

Goal 3: Apply Rule 1 to Ll.

Return L2: (~P = Q) a R

Goal 4: Transform L2into LO.
Goal 5: Reduce difference in connective between

left subexpressions of L2and LO.

Goal 6: Apply Rule 5 to left part of L2.

Goal 7: Reduce difference in connective
between left part of L2and
precondition for Rule 5.

Reject goal 7 as no easier than goal 5.

Goal 8: Apply Rule 6 to left part of L2.

Return L3: (P vQ) a R

Goal 9: Transform L3into LO.

Goal 10: Reduce positional difference
between left parts of L3and LO.

Goal 1 1 : Apply Rule Ito left part of L3.

Return L4: (Q v P) a R

Goal 1 2: Transform L4to LO. .
No difference exists,so problem Is solved.

The Problem of Generality

�„„ , _ � a * m«Hai noneralitv in problem solving through use of the broadly
GPS was 'ntended to model genera„ty,np means-ends analysis in

applicable techniques of heuristic search, *£"*« J* __
lnt-ma|

Particuiar. The l^'ementat^or of these^" âentatkw in early verstons of GPS,
representation of objects and operaters. "esereP inadequate forwere nicely suited to> logic tasks, Hk. the exJ" l̂^., exte

y
nsions t0 the program

two probiems outside the ,qic domain.

Th« ohi«rt of Ernst's work was to extend the number of kinds of problems that GPS
The object of Ernst s worn *«» ronstant level. One of his generalizations was in

could handle while holding its power at/ ««*■£ to be specified by giving its
the representationof objects. Ea*£ " «£"^"J^£ could be used if necessary. But
exact form. Forms containing variables and lists ot Torms ouu

* 90 Search

1

Sed ob iect is anvT °/ /epresentin9 -Vmbcllc integration problems, in which theH»!nlH J
* , V f°rm wnatever that does not contain an integral sign. Hence thedescription of a desired object by a list of constraints was introduced.

the form of the innnt T* ? "!? r

representu

epresentation of operators, originally specified by giving
Pob ems It w ,T" T thS f°rm °f the reSU,ting output ob Ject- some kinds o?object and ta J m ? °ther t6StS °f app,,cabil'ty besides the form of the inputchinoe enab ed GPfto h f**^* ** °UtPUt °bJBCt as a function of th« input- A thirdo^rXr^ SStS °f Symbo,S' e,imi"ati"g the need for specie,

symbolic fntaor. S? progran\ succeeded in wMng problems of 1 1 different kinds includingaeneraL lonl ' reso,utlon theorem proving, and a variety of puzzles. Each
processed iVT^'aT^ Chang6S '" the WayS the prob,em representations could bethaTcould be it^t I r,

tUrn !° detßrioriati°" with respect to the kinds of differences
example"of a n.nh w « °ny representable differences became "local" ones. An
times ali

d,ffere

nce, which GPS could no longer recognize, was the total number ofiZosLZ^i 00""** '" a '°qiC f°rmU,a - Consequently, theorem proving in thepropositional calculus was not among the eleven tasks that the final version of GPS could do

thxwe ".a, efflcl-^vT Wh,c .h I
GPS did Succeed'

jt cou,d solve only simple problems; and
it °an out of mlr y a" spec,a,-PurP°se Problem solvers. If a long search was required,chess°D

U
os

0Lm
n
cm°ry "Pace: and even easy problems, if they needed objects as complex asa

exoectod?T' qU'Ckly exhausted memory on a machine with 65K words. But GPS was not
of lessons that _�J9rfonnanc« pro^am - Whsf it yielded, in its authors' view, was "HerEareoSred to r«„ ?"*> * P6rfeCt VieW of the nature of problem solving and what is
addtttor..! «

C°nStrUCt Presses that accomplish it" (Ernst & Newell, 1969, p 2). Althoughco^c^i Ccr
ep

,?t,on; , -BUCh 8S 9ame P,aying ' Were COnsidered feasibi^ the authors
law to rest "° fUfther pro9rammina accretions and recommended that it be

References

Newe^rsfrc^aTi'sr^,^;.0965'' m^ & s,m°- < 196°>-

Gelernter's GeometryTheorem-proving Machine 91D3

D3. Gelernter's Geometry Theorem-proving Machine

Herbert Gelernter's geometry theorem-proving machine was a program written in 1 959
at the IBM Research Center in New York. The program was written in an extended FORTRAN,
the FORTRAN List Processing Language, and implemented on an IBM 704 computer. The
purpose of the program was to solve problems taken from high-school textbooks and final
examinations in plane geometry. As with Newell,

Shaw,

and Simon's Logic Theorist, which
proved theorems in the propositional calculus, the fact that there were algorithms for solving
problems in these domains was considered irrelevant, since the object was to explore the
use of heuristic methods in problem solving.

The formal system within which the geometry program worked contained axioms on
Parallel lines, congruence, and equality of segments and angles. This set of axioms, which
was not meant to be either complete or nonredundant, was along the lines of an elementary
textbook. The axioms played the role of problem-reduction operators. Some examples are:
(a) To show that two line segments are equal, show that they are corresponding elements of

congruent triangles; (b) to show that two angles are equal, show that they are both right

angles; and (c) to show that two triangles are congruent, show the equality of a side and
two angles in corresponding positions, or of an angle and two sides. The operators for
establishing congruence split the problem into three subproblems each to be solved
separately by showing equality for one pair of elements. Newell and Simon (1972, p. 138)

indicate that the geometry machine was the first program that was able to handle conjunctive
subgoals. The program works backwards from the theorem to be proved, recording its
Progress in what amounted to an AND/OR tree (Article B2).

Some examplesof problems solved by the program were the following:

1. Given that angle ABD equals angle DBC, that.segmentt ACMs P«^leular to segment

AB, and that segment DC is perpendicular to segment BC, show that AD equals CD.

Figure 1. Diagram for problem 1.

2 Given that ABCD Is a quadrilateral, with segment BC parallel to segment AD and with
BC equal to AD, show that segment AB equals segment CO.

Figure 2. Diagram for problem 2.

% 92 Search

L

a . * Prob,em was given to the program in the form of a statement describing the premisesand tne goal. A proof was a sequence of statements giving the reduction of the goal totrivial goals-ordinanly, goals to establish an already established formula. One feature usedto reduce the search effort needed to find a proof was the recognition of syntactic symmetry.some examplesof symmetric pairs of goals are the following:

If d(x,y) is the distance from point x to point y, then d(A,B) = d(C,D) issymmetric with d(D,C) = d(A,B).

b. If ABCD is a parallelogram and point E Is the Intersection of its diagonals ACand BD, then d(A,E) = d(E,C) is symmetric with d(B,E) = d(E,D).

The recognition of symmetry was used in two ways. First, if a given goal was ever reducedto a subgoal symmetric with it, the subgoal could be rejected as representing circularreasoning. Second, if parallel goals A and B were syntactically symmetric and goal A hadbeen established, then goal B could be established by symmetry-in effect by saying, for thesecond half of the proof, "Similarly,B."

nr„hi *
mf 5t notab,e feature of the program, however, was an additional part of theTh?f . statement used to avoid attempting proofs by blind syntactic manipulation alone"Ijf ,*s

f
a digram, similar to Figures 1 and 2 (although specified by lists ofcoorainates;, of the points and line segments mentioned in the theorem. The particular inputo«ni!«,W

w
S wSu°Sen t0 aVOid spurious coincidences and reflect the greatest possibleriin!l« i*

yVhenf ver a suba-oal was generated, it was checked for consistency with theDiagram, if false in the diagram, the subgoal could not possibly be a theorem and thereforeanoint*"n'i from the searcn tree. A slight qualificationis that finite precision arithmetic,applied to the diagram, occasionally caused a provable subgoal to be pruned erroneously; butLZt lßA°lt * the proaram nad found other paths to the solution in such cases. It wasrJrnEr, .US6 °f & dia9ram ' together with the discard of subgoals representingcircular reasoning, eliminated about 995 out of every thousand subgoals.

Thie diagram also served a second purpose: It provided an additional criterion by whichorr^Si8"! tbe considered primitive. For example, a rigorous proof of the theorem intri«nnT ITwould.1
T
would . squire showing that DB is a line segment and that BCD and BAD areTefeoJnt

e !nH°Z ne
fTd. WOU!d,nave been <■> if * *nd y are distinct points, then XV is atrilnni9 t ,? "

(b) 'f *' V'Y ' and Z are three distinct non-collinear points, then XYZ is a
rathe rnnvL* Tl* **** °f SUCh properties' the program did not require formal proof but
the VJ,Tr ? J*leu _3stab"Shed if they were tr"e in the diagram. It recorded explicitlythe assumptions that had been made based on the diagram.

V

were Indued tor^oafit repeatedly selects the next goal to try. Two heuristics
w«««« «? .. 9 SB,ection. One gave highest priority to classes of goals such asbetwe^'the aoTl't T"Vr*"**** ,n °nS Step' The second assigned a "distance"S!h ho a

Q? statement and the set of premise statements; after the one-step coalstovZ^T* "" remainin9 »" Were "*«« '" °rder 0f *"*"* dtstanceTom
Orriin.w^V 9°?lw aS °hoSen for development, the action taken depended on its status
bu not

,ysukTen^o%;etabrs2 ZeT^r "*>** " with the digramoux not sufficient to establish the current goal immediately, would be added to the list of

Gelernter's Geometry Theorem-proving Machine 93D3

■j

goals to try. If no new acceptable subgoals were generated, the program checked whether
a construction was possible-a construction being the addition to the premises of the problem
of a line segment between two existing but previously unconnected points The new
segment would be extended to its intersections with other segments in the figure. New
Points could be added to the premises only if generated by such intersections.

A goal for which a construction was found possible, was saved-to be tried^ agam 'ate
if all goals not requiring construction should be exhausted. If the goal was later selected for
a second try a construction would be made and the problem started over with an expanded

Premise set An example of the use of this technique occurs in problem 2, where in

considering the goalAß = CD, the program generated a subgoa of showing that triangles ABO
and CDB were congruent. The subgoal makes sense only if a iine segment BD ex.sts, so the
segment is constructed, and the proof eventuallysucceeds.

References
Se« pi,."* MQ77) Gelernter (1969), Gelernter (1963),

Gelernter,

Hansen, &

Gerberich 0960),

Gelernter,

ES«\ Loveland (1963), Gelernter & Rochester (1958). and

Gilmore (1970).

%

94 Search

04. Symbolic IntegrationPrograms

Slagle's SAINT

James Slagle's SAINT program (Symbolic Automatic INTegrator) was written as a 1961
doctoral dissertation at MIT. The program solves elementary symbolic integration problems--
mainly indefinite integration—at about the level of a good college freshman. SAINT was
written in LISP and run interpretivelyon the IBM 7090.

The kinds of questions Slagle intended his thesis to address were some of the earliest
questions for Al. They included, for example, "Can a computer recognize the kinds of
patterns that occur in symbolic expressions? Just how important is pattern recognition? . . .
Can intelligent problem solving behavior really be manifested by a machine?" (Slagle, 1961,
p. 9). The domain of symbolic integration was chosen as a source of well-defined, familiar,
but nontrivial problems requiring the manipulation of symbolic rather than nump -nl
expressions.

The integration problems that SAINT could handle could have only elementary functions
as integrands. These functions were defined recursively to comprise the following:

1 . Constant functions.
2. The identity function.
3. Sum, product, and power of elementary functions.
4. Trigonometric, logarithmic, and inverse trigonometric functions of

elementaryfunctions.

Three kinds of operationson an integrand were available:

1. Recognize the integrand as an instance of a standardform, thus obtaining the
result immediately by substitution. Twenty-six such standard forms were
used. A typical one indicated that if the integrand has the form c v dv, the
form of the solution is (cv)/(ln c).

2. Apply an "algorithm-like transformation" to the integral—that is, a
transformation that is almost guaranteed to be helpful whenever it can be
applied. Eight such transformations were provided, including (a) factoring out
a constant and (b) decomposing the integral of a sum into a sum of integrals.

3. Apply a "heuristic transformation"— that is, a transformation carrying
significant risk such that, although applicable, it might not be the best next
step. The 10 heuristic transformations included certain substitutions and the
technique of integration by parts. One technique that was not implemented
was the method of partial fractions.

The program starts with the original problem as a goal, specified as an integrand and a
variable of integration. For any particular goal, the strategy is first to try for an immediate
solution by substitution into a standard form; failing that, to transform it by any applicable
aigorithm-iike transformation; and finally to apply each applicable heuristic transformation in

95Symbolic Integration ProgramsD4

"urn Both

*,

.,g=«8 «d the
to which the same strategy may be applied. The result is an «nu, y

BS).

The order in which goa.s are pursued by SAINT dependsi heavHy on
be applied to them. At the level of heuristic transformation the algorithm »""£*'£
-arch : A list, ca.led the Heuristic Goal List Keeps track «^^"T«Z£made only by applying heuristic transformat.ons--that '*" '"tegr

attachedform nor amenable to any algorithm-like
»«"^m^J.° "SSffculty used is the maximuman estimate of the difficulty of achieving' of the goal, such as'evel of function composition in the ■*"*■"* S^, a rational function of sines and

whether it is a rational

function,

an algeb aic^funcjon a
rjstj

_
transformatJons

cosines, and the like, are also stored as an aid to determ. i g

will in fact apply. The outer loop of the program re eated«y select

easiest from the Heuristic Goal List "pands "°V pP * «
new elements to thetransformations, and possibly, as a resul Mjf the exP '

QUt

of heuristi als to workHeuristic Goal List. The program terminates with failure it

on or if it exceeds a pre-set amount of working space.

„_ .nn-Brns the use of standard forms and
An important qualification to this generated (or the original goal

algorithm-like transformations. As soon as any new g B
check

read in), an immediate solution of it is attempted^ The a p
hm-||k-

whether the integrand is a standard

form,

I 'ltJs not j jmmediate so|ution
transformation applies; and if one ap^g â\ transformation. When the recursion
Procedure recursively on each goal r"^jJ",^,v.d or there is a set of goals-the
terminates, either the generated goal:hasi wen

Heurjstjc Goal List. During
generated goal itself or some of its subgc»als to accumulated ,n
expansion of a node (one iteration are their characteristics computed
a temporary goal list; only after expansion is compieie ar

and the additions made to the Heuristic Goal List,

a ♦(„» imolleations of its achievement are immediately
Whenever a goal is achieved, the mP»°at'0"* ° successfully. otherwise, if it was

checked, if it is the original goal the Pf^J achievement of one or more
achieved by substitution into a standard form may

sufficient number of its
Parent goals as well. If it WM/^*dJ*Ststo be achieved in turn, but may also
subprobh3mS) it may not onlycause its parent o p

superfluous. These checks
make others of its subproblems, which have nox ye „pruning the goal tree," that is
are implemented in a recursive Process, rarer , _

a
_

be achieved without
initiated as soon as any goal Is achieved. Thus a neurit y

having been fully expanded.

Moses's SIN .. " -option Droaram, SIN (Symbolic INtegrator), was written
A second important symbolic at M]t Its motivation and its strategy

by Joel Moses In 1969, also as a doctoral disseriauo
whereas Slagle had compared the

as an Al effort were quite different from those or o« " M
__

es ajmed at behavior
behavior of SAINT to that of freshman ca'cv.v empnasizing generality in
comparable to expert human performance ne m diverse problem
that it examined mechanisms, like heuristic search, that are

%
96 Search

domains. SIN, in contrast, was to emphasize expertise in a particular, complex domain. To do
this, it concentrated on problem analysis, using more knowledge about integration, than SAINT
had employed, to minimize the need for search. In fact, Moses did not view SIN as a heuristic
search program. Hence, the program will be described only briefly here; and a second part of
Moses's dissertation, a differential equationsolver called

SOLDIER,

will not be described.

SIN worked in three stages, each stage being capable of solving harder problems than
the stage before. Stage 1 corresponded roughly to Slagle's immediate solution procedure
but was more powerful. It used a table of standard forms; two of Slagle's algorithm-like
transformations; and, most importantly, a method similar to one of Slagle's heuristic
transformations, referred to as the Derivative-divides method. The idea behind this grouping
of methods was that they alone would be sufficient to solve the most commonly occurring
problems, without invoking the computationallymore expensive machinery of the later stages.

A problem that stage 1 could not solve was passed on to stage 2. This stage
consisted of a central routine, called FORM, and 1 1 highly specific methods of integration.
(One of these methods was a program for integrating rational functions that had been written
by Manove, Bloom, and Engelman, of the MITRE Corporation, in 1964.) In general, the task of
FORM was to form a hypothesis, usually based on local clues in the integrand, about which
method, if any, was applicable to the problem. Only rarely did more than one method apply.
The routine chosen first tried to verify its applicability; if it could not, it returned to let FORM
try again. If the routine did verify the hypothesis, however, SIN then became committed to
solving the problem by that method or not at ail. The method chosen either solved the
problem using mechanisms internal to it or transformed the problem and called SIN recursively
to solve the transformed problem.

Stage 3 of SIN was invoked, as a last resort, only if no stage 2 method was applicable.
Two general methods were programmed here. One method was integration-by-parts, which
used blind search, subject to certain constraints, to find the appropriate way to factor the
integrand. The other was a nontraditional method based on the Liouville theory of integration
and called the EDGE (EDucated GuEss) heuristic. This method involved guessing the form of
the integral. The EDGE heuristic was characterized as using a technique similar to means-
ends analysis, if its guess did not lead directly to a solution.

Performance of SAINT and SIN

SAINT was tested on a total of 86 problems, 54 of them chosen from MIT final
examinations in freshman calculus. It succeeded in solving all but two. The most difficult
problem it solved, both in terms of time and the number of heuristic transformations occurring
in the solution tree (four), was the integral of

dt.

Slagle proposed additional transformations that would have handled the two failures, which
were the integrals of

(sec t)2

1 + (sec t)2 - 3(tan t)

x(l+x)1/2 dx and cos(x 1/2) dx .

97Symbolic Integration ProgramsD4

;

, j * _„^Qi the hphavior of an expert human integrator.
SIN, in contrast, was intended to model the behavwr or p

wereThe results of running SIN on all of Slagle's test

■

P«*te^ "rJ jntegration by parts) wereso ved in stage 1, and all but two of different machines
solved in stage 2. After adjusting for the facts that: SAW! an

makj
and that one was interpreted and the "»«

compto d and o
Programs difficult to compare, Moses t*Jf£*;^. difficult problems as well,three times faster than SAINT. Taking into account a^^ °n m

atjon problems as difficulthe expressed the opinion that SIN was "capa e o solv ng in g p
enoas ones found in the largest tables" (p. 140) and that itwasfa p

developments in
use in "a practical on-line algebraic manipulation system vp-

«;"

this direction, see Applieations.Macsyme.

References
.-

■

nnfifli Moses (1967), Slagle (1961), and Slagle
See Manove, Bloom, & Engelman (1968), Moses u»

(1963).

%

98 Search

k

D5. STRIPS

STRIPS is a problem-solving program written by Richard Fikes and Nils Nilsson (1971) at
SRI International. Each problem for STRIPS is a goal to be achieved by a robot operating in a
simple world of rooms, doors, and boxes. The solution is a sequence of operators, called a
plan, for achieving the goal. (For a review of the various senses of the word plan, see
Planning). The robot's actual execution of the plan is carried out by a separate program,
distinct from STRIPS. A later (1972) addition to the basic STRIPS system permits plans to be
generalized and used again, giving the system some capacity for learning.

The Basic STRIPS System

The world model. The world in which the STRIPS robot works consists of several
rooms connected by doors, along with some boxes and other objects that the robot can
manipulate. STRIPS represents this world by a set of well-formed formulas in the first-order
predicate calculus (see RepreaentatioaLogic). Some formulas in the world model are static
facts, such as which objects are pushable and which rooms are connected. Other facts,
such as the current location of objects, must be changed to reflect the actions of the robot.

Operators. The primitive actions available to the robot are represented by operators.
Typical operators include going somewhere and pushing an object somewhere, the locations
being given as parameters. Each operator has preconditions to its applicability; to push a box,
for example, the robot must first be next to the box. The application of an operator is
realized by making changes in the world model. The appropriate changes are given by a
delete list and an add list, specifying the formulas to be removed from and added to the world
model as. a result of the operation. Thus, each operator explicitly describes what it changes
in the world model.

A typical operator is GOTOB, which denotes the robot's going up to an object in the
same room:

GOTOB (bx) "go to object bx"
Preconditions: TYPE(bx.OBJECT) and

THERE EXISTS (rx) [INROOM(bx.rx) and INROOM(ROBOT.rx)]
Delete list: AT(ROBOT.V), NEXTTO(ROBOT,«)
Add list: NEXTTO(ROBOT,bx)

The precondition statement requires that bx be an object and that both bx and the robot be
in the same room, rx. The asterisks in the delete list represent arguments with any values
whatever.

Method of operation. STRIPS operates by searching a space of world models to find
one in which the given goal is achieved. It uses a state-space representation in which each
state is a pair (world model, list of goals to be achieved). The initial state is (MO, (GO)),
where MO is the initial world model and GO the given goal. A terminal state gives a world
model in which no unsatisfied goals remain.

Given a goal G (stated as a formula in the predicate calculus), STRIPS first tries to
prove that G is satisfied by the current world model. To do this, the program uses a modified

99STRIPSD5

!'

m

ii*

1

-. riA-j ffiarvsv & Klinq, 1969). Typically the
version of the resolution-based theorem prover"J^" m̂tß Jbe formed
proof fails, within a pre-specified resource limit, because nc m

different world
(see Theorem Proving.Reeo.ution). At this point, BTR PS needs to

mode, which the robot can achieve andJ^^^^ �^^l,analysis sim\l»r
complicated for a simple theorem prover, the system swucne*

to that of GPS (Article 03).

—m avtmrts a difference between the goal and
To do the means-ends analysis, the.program ex

UC. the difference. The
the current model and selects a "relevant operatorr^aj

_
outstanding wnen tne proof

difference consists of any formulas fr°m/he
n
9
p°a

a ,e|evant operator is one whose add list
attempt is abandoned (pruned, if this set is large;. erance thereby allowing the proof
contains formulas that would remove some part of the aineren

to continue.

- o«„iio« it and tries to achieve the goal in the
If the operator is applicable, the program app ''e .^an

becomes a new subgoal to be
resulting model; otherwise, the operator s Prec0"°" ors at each step, this procedure
achieved. Since there may be several relevant H of heurjstics to contro| the
generates a tree of models and subgoals. STRiKo uses

search through this tree.

An Example of the Basic System's Performance
„ th« robot Is in ROOMI and the goal is for it to be next to

As a simple example, suppose the ooox is .
contains such clauses as

BOXI, which is in adjacent ROOM2. The initial world mode. I*l

INR00M(R0B0T,R00M1),
INROOM (BOXI .ROOM2),
TYPE (BOXI,OBJECT), _„,,,
CONNECTS (DOORI2.ROOMI.ROOM2),
STATUS (DOOR 12.0PEN), """

and the goal GO is
I

G8 » NEXTTO (ROBOT, B0X1) .
between it and the initial model is

G° is not satisfied, and the difference ° . . defined above, is a relevant
-NEXTTO (R0B0T.B0X1). STRIPS determines that w 1

jnsta
_
cc QOTOB (B0X1)t denoted OPI,

operator, with bx instantiated as BOXI. The oper .^ prßCondit ion Gl ,
«" not immediately applicable (because the robot Is in thew

G1 ■'S_yix§^) >C»"0" (BOXl.rx) and INROOM (ROBOT.r*)]

fnr reducing the difference between G1 and
becomes a new subgoal. Relevant operators Tor ra^ |OTHRUDOOR (dx,ROOM2) and
the initial model MO are:

tQ

th
_ _

oom wjth the box, or
op3 « PUSHTHRUDOOR (BOXI,dx,ROOMI) 0^ /nove bettef onQ) obviously) is
move the box to the room with the robot). If the rormer
selected, the precondition

J;

*}'

% 100 Search

G2 = STATUS (dx.OPEN) and NEXTTO (ROBOT, dx) and
THERE EXISTS (rx) [INROOM (ROBOT, rx) and CONNECTS (dx,rx,RooM2)]

is the new subgoal. The difference ~NEXTTO (R0B0T.D00R12) can be reduced by the
operatorOP4 = GOTODOOR (D00R12), which is applicable immediately. Applying OP4 adds the
clause NEXTTO (ROBOT.DOOR 12) to the model, creating a new world model Ml. G2 is now
satisfied with dx = DOORI2, so OP2 can be instantiated as GOTHRUDOOR (DOORI 2.R00M2)
and applied. This deletes the clause INROOM (R0B0T.R00M1) and adds
INROOM (ROBOT.ROOM2). G1 is now satisfied, so OPI is applied, deleting
NEXTTO (R0B0T.D00R12) and adding NEXTTO (R0B0T.B0X1), the desired goal. The final plan
is thus:

OP4: GOTODOOR (DOOR 12)
OP2: GOTHRUDOOR (DOOR 12.R00M2)
0P1: GOTOB (B0X1)

The corresponding solution path through the state space tree is as follows:

(MB, (M))

(MO, (GI, G8))

(MB, (G2, GI, G0))

\ OP4
(Ml, (GI, 68))

OP2

(M2, (G8))

OPI
(M3, ())

Generalization of Plans

In the basic STRIPS system, each new problem was solved from scratch. Even if the
system had produced a plan for solving a similar problem previously, it was not able to make
any use of this fact. A later version of STRIPS provides for generalizing plans and saving
them, to assist both in the solution of subsequent problems and also in the intelligent
monitoring of the robot's execution of the particular plan.

Triangle tables. A specific plan to be generalized, say (OPI, OP2, ..., OPn), is first
stored in a data structure called a triangle table. This is a lower triangular array representingthe preconditions for and effects of each operator in the plan. Some of its properties arethe following:

1. Cell (i,O) contains clauses from the original model that are still true when
operator i is to be applied and that are preconditions for operatori, OPi.

101STRIPS05

1

2. Marked (starred) clauses elsewhere in row i are preconditions for operator i
added to the model by previous operators.

The effects of applying operator i are shown in row i + 1 The operators add

list appears in cell (I*l. I). For each previous operator say operator j.

clauses added by operator j and not yet deleted are copied into cell (i+l,j).

4. The add list for a sequence of operators 1 through i, taken as a whole, is

given by the clauses in row i+l (excluding column 0).

5. The preconditions for a sequence of operators I through **k"£ a ""*'are given by the marked clauses in the rectangular sub-a ray containing row ,
and cell (n+ l , 0). This rectangle is called the i-th kernel of the plan.

j

Tv „-.„i~ iq shown below. Operators have beenThe triangle table for the previous example is snown
renumbered in the order of their use.

Ir
! >

Figure 1. A triangle table.

i ~„„ai-aii7Pd by replacing all constants in each of
Method of Generalization The p,a"J» resT of the table with Causes thatthe clauses in column oby distinct Parameters and the _

he
_
esu|t may be tQOassume that no argument to an operator has been notjng

general, so the proof of the preconditons for eacn p
Some fufther

substitutions for parameters that constra 'n_ 2̂Xn
n

which might make the plan either
corrections are made for remaining teamed a

MACROP,

is stored
inconsistent or inefficient in use. Finally, the generalized pian,

away for future use.

102 Search

%

In the exampleabove, the generalized plan would be

with preconditions:

and add list: NEXTTO (ROBOT.bx)
INROOM (ROBOT.rxD

That is, the generalizedplan sends the robot from any room through a connecting door to anobject in the adjacent room.

Using the MACROP to guide execution. When STRIPS produces a detailed plan toachieve a goal, it does not necessarily follow that the robot should execute the plan exactlyas given. One possibility is that some action fails to achieve its expected effect so thatthe corresponding step of the plan needs to be repeated. Another is that the plan found isfTovis nf" A
Ptmal and W°Uld be improved by omitting some steps entirely. The necessaryflexibilityduring execution is provided by using the MACROP rather than the detailed plan inmonitoring the robot's actions.

At the beginning of execution, the parameters of the MACROP are partially instantiatedto the case at hand. The robot then attempts, at each stage, to execute the highestnumbered step of the plan whose preconditions are satisfied. This procedure omitsunnecessary steps and allows repeated execution, possibly with changed parameters of astep that has failed. If there is no step whose preconditions are satisfied, replanninooccurs. Determining which step can be done next is accomplished by a scan that exoloitsthe design of the triangle table. exploits

Using MACROPs in planning. When STRIPS is given a new problem, the time it takes toproduce an answer can be reduced very considerably if there exists a MACROP that can b»incorporated into its solution. The MACROP given above, for example, could be used as thefirst part of a plan to fetch a box from an adjacent room. The part of the MACROP consistingVJm .S suboPerators, if used alone, would also give a ready-made solution to theproblem Go to an adjacent room"; or it could be used repeatedly in solving "Go to a distant

The triangle table provides the means of determining whether a relevant macrooperator exists. To determine whether the sequence of operators 1 through i of the MACROPs relevant, STRIPS checks the add list of this sequence as given by the i+lr/row of thetable Once a MACROP is selected, irrelevant operators are edited out by a staighTforwlrd
a^S"' Lea;'"9 a"economicai, possibiy parameterized operator for achieving toe desTed?hu, aLIt P I " precond,t,°ns are taken from the appropriate cells of column 0Thus almost any sub-sequence of operators from a MACROP can become a macro operator ina new plan. To keep new MACROPs from producing an overwhelming number of different

GOTODOOR (dx)
GOTHRUDOOR (dx.rxl)
GOTOB (bx)

INROOM (ROBOT,rx2)
CONNECTS (dx,rx2,rxl)
STATUS (dx.OPEN)
INROOM (bx.rxl)
TYPE (bx.OBJECT)

05 STRIPS 103

It

I

i I
i

operators that must be considered during planning, the system contains provisions for
Preventing consideration of redundant parts of overlapping MACROPs and for deleting
MACROPs that have been completely subsumed by new ones.

In a sequence of problems given to STRIPS, the use of MACROPs in some cases'
reduced planning time by as much as two-thirds. The longest plan so formed, consisting of

1 1 primitive operations, took the robot from one room to a second room, opened a door
leading to a third room, took the robot through the third room to a fourth room, and then
Pushed two pairs of boxes together. One drawback noted by the authors was that, however
long the solution sequence, STRIPS at each stage of Its search dealt with every operation in
complete detail. A later program, Sacerdoti's ABSTRIPS (Article DS), provides the mechanism
for deferring the details of the solution until after its main outline has been completed.

References

See Fikes & Nilsson (1971), Fikes, Hart, & Nilsson (1972), and Garvey & Kling (1969).

Ti

i!

i

I

'i
J
ii
t
il

104 Search
%

06. ABSTRIPS

A combinatorial explosionfaces all problem solvers that attempt to use heuristic searchin a sufficiently complex problem domain. A technique called hierarchical search or hierarchicalplanning, implemented in Earl Sacerdoti's ABSTRIPS (1974), is an attempt to reduce thecombinatorial problem. The idea is to use an approach to problem solving that can recognizethe most significant features of a problem, develop an outline of a solution in terms of thosefeatures, and deal with the less important details of the problem only after the outline hasproved adequate.

The implementation of this approach involves using distinct levels of problem
representation. A simplified version of the problem, from which details have been omitted,occurs in a higher level problem space or abstraction space; the detailed version, in a ground space'By a slight extension, providing for several levels of detail instead of just two, a hierarchy ofproblem spaces is obtained. In general, each space in the hierarchy serves both as anabstraction space for the more detailed space just below It and as a ground space withrespect to the less detailed space just above.

Background—The STRIPS System

ABSTRIPS is a modification of the STRIPS system, described in Article D5. The problemdomain for both programs is a world of robot planning. In both, the program is given an initialstate of the world, or world model, consisting of a set of formulas that describe the floor planof a group of rooms and other facts such as the location of the robot and other objectswithin these rooms. The goal state to be achieved is also given. The elements of a solutionsequence are operators representing robot actions; examples are operatorsfor going up to anobject, pushing an object, and going through a door. The definition of each operator containsthree kinds of formulas: (a) its preconditions, representing statements that must be true of aworld model in order for the operator to be applicable; (b) its add list, a list of formulas thatwill become true and should be added to the world model when the operator is applied; and(c) its delete list, a corresponding list of formulas to be deleted from the model uponapplication of the operator. The search for a sequence of operators producing the desiredworld model is guided by a means-ends analysis similar to that of GPS (Article D2).

Abstraction Spaces

Given the world models and operatordescriptions of the basic STRIPS system the firstquestion Is how to define the "details" that are to be ignored in the first pass at a solutionSacerdoti's answer was to treat as details certain parts of the operator preconditions At aillevels of abstraction, the world models and the add and delete lists of operators remainexactly the same. Such a definition of "details" was found to be strong enough to producereal improvements in problem-solving efficiency, while keeping a desirable simplicity in therelationship between each abstraction space and its adjacent ground space

The preconditions for an operator are stated as a list of predications, or literals,concerning the world model to which the operator is to be applied. The relative importanceof literals is indicated by attaching to each a number called its criticality value. The hierarchyof problem spaces is then defined in terms of levels of criticality: In the space of criticalityn, ail operator preconditions with criticality less than n are ignored

i

ABSTRIPS 105

!
i
i
i
i
!

ijj

!

The assignment of criticality values is done just once for a given definition of the
Problem domain. The general ideas to be reflected in the assignment are the following:

1 . If the truth value of a literal cannot be changed by any operator in the
problem domain, it should have the highest criticality.

2. If the preconditions for an operator include a literal L that can be
readily achieved once other preconditions for the same operator are
satisfied, then L should be less critical than those other preconditions.

If the possibility of satisfying literal L depends on additional
preconditions besides those referred to in (2), then L should have high
but less than maximum criticality.

The actual assignment of criticalities is done by a combination of manual and automatic
means. First, the programmer supplies a partial ordering of all predicates that can appear in
operator preconditions. The partial ordering serves two purposes: It supplies a tentative
criticality value for all instances of each predicate, and it governs the order in which the
Program will consider literals for possible increases (but not decreases) in criticality.

As an example,consider an operator TURN-ON-LAMP (x), with preconditions

TYPE (x.LAMP) and THERE EXISTS (r) [INROOM (ROBOT.r) and
INROOM (x,r)) and PLUGGED-IN (x) and NEXTTO (ROBOT.x)] .

The partial ordering of predicates, reflecting an intuitive view of their relative importance,
might be as follows:

RankPredicate

TYPE *INROOM 3
PLUGGED-IN f
NEXTTO 1

Figure 1. Initial ranking of predicates.

The assignment algorithm, whose output is summarized in the figure below, would first find
that the truth of TYPE (x.LAMP) is beyond the power of any operator to change and

therefore would set its criticality to the maximum; in this case, 6. Then it.would find that
TYPE (x,LAMP) is an insufficient basis for achieving INROOM (ROBOT r) or INROOM (x.r); so
these two literals would have their criticality raised to the next highest value, 5. Next
PLUGGED-IN (x) is considered, and a plan to achieve PLUGGED-IN (x) is found using only the
"terals already processed as a starting point. Hence, the PLUGGED-IN literal retains its

tentative criticality of 2, and, similarly, NEXTTO (ROBOT.x) is given criticality 1. The result,
after similar processing of the preconditions of the other operators in the domain, is a
hierarchy of at least four, and possibly six, distinct problem spaces.

106 Search

h

Figure 2. Final criticality of literals

Control Structure

A problem statement for ABSTRIPS, as for STRIPS, consists of a descriptionof the state
of the world to be achieved. A solution is a plan, or sequence of operators, for achieving it.
ABSTRIPS proceeds by forming a crude plan at the highest leVel of abstraction and
successively refining it. The executive is a recursive program taking two parameters: the
current level of criticality, defining the abstraction space in which planning is to take place,
and a list of nodes representing the plan to be refined. Before the initial call, criticality is
set to the maximum, and the skeleton plan is initialized to a single operator—a dummy—
whose preconditions are precisely the goal to be achieved. ABSTRIPS computes thedifference between the preconditions and the current world model, finds operators relevantto reducing the difference and, if necessary, pursues subgoals of satisfying the
preconditions of the selected operators. During this process, any preconditions of less than
the current criticality are ignored. A search tree is built from which, if the process
succeeds, a fuller operator sequence leading from the Initial world model to the goal can be
reconstructed. This new skeleton plan, together with the next lower criticality level, are
passed recursively to the executive for the next round of planning.

The search strategy used by ABSTRIPS can be called length-first, in that the executive
forms a complete plan for reaching the goal in each abstraction space before considering
plans in any lower level space. This approach has the advantage that it permits early
recognition of dead ends, thus reducing the work wasted in extending the search tree along
fruitless paths involving detailed preconditions. If a subproblem in any particular space
cannot be solved, control is returned to its abstraction space, and the search tree is
restored to its previous state in that space. The node that caused the failure in the lower
level space is eliminated from consideration and the search is continued in the higher levelspace. This mechanism, an example of backtracking, suffers from the problem that noinformation is available at the higher level on what caused the plan to fail.

Because backtracking can be inefficient and also because each operator in anabstraction space may be expanded to several operators in the ground space, it is important
for ABSTRIPS to produce good plans at the highest level. Two modifications to STRIPS weremade to try to insure that it would do so.

First, whereas a STRIPS search tended to be depth-first and therefore sometimes foundnon-optimal solutions, ABSTRIPS makes the order of expanding nodes in the search tree
dependenton the level of abstraction. At the highest level it uses an evaluationfunction thatmay increase the search effort but which insures that the shortest possible solutionsequence will be found. (See Article C3b on A*.)

' 'l

107ABSTRIPS

The second change relates to the instantiation of operator parameters in cases where
two or more choices seem equally good. While STRIPS made a choice arbitrarily. ABSTRIPS
defers the choice until a greater level of detail indicates one to be preferable. Backtracking

can still occur should the choice be mistaken.

Performance

ABSTRIPS and STRIPS were compared on a sequence of problems One of the' ongest.
needing 11 operators for Its solution, required the robot to open a door, go through the
adjacent room to another room, push two boxes together and then *°^**J"""doors to reach the room where it was to stop. The basic STRlPS system reqwred over thirty
minutes of computer time to find the solution; ABSTRIPS usedl 6:28 minutes and generated
only half the number of search-tree nodes. It was noted that by the ABSTRIPS reached
the most detailed level, it had in effect replaced the original large problem by a sequence of
7 easy subproblems.

References

See Sacerdoti (1974).

i
j ;

i

i

108 Search

L

%

References

Adelson-Velskiy, G. M., Arlazarov, V. L, & Donskoy, M. V. Some methods of controlling thetree search in chess programs. Artificial Intelligence, 1975, 6, 361-371.
Aho, A^ V., Hopcroft, J. E., & Ullman, J. D. The Design and Analysis of Computer AlgorithmsReading, Mass.: Addison-Wesley, 1974. 9 ms-

Amarel, S. On representations of problems of reasoning about actions. In D. Michie (Fd)Machine Intelligence 3. New York: American Elsevier, 1968. Pp. 131-171.
Baudv«emglco.^0.^,

9
h
78 ,b,';:*39.,9"90,0, of ,he a",ha-be,a p'u*s >^"-*"««

Berliner, H. J. Some necessary conditions for a master chess program. In UCAI 3, 1 973. pD#7-85.

Berliner, H. J. Chess as problem solving: the development of a tactics analyzer Dent ofComputer Science, Carnegie-Mellon University, 1974.
Ber"n UCAi 5, 19

E
7
X
7
P%tr2B-433Va,

(a
a
)
tion "* BKG"9 Pr°9ram P ayS b« C*°«"°"- '"

Berliner, H. J A representation and some mechanisms for a problem-solving chess programm_M. r. b. Clarke (Ed.), Advances in Computer Chess 1. Edinburgh: EdinburahUniversity Press, 1977. Pp. 7-29. (b)
gn

Berliner, H. J. Search and knowledge. In UCAI 5, 1977. Pp. 975-979. (c)

Ber"Tg7B J
lO 20

C
1
h
-2i

n
4

O9
(a)

Of C°mPUtBr ChBSS and itS "terature. Artificial Intelligence,

Berliner, H. J. The B* search algorithm: a best-first proof procedure. CMU-CS-78-1 12 Deotof Computer Science, Carnegie-Mellon University, 1978. (b)

B6rnS IiArbuckle, T., Roberts, M. de V., & Belsky, M. A. A chess playing program for the8M704. In Proc. Western Joint Computer Conference, 1 958. New York- AmericanInstitute of Electrical Engineers, 1959. Pp. 157-159.
American

Bratk°' ':, ope% D " & Micnie . D- Pattern-based representation of chess end-gameknowledge. Computer J., 1978, 21, 149-153.

Chang C L, & Slagle, J. R. An admissible and optimal algorithm for searching AND/ORgraphs. Artificial Intelligence, 1971,2, 117-128.
g ANU/UH

Cha'"^xr^:z^!n^. "£iV (Ed-'' c ki" in n'"- """- «-

tt

109References

I :

I:
i

i

!

1 ' f£, I
si

V

de Champeaux, D., &

Slnt,

L. An improved bi-directional search algorithm. In UCAI 4, 1 975.
Pp. 309-314.

de Champeaux, D., & Sint, L. An improved bi-directionai heuristic search algorithm. J. ACM,
1977, 24, 177-191.

Dijkstra, E. W. A note on two problems in connection with graphs. Numerische Mathematik,
1959, 1, 269-271.

Doran, J. An approach to automatic problem-solving. In N. L. Collins & D. Michie (Eds.),
Machine Intelligence 1. New York: American Elsevier, 1967. Pp. 105-123.

Doran, J. c., & Michie, D. Experiments with the graph traverser program. Proceedings of
the Royal Society of London, 1966, 294 (series A), 235-259.

Elcock, E. W. Representation of knowledge in a geometry machine. In E. W. Elcock & D.
Michie (Eds.), Machine Intelligence 8. New York: John Wiley &

Sons,

1977. Pp. 11-

-29.

Ernst, G., & Newell, A. GPS: A Case Study in Generalityand Problem Solving. New York:
Academic Press, 1969.

Feigenbaum, E. A. Artificial intelligence: Themes in the second decade. In A. J. H Morrell

(Ed.), Information Processing 68: Proc. IFIP Congress 1968 (Vol. 2). Amsterdam:

North-Holland, 1969. Pp. 1008-1024.

Feigenbaum, E. A.„ & Feldman, J. (Eds.) Computers and Thought. New York: McGraw-Hill,
1 963.

p ikes, R;E., Hart, P., & Nilsson, N. J. Learning and executing generalized robot plans.

Artificial intelligence, 1972, 3, 251-288.

Fikes, R. E., & Nilsson, N. J. STRIPS: A new approach to the application of theorem proving

to problem solving. Artificial Intelligence, 1971, 2, 189-208.

Frey, p. W . An introduction to computer chess. In P. W. Frey (Ed.), Chess Skili in Man and
Machine. New York: Springer-Verlag, 1977. Pp. 54-81.

Fuller, s. H., Gaschnig, J. G., & Gillogly, J. J. Analysis of the a,Pha-beta pruning
algorithm. Department of Computer

Science,

Carnegie-Mellon University. 1973.

Garvey, T., & Kling, R. User's guide to QA3.5 question-angering system. Technical Note

15, Al Group, Stanford Research Institute, Menlo Park, Calif., 1969.

Gaschnig, J. Exactly how good are heuristics? Toward a realistic predictive theory of

best-first search, in UCAI 5, 1977. Pp. 434-441.

Gelernter, H. A note on syntactic symmetry and the manipulation of formal systems by

machine. Information and

Control,

1959, 2, 80-89.

110 Search

k.

%

Gelernter, H. Realization of a geometry-theorem proving machine. In E. A. Feigenbaum & JFeldman (Eds.), Computers and Thought. New York: McGraw-Hill, 1963. Pp. 134-152.
Gelernter H Hansen J. R., & Gerberich, C. L. A Fortran-compiled list processing language.

u«

Av^m,

1960,7, 87-101.

Gelernter, H., Hansen, J. R., & Loveland, D. W. Empirical explorations of the geometry-theorem proving machine. In E. A. Feigenbaum &J. Feldman (Eds.), Computers andThought. New York: McGraw-Hill, 1963. Pp. 153-163.

Gelernter, H., & Rochester, N. Intelligent behavior in problem-solving machines. IBM J R&D1958,2,336-345. '
Gelperin, D. On the optimality of A*. Artificial Intelligence, 1977, 8, 69-76.
Gillogly, J. J. The technology chess program. Artificial Intelligence, 1972, 3, 145-163.
Gilmore, P. C. An examination of the geometry theorem machine. Artificial Intelligence1970, 2, 171-187. y«"v.e,

Good, I. J. A five-year plan for automatic chess. In E. Dale &D. Michie (Eds.), MachineIntelligence 2. New York: American Elsevier, 1 968. Pp. 89-118.

Greenblatt, R. D., Eastlake, D. E., & Crocker, S. D. The Greenblatt chess program. In AFIPSConference Proc, Fall Joint Computer Conference, 1967. WashingtonD. C: Thompson Books, 1967. Pp. 801-810.

Griffith, A. K. A comparison and evaluation of three machine learning procedures as appliedto the game of checkers. Artificial Intelligence, 1974, 5, 137-148.

Hall, P. A. V. Branch-and-bound and beyond. In UCAI 2, 1971. Pp. 641-650.

Harris, L. R. The bandwidth heuristic search. In UCAI 3, 1973. Pp. 23-29.

Harris, L. R. The heuristic search under conditions of error. Artificial Intelligence, 1974, s,21 7-234.

Harris, L. R. The heuristic search and the game of chess: a study of quiescencesacrifices, and plan oriented play. In UCAI 4, 1975. Pp. 334-339.

HarriS
n

L,'.,R '
r

Th? he"ristic search: an alternative to the alpha-beta minimax procedure. InP. W. Frey (Ed.), Chess Skill in Man and Machine. New York: Springer-Verlag, 1977.Pp. 1 57-1 66.

Hart, P. E., Nilsson, N. J., & Raphael, B. A formal basis for the heuristic determination ofminimum cost paths. lEEE Trans. SSC, 1968, SSC-4, 100-107.

Hart, P. E., Nilsson, N. J., & Raphael, B.
Determination of Minimum Cost Paths.

Correction to A Formal Basis for the Heuristic
SIGART Newsletter, No. 37, December 1972,PP. 28-29.

R
y.\iF.i:

111References

Hearst, E. Man and machine: chess achievements and chess thinking. In P. W. Frey (Ed.),
Chess Skill in Man and Machine. New York: Springer-Verlag, 1977. Pp. 167-200.

HHlier, F. S., & Lieberman, G. J. Operations Research (2nd cd.). San Francisco: Holden-
Day, 1974.

Jackson, P. C. Introduction to Artificial Intelligence. New York: Petrocelli, 1974.

Karp, R. m. Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher
(Eds.), Complexity of Computer Computations. New York: Plenum Press, 1972.
Pp. 85-103.

Kister, J., stein, P., Ulam, S., Walden, W., & Wells, M. Experiments in chess. J.

ACM,

1 957,
4, 174-177.

Knuth, D. E., & Moore, R. W. An analysis of alpha-beta pruning. Artificial Intelligence, 1975,
6, 293-326.

Kotok, A. A chess playing program. RLE and MIT Computation Center Memo 41, Artificial
Intelligence Project, Massachusetts Institute of Technology, 1962.

Kowalski, R. And-or graphs, theorem-proving graphs, and bi-directional search. In B.
Meltzer & D. Michie (Eds.), Machine Intelligence 7. New York: John Wiley & Sons,
1972. Pp. 167-194.

Lawler, E. W., & Wood, D. E. Branch-and-bound methods: A survey. Operations Research,
1966, 14, 699-719.

Levi, G., & Sirovich, F. A problem reduction model for non-independentsubproblems. In UCAI
4, 1975. Pp. 340-344. I

Levi, G., &

Sirovich,

F. Generalized AND/OR graphs. Artificial Intelligence, 1976, 7, 243-
-259.

Levy, d. The computer chess revolution. Chess Life & Review, February 1 979, 84-8
j

Manove, M., Bloom, S., & Engelman, E. Rational functions in MATHLAB. In D.G. Bobrow (Ed.),
Symbol Manipulation Languages and Techniques. Amsterdam: North-Holland, 1968.
Pp. 86-102.

Martelli, A. On the complexity of admissible search algorithms. Artificial Intelligence
1977,8,1-13.

Martelli, A., & Montanari, U. Additive AND/OR graphs, in UCAI 3, 1973. Pp. 1-11.

Michie, D. Strategy building with the graph traverser. In N. L. Collins & D Michie (Eds.),

Machine Intelligence 1. New York: American Elsevier, 1967. Pp. 135-152.

Michie, D. A theory of advice. In E. W. Elcock & D. Michie (Eds.), Machine Intelligence 8
New York: John Wiley & Sons, 1977. Pp. 151-168.

■U'v.ll

112 Search

%

Michie, D., & Bratko, I. Advice table representations of chess end-game knowledge InProc. AISB/GI Conference on Artificial Intelligence, 1978. Pp. 194-200.
Michie, D., & Ross, R. Experiments with the adaptive graph traverser. In B Meltzer & DMichie (Eds.), Machine Intelligence 5. New York: American Elsevier, 1970. Pp."

Minsky, M. Steps toward artificial intelligence. In E. A. Feigenbaum & J. Feldman (Eds)Computers and Thought. New York: McGraw-Hill, 1963. Pp. 406-450.

Mittman, B. A brief history of the computer chess tournaments: 1970-1975. In P. W Frey(Ed.), Chess Skill in Man and Machine. New York: Springer-Verlag, 1977. Pp. 1-33.
Moore, E. F. The shortest path through a maze. In Proceedings of an InternationalSymposium on the Theory of Switching, Part 11. Cambridge: Harvard UniversityPress, 1959. Pp. 285-292.
Moses, J. Symbolic Integration. MAC-TR-47, Project MAC, Massachusetts Institute ofTechnology, 1967.

Newborn, M. Computer Chess. New York: Academic Press, 1975.
Newborn, M. The efficiency of the alpha-beta search on trees with branch-dependentterminal node scores. Artificial Intelligence, 1977, 8, 137-153.

Newborn, M. Computers and chess news: recent tournaments. SIGART Newsletter No 65April 1978, p. 11.

Newell, A., & Ernst, G. The search for generality. In W. A. Kalenich (Ed.), InformationProcessing 1966: Proc. IFIP Congress 65. Washington: Spartan Books, 1 965. Pp.

Newell, A., Shaw, J. C, & Simon, H. A. A variety of intelligent learning in a general problem-
solver. In M. C. Yovits &S. Cameron (Eds.), Self-organizing Systems. New York-Pergamon Press, 1 960. Pp. 153-189.

Newell, A., Shaw, J. C, & Simon, H. A. Chess-playing programs and the problem ofcomplexity. In E. A. Feigenbaum &J. Feldman (Eds.), Computers and Thouaht NewYork: McGraw-Hill, 1963. Pp. 39-70. (a)

Newell, A., Shaw, J. C, & Simon, H. A. Empirical explorations with the logic theory machine-A case history in heuristics. In E. A. Feigenbaum & J. Feidman (Eds.), Computers ana-Thought. New York: McGraw-Hill, 1963. Pp. 109-133. (b)

Newell, A., & Simon, H. A. GPS, a program that simulates human thought. In E. A. Feigenbaum& J. Feldman (Eds.), Computers and Thought. New York: McGraw-Hill, 1963. Pp. 279-

Newell, A. & Simon, H. A. Human Problem Solving. Englewood Cliffs, N. J.: Prentice-Hall,

w "ft. i >

■ '

* j'H1 $

jfiJK

■

'Ml

■

V^ll :.M
113References 4H'»fl .

ISit
1 I

i

: f

j
ii>i

i

i

Newell, A., & Simon, H. A. Computer science as empirical inquiry: Symbols and search. The
1976 ACM Turing Lecture. Comm. ACM, 1976, 19, 113-126.

Nilsson, N. J. Searching problem-solving and game-playing trees for minimal cost solutions.
In A. J. H. Morrell (Ed.), Information Processing 68: Proc. IFIP Congress 1968 (Vol.
2). Amsterdam: North-Holland, 1969. Pp. 1556-1662.

Nilsson, N. J. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill,
1971.

Nilsson, N. J. Artificial intelligence, in J. L. Rosenfeld (Ed.), Information Processing 74:
Proc. IFIP Congress 74. Amsterdam: North-Holland, 1974. Pp. 778-801.

P| trat, J. A chess combination program which uses plans. Artificial intelligence, 1977, 8
275-321.

pohl, |. Bi-directional and heuristic search in path problems. SLAC Report No. 1 04, Stanford
Linear Accelerator Center, Stanford, 1969.

pohl, |. First results on the effect of error In heuristic search. In B. Meltzer &D. Michie
(Eds.), Machine Intelligence5. NewYork: American Elsevier, 1 970. Pp. 21 9-236. (a)

pohl, i. Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1970,
1, 193-204. (b)

pohl, |. Bi-directional search. In B. Meltzer &D. Michie (Eds.), Machine Intelligence 6
New York: American Elsevier, 1971. Pp. 127-140.

pohl, I. The' avoidance of (relative) catastrophe, heuristic competence, genuine dynamic
weighting and computational issues in heuristic problem solving. In UCAI 3, 1973. Pp.

12-17.
pohl, I. Practical and theoretical considerations in heuristic search algorithms. In E. W.

Elcock & D. Michie (Eds.), Machine Intelligence 8. New York: John Wiley & Sons,
1977. Pp. 55-72.

polya, G. How to Solve It (2nd cd.). New York: Doubleday Anchor, 1957.

Raphael, B. The Thinking Computer. San Francisco: W. H. Freeman, 1976

Reingold, E. M., Nievergelt, J., & Deo, N. Combinatorial Algorithms: Theory and Practice.
Englewood Cliffs, N. J.: Prentice-Hall, 1977.

Sacerdoti, E. D. Planning In a hierarchy of abstraction spaces. Artificial Intelligence, 1974,
5, 115-135.

Samuel, A. L. Some studies in machine learning using the game of checkers. In E. A.
Feigenbaum &J. Feldman (Eds.), Computers and Thought. New York: McGraw-Hill,
1963. Pp. 71-105.

114 Search

JL

Samuel, A. L. Some studies in machine learning using the game of checkers. 11-recentprogress. IBM J. R&D, 1967, 1 1, 601-61 7.

Sandewall, E. J. Heuristic search: Concepts and methods. In N. V. Findler & B Meltzern£&ry£TpJnn-?S" and HeUrlStiC Programming - New Y°'k: A^erican

Shannon, C. E. Programming a computer for playing chess. Philosophical Magazine (Seriesf), 1950, 41, 256-275.

Shannon, C. E. A chess-playing machine. In J. R. Newman, The World of Mathematics (vol4). New York: Simon & Schuster, 1956. Pp. 2124-2133.

Simon, HA., & Kadane, J. B. Optimal problem-solving search: All-or-none solutionsArtificial Intelligence, 1975, 6, 235-247.

Slagle, J. R. A heuristic program that solves symbolic integration problems in freshmancalculus: Symbolic Automatic Integrator (SAINT). SG-0001, Lincoln LaboratoryMassachusetts Institute of Technology, 1961.

Slagle, J. R. A heuristic program that solves symbolic integration problems in freshmancalculus. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and Thought NewYork: McGraw-Hill, 1963. Pp. 191-203. (Also in J. ACM, 1963, 10, 507-520.)
'

Sla9'eMeG
R' ArtifiCial lntB,liaencB: The Heuristic Programming Approach. New York:

Slagle^ J. R., & Dixon, J. K. Experiments with some programs that search game trees. J. ACM,

Slagle, J. R., & Dixon, J. K. Experiments with the M & N tree-searching programComm. ACM, 1970, 13, 147-154. ««■«■■■■

Slate, D. J., & Atkin, L. R. CHESS 4.5-the Northwestern University chess program In P WFrey (Ed.), Chess Skill lit Man and Machine. New York: Springer-Verlaa 1977"Pp. 82-1 18. "*>««.

Thorp, E., & Walden, W. E. A computer-assisted study of Go on mx n boards. In R B Banerii& M. D. Mesarovic (Eds.), Theoretical Approaches to Non-Numerical ProblemSolving. Berlin: Springer-Verlag, 1970. Pp. 303-343.
Turing, A. M., et al. Digital computers applied to games. In B. V. Bowden (Ed.), Faster ThanThought. London: Pitman, 1953. Pp. 286-310.

Vanderbrug, G., & Minker, J. State-space, problem-reduction, and theorem proving-somerelationships. Comm. ACM, 1975, 18, 107-1 15.

Whitehead, A. N., & Russell, B. Principia Mathematica (2nd cd., Vol. 1). Cambridge- TheUniversity Press, 1925. H me

Wilkins, D. Using plans in chess. To appear in UCAI 6, 1979.

m 1
fft] i

t:
m

■

1 ' "
References 115

"

i |

1

'

t »>i

t }i

t

t

i
<i
1

[■"■

lllli

1!!l

Winston, P. H. Artificial Intelligence. Reading, Mass.: Addison-Wesley, 1977.

116 Search

1

%

Index

15-puzzle 52, 55

8-puzzle 23,38,48,51,52

A* 49-50, 51, 52,53-54,62
abstraction space 104
ABSTRIPS 1,20,103,104-107
add list 98, 99, 101, 102, 104
Adelson-Velskiy, G. M. 73, 79
admissibility 49,61,62,64
admissibility condition 49,51,55
alpha-betapruning 68-72, 77
Amarel, Saul 20
AND/OR. graph 18, 27-29, 32, 57, 86, 91 ,

95
AND/OR graph search 41-45, 57-64
AND/OR tree 28, 42, 72
Atkin, L. R. 73, 77

backed-up values 67
backgammon 79
backtracking 16, 106
backward reasoning 16-18, 26, 38, 42, 57,

83, 84
bandwidth condition 53
bandwidth search 46, 53-54
Berliner, H. J. 75, 76-77, 78, 80-81
Bernstein, A. 80
best-first search 46, 78
bidirectional search 17, 38-40, 55-56, 57
blind search 1 , 21-22, 34-45, 47-48, 55,

84
bottom-up reasoning 1 7
branch-and-bound 49
branching factor 70, 75
breadth-first search 34-36, 43, 47, 51,

56, 84

chess 16, 19, 32, 72-82
combinatorial explosion 1 9, 20, 45, 75
conjunctive subgoals 85, 91
consistency assumption 50, 53, 55
construction 93
control strategy 1 6
critical nodes 70
criticalityvalue 104

data-driven reasoning 1 7
database 1
de Champeaux, D. 56
dead position 67, 76
degree of a tree 70
delete list 98, 104
depth bound 37, 43, 75, 87
depth of a node 37
depth-first search 37-38, 43-44, 47, 77

86, 106
difference 17, 86, 99
Dixon, J.K. 78
Doran, J. 51
dynamic ordering 78
dynamic weighting 52

Ernst, G. 21, 86
evaluation function 47-48, 49, 51-54, 55

56, 60, 62, 64, 74, 92, 106
expansionof a node 34, 42

Feigenbaum, E. A. 21
Feldman, J. 21
Fikes, Richard 31, 98
fixed ordering 70, 77
forward pruning 79
forward reasoning 16-18,38,42,57
full-width search 78

Chang, C. L. 62 game tree 18,32-33,65
game-tree search 65-82checkers 19,32,72,73,74

"a* *

117Index

1

i

I

i
t

Gelernter, Herbert 91
General Problem Solver (GPS) 86-90, 99,

104
generalized AND/OR graph 63
9enerate-and-test 21-22
geometry 91-93
Glllogly, J. j. 74
go 79
goal 16, 26, 80, 86
goal states 24
goal-directed reasoning 1 7
Graph Traverser 61
Greenblatt, R. D. 73, 76, 79
ground space 104

Harris, L. R. 52, 53, 74, 78
Hart, Peter 49
heuristic information 46, 49, 67, 60, 72
Heuristic Path Algorithm 51
heuristic power 50
heuristic search 1, 20, 21-22, 34, 46-64,

89, 91
heuristic search method 46
heuristics 20-22, 83
hierarchical search 104
hierarchical planning 104
horizon effect 76

information retrieval 1 6
informedness of an algorithm 49
initial states 24
Interdependent subproblems 43, 62-64
intermediate OR node 28, 43
iterative deepening 77

Kadane, J. 52
k'ller heuristic 78
Knuth, D. E. 66, 68

'earning 74, 98

live position 67
Logic Theorist 1 7, 83-85, 86, 88, 91

means-ends analysis 17, 46, 86, 89, 96,

Moore, R. W. 66, 68
Moses, Joel 95
mutilated chessboard problem 19

operator schemata 24
operators 16, 23, 26, 57, 83, 86, 91, 94,

optimal solution 20, 48, 57
optimality 50,51, 62, 64
ordered depth-first search 47, 77
ordered search 46-48, 49, 55, 60-62, 63,

partial development 46, 86
partial expansion 46
partial functions 24
Pitrat, J. 81
plan 81, 98, 100, 106
planning 1, 20, 102, 104
plausible-move generation 79
ply 75

length-first search 106
Levi, G. 62

macro-operators 20
MACROP 101
Martelli, A. 50
max cost 58, 59-60

99, 104
method of analogies 79
Michie, D. 51,81-82
minimax 65-68, 69, 70, 72, 75
Minsky, M. 21

negmax 66-67, 68
Newell, Allen 21, 22, 80, 83, 86
Nilsson, Nils 22, 31, 45, 47, 49, 60, 78, 98

98, 104

118 Search%

Polya, G. 21
potential solution 60-61,62,63
preconditions 98, 100, 104
predicate calculus 98
primitive problem 26, 28, 92
problem reduction 87, 91
problem representation 1-20,23-33
problem solving 1, 45, 57, 83, 86, 91, 94,

98, 104
problem-reductionrepresentation 18, 26-

-31, 41, 57, 86
propositional calculus 83, 88, 90
pruning 46, 67, 68, 77, 79, 92, 95, 99

QA3 99
quiescence 75-77, 78

random game tree 71
Raphael, Bertram 49
refutation move 78
robot problem solving 16,98-107

Sacerdoti, Earl 104
SAINT 94-95, 96-97
Samuel, A. L. 72, 73, 74
search 1, 18
search graph 19
search space 19-20, 45, 72
secondary search 76

Sirovich, F. 62
Slagle, James 62, 78, 94
Slate, D. J. 73, 77
SOLDIER 96
solution 24
solution graph 29, 41

solution tree 29, 57-58, 60-61
solvable node 29
state 16,23
state space 19, 23
state-space graph 18, 24-25, 32, 34, 47,

49, 57
state-space representation 17, 23-25, 26

29-31, 34, 57, 86, 98
state-space search 21, 25, 34-40, 42,

45-56, 60, 62, 84
static evaluation function 67, 74, 76
STRIPS 1, 20, 31, 63, 98-103, 104, 106-

107
successor node 18, 24, 34
sum cost 58, 59
symbolic integration 1, 16, 17, 90, 94-97
syntactic symmetry 92

Table of Connections 87
tapered forward pruning 79
terminal node 28, 32
theorem proving 16, 19, 48, 57, 83, 88,

90, 91, 98
theorem-provingrepresentation 18
tic-tac-toe 32, 72
tip node 62, 67
top-down reasoning 1 7
totally dependent game tree 71
Tower of Hanoi puzzle 26-27, 31
traveling-salesmanproblem 1, 25, 36, 48,

52, 53-54
triangle table 100-101

uniform game tree 70-72
uniform-cost search 36-37, 39, 47, 49, 56
unsolvabie node 29, 42

Wilkins, D. 81
world model 1 6, 98, 1 04

Pohl, Ira 17, 39, 51, 52, 55

Shannon, C. E. 72, 73-76, 78
Shaw, J. C. 21, 80, 83, 86
Simon, H. A. 21, 22, 52, 80, 83, 86
SIN 95-97

Sint,

L. 56

t

Representation of Knowledge

Jt-fj

Si

t-

' i

1I
1

fl,

a

i

1 1

."I

r I '.]

i 1

Ma

Mil

120

t

(

i

■I

I

The Representation of Knowledge

Table of Contents

A. Introduction to Knowledge Representation 121B. Survey of Representation Techniques I I *] * " i 7q...

w U

, -wj

w, «

n(

;i

BOBiiiauun tecnniques i

7O

C. Representation Schemes

'

IZX1. Logic
2. Overview of Semantic Networks ..!!!!!! iri3. Production Systems'.'. J"a. Overview of Production Systems .'!.**'"* \lab. Issues 1n the Design of Production Systems!'** «4. Procedural Representations of Knowledge " " „
5. Semantic Primitives ;'i

168

173
6. Analogical Representations """"""... ioj

7. Frames and Scripts '.'.'''''' ioo199
References „„„288
Index

�„

218

V

■i

I

'

I

A. Introduction to Knowledge Representation

Artificial Intelligence research involves building computer systems capable of
performing tasks like talking, planning, and playing chess. When we talk about people doing
these things, we always talk about what they have to "know" in order to do them. In other
words, we describe someone's ability to do something intelligent in terms of knowledge.

Similarly, we say that a computer program knows how to play cards, or understand
spoken English, or manipulate a robot. In other words, knowledge is something that we
attribute to programs in the same manner that we attribute it to each other, based on
observing certain behavior. A representation of knowledge In Al is a combination of data
structures and interpretive programs that, if used in the right way, will lead to
"knowledgeable" behavior.

' !<

The nature of knowledge and Intelligence has been pondered by psychologists,
Philosophers, linguists, educators and sociologists for hundreds of years. Since their
research methodology involves the design of programs that exhibit intelligent behavior, Al
researchers have often taken a rather pragmatic approach to this subject. Work on
"Knowledge Representation" in Al has involved the design of several classes of data
structures for storing information in computer programs, and the development of procedures
that allow "intelligent"manipulationof these data structures to make inferences.

|

Keep in mind that a data structure is not "knowledge", any more than an encyclopedia
is knowledge. We can say, metaphorically, that a book is a source of knowledge; but without
a reader, the book Is Just ink on paper. Similarly we often talk of the facts or rules in an Al

database as knowledge per se, when we really mean that a certain program uses the data
structures to behave in a "knowledgable"way.

I , ;

i ■

Techniques and theories about knowledge representation have undergone rapid change
and development in the last 5 years. The articles in this chapter try to give a general
review of the different ideas that researchers have had, what they are good for, and what
they are not so goodfor. Our understanding of these matters is still incomplete. This is one
of the most active areas of Al research at the present time.

(

i

We hope that this article will help guide the reader's understanding of the various-

formalisms described in the Chapter. After a brief discussion of the kinds of 'knowledge we
are talking about in particular, this article introduces some general issues that w. I serve as a
vocabulary for talking about and comparing different representation methods. It should be

stressed that these "dimensions" of representation schemes are neither complete nor
orthogonal; in other words, there may be aspects of representation formalisms that are not

accounted for by these dimensions, and the features themselves are interdependent.

j

\

1

The second article In the chapter is a brief survey of the most important representation

formalisms, intended to give an overview of the kinds of systems we are talking about The
remaining articles describe, in more detail, the mechanics of the various representation

schemes, their development, and some of the current research problems.

i

122 The Representation of Knowledge%

1

Knowledge

nf thi^HV *SB the !cind
1
s of knowledge that we need to behave knowledgeably? What kindsHlt^yU^rk^Ve:0"4"7 T° 96t a Hand,e °° theSS qUeSti°nS ' cLider <^~

Objects: Typically, we think of knowledge as "facts" about objects in the worldaround us: Birds have wings, Robins are birds, Snow is white, etc. So, of coursethere must be some representation of objects, classes or categories of objects'and descriptions of objects. objects,

Events: We also know about acts and events in the world: Bob kissed Mary behindthe barn The sky will fall tomorrow. In addition to a representation for the eventsthemselves our formalism needs to somehow indicate the causes and effects ofevents, and their time course. erects or

Performance: A behavior like riding a bicycle, a behavior involving "skill," mustinvolve some sort of knowledge beyond objects and events. This is knowledgeabout how to do things: the performance of skills and procedures. Like bike-riding, most cognitive behaviors, eg. composing sentences and proving theoremsInvolve performance knowledge, and it is often hard to draw the line betweenr.!!2Thfr'! n
*
d ob Ject-kn owledge. (Beware! Pushing too hard on this pointleads right back to the fundamental philosophical issue of what knowledge is')

k «
"

«.u
OW d9e: Another kind 0f kr,owledge that we seem to use is knowledgettTi a , , eL know,ed9e we have, or meta-knowledge. Knowledge aboutknowledge includes facts about the extent, reliability, importance, and history ofthe facts we know about the world. Meta-knowledge seems to play a central rolen human reasoning processes and is just becoming an active area in Al researchin the representation of knowledge (Collins, 1979, Davis & Buchanan, 1977)

th«r« «r ih ■ *
ether thBSe kinds of know,edge "c distinguishable or whetherthere ar other varieties of knowledge, are interesting psychological issues For nowhowever we will leave the psychological aspects of the problem of knowledge behind fsee

how
P
th
er ,n?7"i,0n ProCBaain° Psychology, on Information Processing plycho.ogy to see

this 21? ri"56* ln tWS °haPter haYS bee" app,ied to the Penology o memory)Inmire o !', We *"" " SCUSS S°me °f t featUreS °f Al reP^"ntation schemes that m7ke it
fnM

B / ! BSy f°r comPuter P^ams to exhibit these various types of knowledae2£ „ ' ,c?ntS' performance. meta-knowledge). The determining factor wiH b the wavthat knowledge Is used In the system. ay

Using Knowledge

=#pSSsSsHsa=s=_rß___

A Introduction toKnowledgeRepresentation 123

F

i

i
i '

i i

, s
i fi

] ,

i
i

; (

lI

Acquisition. We usually describe learning in terms of the accumulation of knowledge,
but it involves more than the addition of new facts to our brains. In fact, the acquisition of
knowledge involves relating something new to what we alreadyknow in a complex and still
mysterious way. Al systems often classify a new data structure before it is added tp the
database, so that it later can be retrieved when it is relevant. Also, in many kinds of
systems, new structures can interact with old, interfering with tasks that had previously
been performed properly. Finally, some representation schemes are concerned with acquiring
knowledge in a form that is natural to humans, who serve as the source of new knowledge
(see article Applications.B). If these processes do not occur during acquision, the system
can accumulate new facts or data structures without appearingtoknow anything new!

Retrieval. Determining what knowledge is relevant to a given problem becomes crucial
when the system "knows" a lot of different things. Humans are incredibly proficient at this
task, and most representation schemes that have been directly concerned with this issue
have been based on ideas about human memory (see articles B2 and B7 and chapter
Information Processing Psychology). The fundamental ideas that have been developedmight
be termed linking and grouping: If you know that one data structure Is going to entail another
in a predicted reasoning task, put in an explicit link between them; and if several data
structures are typically going to be used together, group them into a larger structure.

Reasoning. When the system is required to do something that it has not been told
explicitly how to do, It must reason, i.e. it must "figure out", from what it already "knows",
what it needs to know. For instance, suppose a database retrieval program "knows" only
that that Robins are birds and that All birds have wings. Remember that this means that it has
data structures and programs which would allow it to answer the appropriate question
Properly:

Are Robins birds? Yes
Do all birds have wings? Yes

If we then ask it, Do robins have wings?, the program must "reason" to answer the query. In
Problems of any complexity, this ability becomes increasingly important: The system must be
able to deduce and verify a multitude new facts beyond those it has been told explicitly.

For a given representation we must ask "What kind of reasoning is possible, easy,
natural, etc., in this formalism?" There are many different kinds of reasoning one might
imagine:

Formal reasoning involves the syntactic manipulation of data structures to
deduce new ones following prespecified "rules of Inference." Mathematical logic
is the archetypalformal representation (see article B1).

Procedural reasoning uses simulation to answer questions and solve problems.

When we ask a program What is the sum of 3 and 4?, it answers by using its
procedural model of arithmetic (see article B4).

Analogical reasoning seems to be a very natural mode of thought for humans
and, so far, difficult to accomplish in Al programs. The idea is that when you ask
a question Can robins fly? the system might reason that "'Robins are like sparrows,

and I know sparrows can fly, so robins probably can fly." (See Article Problem
Solving.C2 for a review of Al attempts at this kind of reasoning.)

124 The Representationof Knowledge

A

Generalization and Abstraction> are also natural reasoning process for humans
that are difficult to pin down well enough to implement in a program. If you know
that Robins have wings, that Sparrows have wings, and that Bluejays have wings.,
eventually you will believe that All birds have wings. This capability may be at the
core of most human learning, but It has not yet become a useful technique in Al.

Meta-knowledge can also be used in reasoning. To answer the question What is
Paul Newman's telephone number? you might reason that "If I knew Paul Newman's
number, I would know that I knew it, because it is a notable fact." This involves
using "knowledge about what you know", in particular about the extent of your
knowledge and about the importance of certain facts. Recent research in
psychology and Al indicates that this kind of reasoning may be central to human
cognitive processing (Gentner & Collins, 1979 and Flavell, 1979); furthermore
some work on. implementing this kind of knowledge in Al systems has also been
done (Davis, 1976, Bobrow & Winograd, 1977, Brachman, 1978).

Two things need to be said about the uses of knowledge described here. First, they
are very interrelated: When acquiring new knowledge the system must be concerned with how
that knowledge will be retrieved and used later in reasoning. Second, when you get right
down to it, efficacy is the primary considertion for knowledge-based Al systems: Although
there is serious concern among Al researchers about the psychological validity of the various
representation schemes, we are not yet In a position to prove that one scheme captures
some aspect of human memory better than another. There is no theory of knowledge
representation; We don't yet know why some schemes are good for certain tasks and not
others.

We will now proceed to discuss some of the characteristics of representation schemes
that have been used In the Al literature for describing and comparing the different
formalisms.

Scope and Grain

What portion of the external world can be represented in a system? In what detail are
objects and events represented? And how much of this detail is actually needed by the
reasoning mechanisms? Questions like these, concerning the scope and grain of a
representation scheme, often are the first questions asked in determining the suitability of a
given formalism. But they are not easy questions to answer.

For one thing, answers to these questions depend totally on the particular application
of the representation formalism. The predicate calculus, for instance, might be an extremely
fine grain representation in a mathematical reasoning program, but a crude approximationfor
a vision program. Exactly how much detail is desirable depends, of course, on the intended
use (See McCarthy & Hayes, 1989). In general, uniformity of detail across the objects and
events is desirable for a given reasoning task about those objects and events (Bobrow,
1975).

If one asks "Can everything I want be represented in the formalism?", the answer is
almost always "Yes, but some things are more easily represented than others." Getting a

f;

Introduction to KnowledgeRepresentation 125A

. * l

1 "!, \

i v
! 'i
i i

\\ i

-i>

L

feeling- for what it means "to be represented more easily"-which involves the
representation, the domain, and the reasoning strategies-is part of the art of doing Al

research these days. There is no formal metric for measuring the appropriateness of a
formalism along these lines. Bobrow (1975) refers to the process of mapping the objects

and events in the world in some internal encoding; then one can ask the mapping in a given

situation is "easy," "natural," "psychologically valid," etc.

When one is concerned with representing things that are not objects in the world, like
other people's beliefs, these issues become much more complicated.

Modularity and Understandability

If one thinks of the data structures in a program as "pieces of knowledge .then adding
new data structures is like adding knowledge to the system. One characteristic that is often

used to compare representation schemes is modularity, which refers to the ability to add,
modify, or delete individual data structures, with clear effects on what the system knows .
independent of the remainder of the database.

In general, humans find modular, or decomposable, systems easier to understand and
work with (Simon, 1969). For example, the following situation will be am.liar to readers who
have helped to write large computer programs. A large system is composed of many

Procedures that "call" each other In a complex way, which becomes increasnngly hard to

follow as the system grows. Often modification of Procedure X, so that it w,H work p operiy

when called by Procedure A, interferes with the proper functioning of X when it is called by

Procedure B. In other words, in order to successfully modify a large system

must understand the interactions of all of its pieces, which can become an impossibly hard
task.

Procedures are the data structures in procedural representations <«"" ■*«'" *«>" which
are notoriously non-modular. In other representation schemes th«re are °*h^ <*«*"
structures (production rules, logic

formulae,

etc.) which seem less "heently Intertwined.but
the control of the interaction of the various database entries is a very important

characteristic of ail representation schemes. No system is 9ea^^^^^?^^
systems there is some degree of interaction between he data a ucturea that form the

knowledge base. But some formalisms (predicate calculus production systems) are more

modular than others (procedural,semantic nets) (Winograd,

Here are some of the pros (and cons) of modularity:

Context independence. In a modular system, each ,
"tf^*^,

07dfa^aa^
less aloballv--e a the new facts that can be deduced from a set of facts are
alwayfthTsa^lwhereas In less modular systems the current c^m pay

an important role in the Inference mechanism. This "«»M *"""""» °J*
data structure to be context-dependent In a non-modular system, so that the

"pieces of knowledge" metaphor is less appropriate.

Modiflability. This aspect refers to how adding, modifying, or deleting database

entries.affects the rest of the database. In the "ideal" modular system, facts::.: \^%m£L* of the rest of the data structures. As described

126 The Representationof Knowledge

%

above, in procedural systems, which are archetypically non-modular, a change to
one procedure affects not only its own performance, but in directly affects ail
those procedures that "call" it.

Codability. On the other hand, procedural systems are often more directly
codable--i.e., they correspond to our intuitive notions of how to do the task. The
designer of a modular-type system for a given domain, like an expert system
based on production-rules (see chapter Applications), typically spends a great
deal of time finding ways of forcing the system to use the right rule at the right
time. In general, our human understanding of a cognitive domain, like speaking a
foreign language or playing tennis or doing mathematics, is complex, but we tend
to communicate our understanding in terms of modular "rules" or sentences.

What aspects of a representation formalism are easy for humans to understand? There
is a great difference between modular and not-so-modular systems: Winograd (1974)
generalizes that in modular systems the facts are easy to recognize but the reasoning
process may be quite opaque, and the opposite is often true in procedural representations.
The degree to which the system is understandable by humans is important in several phases
of its development and performance: Design and implementation, acquisition of knowledge
from human experts, performance of the task, and In interaction and explanations for the
eventual user. The modularity of a given representation scheme may be very helpful in
increasing the understandability of the system.

Explicit Knowledge and Flexibility

Another issue to keep in mind when examining various representation schemes is what
part of the system's knowledge is explicit. By this we mean: to what "facts" do the
programmer (and the system) have direct, manipulatory access and what knowledge is "built-
in". For example, an operating system has an explicit representation its the "priority
queues", but its "knowledge" about scheduling jobs is typcially hidden deep in the code. It
is there, of course, but it is much more opaque than a set of scheduling "rules" would be, for
example.

One particular advantage of explicitrepresentation schemes is that, because the facts
are in a form that allows a global interpretation, the same fact can be used for multiple
purposes. In some large systems this feature has been a significant advantage. For
example, in MYCIN (article Medical Applicetions,B) the production rules that form the system's
knowledge about how to diagnose the possible causes of infectious diseases, are used not
only by the diagnosis system itself, but also by the systems that explain the diagnosis
system's reasoning to the consulting physician and that acquire new rules from expert
physicians (Davis & Buchanan, 1977).

Declarative vs. Procedural Knowledge

On a closely related subject, the dispute over the relative merits of declarative vs.
procedural knowledge representations is a historically important battle line over which much
of the current state of representation theory was painfully developed around 1970
(Winograd, 1975). Many of the issues discussed in this article are aspects of the

I* r
"I:

hi
Introduction to Knowledge Representation 127A

r-

:

. i

L

procedural/declarative debate. The declarative systems were typified by resolution-based
theorem provers (see Chapter Theorem Proving), and the procedural systems by Winograd's
PLANNER-based SHRDLU (Articles Al Lenguages.C2 and Natural Language.Fs). The
Declaratlvists talked about the flexiblity and economy of their representation, its completeness
and the certainty of its deductions, and the ease of modifiability of the systems. The
Proceduralists stressed directness and ease of coding reasoning procedures, as well as the
understandability of the reasoning processes.

Although in retrospect these positions seem somewhat arbitrarily chosen over the
space of possible features of representation schemes, the battle was an important one in Al.
It dissolved, rather that resolved, and the result was a much greater respect for the
importance of representation theory in current Al work.

Meta-knowledge

One of the concerns of the more recent representation systems is how to use
knowledge about knowledge: self-knowledgeor meta-knowledge. A good example of human
use of meta-knowledge is the tip-of-the-tongue phenomenon: When you run into someone
you have met once before, It is sometimes the case that you can't remember his name. You
may remember very well the first meeting, that he is the brother-in-law of your wife's boss,
that he has a foreign-sounding name or that his name rhymes with spaghetti. And you might
use all of this knowledge in trying to recall his name. This is the kind of introspective
evidence that suggests a major role for meta-knowledge in human reasoning. And several Al
representation formalisms have begun to incoporate schemes for explicitly stating meta-
knowledge about data structures.

Implicit meta-knowledge was a common and necessary characteristic of previous

formalisms. Wired into the systems were methods for determining many of the meta-level
facts that are useful for reasoning. Here is a partial list of the kinds of things that might be
useful to know, about what we know:

Extent. In particular, knowledge about what we don't know, as in the telephone

number examples discussed above.

Defaults. We have expectations about objects and events that we encounter
that can be viewed as default values for the parameters of new data structures.

Criterlality. How important some facts are relative to a given conclusion: A trunk
is more indicative of an elephant than are four legs.

Relevance. Explicit knowledge about what kinds of knowledge may be relevant
to certain tasks. This may come in the form of links between data structures, or
groupings of structures Into larger structures.

History. Knowledge about the source, age, and development of the data
structure.

Reliability. How certain this knowledge is. If it is contradicted by other
observations and

facts,

when it should be abandoned.

128 The Representationof Knowledge

%

Representation. Knowledge of the representation formalism is always availableimplicitly, since it is necessary before the data structures can be modified. But
explicit information about the representation is also possible, and it is especiallyuseful for multiple uses of the same data structures.

Meta-cognitive knowledge. This is knowledge of the capabilities of the system.
We humans learn this kind of information from experience (Flavell, 1979), but Al
systems might also benefit from knowledge of their own performance. As anexample,Bobrow (1975) discusses a robot who is planning a trip. His knowledgethat he can read the street signs along the way to find out where he is is meta-
cognitiveknowledge.

Final Remarks

This article has not been about representation formalisms per se, but a discussion ofthe pragmatics of epistemology, the study of the nature of knowledge. The intention hasbeen to lay the groundwork for an appreciation of the problems inherent to incorporatingknowledge In Al programs. This discussion may also help guide a critical comparison of the
representation methods so far developed.

The following article is an quick overview of most of the representation schemes. Theregaining articles in the chapter go into substantial detail about individual representationschemes, discussing their development, their technical features, their use in Al systems, andtheir shortcomings.

s>

j

6 'f

%
' VSurvey of RepresentationTechniques 129

I

Survey of RepresentationTechniques

As discussed in Article Al, Al research has had to deal in "experimental epistemology."
in order to create programs that exhibit intelligent behavior, researchers in Al have had to
develop schemes for incorporating and manipulating knowledge about the world in. their
Programs; sometimes these representation schemes have been rather pragmatic or
superficial, but sometimes they have touched on the very core of the nature of knowlege and
cognition. This article reviews many of the representation schemes that have been used in
Al programs that play chess, converse in English, and operate robots. Most of this research
assumes that what needs to be represented is known a priori by the researcher, and his job
is just figuring out how to encode the information in the system's data structures and
Procedures. The remaining articles in the chapter describe in some detail the development
and current state of each of the representationtechniques surveyed here.

* '-

Special Purpose RepresentationTechniques

Some problems that Al researchers attack seem to supply their own natural
representation for the knowledge required to do the problem. For example, a visual scene
from a robot's camera is often encoded as an array representing a grid over the scene. The
values of the elements of the array represent the average brightness over the
corresponding area of the scene (see Chapters Vision and Robotics on Vision and Robotics).
This representation is useful for some tasks, like finding the boundaries of the objects in the
scene, but is clumsy for other tasks, like counting the number of objects. In the latter case
a list, each element of which represents one object indicating its location, orientation and
size, might be a more useful representation. (See the discussion in Bobrow, 1975).

This example illustrates a very important principle to keep in mind when comparing
representation techniques: In some sense, these two (and all other) representation methods
are interchangable: If we know one representation in enough detail, we could for the most
Part construct the other one. It is the intended use of the knowledge about the scene that is
the factor that recommends one representation scheme over another. In a big Al system, like
the Speech Understanding programs, multiple representations of the same information may be
used simultaneouslyfor different purposes (see Chapter Speech).

Other special purpose representation schemes of particular interest are those used in
the early Natural Language processing programs, like SAD-SAM and SIR (see Natural
Language.Fl), and the discrimination net used in the EPAM program (see Article Information
Processing Psychology.B2).

i

State-Space Search

Perhaps the earliest representation formalism used extensively in Al programs was the
state-space representation, developedfor problem-solving and game-playing programs. The
basic idea is that from a given state in a problem or game, ail possible next states can be
determined using a small set of rules, called transition operators (or legal move generators in
game playing programs.) For example, in a chess game, the original state is the board position
at the beginningof the game. The move generators are just the rules for moving each piece.

130 The Representationof Knowledge

L

%

So, all of the next states of the game (i.e., the possible board configurations after White'sfirst move) can be generated by applying the move rules to the original positions of thepieces. Similarly, ail of the possible states after Black's first response can be generated.

The space generatedby this procedure can be viewed as a tree, called the game tree.In chess, the root of the tree Is the starting board configuration. One branch is generated foreach of White's possible moves. And from each of these offspring nodes, a branch isgenerated for each of Black's responses, etc. The leaf nodes of the tree correspond tocheckmates or draws. Usually there are a great many moves possible at each node of thetree, some good and some bad, and the object of state-space search techniques is to findthe "best" move, corresponding to a path through the tree that is most likely to brinosuccess.

One rather straightforward way to find the winning move is to try all of the alternativemoves, then try all of the opponents responses to these moves, then all of the possibleresponses to those, until all of the possible continuations of the game have been exhaustedand it is clear which was optimal. The problem here is that for interesting problems, likechess, there are far too many possible combinations to try: the combinatorial explosion as ithas been called. '

Basically, the solution adopted in Al research is to limit the number of alternativesexamined at each stage of the look-ahead process and the depth examined for theconsequences. The selection of nodes to examine is based on rules, called heuristics, thatrepresent "educated guesses" about which are the most promising alternatives in certainclasses of situations.

For a thorough discussion of search techniques see Chapter Search and Nilsson(1971). Newell & Simon (1972) have described human problem-solving behavior in terms ofstate-space search (see Article Information Processing Psychology.C). The knowledgerepresented in a search tree is the structure of a problem in terms of the alternativesavailable at each possible state of the problem. The Issue is then how to make the bestchoice with a limited amount of computationalpower. In problem domains like game playingand puzzle solving, the state-space representation seems to capture the structure of theknowledge used. But in other situations, where for Instance the legal moves are not clearlydefined or too numerous to even list, the representation must Incoporate the actual domainknowledge that is available.

Logic

The classical approach to representing the knowledge contained In sentences like
All birds have wings

Is the predicate calculus, developedby philosophers and mathematicians as a formalization ofthe process of making inferences from facts. The example about birds' wings would betranslated Into the mathematical formula

which.reads: For any object, x, in the world, if x is a bird, then x has wings. The advantage of

FOR-ALL x. bird (x) => HasWings (x)

Survey of Representation Techniques 131

using a formal representation is that there is a set of rules associated with the predicate
calculus, called the rules of inference, by which facts that are known to be true can be used
to derive other facts which must aso be true. Furthermore, the truth of any statement can
be checked, in a well specified manner, against the facts that are alreadyknown to be true.
Por example, suppose we add another fact to our database

which reads: For any object, x, in the world, if xis a Robin, then x is a bird. Then from these two
facts, we can conclude that all robins have wings:

Note that there is a specific rule of inference that allows this deduction, and that the system
of formal logic assures us that the new fact is true so long as the original facts were true
(see Article B1 on Logic).

One reason that this approach to the manipulation of knowledge has been so popular in
Al systems is that this derivation of new facts from old can be mechanized. Using automated
versions of proof techniques like the resolution method, programs have been written to grind
through a database of facts represented as sentences in the predicate calculus, to
determine the validity of a new statement of the same form. Mechanistic theorem provers of
this sort have been used with some success In programs with relatively small databases.
However, when the number of facts becomes large, we have to somehow search through
them to decide which rules to apply to which facts at each step of the proof. This can be
thought of as the same kind of state-space search we discussed above. At each step of
the proof, all of the possible applications of any rule to any combination of facts must be
considered. And we face the same combinatorial explosion: The number of alternative things
to do at each step grows exponentiallywith the number of facts.

Heuristic search techniques have been applied to theorem provers to help alleviate the
difficulties of finding the relevant facts. And Al languages, like PLANNER and

QA4,

automate
certain pattern-directed proof procedures, allowing procedural specification of heuristics for
guiding the proof in terms of routines that are called when a decision must be made between
alternatives (see article B4 and Chapter Al Languages). Although success with real-world
size problems (involving large databases) has remained limited, theorem proving is still an
active area of Al research (see Chapter Theorem Proving).

The predicate calculus is a very general representation scheme. Many kinds of facts
seem.to be naturally represented as statements, and modern work in Logic has extended the
formalism through attempts to encode both knowledge about beliefs and second-order
knowledge about expressions in the formalism. The generality of the formalism comes from
its close resemblence to the way we communicate knowledge in language. But, like
language, the predicate calculus is not a completely general vehicle for expression. For
example, imagine how a verbal decriptionof how to ride a bicycle compares to the knowledge
that is necessary to perform the act.

Unlike language, the predicate calculus and related formal systems are "guaranteed
correct" to an extent that other representation schemes have not yet reached: The

FOR-ALL x. Robin (x) => Bird (x)

FOR-ALL x. Robin (x) => HasWings (x)

132 The Representationof Knowledge

%

semantic entailment of a statement in the calculus (i.e., the inferences or conclusions thatcan be drawn from that statement) is completely specified by the rules of inference.Theoretically, the database can be kept logically consistent and if this is done, all
conclusions drawn are guaranteed consistent. A definition and guarantee of logical
consistency is a feature that other representation schemes are still striving for.

Procedural Representation

Procedural representations of knowledge have found increasing popularity and utilitysince research on the PLANNER programming language, first used in Winograd's famousSHRDLU system (see Articles Al Languages.C2 and Natural Language.Fs). In a procedural
representation knowledge about the world is contained in the programs that know how to do
things. For instance, in a parser for a natural language understanding system, the knowledge
that a noun phrase may contain articles, adjectives, and nouns is represented in the program
by calls (within the NP procedure) to routines that know about articles, nouns, andadjectives, respectively. The underlying knowledge, the grammar in this example, is never
stated explicitly, and thus is not typically extractable in a form that humans can easily
understand. The difficulty that humans have in verifying and changing procedural
representations is the major flaw of these systems. Nevertheless, all Al systems use a
procedural representation at some level of their operation, and there is a general consensusthat there is a legitimaterole for procedural representation in Al programs (Winograd, 1975;
and see article B4).

Semantic Nets

The semantic net, developed by Quillian (1968) and others, was invented as an
explicitly psychological model of human associative memory. A net consists of nodes
representing objects, concepts and events, and links between the nodes, representing theirinterrelations. Consider, for example, the simple net:

bird
HAS-PART

wings

where bird and wings are nodes representing sets or concepts, and HAS-PART is the name
of the link specifying their relationship. Among the many possible interpretations of this net
fragment is the statement:

All birds have wings

As illustrated earlier, statements of this sort also have a natural representation in predicate
calculus based representation systems. One key feature of the semantic net representation
is that the important associations are often made explicitly and succinctly: relevant facts
about an object or concept can be inferred from the nodes to which they are directly linked,without, for Instance, a search through a large database of rules pertaining to the object.
This is particluarly true with respect to ISA and SUBSET links, which establish an inheritance
hierarchy in the net. For example, the net segment:

Survey of RepresentationTechniques 133

V:

I: -I

bird
HAS-PART

SUBSET
wings

Robins
might be interpreted to mean that since robins are birds, and birds have wings, then robins
have wings.

The interpretation (semantics) of a net, however, depends solely on the program that
manipulates it; there are no conventions about the meaning of a net strucure. Therefore,
inferences drawn by manipulationof the net are not assuredly valid, in the sense they were
assured valid in a predicate calculus representationscheme.

Recent work on semantic network representations has followed two separate lines of
research. One continues the psychological modeling aspects of the nets, as in the work of
Norman & Rumelhart (1975) and Anderson (1976); the other involves establishing more
formal semantic notions for network structures. The work of Woods (1975), Brachman
(1 976), and Hendrix (1975) is of particular Interest in this regard.

One common feature of these more recent network schemes is the case-frame
structure for concepts In the network. Nodes representing concepts and events inherit from
their superiors (nodes higher In the Inheritance hierarchy) the set of links they must have,
and possibly some default links to other nodes. For example, a node that is intended to
represent GIVING might be instantiated with GIVER,

RECEIVER,

and OBJECT-GIVEN links
inherited from the GIVING concept node. This development arises from concern with case-
like structures in English (see Article Natural Language.B4). It is useful in structuring
knowledge both for comparing objects and events and for identifying missing pieces of
information. This concern with inheritance of links is related to semantic primitives and
frames, discussed below.

Semantic Primitives

A characteristic feature of semantic nets is that there are generally many possible
representations in the net for a single fact or event. For instance, the fact that robins have
wings could be represented by the example net discussed above ("All robins are birds. All
birds have wings."), or more simply by linking the wings node directly to the robins:

bird robins

t I HAS-PART HAS-PART
SUBSET 1 .*

I wings wings
robins

This inherent ambiguity is a general problem in network construction, and the programs that
manipulate the net to make deductions are typically very flexible in terms of the exact

134 The Representation of Knowledge
%

structures they look for. Although this feature might be used to great advantage, the ability
to store things in the net redundantly, with an eye to future relevance, is usually outweighed
by the confusion and expense caused by not knowing how a given fact might be stored whenit comes time to look for it. In particular, the paraphrase task popular in natural language
work research, where the program rephrases an input sentence or checks whether two
sentences have the same "meaning", led researchers like Norman & Rumelhart (1975) and
Schank & Abeison (1977) to use canonical internal representations based on semantic
primitives. The technique used to establish a canonical representationreduces all structures
to a set of primitives in such a way that two structures that mean the same thing reduce to
the same network of primitive nodes. Current work by Wilks (1977b) on machine translationbetween English and French (see Article Natural Language.E2) also uses a set of primitive
acts to establish an intermediate representation,or interlingua, for the underlying meaning of
sentences in the two languages.

Production Systems

One feature of a representation scheme that is generally valuable is modularity, the
ability to distinguish and separately manipulate distinct pieces of knowledge within thedatabase. Humans find modular databases easier to understand and work with, since adding,
removing, and replacing various facts is a natural way for us to think about knowledge. The
predicate calculus formalism, for example, is archetypically modular, since the statements
and. rules of inference can all be manipulated separately. A procedural representation, onthe other hand, is notoriously unmodular, since a change to any one procedure will not only
affect its performance, but will also change the results of all the procedures that "call" themodified one.

Production systems, developed by Newell & Simon (1972) for their models of Human
Information Processing (see Chapter Information Processing Psychology), are a modular
representation scheme that is finding Increasing popluarity in large Al programs. The basic
idea of these systems is that the database consists of rules, called productions, in the form
of condition/action pairs: "If this condition occurs, do this action."

For example, consider the following set of productions, which will PRINT the factorial ofsome positive integer, I:

1) N unbound —> SET N TO I2) M=l —> PRINT I and STOP3) ALWAYS —> DECREMENT N and SET I TO I*N

Typically, the productions are executed according to some very simple sequencing rule likethe following:

Cycle through the productions in order. The first time the condition
(left-hand side) is found to be TRUE, do the corresponding right-hand
side, and then restart the cycle at the first production.

Alternatively, the productions can be "fired in parallel",as in the following sequencing rule:

B Survey of RepresentationTechniques 135

'i

L

Find ail of the productions whose left-sides are TRUE. Then choose
one of the right-hand sides based on a set of rules about choosing
appropriateproductions.

Note that the sequencing strategy specified is critical. Current work on production systems
has emphasized the control aspects of the formalism and the ability to developself-modifying
(learning) systems (see article B3).

Production systems have been found useful as a mechanism for controlling the
interaction between pieces of declarative and procedural knowledge. Because they allow
systems with large amounts of knowledge to be understood and modified in a modularfashion
they have been used in current large applications systems like DENDRAL (Article Chemistry
Applications.C), MYCIN (Article Medical Appiicationa.B) and PROSPECTOR (Article
Applies tions.D2).

Frames — KRL

The latest direction in Al representation schemes is the frame. This formalism for
knowledge representation is in its early developmentstage, with several projects exploring
their own frame-like ideas. Basically a frame is a data structure that includes declarative
and procedural information in pre-defined internal relations. Thus a frame for a dog might
have "knowledge hooks", or slots for facts that are typically known about dogs, like the
SPECIES, OWNER, NAME, and an "attached procedure" for finding out who the owner is if that
is not known. In the frame-like languageKRL, a dog-frame might look like this:

DOG
SELF: an animal; a pet
SPECIES:
OWNER: a person

(TO FILL: find a person with pet=myself)
NAME: a proper name; DEFAULT Rover

DOG-1
SELF: a dog
SPECIES: mutt
Owner: Jimmy
NAME: Fldo

The semantics of this example, as well as the ideas being developed in frame-like formalisms
are discussed In Article 87.

An interesting feature of the frame is its capability to determine whether it is
applicable in a given situation. If it is not, it could transfer control to a more appropriate

frame (Minsky, 1975). There seem to be many issues about the possible implementations of
frame-like systems that are unresolved, and there are probably other issues that haven't
surfaced yet in this new area of Al research. But the basic idea of structuring units of
knowledge, which is an extension of the case-frame structures discussed above, seems to
be a useful idea.

136 The Representationof Knowledge
%

Conclusion

This brief summary indicates the variety of representation techniques being used in Al
projects, and the remaining articles in this Chapter go into most of these schemes in greater
detail. Article Al deals with the issues discussed in representation theory, in an attempt tooffer some ideas for comparing the various techniques. They each have strengths and
weaknesses in different contexts. Many researchers feel that the representation ofknowledge is the key issue at this point In the 20-year history of the field. Knowledge
representation Is also one area where Al and Cognitive Psychology share fundamental
concerns, for the brain seems to use a variety of representation schemes whose natures are
at present poorly understood, or completely unknown. The interested reader should peruse
Chapter Information Processing Psychology on Information Processing models in Psychology.

C RepresentationSchemes 137

-!

i

I

C. RepresentationSchemes

Cl. Logic

The study of formalized intelligence did not begin with the invention of the stored
Program computer. Rather, philosophers have been grappling with the problem of formalizing
reasoning and knowledge of the world since the time of the ancient Greeks. This tradition,
begun in the Academy and with the Sophists, formalized in the last half of the nineteenth
century with the work of men like Boole, Frege and Russell, and expanded and amplified in
the current century by philosopherssuch as Quine, Carnap and Tarski, is an important part of
western intellectual history. This study of the possible modes of knowledge and reasoning
has developed into the philosophical and mathematical study of logic. Artificial intelligence
can build upon this accumulated work.

This article is about logic. The next two sections, dealing with the propositional and
Predicate logic, are an introduction to formal logic for the naive user. This particular
introduction has been written with the artificial intelligenceapplications of logic in mind. The
fourth section gives an example of an elementaryexpression of world knowledge in a formal
logical formalism. Fifth is a survey of actual Artificial Intelligence systems which use logic.
The final section considers logic In the context of artificial intelligence itself: how logic is
used in A.1., and what the A.I. issues involvinglogic are.

The propositional calculus

Perhaps the oldest and most general representational structure applied to Artificial
Intelligence is that of formal logic.

Logic, as used in A.1., has two important and interlocking branches. The> first is
consideration of "what you can say"; what relationships and implications one can formalize,
the axioms of a system. The second is the deductive structure, the rules of inference. If one
considers the "state-space search" paradigm for A.I. (see Search.Overview), the axioms
define the "states", and the rules of

inference,

the legal transitions between those states.

Logic- is quite literally a formal endeavor. It is concerned with the form (syntax) of
statements, and whether, by theirform, they implyTRUE conclusions.

There are currently many different varieties of logic, such as propositional calculus,
predicate calculus and modal logic. These are not mutuallyexclusive alternatives. Rather, logic
systems result from building. One starts with a given notion, such as propositional logic, and,
by inclusion of additional notions, for example, predication and quantification, extends to a
stronger, more expressive logic. It therefore behooves our explanationof logic to "start at
the bottom", and work upwards.

The most fundamental notion in logic is that of truth. A properly formed statement has
one of two different truth values, TRUE and FALSE. (It is possible to extend to multiple
truth valued logics; several A.I. systems have. However, discussion of multiple truth valued
logics is beyond the scope of this article). So, if we have propositions X, V and Z, we might
say that X and V are.TRUE (have truth value TRUE) while Z is FALSE. Typical propositions

138 The Representationof Knowledge

»

1"*.

%

are Bob s car is blue", "Seven plus six is twelve", and "Mary is John's uncle". Note thateach of the quoted sentences is a proposition itself, not to be broken down into itsconstituent parts. Thus, we could assign truth value "TRUE" to "Mary is John's Uncle" withno regard for the meaning of "Mary is John's Uncle". Propositions are those things which wecan call true or false. Terms such as "John's uncle" and "Seven plus four" would not bepropositions, as we cannot assign a truth value to them.

Now, pure, disjoint propositions aren't very interesting. We obtain the simplest logicPropositional Calculus by introducing sentential connectives to Join propositions. There are fivecommonly employed connectives:

And
Or V
Not
Implies 3
Equivalent a

Depending upon the context, one often sees a written as kf, and a as -».
Intending that these connectives keep their natural interpretations, we shall definethem as follows:

XaY is TRUE if both X Is TRUE and V is TRUE and otherwise it is FALSE.

XvY is TRUE if either X is TRUE or V is TRUE or both are TRUE and is FALSEif both X and V are FALSE.

-X is TRUE if X is FALSE, and FALSE If X is TRUE.

X=Y is TRUE if V is TRUE or X is FALSE or both. X=>Y is meant to be thepropositional calculus rendition of the notion, // we assume that X is true, thenV must be so. We use this concept in everyday speech with statements like// Jenny is nine months old, then she can't do calculus. Note that if Jenny cando calculus, or if Jenny is not nine months old, then this statement is true.

X-Y is TRUE if both X and V are TRUE, or both X and V are FALSE, FALSE ifthey are different.
This table, a compressed truth table summarizes these definitions: Here we use T for TRUEand F for false. '

X V | XaY XaY
T
T
F
F

T I T
F I F
T I F
F I F

T
T
T
F

T
F
T
T'

F
F
T
T

T
F
F
T

From combinations of these variables and connectives, we can build sentences ofpropositional logic, just like the expressionsof mathematics. Typical sentences are:

XvY X=Y -*X

C1 Logic 139

)

»

i

1

I (1)

(2)

(3)

(Parentheses are used here just as in ordinary algebra.)

Of these three examples, (1) is a tautology. A tautology is a sentence that is always true.
That is, no matter what values are assigned to the sentential constants (another name for
variables that are either true or false), the sentence itself is always true.

The second example is afallacy or contradiction. No matter what assignment of values
is used, the value of the sentence is always false. The third example is neither a tautology
nor a fallacy; It is true in some models (for example, when X, V, and Z are all true) and false
in others (such as when X, V, and Z are all false). Logicians are generally less interested in
this third kind of sentence than in either tautologies or fallacies, since they are not as useful
in proofs.

In propositional calculus, we also encounter the first inference rules. An inference rule
allows the deduction of a new true sentence from several previous true sentences. The
most common (and famous) propositional calculus inference rule is that of modus ponens. It
states that if we have sentences of the form XsY and X then we can deduce the new
sentence /. Thus, if we know that if John is an uncle then John is male and John is an uncle
we can conclude John is male.

In natural deduction systems for logical

inference,

there are typically one inference rule
for " the introduction, and another for the removal (elimination) of each of sentential
connectives. Thus, the rule modus ponens is the o elimination rule, since it allows us to
eliminate one instance of s.

Predicate Calculus

For the practical purposes of A.1., propositional logic is not very useful. It seems at
least necessary, if we are to describe our knowledge of some world, to be able to speak of
individuals, to be able to postulate relationships between these individuals, and to be able to
generalize these relationships over classes of individuals. We turn to the predicate calculus to
accomplish these objectives.

The predicate calculus is an extension of the notions of the propositional calculus. The
meanings of the connectives (a, v, », -, and ■) are retained, but the focus of the logic is
changed. Instead of looking at sentences that are of Interest merely for their structure,
Predicate calculus is used to make statements about specific objects. We call these
objects individuals. Examples of individuals are you, this paper, the number 1, the queen of
hearts, Socrates, and that coke can.

We will wish to make statements about the individuals, both by themselves, and in
relation to other individuals. The statements are called Predicates. A predicate is applied to

(X=>(YaZ))s((X=>Y)a(X=>Z))

-,(XvY).-(-Ya-X)

(XaY)v(-YaZ)

140 The Representationof Knowledge

%

i

1

a specific number of arguments, and has a value of either TRUE or FALSE when used with
that many individuals. Predicate calculus, like propositional calculus, is a two valued logic; it
has no "maybe".

An exampleof a predicate of one argument is the predicate ls-Red. Of the individuals
mentioned above, ls-Red Is TRUE of the queen of hearts, and that coke can, and FALSE of thispaper, Socrates', and /. The solution of ls-Red(jwu) is left as an exercise for the reader. Other
predicates of one argument are Negative (is X less than zero?) Greek, Mortal, and Made-of-paper.

Predicates can have more than one argument. An example of a two place predicate
from mathematics is Is-greater-than. Real objects could be compared by the two place
predicate, Is-lighter-than. A three place predicate from mathematics might be Pythagorean(XV Z), which would be true whenever X and V were the sides of a right triangle with Z as its
hypotenuse. Triplets(Tom Dick Alphonse) would be true if the specific people referred to as
Tom Dick and Alphonse were triplets. One very important and common two place predicate is- (equals). In predicate calculus with equality, individuals for which the - relationship is true
may be used interchangeably.

Note that each one place predicate defines a set or sort. That is, for any one place
predicate, P, all objects, x, can be divided into satisfies P (P(x) is True), or doesn't satisfy P
(P(x) is False). We shall use the term sort and one place predicate interchangeably. Examples
of sorts are red objects, odd numbers, playing cards, men, and animals. We see that some, sorts
include other sorts; all men are animals; all knaves are playing cards.

We shall often have occasion to refer to facts that we know to be true of all or some
of the members of a sort. For this, we introduce two new notions, that of Variable, and of
Quantifier. A variable is a place holder, one that is to be filled in by some constant.

There are two quantifiers, V, meaning For a11..., and 3, meaningThere exists...: The English
language sentence All men are mortal, is thus expressed in predicate calculus as
VX.(MAN(X)=MORTAL(X)) (loosely rendered For all x, if x is a man (man of x is true) then x is
mortal (mortal of x is true).) The English sentence There is a playing card that is red and is aknave becomes the predicate calculus statement 3X.(PLAYING-CARD(X)aKNAVE(X)aIS-
RED(X)). Here x is being used as a variable.

We can, of course, form more complicated sentences using these quantifiers,
connectives, predicates, constants and variables. For example, if P is a binary (two place)
predicate, Q a ternary (three place) predicate, A, B, and C are constants, and X, V, and Z
are variables, we can obtain the well formed formulas (or WFF's). (A WFF is essentially a
syntactically correct sentence of one's logic):

V X V .((P(X,Y)-P(Y,X))A V X.P(X.X) (3)

Sentence (3) states that the predicate P is commutative and reflexive.

V X Y. 3 Z. ((P(A,X) v Q(Z,C,Y))
=(-V Z.P(A,B)»Q(A,B,Z))) (1)

P(A,B)=3 Z. V X. 3 Y. Q(Y.Z.X) (2)

C1 Logic 141

!

'

i

1

For a typical natural deduction system, use of the quantifiers and predicates implies
the introduction of four more inference rules, one for each of the introduction and elimination
of each quantifier. Thus, the V-E (for ail elimination, or universal specialization) rule states
that, for any WFF <*�thatmentions X, if we have

V X. *(X)
we can conclude for any individual A, that:

*(A)

Thus, if we know:

we can apply this to the individual

Socrates,

using the V-E rule, to get:

The rules of the propositional calculus, extended by quantification and predicates, and the
inference rules for quantifiers, results in the Predicate Calculus.

Predicate calculus, as we've described it, is very general, but still very clumsy. Two
other additions to the logic will ease our expression, though still without extending what we
can say. The first of these is the the notion of operators (or functions). Functions, like
Predicates, have a fixed number of arguments. Each of the arguments of a function can be
either a variable, a constant, or a function (with its arguments). Thus, we could have
functions like absolute-value, father-of, plus, and left-arm-of. Functions can, of course, be
combined; be can speak of the father-of (father-of (John)), who would, of course, be John's
Paternal grandfather. Functional values, along with individual constants and predicates form
the set of terms.

The second important addition is that of the predicate - (equals). Two individuals, X
and V are equal If and only if they are Indistinguishable under all predicates and functions.
More formally, X=Y if and only if, for all predicates P, P(X)«P(Y), and for all functions F,
F(X)=F(Y). What we arrive at with these additions is now longer pure predicate calculus;
rather, it is a variety offirst order logic.

i

The reader may find this phrase, first order logic, familiar. A logic is first order if it
Permits quantificationover individuals, but not over predicates and functions. A second order
logic would permit quantification over functions and predicates. Thus one could state, in a
second order logic, "for ail functions, f ..." or "there exists a predicate p, such that ...".
Second (or higher) order logics might have a place in artificial intelligence. However, higher
logics are incomplete and lack useful semantic models. Indiscriminate use of higher order
logics can also lead to some paradoxes.

\

i
Note, however, that some aspects of higher-order logics — i.e., universal quantification

over predicates and functions (e.g., 'the following is true of all predicates') — can be
successfully and usefully merged into a first order logic system.

One useful Instance of universal quantification over predicates is the use of axiom

V X. (MAN(X)=>MORTAL(X))

MAN(SOCRATES)=>MORTAL(SOCRATES)

142 The Representationof Knowledge

%

>

schema. Mathematicians ought to be familiar with the axiom schema of mathematical
induction; it states that if a property is both true of the number 0, and, if it is true of any
number n, then it is true of the number n+l, then that property will be true of all numbers. If
we let the symbol PP be a predicate parameter, for which we can substitute any monadic (one
place) predicate, we could write this axiom as:

Thus, to prove that the sum of the integers from i=o to n (SIGMA(O,n,i)) is n*(n+l)/2, we
need to first prove PP(0),

and then that

Thus, we can conclude that

Another comment on the value of first order logics is In order. First order logic is both
sound (it is impossible to prove a false statement) and complete (any true statement has a
proof). Higher order logics are not complete. Soundness is of importance in A.I. systems: one
current debate is over whether one's system needs to be, or even ought to be sound.
Present real world logic axiomatizations are so incomplete in their expression of the world,
that logical completeness is not very important.

Axiomatic Systems

What we have presented so far Is not a solution to any artificial intelligence
representation problem. Rather, we have laid out an alphabet, defined parts of speech and
the grammar (predicate, term, WFF). We have neither declared the vocabulary, nor specified
what sentences one should write. That is left to the user of logic, just as a programming
manual might present the syntax of legal statements, but would not define which programs
ought to be written.

However, a good programming manual ought to present exampleprograms; we present a
brief sample axiomatization of the Tower of Hanoi problem. The tower of Hanoi problem
presents three pegs and a number of disks. Each disk is of a different size, and has a
central hole. The disks can be stacked on the pegs. The problem initially has a number of
disks, say 5, stacked on a single peg, largest on the bottom through smallest on the top. A
free disk is any disk with no other disk on it. A move consists of taking any free disk and
placing it either on an empty peg, or on a larger free disk. The problem asks, can one
transfer the tower of disks from the first peg to the second, using only legal moves?

Problem expression and solution in logic has several parts. We must first specify the
vocabulary of our domain; what are the variables, constants, predicates and functions.

(PP(O) a V X.(PP(X)=PP(X+I))) 3 V X.PP(X)

SlGMA(o,o,i)=o*(o+l)/2

V n.(SlGMA(o,n,i)=n*(n+l)/2 = SIGMA(O,n+I,i) = (n+l)*(n+2)/2)

V n. (SIGMA(O,n,i)= n*(n+l)/2

C1 Logic 143

s

I

,i

>

*!1

Secondly, we define axioms, sentences (WFF's) in this logic, which we assert express the
necessary relationships between the objects needed to model our domain.

Obvious objects (constants) for this axiomatization are the disks, Dl, D2, D3, D4, and
05, and the pegs, Pl, P2 and P3; obvious predicates are the sorts (sets) DISK and PEG.
DISK(DI) is TRUE; PEG(D3) is FALSE.

We need also to be able to compare disk size; for that, we have a binary predicate, <.
Using < as an Infix operator, between its arguments, we define DKD2 to mean that disk D 1is smaller than disk D2. If we have variables X, V, and Z, we can express the transitivity of
< with the axiom:

(1)

The size relationships between the disks is stated by

(2)

Note that by using (1) and (2), we can establish that, for example,D2< D5.

One thing many systems fail to come to grips with is impossible situations. Our
axiomatization also ought to know which disks are not smaller than others. Fortunately, we
can establish this with one simple axiom:

(3)

Now, we are going to need to be able to talk about the status of our problem solving at
some point, and to be able to compare the status after different series of moves. A common
strategy used to deal with this difficulty is that of introducing a situational constant. A
situation is a compression of where things are at any givenpoint. Thus, in the tower of Hanoi
problem, we might have disk D3under disk D 1in situation SITI2. We therefore also have
the sort SITUATION, a monadic predicate.

The vertical relationships of the disks and the pegs is, after all, the primary predicate
of this problem. Hence, we need a ternary predicate ON(X,Y,S), which asserts that disk X is
on disk (or peg) V in situation S. A disk or peg could therefore be FREE in a situation S if
nothing is on it. Axiomatically, this becomes:

(4)

Notice how much more specific and concise the formal statement of these relationships can
be.

We shall state that moving disk X onto disk V will be LEGAL in situation S if both X and
V are free in

S,

X is a

DISK,

and if V is bigger than X.

VX V S.(LEGAL(X,Y,S)»(FREE(X,S)aFREE(Y,S)aDISK(X)aX<Y)) (5)

Now all we lack is a way of generating new situations. The function MOVE, defined on two
objects and a situation, produces a new situation where the first object is on top of the
second. This will be a SITUATION if that move is LEGAL.

V X V Z.((X<YaY<Z>(X<Z))

D1< D2a D2< D3a D3< D4a D4< D5

V X.- X < X

V X S.(FREE(X,S) ■ -3 Y.(ON(Y,X,S))

144 The Representationof Knowledge

%

V X V S.(LEGAL(X,Y,S)

S

SITUATION(MOVE(X,Y,S)) (6)

An what does this new situation look like? Well, X is on V, and nothing else has changed. Ifo is also a variable,we declare:

(7)

What we have presented is enough to formalize the elementary notions of the Tower of Hanoiproblem. However, what we're primarily interested in is whether a particular situation can bereached from another. For this we declare the predicate ACCESS, on two situations, with theintended meaning that the second situation can be reached from the first by a series of leaalmoves. a

Now, axiomatizing this notion has its complexities. The Idea of a "series of moves" (thetransitive closure) is not really a first order notion. However, the following axioms shouldprove useful in our manipulations: First of all, if a situation can be used to reach a secondsituation, then every situation that can access the first can access the second

V S S' S" X Y.((ACCESS(S,S') a S"=MOVE(X,Y,S')
a SITUATION(S"))3 ACCESS(S,S")) (8)

We must also decide if ACCESS(S.S) is to be true It doesn't make a lot of difference, so:
V S.ACCESS(S,S) (9)

can be one of our axioms.

Several other axioms delimiting transitive closure might be useful. For example wemight state that if a situation S can access another situation S' (ACCESS(S.S')) then eitherthey're equal, or there is some intermediate situation that can reach S' in one move and canbe accessed by S.
i

V S S'.((ACCESS(S,S')3
(S«S')v3 S" X Y. (SITUATIONS")

However, we don't achieve the full power of these situational variables unless weconsider an axiom schema such as the induction schema on situation and access. It statesthat if a property PP is true of a situation S, and if, for all situations S' and S", if PP is trueof S , and S Is a move away from S', then PP is true of S", then PP is true of all situationsaccessible from S. More formally and specifically,
V

V S.((PP(S)a

V S S' X Y.((S'=MOVE(X,Y,S)aSITUATION(S')) 3
(ON(X.Y.S') a

V Z Zl. ((-Z=X a -Zl=Y)
= (ON (Z,ZI,S)«ON(Z,ZI,S'))) a

V Z. (ON(X.Z.S) 3 FREE(Z.S'))))

AMOvE(X t Y,S")=S,AACCESS(S,S") (10)

V S' S" X V.((SITUATIONS')aSITUATION(S")
ASn=MOVE(X,Y,S')ApP(S'))3PP(S")))

=> V S'.(ACCESS(S,S')3PP(S'))) (11)

C1 Logic 145

!l
�i

1

Now, ail we have described so far is a language for expressing problems in the "Tower of
Hanoi" world, and certain sentences in that language which, we assert are true.

The classical Tower of Hanoi problem can be expressed in this language as the
sentence:

3 S'.V S.((ON(DS,PI,S)a ON(D4,DS,S)A ON(D3,D4,S)a
ON(D2,D3,S)a ON(DI,D2,S)a FREE(DI,S))3

(ON(DS,P2,S')a ON(D4,DS,S')a ON(D3,D4,S')a
ON(D2,D3,S')a
ON(DI,D2,S')A FREE(DI,S')AACCESS(S,S'))) (12)

Applications of Logic to Artificial Intelligence

Logic, as we have described it, Is in some sense the basic representation formalism for
work in artificial intelligence. That this is so is indicated by the fact that other formalisms
can be mapped into logic; their commitment to representation is the same. Of course, they
differ in the processes they use, but logic makes no commitment in that area.

In this section we shall survey various artificial intelligence systems which use logic as
their representation. We shall also discuss the processes they use to make deduction, since
this is an equally important aspect. These processes vary, but the representation in each
case Is the same.

a) QA3 (Green, 1969)i

QA3 was a general question-answering system, which solved simple problems from a
number of domains.

The language used to represent facts was first-order logic. For example, the assertion
In state S there is nothing under the bananas would be represented asi

VX -AT(X, under-bananas, S)

The deductions were performed using the resolution rule of Inference (see also Chapter
Theorem Proving), with simple general heuristics for control. Space prohibits more discussion
of the inference process here.i

The system solved problems from domains such as chemistry, robot problem-solving,
state-space transformations (e.g., monkey-and-bananas), and automatic programming. An
examplefrom the chemistry domain is:

Given the following facts (among others):

Ferrous sulfide is a dark-gray compound and It is brittle.
Ferrous sulfide is a sulfide.

sulfide(FES) a compound(FES) a darkgray(FES) a brittle(FES)

V

146 The Representationof Knowledge*

What is the answer to the question:
Is it true that no dark-gray thing is a sulfide?

- 3X (darkgray(x) a sulfide(x))

The answer is: No, FES is both dark-gray and a sulfide.

h„rH
D
n

eS?!te 'tS nera,itV' and ,ts success on simple problems, QA3 could not handle reallyhard problems. The fault lay in the method of deduction, resolution theorerprovina;:::tebdv;crto,r tio
t
n ,sr pute; in th: sense that jt win a,wa^ *"r «z:iavailable, but it is too slow. Even the heuristics used by Green (referred to as unitCSh,

feasibleU^orr" "" *"" *"«« *» **"h -f.cien'y to make tht
The use of first-order logic as a representation was felt to be successful ThisGrttnZ T?a thB faCt that '0g'C ta unambiguous and rather genera?Green illustrated several different representationsfor the Towers of Harm, nrnhiZ g„ai-

l'^oS the^Tf"^ "T" "«"orTa^rS
general Toai^"tJ! h T V ? T*" °" the Missionar»es and Cannibals problem). Indeduction pLrt " repr6Sentation ?** *» Problems with QA3 ..y in the

b) STRIPS (Fikes and Nilsson, 1971; Fikes, Hart, & Nilsson, 1972)

STRIPS (short for Stanford Research Institute Problem Solvprl _« h_._;- ■ , *vclass of problems faced by a robot in rearranging objects aW "avEalne I » . » ,
environment. The interesting aspect of these problems is the fact th«tS 9 c,uttered
the world must include a large number of facts dea^g v^tMhl pos^on oTttot^TT"?open spaces, etc; thus, simpler forms generally use iZ^puzzles oaames ?'>*?< 'The world mode, (representation) chosen for STRIPS was IN^oSi",^^^,^0-'

A simple problem was:

Given a robot at point a, and boxes at points b, c, and dgather the boxes together. '
The current situation 1s described asATR(a)

AT(BOXI,b)
AT(BOX2,c)
AT(BOX3,d)

and the goal as
3X (AT(BOXI.x) a AT(BOX2,x) a AT(BOX3,x))

Problem-solving in a robot domain such as this involves two types of processes:
(a) deduction in a particular world model, to find out whether a certain fact is

)

C1 Logic 147

I

i

i

,t

fi

L i

.j

(b) searching thru a space of world models, to find one in which the given
condition is satisfied (e.g., how can we get the three blocks together?)

The former process is usually called question-answering; the latter, plannihg. STRIPSused different methods to perform these two processes. The question-answering was donevia resolution theorem proving, as in Green's system; the planning was performed via means-ends analysis, as in GPS. This dual approach allowed world models more complex and generalthan in GPS, and provides more powerful search heuristics than those found In theorem-proving programs.

STRIPS Is too complicated to discuss further here; see article SearcKDS for moredetails.

i

c) FOL (Weyhrauch, 1977; Filman & Weyhrauch, 1976)

FOL is, among other things, a proof checker for proofs stated in first order 'logic. Thelanguage used is first order logic, that is, first order predicate calculus, augmented withequality and functions. Note that neither of these extensions actually expands the kinds ofthings which can be said in the language; but.they do make certain things easier to express.

Deduction is done using the natural deduction of Prawitz, 1 965, which includes the rulesof inference listed in sections 2 and 3.

A trivial example of the use of FOL is the following.

Suppose we want to prove the syllogism mentioned in section (3),

Socrates 1s a man
All men are mortal

therefore
Socrates 1s mortal

We could give FOL the following commands:

We first declare the only constant (Socrates,), the only variable (x), and a number of I-place predicates (MAN and MORTAL;. All input to FOL is prefaced with *****.

"""""DECLARE INDCONST Socrates;
""""DECLARE PREDCONST MORTAL MAN 1

;

"""""DECLARE INDVAR x;

Tell FOL to assume that the two axioms are true.

*"***ASSUMEMAN(SOCRATES)aVX.(MAN(X)3MORTAL(X));

148 The Representationof Knowledge%

1 MAN(SOCRATES)aVX.(MAN(X)3MORTAL(X)) (1)

"""""TAUTVX.(MAN(X)3MORTAL(X)) 1;

This can be derivedfrom (1) via therule o/a-3,
2 VX.(MAN(X)3MORTAL(X)) (1)

«****V3 2 Socrates;

Use VTHXS to specialize this to Socrates.

3 MAN(SOCRATES)3MORTAL(SOCRATES) (1)

"""""TAUT MORTAL(Socrates) 1 ,3;

Now, show that Socrates is mortal.
4 MORTAL(Socrates) (1)

FOL. says that Socrates' mortality depends on the statements in (1). Try to incorporatethem into the statement. ■ r

S(MAN(SOCRATES)aVX.(MAN(X)3MORTAL(X)))3MORTAL(SOCRATES)

And this is what we wished to show.

„, - F0LJra*1 handlß m°re comP,icatBd Problems, of course, and can more properly be viewed
has more de!airs enV'r°nment f°r StUdyin^ ep.stemologica. questions. "Jsj£n""s

rules \Tnter\nlTJ^T^ h
S

1°me/ystems whic" "»" 'ogic to represent the axioms andgen^r. cale o^tLLlfl " ?? '" the °eXt Section we will c°nsi«*r the moregeneral case of the usefulness of logic to artificial intelligence.

"""""3l I=4;

!

'.

L I
:i.

I

C1

Logic and Representation

It is important to emphasize that this discussion of formal logic and representation
theory is not centered about performance. Rather, it is a discussion of what things can besaid, and how one can economically state them. We are dealing with representational
structures, but not representational data structures. We are concerned with the conceptualstructures for artificial intelligence. First order logic, as we have described it, demands aclean syntax, a clear semantics, and, above all, the notions of truth and inference. The
conceptual knowledge inherent in a system of logic axioms can be encoded for use in a
computer by a semantic net, a frame, a LISP list, or any of a large number of different data
structures. Logical systems can be manipulated by a general purpose theorem prover or
specific purpose inference systems. Systems cease to be logical when they become ad hoc,detached from the semantics of their primitives, or concerned not so much with the truth of
their results, as their accessibility.

!

!

I

Discussion of representational formalisms often falls into the fallacy of discussing
heuristic mechanisms. When we suggest using a logical formalism for the representation of"knowledge, we are not implying any particular control structure. A system employing first
order logic can use resolution, or pattern directed

inference,

or computation in a semantic
model, or any other scheme the writer can devise for specifying which inference is to beselected next. Keeping the representational system separate from the deductive process
permits the employment of all or any of these schemes, as need arises.

i

McCarthy & Hayes, 1969 were the first workers in artificial intelligence to make thisdistinction explicitly. The question of representation was termed the epistemological part of
the problem, defined (in McCarthy, 1977, p. 1038) as "what kinds of facts about the worldare available to an observer with given opportunities to observe, how thes facts can be
represented in the memory of a computer, and what rules permit legitimate conclusions to bedrawn from these facts." The issue of processing, called the heuristic part, was defined as'how to search spaces of possibilities and how to match patterns'.

*
i

We turn now to an evaluation of the efficacy of logic as a representation formalism —i.e., what advantages and disadvantages are involved in the use of logic.
i

First, logic is natural; as McCarthy, 1977 and Filman, 1979 point out, the expression ofa problem in logic often corresponds to our intuitive understanding of the domain. Green,
1969 also Indicated that a logical representation was easier to reformulate; thus,
experimentationis facilitated.

I

) Second, it is precise; there exist standard methods (not discussed here) of determining
the meaning of an expression in a logical formalism. Hayes, 1977 presents a complete
discussion on this issue, and argues for the advantages of logic over other representation
systems, on these grounds.

Third, logic isflexible; since logic makes no commitment to the kinds of processes whichwill actually make deductions, a particular fact can be represented in a single way, withouthaving to consider its possible use.

The final benefit Is modularity. Logical assertions can be entered in a data baseindependently of each other; thus, knowledge can grow incrementally, as new facts are

149Logic

I

150 The Representationof Knowledge%.

discovered and added. In other systems, the presence of a new fact might adverselyeaffect the kinds of deductions which can be made.

The major disadvantage of logic is the same as its major advantage - the separation
of representation from processing. The difficulty with most current artificial intelligencesystems lies in the heuristic, not epistemological, part (e.g., the failure of resolution theoremproving). Thus, separating the two aspects, and concentrating on the former, merelypostpones addressing the problem. The work on such systems as PLANNER (Hewitt 1972)and frames (Minsky, 1975) represents an effort to incorporate the heuristic aspect into theepistemological; GOLUX (Hayes, 1977b) and FOL (Weyhrauch, 1978) are attempts toformalize control of processing, while retaining the logicalprecision.

To conclude, representational issues must be considered if we are ever to create agenerally "artificially intelligent" computer. There are many aspects of common knowledgeand common sense that we do not even know how to formalize, much less how to convince acomputer to do by itself.

i

i

: II :i
I

C2. Overview of Semantic Networks

Many of the recent systems developedin Artificial Intelligenceresearch use a class of
knowledge representation formalisms called semantic networks. These representation
formalisms are grouped together because they share a common notation and not because
they share any simple set of common assumptions.

This common notation consists of nodes (drawn as dots, circles, or boxes in illustrations)
and arcs or links (drawn as arrows) connecting the nodes. Both the nodes and the arcs can
have labels. Nodes are usually used to represent objects, concepts, or situations in the domain,
and the arcs are used to represent the relationships between them. The superficial similarity
of this notation is all that some semantic network systems have in common. For example,
researchers in psychology, such as Quillian (1968), Norman & Rumelhart (1975), and
Anderson & Bower (1973), have developed semantic network systems primarily as
psychological models of human memory. Researchers in computer science have been more
concerned with developing an efficient knowledge representation. Because of differing
goals, there is no simple set of unifying principles to apply across all semantic network
systems. This article, however, will attempt to characterize some of the most common
network schemes.

This article will present a description of how simple concepts are represented in
semantic networks and review some Al systems that use semantic networks. Finally, some
more difficult problems in representation, such as quantification, will be mentioned and some
of the proposed solutions reviewed.

A Basic Description of the Representation

Suppose we wish to represent a simple fact like All robins are birds in a semantic
network. We might do this by creating two nodes to designate "robins" and "birds" with a
link connecting them, as follows:

ROBIN

If Clyde Is a particular individual whom we wished to assert is a robin, we could add a node
for Clyde to the network as follows:

CLYDE

Notice that in this example we have not only represented the two facts we initially intended
to represent, but we have also made it very easy to deduce a third fact, namely, that Clyde
is a bird, simply by following the ISA links. The ease with which it is possible to make
deductions about hierarchies such as the one above is one reason for the popularity of
semantic networks as a knowledge representation. In a domain where much of the reasoning
is based on a very complicated taxonomy, such as in the PROSPECTOR system (Article
ApplicationB.D3), a semantic network is a logical choice for a knowledge representation.

Mm \

li

' ll

?

Jill
HI

1 *
!,'
l'

fill
an i

151

111

III!

Overview of Semantic NetworksC2 I

152 The Representationof Knowledge%

One usually desires to encode knowledge about facts other than taxonomies. Forexample, we might wish to express the fact "birds have wings" in our network. We could dothis as follows:

As in the previous example, our choice of representation has made it very easy to write aprocedure to make the deductions that robins have wings and that Clyde has wings. All thatis necessary is to trace up the ISA-hierarchy, assuming any facts asserted about highernodes on the hierarchy can be considered assertions about the lower ones also, withouthaving to represent these assertions explicitly in the net. This is called property inheritance,and the ISA link is often referred to as a property inheritance link. The ease with which it ispossible to implement property Inheritance in a hierarchy also contributes to the desirabilityof semantic net representations.

Suppose we wish to represent the fact Clyde owns a nest. Our first impulse may be toencode this fact using an ownership link to a node representing Clyde's nest:

CLYDE

In the above example, NESTI is the nest that Clyde owns. It is an instance of NEST Theabove representation may be adequate for some purposes, but it has shortcomings. Suppose
ST. t? Th- °, T°de tHe additiona ' '"formation that Clyde owned NESTI from time Tl totime T2. This is impossible to do in the current network because the ownership relation isencoded as a link and links, by their nature, can only encode binary relationships. What weSt^Z and cn

c
d

c
t
qU,Vaice

t
n
H
t °f ? Z^S" «" ""S"P that would inciude toestart time and end time of the relationship.

and lLh
hee
c
r

S
ad

UorftoH° th 'S Pr°blem *!' was Proposed by s""ons (Simmons & Slocum, 1972),and later adopted in many semantic net systems, was to extend nodes to represent
S
aTJto? " ***" and T°f Each - T̂node ca' haveaY ? "*9mnQ case " arcs, which specify the various arguments to the situationSC-Ji" h♦ tT |

S6T

t,C

netW°rkS ' 'nClUd,ng Simmons 's' use a 'InguisSly motivated ca S°esystem; but this is not necessary to solve the problem at hand since arcs labeled "owner"Cn^rd "o^ecT'lsino TT **T" ** m 9--,tbts isagent and object. Using situation nodes with case arcs to represent the fact "Civdeowned a nest from time T1 to time T2," our network now becomes V

The node NESTI is created to represent Clyde's nest, which, of course, ISA nest, as
shown. The OWNI node represents a particular instance of OWNERSHIP, namely, Clyde
owning his nest. And like all instances of

OWNERSHIP,

It has case arcs to OWNER, OWNEE,
START-TIME, and END-TIME. Although the addition of situation nodes and case arcs has
complicated the network somewhat, its expressive power has been greatly increased.

Notice that the representation described above lends itself to the expressionof states
and actions in terms df a small number of primitives. For example, "walk" might be
considered a type of "motion" and could be represented by a node with an isa arc to
"motion" and case arcs describing the specialized features of walking. The use of a small
number of primitives has both advantages and disadvantages and is- discussed more fully in
85.

There are still some serious problems with the representation as it has been developed
so far. Suppose we wished to make the assertion "The robin is an endangered species"
(which is not really true, but which we assume for the sake of argument). If we were not
careful, we might create the following:

The problem with this representation is that we defined our reasoning procedures so that
they would treat the ISA link as a property inheritance link. Therefore, the individual Clyde

r

■■

«in :

,i

mi

11lIf "

1

!f
11l
■iflllL

!

i

)

ill

C2

i

1

154 The Representationof Knowledge

inherits ail the properties of ENDANGERED SPECIES, just as it does those of BIRD, and onewould be led to make many incorrect deductions. For example, from "Naturalists studyendangered species" one would conclude that "Naturalists study Clyde." The fault is thatthere is as yet no distinction in our network between an individual and a class, or set ofindividuals. To implement this distinction, the links element and subset have beendifferentiated. Clyde is an element of the set of robins, the set of robins is a subset of the setof birds, and the set of robins is an element of the set of endangered species. In terms ofthis set-theoretic taxonomy, the network can be drawn as follows:

CLYDE

And if we specify in the reasoning procedures that elements of a set inherit properties onlyover subset links and not over element links, then this distinction can be represented and wekeep the naturalists off Clyde's case.

A Brief Survey of Semantic Network Systems

The node and link formalism of semantic networks has found use in many Al systems indifferent application domains. It is impossible to mention every one of these systems in thispaper, but we can review some of the more welt-known ones. This section does not intend togive a complete description of any of these systems but, rather, to give an introduction towhat Is available in the Al literature.

Quillian designed two early semantic-network-based systems (1968, 1969) that werePr"J?n^riSarilV
H ? mode'S °f associative memory (see Section InformationSSIT0

!,

SO? 7y ?3)" a~
W\Vhe f 'rSt t0 make use of the "Ode and linkformalism, but his networks were different from those described above. The network itselfk^owirdl^Z!,!; " COn

t
SiS

I
ted °f a Tt°r °f ChUnkS Ca"ed Planes- Each P,ane -"codedknowledge about a particular concept through interconnecting nodes representing otherTonlllTi 7He Syfem - TheS€' interconnecting ""*" represented a few'sTmp.e typefoconcept jointure, conjunction and disjunction and the modification of one concept by another.

rnmo . " ian
1f Procedures manipulated the network to make inferences by finding

each o tZ ZTc" 8 PM°! C°nCePtS- ThS Pr°gram

WOU,d

start f" the nodes denotngeach of the two concepts being compared and would "activate" all concepts connected toso^r« ? 'nit
V 1

COnCePtS" ThiS SPreadi"g activation continued, Sg an explnlgaphere of activation around each concept. When some concept was actfvatedsimultaneous yby both of the two original concepts, a connection had been found Theprogram would then print out a description of the connection in a stylized 1 Fnnand could then continue to find longer, probably more obscure, connections
9

of directionß^ toe" !TrH°ZV^ "* the °rigina ' System' which inc'"°ed a lackof direction ,n the search and the formation of a large number of spurious associations

.: j

C2 Overview of Semantic Networks 155

\

I

between many concepts, Quillian Quillian(1969) designed a second semantic network system
that was more complex than the one described above. The system was called the Teachable
Language Comprehender (TLC).

Other semantic-network-based computer programs that were designed as psychological
models were Anderson and Bower's HAM program (1973) and Lindsay, Norman and
Rumeihart's Active Structural Networks (1975).

One of the earliest programs to use semantic network techniques was Bert Raphael's
SIR (see Article Natural Language.Fl on early natural language systems). The program could
perform a variety of simple reasoning tasks, such as "A finger is part of a hand, a hand is
part of an arm, therefore a finger is part of an arm." Although he did not claim to use a node
and link formalism, his use of binary predicates, such as PART-OF(FINGER, HAND), and
reasoning procedures was much like the early semantic net systems and faced many of thesame problems that these systems faced.

R. F. Simmons (1973) designed a semantic network, mentioned earlier, using a linguistic
case frame approach (see Article Natural Language.B4) for use in a natural language
understanding program. The system could recognize sentences using an ATN grammar,
translate them into a network, reason using this network, and, finally, generate answers to
questions from the semantic network, Simmons &

Slocum,

1972.

Carbonell & Collins (1974) used a semantic network as the basis of the SCHOLAR program
(see Article Education Appiications.Cl), which answered questions about geographical data
and provided a mixed-initiative tutorial dialogue on the subject—i.e., SCHOLAR can answer
questions posed by the student as well as pose appropriate questions and give timely hints
on its own initiative.

Winston's concept-learning program was based on a semantic net encoding the
relationships between objects in a Blocks World scene (see Article Learning.E).

Myopolous, Cohen, Borgida, and Sugar designed a system for grouping related parts of
a semantic network into units called "scenarios" Myopolous, Cohen, Borgida, & Sugar, 1975.
The network was the basis of the TORUS system, a program to provide natural language
access to a relational database managementsystem. Hayes, 1977b also designed a system
that incorporates higher level structures similar to scenarios, which he calls "depictions." 1

Two of the speech understanding systems (see the Speech section) used semantic
networks as a knowledge representation, namely, those of BBN Woods (1976) and SRI
Walker et al., 1976.

In connection with the SRI speech understanding system, Hendrix, 1975 developedtheidea of network partitioning, which provides a mechanism for dealing with a variety of
difficult representation problems including quantification, representation of logical
connectives, hypothetical worlds, and belief worlds.

156

The Representationof Knowledge

Duda, 1978 have investigated the possibility of encoding judgmental knowledge insemantic networks in the PROSPECTOR system (see Article Applications.o3).

Reasoning with Semantic Networks

In semantic network representations, there is no formal semantics, as there is withpredicate calculus, that assigns meaning to network structures. Meaning is assigned to anetwork structure by context, the procedures that manipulate the structure It is for thisreason that all semantic networks cannot be placed into a simple, well-defined category ofrepresentation systems. A wide variety of network-based systems have been designed thatuse totally different procedures for manipulating their networks.

It is therefore impossible to talk about a network representation without reference tothe procedures that use it. Because of this close coupling of a network and its reasoningprocedure, there is a wide range of choice as to what knowledge to encode explicitly in therIM what knowledge to encode procedurally. Using a semantic network does notresult in a purely declarative representation. (See Article Al for a discussion on declarativeand procedural representations.)

An example of a network reasoning procedure was Quillian's system (1968 1969)described earlier based on a spreading activation model. '
The reasoning mechanism used by many semantic network systems is based onmatching network structures. A network fragment representing the query is constructedand matched against the network representing the system's knowledge. If the question wasa yes-no question and if a match is found, then the question can be answered EativefyIf the question is of the wh-type (e.g., What is thecapitol of New Mexico?), then the part cularobject sought by the wh-query can be obtained from the bindings produced during thematching process The reasoning procedure can continue finding matches after it has ?ound

wh que t°ne! 9 t,me ProdUCin9 d'fferent bind 'n9S' Wlth diffSrent answers to the use".
The matcher can use deductive rules during the matching process to create networkstructure that is not explicitlypresent in the network. For example if A ISA B and I iS_ rthen the matcher can deduce the existence of an ISA link between A and c' "or anotherexample, suppose we have the following network as our knowledge base:

if

in
1

I

i

i

t

i

i

and suppose we wish to answer the question Is there a bird who owns a nest? We could
translate that question Into the following network structure:

In the above network fragment, BIRD?, NEST?, and OWN? represent the yet to be determinedbird-nest-owning relationship. Notice that the query network does not match the knowledge
network exactly. The deduction procedure would have to construct an ISA link from CLYDE
to BIRD to make the match possible. The matcher would bind BIRD? to CLYDE, OWN? to
OWNI, and NEST? to NESTI, and the answer to the question would be "yes." If, instead, theuser had asked Which bird owns a nest?, the question-answering procedure would construct
exactly the same query network except that Instead of answering "yes," it would return the
binding of BIRD? and answer "CLYDE."

A good example of a network deduction system constructed around this matching
paradigm is the SNIFFER system (Fikes & Hendrix, 1977). SNIFFER has the full power of a
natural deduction theorem prover (see Theorem Proving), If needed. It is also capable of
taking advantage of procedural knowledge embedded in selector functions, which tell it which
network elements should be matched next and which provide advice on how to match the
selected element.

1
1 !
liII .
I

I

1

157Overview of Semantic NetworksC2

i

I

Some Difficult Problems for Network Representations

As the scope of problems that researchers tackle increases, the expressive power ofthe semantic networks used must also be increased to deal adequately with the newdomains. Semantic networks should be capableof representing any fact about the world Torepresent some facts, it is necessary to have the full power of quantificationoffered by thefirst order predicate calculus. It is desirable to represent quantified expressions, but it isnot immediately obvious how this should be done. The problem is difficult because the scopeof each quantifier has to be made explicit in the net-for propositions with severalquantifiers.

In simple semantic networks, universal quantification is implemented through theProSi/ int_eritar_cc For example, the network structure shown previously, witha ROBIN node and a BIRD node connected by an ISA link, is. essentially an encoding of theproposition "

However this simple mechanism is not sufficient to handle cases where it is necessary todistinguish the scope of several universal and existential quantifiers, such as in thestatement "Every positive integer is greater than some positive integer."

One possible approach, discussed by Woods (1975) and Shapiro (1971) encodesquantifiers as higher order propositions that take as arguments: a variable name aspecification of the range of the quantification, and the proposition to be quantified.

Schubert, 1975 and Kay, 1973 describe an approach to quantification that involvesskolemization. The proposition to be represented in the network Is conv^ted to prenexnormal form, with existentially quantified variables replaced by skolem functions In thenetwork, each node has an associated quantification property. The skolem functions areimplemented by special links from existentially quantified nodes to their dependents theuniversally quantified nodes. The disadvantage of the skolemization approach is that' it isvery

diff,cu«t

to store the denial of an existing proposition. It is not adequate o simp yattach a negation operator to the structure, since all the universal quantifiers have to beconverted to existential quantifiers, and vice versa. This could be a comX task when acomplex proposition is involved. <-°mPiex «sk wnen a

Hendrix, 1975 has demonstrated that network partitionina c«n ho „__„4 ♦quantifiers in a logicatly adequate manner while PreservTg a^
There are also many other problems that have been discu^o* in

♦„_.

<"«.
semantic networks, but many of these problems are not Drebim, "

terature on
networks but are difficulties for any representation syst.m The« -TiT » "T°mapping problem (Fahlman, 1975), th^ representatton o? beHef' wohds ««, °

158 The Representationof Knowledge

FOR-ALL x ROBIN(x) => BIRD(x)

1 "

C2 Overview of Semantic Networks 159

i
I

Id

References

See Anderson & Bower, 1973; Brachman, 1976; Fikes & Hendrix, 1977; Fillmore, 1968;
Hayes, 1977; Hendrix, 1975; Kay, 1973; Myopolous, Cohen, Borgida, & Sugar, 1975; Nprman
& Rumelhart, 1975; Quillian, 1968; Quillian, 1969;

Schubert,

1975; Shapiro, 1971; Simmons,
1973; Simmons & Slocum, 1972; Walker et al., 1976; and Woods, 1975.

if

'I liII
B li

i

illurn

i

.li

:i!

160 The Representationof Knowledge

1

C3. Production Systems

C3a. Overview of Production Systems

Production systems were first proposed by Post (1943), but have since undergonesuch theoretical and application-orienteddevelopment that the current systems have little incommon with Post's formulation, or in some case, with each other. Our purpose in this articleis to illustrate the "basics" of a production system (PS) noting especially where certaindesign decisions could result in PSs with different characteristics. The following article willdiscuss the issues that arise as a result of these design alternatives.
A production system consists of a set of productions, an interpreter to control how theproductions are used, and a database of symbols which may or may not "evoke" one or moreproductions. A production is a chunk of factual knowledge, cast as an IF-THEN statementFor example:

FACT: Always punt on 4th down with long yardage required.

PRODUCTION: If it is fourth down and long yardage is required
Then punt

In general, the If part (condition-part, left-hand-side, or LHS) is a boolean expressionand the Then part (action-part, right-hand-side, RHS) is an action of some kind Typically inAI systems, the action part does not involve a physical action like punting, but rather somesymbolic computation which varies in complexity among different systems. In its simplestform the action part involves adding some data to the database.

Table 1 shows how a production system might be used to identify food items using aprocess similar to that used in the gameof "20 questions." The condition-part of each of theproductions corresponds to a question one might ask; the action part represents an additionS SIS!! 2 *"
ThßjntlTettr'^\s^i

j
s "«"" control of computation in the system,

n STEw k ? ProdUC,tl°"S '" Tab'„ 1 - Th€ databa" for th* system is not shown explicitlyin the Table, but is part of the trace. The trace shows the operation of the production systemover time; in particular it shows the contents of the database (called the "attribute to? orA.L.) as each production is checked for applicability. The attribute list stores the PS'scurrent knowledge about the food item to be identified. Initially, the system knows that theitem is green and weighs over 15 pounds, i.e. attribute list: (green, weighs ll lbs)

C3a Overview of Production Systems 161

PRODUCTIONS:

Pl. If the Attribute List (abbreviated A.L.) contains green
Then Put produce on the A.L.

P2. If the A.L. contains packed in small container
Then Put delicacy on the A.L.

P3. If the A.L. contains stored in refrigerator
or produce

Then Put perishable on the A.L.
P4. If the A.L. contains weighs IS lbs

and does not contain perishable
and is inexpensive

Then Put staple on the A.L.
P5. If the A.L. contains perishable

and weighs 15 lbs
Then Put turkey on the A.L.

P6. If the A.L. contains weighs 15 lbs
and produce

Then Put watermelon on the A.L.

INTERPRETER:

Rl. A production is applicable if Its condition part is true.
R2. If more than one production is applicable, then make any

production which adds a duplicate attribute to the A.L.
inapplicable.

R3. If more than one production is applicable, then execute
the action part of the first applicableproduction.

R4. If only one production is applicable, executeits action
part.

TRACE:

1. Initial A.L.: (green, weighs 15 lbs)
Applicable Production: P1
Execute P1 because of R4

2. A.L.: (produce, green, weighs 15 lbs)
ApplicableProductions: Pl, P3, P6
Checking if any of Pl, P3, OR P6 adds a duplicate
attribute, (R2):
P1 : A.L.: (produce, produce, green, weighs 15 lbs)
P3: A.L.: (perishable, produce, green, weighs 15 lbs)
P6: A.L.: (watermelon, produce, green, weighs 15 lbs)
Do not execute P1 because of R2
Execute P6 because of R3

162 The Representationof Knowledge
%

i

3. A.L.: (perishable, produce, green, weighs 15 lbs)
Applicable productions: Pl, P3, P5, P6
Checking if any of Pl, P3, P6, P6 adds a duplicate

attribute (R2):
P1 : A.L.: (produce, perishable, produce, green, weighs 15 lbs)
P3: A.L.: (perishable, perishable, produce, green, weighs 15 lbs)
P5: A.L.: (turkey, perishable, produce, green, weighs 15 lbs)
P6: A.L.: (watermelon, perishable, produce, green, weighs 15 lbs)

Do not execute P1 or P3 because of R2
Do not execute P6 because of R3

Table 1 . An Example Production System.

TU
Some of the des'9n issues for PSs wi" become clear by following the trace in Table 1.The P S is trying to identify a food item which it knows is green and weighs more than 15P°Un

* „ ,^Uf ' ?e attribute list (A-L) contains the initial knowledge of the system: (green,JKlf -V«nln J lnIerP^eter, matC=ff ce
TlCh production t0 the contents of A.L. in order tofind all applicableproductions (see R1). The only production which is applicable is P1 so in

t
ahT«dtTe

t Ti" *♦* i
„
terpret

lf r e?CUtes the acti°" P«'t of Pi, which involves addingthe attribute produce to the attribute list. Thus, after the first step in the trace the PSknows a new fact about the food item.
P C '"c H&

the pS il ih ! " .

,CM

.t"!„'mport9nt dcs,9n iss"es. First, the knowledge ofcontain^ 3_lT' f J 1 J '°U? '" *"! f"** that 9aCh P^uction is a small, self-inHor! „ ♦ *
knowledge. Less obvious is the fact that the productions areindependent because they communicate indirectly via the database (attribute list) insteadSf~" t

e
h
a
e

Cef?thr f »»*"«**>" do! (see artide^TSaid

Thi« 7h! S6Td *°int 'S that thS knowled9e of this PS is accessible to the whole systemThis feature has two consequences: first, the knowledae ret,rp«nt^ _ !_ f y

always available; any production can be activated aT^time^lecond theTnowfedge !nthe database is always available, and can all be used to activate "oduconsThefe areadvantages and disadvantages to this accessibility, but we postpone discussion of Ihem
We are currently at step 2 in the trace in Table 1. The attribute n*t "„t=i„* r* vgreen, weighs 15 lbs). At this point, the interpreter finds tha Pl P^ and P6 "rt ' Iand so it Invokes R2 and R3 to pick just one production to execute m ,? app"Cable'

because the order of the productions doesn't chanaa and Jtht J ♦ ? necessary,

C3a Overview of Production Systems 163

it

s

i

. ■]

. \
i 1'

Four further design issues are illustrated here. First, note that the connectives OR and
AND appear in P3 and P6. The condition-part of a production can be arbitrarily complex,
depending on the proposed application of the PS. Note also that although Pl, P3, and P6
were applicable, P4 and P5 were nearly applicable. That Is, both matched to the attribute
weighs 15 lbs, and P4 also matched because A.L. did not contain perishable, but neither of them
matched on all their condition subparts. This is called a partial match, and in AI applications it
is handled in various ways by the interpreter. For our purposes, we will ignore it.

A third point Is that more than one production was applicable, and the interpreter can
only apply one at a time. The process of picking just one production is called conflict
resolution, and AI systems employ numerous approaches to the problem, including applying
each production in parallel. (See issues article following this one.)

Before resuming the example in Table 1, it is worth noting that the "correct"
identification for food item with properties (green, weighs 15 lbs) is watermelon, and that P6
would put watermelon on the attribute list.

Therefore,

if the productions were ordered so
that P6 proceeded P3, or if some other conflict resolution strategy were used, the PS would
correctly attribute the name watermelon to the food item. The point is that conflict
resolution and the ordering of productions can both affect the performance of the PS, and in
AI systems, both are used by programmers to make their systems run as efficiently as
possible. It has been argued, however, that ordering the productions is in violation of the
principle that all knowledge should be available at all times to the PS: One point of ordering
productions is to insure that, in some circumstances, some productions are not executed
(Davis and King 1975).

In the third step of the trace in Table 1 the interpreter finds that Pl, P3, P5, and P6
are applicable, but rejects P1 and P3 because of R2, and rejects P6 because of R3. After
executing P5 the attribute list contains

(turkey, perishable, produce, green, weighs 15 lbs).

Although this is in some sense the "wrong answer", since turkeys are not green and
watermelons are, it is really not an "answer" at all because the interpreter has no rules for
interpreting an attribute as the identity, or name, of a food item. The interpreter is so
primitive that ail it can do is find applicable productions and resolve (badly) conflicts
between productions, it doesn't know it is looking for a name-attribute. A final related,
shortcoming of the interpreter is that It has no rules for when to stop work. By default, this
PS will stop executing productions in one more iteration because each of Pl, P3, P5, and P6
will have been applied once and R2 prohibits applying a production more than once. But this
method of stopping the PS is crude, and has no relation to the task that the PS was
supposed to accomplish, namely, identifying a food item from a set of attributes.

In summary, this example has illustrated the following points about the design of
production systems.

1 . Knowledge in a production system is modular.

2. Knowledge (productions and database items) is accessible to the whole
system.

164 The Representationof Knowledge

3. Productions affect each otheronly indirectly by altering the database.

4. The condition-partof a production can be arbitrarily complex.

5. In some production systems, a partial match on the condition-part will suffice
to execute the production.

6. Various methods are employed for conflict resolution, when more than one
production is applicable.

7. Productions can be ordered or organized to achieve some control strategy,
but this violates the principle that all knowledge should be avilabie all the
time.

8. The interpreter must have some rules to allow it to quit executingproductions.

It was mentioned at the beginning of this article that the "basic" production system
formalism has been substantially modified and elaborated upon in AI implementations. Thepoints above characterize the "basic" AI productions system (far removed from Post'soriginal formulation). Implementation issues that have been raised in AI research arediscussed in the next article.

C3b Issues in the Design of Production Systems 165

:;

i

C3b. Issues in the Design of Production Systems
"ii

In this article we will assume familiarity with production systems (see the previous
article) and concentrate on issues that arise in the implementationof AI systems. First we
will present a brief discussion of the advantages and disadvantagesof production systems.
Then, in the light of this discussion we will examine the characteristics of task domains which
are especially amenable to implementationwith production systems. Finally we will consider
five design issues which have received substantial attention from the AI community.

■li

Advantages and Disadvantagesof Productions Systems

Production systems, as described in the last section, have most often been used in
artificial intelligence programs to encode the body of "real-world knowledge" which gives a
system its power. The intent of this section is to judge their usefulness for this task.
Rychener, 1976 has pointed out that production systems can be used to model other popular
knowledge representationformalisms, like semantic nets and

frames,

thus, they are useful in
the sense of being quite general. The purpose of this section is not to discover how much
can be represented with production systems, but rather, what sorts of knowledge and tasks
can be represented well.

The most striking characteristic of PSs is their moriu/ori^—individual productions are
independent of other productions. This has facilitated the building of the large systems
discussed below. Knowledge can be expressed in understandable chunks, which can be
integrated into a larger whole. The reason for this autonomy of individual rules is the fact
that each rule must carry all its relevant context with it. Since one cannot know in advance
when a rule will fire, no assumptions can be made about the state of the world at the time of
firing. The modularity is enforced by the limited channel of interaction; productions cannot
communicate directly with each other, but only through the global database: However, there
are indications (Rychener, 1976) that the modularity is harder to maintain as one moves to
larger systems. As we begin to implement very large systems (e.g., with thousands of
productions), it is possible that some kind of structural subroutining in the rule base will have
to be Imposed; this would violate the basic assumption of a single uniform knowledge base.
This questionwill not be resolved until such large systems are actually built. However, even
if modularity can be preserved, the lack of interaction among rules will often lead to
Inefficiencies which could be avoided if more explicit interaction were permitted.

i

i !

Another advantage Is the uniformity Imposed on knpwledge by the PS approach. Since
all information must be encoded within the relatively rigid structure of productions, it can
often be understood, either by another person or by the system itself. For example,
Waterman's learning system (Waterman, 1970) used the fact that its rules were expressed
in a constrained manner to facilitate automatic modification of them. Similarly, Davis'
TEIRESIAS (see article Applications.B) analyzed its rule base, and formed rule models,
representing typical forms of rules used in certain situations. These models were then used
by the system itself, as a guideline for learning new rules; if the human expert suggested a
rule that did not fit into TEIRESIAS' model, the system asked for clarification. Unfortunately,
uniformity also has a disadvantage. It will sometimes unduly restrict the kinds of information
which can be handled. Note that the advantages of modularity and uniformity accrue most

166 The Representationof Knowledge

directly to theoretically motivated systems. As the theoretical constraints are relaxed to
achieve greater power, these advantages are weakened.

A further advantage of the production system formalism is the naturalness with which
one can express knowledge to the system. Most knowledge can be expressed fairly easily
in the production format, although there is some indication Lenat, 1976 that some heuristicshave to be unnaturally "forced" into productions. Nevertheless, the range of knowledge thatcan be expressed is encouraging; the expressiveness of a formalism is a strong theoreticalcriterion. See AI, AI, and 81.

There are, however, significant disadvantages inherent in the PS formalism. One of
these is inefficiency of program execution. The strong modularity and uniformity of PSs
results in high overhead. Since PSs perform every action via the recognize/act cycle, theyare incapable of taking advantage of certain knowledge which becomes available. Forexample, Barstow, 1977 found occurrences in which he wished to group productions
together, to take "larger steps"; the restrictions of his rule-based system prevented himfrom doing this. MYCIN (see below) actually Incorporated a feature like this, in the form of aset of knowledge tables, and associated specializedfunctions, to perform more advanced actionsin a single step. A paper by Lenat (1977) represents an effort to amend such flaws, bysacrificing some of the advantages of production systems.

A second disadvantage of the production system formalism is that it is hard to followthe flow of control in a program. In general, algorithms are more comprehensible when theyare written in a procedural form (as in ALGOL) than they are when they are represented as aset of productions. This problem arises from two characteristics of production systems Firstsince productions do not "call" each other, as procedures do, the flow of control in a program
is obscured. In order to follow this

flow,

one must discern what modification to the databasewas effected by a production such that another production was enabled to fire A secondfactor that obscures the flow of control is that productions are not typically very complex-each represents a relatively primitive action. Consequently the level of detail at which onemust follow the actions of a program is relatively low; simple tasks may involve a laroenumber of productions.

Applicable Domains for PSs used as a Representation of Knowledge

Dayis & King 1977 have characterized the domains in which production systems areespecially useful. They are

a) domains in which the knowledge is diffuse, consisting of many facts (c gclinical medicine), as opposed to domains in which there is a consise unifiedtheory (e.g., physics); '
b) domains in which processes can be represented as a set of independentwTt^nonS" '. mldiCa' patient;monitori "g system), as opposed to domainswith dependentsub-processes (e.g., a payroll program);

C) UlT?* I" t
Wh!f kn°?'edge can be eeasy separated from the manner inwhich it is to be used (e.g., a classificatory taxonomy, like those used inbiology) as opposed to cases in which representation and control aremerged (e.g., a recipe).

C3b issues in the Design of Production Systems 167

M

Hill!

I

Rychener rephrased this in artificial intelligence terms: if we can view the task at hand as a
sequence of transitions from one state to another in a problem space (Neweil & Simon, 1972).
we can model this behavior with production systems, since each transition can be effectively
represented by one (or several) production firings. (Learning in this context can be viewed
as the addition of new productions, to represent newly-discovered associations between
states and successors). The database in such a system will serve to represent the current
state of the model, analogous to a program state vector in a conventional computer program.
Within this framework, the PS approach is similar to that of GPS—i.e., an executive
distributing problem-solving effort among loosely-controlled methods.

If the task cannot be viewed this way (for example, the transitions are of different
sizes, or some of the state description information is only implicitly available), it is probably
not suited for production systems, and might prove very hard to implement in PS style. For
example, Lenat, 1976 found that there were times when heuristic knowledge had to be
"coerced" into productions, to be stored in the system; the expression was not "natural".
Or, it might prove easy to implement in PS style, but with extra expense. For example, if the
domain does have a single unified theory, the additional power of production systems as a
representation will be wasted, but will entail the usual extra overhead.

Examples of Production Systems in AI Research

Numerous AI projects use production systems. The four mentioned here were picked for
their innovativeness.

Waterman, 1970, implemented an adaptive production system. His task-domain was the
game of draw poker. The program started with a set of fairly simple heuristics (coded as
productions) for playing the game, and through various training methods it extended and
improved them. The significant aspect of this system was the degree to which production
systems facilitated the learning process. Since knowledge in production systems is
represented in a constrained, modular fashion, the program was able to analyze and
manipulate its own representation. Other examples of production systems which model
learning are those of Hedrick (1976) and Vere (1977).

Lenat, 1976 modeled the process of discovery in mathematics using a production
system, by viewing it as a heuristic search. His system, called AM (see article
Appliestions.C2), started with a minimal knowledge of mathematical concepts represented as
frames (see article B7). Heuristics, represented as productions, were used to expand these
concepts and derive new ones. In the course of its operation, AM discovered a large number
of already-known mathematical concepts, such as prime numbers, the arithmetic functions,
etc, and also two interesting concepts which had never been discovered before. Lenat's
system is especially important because of its sophisticated data-and control structures, and
its large number (250) of heuristics.

The MYCIN system (Shortliffe, 1974Davls & Buchanan, 1977; Medical Applications.B)
acts as a medical consultant, aiding in the selection of therapy for a patient with a
bacteremia infection. It carries out an interactive dialoguewith a physician, and is capable of
explaining its reasoning. It also includes a rule acquisition subsystem, which enables expert

168
%■

The Representationof Knowledge

1

physicians to expand or modify its rule base. MYCIN has about 200 productions which areused to identify a bacteremia infection from signs and symptoms. It is distinguished by merit
of a backward chaining control structure, (see below), and inexact reasoning, in whichconfidence factors are attached to the conclusion part of each production, and are used todiscriminate between hypotheses about the infection.

Rychener (1976) did not design a novel AI system, but rather implemented a number of
extant systems using the production system formalism. In particular, he implemented
Bobrow's STUDENT, Newell and Simon's GPS, Feigenbaum's EPAM, Winograd's SHRDLU, andBerliner's CAPS. His intent was not to produce high performance systems, but rather, to showthat the production system formalism was a natural one for programming. His primary problemwas that the uniformity and modularity of productions make it hard to build very complex
control structures.

Production System issues

Complexity of Left- and Right-hand Sides of Production Rules

Production rules (usually just called "productions") consist of two parts- a left-handside ("condition part" or "test") and a right-hand side ("consequent" or "action") Thesystem operates by repeatedlymatching the L.H.S., and executing the symbols of the R H S
In Post's original formalism, both parts were simple strings of symbols; the LH S wasmatched against the database, and if the match was successful, the R.H.S. was inserted inits place.

This structure has been progressively extended as the size and complexity of systemshas increased. The form of the antecedent was augmented; first to include predicate
calculus forms with free variables, and then to allow arbitrary LISP function calls Thus the"test" part of a cycle is performed by EVALuating the L.H.S. of the rules; the functionscalled examine the database, and return the answer, binding the appropriate variables andconstants if successful. Even in the most complex systems, however, the testina of the LHSis not permitted to have any side effects.

Sim. arly, the form of the consequent has been extended, first to include variables"'JL"^ dgrinS TJ"*"-!!" PhaSe ' and the" t0 allow arbitrarV pr°3'ams whichare executed, rather than asserted. These programs usually specify actions in terms of a
1976 Rvrtrr^w!!"'tuaf Primitives In some systems (Riesbeck. 1975; Marcus,1976; Rychener, 1976) these actions could include activation or deactivation of sets ofVysXe:7oZTsn

m
s: Again' this represents a (radica,) extension of the Snai p-ducti-

The complexity of the LHS and RHS is effectively an indication of the "grain size" ofthe production system - that is, how much knowledge is encoded into a sinqfe productionThe production is the largest unit of knowledge recognized by the syTtem fo la geroperates, one must reiy on sequences or collections of productions. Dom arn-dependensystems tend to require much larger "chunks" than their theoretical (or psTcho^qlcaUy-
motivated) counterparts. For example, Rychener's (1975; 1976) demo^stratS systems

169C3b issues in the Design of Production Systems

1
» i

111
ill

tended to have low level rules, whereas MYCIN (Shortliffe, 1974) operated in larger steps,

and Hearsayii , in larger steps yet.

iStructure of the Rule Base and Database

As PSs have become bigger and more complex, questions of efficiency have imposed
structure and order upon both the rule base (the set of productions) and the database (the
set of facts about the task). These were originally unordered, to be accessed in some
unspecified manner. The structure which has been imposed is not intended to affect the
power of the system, in terms of the kinds of things that can be accomplished; rather, it is an
effort to find computationallyefficient ways to perform the given tasks. As such, it is more
of an implementationdetail than a theoretical question.

The most common way to organize the rule base is to index the productions according to
the aspect of the system they affect. For example MYCIN Shortliffe; 1974 had all rujes

indexed according to the part of the database they accessed or changed. This made
elimination of irrelevant rules in given situations much easier. As Lenat, 1977 point out, this
can be carried further, to allow partitioned production memory (i.e., multiple production
memories, which are active at different times), analogous to the use of subroutines in the
algorithmic languages. Of course, this defeats one of the fundamental tenets of PS work,
that all knowledge be potentially available at all times, but it does allow the designer to take
advantage of inherent features of the domain (e.g., that certain types of knowledge are
needed only at certain times).

To make the information in the database more accessible, it might be ordered. That is,
new additions would be inserted at one end, and older elements would eventually be shifted
out the other. This provides recency information — the newest elements are those nearest
the input end. This information might be used for conflict resolution (see (c) below).

The data base might also benefit from partitioning. For example, one might wish to have
one database which contains the current state of the system, and another which is a record
of the goals that the system is currently trying to accomplish.

A good example of the work In organizing the rule base and database is that of
McDermott, Newell, & Moore, 1976. They used a series offilters, to reduce the cost of the
"test" cycle; the filters, implemented via a discrimination net, performed a "pre-screening"
of the set of productions, so that only a small subset of this set actually had to be fully
tested. The filters dependedupon information derived from a cross-indexing of the elements
in the antecedents of productions, and the elements currently in the database. McDermott
showed that, for his particular system, the time taken for the test cycle in the bare system
(without the filters) was bilinear in the product of the sizes of the database and the rule
base, and that the use of sufficiently-powerful filters could eliminate both these
dependencies.

Conflict Resolution

The discussion thus far has assumed that exactly one rule will have its LHS satisfied
on each cycle, and that that rule will be fired. In practice, there are often many rules which

170
4h

The Representationof Knowledge

can be fired; the system is required to choose one from among this set (called the conflictset). The process of choosing is referred to as conflict resolution.

The conflict resolution phase is used to implement some basic system features, such as
sequencing of production firing, attention focussing, interruptability, control of instability, etc.

Several approaches to conflict resolution have been used, including the following:

a) choose the first rule to be satisfied, where "first" is defined in terms ofsome explicit linear order of the rule base

b) choose the highestpriority rule, where priority is defined by the programmer
according to the demands and characteristics of the task.

c) choose the most specific rule - i.e., the one with the most specific
expression in the L.H.S. In this context, specific means the opposite of
general: A rule which has only one clause in its condition part will be easier
to satisfy and more general than one with numerous clauses. The latterwould fire only in very specific circumstances.

d) choose the rule which references the element most recently added to the
database

c) choose a rule instantiation (i.e., rule/binding pair) which has not occurred
previously

f) choose a rule according to some specially-defined function

g) choose a rule arbitrarily

h) exploreall the applicablerules in parallel

Various systems use different methods. For example, DENDRAL (Buchanan, Sutherland& Feigenbaum, 1969) uses (b), OPS (Forgy, ig77) uses a complicated sequence involvingfive of the six methods, and MYCIN simply performs exhaustive search, allowing all relevantrules to fire eventually. ZBIE (Siklossy, 1972) used a "best-match" criterion (simi ar to £)>followed by production ordering (a). LISP7O (Tesler, 1973) offered the programmer a choiceof a), (c), or (f). AM (Lenat, 1976) and Hearsay II () use complicated schZZTJoTtZmswhich try to select the most "useful" rule to fire. scneaunng aigor.tnms,

Forav^e^^rwl^ViH8 iJT T b\foUnd ,n (DaViS & King ' 1977> and (McDermott &Forgy ig76). McDermott identifies two characteristics a production system should have-sensitivity (the ability to respond quickly to changes in the environment)? and rfSSftTheSiffSln? °arZ T re '?t!Ve,y ,on9SeqUenCBS °f act,ons)' and discusses the wTy in whchdiffeent conflict resolution strategies serve these goals. He concludes tha? no Seconflict resolution strategy can be completely satisfactory, with respect to the twocharacteristics mentioned; a combination of approachesmust be used

h

i,

■
I

,l

jThe test phase of the test/execute cycle can now be seen to split naturally into two
phases: (i) match the set of productions against the database, to determine which ones are
potentially applicable, and (ii) resolve the conflict by choosing the appropriate element(s) of
this set. The preceding discussions of the complexity of rules, and the structure of the rule
base and database,dealt with efficiency on the match phase; this section has discussed the
resolution phase. Of the three phases (match, resolve, execute), the match has proven to
be the most expensive in terms of computationalresources.

Direction of Inference

Classical PSs operate by matching the LHSs of productions, and executing the
appropriate RHS. This approach is called forward chaining, or data-directed inference.

Some recent systems operate in the opposite direction — that is, finding a RHS which
provides the required information, and trying to instantiate the corresponding LHS. This is
called backward chaining or goal-directed inference. This approach has been restricted to the
performance-orientedsystems such as MYCIN.

For example, if MYCIN had hypothesized that the current organism was bacteroides, it
might use the rule given in the earlier discussion to verify this. It would do this by looking for
information concerning the three premises of the rule.

Some,

like information concerning the
site of the culture, would be available directly from patient data.

Others,

like the identity of
the infection, might have to be deduced. In this case, MYCIN would search for rules which
might provide such

information,

and try to establish them—that is, try to verify their
premises. This would continue until the chain was traced back to given data.

The use of backward chaining creates PSs with different characteristics, and affects
the type of domains to which they are applicable. The back chaining systems have tended
to be larger than their forward chaining counterparts, with more domain knowledge encoded
in the rule base; they are also less flexible, allowing fewer choices with respect to the
accompanying control structures.

Other systems using backward chaining include PROSPECTOR (Article Applications.D2)
and RITA (Applications.o3).

Note that this is not merely a feature of production systems, but rather a fundamental
question of reasoning. Work on deductive inference (via, e.g., predicate calculus) has
always recognized the difference between these two approaches; Hewitt's (1972) PLANNER
provides a good explicationof this dichotomy.

RepresentationVocabulary

As mentioned, the form of the antecedents and consequents of rules has been
extended, from mere symbols to be matched, to arbitrary programs. While providing more
power, this extension has unfortunately led to increased complexity. In particular, the range
of expressions allowed by the rules is much harder to comprehend, especially if the language
is not formally specified.

171C3b Issues in the Design of Production Systems

172 The Representationof Knowledge

1

In practice, the language usually turns out to have a syntax like the predicate calculus
(i.e., a predicate or function name, followed by a list of arguments). Theoretically, much more
complicated structures are possible.

A significant aspect of the representation language concerns the choice of conceptual
primitives ~ 1.c., the functions or predicates, in terms of which the rules and data base
elements are coded. This set of primitives might be called the vocabulary of the system.
Different systems will define their vocabulary at higher or lower levels, depending upon the
task to be accomplished.

For example, MYCIN allowed conditions which examined the values of certain
parameters of the current patient (using predicates like SAME, NOTSAME,

KNOWN,

and
UNKNOWN), and actions which asserted values of other parameters (using a function named
CONCLUDE). Rychener's (1976) PS implementation of EPAM (Feigenbaum, 1963) used a
lower-level vocabulary with tests like COMPATNEG (meaning that the result of this
compatibility test was negative) and actions like RESTIM (which signals the current stimulus-response pair to be fed through the net again). OPS Forgy, 1977 uses a set of match
functions, including ANY and NOTANY (which perform element matching at the top level) andCONTAINS and NOTCONTAINS (which test subelements at arbitrary levels), and actions which
perform basic symbol manipulation, including modification of other productions.

Earlier, the match phase — the manner in which conditions are checked against the
database — was discussed. It is apparent now that this is a question of the language
chosen; different languages will affect the ease of matching.

The significant trend in ail these features, at least for the applications-oriented
systems, is toward more powerful and domain-specific approaches, with fewer claims togenerality. This often means giving the rule-writer access to the other parts of the systemas well—i.e., not only providing him with high level primitives which are convenient for hisparticular task, but allowing him to change parts of the system which are usually
prespecified. For example, the user might be allowed to dynamically adjust the conflictresolution strategy, so that his program is always using a strategy which is appropriate to
the current situation. Or, the interpreter itself might be accessible for modification, so that,e.g., the match algorithm couid be tuned to reflect efficiency considerations. The result ofthis is usually a gain in power, at the expenseof modularity.

This article has reviewed some of the advantages, disadvantages, and issues of designfor production systems. Many of the issues are still evolving, since production systems are arelatively recent tool in AI. For a more detailed discussion of these issues the reader isdirected to Davis & King, 1977.

'if;

i

, Procedural Representationsof Knowledge 173C4

sir;

nil

1

C4. Procedural Representations of Knowledge

Representations such as predicate calculus are described as declarative; a fact is
stored without regard for the ways in which it may be used. This article will deal with a
contrasting class of representations, referred to as procedural. These are motivated by the
thesis of Procedural Embedding of Knowledge: The useful knowledge of a domain is intrinsically
bound up with the specialized procedures for its use (Hewitt, 1975, P. 196).

Th.c extreme case of a procedural representation is a program for accomplishing some
task. Compared to the declarative representation schemes, a program is explicit; all desired
actions are expressed. For example, a system for operating in a mathematical domain might
have a specific algorithm for performing differentiation, etc. In systems like this, all the
knowledge is expressed in the form of code. All the interactions and procedure calls must be
indicated explicitly; one lacks the ability to simply search for relevant knowledge.

The approach of using straightforward programs is suitable for many domains, but not,
typically, for artificial intelligence. Most A.I. problems are sufficiently ill-structured that we
cannot specify in advance exactly which knowledge will be useful, and exactly when and
where each routine should be used.

Thus, the first 'procedural' systems in A.I. were somewhat more powerful than this, and
less extreme in their procedural outlook. Although the reasoning was done via purely
procedural knowledge, the facts were stored in a data base similar to those used by the
theorem-proving programs.

Such an approach was used by several of the early artificial intelligence systems, one
of which was Raphael's (1968) SIR program (article Natural Language.Fl). SIR could answer
questions about simple logical relationships, such as 'Is a finger part of a person?'. Its
knowledge was stored In two forms: simple property attachment for facts, and LISP
procedures for performing inference. Thus, to answer the question given above, it would use
two facts (that a finger is part of a hand, and a hand is part of a person), and one procedure
(a complicated routine called

'PARTRGUQ',

which basically traced 'part-of links).

Woods (1968) implemented the most sophisticated of the early procedural systems.
His program handled questions dealing with a subset of the Official Airlines Guide. The
questions were 'pre-processed1 , from English into syntax trees. These trees were
translated into function calls stated in a semantic query language for referencing the actual
data base. For example, the question 'What American Airline flights go from Boston to
Chicago?' would be expressed in the query language as:

(FOR EVERY Xl/FLIGHT; EQUAL(OWNER(XI), AMERICAN-AIRLINES)
ANO CONNECT(XI, BOSTON, CHICAGO); LIST(Xl))

The procedural aspect resulted from the fact that these were actual function calls, to
be executed in a LISP environment in which the appropriate functions had been defined.
Thus, like SIR, the system operated with a data base of facts (the airlines schedule), and a
set of procedures (which Implemented the primitive functions of the query language). For
example, the above query would be answered by a series of commands which would retrieve
a list of all flights in the data base, find out which of those were owned by American Airlines,
find out which of those went from Boston to Chicago, and print the final list.

)

174 The Representationof Knowledge

I

This has some advantages, including the fact that the actual implementation of the
procedures can be changed quite easily, if needed (e.g., if the organization of the data base
is changed in some way).

In order to understand the motivation behind procedural representations, it is
necessary to see the position that they are arguing against. The extreme form of declarative
system is a predicate-logic-based theorem-prover, using a uniform proof procedure such as
resolution (article Theorem Proving.B). Such a system performs deductions in a simple,
straightforward way, essentially checking ail knowledge in the system for applicability at
each point.

This 'blind search' approach tends to result in serious efficiency problems; as the
amount of potentially relevant knowledge increases, combinatorial explosion of the number of
possible deductions occurs. Only limited kinds of control information are permitted, in the
form of syntactic strategies such as unit-preference or set-of-support. There is no provision
for encoding domain-specific heuristics or special-case Information that we might happen to
know. The nature of such systems is declarative (i.e., what things can be done), rather than
imperative (i.e., what things should be done). A more extensive treatment of this position willbe found in article B1 on logic, which should be read as a prerequisite for this one.

A representation such as predicate logic, expresses its knowledge in the form of
assertions, without regard to their use. The statement 'All birds can fly' might be
represented as:

Vx Bird(x) a Flies(x)

Note that there Is no Information here concerning how to use this information; the only
restriction is that we must observe standard rules of inference. We might know that Clyde isa bird, and thus conclude that he can fly; or, we might know that Clyde cannot fly, and inferfrom this that he is not a bird. The crucial point here is that there is no way, within'predicatecalculus, to state which meaning is intended, or indicate which situations' will probably be
appropriatefor the use of this knowledge.

I

We can consider declarative and procedural representations to be opposite ends of a
spectrum. On the one hand, the declarative representations are general, flexible, andmodular; on the other, procedural representations are more efficient. This efficiency is the
most Important aspect of procedural representations. The airlines question-answeringsystem, for example, could be implemented using a deductive formalism, but we would belimited, the any question, to merely stating the logical formula of the answer, without givingany 'suggestions' for finding It; this might result In the combinatorial explosion mentionedearlier.

The advantages and disadvantages of these approaches will be discussed further inthe last section. The next section deals with an expandedclass of representations which isalso referred to as 'procedural.

C4 ■ Procedural Representationsof Knowledge 175

<y.

i

t

f

i lii
!lIL

More Sophisticated Procedural Representations

a) the goals and methods of proceduralrepresentations

t

Even the powerful procedural representations used by Raphael and Woods were soon
found to be inadequate for general artificial intelligence work; the restrictions on flexibility
and modularitywere too great.

For example, SIR was successful within its limited domain, but not easily extensible.
The kinds of information that it could handle were limited; the high degree of interaction
between the various parts of the system made modification difficult. If a new property (e.g.,
SIZE) was added to the system, it was necessary to formulate a complete set of routines for
performing inference about that property. Similarly, Woods' program ran into the same
difficulty of having to specify, for every property in the data base, a set of routines for
working with it.

The ideal formalism would require the generality and power of the theorem-proving
systems which were common in the late 1960's (such as the declarative systems which
were discussed near the end of the previous section). In such a system, one can add or
modify knowledge without difficulty, since the parts of the data base are independentof one
another. Similarly, interactions happen 'automatically', in that the theorem prover will find all
theorems which happen to be relevant at a given point in the deduction process. The best
example of this work was the QA3 system, developed by

Green,

1969. Thus, there was a
trend, In the late 1 9605, to search for a merger of the two forms — combining the flexibility
of logic-based systems, with the efficiency of the earlier procedural versions. This work
was also referred to as 'procedural', but it is important to recognize that the class of
systems included here Is wider than the versions discussed in the previous section. The
remainder of this article will use the term 'procedural* to refer to this larger class. The
essence of this approach Is to represent knowledge (of the type typically encoded in
predicate calculus) with instructions for its use. Winograd, 1974 discusses the question of the
use of a representation, in terms of four sub-issues:

control - what should be done next ?
retrieval - what knowledge is potentiallyrelevant ?
matching - how does that knowledge apply to the problem at hand ?
application - what are the results of using it ?

The declarative approach to knowledge deals primarily with the latter two; the procedural
approach is an attempt to handle all four. In the remainder of this article, we will use the
term 'control' to cover the issues Involved in both control and retrieval.

In a sense, the difference between declarative and procedural representations is a
result of the kinds of domain referred to; declarative representations typically describe an
external world, whereas procedural representations also encode information about the kinds
of processing which are permitted. This point is made explicitlyby Hayes, 1977.

The thrust of the work in procedural representations has been to try to find better
ways of expressing this control information. If we look at the process of deduction as
consisting of searching a tree, the procedural representations are seen as an effort to
provide the ability to indicate which branches should be explored.

176

The Representationof Knowledge

i

The information about how to use a piece of knowledge might concern various aspects
of processing. One form of control is to indicate the 'direction' in which an implication can be
used. To continue with the example given earlier, a typical procedural piece of knowledge(with 'procedural' used in the generalsense indicated above) might be stated as:

(IF-NEEDED FLIES (X)
TRY BIRD (X))

Thus, if we are trying to prove that Clyde can fly, this teils us to try to prove that he is a
bird. This knowledge will not be used in the other direction; thus, if we learn that Fred is a
bird, this will not enable us to assert anything about Fred being able to fly.

Another use of 'procedural' knowledge occurs when we try to specify which knowledge
will be relevant at a particular point. For example,if we want to prove that something is a
fish, and we suspect that the 'theorems' (i.e., pieces of knowledge) THEOREM 1 and
THEOREM2will be useful, we might write:

(GOAL FISH (X) (USE THEOREM 1 THEOREM2))

which would express our intention to the system.

In essence, what we are doing here is straightforward deduction, of the kind provided
by resolution or natural deduction for the predicate calculus. However, the deduction here is
controlled somewhat; we have told the system how and when it can use the knowledge that ithas been given.

There have been three major methods of specifying control information:

1) to specify control by the way in which one states the facts; this is the
approach u.sed in Planner (Hewitt, 1972), and in the examples above.

2) to encode the representation language at a lower level, so that the user hasaccess to the set of mechanisms for specifying the reasoning process; this isthe approach of CONNIVER (Sussman & McDermott, 1 972).

3) to define an additional language, used to express control information, whichworks togetherwith the representationlanguage; this idea was the foundationfor the GOLUX project (Hayes, 1973), and for Kowalski's (1975) predicate
calculus programming.

Of the three approaches, the work on Planner was seminal for the current generationofprocedural representations, as well as being the most widely used. Accordingly this articlewill devote most attention to this one effort. Since approach (2) is often combined with (1),it will be discussed at the same time. The last approach, which is quite different from theother two, will be considered (briefly) later.

C4 < Procedural Representations of Knowledge 177

.5i

111

b) PLANNER and successors

Planner was designed as a representation and control language, to expedite the
process of deduction. The specific intent of the Planner system was to subordinate the
deductive system to the control structure. That is, the concern was not with the cldss of
inferences which were possible (as would be the focus In theorem-proving), but with the
inferences which would actually be made. This can create problems; there are some quite
straightforward deductions which Planner is unable to make. This will be discussed later.

Full PLANNER was never implemented. A subset, referred to as micro-Planner, was
implemented by Sussman, Winograd, & Charniak, 1970, and used in a few systems, most
notably Winograd's (1972) thesis. The examples given here will use the syntax of micro-
Planner, since that is the best-known version.

Some of the features of Planner include the ability to specify whether theorems should
be used in a forward or backward direction, and the ability to recommend the use of specific
theorems in given situations. In fact, the ability to recommend pieces of knowledge was
somewhat more general than indicated previously. Besides recommending theorems by name,
it was possible to suggest general classes of theorems, via the use offilters. For example, if
we were trying to prove that something was a fish, and we wished to indicate that the most
promising way was to use theorems about zoology, we could write

(GOAL FISH(X)(FILTER ABOUT-ZOOLOGY)) .
Two other features were significant. First was a method of procedure call referred to

as pattern-directed invocation. When trying to solve a problem, it was not necessary to tell the
system which theorems (i.e., implications) to try. Rather, the system itself could search for
theorems whose structure Indicated that they might be relevant to the goal at hand. For
example, if we are trying to prove that block A is on block B (expressed as, e.g., (ON A B),
we would only try theorems whose results would assert something of this nature. Although
the idea of pattern-directed invocation is common in theorem-proving, its extension to
programming languageswas novel.

The other Interesting aspect of Planner was its capability to perform search,
implemented as backtracking. If Planner was ever required to make a decision (e.g., selecting
a particular block to be the base of a tower that it was building), it recorded this as a
choicepoint. If, later on, a failure occurred, the system would back up to this point, make a
different decision (i.e., select a different block), and try again. Again, this capability for
automatic backtracking was common in theorem-proving work, but new to programming
languages (although the GPS system Search.o2 had contained a similar feature).

Planner thus serves as the language in which both the problem (i.e., the logical aspect)
and the methods of solution (i.e., the procedural aspect) are stated. The intent is that the
user be able to state as much or as little subject-dependent knowledge as required.

More information on PLANNER can be found in chapter AI Languages on AI Programming
Languages.

The most extensive use of PLANNER (actually, micro-Planner) was as a part of
Winograd's (1972) SHRDLU system (Natural Languaga.Fs). In this case, PLANNER was used

178 The Representationof Knowledge■%

i

to represent information about a restricted domain of toy blocks, and move those blocks
about.

For example, a theorem for putting one block on top of another was defined:

(DEFTHEOREM TC-PUT
(THCONSE (X V Z) (PUT $?X $?Y)

(CLEAR $?Y (SIZE

$?X) $?X)

(SUPPORT $?Y (SIZE

$?X) $?X)

(THGOAL (GRASP

$?X)

(THUSE TC-GRASP))
(THSETQ $?Z (TCENT $?Y (SIZE $?X)))
(THGOAL (MOVEHAND

$?Z)

(THUSE TC-MOVEHAND))
(THGOAL (UNGRASP) (THUSE TC-UNGRASP))))

which essentially says 'to put a block (X) on another block (V), make sure there is space on
V, and that V can support X; then pick up X, move it to the appropriate space on V, and let go
of it.'

A number of artificial intelligence languages followed Planner, including CONNIVER
Sussman & McDermott, 1972, QA4 Ruiifson, Derkson, & Waldinger, 1972, POPLER Davies,
1972, and QLISP Rebbh et al., 1976. These involved a mixture of the approaches (1) and(2) above. As Hayes, 1977 points out, there was confusion in many cases about whether
the ultimate goal was a representation language or a programming language. Thus, comparison
was difficult.

For further discussion of many of these languages see the Handbook chapter on AI
programming languages.

(i) Planner languages and extended logic

In some cases, procedural representations merely enable us to add control information
to a normal deductive system. However, there are some inferences permitted by procedural
repesentations which are beyond those found in classical logical systems. These include the
various forms of 'default' reasoning Reiter, 1978. One form of default, as implemented inPlanner, is the THNOT primitive. An expression

(THNOT A B)

says 'unless we can prove that A is true, assume that B is true. An example of thismight be a form to be executed when we are discussing a bird

(THNOT OSTRICH (X)
ASSUME FLIES (X))

which says 'assume that X can fly, unless we can deduce that he is an ostrich.'

C4 Procedural Representationsof Knowledge 179

'4

M

THNOT can only function correctly if certain aspects of our knowledge are 'complete.
In the above example, we assume that, if X were an ostrich, we would know that fact (or, we
would have some way to deduce it). If we do not have this 'complete' knowledge, the
system might make incorrect inferences. This is not necessarily a serious problem; there
might be times that we want the system to 'jump to conclusions'. This will be discussed
later.

THNOT and similar functions take us beyond the realm of ordinary logic, since they
violate the property of monotonicity. Monotonicitystates that, if a conclusion is derivable from
a certain collection of facts, the same conclusion remains derivable if more facts are added.
Obviously, Planner, with the THNOT primitive, does not observe this property. In essense,
procedural and declarative systems implement different logics; this is discussed in Reiter,
1978. As Hewitt, 1972 points out, the logic of Planner is a combination of classical logic,
Intuitlonistic logic, and recursive function theory. Winograd, 1979 outlines a taxonomy of
'extended inference modes' which are outside the provision of ordinary logic.

(c) the 'separate language* approach

The work on the (3) approach, by Hayes and Kowalski, has had a radically different
emphasis. The intent here is to use a standard representation language, like the predicate
calculus, with an associated inference structure, but to build 'on top of it 1 a separatecontrol
language, for restricting the inferences which will actually be made. The control language is
subservient to the representation language; that Is, it should not affect the final results
which are achieved by the system, only the efficiency with which it performs. Unlike the
Planner family, for instance, the languagesin this class preserve monotonicity.

This approach has not had the impact on artificial intelligence of the Planner work.
However, it has provided a clarification of the issues involved.

Since this approach is so different from the other two, it will not be discussed further;
the term 'procedural' is usually used in artificial intelligence to refer to representations of
the Planner class.

The next section will consider the effectiveness of procedural representations in A.I.

We have discussed three phases in the development of procedural representations:
simple programs, programs with data bases, and more general A.I. systems with pattern-
matching capabilities. Within the last group, we have identified three approaches, typified,
respectively, by Planner, Conniver, and Golux, of which the first is dominant.

In this section we will evaluate the procedural representations, with respect to their
usefulness in artificial intelligence and their differences from declarative systems. The
discussion here will consider only currently developed systems; it is possible that future
procedural representations might not have the same set of advantages and disadvantages
discussed below.'

The work on procedural representations occurred mostly in the period from 1 969 to
1973, during which a number of new representation languages were developed to test out
such ideas.

180

The Representationof Knowledge

This work has now changed direction somewhat, for reasons which will be discussed
later. It is now possible, given the perspective of time, to evaluate the contributions and
failings of such efforts. A similar discussion of these issues appears in Winograd, 1975.

First, the advantages of procedural representations. Chief among these is the ability
to represent heuristic knowledge ~ i.e., domain-dependent information which might enable
more effective deduction processes. This includes information about whether a theorem
should be used in a backward or forward direction, which knowledge should be used in a
given situation, and which subgoais should be tried first.

The most important result of this ability to encode heuristic knowledge is the efficiency
realized by such systems. We are not dependent on general search to solve our problem,
but can put in as much knowledge of the particular as we happen to have. Efficieny of this
sort was the motivation behind most of the work on procedural representations.

A related advantage is the ability to perform non-logical inferences, as discussed in the
previous section. These are methods, such as default reasoning, which cannot easily be
expressed in a more uniform deduction system (but, for an example of an attempt to include
this in predicate calculus, see McCarthy, 1977). Winograd, 1979 discusses this issue
further, arguing that these types of non-logical reasoning are necessary in a system which
attempts to model human reasoning.

I
Another advantage accruing to procedural representations is the ability to do modeling.

That is, certain actions or events are difficult to represent in a declarative way; a naive
declarative formulation will often encounter the frame problem, concerning what effects
actions have on the state of the world.

To take an example from the 'blocks world', if A is on B, and we move B, we should
update the location of A; but, if we move C (a completely different block), the location of A
does not change. The propagation of those facts which have not changed (which causes
combinatorial problems in a declarative system) is much easier in a procedural system: we
simply 'perform' the desired actions, and update the world accordingly; the data base
represents the current state of the world. This method does have one drawback, discussed
below. Interestingly, the frame problem is avoided here for precisely the same reasons as in
analogical representations, discussed in article 86.

There are, however, some serious difficulties associated with the procedural approach
(at least, as it has been developedthus far).

One of these concerns the fact that many procedural systems are not complete; thereare cases in which one possesses all the facts required to reach a certain conclusion, butthe language is not powerful enough to make the required deductions. One example of this is
Planner's handling of disjunction. As Moore, 1975 points out, if we are given the facts(expressed in a simple propositionaicalculus):

A v a
a:>c
b__>c

C4 , Procedural Representations of Knowledge 181

111!

'H':

"*ij

we should be able to infer C; however, Planner lacks the machinery for doing this. Note that
a resoiution-based theoremprover could do this easily; thus, this is one area in which Planner
is inferior to declarative formalisms.

Note, however, that completeness is not necessarilydesireable. There are many "cases
in which we want the system to work quickly, and are not so concerned about accuracy. If
the system is complete, it might take a long time to find a particular answer (or, to conclude
that It cannot find the answer), when we would prefer that it return quickly, confessing its
ignorance.

A different aspect of deductive systems is consistency; a system is consistent if ail its
deductions are correct — that is, if the conclusion necessarily follows from the premises.
Again, most theorem-proving systems have this property, but procedural systems often do
not. ofor example, the use of default reasoning can introduce inconsistency, in the presence
of incomplete knowledge. Thus, if we use the fact that fred is a bird to conclude that he can
fly, and later discover that he is an ostrich, we will have inconsistency. Inconsistence can
be harmful because, in certain kinds of deductive systems (including most of those based on
first-order logic)! it can lead to completely wrong inferences. Hewitt, 1975 refers to this as
the 'Garbage In — GarbageOut* principle.

Like completeness, consistency is not necessarily desireable. McDermott & Doyle,
1978 argue that much of our reasoning is done by revising our beliefs in the presence of
new information. Similarly, Hewitt indicates that most of our knowledge is not absolute; we
regularly accept caveats and exceptions. Also, if we control the reasoning sufficiently
tightly in the presence of inconsistency, the 'garbage In -- garbage out* effect will not
operate.

Another drawback of procedural representations (in their current form) is that the
control information sometimes 'gets in the way. For example, if we want to prove (A a B),
Planner enables us to express this as (THAND A B), whch essentially says 'prove A, then B\
There Is no way to omit this type of

information,

even if we want to. Similarly, we are
required to state for each theorem, whether it is to be used in aoforward or backward
direction, even if we have no idea, a priori, which to chose.

Procedural systems also suffer from a lack of generality. With uniform theorem provers
it is necessary only to state the appropriate knowledge; the reasoning system will perform
the correct deductions. With procedural systems, we must encode not only the knowledge,
but also instructions for its use. Thus, more work is required to adapt a system for a new
domain. In this respect, procedural systems have not attained the generality which was one
of the major goals.

The modeling which procedural languages facilitate, discussed earlier, has an inherent
limitation: we are unable to reason about different states of the world. That is, we cannot
represent statements such as 'this tower is taller now than it was five minutes ago', since
the modeling approach does not provide a way of talking about states of the world existing
'now' and 'five minutes ago.

In general, procedural systems experience difficulty in reasoning with some kinds of
incomplete information (this is not related to the question of deductive completeness,
discussed above). As mentioned earlier, the 'default' reasoning can produce inconsistent

182 The Representationof Knowledge

J

results in the absence of complete information about the domain. Similarly, the modeling
discussed in the previous paragraph requires complete information to function correctly.
Thus, domains of incomplete information are often ill-suited for procedural representations.
Note that this characteristic is shared with analogical representations. (B6)

Another feature which is sacrificed in the procedural approach is modularity. In a
procedural representation, the interaction between various pieces of knowledge is high.
Thus, a change (or addition) to the knowledge base might have more far-reaching effects
than a similar change in a base of predicate calculus assertions. In essence, this is the
price we pay pay for the greater degree of control permitted in procedures. Note that this
criticism is most applicable to 'pure' procedural systems. Languages like Planner, with
pattern-directed invocation, retain a somewhat modular flavor; in fact, one of the virtues of
Planner is that it provides a uniform way of expressing procedural knowledge.

A disadvantage which specifically appears in Planner is the use of automatic
backtracking. Planner will try as many ways as it can to achieve a particular goal, sometimes
retrying different versions of a goal which a more 'intelligent' system would have rejected
after the first failure. This leads to obvious problems concerning efficiency. Note that thisis, in some sense, another version of the problem of combinatorial explosion which occurs
with uniform theorem provers. This particular problem has been removed in the later
procedural languages by forcing the user to indicate explicitly where, when, and how he
wants backtracking to occur.

The consensus among artificial intelligenceresearchers (see, e.g., Moore, 1975, eh. 5)
is that there should be ways to embed control in a deductive system, but that the methods
tried thus far have many flaws in them, ofor example, two specific criticisms have been
directed at Planner's method of specifying control. First, it is too local; Planner is unable to
consider the overal shape of the goal tree, which would enable it to search the tree more
effectively.

Second,

Planner Is unable to 'reason' about its control information; ideally, it
should be able to make decisions on the basis of facts about control, as it can' now make
decisions on the basis of facts about the world.

The interest in procedural representations has been replaced by other formalisms suchas frames (B7). These embody a slightly different approach to the problem of organizing andusing knowledge.

C5 Semantic Primitives 183

-■:i

M

li
■'A

■n

C5. Semantic Primitives

Many AI programs are problem solvers operating in a specific, limited problem domain.
Others—like GPS, REF-ARF, and general-purpose theorem provers—aim at applicability to
problems from a wide varietyof domains. In either case, the system must include a language
for stating problems and a representation, in some combination of data structures and
procedures, of the knowledge that can be brought to bear in problem solving.

If the program is a specialized one, its representations of problems artd of knowledge
can be tailored very specifically to the problem domain. If the program is general, it is likely
to work by applying a single, general algorithm to problems that, however varied, have been
reduced to something like a least common denominator. REF-ARF, for example, required all
problems to be cast In the terms of a particular programming language; GPS, that they be
stated in a language of objects and operators together with a Table of Connections; theorem
provers, that they be axiomatized in the predicate calculus.

There is a class of problems to which neither of these two approaches (the specialized
problem solver and the generalized one) applies. By definition such problems require that
input to the system be in some subset of natural language; so a system requiring previous
translation to some other format would miss the mark. The problem might be to paraphrase
the input, to translate It to another natural language, to answer questions about it, or simply
to store it in some internal representation on the basis of which the other tasks might be
carried out. One aspect of these tasks involves algorithms for parsing and, to some extent,
text generation; these are considered in chapter , Natural Language. The aspect of concern
in this article is one on which less progress has been made. The question is, what would be
a good internal representation of natural language input?

This brings us to a second characteristic of the class of problems considered here: The
natural tenguage to be represented is relatively unspecialized in its content. What is sought
is a representation for problems and knowledge, not in a world of toy blocks (Winograd,
1972), or lunar rocks (Woods, 1968), or of any other subject for a specialized data base
[LIFER], but in a world of everyday human action and commonsense understanding. Typical
problems have as their subject matter events like eating in a restaurant or going to a
birthday party. Expert special-purpose problem solving systems are not what one wants for
such topics. The requirement is for a representation that can accommodate general human
knowledge.

Several of the other articles in this chapter discuss possible formalisms for the internal
representation of natural language input and of the commonsense knowledge needed to
operate on that input in appropriate ways. Such formalisms include the predicate calculus,
semantic nets, and frames. Whatever the choice of formalism, however, there is another
major question concerning the vocabulary to be used within that formalism. In a predicate
calculus representation, for example, what predicates are to be used? In a semantic net,
what node and link types should be provided The use of semantic primitives gives one possible
kind of answer to such questions.

The term semantic primitive is very far from having a clearcut definition. As a starting
point, one may think of a primitive as any symbol that is used but not defined within the
formalism. The term is so used by Wilks, for example, who accordingly concludes that
"primitives are to be found in all natural language understanding systems—even those . . .

184

The Representationof Knowledge

that argue vigorously against them." (Wilks, 1977c, p. 19) A second and narrower usage
takes semantic primitives to be elements of meaning into which the meanings of words and
sentences can be decomposed; examples of such work come from linguistics (e.g.,
Jackendoff, 1975; Jackendoff, 1976) and psychology (e.g., Miller, 1975; Miller, 1976) as
well as from AI.

Additional issues exist about what primitives "really are," how they may be used in
reasoning, and what alternatives there are to using primitives. Winograd, 1978 provides a
general survey and analysis of such questions. The remainder of this article illustrates some
of the possible positions through a review of the two major AI systems for language
understanding that are characterized by their authors as using semantic primitives.

Wilks's System

Yorick Wilks, now of the University of Essex, has been developing a natural language
understanding system since about 1968 (Wilks, 1968; see article VE2, Wilks's Machine
Translation Work). The system accepts paragraphs of English text, producing from them an
internal representation that is a structure made up of semantic primitives. From this
structure, a French translation of the input is generated. The translation serves as a test of
whether the English has been "understood," and the test is objective in a way that
inspection of the internal representation would not be. The translation task also has the
advantage, Wilks suggests, that correct translation of the input may often require only a
shallower' understanding than would the ability to answer arbitrary questions about it.
Consistentlywith these reasons for the choice of translation as a task, most of the effort in
Wilks's system is spent in converting the English input to the internal representation.

The first major problem that Wilks addressed was the resolution of word-sense
ambiguity; for this was the problem on which earlier machine translation efforts had
foundered (see article VEI, Mechanical Translation Overview). For example, in "the
policeman interrogated the crook," the program must be able to determine that "crook"
means a criminal, not a shepherd's crook. In "the old salt was damp," it is necessary to look
beyond the sentence to the surrounding context to decide whether "salt" means a chemical
compound or a sailor. Some other problems of ambiguity that Wilks has also treated include
the following:

(1) Resolving prepositional (case) ambiguity, as in "he put the number in the
table" ("in" as "part of," "table" as a list) versus "he put the fork in the
table" ("in" as "into," "table" as a physical object).

(2) Resolving pronoun references on the basis only of conceptual knowledge of
word meanings, as in "I bought the wine, sat on a rock, and drank it."

(3) Resolving pronoun references where additional world knowledge is required,
as in "the soldiers fired at the women, and I saw several of them fail."

Finally, Wilks emphasizes the importance of allowing for new or extended word senses,
as in "my car drinks gas."

\

C5 Semantic Primitives 185

:A

is!

1
1

j

|

111

The general idea of Wilks's approach, which he calls preference semantics, is to use
knowledge of possible word meanings to disambiguate other words. Part of the meaning of
"drink," for example, is that it prefers a fluid object; and part of the meanings of "wine" and
"gas" is that they are fluids. If the best fit among possible word senses does not satisfy all
preferences (such as the preference of "drink" for an animate subject), then an extended
word sense can be accepted. The formalism within which preferences are expressed, Wilks
suggests, is closer to a frame representation than to a semantic net.

As the description above should make clear, a central requirement in Wilks's system is
a dictionary distinguishing among the various senses of words that can appear in the input
text. Definitions in the dictionary use a vocabulary of semantic primitives, grouped into five
classes. Examples from each class are givenbelow.

Substantives

a human)
a substance)
a part of an entity)

causing something to happen)
being as equivalence or predication)
moving as liquids do)

(direction toward something)
(containment)

GOOD (morally correct or approved)
MUCH (much, applied to a substance)

Type Indicators
HOW (being a type of action—for adverbial constructions)
KINO (being a quality—for adjectival constructions)

In addition to the primitive elements, of which there are currently over eighty, Wilks uses
several elements, distinguished by names beginning with an asterisk, that are defined as
equivalent to a class of primitives. For example, *ANI (animate) encompasses MAN, FOLK (a
human group), BEAST (a nonhuman animal), and certain others. A typical definition using the
primitives is that for one sense of the word "break":

((*HUM SUB J)
(*PHYSOB OBJE)
((((NOTWHOLE KIND) BE) CAUSE) GOAL)
(THING INST)
STRIK)

In English, this says roughly that "break" means a STRIKing, done preferably by a
HUMan SUBJect and preferably with an INSTrument that is a THING, with the GOAL of CAUSIng
a PHYSical OBject to BE NOT WHOLE. Words other than verbs are also defined by such
structured formulas. For example, one of the senses of "crook" is

186

The Representationof Knowledge

)

((((NOTGOOD ACT) OBJE) DO)
(SUBJ MAN))

—i.e., a man who does bad acts. A detailed description of the syntax of such word-
sense definitions, or semantic formulas, is given in Wilks, 1977 c.

The completed representation of a text is a structure made up of such word-sense
formulas. At a level corresponding to the clause or simple sentence, formulas are arranged
into triples, or templates, standing for an agent, an action, and an object; and any of the three
may itself be qualified by other formulas. For example, "Small men sometimes father big
sons" would be structured as follows:

[man] < —> [father] <—> [sons]

I 1 I[small] [sometimes] [big]

Here the bracketed English words should be Imagined as replaced by the formulas
representing their proper senses. Relationships among templates are indicated at a still
higher level of structure. For more detail, see article VE2.

I
What is the status of the primitive vocabulary in Wilks's system First, he argues,

primitives are not essentially different from natural language words. A semantic description
in terms of primitives is just a description in "a reduced micro-language, with all the normal
weaknesses and vagueness of a natural language" Wilks, 1977c. The justificationfor using
a language of primitives, then, is just that it provides "a useful organizing hypothesis ... for
an AI natural language system" (Wilks, 1977c).

Second, individual primitives have their meaning in the same way that English words do:
neither by direct reference to things, nor by correspondence to nonlinguistic psychological
entities,but only by their function within the overall language.

Third, in light of the nature of primitives, there is no one correct vocabulary for a
primitive language, any more than there is a correct vocabulary for English. The test of the
adequacy of a particular set of primitives is an operational one: the success or failure of thelinguistic computations that use it. As suggestive evidence that Wilks's own set of primitives
will indeed turn out to be adequate, he observes that it is very similar to the eighty wordsthat are most frequently used in definitions in Webster's Third New international Dictionary.

Finally, there are nevertheless some general considerations to be taken into account inchoosing a set of primitives. Wilks identifies the following properties as desirable for the set
to have (Wilks, 1977c, p. 3):

1 . Finitude: The number of primitives should be finite and should be smaller thanthe number of words whose meanings it is to encode.

2. Comprehensiveness: The set should be adequate to express and distinguishamong the senses of the word set whose meanings it is to encode.

ft

C5 SemanticPrimitives 187

*l

)

I ;i

Independence: No primitive should be definable in terms of other primitives.

4. Noncircularity: No two primitives should be definable in terms of each other.

Primitiveness; No subset of the primitives should be replaceable be a smaller
set.

A qualification should be noted concerning the property of comprehensiveness: the
definition in primitives of a word-sense is not required to be exhaustive of meaning. Wilks
cites "hammer," "mallet," and "axe" as terms among which a representation in primitives
cannot be expected to distinguish (Wilks, 1977c, p. 11). In addition, the definition of a term
is not expected to say everything; Wilks distinguishes between word meanings, which
definitions express, and facts about things. The definition of "water," for example, might
say that water is a liquid substance, but not that water freezes into ice. Facts of the latter
sort are expressed in in commonsense inference rules, which are separate from the
dictionary and are used only as a last resort in disambiguation.

Schank's Conceptual Dependency

Another system based on semantic primitives is the Conceptual Dependency theory of
Roger Schank (now of Yale University). The theory has evolved since about 1969 (Schank &
Tesler, 1969;

Schank,

1972); its most distinctive

feature,

however, which is the attempt to
provide a representation of all actions using a small number of primitives, was first introduced
in 1972 (Schank, Goldman, Rieger, & Riesbeck, 1972).

There are significant differences between Schank and Wilks, both in the generaloutline
of their systems and in their views of primitives. Wilks's system, for example, is oriented
toward the task of machine translation, whereas Conceptual Dependency theory makes
broader claims. First, Schank emphasizes task independence; and in fact the theory has
been used as the basis of programs that, among other things, can paraphrase an input,
translate it to another language, draw inferences from it, or answer questions about it.
Second, the theory is offered not only as a basis for language-understanding computer
programs but also as an intuitive theory of human language processing.

Consistently with these claims, Schank holds that it is the business of an adequate
representation of natural language utterances to capture their underlying conceptual

structure. A first requirement is that the representation be unambiguous, even though the
input may contain syntactic ambiguity, as In "I saw the Grand Canyon flying to New York," or
semantic ambiguity, as in "The old man's glasses were filled with sherry." The speaker of an
ambiguous sentence usually intends an unambiguous meaning; so the representation is
expectedto reflect only the most likely version of what was intended.

A second requirement is that the representation be unique—that is, that distinct
sentences with the same conceptual content should have the same representation. Some
examples of groups of sentences that are all represented the same way are

I want a book.
I want to get a book.
I want to have a book.

188

The Representationof Knowledge

)

J

and

Don't let John out of the room.
Prevent John from getting out of the room.

The principle of uniqueness of representation has been characterized as the basic
axiom of the system. It also has been justified as accounting for human abilities to
paraphrase and translate text, and to do so in a computationally efficient manner. The
problem of paraphrase—"how sentences which were constructed differently lexically could
be Identical in meaning" (Schank, 1976c) --is a major theme throughout Schank's work.

To obtain unique, unambiguous representations of meaning, Schank's system relies
principally on a set of eleven primitive ACTs (Schank, 1975app. 40-44; Schank & Abelson,

1 977 pp. 12-15). These are as follows:

Physical acts

PROPEL apply a force to a physical object
MOVE move a body part
INGEST take something to the Inside of an animate object
EXPEL force something out from inside an animate object
GRASP grasp an object physically

Acts characterized by resulting state changes

PTRANS change the location of a physical objectATRANS change an abstract relationship, such aspossession or ownership, with respect to an object

Acts used mainly as Instruments for other acts

SPEAK produce a sound
ATTEND direct a sense organ toward a stimulus

Mental acts

MTRANS transfer information
MBUILD construct new information from old information

There are several other categories, or concept types, besides the primitive ACTs in the
representationalsystem. They are:

Picture Producers (PPs), which are physical objects. Some special cases
included among the PPs are natural forces like wind and three postulated
divisions of human memory: the Conceptual Processor, where conscious
thought takes place; the Intermediate Memory; and the Long TermMemory..

Picture Aiders (PAs), which are attributes of objects.

Times.

y

-If

Semantic Primitives 189C5

\

I

Locations.

Action Aiders (AAs), which are attributes of ACTs.

Only a little work has been done on reducing these latter categories to a primitive set;
see Russell, 1972 and Lehnert, 1978 on the analysis of PPs, and Schank, 1975aon the
treatment of PAs as attribute-value pairs.

Detailed rules are provided for the ways that elements of these categories can be
combined into meaning representations. There are two basic kinds of combinations, or
conceptualizations: One involves an actor (a PP) doing a primitive ACT; the other involves an
object (a PP) and a description of its state (a PA). Conceptualizations can be tied together
by relationships of instrumentalityor causation, among others.

I

The primitive elements that occur in conceptualizations are not words, according to
Schank, but concepts; they reflect a level of thought underlying language rather than
language itself. Consequently, representations of text in Conceptual Dependency are said
to be language-free. The task of translation, then, becomes only one task among many; it is
accomplished by parsing from one language into Conceptual Dependency, and then
generating text in the second languagefrom the Conceptual Dependencyrepresentation.

The notion of language-free primitive concepts requires explication. For

Schank,

as for
Wilks, the justificationfor using primitives is functional. Schank differs from Wilks, however,
in his choice of a general sort of function to be optimized, as well as in his view of primitives
as language-free and psychologically plausible. Schank particularly emphasizes the
computationaladvantages, to both programs and people, of storing propositions in a canonical
form. (Schank, 1975b p. 38) This requires, in Schank's view, that information implicit in a
sentence be made explicit. (Schank, 1975app. 9, 16; Schank & Abelson, 1977 p. 11)
Obtaining the implicit information in turn requires inferencing. (Schank, 1975ap. 17) And it is
as an aid to inferencing that the use of primitives receives its most important justification.
Schank says, for example:

Rather than stating that if you see something, then you know it and if you
hear something then you know it and if you read something then you know
it and so on, we simply state that whenever an MTRANS exists, a likely
Inference is that the MTRANSed information is in the mental location LTM
[Long Term Memory] (our representation for "know"). This is a
tremendous savings of time and space. (Schank, 1975b p. 40)

Each primitive ACT, then, entails its own set of inferences. As a fuller example, the
following are the main Inferences from the fact that X PTRANSed V from W to Z:

1) Vis now located at Z.

2) V is no longer at location W.

3) If Z = X, or Z Is human and requested the PTRANS, then Z will probably do
whatever one ordinarily does with Y. Moreover, Z probably will become
pleased by doing this. (Schank, 1975ap. 71)

190 The Representationof Knowledge*

Such inferences provide both the criterion for choosing a set of primitives and the
definition of what primitives are. The primitive ACTs, Schank states, (Schank & Abeison,
1977 p. 75; see also

Schank,

1975ap. 68, Schank, 1975b p. 40) are no more than the sets
of inferences to which they give rise. Moreover:

The theoretical decision for what constitutes a primitive ACT is based on
whether -the proposed new ACT carries with it a set of inferences not
already accounted for by an ACT that is already in use. Similarly, a
primitive ACT Is dropped when we find that its inferences are already
handled by another ACT. (Schank, 1975b p. 40)

In his earlier work (Schank, 1973a, p. 14; see also Schank, 1975c, p. 238), Schank
claimed that the primitive ACTs of Conceptual Dependency, together with some set of
possible states of objects, were sufficient to represent the meaning of any English verb. It
soon became clear, however, that additional mechanisms would be needed for a general-
purpose language-understanding system. For example, there are problems of quantification
and of metaphor, which have not yet been addressed (Schank & Abeison, 1977, p. 167);
there are problems raised by the fact that natural-language communications often
presuppose a great deal of background knowledge, some of which has to do with the typical
course of events in commonplace situations like eating in a restaurant or taking a bus (see
article on B7); and, of particular importance with respect to the use of primitives, there are
problems arising from the fact that Conceptual Dependency generally expresses the meaning
of an action verb only in terms of its physical realization. One example is the reduction of
"kiss" to "MOVE lips to lips." (see Schank & Abeison, 1977, p. 130) The inadequacy of this
representationbecomes especiallyapparent in light of the claim that no information is lost by
the use of primitive ACTs to represent actions. (Schank, 1975c, pp. 238, 239)

Recently Schank has added several new devices to his representational system to
reflect the purposive aspects of actions as well as their physical descriptions. These
include goals, which can be realized by appropriate sequences of acts; scripts, which provide
such sequences in simple stereotyped situations; plans, which provide a more flexible way of
specifying the appropriate action sequences, including the treatment of a whole set of
alternative subsequences as a single subgoal; and themes, which include people's
occupations (e.g., lawyer), their relationships with others (e.g., love), and their general aims(e.g., gettingrich), and which are offered as the source of their goals. The representation ofa piece of text is thus extended to try to take into account not only what caused what but
also what was intended to cause what and why the actor might have had such an intention in
the first place. In addition, Schank has recently supplemented the primitive ACTs with
several social ACTs-AUTHORIZE, ORDER, DISPUTE, and PETITION-in order to represent yet
another dimension of human actions more readily. None of these devices, however, is
characterized as introducing a new set of primitives.

1;|

C6 AnalogicalRepresentations 191

■j

I
i

"i

.'i

C6. AnalogicalRepresentations

There is a class of representation schemes with properties different from the schemes
previously discussed. These are the analogical or direct representations, which include maps,
models, diagrams, sheet music, etc.

Analogical representations have been defined as systems in which "properties of and
relations between parts of the representing configuration represent properties and relations
of parts in a complex represented configuration, so that the structure of the representation
gives information about the structure of what is represented." (Sloman, 1971). The
significant point here is the requirement of correspondence between relations in the
representation, and relations in the represented situation. Hayes, 1974 indicates that the
connection between the representation and the situation is thus one of homomorphism
(structural similarity) rather than denotation. For example, the proximity of two points on a
map indicates the geographical proximity of the two points in the world. Analogical
representations may be contrasted with the more prevalent propositional or fregean forms (so
called after Frege, who invented the predicate calculus), which include most common types
of representation. Fregean forms do not require this correspondence between relations in
the representation and relations in the situation; for example, proximity of assertions in a
predicate calculus data base does not indicate proximity between the subjects of these
assertions in the real domain.

The degree to which a representation can be described as analog is affected by the
routines which operate on that representation. That is, unless the interpretive processes
make use of the full structure of the representation, power may be sacrificed. Continuing
with the map example, if a routine for examining a map retrieved all distances from an
internal table, rather than by looking at the map, it would be pointless to say that the map
was analogical with respect to distance. (Pylyshyn, 1975, Pylyshyn, 1978) refers to the
interpretive processes collectively as the Semantic Interpretation Function (5.1.F.), and
suggests that the terms "analogical" and "Fregean" can only be applied to a system
(representationpaired with an 5.1.F.), rather than to the representation alone.

When we use the term "analogical" we mean analogical with respect to certain properties.
For example, a map (with a reasonable 5.1.F.) is analogical with respect to location (and
hence distance), but not (usually) with respect to elevation.

The analogical/propositional distinction has been the subject of discussion in
psychology, where researchers have presented conflicting arguments about the nature of
human memory. Pylyshyn, 1973 presents a thorough treatment of this issue.

Analogical representations are less general than propositional ones, and therefore
suited for a smaller class of task domains. However,for those

specific domains, the analogical representation has some significant advantages. In
particular, the problem of updating the representation becomes much simpler. For example, if
we add a new city to a map, we need not explicitly state its distance from all the old cities,
but can trust that the distance on the map accuratelyrepresents the distance in the world.
Thus, for those properties which are analogicallyrepresented, the frame problem (McCarthy
& Hayes, 1 969), of updating the state of ail objects in a scene after one has been altered,
is minimized.

192

The Representationof Knowledge

)

\

The next section of this article presents some systems which use analogical
representations; the final section returns to a discussion of the advantages and
disadvantagesof these representations.

Systems Using AnalogicalRepresentations

The Geometry-Theorem Prover (Gelernter, 1959 and article Search.D3) was one of
the earliest theorem provers of any sort, and was distinguished by its reliance on a diagram
to control search. .The system proved theorems in Euclidean geometry, of the simple sort
often done by high school students. The system operated via problem-reduction Saarch.B2,
working backward from the goal, and trying toprove the subgoals generated.

♦ Together with a statement of the problem, the system was given a simple diagram,
which it used in two ways. The most important of these was the pruning heuristic, "Reject
as false any statement (goal) which is not true in the diagram". Only those subgoals which
were not contradicted in the diagram were pursued via the formal proof methods. Note that
the system might miss a valid proof (if, e.g., some fact which was true did not happen to be
true in the diagram), but would never accept an Invalid one, since the final proofs were
performed formally; any fact which was "accidentally" true in the diagram would be
contradicted later in the developmentof the proof.

A sample problem 1s

Given: Angle ABD equals angle DBC.Segment AD perpendicular segment AB.Segment DC perpendicular segment BC.
Prove: Segment AD equals segment CD.

The other use of the diagram was to establish "obvious" facts, concerning, for
example, the ordering property of points on a line, and the intersection properties of lines ina plane. Many of these are self-evident from the diagram, but would be tiresome to provefrom fundamental axioms. In certain such circumstances, the program would assume the facttrue if it were true in the diagram, while explicitly noting that it had made, such anassumption.

The program did not construct the diagram itself; rather, the diagram was input alongwith the problem statement. However, the program was able to add additional lines to thediagram, when necessary. For example, given the following problem:

i
j

;l

C6 AnalogicalRepresentations 193

i

'i

■:i

*1 1

'.j

!
\

Given: Quad-lateral ABCD.
Segment BC parallel to AD
Segment BD equals AD.

Prove: Segment AB equals segment CD.

Solution is difficult without hypothesizing the line BD. Eventually, the program will
construct that line, then use congruence of triangles to establish the proof.

The use of the diagram resulted in the pruning of about 995 out of every 1000
subgoals, at each level of search. The final improvement,

therefore,

was several orders of
magnitude.

Work on the General Space Planner (Eastman, 1970, Eastman, 1973) addressed the
general class of space planning problems. The goal in these tasks is to arrange a set of
domain units (e.g., objects) in a space (e.g., a room), subject to given constraints (e.g.,
adjacency, line-of-sight). A simple problem is:

1 2

3 4

and the constraints:
3) must be adjacent to (4)
2) must be adjacent to (3)
1) must be visible from (3)
1) must not be adjacent to any other objects,

one solution 1s:

A concrete version of this problem might be a machine room, with the objects being
pieces of equipment to be placed.

The system used a representation, called a variable domain array Eastman, 1970 which

194 The Representationof Knowledge
%

was a specialization of the sort of 2-d diagram used by Gelernter. It consisted of
partitioning the diagram into a set of rectangles, to save space in memory. This did not
affect the fundamental properties of the representation; In particular, the structure of the
representationreflected the structure of the space, with respect to the properties of size,
shape, and position (so the system could be described as "analogical", with respect to those
properties).

Also, the system had two properties identified by Eastman as useful for the space
planning task:

(1) both filled and empty space are represented(useful for solution of problems
like the one here)

(2) overlaps between objects can be easily detected (necessary for more
sophisticated problems)

The system solved the problems via a depth-first search algorithm (Search.Overview),
locating successive objects and backing up when necessary. The search was facilitated by
a constraint graph, which represented, via restrictions on the amount of area

left,

the effects
of constraints between pairs of objects. Thus, the search could attack the most restrictive
constraint first, and produce an efficient search. This method has been called constraint
structured planning. I

Note that Eastman's work is in one sense the reverse of Gelernter's. Gelernter's
system performed search in a propositional space (sets of formal statements) using an
analogical representation (the diagram) for guidance. Eastman's performed search in an
analogical space (the diagrammatic array) using a propositional form (the constraint graph)
for heuristic guidance.

The WHISPER system Funt, 1976 was a system designed to function completely via
the analogical representation, unlike Gelernter's theorem prover which used the diagram
merely to augment its reasoning.

The system operated in a simplified blocks-world environment. An example problem is:

"

C6 Analogical Representations

mi

\

i

?5

li

The system consisted of the following components:

■

??.

The "diagram" was an array, which represented the 2-dimensional scene in the obvious
way, as shown above. The retina, used to view the diagram, consisted of a set of parallel
receptors, arranged in concentric circles; each receptor viewed a small (local) part of the
diagram. The high-level reasoner, containing qualitative physical knowledge, was the domain-
dependent part of the system; it employed information regarding the behavior of rigid bodies
when acted upon by gravity.

-.i

I

/ \ Given four blocks which start
/ \ in this configuration, what will

/ \ happen when block B tumbles onto block D?
B \

) " <
A

table
1

196 The Representationof Knowledge*

The significance of the diagram to WHISPER lay in the fact that there were two types
of analogs present:

(a) between the static states of the diagram and the static states of the world

(b) between dynamic behavior of objects In the diagram, and similar behavior of
objects in the world

The correspondences between the diagram and the world were simple and well-
defined; no complicated processes were required to map from one to the other. A number of
properties, such as position, orientation, and size of blocks, were represented analogically.
For these properties, it was not necessary to perform complicated deductions, since they
"fell out" of the diagrams. For example,to test whether or not a particular area of the world
was "empty" (i.e., not occupied by any block), the system had only to "look at" the
corresponding area of the diagram (the Space Planner system also had this property). With
most propositional representations (e.g., Fahlman, 1974,), it would be necessary to
enumerate each block individually, testing whether or not that block overlapped the space in
question.

Note that certain properties (e.g., color, weight) were not represented in the analog.
To reason about these, normal deduction would be necessary. I

The retina, used for viewing the diagram, also provided a number of perceptual primitives,
including center of area, contact finding, similarity testing, etc. The high-level reasoner
never looked at the diagram directly, but only thru the retina.

WHISPER thus constituted an example of a system for solving problems using an
exclusively analogicalrepresentation.

Baker, 1973 had earlier suggested a similar representational formalism. Like. Funt, he
envisioned a 2-dimensional array to represent the diagram; however, he also discussed the
possibility of retaining spatial "smoothing" information within each cell of the array, to remove
some of the error induced by the coarseness of the array.

Both Funt and Baker suggested that the parallelism of their systems coupled well with
the analogical representations. The elements of their processors (in Funt's case, the retina)
could operate autonomously, with connections only to their (spatially) neighboring cells. Via
this sort of network, arbitrary transformations, via combinations of translation and rotation,
could be represented.

Issues Concerning AnalogicalRepresentations

The work done to date on direct representationsraises a number of issues. These will
be discussed here, but not resolved.

First, we will justifyour characterization of an analogical representation.

Sloman,

1975
presents some popular misconceptions about such representations, and clarifies them.
Analogical representations need not be continuous; a sorted list (of, e.g., numbers) is

1 '
\

"I

C6 Analogical Representations 197

analogicalwith respect to size. Analogical representations need not be 2-dimensional; again,
the sorted list is an example of a 1-dimensional representation. Analogical representations,
like Fregean ones, may have a grammar which defines them. Thus, the difference reduces to
the statement given in the overview; there must be a correspondence between aspects of- the structure of the representation, and the structure of the represented situation.

One of the advantages of analogical representations over their propositional
countecparts relates to the difference between observation and deduction: the former is
relatively cheap (in some situations) while the latter can require a great deal of computation.
To take an example from Funt, if we wish to discover the behavior of an experiment with a
pile of blocks on the moon, we can perform the sam experiment on earth; if the analogy
between our representation (the experiment on earth) and the situation (the experiment on
the moon) is strong enough, the results will be valid. Thus, we have avoided the necessity
for deduction, by ensuring that the relevant properties were "carried over" into our
(analogical) representation. In general, "observation" occurs in the form of computation; we
transform the representationin ways which correspond to events in the real world.

Funt relates a more abstract justificationfor the use of analogical representations. A
Fregean representation (consisting of, e.g., a set of predicate caluculus axioms) will often
admit to several models — i.e., situations of the world which satisfy the axioms. Thus, any
proofs from the axioms will be valid In all such models. Analogical representation, on the
other hand, are usually more exhaustive and specific, admitting fewer models. Thus, results
proved about these representations are less general. Since generality is 'expensive' (i.e.,
general results are usually harder to prove than specific ones), we often prefer to work with
the most specific form — in this case, the analogical.

Additionally, as illustrated by Gelernter's work, the use of analogical representations
can facilitate search. Constraints in the problem situation are represented by constraints on
the types of transformations applied to the representation, so that impossible strategies are
rejected immediately.

There are, however, some disadvantages to the use of these direct representations.
First is the general/specific question mentioned earlier; analogical representations tend to
restrict us to more specific problems. But, as

Sloman,

1975 points out, there are times when
generality is needed. For example, consider the problem "If I start in room A and then move
back and forth between room A and room B, which room will I be in after exactly 377
moves?". For this case, the best approach Is not to simulate the action, but to generalize
the effects of odd and even numbers of moves.

Second, as Funt points out, some features of the analog may not hold in the actual
situation, and we might not know which ones these are. This is related to the general
question of knowing the limits of the representation.

Third, analogical representations become unwieldy for certain types of incomplete

information,

that is, if a new city is added to a map, its distance from other cities is obtained
easily. But, suppose that its location is known only indirectly — e.g., that it is equidistant
from cities V and Z. then, the distance to other cities must be represented as equations, and
the power of the analoghas been lost.

Sloman (1971) suggested generalizing the concept of valid inference, to include work

198 The Representationof Knowledge
*

with direct representations <extends to the notion of proof in the analogical medium>. For
example, given the situation (a) below, we want to infer (b).

(a) (b)

r-fir '-rt-J r-7\ "—7VI
We have two levers, connected by a rope passing over a pully (as shown).
If one lever is pushed up (as indicated by the arrow), what will be the
effect upon the opposite end of the other lever?

The answer, as shown in (b), is that it will move down.

Unfortunately, these rules of inference will be hard to specify. As yet, the problem is
ill-understood.

To conclude, analog representations are analog with respect to some properties of the
situation being represented. Some properties (especially physical ones) may be relatively
easily represented analogically, and the savings in computation may be very worthwhile.

I

C7 Frames and Scripts 199

]i
C7. Frames and Scripts

"i illfi 111; 1111 If:

\M\

One major observation by psychologists (Bartlett, 1932) about our daily cognitive
activity is that we use a large, well-coordinated body of knowledge based on previous
experiences to actively interpret new situations. For example, when we visit a restaurant
that we have never been to before, we have an extensive array of expectations based on
experience in other restaurants about what we will find: Maitre d's, menus, tables, etc. In
addition to these expectations about the objects in a typical restaurant, we have strong
expectations about the sequence of events that are likely to take place. In AI this knowledge
about typical objects and events for a given context have been called frames and scripts,
respectively. Frames were originally proposed by Minsky (1975) as a basis for understanding
visual perception, natural language dialogues, and other complex behaviors. Scripts have
been developedby Schank & Abeison (1977). They are discussed in detail in the articles
Natural Language.F6 and Natural Language.F3, but they are mentioned here because they
serve the same purpose for Schank and Abeison as frames, namely, they organizeknowledge
in a way that directs attention and facilitates inference and other cognitive processes.

The stuctyre of a frame is based on the observation that many of our normal cognitive
activities are stereotyped and general, but are "fine-tuned" to whatever a specific task
Involves. These tasks have a strongly interpretive flavor to them. Frames provide a way of
interpreting a collection of data as an instance of some concept. As a simple example,
consider the concept of "chair". Deciding whether an object Is a chair Is an interpretive task
in which general and stereotyped characteristics are "filled in" (or instantiated) by a
particular instance of a chair:

Instance of: Chair
4 legs

Frame: Chair
Number of legs:
Style of back:
Style of seat:
Number of arms:

Cushioned back
Embroidered seat cover
Armless

The characteristics which are filled in whenever an object is recognized as a chair are
called slots. A frame is a collection of slots, although a slot may be associated with more than
one frame. In particular, two or more frames may share a slot, for example, the concept of
"seat" is common to chairs, cars, and bicycles. Also, the slot may itself be a frame, for
example, the concept of "seat" has many characteristics (slots): size,

firmness,

durability,
etc. Thus, frames can be "nested" within each other, which is consistent with the
psychological idea of defining concepts in terms of other concepts.

One can imagine slots as "gaps" in the frame that must be filled as the situation is
interpreted. There are two types of concepts, (1) object descriptors such as color, location,
size, etc. and (2) action or event sequences such as going to a restaurant or riding a
bicycle. Groupings of object descriptors have been referred to as frames (Minsky, 1975),
prototypes (Aikins, 1979), hypotheses (Szolovitz, Hawkinson, & Martin, 1977), schemas
(Davis, 1976), and units (Winograd, 1975); groupings of action or causal sequences,
referred to as scripts (Schank & Abeison, 1977).

The slots are initially empty when a frame is chosen but are rapidly filled with specific

200 The Representationof Knowledge
*

values as the frame is matched to the situation. Since the collection of slots composing the
frame are assumed to be the most relevant concepts to use for the particular situation, they
serve as a focus-of-attention device that guides the direction of cognitive processing. The
slots resemble questions that the frame is asking of the situation.

Frames are organized into larger frame systems, collections of specific task-related
frames. Any changes of emphasis or attention in performing the task are reflected in the
transformations occurring between frames within a frame system. When frames within a
system share the same slots, it is possible to share slot-values between the

frames,

instead
of recomputing the common slot-values for each. Thus, frame systems provide a means of
value inheritance that reduces the amount of cognitive labor a system has to perform.

In the following sections we will describe some of the major ideas from the frames
literature and briefly describe some of the systems that have explored them.

OrganizingKnowledge in Frames and Scripts

To illustrate some of the current ideas about slots and frames and how they might be
used by a frame-driven system, consider the following example: A frame that specifies the
characteristics (slots) of a restaurant. An incomplete example of such a frame is given
below. The terminology used for this example is not in use by any one system; it is intended
only to give the flavor of frame systems.(See Winograd, 1975, Schank & Abeison, 1977, and
Szolovitz, Hawkinson, & Martin, 1977 for more system-specific details). Annotations are in
italics.

I

■yj

C7 Frames and Scripts 201

;
\r

J

\

Restaurant this is a Restaurant frame
AKindOf: BusinessEstablishment
Establ ishmentName:

restaurants are places of business

default: Joe's Grill a standard name

t

if -needed: and how tofind the real name
Sign is anotherframe

(Find a Sign with Words (Restaurant or Grill or Place))
Location:

default: (an Address 1n SanFranclsco) ... as are Address and
SanFrancisco, etc.

range: (an Address in World)
FoodStyle:

default: Burgers
range: delimits possible values

for this slot
(Burgers, Szechewan, Mandarin, FreshSeafood, HauteCuisine)

i f-added : if we find this out,
update the Alternatives

(Update Alternatives of Restaurant)
TimesofOperation: (a TimeofDay that is IntheEvening)
PaymentForm:

default: CredltCard
range: (Cash, CredltCard, Check, WashlngDishesScript)

PMceßange:
default: Moderate
range: (FreeLunch, Average, Moderate, Expensive)
if-needed: (AveragePMces of RestaurantMenu)

EventSequence:
default: Eatatßestaurant a script, see below
1f~n66d6d t

(1f ChefPerson then (Try Cookatßestaurant)
if WaltPerson then (Try Serveatßestaurant))

FoodQuality:
default: Mediocre
range: (Ugh, Mediocre, Palatable, Ok, Excellent, Magnlflque)
If-needed: ((Ask a Connoisseur) or (TasteTest))

Alternatives:
If-needed: (Find all Restaurants with the same FoodStyle)

Examples: (Sam's Grill, Tadlch, Scott's, Pacific Cafe)

;,i

A visitor to a specific restaurant can be guided in his expectations or actions, using
this generic or prototypical Restaurant frame. It provides a way of organizing and using the
information about restaurants and thus establishes the concept or class called Restaurant. A
specific example, or instance of a restaurant say Sam's Grill, might be represented by the
following assignment of values to the slots specified by the prototypic Restaurant frame:

Sam's Grill frame

202 The Representationof Knowledge
*

ASpecializationOf: Restaurant
NameOfEstablishment: Sam's Grill
Location: (300 Bush, SanFrancisco)
TimesofOperation: (M-F, 10am-8:30pm)
FoodStyle: FreshSeafood
Priceßange: Expensive
ServiceQuallty:Excellent
FoodQuality: Excellent
PaymentForm: (CreditCards, Cash, Check)
Alternatives: (Tadich, Pacific Cafe)

Note that not all of the slots specified in the general Restaurant frame need to be filled
in for the instance of the restaurant. Default values are supplied for those unspecified slots
in the instance frame. These will be used unless new information is found to update the value
for that slot. For example, the default EventSequence that was probably followed at Sam's
is described by the Eatatßestaurant script described below:

Eatatßestaurant Script
Props: (Restaurant, Money, Food, Menu, Tables, Chairs)
Roles: (HungryPersons, WaitPersons, ChefPersons)
PointofView: HungryPersons I
TimeofOccurence: (TimesofOperationof Restaurant)
PlaceofOccurence: (Location of Restaurant)
EventSequence: a default sequence

first: EnterßestaurantScript
then: if (WaitToßeSeatedSlgnor Reservations)

then GetMaitred'sAttentionScript
then: PleaseßeSeatedScript
then: OrderFoodScript
then: EatFoodScript unless (LongWait) when

ExitßestaurantAngryScript
then: if (FoodQuality was better than Palatable)

then ComplementsToTheChefScript
then: PayForltScript
finally: LeaveßestaurantScript

This is a very crude rendition of the Restaurant script given by Schank & Abeison,
1977Natural Language.Fß. in particular, this script is presented in English, while Schank's
scripts are represented in conceptual dependencyformat (B5).

We see that this script specifies a normal or default sequence of events as well as
exceptions and possible error situations. The script also requires the use of a few static
descriptions such as Props and Roles that are filled by other frames. Scripts are being
researched extensivelyby Schank and his colleagues (Schank & Abeison, 1977).

These frames and scripts form a frame system for dealing with most of the scenarios
involving restaurants. They might be part of other frame systems such as a system to
recognize BusinessEstabiishments like Banks and ServiceStations.

C7 Frames and Scripts 203

il

i;i

!

\

We will now consider how frames can be used to direct reasoning and provide a focus-
of-attention for a system that is frame-driven.

iProceduralKnowledge in Frames and Scripts

The preceding discussion emphasized the declarative aspects of frames and scripts,
that is, how facts about objects and situations might be represented and stored. However,
frames not only accommodate facts and pieces of information as they are gathered, but they
also determine the direction in which they are sought. In particular, we will see how
procedures attached to slots can guide the reasoning of the system as it attempts to apply
a frame to a situation.

FILLING OUT SLOTS. Filling out the slots of a frame or script is the primary process
that occurs after the frame or script is selected. Script slots provide expectations of events
to occur, just as frame slots provide expectations of objects and properties to be found in a
scene. Filling the slots provides confirmation that the frame or script is appropriate for the
scene or event, and amounts to understanding it. For example, Schank's script-based story
understander (Natural Language.F6) can be said to have understood a story when each slot
in the appropriate script has been filled by an explicit event, or by an implied one. As-
discussed above, one way of filling a slot is to use default values specified in a generic
frame until other information becomes available. These values are typical assumptions that
can be made without great repercussions and are used in lieu of other knowledge. For
example, the default value for the TimesOperationslot of the generic Restaurant frame might
be "Open Evenings Except Mondays."

I

Information to update a slot value can also be found in a number of other ways. The slot
could inherit a value from another frame in the same frame system that has generated it.
The Restaurant script, for example, inherits the times of operation and the location from the
Restaurant frame. Default and inherited values are relatively inexpensive methods of finding
new information for slots. These methods account for a large part of the power of

frames;

any new frames interpreting the situation can make use of values determined by prior
experience,without having to recompute them.

However, for some slots a certain amount of reasoning or a specific procedure might be
required to obtain these values. In these cases, the method of procedural attachment provides
a way of specifing slot-specific processes. These procedures attempt to determine the
value of a slot on demand and are sometimes referred to as servants. The use of attached
procedures allows us to specify methods that can take advantage of the current context by
supplying slot-specific heuristics for the determination of the slot values. These heuristics
might propose some simple inquiries to the database, some theorems to be proved, a set of
production rules to be fired, or an arbitrary procedure . For example, when we want to know
what the food tastes like (to fill in the FoodQuality slot), we are advised to try some
(TasteTest) or ask someone we trust who might have tried it before (Ask a Connoisseur).

Another frequently used form of procedural attachments are those that are activated
by changing the value of a slot. These procedures are invoked when a value is found for a
slot. Since these procedures are event-driven, that is, triggered by the addition of a value,
they resemble demons . For example, a procedure might update the Alternatives slot for a
new restaurant when values for FoodStyle had been determined.

204 The Representationof Knowledge
%

TRIGGERING FRAMES. Attached procedures have another important ability: They can
be used to suggest or trigger other frames. Thus, these procedures could recommend other,
perhaps more applicable frames within the same frame system, or they could recommend an
entirely new frame system to deal with the situation, suggesting that a new point of view
was more applicable. For example, if we walked into a restaurant and there was no maitre
dl , but there was a food line, we might want to switch to the Cafeteria frame.

This triggering procedure has been used in various frame-driven systems that attempt
to diagnose a patient, (Szolovitz, Hawkinson, & Martin, 1977) . Since a number of related
diseases might share a core set of signs and symptoms, the ability to make a differential
diagnosis depends heavily on the ability to detect those factors that rule out or confirm a
particular diagnosis. Typically, In medicine, when a disease is ruled out, another more
applicable disease Is indicated, which is probably very similar.

The ability to trigger other frames through procedural attachment provides a method to
select frames by which to pursue the slot-filling task. It also provides a method of
confirmation that the current frame and frame system is the most appropriate for the
situation. The frame can determine whether the values confirm or disconfirm its applicability
to the situation. It could then suggest that other frames be used to perform the
interpretation. The triggering ability and the ability to use default or inherited values allow a
frame-driven system to be reasonably efficient at determining the interpretation or point of
view most applicable to the current situation.

CURRENT SYSTEMS USING FRAMES AND SCRIPTS

A number of experimental prototype systems have been implemented to explore the
Idea of frame-based processing. The following descriptions are intended to give an
indication of the domains and problems the researchers in this area addressed; the
references should' be consulted for more details.

Bobrow, Kaplan, Norman, Thompson, and Winograd Bobrow et al. (1977a) have
experimented with frame-based natural language understanding in their GUS system.
Designed to help a person make airline reservations, the system attempted to demonstrate
how various aspects of dialogue understanding—such as handling mixed-initiative dialogues,
indirect answers and anaphoric references—could be performed using a frame's ability to
provide expectations and defaults, and therefore structure the conversation. This system
was also used to exploreprocedural attachment issues. A sample interaction with the GUS
system is given below:

Hello. My name Is GUS. I can help you plan a simple trip by air.
Where do you want to go?

The reservations frame indicates that all reservations for traveling by air need adestination.

** I WANT TO GO TO SAN DIEGO ON MAY 28

C7 Frames and Scripts 205

t

]
T

\

!n.1

;!'

The client specifies more than is requested, the date of departure.

What do you want to leave?
i** I MUST BE IN SAN DIEGO BEFORE 10 AM

GUS must infer from this indirect answer that the flights can leave anytime as long as
they arrive before 10 am.

Would you like PSA flight 102 that arrives at 9:15 am?

** WHAT IS THE NEXT FLIGHT?

...which GUS interprets to mean the nextfight in order of departure.

Air California flight 310 that leaves at 8:30 am and arrives at 10 am

"* I'LL TAKE THE FIRST ONE

Anaphoric reference resolved to mean the PSAflight.

In what name should I make the reservations,please?

** DAN

I have confirmed the following flight..

To guide this dialogue, the following frames dealing with aspects of air travel were
used to understand requests made by the passenger as well as to drive GUS to ask for
needed information.

TripSpecification
HomePort:

the major topic of discussion

range: (a City)
default: PaloAlto

ForeignPort: where passenger is traveling on
the OutwardLegrange: (a City)

OutwardLeg:
range: (a TripLeg)

InwardLeg: for return flights, not detailed
in this example dialoguerange: (a TripLeg)

TripLeg
FromPlace: (HomePort of TripSpecification)

206 The Representationof Knowledge*

ToPlace:
range: (a City)
if-needed: (AskClient)

TravelDate:
range: (a Date)
if-needed: (AskClient)

DepartureSpec:
range: (a Timeßange)
If-needed: (AskClient)

ArrivalSpec:
range: (a Timeßange)
if-needed: (AskClient)

ProposedFlights:
range: (a SetofFlights)

FlightChosen:
range: (a Flight)
if-needed: (AskClient)

Traveller:
range: (a Person)
if-needed: (AskClient)

Notice that the dialogue follows directly the order of the slots in both the
TripSpecification frame and the TripLeg frame.

Concurrently with the developmentof GUS, KRL (Knowledge RepresentationLanguage,
Bobrow & Winograd, 1977) was developed to extend the ideas and intuitions found during
the implementation of GUS and to provide a new basis for representation. A report of a
number of project sketches implemented in KRL-0 can be found in Bobrow et ai., 1977a. The
report details a number of difficulties and shortcomings experienced in their attempt to use
the abilitiesoutlined above.

Other work with frame-based systems includes the NUDGE system, developed by
Goldstein- and Roberts (Goldstein & Roberts, 1977), which was used to understand
incomplete and possibly inconsistent management-scheduling requests and to provide a
complete specification for a conventional scheduling algorithm. Implemented in FRL-0 , the
system also used a frame-based semantics to resolve anaphoricrequests Bullwinkie, 1977.

A program that solves physics problems stated in English was developed by Novak(1977). It used a set of canonical object frames—such as Point, Mass, or Pivot—to interpret
the actual objects and their relations in a number of statics problems. These canonical
object frames were used to construct a "view" of an actual object as an abstract object,thereby simplifying the problemrepresentation.

A final example of a frame-based system is that of Schank et al. (Schank & Abeison,
1977) He has been using scripts to investigate the notions of causality and understand
sequences of events. In particular, the SAM program Natural LanguagaFß attempts to
understand short stories using a script to guide the interpretation or inference ofoccurrences in the story. Consider the following sample story that makes use of ourRestaurantScript:

C7 Frames and Scripts 207

1

i

,M

-.1;
i \

John went to a restaurant. He asked the waitress for cog au yin
He paid the check and left.

This simple story corresponds very well to our default EventSequence wifh the
assignment of "the waitress" to WaitPerson, "cog au yin" to Food, and "check" to
PaymentForm. After establishing the appropriate frame and filling sme of its slots with known
information, SAM can infer (from default information) answers to questions like Did John read
the menu? The mechanisms from performing these inferences are the subject of much
research. (See Aihandbook article on SAM for a detailed description.)

SUMMARY

Frames and scripts are recent attempts by AI researchers to provide a method for
organizing the large amounts of knowledge needed to perform cognitive tasks. The ideas
behind the developmentof frames are based on a number of psychological observations that
have been made about how humans perform in different cognitive situations. The
development of large-scale organizations of knowledge and the concommitant ability of these
organizations to provide a basis for active cognitive processing is very recent, and a number
of major questions must be answered before the conjectured benefits of frames can be fully
realized.

i

See Bartlett, 1932; Bobrow et al., 1977a; Bobrow & Winograd, 1977; Bullwinkie, 1977;
Charniak, 1978; Goldstein & Roberts, 1977; Kuipers, 1975; Minsky, 1975; Novak, 1977;
Rosenberg, 1977; Schank & Abeison, 1977; Szolovitz, Hawkinson, & Martin, 1977; Winograd,
1975; Winston, 1977a; and Winston, 1977b.

i

i

REFERENCES

208

The Representationof Knowledge

/

References

Aikins, J. S. Prototypes and production rules: An approach to knowledge representation for
hypothesis formation. IJCAI 6, 1979.

Amarel, S. On Representations of Problems of Reasoning About Actions. In D. Michie &B.
Meltzer (Eds.), Machine Intelligence 3. Edinburgh: Edinburgh University Press, 1 969.
Pp. 131-171.

Anderson, J. Language, Memory, and Thought. Hillsdale, NJ: Lawrence Erlbaum, 1976

Anderson, J., & Bower, G. Human Associative Memory. Washington, D.C.: Winston & Co
1973.

Anderson, R. H. The Use of Production Systems in RITA to Construct Personal Computer
Agents. SIGART News, No. 63, June 1977.

Baker, R. A Spatially-Oriented Information Processor which Simulates the Motions of Rigid
Objects. Artificial Intelligence, 1973, 4, 29-40.

Barstow, D. R. Automatic Construction of Algorithms & Data Structures Using a Knowledge
Base of Programming Rules, TR 641, -CSD, Stanford, 1977

Bartlett, F. C. Remembering. Cambridge: Cambridge University Press, 1977.

Berliner, H. J. Some necessary conditions for a master chess program, Proc

IJCAI3,

1973

Bernstein, M. I. Knowledge^Based Systems: A Tuturiai, TM-(L)-5903/000/00A,

SDC,

June
1977

Bobrow D. G., Kaplan R. M., Kay M., Norman D. A., Thompson H., Winograd T.

GUS,

A Frame-
Driven Dialog System. Artificial Intelligence8, 1977, 155-173. (a)

Bobrow, D. Dimensions of Representation. In D. Bobrow & A. Collins (Eds.), Representation
and Understanding. New York: Academic Press, 1975.

Bobrow, D. G. A question-answering system for high-school algebra word problems,
Proc. AFIPS Fall Joint Computer Conference, 1964, pp 591-614

Bobrow, D. G„ & Winograd, T. An overview of KRL, a knowledge representation
language. Cognitive Science, 1977, 1, 3-46.

Brachman, R. J. What's in a concept: Structural foundations for semantic networks (BBN
Rep. No. 34333). Cambridge: Bolt, Beranek, & Newman, 1976.

Brachman, R. J. A structural paradigm for representing knowledge. BBN Report No. 3605,
May, 1978.

1f
I

*i
I

i
f

'»>'

si

i

control Structures for Programming Languages,Brooks, R. Production Systems
Proc Workshop

Buchanan, B. G., G. L. Sutherland, and E.A.Feigenbaum Heuristic DENDRAL: A Program for
Generating Explanatory Hypotheses in Organic Chemistry, in Machine Intelligence, 4, B.
Meitzer and D. Michie (eds), 1969

Buchanan, 8.G., and E.A.Feigenbaum DENDRAL and Meta-DENDRAL: Their Applications
Dimension, Memo HPP-78- 1 , Stanford Heuristic Programming Project, 1978

Bullwinkie, C. Levels of complexity in discourse for anaphoric disambiguation and speech
act interpretation. UCAI 5, 1977, 43-49.

Carbonell, J. R., &

Collins,

A. M. Natural semantics in Al. Amer. Journal of Comput. Ling.,
1974, Microfiche 3.

Charniak,

E. With spoon in hand this must be the Eating frame. TINLAP-2, 1978, 187-193.

I Collins, A. Human Plausible Reasoning. BBN Report No. 3810, 1979.

Davies, D. J. M. Popler: A Pop-2 Planner, MIP-89, School of Al, University of Edinburgh,
Edinburgh, Scotland, 1972.

Davis, R. The Applicationof Meta-Level Knowledge to the

Construction,

Maintenance, and Use
of Large Knowledge Bases, AIM-286, Stanford, 1976

Davis, R., Buchanan, B. G., and Shortliffe, E. H. Production Rules as a Representation for a
Knowledge-Based consultation Program, AIM 266,

Stanford,

1975 (need a ref to the AU
version)

\ Davis, R., and Buchanan, B. G. Meta-level knowledge: Overview and applications, UCAI 5,
1977.

Davis, R., and King, J. J. An Overview of Production Systems, in Machine Intelligence 8, E.
Elcock and D. Michie (eds),

Chichester,

Ellis Horwood, 1977-

Dijkstra, E. W. Guarded Commands, Nondeterminacy& Formal Derivation of Programs, CACM,
18, 1975, 453-457

Duda, R. 0., Hart, P. E., Nilsson, N. J., and Sutherland, G. L. Semantic Network Representations
in Rule-Based Inference Systems, in Pattern-Directed Inference Systems, D.A.
Waterman and F. Hayes-Roth (eds), NewYork, Academic, 1978

Eastman, C. M. Automated Space Planning. Artificial Intelligence, 1973, 4, 41-64.
i

Eastman, C. M. Representationsfor Space Planning. CACM, 1970, 4, 242-250.

Erman. ???

Fahlman, S. E. Symbol-mapping and frames. SIGART Newsletter, No. 53, August 1975, pp. 7-

209References

210 The Representationof Knowledge
%

Fahlman, S. E. A Planning System for Robot Construction Tasks. Artificial Intelligence,
1974, 5, 1-49.

Feigenbaum, E. A. The simluation of verbal learning behavior, in Computers and
Thought, E.A.Fiegenbaum and J. Feldman (eds), New York,

McGraw-Hill,

1963

Feigenbaum, E. A. The Art of Artificial Intelligence: Themes and Case Studies of Knowledge
Engineering, Proc. sth Int'l Joint Conf A.1., 1977

Fikes, R., & Nilsson, N. J. STRIPS: A New Approach to tha Application of Theorem Proving to
Problem Solving. Artificial Intelligence, 1971, <2>, 189-208.

Fikes, R., & Hendrix, G. A Network-based knowledge representation and its natural deduction
system. UCAI 5, 1977, 235-246.

Fikes, R., Hart, P. E., & Nilsson, N. J. Learning and Executing Generalized Robot Plans.
Artificial Intelligence, 1972, 3, 223-250.

Fillmore, C. J. The Case for case. In E. Bach & R. Harms (Eds.), Universais in Linguistic
Theory. Chicago: Holt, 1968.

Filman, R. E. The Interaction of Observation and Inference, Stanford Al Memo 327,
Computer Science Dept., Stanford University, 1979.

Filman, R. E., & Weyhrauch, R. W. An FOL Primer. Stanford Al Memo 288, Stanford University,
Dept. of Computer

Science,

1976.

Flavell, J. Metacognitlon and cognitive monitoring: A new area for cognitive-developmental
inquiry. Dept. of Psychology, Stanford Univ., 1979.

Forgy, C. and J. McDermott OPS, A Domain-independent Production System Language,

IJCAIS,

Forgy, C. A Production System Monitor for Parallel Computers, tech rpt, CMU

CSD,

1977.
Funt, B. V. WHISPER: A Computer Implementation Using analogs in Reasoning. TechnicalReport 76-09, Computer Science Department, University of British Columbia. 1976.
Funt, B. V. WHISPER: A Problem-Solving System Utilizing Diagrams and a Parallel ProcessingRetina, UCAI 5, 1977, 459-464.

Gelernter, H. Realization of a Geometry Theorem-Proving Machine. Proc. of Int. Conf. onInformation Processing. Paris: UNESCO House, 1959. Pp. 273-282.

Gentner, Dedre, and Collins, A. M. Knowling about knowing: Effects of meta-knowledge oninference. Submitted to Cognitive Psychology, 1979.

Goldstein, I. P., & Roberts, R. B. NUDGE, a knowledge-based scheduling program. UCAI 5,1977, 257-263.

vj

211References

,ai

i

)

'i

j Green, C. The Application of Theorem-Proving to Question-Answering Systems. UCAI 1,
1969, pp. 219-237.

Hayes, P. On Semantic nets, frames, and associations. UCAI 5, 1977, 99-107. (b)
i

t

Hayes, P. J. Computation and Deduction. Symposium on Mathematical Foundations of
Computer Science, Czech. Academy of Science, 1973.

Hayes, P. J. In Defence of Logic. UCAI 5, 1977, pp. 559-5I
Hayes, P. J. Some Problems and Non-Problems in Representation Theory. British Computer

Society, Al & Simulation of Behavior Group Summer

Conference,

Univ. of Sussex,
1974. Pp. 63-79.

Hedrick, C. Learning Production Systems from Examples, Al Journal, 1976.

Hendrix, G. Expanding the utility of semantic netwoks through partitioning. UCAI 4, 1975,
115-121.

I
Hendrix, G. G., Thompson, C. W., & Slocum, J. Language Processing via Canonical Verbs and

Semantic Models. UCAI 3, 1973, 262-269.

Hewitt, C. Description and Theoretical Analysis (Using Schemata) of Planner: A Language
for Proving Theorems and Manipulating Models in a Robot. MIT AI-TR 258, 1972.

j Hewitt, C. How to Use What You Know. UCAI 4, 1975, pp. 189-198.

Hopcroft, J. E., & Ullman, J. D. Formal Languages and Their Relation to Automata. New
York: Addison-Wesley, 1969.

Jackendoff, R. A System of Semantic Primitives. TINLAP, 1975, 28-3

Jackendoff, R. Toward an Explanatory Semantic Representation. Linguistic Inquiry, 1976, 7,
89-150.

Kay, M. The MIND system. In R. Rustin (Ed.), Natural Language Processing. New York:
Algorithmics Press, 1973.

Kowalski, R. Predicate Logic as a Programming Language. Information Processing
74. Amsterdam: North-Holland, 1974. Pp. 569-574.

Kuipers, B. A frame for frames. In D. Bobrow & A. Collins (Eds.).Representation and
Understanding. New York: Academic Press, 1975.

Lehnert, W. C. The Process of Question Answering. Hillsdale, N.J. : Eribaum, 1978

Lenat, D. B. AM: An artificial intelligence approach to discovery in mathematics as heuristic
search. AIM 286, Stanford University, 1976.I

Lenat, D. 8., and McDermott, J. Less than General Producion System Architectures, UCAIS,
1977.

212 The Representationof Knowledge*

Manna, Z. Introduction to the Mathematical Theory of Computation. New York: McGraw-Hill,
1973.

Marcus, M. A Design for a Parser for English, Proc. A.C.M. Nat'l conference, Houston, 1976,
62-67.

McCarthy, J. Epistmoiogical Problems of Artificial Intelligence. UCAI 5, 1977, pp. 1038-
-1044.

McCarthy, J. Towards a mathematical science of computation, in Information Processing
1 962, CM. Popplewell (ed), Amsterdam, North-Holland, 1963.

Mccartyh, J., and Hayes P. J. Some Philosophical Problems from the Standpoint of Artificial
Intelligence,ln D. Michie and B. Meitzer (Eds.), Machine intelligence 4. Edinburgh
University Press, 1 969.

McDermott, D. Artficial intelligence meets natural stupidity. SIGART Newsletter, 1976, 57,
4-9.

McDermott, D. V., & Doyle, J. Non-Monotonic Logic I, MIT Al Memo 486, MIT, 1978.

McDermott, J., and Forgy, C. Production System Conflict Resolution Strategies, CSD, CMU,
1976b.

McDermott, J!, Newell, A., & Moore ;, J. The Efficiency of Certain Production system
Implementations, CMU, 1976a.

Miller, G. A. Comments on Lexical Analysis. TINLAP, 1975, 34-37.

Miller, G. A., & Johnson-Laird, P. N. Language and Perception. Cambridge: Harvard Univ
Press, 1976).

Minsky M. Computation Finite and infinite Machines. New Jersey: Prentice-Hall, 1972.

Minsky, M. A. A framework for representing knowledge. In P. Winston (Ed.), The Psychology
of Computer Vision. New York: McGraw-Hill, 1975.

Minsky, M., & Papert, S. Progress Report, Al Memo 252, Artificial Intelligence Laboratory,
MIT, 1972.

Moore, R. C. Reasoning from Incomplete Knowledge in a Procedural Deductive
System, TR 347, MIT Al Lab, MIT, 1975.

Myopolous, J., Cohen, P., Borgida, A., & Sugar, L. Semantic networks and the generation of
context. UCAI 4, 1975, 134-142.

Nash-Webber, B. L. Semantics and Speech Understanding (BBN No. 2896). Cambridge
Bolt, Beranek, & Newman, 1974.

Newell, A. Production systems: Models of Control Structure, in Visual Information Processing,
W. Chase (ed), New York, Academic Press, 1973.

213References

)

\

J

f

1
J
■I

' i

Newell, A., and Simon, H. A. GPS, a program that simulates human thought, in Computers and
Thought, E.A. Fiegenbaum and J. Feldman (eds), NY, McGraw-Hill, 1963.

Newell, A., &

Simon,

H. Human Problem Solving. New Jersey: Prentice-Hall, 1 972.
t

Nilsson, N. J. Problem-Solving in Artificial Intelligence. New York:

McGraw-Hill,

1971.

Norman, D. A., Rumelhart, D. E., 8. the LNR Research Group Explorations in Cognition. San
Francisco: Freeman, 1975.

Norman, D. A. Memory and Attention, 2nd edition, New York: Wiley, 1976.

Novak, G. S. Representationof knowledge in a program for solving physics problems. UCAI
5, 1977, 286-291.

Post, E. Formal reductions of the general combinatorial problem, American Jour. Math, 65,
1943, 197-268.

Prawitz, D. Natural Deduction—a proof-theoretical study. Stockholm: Almqvist & Wiksell,
1965.

Pylyshyn, Z. Do we need images and analogs? TINLAP-1, 1975.

Pylyshyn, Z. Imagery and artificial intelligence. In C. W. Savage (Ed.), Perception and
Cognition: Issues, in the Foundation of Psychology (Vol IX of Minnesota Studies in the
Philosophy of Science), U. of Minn. Press, 1978.

Pylyshyn, Z. What the mind's eye tells the mind's brain: a critique of mental
Imagery. Psychological Bulletin, 1973, 13, 1-24.

Quillian, M. R. Semantic memory. In M. Minsky (Ed.), Semantic information
Processing. Cambridge, Mass.: MIT Press, 1968.

Quillian, M. R. The teachable language comprehender: A simulation program and the theory of
language. CACM, 1969, 12(8), 459-476.

Raphael, B. SIR: Semantic Information Retrieval. In M. Minsky (Ed.), Semantic Information
Procesaing.Cambridge: MIT Press, 1968. Pp. 33-145.

Reboh, R., Sacerdoti, E., Fikes, E. R., Sagalowicz, D., Waldinger, R. J., & Wilber, M. QLISP: A
Language for the Interactive Development of Complex Systems TN 1 20.AA1

Center,

SRI International, Inc., 1976.

Reiter, R. On Reasoning by Default. TINLAP-2, 1978, 210-218.

Riesbeck, C. K. Conceptual Analysis, in Conceptual Information Processing, R.C. Schank
(ed), Amsterdam, North-Holland, 1 975.

Rosenberg, S. Frames-based text processing, MIT Al Memo 431, 1977.

214 The Representationof Knowledge
*

Rulisfon,

J., Derkson, J. A., & Waldinger, R. J. QA4: A Procedural Calculus for Intuitive
Reasoning, TN 83, Al Center, SRI International, Inc., 1972.

Russell, S. W. Semantic Categories of Nominais for Conceptual Dependency Analysis of
Natural Language. Stanford Al Project, Memo AIM-172, July 1972.

Rychener, M. D. Production Systems as a Programming Language for Artificial
IntelligenceAppications, CSD, CMU, December, 1976.

Rychener, M. D. The STUDNT Production System: A Study of Encoding Knowledge in
Production Systems, 19?? .

Rychener, M. D. Control Requirements for the Design of Production System Archtectures,
Proc. ACM Symposium on Artificial Intelligence and Programming Languages, 1977, 37-
-44.

Sandewall, E. Conversion of Predicate-Calculus Axioms, Viewed as Non-
Deterministic Programs, to Correspoding Deterministic Programs. UCAI 3,1973, pp.
230-234.

Schank, R. C. Identification of Conceptualizations Underlying Natural Language. In R. C.
Schank & K. M. Colby (Eds.), Computer Models of Thought and Language. San
Francisco: W. H. Freeman, 1973. Pp. 187-247. (b)

Schank, R. C. The Structure of Episodes in Memory. In D. G. Bobrow &A. Collins (Eds.),
Representation and Understanding. New York: Academic Press, 1975 Pp 237-
-272. (c)

Schank, R. C. Conceptual Information Processing. Amsterdam: North-Holland, 1975. (a)

Schank, R. C. The Fourteen Primitive Actions and Their Inferences, Stanford Al Laboratory,
Memo AIM-183, March 1973. (a)

Schank, R. C. Conceptual Dependency: A Theory of Natural Language Understanding.
Cognitive Psychology, 1972, 3, 562-631.

Schank, R. C. What Makes Something 'Ad Hoc. TINLAP-2, 1978, pp. 8-13.

Schank, R. C, & Tesler, L. G. A Conceptual Parser for Natural Language. UCAI 1 1 969 569--578. ' '
Schank, R. C, Goldman, N., Rieger, C. J., & Riesbeck, C. K. Primitive Concepts Underlying

Verbs of Thought, Stanford Al Project, Memo AIM- 162, February 1972.

Schank, R. C, Goldman, N., Rieger, C. J., & Riesbeck, C. K. MARGIE: Memory, Analysis,Response Generation, and Inference on English. UCAI 3, 1973, 255-261.
Schank, R. C, Tesler, L G., & Weber, S.Spinoza II: Conceptual Case-based NaturalLanguage Analysis. Stanford Al Project, Memo AIM-109, January 1970.

215References

}

S

,'li

"i

1

Schank, R. C, & Abeison, R. P. Scripts, Plans, Goals, and Understanding. Hillsdale, N.J.:
Lawrence Erlbaum, 1977.

Schank,

R.C. The Primitive ACTs of Conceptual Dependency. TINLAP, 1975, pp. 38-41. (b)
r

\
Schubert, L. K. Expanding the expressive power of semantic networks. UCAI 4, 1975,

158-164.

Shapiro, S. C. A net structure for semantic Information storage and deduction, and retrieval.
UCAI 2, 1971, 512-523.

Shortliffe, E. H. MYCIN: A rule-based computer program for advising physicians regarding anti-
microbial therapy selection, AIM 251, Stanford Univ., 1974. (Also published as: MYCIN:
Computer-based Medical Consultations, American Elsevier, 1976.)

ISiklos"sy, L. Natural Language Learning by Computer, in Representation and
Meaning,H.A.Simon and L.Siklossy (eds), Prentice-Hall, N.J., 1972

) Simmons, R. F. Semantic networks: Their computation and use for understanding English
sentences. In R. Schank & K. Colby (Eds.), Computer Models of Thought and
Language. San Francisco: Freeman, 1973.

Simmons, R. F., &

Slocum,

J. Generating English discourse from semantic nets.
Communicationsof the

ACM,

1972, 15:10, 891-905.

Simon,

H. A. The Sciences of the Artificial. MIT Press, 1969.

Sloman, A. Afterthoughts on analogicalrepresentations. TINLAP-1, 1975.

I Sloman, A. Interactions between philosophy and Al—the role of intuition and non-logical
reasoning in intelligence. Artificial Intelligence, 1971, 2, 209-225.

Sussman, G., & McDermott, D. V. Conniver Reference Manual, MIT Al Memo 259, MIT, 1972.

Sussman, G., Winograd, T., & Charniak, E. Micro-Planner Reference Manual, MIT Al Memo
203, MIT, 1970.

Szolovitz, P., Hawkinson, L. 8., & Martin, W. A. An overview of OWL, a language for
knowledge representation,MIT LCS-TM-86, 1977.

Tesler, L.G., H.J. Enea, and D.C.Smith The LISP7O Pattern Matching System, Proc IJCAI3,
1973

Vere, S. A. Induction of Concepts in the Predicate

Calculus,

Proc IJCAI4, 1975

Vere, S. A. Relational Production Systems, Artificial Intelligence, 8, 1977, 47-6

j'l
Walker, D. E., et. al. Speech Understanding Research, SRI Final Tech. Report. SRI

International, Inc., Menlo Park, CA, 1976.

216 The Representationof Knowledge
*f

Waterman, D. A. Generalization learning techniques for automating the learning of heuristics
Artificial Intelligence, 1970, 1, 121-170.

Weyhrauch, R. W. A Users Manual for FOL, Stanford Al Memo 235.1, Stanford University
Computer Science Dept., 1977.

Weyhrauch, R. W. Prolegomena to a theory of formal reasoning, Al Memo 315,
Stanford Computer Science Dept., Stanford University, 1978.

Wilks, Y. A. Grammar, Meaning and the Machine Analysis of Language. London: Routledge
& Kegan Paul, 1972.

Wilks, Y. A. Good and Bad Arguments about Semantic Primitives. DAI Research Report No.
42, Dept. of Artificial Intelligence, University of Edinburgh, May 1977. (a)

Wilks, Y. A. An Artificial IntelligenceApproach to Machine Translation. In R. C. Schank & K. M.
Colby (Eds.), Computer Models of Thought and Language. San Francisco: W. H.
Freeman, 1973. Pp. 114-151.

Wilks, Y. A. An Intelligent Analyzer and Understander of English. CACM. 1975 18 264-
-274. (a)

Wilks, Y. A. Knowledge Structures and Language Boundaries. UCAI 5, 1977, 151-157. (b)

Wilks, Y. A. Computable Semantic Derivations, Systems Development Corp., Santa Monica,
SP-3017, 1968.

Wilks, Y. A. A Preferential, Pattern-Seeking Semantics for Natural Language Inference.
Artificial intelligence, 1975, 6, 53-74. (b)

Wilks, Y. A. Methodological Questions about Artificial Intelligence: Approaches to
Understanding Natural Language. Journal of Pragmatics, 1977, 1, 69-84. (c)

Wilks, Y. A. Primitives and Words. TINLAP, 1975, pp. 42-45. (c)

Winograd, T. Language as a Cognitive Process. In press, 1978

Winograd, T. Five Lectures on Artificial Intelligence, Stanford Al-Memo 246, AlLab, Stanford University, 1974.

Winograd, T. Understanding Natural Language. New York: Academic Press, 1972
Winograd, T. Extended Inference Modes in Computer Reasoning Systems. In ArtificialIntelligence, 1979, in press.

Winograd, T. Frame representations and the declarative/procedural controversy In D.Bobrow & A. Collins (Eds/), Representation and Understanding. New York: AcademicPress, 1975. Pp. 185-210.

Winograd, T. On Primitives, Prototypes, and Other Semantic Anomalies. TINLAP-2, 1978, pp.25-32.

217References

"IB

I

i

i Winston, P. H. Learning structural descriptions from examples. In P. H. Winston (Ed.),The
Pshychologyof Computer Vision. New York:

McGraw-Hill,

1975.

Winston, P. H. Artificial Intelligence. Cambridge, Mass.: Addison-Wesley, 1977. (a)

t

j Winston, P. H. Learning by hypothesizing and justifying transfer frames, MIT AIM-414,
1977. (b)

Woods, W. et al. Speech understanding systems: Final Report. BBN Report No. 3438, 1976.

Woods, W. A. What's in a Link: foundations for semantic networks. In D. Bobrown & A. Collins
(Eds.), Representation and Understanding. New York: Academic Press, 1975.

Woods, W. A. Procedural Semantics for a Question-Answering Machine. Proc. Fall Joint
Computer Conference, AFIPS, 1968, 33(1), 457-471.

)

\

I

218 The Representationof Knowledge
*

i

Index

Abeison, Robert 199
analogical 191

inheritance 200
inheritance hierarchy 132
interlingua 134

backtracking 177
KRL 206

combinatorial explosion 130, 131, 174
constraint structured planning 1 94 legal move generators 1 29

depth 130
direct 191

Micro-PLANNER 177
models 180, 181
modularity 134, 182discrimination net 129

Eastman 193
EPAM 129

Natural Language processing 1 29
NUDGE 206

frame 135
frame systems 200
frame problem 180
frames 199
frames, declarative knowledge 203
frames, proceduralknowledge 203
fregean 191
FRL-0 206
Funt 194

Gelernter 192
General Space Planner 193
Geometry Theorem Prover 192
grain 124
Green, Cordell 173
GUS 204

Heuristic search. 131
heuristics 130
human problem-solving 130

parallelism 196
pattern-directed invocation 177
perceptual primitives 1 96
PLANNER 131, 132, 177, 181
power/generality tradeoff 197
predicate calculus 130
problem-reduction 192
procedural attachment 203
Procedural Embedding of Knowledge 173
procedural representation 132
production systems 134
productions 1 34

QA3 173
QA4 131

Raphael, Bertram 1 73
resolution method 131
rules of inference 131, 132

SAD-SAM 129

j

Schank, Roger 199
scope 124
scripts 199
Semantic InterpretationFunction 191
semantic net 132i
semantic primitives 134
SHRDLU 132
SIR 129, 173
slots 199
Space planning 193
spreading activation 154
state space search 129
state-space search 131

theorem prover 131
transition operators 1 29

WHISPER 194
Woods, William 173

i-i

220

Natural Language Understanding

222

Natural Language

Table of Contents

A. Natural Language Processing Overview . . �„B. Mechanical Translation . . " " 223
C. Grammars [" 228

1. Formal Grammars ...''''' " ?p
2. Transformational Grammars ""..-.... . 233
3. Systemic Grammar %***4. Case Grammars " 242

233

"
D. Parsing"!

■

* 244
1. Overview of Parsing Techniques' .'.'.' IV,2. Augmented Transition Nets . . ' * Z47

2523. The General Syntactic Processor .' * £HE. Text Generation ... " " 256
261F. Natural language Processing'systems ! - . . 261

\' ,E,!C,ly .Na*uu

ral.

al Language Systems ..'.'..' * * .£;
\' n,fs Mechanical Translation System %%[3- LUNAR * ' 273
4. SHRDLU 276
5. Margie:::: " " zig
6. SAM and PAM . . 283

276

6. SAM and PAM7. LIFER
283. . . 287
296

References ' . 302
Index

312

A. Natural Language Processing Overview

The most common way that human beings communicate is by speaking or writing in one
of the "natural" languages, like English, French, or Chinese. Computer programming
languages, on the other hand, seem awkward to humans. These "artificial" languages are
designed to have a rigid

format,

or syntax, so that a computer program reading and compiling
code written in an artificial language can understand what the programmer means. In addition
to being structurally simpler than natural languages, the artificial languages can express
easily only those concepts that are important in programming: "Do this then do that," "See if
such and such is true," etc. The things that can be expressed in a language are referred to
as the semantics of the language.I

The research on understanding natural language described in this section of the
Handbook is concerned with programs that deal with the full range of meaning of languages
like English. Computers that can understand what people mean when typing (or speaking)
English sentences will be easier to use and will fit more naturally into people's lives. In
addition, artificial intelligence (Al) research in natural language processing hopes to extend
our knowledge of the nature of language as a human activity. Programs have been written
that are quite successful at understanding somewhat constrained input: the user is limited in
either the structural variation of his sentences (syntaxconstrained by an artificial grammar)
or in the number of things he can "mean" (in domains with constrained semantics). Some of
these programs are adequate for many useful computer-interface tasks and are available
commercially. But the fluent use of language as humans use it is still elusive, and natural
language(NL) processing is an active area of research in Al.

This article presents a brief sketch of the history of natural language processing
research in Al, and it attempts to give some idea of the current state of the art in NL and
related research in representing knowledge about the world within the language
understanding programs. The next article is a historical sketch of the very earliest ideas
about processing language with computers, to achieve mechanical translation of one language
into another. It is followed by two sections containing technical articles on some of the
grammars and parsing techniques that Al researchers have used in their programs. Then,
after an article on text generation, which involves the creation of sentences by the program to
express what it wants to say, there are a half dozen articles describing some of the most
important NL systems.

■I.

i

i
1

!Two other sections of the Handbook are especially relevant to NL research. Speech
Understanding research attempts to build computer interfaces that actually understand
spoken language. Speech and natural language understanding research have been closely
linked. Increasingly inseparablefrom NL research is the study of Knowledge Representation,
because Al researchers have come to believe that a very large amount of knowledge about
the world is used in even simple dialogue. Research in the representation of knowledge
explores ways of making this world knowledge accessible to the computer program by
"representing" it in internal data structures.

History

Research in computational linguistics, the use of computers in the study of language,
started in the 19405, soon after computers became available commercially. The machine's

1

224 Natural Language*

ability to manipulate symbols was first used to compile lists of word occurrences (word lists)
and concordances (their contexts in written texts). Such surface-level machine processing
of text was of some value in linguistic research, but it soon became apparent that the
computer could perform much more powerful linguistic functions than merely counting and
rearranging data.

In 1 949, Warren Weaver proposed that computers might be useful for "the solution of
the world-wide translation problem" (Weaver, 1955, p. 15). The resulting research

effort,

called mechanical translation, attempted to simulate with a computer the presumed functions of
a human translator: looking up each word in a bilingual dictionary; choosing an equivalent
word in the output language; and, after processing each sentence, arranging the resulting
string of words to fit the output language'sword order. Despite the attractive simplicity of
the idea, many unforeseen problems arose, both in selecting appropriate word equivalences
and in arranging them to produce a sentence in the output language. Article B discusses the
history, problems, and current state of research on mechanical translation.

In the 1960s a new group of computer programs was developed that attempted to deal
with some of the more complex issues of language that had led to the difficulties in the
mechanical translation efforts. These early natural language programs mark the beginning of
artificial intelligence work in understanding language. They no longer assume that human
communication is a process of word manipulation. Instead, they view human language as a
complex cognitive ability involving many different kinds of knowledge: the structure of
sentences, the meaning of words, a model of the listener, the rules of conversation, and an
extensive shared body of general information about the world. Several of these programs
are described briefly in Article Fl.

The focus of modern work in natural language processing in Al is "understanding"
language. Several different tasks have been used as the criterion for defining what
constitutes a demonstration that the program understands a piece of text; these tasks
include paraphrasing, question answering, mechanical translation, and information retrieval. Many
design issues depend on which type of task the program Is to perform, but the general
approach has been to model human language as a knowledge-based system for processing
communications and to create a computer program that serves as a working model of this
system.

Al researchers in natural language processing expect their work to lead both to thedevelopment of practical, useful language understanding systems and to a better
understanding of language and the nature of intelligence. The computer, like the human mind,
has the ability to manipulate symbols in complex processes, Including processes that involvedecision making based on stored knowledge. It is an assumption of the field that the humanuse of language is a cognitive process of this sort. By developing and testing computer-
based models of language processing that approximate human performance, researchershope to understand better how human language works.

Approaches to NL Processing

Natural language research projects have had diverse goals and used diverse methods,
making their categorization somewhat difficult. One coherent scheme, borrowed fron»

Natural Language Processing Overview 225A

Winograd (1972), groups natural language programs according to how they represent and
use knowledge of their subject matter. On this basis, natural language programs can be
divided into four historical categories.

The earliest natural language programs sought to achieve only limited results in
specific, constrained domains. These programs used ad hoc data structures to represent

"knowledge." Programs like BASEBALL,

SAD-SAM,

STUDENT, and ELIZA (see Article F1)
searched their input sentences, which were restricted to simple declarative and
interrogative forms, for key words or patterns representing known objects and relationships.
Domain-specific rules, called heuristics, were used to derive the required information from the
key words in the sentence and the knowledge in the database. Though they performed
relatively small tasks and avoided or ignored many of the complexities in language, their
results and methods were the impetus to dealingwith more difficult problems.

The second category can be called text-based systems. These programs, such as
PROTOSYNTHEX I (Simmons, Burger, & Long, 1966) and the Teachable Language
Comprehender, TLC (Quillian, 1969), attempted to expand beyond the limits of a specific

domain. The programs dealt with

full,

English text as a base, rather than with key words or
phrases. Input text was interpreted as a request to access a structured information store,,
and a variety of clever methods were used to identify the proper response. Though more
general than their predecessors, these programs still failed to deal with the underlying
meaning of the English language input. Theywere able to give only responses that had been
pre-stored as data—they had no deductive power.

To try to deal with the problem of how to characterize and use the meaning of
sentences, a group of programs was developed called limited logic systems. In systems like
SIR (Raphael, 1968), DEACON (Thompson, 1968), and CONVERSE (Kellogg, 1968), the
information in the database is stored in a

formal,

albeit ad hoc, notation, and mechanisms are
provided for translating input sentences into the same form. The function of the formal
notation is to attempt to liberate the informational content of the input from the structure of
English. The overall goal of these systems was to accept complex input information (e.g.,
information containing quantifiers and relationships), use it to perform inferences on the
database, and thus realize answers to complex questions. Problems, however, arose from
the fact that the complexity of the stored information was not really part of the database
but was built into the system's routines for manipulating the database. PROTOSYNTHEX II
(Simmons, 1966), for example, contained statements of the form "A is X" and "X is B" and
tried to answer "Is A B?", based on transitivity. The deductive mechanismrequired for these
inferences was embedded in special-purpose subroutines, rather than in the database as a
"theorem," and thus was not available to be used to perform more involved inferences, which
require a longerchain of reasoning.

RepresentingKnowledge in NL Programs

The fourth approach to building language understanding programs might be called
knowledge-based systems and is closely intertwined with current research on the representation

of knowledge (see the Knowledge Representation section of the Handbook). Among the most
important knowledge representation schemes explored in NL research have been: procedural
semantics, semantic networks, case systems, and frame systems.

j

* i

,i
l

<-j

i

i

\

i

226 Natural Language%

In the early 19705, two systems were built that attempted to deal with both syntactic
and semantic problems in a comprehensive way. William Woods's LUNAR system (Article F4)
answered questions about the samples of rock brought back from the moon, using a large
database provided by the National Aeronautics and Space Agency. It was one of the first
programs to attack the problems of English grammar using an augmented transition network
parser (Article 02). It used a notion of procedural semantics in which queries were first
converted in a systematic way into a "program" to be executed by the retrieval component.
Terry Winograd's SHRDLU system (Article F5) carried on a dialogue with a user in which the
system simulated a robot manipulating a set of simple objects on a table top. The
naturalness of the dialogue, as well as SHRDLU's apparent reasoning ability, made it
particularly influential in the development of Al ideas. These two systems integrate
syntactic and semantic analysis with a body of world knowledge about a limited domain,
enabling them to deal with more sophisticated aspects of language and discourse than had
previously been possible.

Central to these two systems is the representation of knowlege about the world as
procedures within the system. The meanings of words and sentences were expressed as
programs in a computer language, and the execution of these programs corresponded to
reasoning from the meanings. Direct procedural representations are often the most
straightforwardway to implement the specific reasoning steps needed for a natural language
system. Most of the actual working systems that have been developed have made heavy
use of specialized procedural representations, to fill in those places where the more
declarative representation schemes—those where the "knowledge" is encoded in passive
data structures that are interpreted by other procedures—are insufficient. (The
procedural/declarative controversy has been an important focus in the history of Al. See Article
Representation^.)

Perhaps the most Influential declarative representation scheme is the semantic network.
Semantic networks were first proposed by Quillian (1968) as a model for human associative
memory. They used the concepts of graph theory, representing words and meanings as a set
of linked nodes. By using a systematic set of link types, it was possible to program simple
operations (such as following chains of links) that corresponded to drawing inferences.
Another important declarative scheme is the use of standard logic formulas (Article
Representational), which are subject to mathematical rules of deduction for drawing
inferences. The advantage of semantic networks over standard logic is that some selected
set of the possible inferences can readily be done in this specialized and efficient way. If
these correspond to the inferences that people make easily, then the system will be able to
do a more natural sort of reasoning than can be easily achieved using formal logical
deduction.

Semantic networks have been the basis for a number of systems, including most of the
speech understanding systems (see Speech Understanding). Recently there has been a gooddeal of work on formalizing the network notions so that there is a clear correspondence
between the graph operations and the formal semantics of the statements represented (see
Article Reprssentation.Ca).

Case representationsextend the basic notions of semantic nets with the idea of a caseframe, a cluster of the properties of an object or event into a single concept (see ArticleC4). There have been a large number of variations on this notion, some of which remain close

i

I Si

i

"

i

I
to the linguistic forms. Others such as conceptual dependency are based on the notion of
semantic primitives, the construction of all semantic notions from a small set of "primitive"
concepts. The MARGIE sytem (Article F3), built in the early 1970s by Roger Schank and his
students, uses the conceptual dependencyrepresentation.

As with semantic networks, the advantage of case representations lies in their focus
on clustering relevant sets of relationships into single data structures. The idea of
clustering structures in a coherent and efficient way has been carried much further in
representation scheme's based on the notion of a frame (Minsky, 1975; see also Article
RepresentatioaCß). Where case representations deal primarily with single sentences or
acts, frames are applied to whole situations or complex objects or series of events. In
analyzing a sentence, narrative, or dialogue, a language understanding system based on
frame representations tries to match the Input to prototypes for the objects and events in
its domain that are stored in its database.

For example, Roger Schank's SAM system (Article F6) makes use of simple, linear
scripts, which represent stereotyped sequences of events, to understand simple stories. It
assumes that the events being described will fit (roughly) into one of the scripts in its
knowledge base, which it then uses to fill in missing pieces in the story. The GUS system
(Bobrow, et al., 1977) is a prototype travel consultant, carrying on a dialogue to help a
person schedule an air trip. It uses frames representing standard trip plans. GUS uses the
experimental frame language KRL (Bobrow & Winograd, 1977; see also Artiole
Representation.C6).

j

The important common element in all of these systems is that the existence of
prototype frames makes it possible to use expectations in analysis. When a sentence or
phrase is input that is ambiguous or underspecified, it can be compared to a description ot

what would be expected based on the prototype. Assumptions can be made about what was
meant, if there is a plausible fit to the expectation. This expectation-driven processing seems
to be an important aspect of the human use of language, where incomplete or ungrammatical

sentences can be understood in appropriate contexts. Research on script- and frame-based
systems is the most active area of Al research in natural language understanding at the
present time.

The current state-of-the-art In working (non-experimental) NL systems is exemplified

by ROBOT (Harris, 1977), LIFER (Hendrix, 1977a), and PHLIQAI (Landsbergen, 1976).

i

References

General discussions of natural language processing research in Al can be found in
Boden (1977), Wilks (1974), Winograd (1974), Charniak & Wilks (1976), Schank & Abeison
(1977), and Winograd (forthcoming). Waltz (1977) contains more than fifty brief summaries
of current projects and systems. In addition, "many historically important NL systems are
described in Feigenbaum & Feldman (1963), Minsky (1968), Rustin (1973), Schank & Colby
(1973), and Winograd (1972). COLING (1976), TINLAP-1 (1975), Bobrow & Collins (1975),
and TINLAP-2 (1978) are proceedings of recent conferences describing current work in the
field.

i

|

227A Natural Language Processing Overview

228

Natural Language

B. Mechanical Translation

The concept of translation from one language to another- by machine is older than the
computer itself. According to Yehoshua Bar-Hillel (1960), one of the early investigators in
the field, the idea was perhaps first conceived as early as the early 1930s by P. P. Smirnov-
Troyansky of the Soviet Union and G. B. Artsouni of France (see Bar-Hillel, 1960, p. 7). Their
work apparently never received much attention, lying dormant until a decade later when the
climate was much more favorable, due to the recent invention of the digital computer. In
certain quarters of the scientific world people imagined—with some justification—that
computers would lead to many entirely new and far-reaching ideas about man and—perhaps
less justifiably—that computers would help bring about a new world order. In short, there
was tremendous excitement over the potential of these new thinking machines, as they were
quickly dubbed. This was also the time when Claude Shannon was formulating his ideas on
information theory, when Norbert Wiener was devising the concept of cybernetics, and when
Pitts and McCullough were developing their ideas on neural nets and brain function.
Moreover, computing had just passed its initial tests, during the war, with flying colors—in
such strategic tasks as breaking codes and calculating complicated nuclear cross sections.

It would be well to bear in mind that, when machine translation work began, programming
was done by wiring boards and machine language was the only computer language available.
Such concepts as arrays and subroutines were still to appear, not to mention pushdown
stacks, compiler languages, recursive procedures, and the like. Furthermore, no one had
heard of context-free and context-sensitive grammars, or of transformational grammars, or
augmented transition networks. At the forefront of computational linguistics, the application of
the computer to the study of language, were statistical experiments with language, such as
compiling matrices of letter frequencies and of transition frequencies between successive
letters. Such matrices could be used to produce interesting samples of pseudo-language, by
producing words from randomly generated letters with the same characteristics as English
words. (Also, see the discussion of Yngve's random text generation system in Article E).

First Attempts

The real genesis of machine translation dates from a series of discussions between
Warren Weaver and A. Donald Booth in 1946. Both men were familiar with the work on code
breaking by computers, based on letter-frequency and word-frequency tables. It seemed to
them that some of the same methods would be applicable to translation and that the principal
obstacle would be incorporating a full dictionary of the two languages. Of course they
recognized that simply having a dictionary would not solve all problems. Some of theremaining problems would be the following: (a) Many words have several translations,
depending upon context; (b) word orders differ from language to language; and (c) idiomatic
expressions cannot be translated word for word but must be translated in toto.
Nevertheless, it appeared plausible, at the time, that the major problem in translating
between two languages was simply that of vocabulary-and so at least a large part of
translation seemed mechanizable.

In 1 947, Booth and D. H. V. Britten worked out a program for dictionary lookup. Thiswas a full-form dictionary, in that each variant of any basic word (e.g., love, loves, loving,
etc.) had to be carried as a separate entry in the dictionary. In 1948, R. H. Richenssuggested the addition of rules concerning the Inflections of words, so that the redundancy

229B Mechanical Translation

!

: j
I

I

1

I
of the multiple dictionary entries could be eliminated. In 1949, Warren Weaver distributed a
memorandum entitled Translation to about two hundred of his acquaintances, and a
considerable wave of interest ensued, in addition to the idea that all languages have many
features in common, three other items from that memorandum are worth repeating. The first
is the notion of a window through which one can view exactly 2N + 1 words of text; Weaver
suggests that when N is sufficiently large, one will be able to determine the unique, correct
translation for the word that sits in the middle of the window. He then points out that N may
be a function of the word, rather than a constant, and discusses the idea of choosing a value
of N such that, say, 95% of all words would be correctly translated 987. of the time. The
second is this intriguing statement: "When I look at an article in Russian, I say, This is really
written in English, but it has been coded in some strange symbols. 1 will now proceed to decode." This
certainly carries to an extreme the concept that source text and translated text "say the
same thing." In fact, it leads naturally to the third provocative idea of the memorandum that
translating between languages A and B means going from A to an intermediate "universal
language," or interlingua, that, supposedly, all humans share, and thence to B. This idea, of
an intermediate representation of the semantics or meaning of an utterance, appears often in
modern natural language processing work in Al under the heading representation of knowledge
(see discussion in the Overview and in the Handbook Section on Knowledge Representation).

j

i

I
After Weaver's memorandum, work sprang up in several centers in the United States.

Erwin Reifler conceived the idea of two auxiliaryfunctions to be performed by human beings,
those of pre-editor and post-editor. The pre-editor would prepare the input text to be as free
as possible of ambiguities and other sources of difficulty; the post-editor would take the
machine-translated text and turn it into grammatical, comprehensible prose.

A 1952 conference produced recommendations to implement a dictionary-lookup
program and to work towards the invention, or discovery, of the hypothetical universal
language, called Machinese, which Weaver had proposed as an intermediate language in
mechanical translation.

A. G. Oettinger was one of the first to design a program that carried out word-for-word
translation of Russian text into English. A very high percentage of the Russian words had
more than one possible translation; so all of them were listed in the output English, enclosed
in parentheses. Thus, a sample of English output text read as follows:

(In, At, Into, To, For, On) (last, latter, new, latest, lowest, worst) (time,
tense) for analysis and synthesis relay-contact electrical (circuit,
diagram, scheme) paralleKseries, successive, consecutive,
consistent) (connection, junction, combination) (with, from) (success,
luck) (to be utilize, to be take advantage of) apparatus Boolean
algebra. (Oettinger, 1955, p. 55)

i

A cleaned-up version of this sentence reads: "In recent times Boolean algebra has been
successfully employed in the analysis of relay networks of the series-parallel type" (p. 58).
Readers of the translated text were expected to discern from the jumble of synonyms what
the cleaned-up text really should be. Clearly, there was still a long, long way to go toward
mechanical translation.

i

In the next year or two, most of the effort was directed toward devising ways to
handle different endings of inflected words and estimating the size of vocabulary needed for

230

Natural Language

translations of varying degrees of quality. In 1954 a journal of mechanical translation was
founded, called MT. Machine translation received considerable public attention when a
group from IBM and Georgetown University made grand claims for a program that translated
from Russian to English, although this program was not particularly advanced over any others.
In any case, machine translation became an "in" thing and groups sprang up in many
countries.

Early attempts focusing on syntactic information were able to produce only low-quality
translation and led eventually to extreme pessimism about the possibility of the endeavor. It
has since become clear that high-quality translation systems must in some sense understand
the input text before they can reconstruct it in a second language. For the first time, it was
becoming apparent that much "world knowledge" Is used implicitly when human beings
translate from one language to another. Bar-Hillel gave as an example the pair of sentences,
"The pen is In the box," and "The box is in the pen." To quote Bar-Hillel,

I now claim that no existing or imaginable program will enable an
electronic computer to determine that the word pen in the [second]
sentence . . . has the [meaning an enclosure where small children can
play] (Bar-Hillel, 1960, p. 159)

He goes on to remark that, to his amazement, no one had ever pointed out that in language
understanding there is a world-modeling process going on in the mind of the listener and that
people are constantly making use of this subconscious process to guide their understanding
of what is being said. Bar-Hillel continues:

A translation machine should not only be supplied with a dictionary but
also with a universal encyclopedia. This is surely utterly chimerical
and hardly deserves any further discussion. . . . We know . . . facts by
inferences which we are able to perform . . . instantaneously, and it is
clear that they are not, in any serious sense, stored in our memory.
Though one could envisage that a machine would be capable of
performing the same

inferences,

there exists so far no- serious
proposal for a scheme that would make a machine perform such
inferences in the same or similar circumstances under which an
intelligent human being would perform them. (pp. 160-161)

Bar-Hillel despaired of ever achieving satisfactory machine translation. His sentiments were
perhaps not universally shared, but certainly the momentum of the machine-translation effort
slowed considerably in the next decade.

Current Status

A signal event toward the revival of MT research was the publication in 1957 of Noam
Chomsky's Syntactic Structures, in which transformational grammars were introduced. This
book spurred many new developments in the analysis of syntax. Concurrently, new computer
languages and new types of data structures were being explored by computer scientists,
leading to the creation (in 1960) of both ALGOL and LISP, with their features of lists,
recursion, etc. These languages were the first in a series of languages geared more toward
symbol manipulation than "number crunching," as discussed in the Al Programming Languages
Section of the Handbook.

J'
t >

Mechanical Translation 231

v

%

i

I
! The 1 960s saw considerable progress toward natural language understanding, such as

the developmentof systemic grammars and of particular programs that carried on a dialogue
of sorts with the user: BASEBALL, SAD-SAM, STUDENT,

SIR,

etc., which are described in
Article Fl. There were still efforts going on around the world in "pure" machine translation,
but in general it seemed that people had agreed that "understanding" language was
prerequisite to translation.

The early 1970s have seen some revival of interest in machine translation, partly
because some progress has been made in the internal representation of knowledge. The
programs of Wilks (Article F2) and Schank (Articles F3 and FB), for example, translate input
sentences into internal data structures based on semantic primitives, which are intended to be
"language independent"—elements of meaning that are common to all natural languages. The
internal representation can be manipulated relatively easily by procedures that carry out

inferences forming in effect an internal language or interlingua for modeling the world. The
data structure(s) derived from a particular sentence could be considered to be a translation

of that sentence into Weaver's Machinese. If the reverse problem can be solved (i.e.,

Machinese to, say, Russian), then one would have the realization, on some level, of Weaver's
idea (see Article E for research on the generation of text.)

I

In fact, more-or-less practical machine translation has been in use for some years to
provide crude, but readable, translation of technical papers. Large machine translation
systems have also been built for varied applications. Two examples are the system

developed for the 1975 Apollo-Soyuz Joint mission and the system currently under
developmentat the European Economic Community Computer Center. The first system is the
more sophisticated in that it allows the use of free syntax, while the second has a large
vocabulary of approximately 100,000 words (English-French).

It is difficult to evaluate the practicality of machine translation, because there is a
complicated quality/usefulness trade-off. in some applications it is worthwhile to have even
a very bad translation, if it can be done by a computer in a much shorter time (or much more
cheaply) than by humans. In others (such as the preparation of instruction manuals) it is
possible to deal with input texts that use a specially restricted form of the language,
thereby making translation easier. There is also the possibility of machine-human interactive
translating, in which the output of the computer is used not by the ultimate reader but by
someone engaged inxproducing the final translation. The computer can be used to do sub-
tasks like dictionary lookup, or can produce more-or-less complete translations that are then
checked and polished by a person (who perhaps does not know the original language).

i

At the current time, computers are being used in these ways in a number of translation
systems. There is also a renewed interest in fully automatic translation, based on some of
the the techniques for dealing with meaning described below. However it is not clear
whether we are yet ready to reattack the goal of "fully automatic high quality translation."
Much current work on language is based on a belief that deep understanding of what is being
said is vital to every language use. Applied to translation, this means that we must first
have a program that understands a subject before we can translate material about that

subject. Since our ability to model large areas of knowledge is still primitive, this places a
strong limit on the scope of material we might handle.

i

I

% 232 Natural Language

References

A brief, popular review of current work in mechanical translation can be found in Wilks
(1977a). For the earliest history, see the introduction to Locke & Booth (1955).

See also Bar-Hillel (1960), Bar-Hillel (1964), Bar-Hillel (1970), Booth (1967), Oettinger
(1955), Rustin (1973), Schank (1975), Weaver (1955), and Wilks (1973).

i

A grammar of a language is a scheme for specifying the sentences allowed in the
language, Indicating the rules for combining words into phrases and clauses. In natural
language processing programs, the grammar is used in parsing to "pick apart" the sentences
in the input to the program to help determine their meaning and thus an appropriateresponse.
Several very different types of grammars have been used in NL programs and are described
in the articles which follow.

Cl. Formal Grammars

One of the more important contributions to the study of language was the theory of
formal languages introduced by Noam Chomsky in the 19505. The theory has developed as a
mathematical area, not a linguistic one, and has strongly influenced computer science in the
design of computer programming languages (artificial languages). Nevertheless, it is useful in
connection with natural language understanding systems, both as a theoretical and a practical
tool.

Definitions

Aformal language is defined as a (possibly infinite) set of strings of finite length formed
from a finite vocabularyof symbols. (For example, the strings might be sentences composed
from a vocabulary of words.) The grammar of a formal language is specified in terms of the
following concepts:

1. The syntactic categories, such as <SENTENCE> and <NOUN PHRASE>. These
syntactic categories are referred to as nonterminal symbols or variables. Notationaliy, the
nonterminals of a grammar are often indicated by enclosing the category names in angle
brackets, as above.

2. The terminal symbols of the language, for example the words in English. The
terminal symbols are to be concatenated Into strings called sentences (if the terminals are
words). A language is then just a subset of the set of all the strings that can be formed by
combining the terminalsymbols in all possible ways. Exactly which subset is permitted in the
language is specifiedby the rewrite rules:

3. The rewrite rules or productions specify the relationships that exist between certain
strings of terminals and nonterminal symbols. Some examples of productions are:

<SENTENCE> -> <NOUN PHRASE> <VERB PHRASE>
<NOUN PHRASE> -> the <NOUN>

<NOUN> -> dog
<NOUN> -> cat

<VERB PHRASE) -> runs

The first production says that the (non-terminal) symbol <SENTENCE> may be "rewritten" as
the symbol <NOUN PHRASE> followed by the symbol <VERB PHRASE>. The second permits
<NOUN PHRASE> to be replaced by a string composed of the word the, which is a terminal
symbol, followed by the nonterminal <NOUN>. The next two allow <NOUN> to be replaced by

r

i
' i

" i

f

*

i
1 t

234

Natural Language

either dog or cat. Since there are sequences of productions permitting <NOUN PHRASE> to
be replaced by the dog or the cat, the symbol <NOUN PHRASE> is said to generate these two
terminal strings. Finally, <VERB PHRASE> can be replaced by the terminal runs.

4. The start symbol. One nonterminal is distinguished and called the "sentence" or
"start" symbol, typically denoted <SENTENCE> or S. The set of strings of terminals that can
be derived from this distinguished symbol, by applying sequences of productions, is called
the language generatedby the grammar. In our simple example grammar, exactly two sentences
are generated:

The cat runs.
The dog runs.

The important aspect of defining languages formally, from the point of view of computational
linguistics and natural language processing, is that if the structure of the sentences is well
understood, then a parsing algorithm for analyzing the input sentences will be relatively easy
to write (see Section D1on parsing).

The Four Types of Formal Grammars

Within the framework outlined above, Chomsky delineated four types of grammars,
numbered 0 through 3. The most general class of grammar is type 0, which has no
restrictions on the form that rewrite rules can take. For successive grammar types, the form
of the rewriting rules allowed is increasingly restricted, and the languages that are
generated are correspondingly simpler. The simplest formal languages (types 2 and 3) are,
as it turns out, Inadequate for describing the complexities of human languages. On the other
hand, the most general formal languages are difficult to handle computationally. (See Article
C 3for a fuller discussion of these difficulties. There is an intimate, and interesting
connection between the theory of formal languages and the theory of computational
complexity; see Hopcroft & Ullman, 1969.) The following discussion gives a formal account of
the different restrictions applied in each of the four grammartypes.

Formally, a grammar G is defined by a quadruple (VN, VT, P, S) representing the
nonterminals, terminals, productions, and the start symbol, respectively. The symbol V, for
"vocabulary," is used to represent the union of the sets VN and VT, which are assumed to
have no elements in common. Each production in P is of the form

X-> V

where X and V are strings of elements in V, and X is not the empty string.

Type 0. A type-0 grammar is defined as above: a set of productions over a given
vocabularyof symbols with no restrictions on the form of the productions. It has been shown
that a language can be generatedby a type-0 grammar if and only if it can be recognized by
a Turing machine; that is, we can build a Turing machine which will halt in an ACCEPT state
for exactly those input sentences that can be generatedby the language.

Type 1. A type-0 grammar is also of type 1 if the form of the rewrite rules is

I
i

C1 Formal Grammars 235

.1
<

v.

-A:

I

restricted so that, for each production X -> V of the grammar, the right-hand side V contains
at least as many symbols as the left-hand side X. Type-1 grammars are also called context
sensitive grammars. An example of a context-sensitive grammar with start symbol S and
terminals a, b, and c is the following:

The language generated by this grammar is the set of strings abc, aabbec, aaabbbece
This language, where each symbol must occur the same number of times and must appear in
the right position in the string, cannot be generated by any grammar of a more restricted
type (i.e., type 2 or type 3).

1
i

An alternate (equivalent) definition for context-sensitive grammars is that the
productions must be of the form

uXv -> uYv I!

where X is a single nonterminal symbol; v and y are arbitrary strings, possibly empty, of
elements of V; and V is a nonempty string over V. It can be shown that this restriction
generates the same languages as the first restriction, but this latter definition clarifies the
term context-sensitive: X may be rewritten as V only in the context of v and y.

Type 2. Context-free grammars or type-2 grammars are grammars in which each
production must have only a single non-terminal symbol on its left-hand side. For example, a
context-free grammar generating the sentences ab, aabb, aaabbb ... is:

f

Again, it is not possible to write a context-free grammar for the language composed of the
sentences abc. aabbec. aaabbbece . . . —having the same number of c's at the end makes
the language more complex. The simpler language here, in turn, cannot be generated by a

more restricted (type-3) grammar. ,

An exampleof a context-free grammar that might be used to generate some sentences
in natural language is the following:

<SENTENCE> -> <NOUN PHRASE> <VERB PHRASE>
<NOUN PHRASE> -> <DETERMINER> <NOUN>
<NOUN PHRASE> -> <NOUN>
<VERB PHRASE) -) <VERB) <NOUN PHRASE)

<DETERMINER> -> the
<NOUN> -> boys
<NOUN> -> apples
<VERB> -> eat

I

S -) aSBC
S -) aBC

CB -> BC
aB -> ab
bB -> bb
bC -> be
cC -) cc

S -> aSb
Sab -> ab

236» Natural Language

In this example, the, boys, apples, and eat are the terminals in the language and
<SENTENCE> is the start symbol.

An important property of context-free grammars in their use in NL programs is that
every derivation can conveniently be represented as a tree, which can be thought of as
displaying the structure of the derived sentence. Using the grammar above, the sentence
"the boys eat. apples" has the following derivation tree:

<SENTENCE>
<NOUN PHRASE) <VERB PHRASE)

<DETERMINER> <NOUN> <VERB> <NOUN PHRASE)

apples

Of course, "the apples eat boys" is also a legal sentence in this language. Derivation trees
can also be used with context-sensitive (type-1) grammars, provided the productions have
the alternate form uXv -> uYv, described above. For this reason, context-free and context-
sensitive grammars are often called phrase-structure grammars (see Chomsky, 1 959, pp. 143-- 144, and Lyons, 1968, p. 236).

Type 3. Finally, if every production is either of the form

where X and V are single variables and a is a single terminal, the grammar is a type-3 or
regular grammar. For example, a regular grammar can be given to generate the set of strings
of one or more as followed by one or more bs (but with no guarantee of an equal number of
as and bs):

Discussion: Language and Computational Algorithms

Because of the increasinglyrestricted forms of productions in grammars of type 0, 1. 2,
and 3, each type is a proper subset of the type above it in the hierarchy. A corresponding
hierarchy exists for formal languages. A language is said to be of type i if it can be
generated by a type-i grammar. It can be shown that languages exist that are context-free(type 2) but not regular (type 3); context-sensitive (type 1) but not

context-free;

andtype 0 but not context-sensitive. Examples of the first two have been given above

For regular and context-free grammars, there are practical parsing algorithms todetermine whether or not a given string is an element of the language and, if so, to assign toit a syntactic structure in the form of a derivation tree. Context-free grammars haveconsiderable application to programming languages. Natural languages, however, are not

11l 1the boys eat <NOUN>

X-> aY or X-> a

S -> aS
S -) aT
T -> b
T -> bT

Formal Grammars 237C1

£

i

generallycontext-free (Postal, 1962; Chomsky, 1963), and they also contain features that
can be handled more conveniently, if not exclusively, by a more powerful grammar. An
example is the requirement that the subject and verb of a sentence be both singular or both
plural. Some of the types of grammars and parsing algorithms that have been explored as
more suitable for natural language are discussed in the articles that follow.

References

For a general discussion of the theory of formal grammars and their relation to automata
theory, see Hopcroft & Ullman (1969). Their use in NL research is discussed in Winograd
(forthcoming).

Also of interest, of course, are the works of Chomsky (especially 1956, 1957, and
1959), as well as Lyons (1968), Lyons (1970), and Postal (1964). I

'$;

238 Natural Language%

C2. Transformational Grammars

The term transformational grammar refers to a theory of language introduced: by Noam
Chomsky in Syntactic Structures (1957). In the theory an utterance is characterized as the
surface manifestation of a "deeper" structure representing the "meaning" of the sentence.
The deep structure can undergo a variety of "transformations" of form (word order, endings,
etc.) on its way up, while retaining its essential meaning. The theory assumes that an
adequate grammar of a language like English must be a generative grammar, that is, that it
must be a statement of finite length capable of (a) accounting for the infinite number of
possible sentences in the language and (b) assigning to each a structural description that
captures the underlyingknowledge of the language possessed by an idealized native user. A

formal system of rules is such a statement; It "can be viewed as a device of some sort for
producing, the sentences of the language under analysis" (Chomsky, 1957, p. 11). The
operation of the device is not intended to reflect the processes by which people actually
speak or understand sentences, just as a formal proof in mathematics does not purport to
reflect the processes- by which the proof was discovered. As a model of abstract knowledge
and not of human behavior, generative grammar is said to be concerned with competence, as
opposed to performance.

The inadequacy of Phrase-structure Grammars

Given that a grammar is a generative rule-system, it becomes a central task of
linguistic theory to discover what the rules should look like. In Syntactic Structures (1957)
and elsewhere (see Chomsky, 1963, Postal, 1964), it was shown that English is neither a
regular nor a context-free language. The reason is that those restricted types of grammars
(defined in Article C1) cannot generate certain common constructions in everyday English,
such as the. one using "respectively":

Arthur, Barry, Charles, and David are the husbands of Jane, Joan, Jill,
and Jennifer, respectively.

It was not determined whether a more powerful (i.e., context-sensitive) grammar could be
written to generateprecisely the sentences of English; rather, such a grammar was rejectedfor the following reasons.

1. It made the description of English unnecessarily clumsy and complex—for
example, in the treatment required for conjunction, auxiliary verbs, andpassive sentences.

2. It assigned identical structures (derivation trees) to sentences that areunderstood differently, as in the pair:

The picture was painted by a new technique.
The picture was painted by a new artist.

C2 Transformational Grammars

I

!

i

il .

It provided no basis for identifying as similar sentences having different
surface structures but much of their "meaning" in common:

John ate an apple.
Did John eat an apple?
What did John eat?
Who ate an apple?

The failure of phrase-structure grammar to explain such similarities and differences was
taken to indicate the need for analysis on a higher level, which transformational grammar
provides.

Transformational Rules

In Syntactic

Structures,

Chomsky proposed that grammars should have a tripartite
organization. The first part was to be a phrase-structure grammar generating strings of
morphemes representing simple, declarative, active sentences, each with an associated
phrase marker or derivation tree.

Second,

there would be a sequence of transformational
rules rearranging the strings and adding or deletingmorphemes to form representations of the

full variety of sentences. Finally, a sequence of morphophonemic rules would map each
sentence representation to a string of phonemes. Although later work has changed this
model of the grammar, as well as the content of the transformational rules, it provides a basis
for a simple illustration.

Suppose the phrase-structure grammar is used to produce the following derivation tree:

SENTENCE

NOUN PHRASE VERB PHRASE

nuun

rnnnui.

»*..—

-
NP-SINGULAR VERB NOUN PHRASE

DETERMINE^ JtouN All/\ NP-PLURAL

the biy TENSE eat DETERMINER n6un N

the apple

To generate "the boy ate the apples," one would apply transformations mapping TENSE +
eat" to "eat + PAST"; a morphophonemic rule would then map "eat + PAST" to ate. To derive
"the boy eats the apples," the transformational rule used would select present tense and,

because the verb follows a singular noun phrase, would map "TENSE + eat" to "eat ♦ s." It is
noteworthy that the transformational rule must look at nonterminal nodes in the derivation
tree to determine that "the boy" is in fact a singular noun phrase. This example illustrates
one respect in which transformational rules are broader than the rules of a phrase-structure
grammar.

The transformations mentioned so far are examplesof obligatory transformations, insuring
agreement in number of the subject and the verb. To obtain "the apples were eaten by the

'rti

240 Natural Language%

boy," it would be necessary first to apply the optional passive transformation, changing a
string analyzed as

NOUN-PHRASE- 1 + AUK +V + NOUN-PHRASE-2
to

NOUN-PHRASE-2 + (AUK + be) + (en + V) + by + NOUN-PHRASE- 1

In other words, this optional transformation changes "the boy TENSE eat the apples" to "the
a PPles TENSE be (en eat) by the boy." and then forces agreement of the auxiliaryverb with
the new plural subject. Further obligatory transformations would yield "the apples be PAST
eaten by the boy" (where "be + PAST," as opposed to "be + s + PAST," is ultimately mapped
to were). The ordering of transformational rules is thus an essential feature of the grammar.

Revisions to the Model

In Aspects of the Theory of Syntax (1965), Chomsky made several revisions to the
model presented in Syntactic Structures. The version outlined in the more recent book has
been called the "standard theory" of generative grammar and has served as a common
starting-point for further discussion. In the standard theory (as summarized in Chomsky,
1971), sentence generation begins from a context-free grammar generating a sentence
structure and is followed by a selection of words for the structure from a lexicon. The
context-free grammar and lexicon are said to form the base of the grammar; their output is
called a deep structure. A system of transformational rules maps deep structures to surfacestructures; together, the base and transformational parts of the grammar form its syntactic
component. The sound of a sentence Is determined by its surface structure, which is
interpreted by the phonological component of the grammar; deep structure, interpreted by the
semantic component, determines sentence meaning. It follows that the application of
transformational rules to deep structures must preserve meaning: This was the Katz-Postalhypothesis, which required enlarging the generative capacity of the base and revising many
of the transformational rules suggested earlier (Katz & Postal, 1964).

The place of the semantic component in the standard theory has been the major sourceof current Issues. For example, the following pairs of sentences have different meanings,
but their deep structures, in the standard theory, are the same.

Not many arrows hit the target.
Many arrows didn't hit the target.

Each of Mary's sons loves his brothers.
His brothers are loved by each of Mary's sons.

Chomsky's response was to revise the standard theory so that both the deepstructure of a
sentence and its subsequent transformations are input to the semantic component (Chomsky,
1971). He exemplifies the position of interpretive semantics, which keeps the syntactic
component an autonomous system. The opposing view, called generative semantics, is thatsyntax and semantics cannot be sharply separated and, consequently, that a distinct level
?„^1taCt'C d6eP structure does not exjst. (This issue is discussed in Charniak & Wilks,1 976.)

Transformational Grammars 241C2

There have been a number of developments within the theory of transformational
grammar since the work reviewed here, and current debates have called into question many
of the basic assumptions about the role of transformations in a grammar. For current
discussions of these Issues, see Akmajian, Culicover and Wasow (1977) and Bresnan
(1978).

References

The classic references here are, of course, Chomsky (1957) and Chomsky (1965).

Chomsky (1971) is a shorter and more recent discussion. Akmajian, Culicover, & Wasow
(1977) and Bresnan (1978) are the latest word on transformation theory.

Also see Charniak & Wilks (1976), Chomsky (1956), Chomsky (1959), Chomsky (1963),

Herman (1974), Katz & Postal (1964), Lyons (1968), Lyons (1970), Postal (1964), and
Steinberg & Jakobovits (1971).

i

242 Natural Language%

C3. Systemic Grammar

Systemic grammar, developed by Michael Hailiday and others at the University of
London, is a theory within which linguistic structure as related to the function or use of
language, often termed pragmatics, is studied. According to Hailiday (1961, p. 141), an
account of linguistic structure that pays no attention to the functional demands we make on
language is lacking in perspicacity, since it offers no principles for explaining why the
structure is organized one way rather than another. This viewpoint is in contrast to that of
transformational grammar, which has been concerned with the syntactic structure of an
utterance apart from its intended use.

The Functions of Language

Hailiday distinguishes three general functions of language, all of which are ordinarily
served by every act of speech.

The ideational function serves for the expression of content. It says something about
the speaker's experience of the world. Analyzing a clause in terms of its ideational function
involves asking questions like: What kind of process does the clause describe—an action, a
mental process, or a relation? Who is the actor (the logical subject)? Are there other
participants in the process, such as goal (direct object) or beneficiary (indirect object)? Are
there adverbial phrases expressing circumstances like time and place? The organization of
this set of questions is described by what Hailiday calls the transitivity system of the grammar.
(This is related to the ideas of case grammars discussed in Article C4.)

The interpersonal function relates to the purpose of the utterance. The speaker may be
asking a question, answering one, making a request, giving information, or expressing an
opinion. The mood system of English grammar expresses these possibilities in terms of
categories such as statement, question, command, and exclamation.

The textual function reflects the need for coherence in language use (e.g., how a given
sentence is related to preceding ones). Concepts used for analysis in textual terms
include: (1) theme, the element that the speaker chooses to put at the beginning of a
clause; and (2) the distinction between what is new in a message and what is given—the
latter being the point of contact with what the hearer alreadyknows.

Categories of Systemic Grammar

The model of a grammar proposed by Hailiday has four primitive categories:

1 - The units of language, which form a hierarchy. In English, these are the sentence,
clause, group, word, and morpheme. The "rank" of a unit refers to its position in the
hierarchy.

2- The structure of units. Each unit is composed of one or more units at the rank
below, and each of these components fills a particular role. The English clause, for example,
is made up of four groups, which serve as subject, predicator, complement, and adjunct.

243Systemic GrammarC3

' I
i

"|

s!
i

» j

J I

3. The classification of units, as determined by the roles to be filled at the level
above. The classes of English groups, for instance, are the verbal, which serves as
predicator; the nominal, which may be subject or complement; and the adverbial, which fills
the adjunct function.

4. The system. A system is a list of choices representing the options available to the
speaker. Since some sets of choices are available only if other choices have already been
made, the relationship between systems is shown by combining them into networks, as in the
simple examplebelow:

imperative
independent —*

indicative —► declarative
clause —♦ * . _

dependent ■ »l I interrogative

The interpretation is that each clause is independent or dependent; if independent, it is
either imperative or indicative; and if either indicative or dependent, then it is either

declarative or interrogative. In general, system networks can be defined for units of any
rank, and entry to a system of choices may be made to depend on any Boolean combination
of previous choices.

Conclusion

Systemic grammar views the act of speech as a simultaneous selection from among a
large number of interrelated options, which represent the "meaning potential" of the
language. If system networks representing these options are suitably combined and carried
to enough detail, they provide a way of writing a generative grammar quite distinct from that
proposed by transformational grammar (see Hudson, 1971, 1977; McCord, 1975; and

Self,

1975). Furthermore, this formalism has been found more readily adaptablefor use in natural
language understanding programs in Al (see especially Winograd's SHRDLU system, Article
F5).

i

Referencesi

Hailiday (1961) and Hailiday (1970b) are the most general original references.
Winograd (1972) discusses the application of systemic grammar in an NL program.

Also see Hailiday (1967-68), Hailiday(1970a), Hudson (1971), Hudson (1976), McCord
(1975), Mcintosh & Hailiday (1966), and Self (1975).

I

244 Natural Language%

C4. Case Grammars

Case systems, as used both in modern linguistics and in artificial intelligence, are
descendants of the concept of case that occurs in traditional grammar. Traditionally, the case
of a noun was denoted by an inflectional ending indicating the noun's role in the sentence.
Latin, for example, has at least six cases: the nominative, accusative, genitive, dative,
ablative, and vocative. The rules for case endings make the meaning of a Latin sentence
almost independent of word order: The function of a noun depends on its inflection rather
than its position in the sentence. Some present-day languages, including Russian and
German, have similar inflection systems, but English limits case forms mainly to the personal
pronoun, as in I, my, me, and to the possessive ending _s. Case functions for nouns are
indicated in English by using word order or by the choice of preposition to precede a noun
phrase—as in "of the people, by the people, and for the people."

The examples above describe what have been called "surface" cases; they are
aspects of the surface structure of the sentence. Case systems that have attracted more
recent attention are "deep" cases, proposed by Fillmore (1968) in his paper The Case forCase, as a revision to the framework of transformational grammar. The central idea is that the
proposition embodied in a simple sentence has a deep structure consisting of a verb (the
central component) and one or more noun phrases. Each noun phrase is associated with the
verb in a particular relationship. These relationships, which Fillmore characterized as
"semantically relevant syntactic relationships," are called cases. For example, in the
sentence

John opened the door with the key ,
John would be the AGENT of the verb opened, the door would be the OBJECT, and the key
would be the INSTRUMENT. For the sentence

The door was openedby John with the key ,
the case assignments would be the same, even though the surface structure has changed.

It was important to Fillmore's theory that the number of possible case relationships be
small and fixed. Fillmore (1971b) proposed the following cases:

Agent — the instigator of the event.
Counter-Agent — the force or resistance against which the action is

carried out.
Object — the entity that moves or changes or whose position

or existence is in consideration.
"Result — the entity that comes into existence as a result ofthe action.
Instrument — the stimulus or immediate physical cause of an

event.
Source — the place from which something moves.
Goai — the place to which something moves.
Experiencer -the entity which receives or accepts or

experiencesor undergoes the effect of an action.

rif.
ft

245Case GrammarsC4

A more recent proposal (Fillmore, 1971a) recognizes 9 cases: Agent, Experiencer,

!

!

Jl

"I

Instrument, Object,

Source,

Goal, Location, Time, and Path.

Verbs were classified according to the cases that could occur with them. The' cases
for any particular verb formed an ordered set called a case frame. For example, the verb
"open" was proposed to have the case frame

[OBJECT (INSTRUMENT) (AGENT)]

indicating that the object is obligatory In the deep structure of the sentence, whereas it is
permissible to omit the instrument ("John opened the door") or the agent ("The key opened

the door"), or both ("The door opened"). Thus, verbs provide templates within which the
remainderof the sentence can be understood.

The Case for Case

The following are some of the kinds of questions for which case analysis was intended
to provide answers:

1. In a sentence that is to contain several noun phrases, what determines
which noun phrase should be the subject in the surface structure? Cases
are ordered, and the highest ranking case that is present becomes the
subject.

2. Since one may say "Mother is baking" or "The pie is baking," what is wrong
with "Mother and the pie are baking"? Different cases may not be
conjoined.

3. What is the precise relationship between pairs of words like "buy" and
"sell" or "teach" and "learn"? They have the same basic meaning but
different case frames.

One way of looking at deep cases is to view the verb as a predicate taking an
appropriate array of arguments. Fillmore has extended the class of predicates to include
other parts of speech, such as nouns and adjectives, as well as verbs. Viewing warm as a
predicate, for example, enabled case distinctions to account for the differences among the
following sentences:

I am warm.
This Jacket is warm.
Summer is warm.
The room is warm.

[experiencer]
[instrument]
[time]
[location]

The Representationof Case Frames

In artificial intelligence programs, such predicates and their arguments can readily be

246 Natural Language%

equated to nodes in semantic networks; and the case relations, to the kinds of links between
them. Systems making such identifications include those of Simmons (1973), Schank (1975),
Schank & Abeison (1977), and Norman & Rumelhart (1975). Semantic nets and related work
on semantic primitives and frames are discussed in the section on Knowledge Representation
and in Articles F3 and FB which describe the MARGIE and SAM systems.

Many other systems using case representationsexist. As pointed out in an extensive
survey by Bruce (1975), considerable variation exists in both the sets of cases adopted and
the ways in which case representation is used. The number of cases used varies from four
or five (Schank) to over thirty (Martin). Bruce's proposal on criteria for choosing cases,
which departs significantly from Fillmore's original goal of finding a small, fixed set of
relationships, Is that:

A case is a relation which is "important" for an event in the context in
which it is described. (Bruce, 1975)

Case notation has been used to record various levels of sentence structure. As
Fillmore introduced it, within the transformational grammar framework, deep cases were
"deep" in the sense that "John opened the door" and "the door was opened by John" were
given the same representation. They can also be viewed as relatively superficial, however,
in that "John bought a car from Bill" and "Bill sold a car to John" could have distinct
representations since they have different verbs. At this level, cases have been used in
parsing (Wilks, 1976b; Taylor & Rosenberg, 1975); in the representation of English
sentences, as opposed to their underlying meanings, as discussed above (Simmons, 1973);
and in text generation (see Article E).

Systems using case at the deepest level, on the other hand, may represent themeaning of sentences in a way that collapses buy and seN, for example, into a single
predicate (Schank, 1975; Norman & Rumelhart, 1975). A typical problem attacked by these
systems is paraphrasing, where identifying sentences with the same deep structure is the
goal. Schank (1975) also requires that all cases be filled, even if the information requiredwas not explicitly given In the sentences represented. Charniak (1975) suggests that the
appropriate use of case at this level of representation is in inferencing: The "meaning" of a
case would then be the set of inferences one could draw about an entity knowing only its
case, in the view of some writers, however, the function of case in natural languageunderstanding systems is usually only as a convenient notation (see Charniak, 1975; Welin,

References

Fillmore (1968) is the classic reference on case grammars. Bruce (1975) is a thoroughreview of different approaches to case grammar.

mo~£ c
Se,c C _fr?iak (975) ' Fi,lmore (1971a), Fillmore (1971b), Norman & Rumelhart(975), Samlowski (1976), Schank (1973), Schank (1975), Schank & Abeison (1977).Simmons (1973), Taylor & Rosenberg (1975), Welin (1975), Wilks (1976b), and Wilks(1 976a).

1

247Parsing

" I'"i

f I

""ii

t' '\

i

* *l

D. Parsing

Dl. Overview of Parsing Techniques

Parsing is the "delinearization" of linguistic input, that is, the use of syntax and other
sources of knowledge to determine the functions of the words in the input sentence in order
to create a data structure, like a derivation tree, that can be used to get at the "meaning" of
the sentence. A parser can be viewed as a recursive pattern matcher seeking to map a string
of words onto a set of meaningful syntactic patterns. For example, the sentence "John
kissed Mary" could be matched to the pattern:

SENTENCE
SUBJECT PREDICATE

VERB OBJECT

The set of syntactic patterns used is determined by the grammar of the input language.
(Several types of grammars are described in the articles in Section C.) In theory, by applying
a comprehensive grammar, a parser can decide what is and what is not a grammatical
sentence and can build up a data structure corresponding to the syntactic structure of any
grammatical sentence it finds. All natural language processing computer systems contain a
parsing component of some sort, but the practical application of grammars to natural
language has proven difficult.

The design of a parser is a complex problem, both in theory and implementation. The
first part of the design concerns the specification of the grammar to be used. The rest of
the parsing system is concerned with the method of use of the grammar, that is, the manner in
which strings of words are matched against patterns of the grammar. These considerations
run into many of the general questions of computer science and artificial intelligence
concerningprocess control and manipulationof knowledge.I

General Issues of Parser Design

The design considerations discussed below overlap; that is, a decision in one dimension
affects other design decisions. Taken together they present a picture of the variety of
issues involved in natural languageparsing.

Uniformity. Parsers may represent their knowledge about word meanings, grammar, etc.,

with a single scheme or with specialized structures for specific tasks. The representation

scheme affects the complexity of the system and the application of knowledge during
parsing. If rules and processes are based on specialized knowledge of what the input to the
parser will contain, it is possible to do things more quickly and efficiently. On the other hand,
if one has a simple uniform set of rules and a consistent algorithm for applying them, the job
of writing and modifying the language understandingsystem is greatly simplified, since all the
knowledge in the system is uniformly explicated. In general, there is a trade-off between
efficiency and uniformity; an algorithm specially designed for only one language can perform

more efficiently than one that could uniformly handle any language.

248 Natural Language%

Multiple Sources of Knowledge. Parsing, as originally developed (and still used in
programming language compilers), was based purely on syntactic knowledge—knowledge
about the form of sentences allowed in the language. However, it is possible to design
systems in which syntax-based parsing is intermixed with other levels of processing, such
as word recognition and use of word meanings. Such methods can alleviate many of the
problems of language complexityby bringing more information to bear. Present systems tend
toward such intermixed structures, both for effective performance and more psychologically
valid modeling of human language understanding (see, for example, Article F5 on SHRDLU and
the extensive discussion of multiple sources of knowledge in Article Applications.C3 on the
SOPHIE system and- the blackboard model in the Speech Understanding section).

Precision. Another major trade-off involved in parser design is precision vs. flexibility.
Humans are capable of understanding sentences that are not quite grammatical; even if a
person knows that a sentence is "wrong" syntactically, he can often understand it and
assign it a structure (and more importantly, a meaning). Some natural language processing
systems (e.g., PARRY and ELIZA) have been designed to incorporate this kind of flexibility.
By looking for key words and using loose grammatical criteria, these systems can accept far
more sentences than would a precise parser. However, these "knowledge-poor" flexibleparsers lose many benefits of the more complete analysis possible with a precise system,
since they rely on vaguer notions of sentence meaning than a precise system. While they
reject less often, flexible systems tend to misinterpret more often. Many systems attempt
to use additional knowledge sources, especially domain-specific knowledge, to increase
flexibilitywhile retaining precision.

Type of structure returned. As mentioned, parsing is the process of assigning
structures to sentences. The form of the structure can vary, from a representation that
closely resembles the surface structure of the sentence to a deeperrepresentation in which
the surface structure has been extensively modified. Which form is chosen depends upon
the use to which the parse structure will be put. Currently, most work in natural language
favors the deep structure approach.

These four issues—uniformity, types of knowledge used, precision, and level of
representation—are very general questions, and are dealt with in different ways by different
systems. In Implementing a parser, after settling such general design questions, natural
language programmers run up against another set of problems involving specific parsing
strategies.

Parsing Strategies

Backtracking versus parallel processing. Unfortunately for computational linguists,the elements of natural languages do not always possess unique meanings. For example, ingoing through a sentence the parser might find a word that could either be a noun or a verb,
like "can," or pick up a prepositional phrase that might be modifying any of a number of theother parts of the sentence. These and many other ambiguities in natural languages forcethe parser to make choices between multiple alternatives as it proceeds through a sentence.Alternatives may be dealt with all at the same time, via parallel processing, or one at a time
using a form of tecfc/racAin/j-backing up to a previous choice-point in the computation andtrying again (see Article Al Languages.B3 on control mechanisms in Al programming languages).Both of these methods require a significant amount of bookkeeping to keep track of the

i\

i

" I

:J

I
1
I

J

i

i

multiple possibilities: all the ones being tried, in the case of parallel processing; or all the
ones not yet tried, in the case of backtracking. Neither strategy can be said to be innately
superior, though the number of alternatives that are actually tried can be significantly
reduced when backtracking is guided by "knowledge" about which of the choices are more
likely to be correct—called heuristic knowledge (see Search-Overview).

Top-down versus bottom-up. In deriving a syntactic structure, a parser can operate

from the goals, that is, the set of possible sentence structures (top-down processing), or from
the words actually in the sentence (bottom-up processing). A strictly top-down parser begins
by looking at the rules for the desired top-level structure (sentence, clause, etc.); it then
looks up rules for the constituents of the top-level structure, and progresses until a
complete sentence structure is built up. If this sentence matches the input data, the parse
is successfully completed, otherwise, it starts back at the top again, generating another
sentence structure. A bottom-up parser looks first for rules in the grammar to combine the
words of the input sentence into constituents of larger structures (phrases and clauses),

and continues to try to recombine these to show how all the words in the input form a legal
sentence in the grammar. Theoretically, both of these strategies arrive at the same final

analysis, but the type of work required and the working structures used are quite different.
The Interaction of top-down and bottom-up process control is a common problem in Al and is
not restricted natural language programs (see, for example, the discussion in the Speech.A).

Choosing how to expand or combine. With either a top-down or bottom-up technique,
it is necessary to decide how words and constituents will be combined (bottom-up) or
expanded (top-down). The two basic methods are to proceed systematically in one direction
(normally left to right) or to start anywhere and systematically look at neighboring chunks of
increasing size (this method is sometimes called island driving). Both these methods will
eventually look at all possibilities, but the choice of how to proceed at this level can have a

significant effect on the efficiency of the parser. This particular feature is especially

relevant to language processing in the presence of input uncertainty, as occurs, for example,

in the speech understanding systems.

I

Multiple knowledge sources. As mentioned above, another important design decision

that was especiallyapparent in the speech understandingsystems was the effective use of
multiple sources of knowledge. Given that there are a number of possibly relevant sets of

facts to be used by the parser (phonemic, lexical, syntactic, semantic, etc.), which do you

use when?

The issues discussed here under parsing strategies are all questions of efficiency. They
will not in general affect the final result if computational resources are unlimited, but they
will affect the amount of resources expended to reach it.

Actual Parsing Systems

Every natural language processing program deals with these seven issues in its own
fashion. Several types of parsers have developed as experience with natural language
systems increses.

Template matching. Most of the early NL programs (e.g., SIR.

STUDENT,

ELIZA)
performed "parsing" by matching their input against a series of predefined templates-binding

249D1 Overview of Parsing Techniques

250

Natural Language

the variables of the template to corresponding pieces of the input string (see Article Fl).
This approach was

successful,

up to a point—given a very limited topic of discussion, the
form of many of the input sentences could be anticipated by the system's designer who
incorporated appropriate templates. However, these systems were ad hoc and somewhat
inextensible, and the template matching was soon abandoned in favor of more sophisticated
methods.

Simple phrase-structure grammar parsers. These parsers make use of a type of
context-free grammar with various combinations of the parsing techniques mentioned above.
The advantage of a phrase-structure grammar is that the structures derived correspond
directly to the grammar rules; thus, the subsequent semantic processing is simplified. By
using large grammars and skirting linguistic issues that are outside their limitations (such as
some types of agreement), a phrase-structure grammar parser can deal with a moderately
large subset of English. Phrase-structure grammars are used primarily to produce systems
(like SAD-SAM) with useful performance on a limited domain, rather than to explore more
difficult language-processingissues.

Transformational grammar parsers. These parsers attempt to extend the notions of
transformational grammar into a parsing system. Transformational grammar is a much more
comprehensive system than phrase-structure grammar, but it loses phrase-structure's direct,
rule-to-structure correspondence. Moreover,methods that have been tried, such as analysis
by synthesis (building up all possible sentences until one matches the input) and inverse
transformations (looking for transformation rules that might have produced the input), have
often failed because of combinatorial explosion— the proliferation of alternatives the system
must examine—and other difficulties with reversing transformations. One of the major
attempts to implement a transformational parser was that by Petrick (1973).

Extended grammarparsers. One of the most successful Al approaches to parsing yet
developed has been to extend the concept of phrase-structure rules and derivations by
adding mechanisms for more complex representations and manipulations of sentences.
Methods such as augmented transition net grammars (ATNs) and charts provide additional
resources for the parser to draw on beyond the simple, phrase-structure approach (see
Articles D3and 03). Some of these mechanisms have validitywith respect to some linguistic
theory, wnile others are merely computationally expedient. The very successful systems of
Woods & Kaplan (1971), Winograd (1972), and Kaplan (1973), as described in the articles in
Section F, use extended grammarparsers.

Semantic grammar parsers. Another very successful modification to the traditional
phrase structure grammar approach is to change the conception of grammatical classes from
the traditional <NOUN>, <VERB>, etc., to classes that are motivated by concepts in the
domain being discussed. For instance, such a semantic grammar for a system which talks
about airline reservations might have grammatical classes like DESTINATION),

<FLIGHT>,

<FLIGHT-TIME>, and so on. The rewrite rules used by the parser would descibe phrases and
clauses in terms of these semantic categories (see Article Applications.C3 for a more
complete discussion). The LIFER and SOHPHIE systems (Artcles F7 and Appliestions.C3) use
semantic grammar parsers (Hendrix, 1977a, and Burton, 1976).

Grammarless parsers. Some NL system designers have abandoned totally thetraditional use of grammars for linguistic analysis. Such systems are sometimes referred to
as "ad hoc," although they are typically based on some loose theory that happens to fall

;. J;

V

D1 Overview of Parsing Techniques 251

'

.'<,

" fi
!

'j!
' !i

■j
'1
Hi
:-''iM

.-I

1
'!

'

outside the scope of standard linguistics. These "grammarless" parsers opt for flexibility in
the above-mentioned precision/flexibilitytrade-off. They are based on special procedures
(perhaps centered on individual words rather than syntactic elements) that use semantics-
based techniques to build up structures relevant to meaning, and these structures bear little
resemblance to the normal structures that result from syntactic parsing. A good example of
this approachcan be found in the work of Riesbeck (1975).

Conclusion

Recent research in parsing has been directed primarily towards two kinds of
simplification: providing simplified systems for dealing with less than full English, and
providing simplified underlying mechanisms that bring the computer parsing techniques closer
to being a theory of syntax. Systems such as LIFER (Article F7) have been developedwhich
use the basic mechanisms of augmented grammars in a clean and easily programmable way.
Systems like these cannot deal with the more difficult problems of syntax, but they can be
used quickly and easily to assemble specialized parsers and are likely to be the basis for
natural language "front ends" for simple applications.

At the same time, there has been a reevaluation of the fundamental notions of parsing
and syntactic structure, viewed from the perspective of programs that understand natural
language. Systems such as PARSIFAL (Marcus, 1978) attempt to capture in their design the
same kinds of generalizations that linguists and psycholinguists posit as theories of language
structure and language use. Emphasis is being directed toward the interaction between the
structural facts about syntax and the control structures for implementing the parsing
process. The current trend is away from simple methods of applying grammars (as with
phrase-structure grammars), toward more "integrated" approaches. In particular, the
grammar/strategy dualism mentioned earlier in this article has been progressively weakened
by the work of Winograd (1972) and Riesbeck (1975). It appears that any successful
attempt to parse natural language must be based upon some more powerful approach than
traditional syntactic analysis. Also, parsers are being called upon to handle more "natural"
text, including discourse, conversation, and sentence fragments. These involve aspects of
language that cannot be easily described in the conventional, grammar-based models.

I

!
i

References

Again, much of this discussion is borrowed from Winograd (forthcoming). For a review of
recent work, the proceedings of the TINLAP conferences (TINLAP-1, 1975 and TINLAP-2,
1978) are recommended.

I

252 Natural Language%

D2. Augmented Transition Nets

Augmented transition networks (ATNs) were first developed by William Woods (1970)
as a versatile representation of grammars for natural languages. The concept of an ATN
evolved from that of a finite-state transition diagram, with the addition of tests and "side-
effect" actions to each arc, as described below. These additions resulted in the power
needed for handling features of English like embedding and agreement that could not be
conveniently captured by regular (or even context-free) grammars. An ATN can thus be
viewed as either a grammar formalism or a machine.

Many current language processors use an ATN-like grammar; in some ways, it may be
considered

state-of-the-art,

at least for actual working systems.

PreliminaryTheoretical Concepts

A finite-state transition diagram (FSTD) is a simple theoretical device consisting of a
set of states (nodes) with arcs leading from one state to another. One state is designated
the START state. The arcs of the FSTD are labeled with the terminals of the grammar (i.e.,
words of the language), indicating which words must be found in the input to allow the
specified transition. A subset of the states is identified as FINAL; the device is said to accept
a sequence of words if, starting from the START state at the beginning of the sentence, it
can reach a FINAL state at the end of the input.

FSTDs can "recognize"only regular or type-3 languages (see the discussion of formallanguages in Article CI). To recognize a language, a machine must be able to tell whether an
arbitrary sentence is part of the language or is not. Regular grammars (those whose rewrite
rules are restricted to the form V -> aX or V -> a) are the simplest, and FSTDs are only
powerful enough to recognize these languages. In other words, it is impossible to build an
FSTD that can dependably distinguish the sentences in even a context-free language.

For example, the following FSTD, in which the start state is the left-most node and the
final state is labeled __;, will accept any sentence that begins with the, ends with a noun, and
has an arbitrary number of adjectives in between.

Let's follow through the net with the input sentence "the pretty picture." We start in the
START state and proceed along the arc labeled the, because that is the left-most word in
the input string. This leaves us in the middle box, with "pretty picture" left as our string to
be parsed. After one loop around the adjective arc, we are again at middle node, but thistime with the string "picture" remaining. Since this word is a noun, we proceed to the FINALnode, _J_, and arrive there with no words remaining to be processed. Thus the parse is
successful; in other words, our example FSTD accepts this string.

<adjectlve>

I.

I

However, regular grammars are inadequate for dealing with the complexity of natural
language, as discussed in Article C2. A natural extension to

FSTDs,

then, is to provide a
recursion mechanism that increases their recognition power to handle the more inclusive set
of context-free languages. These extended FSTDs are called recursive transition networks
(RTNs). An RTN is a finite-state transition diagram in which labels of an arc may include not
only terminal symbols but also nonterminal symbols that denote the name of another
subnetwork to be given temporary control of the parsing process.

\

An RTN operates similarly to an FSTD. If the label on an arc is a terminal (word or word
class), the arc may be taken (as in FSTDs) if the word being scanned matches the label. For
example, the word baH would match an arc labeled <noun> but not one labeled <acijective>.
Otherwise, if the arc is labeled with a nonterminal symbol, representing a syntactic construct
(e.g., PREPOSITIONAL PHRASE) that corresponds to the name of another network, the current

state of the parse is put on a stack and control is transferred to the corresponding named
subnetwork, which continues to process the sentence, returning control when it finishes or
fails.

Whenever an accepting state is reached, control is transferred to the node obtained
by "popping the stack" (i.e., returning to the point from which the subnetwork was entered).

If an attempt is made to pop an empty stack, and if the last Input word was the cause of this
attempt, the input string is accepted by the RTN; otherwise, it is rejected. The effect of

arcs labeled with names of syntactic constructs is that an arc is followed only if a
construction of the corresponding type follows as a phrase in the input string. Consider the
following example of an RTN:

j

I

<

i

i
i

NP: C"~} f}

i

iHere NP denotes a noun phrase; E£, a prepositional phrase; det, a determiner; _m___>, a
preposition; and adi, an adjective. Accepting nodes are labeled __.. If the input string is
"The little boy in the swimsuit kicked the red ball," the above network would parse it into the
following phrases:

I

I

253D2 Augmented Transition Nets

<adj> PP

, 1 <det> | 1 <noun> i—i
►N p >|_J — ►[**]

254 Natural Language%

NP: The little boy in the swimsuit
PP: in the swimsuit
NP: the swimsuit

Verb: kicked
NP: the red ball

Notice that any subnetwork of an RTN may call any other subnetwork, including itself; in
the above example, for instance, the prepositional phrase contains a noun phrase. Also
notice that an RTN may be nondeterministic in nature; that is, there may be more than one
possible arc to be followed at a given point in a parse. Parsing algorithms handle
nondeterminism by parallel processing of the various alternatives or by trying one and then
backtracking if it fails. These general parsing issues are discussed in Article 01.

Context-free grammars, however, are still insufficient to handle natural language. The
RTNs, then, must be extended, to provide even more parsing power.

ATNs

An augmented transition network (ATN) is an RTN that has been extended in three
ways:

1. A set of registers has been added; these can be used to store

information,

such as partially formed derivation trees, between jumps to different networks.

2. Arcs, aside from being labeled by word classes or syntactic constructs, can
have arbitrary tests associated with them that must be satisfied before the arc
is taken.

3. Certain actions may be "attached" to an arc, to be executed whenever it is
taken (usually to modify the data structure returned).

This addition of registers, tests, and actions to the RTNs extends their power to that of
Turing machines, thus making ATNs theoretically powerful enough to recognize any language
that might be recognized by a computer. ATNs offer a degree of expressiveness and
naturalness not found in the Turing machine formalism, and are a useful tool to apply to the
analysis of natural language.

The operation of the ATN is similar to that of the RTN except that if an arc has a test
then the test is performed

first,

and the arc is taken only if the test is successful. Also, if
an arc has actions associated with it, then these operations are performed after following the
arc. In this way, by permitting the parsing to be guided by the parse history (via tests on
the registers) and by allowing for a rearrangement of the structure of the sentence during
the parse (via the actions on the registers), ATNs are capable of building deep structure
descriptions of a sentence in an efficient manner. For a well-developed and clear example,
the reader is referred to Woods (1970).

\v.

i I I

255D2 Augmented Transition Nets

\

I
)

«t

Evaluation of ATNs and Results

ATNs serve as an computationally implementable and efficient solution to some of the
problems of recognizing and generating natural language. Their computational power provides
the capability to embed different kinds of grammars, making them an effective testbed for
new ideas. Two of the features of ATNs, the test and the actions on the arcs, make them
especially well suited to handling transformational grammars. The ability to place arbitrary
conditions on the arcs provides context sensitivity, equivalent to the preconditions for
applying transformational rules. The capability to rearrange the parse structure, by copying,
adding, and deleting components, provides the full power of transformations (see Article C2).

The ATN paradigm has been successfully applied to question answering in limited
(closed) domains, such as the LUNAR program, which is described in Article F4. Also, ATNs
have been used effectively in a number of text generation systems. In addition, the BBN speech
understanding system,

SPEECHLIS,

uses an ATN control structure (see Article Speech.B3).

There are limitatfons to the ATN approach; in particular, the heavy dependence on
syntax restricts the ability to handle ungrammatical (although meaningful) utterances. More
recent systems (see especially Riesbeck's work, Article F3) are oriented toward meaning
rather than structure and can thus accept mildly deviant input.

References

The principal references here are, of course, Woods (1970), Woods & Kaplan (1971),
and Woods (1973a). Also see Bobrow & Fraser (1969), Conway (1963), Matuzceck (1972),

and Winograd (1975).

256

Natural Language

D3. The General Syntactic Processor

Ronald Kaplan's (1973) General Syntactic Processor (GSP) is a versatile system for
the parsing and generation of strings in natural language. Its data structures are intuitive
and the control structures are conceptually straightforward and relatively easy to implement.
Yet, by adjusting certain control parameters, GSP can directly emulate several other
syntactic processors, including Woods's ATN grammar (Article D2), Kay's MIND parser (Kay,
1973), and Friedman's text generation system (Article E).

GSP represents an effort both to synthesize the formal characteristics of different
parsing methods and to construct a unifying framework within which to compare them. In this
respect, GSP is a "meta-system"—it is not in itself an approach to language processing, but
rather it is a system in which various approaches can be described.

Data Structure: Charts

GSP gains much of its power through the use of a single, basic data structure, the
chart, to represent both the grammar and the input sentence. A chart can be described as a
modified tree, which is usually defined as a set of nodes that can be partitioned into a root
and a set of disjoint subtrees. A tree encodes two sorts of relations between nodes:
DOMINANCE, the relation between a parent and daughter node; and PRECEDENCE, the relation
between a node and its right-hand sister node. Figure 1 shows a tree representing a
particular noun phrase.

NP
f

AOJDE N

the tall man

Figure 1. A tree for a noun phrase.

A chart is basically a tree that has been modified in two ways:

1 . The arcs of the tree have been rearranged to produce a binary tree, that is, a
tree in which each node has at most two dangling nodes (this rearrangement
is described by Knuth [1973, p. 333] as the "natural correspondence"
between trees and binary trees).

2. The nodes and arcs have been interchanged; what were previously nodes arenow arcs, and vice versa.

For example, Figure 2 is the chart representation for the tree of Figure 1 :

\

'

;.<(

D3

NP
o ►

DET ADJ N
>o ►

the I tall | man

Figure 2. A chart for a noun phrase.

The chart representation has a number of advantages, including ease of access for certain
purposes. For example, in Figure 1 there is no direct connection from DET to ADJ. In Figure 2
this connection has been made; that is, the PRECEDENCE relationships have been made
explicit, and the DOMINANCE ones have been removed. This explicit encoding of precedence

can be helpful in language processing, where the concept of one element following another is
a basic relation.

Also, the chart can be used to represent a "string of trees" or "forest"—that is, a set
of disjoint trees. For example, Figure 3a shows a string of two disjoint trees, headed by j_P
and V. Note that these trees cannot be connected, except with a dummy parent node
(labeled ?). In Figure 3b, the equivalent chart representation is shown.

■A
OET N
the man walked

OET N

walkedthe j man

Figure 3b. The equivalent, chart .Figure 3a. Two disjoint trees.

Finally, the chart provides a representation for multiple interpretations of a given word
or phrase, through the use of multiple edges. The arcs in a chart are called edges and are
labeled with the names of words or grammatical constructs. For example, Figure 4
represents the set of trees for "I saw the log," including the two interpretationsfor the word
saw.

NDETVPRO

! ■—N| the I log
o »o see (past) o »° "> ►— —'
Figure 4. A chart showing multiple interpretations.

The chart allows explicit representation of ambiguous phrases and clauses, as well as of
words.

i

I

i

The General Syntactic Processor

l

NP V

258

Natural Language

Note that ambiguity could also be represented by distinct trees, one for every possible
interpretation of the sentence. However, this approach is inefficient, as it ignores the
possibility that certain subparts may have the same meaning in ail cases. With the chart
representation, these common subparts can be merged.

As defined earlier, the arcs in a chart are called edges and are labeled with the names
of words or grammatical constructs. The nodes are called vertexes. The chart can be
accessed through various functions, which enable one to retrieve specific edges, sets of
edges, or vertexes.

At any given moment, the attention of the system is directed to a particular point in the
chart called the CHART FOCUS. The focus is described by a set of global variables: EDGE
(the current edge), VERTEX (the name of the node from which EDGE leaves), and CHART (the
current subchart being considered by the processing strategy). GSP's attention is
redirected by changing the values of these variables.

When the chart is initialized, each word in the sentence is represented by an edge in
the chart for each category of speech the word can take. Figure 4 is an example of an
initial chart configuration, preparatory to parsing. Each analysis procedure that shares the
chart is restricted to adding edges, which gives later analyses the ability to modify or ignore
earlier possibilities without constraining future interpretations. In this way, the individual
syntactic programs remain relatively independent while building on each other's work in a
generally bottom-up way.

It should be emphasized that the chart is just a data structure and is not directly
related to the grammar. It merely serves as the global blackboard upon which the various
pieces of the grammar operate. We still must specify the sorts of operations that use the
chart—that is, the form of the grammar itself.

Data Structure: Grammatical Rules

Grammars for syntactic processing of language can be understood in terms of a
network model like Woods's ATN grammar. That is, a grammar is viewed as a series of states,
with transitions between the states accomplished by following arcs (see Article 02).

The grammars encoded by GSP fit this description. What gives GSP its power,
however, is the fact that a grammar can be represented in the same way as a chart. That is,
we can use the chart manipulation mechanisms, already developed, to operate upon thegrammar itself. There is a difference, of course. The chart is merely a passive data store:the grammar contains instructions for: (a) acting on the chart-adding pieces and shiftingattention; and (b) acting on the grammar-shifting attention (i.e., moving from one grammar
state to another).

Control Structure

To handle the full complexity of grammars, GSP has some extra features. Theseinclude:

5 ,"

I

D3 The General Syntactic Processor 259

i
i

\

\

\

* £

i

■■

1 . REGISTERS. As in ATNs, these are used as pointers to structures.

2. LEVELSTACK. This is a stack used to implement recursion. The chart
focus, grammar focus (state), and register list are saved before a
recursive call.

NDLIST (nondeterminism list). This is a list of choice points in the
grammar. Whenever a choice is made, the user can optionally save the
current configuration on NDLIST, to allow for backtracking.

4. PROCSTACK. This is a list of suspended processes. GSP allows a co-
routining facility, under which processes can be suspended and resumed
(ATNs have no equivalent to this).

In an ATN system, such features as recursion, backtracking, and movement of the pointer
through the input sentence are implicit. With

GSP,

the user must handle all of these. This
approach can be

beneficial,

particularly with features such as backtracking: automatic
backtracking can be a less-than-desirable feature in a grammar (see the discussion in the Al
Programming Languages Section).

Using GSP

Note one facet of the approach outlined: All operations on the grammar and chart must
be explicitly stated. Thus, GSP has placed much power in the hands of the grammar designer,
with a corresponding cost in complexity.

GSP appears to be similar to an ATN, with three extensions:

1 . The data structure used is a chart, instead of simply a string of words.

2. The grammar is encoded in the same manner
accessible to the system.

the chart; thus it is

Processes can be suspended and resumed.

ATNs do not fully demonstrate the power of GSP. Kaplan also used GSP to implement
Kay's MIND parser (a

context-free,

bottom-up system) and Friedman's transformational
grammar text-generation system. The latter two made more extensive use of GSP's
capabilities, in particular: (a) the possibilities of multiple levels in the chart; (b) the ability to
suspend and restart processes; and (c) the ability to rearrange the chart, changing it as
necessary. The Kay algorithm, in particular, made extensive use of the ability to modify the
chart "on the fly," adding sections as required.

Conclusions and Observations

GSP provides a simple framework within which many language processing systems can
be described. It Is not intended to be a high-level system that will do many things for the
user; rather, it provides a "machine language" for the user to specify whatever operations

% 260 Natural Language

he wants. GSP's small set of primitive operations seems to be sufficient for representing
most desirable features of syntax-based parsing. The clean, uniform structure enables GSP
to be used as a tool for comparison (and possibly evaluation) of different systems.

The chart seems to be an effective data structure for representating the syntax of
natural language sentences. It provides convenient merging of common subparts (i.e., to
prevent re-scanning known components), while permitting representation of various forms of
ambiguity. As Kay explained, the function of the chart is to "record hypotheses about the
phraseological status of parts of the sentence so that they will be available for use in
constructing hypotheses about larger parts at some later time" (Kay, 1973, p. I 6.'j.

The similarity of the chart and grammar network structures allows GSP to "bootstrap"
compilers, thus simplifying compiler developmentand encouraging experimentation.

The backtracking mechanism is very general and thus can be inefficient if used too
enthusiastically. Kaplan points out that heuristic ordering of alternatives is possible by
altering the function that retrieves configurations from the NDLIST, though compilers should in
any case attempt to minimize backtracking.

One flaw of GSP is its dependence on syntax; this approach, once popular in
computational linguistics, is now recognized to be somewhat restrictive. GSP could
conoeivably be extended (or rather, used in different ways) to incorporate more emphasis on
semantics and pragmatics.

References

Kaplan (1973) is the principal reference. See also Friedman (1971), Kay (1973).
Knuth (1 973), and Woods (1 970).

I

t

Text Generation 261E

>

X

E. Text Generation

Text generation is, in a sense, the opposite of natural language understanding by
machine—it is the process of constructing text (i.e., phrases, sentences, paragraphs) in a
natural language. Although this field has been pursued for fifteen years, few coherent
principles have emerged, and the approaches have varied widely. Attempts at generating

text have been made with two general research goals: (a) generating random sentences to
test a grammar or grammatical theory and (b) converting information from an internal
representation into a natural language.

Random Generation

This approach, the random generation of text constrained by the rules of a test
grammar, is of limited interest to workers in Artificial Intelligence,being oriented more toward
theoretical linguistics than functional natural language processing systems. The objective of
implementing a generation system of this sort is to test the descriptive adequacy of the test
grammar, as illustrated by the following two systems.

j
Victor Yngve (1962) was one of the first researchers to attempt English text

generation. He used a generative context-free grammar and a random-number generator to
produce "grammatical" sentences: The system selected one production randomly from among
those that were applicable at each point in the generation process, starting from those
productions that "produced" <SENTENCE>, and finally randomly selecting words to fill in the

<NOUN>,

<VERB>, etc., positions. This is an exampleof the text produced by the system:

\
i

The water under the wheels in oiled whistles and its
polished shiny big and big trains is black.

Joyce Friedman's (1969, 1971) system was designed to test out the effectiveness
of transformational grammars (Article C2). It operated by generating phrase-structure markers

(derivation trees that could contain syntactic information as well as words at the leaves) and
by performing transformations on them until a surface structure (a derivation tree whose leaf
nodes are all words) was generated. This use of transformations made her system more
effective than Yngve's, since transformational grammars are more powerful than context-
free grammars. The generation was random, but the user could specify an input phrase-

structure marker and semantic restrictions between various terminals in order to test

> i

specific rules for "grammatical" validity.

These two systems, while relevant to work in linguistics, are only peripherally related
to Artificial Intelligence. The fundamental emphasis in Al text-generation work has been on
the meaning, as opposed to the syntactic

form,

of language.

Surface Realization of Meaning

The goal of of text generation systems in the Al paradigm is to take some internal
representation of the "meaning" of a sentence and convert it to surface structure form i.e.
into the appropriate string of words. (Knowledge representation schemes like predicate

% 262 Natural Language

calculus, semantic nets, conceptual dependency, and PLANNER assertions are discussed in the
Overview, and in more detail in the Knowledge Representation section of the Handbook.) The
text-generation work of this sort has been heavily influenced by the type of internal
knowledge representation used. That is, certain representation formalisms may conveniently
express certain types of information, and a text-generationroutine using the formalism will
tend to make use of this fact. Text-generation modules are an important component of
interactive Al systems of all types, since they are part of the interface between the internal
structures and the user. In natural language systems that do question answering,
paraphrasing, mechanical translation, information retrieval, etc., they play an especially
crucial role.

Ross Quillian (1968) did pioneering work in the representation of knowledge and was
also one of the first to deal'with the problems of text generation. His system used a semantic
net to represent the relations between words, which can be interpreted as their meaning.
The task the system was then to perform was to compare two words, that is, find some
semantic relation between them. For example:

Compare: Plant, Live

Answer: PLANT IS A LIVE STRUCTURE.

This relationship between the two words was discovered as a path in the net between the
nodes that represented the words. Although this was a primitive semantic net scheme, many
fundamental issues were first raised by Quilllan's system, including several involving text
generation.

Perhaps the most important point brought up by Quillianwas that paths in the semantic
net do not necessarily correspond to sentences in any simple way. There are many things
that the system can "say" about a given path in its memory. And many of these, having not
been Input directly to the system, require inferences to be made. For example, another
relationship the system found between plant and Nye was:

PLANT IS STRUCTURE WHICH GET-FOOD FROM AIR. FOOD IS THING
WHICH BEING HAS-TO TAKE INTO ITSELF TO KEEP LIVE.

In order to have found this connection, the system has to discover connections between
PLANT, AIR,

FOOD,

and LIVE that were not directly input.

Although Quillian's semantic net system was limited, it strongly influenced much of the
later work in NL and the representation of knowledge in Al (see Article Representation.C2).
This influence reflected

Quillian's

stress on the importance of the semantic versus the
surface components of language:

As a theory, the program implies that a person first has something to
say, expressed somehow in his own conceptual terms (which is what a
path is to the program), and that all his decisions about the syntactic
form that a generated sentence is to take are then made in the service
of this Intention. (Quillian, 1968, p. 255)

This is a strong statement about language, and this view, of a cognitive process manipulating
an internal representation, is perhaps the essence of the Al perspective.

? ■

I

Sheldon Klein (1965) was the first person to attempt to generate a paraphrase of a
paragraph of text via an internal representation of that text. He used a knowledge
representation scheme called dependency grammar, a context-free grammar with word-
dependency information attached to each production. That is, the right-hand side of each
rule in the grammar has a "distinguished symbol"; the "head" or governor of the 'phrase
associated with that production is the head of the phrase that is associated with the
distinguished symbol. All other words that are part of the phrase associated with the
production are said to "depend" on this head.

For instance, given a simple dependency grammar and the sentence "the fierce tigers
in India eat meat," the following dependencytree would be generated:i

TIGERS
AA A A

tuf' \ S "■ NP* + VP\ NP «- DET + ADJ + N* + PP
FIERCE tN EAT PP - PREP* + NOUN

* * VP *■ V* + OBJ

INDIA MEAT

)

The symbols followed by _, are the distinguished symbols in the productions. Generation
would then proceed from the set of dependency trees produced during the input analysis.
The dependency trees from the individual sentences of the input paragraph were bound
together with "two-way dependency" links between similar nouns.

. The grammar used in generation was similar to the one used for analysis. Rule
selection was random (as in Yngve's method) but with the added constraint that all
dependencies generated must either be explicit in the initial dependency trees or derivable
from them using a restricted transitivity. For example, in the above tree, EAT depends on

TIGERS,

and MEAT depends on EAT; using transitivity we can say that MEAJ depends on
TIGERS.

I

i

The actual paraphrase effect came from three features of the generation routine:
(a) the random ordering of rule selection during generation; (b) the ability to combine input

from different sentences into one output sentence; and (c) a simple synonym capability.
Although this method attempted to recreate the sense of the original text, the device of
dependency trees can encode only the crudest of semantic relationships present in the
paragraph. In fact, the dependency relationship between words only indicates that some
direct semantic relation exists between them without really specifying the nature of the
relationship.I

Terry Winograd's blocks world program, SHRDLU (1972), was able to answer questions
concerning the state of the table-top domain and certain Internal states of the program. The
system, which is described in Article F5, had limited response-generating capabilities in order
to make its output more fluent.

The basic text-generation techniques used were "fill-in-the-blank" and stored
response patterns. For example, if an unfamiliar word was used, SHRDLU responded "I don't
know the word" Similarly, a "why"-question was answered with "because <event>" or "In

i,;

=

263E Text Generation

Natural Language264%

order to <event>," where <event) is the relevant step of the program's manipulation of its
world. The appropriate event was retrieved from the program's history list, and its
description was generated as follows: To generate noun phrases, every known object had
an English word associated with it; adjectives and relative clauses were added until a unique
object (within the domain of discourse) was described. Events, such as "(PUTON OBJI
OBJ2)," had generation patterns attached to them; in this case, the pattern woOld be:
"(<correct form of to put). <noun phrase for 0BJ1), ON, <noun phrase for OBJ2))."

The stilted text generated by this scheme was moderated by the (heuristic) use of
pronouns for noun phrases: Whenever the referent of a noun phrase had been mentioned in
the same sentence or in the previous one, an appropriate pronoun was selected for it.
SHRDLU's limited domain of discourse allowedIt to exhibit surprisingly natural dialogue with
such simple techniques.

Simmons and Slocum (1972) developed a natural language system that generated
sentences from a semantic network representation of knowledge based on a semantic case
structure. Input sentences were parsed by an augmented transition network using a case
grammar (see Articles D2and C4); the program then produced surface structure from the
network, with possible transformations performed for paraphrase and inference, using a second
ATN, not derivable from the first.

The semantic network included language-specific syntactic information such as number,
determiner, agent, object, and instrument. For example, the sentence "John broke the
window with a hammer" would be represented as:

CI TOKEN BREAK
AGENT C 2

C3 TOKEN WINDOW
NUMBR SING
DET DEFOBJ C 3

INST C 4
TIME PAST

C2 TOKEN JOHN
NUMBR SING
OET DEF

C4 TOKEN HAMMER
NUMBR SING
DET INDEF

CI. £2, C3, and C4are nodes in the network (as are

PAST,

DEF, WINDOW, BREAK,

JOHN,

SING, INDEF, and HAMMER) -and TOKEN. AGENT. OBJ.

INST,

etc., are types of arcs. In such
nets, the verb node can be looked at as the "governor" since each verb has associated with
it a set of case arguments that dictate which arcs may be present in the net. Each case
argument is a case relation, such as AGENT or GOAL, and a value.

The actual generation was accomplished by "running the ATN backwards." The ATN
proved to be an effective vehicle for generation. Uniformities in surface language were
easily expressed, and the grammar was quite natural. Wong (1975) has extended this
approach, incorporating features to handle extended discourse.

Neil Goldman's (1975) program generates surface structure from a database of
conceptual dependency networks, as the text-generation part of Roger Schank's MARGIE
system, described in Article F3. The conceptual dependency (CD) knowledge representation
scheme, discussed further in Article FB on Schank's SAM system, is based on semantic
primitives (Article Represerrtation.Cs) and is therefore language independent, so the actual

s

I

word selection for output must be performed by Goldman's text-generation subsystem, called
BABEL. This is accomplished by means of a discrimination net (a kind of binary decision tree,
see Article Information Processing Psychology.C) that operates on a CD network that is to be
verbalized. This discrimination net is used to select an appropriate verb sense to represent
the event specified by the CD. (A verb sense is a meaning of the verb: DRINK, for example
has two senses, to drink a fluid and to drink alcohol.) Essentially, there are only a small
number of possible verbs that can represent the event, and a set of predicates determines
which one to use. For instance, DRINK can be used to describe an INGEST event if the
<object> has the property FLUID. The section of the discrimination net that handles DRINK
might look like this:

f

)

i

Once a verb sense has been selected, an associated framework is used to generate a
case-oriented syntax net, which is a structure similar to the semantic net of Simmons and
Slocum. These frameworks include information concerning the form of the net and where in
the conceptualization the necessary information is located. After the framework has been
filled out, other language-specific functions operate on the syntax net to complete it
syntactically with respect to such things as tense,

form,

mood, and voice. Finally, an ATN is
used to generate the surface structure, as in the Simmons and Slocum program.

!

Yorick Wilks (1973) has developeda program that generates French from a semantic
base of templates and paraplates. This is part of a complete machine translation system
described in Article F2.

i

Discussion
I

As the richness and completeness of the underlying semantic representation of the
information has increased, the quality of the resulting paraphrase has improved. Like other
areas of Al, the basic problem is to determine exactly what the salient points are and to
obtain a good representation of them; progress in generation seems to be closely tied to
progress in knowledge representation. Future work in generation will also have to address
areas such as extended discourse, stylistics, etc. In this direction, Clippinger (1975) has looked
at psychological mechanisms underlying discourse production, and Perrault, Allen, & Cohen
(1978) have studied the planning of speech acts for communication in context.

265E Text Generation

266

Natural Language

References

See Clippinger (1975), Friedman (1969), Friedman (1971), Goldman (1975), Klein
(1965), Perrault, Allen, & Cohen (1978), Quillian (1968), Quillian (1969), Simmons & Slocum
(1972), Wilks (1973), Winograd (1972), Wong (1975), and Yngve (1962).

)

Natural Language Processing Systems 267F

!

\

F. Natural Language Processing Systems

Fl. Early Natural Language Systems

Early work on machine processing of natural language assumed that the syntactic
information in the sentence, along with the meaningof a finite set of words, was sufficient to
perform certain language tasks—ln particular, answering questions posed in English. Several
of these early natural language programs are reviewed here: their techniques, their
successes, and their shortcomings. These programs were restricted to dialogues about
limited-knowledge domains in simple English and ignored most of the hard grammatical
problems in the complex constructions found in unrestricted English. Through work with
programs of this genre, it became apparent that people constantly use extensive world-
knowledge in processing language and that a computer could not hope to be competent

without "understanding" language. These programs bridge the gap between the early

mechanical translation attempts of the 1950s and current, semantics-based natural language
systems (see the Overview Article, Article B, and the Articles on recent NL systems in this
section).

I

SAD-SAM

SAD-SAM (Syntactic Appraiser & Diagrammer - Semantic Analyzing Machine) was
programmed by Robert Lindsay (1963) at Carnegie Institute of Technology in the IPL-V list-
processing language (see Article Al Languages.A). The program accepts English sentences

about kinship relationships, builds a database, and answers questions about the facts it has
stored.I

i
It accepts a vocabulary of Basic English (about 1,700 words) and follows a simple

context-free grammar. The SAD module parses the input from left to right, builds a syntactic

tree structure, and passes this structure on to

SAM,

which extracts the semantically

relevant (kinship-related) information to build the family trees and find answers to questions.

i

Though the subset of English processed by SAD is quite impressive in volume and

complexity of structure, only kinship relations are considered by SAM; all other semantic

information is ignored. SAM does not depend on the order of the input for building the f ami ly
trees; if a first input assigns offspring B and C to X, and offspring D and g to V two "family

units" will be constructed, but they will be collapsed into one if we learn later that E and C
are siblings. (Multiple marriages are illegal.) However, SAM cannot handle certain
ambiguities; the sentence "Joe plays in his Aunt Jane's yard" indurates that Jane is either
the sister or sister-in-law of Joe's

father,

but SAM assigns one and only one connection at a
time and therefore cannot use the ambiguous information: The structure of the model permits

storing definite links but not possible inferences.

BASEBALL

Also in the early 19605, Bert Green and his colleagues at Lincoln Labs wrote a program

268 Natural Language
%

called BASEBALL (Green, Wolf, Chomsky, & Laughery, 1963), again using the IPL-V
programming language. BASEBALL is essentially an information retrieval program, since its
database of facts about ail of the American League games during one year is not modified by
the program. Acceptable Input questions from the user must have only one clause, no logical
connectives (and, or, not), no comparatives (highest, most), and no facts about sequences of
events; and most words must be recognized by the (extensive) dictionary.

The parsing system uses 1 4 categories of parts of speech and right-to-left scanning to
structure the input question into functional phrases. Using this structure and the key-words
found in the question, the input is transformed into a specification list that is the canonical
expression for the meaning of the question. For example, the question "How many games did
the Yankees play in July?" becomes:

TEAM = YANKEES
MONTH = JULY
GAMES (number of) = ?

The answer is found by searching the database for data items matching the specification list,
storing them on a "found" list, and eventuallyprocessing and outputting them.

The size of the dictionary and the heuristics used for resolving syntactic ambiguities
(score can be a verb or a noun; Boston, a place or the name of a team) make BASEBALL able
to answer most reasonable English questions about the games stored in the database.
However, BASEBALL does not return to the user for clarification of semantic ambiguities. It
simply fails to parse the sentence and asks for a rephrasing of the question. Though the
database is not modified by the program, BASEBALL exhibits deductive abilities in parsing
questionsand processing the "found-list."

SIR

SIR (Semantic Information Retrieval) was written in LISP by Bertram Raphael (1964) as
part of his thesis research at MIT. It is a prototype "understanding" machine since it can
accumulate facts and then make deductions about them in order to answer questions.

SIR accepts a restricted subset of English. It matches sentences against 24 matching
patterns of the followingsort:

Ms ■
■ is part of *Is * * ?
How many * does * have ?
What Is the * of « ?

where the elements matched against * are nouns, possibly modified by a "quantifier" suchas: a, the, every, each, or a number. The match with a rule triggers the appropriate action inthe program. A sample conversation might look like this:

Every boy is a person
I UNDERSTAND

i

I

A finger is part of a hand
THE ABOVE SENTENCE IS AMBIGUOUS PLEASE REPHRASE IT

There are two hands on each person
I UNDERSTAND

How many fingers does John have ?
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

i (has as parts)
I DON'T KNOW WHETHER FINGER IS PART OF JOHN

John is a boy
I UNDERSTAND

How many fingers does John have ?
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

(has as parts)
HOW MANY FINGERS PER HAND ?

Every hand has five fingers
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

(has as parts)
THE ANSWER IS 10

Who is President of the US ?
STATEMENT FORM NOT RECOGNIZED

SIR'S world is concerned with only a small group of relations between objects, as
specified by the 24 matching patterns. Declarative input statements are used to build the

model, and the patterns have been chosen to express concepts that commonly occur in

human conversation: set inclusion, spatial relationship, etc. The program has certain built-in

knowledge (like transitivity of set inclusion) that enables it to answer questions about some
facts not explicitly stated during input. SIR can also interact with the user to gather more
information or to resolve ambiguities.

\I
i

STUDENT

STUDENT is another pattern-matching natural language'Program, written by Daniel
Bobrow (1968) as his doctoral research project at MIT. STUDENT is able to read and solve
high-school-level algebrastory problems like the following:

\

If the number of customers Tom gets is twice the square of 20-
-percent of the number of advertisements he runs, and the number of

advertisements he runs is 45, what is the number of customers Tom
gets?I

The entire subset of English recognized by STUDENT is derived from the following set of
basic patterns:I

269F1 Early Natural Language Systems

270 Natural Language%

(WHAT ARE * AND *)
(WHAT IS *)

(FIND * AND *)
(" IS MULTIPLIED BY «)
(* IS DIVIDED BY »)(HOW MANY M IS ")

(HOW MANY * DO « HAVE)
(HOW MANY * DOES * HAVE)
(FIND »)

(* IS »)
(*(*l/VERB)*I ")

(■ (*l/VERB) * AS MANY « AS * ("1/VERB) «)

A * sign indicates a string of words of any length, _J. indicates one word, and ("1/VERB)
means the matching element must be recognized as a verb by the dictionary.

To construct the algebraic equations that will lead to the solution, the problem
statement is scanned, first for linguistic forms associated with the equality relation (such as
[* IS *]), then for algebraic operators. STUDENT then builds a list of the answers required,
the units involved in the problem, and a list of alt the variables in the equations. Then
STUDENT invokes the SOLVE module with the set of equations and the desired unknowns.

If SOLVE fails, STUDENT applies heuristics such as: expanding idioms, identifying two
previously "slightly different" variables, or invoking the REMEMBER module that contains
special facts like:

(FEET IS THE PLURAL OF FOOT)
(ONE HALF ALWAYS MEANS .5)
(THE PERIMETER OF A RECTANGLE SOMETIMES MEANS TWICE
THE SUM OF THE LENGTH AND WIDTH OF THE RECTANGLE)

(DISTANCE EQUALS SPEED TIMES TIME)
(ONE FOOT EQUALS 1 2 INCHES)

If all else fails, STUDENT can request more information from the user.

Each time a heuristic succeeds in finding a new equation, the augmentedset is sent to
SOLVE. STUDENT finallyprints the solution (using the pattern "variable IS value") or reports
its inability to solve. In this example,STUDENT would print

(The number of customers Tom gets is 162)

STUDENT'S simple pattern-matching scheme, combined with its small set of well-chosen
heuristics, does an impressive Job of parsing typical high-school algebra word problems. The
program can be tricked easily ("Bill has 3 apples, 2 pears, and one dog" would be parsed into
two clauses); but as implemented, it solved the problems submitted as fast as humans could
(in one case, several times faster than an MIT graduate student who was not using the
special "age problem" heuristics). A slightly modified version was found to be a good model
for human problem solving, in a study conducted by Paige & Simon (1966).

ELIZA

Perhaps the most famous of these "pattern-matching" natural language programs wasELIZA, written by Joseph Weizenbaum (1966) at MIT. This program assumes the role of a
Rogerian or "non-directive" therapist in its dialogue with the user. Although ELIZA's dialogue

!

)

Early Natural Language Systems 271F1

t

I

i

S
I

i

with the user appears surprisingly realistic, the program uses no more intelligent mechanisms
than those described above. Rather, the nature of therapist-patient dialogue lends itself to
simulation in this manner. A sample dialogue might look like this (with ELIZA in caps):

Men are ail alike.
IN WHAT WAYS

They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.
I AM SORRY TO HEAR THAT YOU ARE DEPRESSED

It's true. I'm unhappy.
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY

I need some help, that much seems certain.
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

Perhaps I could learn to get along with my mother.
TELL ME MORE ABOUT YOUR FAMILY

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR

BOYFRIEND MADE YOU COME HERE

ELIZA is programmed in the SLIP language (Symmetric List Processor), developed by
Weizenbaum (1963). An offline script composed of keylists specifies the nature of the input

language by specifying for each keyword a set of patterns to look for and the possible

transformations associated with each pattern. For example, assuming the keyword is me, a
pattern used for matching might be

(0 YOU 0 ME)

and one of the transformation rules associated with this pattern might be

(WHAT MAKES YOU THINK I 3 YOU)

where 0 in the pattern matches any string of words, and 3 in the transformation rule
designates the third element matched (in this case, everything between YOU and ME). The
input is scanned from left to right for a keyword; a systematic hashing procedure very
quickly eliminates words that cannot be keywords. ELIZA deletes the part of text preceding
a punctuation delimiter if no keyword has been found; otherwise, the part following It
(insuring thus that the transformation will be applied to one single phrase or sentence). If

272 Natural Language%

several keywords are found, they are stored in turn in a "keystack" according to the rank of
precedence associated with each of them—then the Input is matched against each
decomposition rule in turn. These patterns can be ordered in the keylist so that the more
complex ones are tried first; for the keyword "I" the pattern

(0 I 0 DEPRESSED 0)

is hard to match, but if a match is achieved, the answer can be more spectacular than the
transformations for the "general match" pattern

(0 10).

When a match is

found,

ELIZA generates a response, using the reassembly rules for this
decomposition rule in a cyclic manner. If no decompositionrule matches for a given keyword,
the keystack is popped and the pattern-matching procedure is repeated for the new
keyword. If the keystack is empty, a response like "Please go on," "I see," or "Very
interesting" will always do.

Several other tricks—like substituting for keywords in its response, associating
keywords with a class or situation (Mother implies family), and remembering these keyword
affiliates over the course of the conversation—help enhance the illusion of intelligent
dialogue.

Conclusions

None of these early natural language systems dealt with the syntax of language in any
sophisticated way. In these early programs, the semantic knowledge needed to respond to
the user was implicit In the patterns and the ad hoc rules used for parsing. Modern natural
language programs maintain large databases of explicit world-knowledge that they use to
assist in parsing the sentence as well as in interpreting it.

References

For general reference, see Boden (1977), for lucid discussions of several of these
systems; also, Simmons (1965), Simmons (1970), Wilks (1974), and Winograd (1974). The
collections in Feigenbaum & Feldman (1963) and Minsky (1968) contain much of the original
material.

s

>.

' i

)

Wilks's Mechanical Translation System 273F2

F2. Wilks's Mechanical Translation System

1
1

k

I Current work in machine translation of languages is exemplified by Wilks's system
(1973), which can produce good French from small English paragraphs. The system is
entirely semantics based; that is, no use is made of conventional linguistic syntax in either
the analysis or the generation stages. The input English text is first converted to a semantic
representation and then converted to the final translated text. (The use of an intermediate
representationbears some similarity to the Weaver's idea of interlingua, discussed in Article
B.) Wilks stresses that his semantic representation is designed for mechanical translation
and may not be appropriatefor other NL tasks iike question answering. The rationale for this
is that an explicit representation of the logical implications of a sentence, which is
necessary for some tasks, may not be necessary for translation: If the two languages are
similar, an appropriate target sentence with the same Implications can often be found in a
more straightforward way.

|

Wilks's system first fragments the input text into substrings of words; it then matches
the fragments against a set of standard templates, that is, deep semantic forms that try to
pick out the meaning conveyed by the input-text fragments. The output of this stage is a
first approximation to a semantic representation of each of these fragments. The system

then tries to tie together these representations to produce a more densely connected
representation for the complete text. When this process has been completed, the
generation of the output text is accomplished by unwinding the interlingual representation

using functions that interpret them in the target language.

The interlingual representation is based on semantic primitives (see Article
Representation.Cs) that Wilks calls elements. Elements express the entities, states, qualities,
and actions about which humans communicate. In the system as reported in Wilks (1973),

there were 60 of these elements, which fall into 5 classes, as shown in the following
examples.

\

MAN (human being),
PART (parts of things),
STUFF (substances).

1. Entities:

TO (direction),
IN (containment).2. Cases:

CONT (being a container),
THRU (being an aperture).3. Sorts:

I
4. Type indicators: KIND (being a quality),

HOW (being a type of action).

5. Actions: CAUSE (causes to happen),
BE (exists),
FLOW (moving as liquids do).

The elements are used to build up "formulas," which each represent one sense of a word.
The verb drink, for example, is represented by the following formula:

274 Natural Language
%

((*ANI SUBJ)
(((FLOW STUFF) OBJE)
((*ANI IN) (((THIS (*ANI (THRU PART))) TO) (BE CAUSE)))))

Drink is thus an action [(BE CAUSE)], done by animate subjects [(*ANI SUBJ)], to liquids[((FLOW STUFF) OBJE)]. It causes the liquid to be in the animate object [(*ANI IN)] via a
particular aperture of the animate object [((THIS (*ANI (THRU PART))) TO)].

Formulas can also express preferences. The formula for the word bj__, for example, is

(CPHYSOB POSS) (MUCH KIND)),

that is, a property preferably possessed by physical objects (as opposed to substances).
These preferences are used by the system to determine the correct word-senses in the
input text.

The system's dictionary contains formulas for all the word-senses paired with
stereotypes in the target language which produce the translated words. The following is an
exampleof the stereotype for the word advise (into French):

(ADVISE (CONSEILLER A (FNI FOLK MAN))
(CONSEILLER (FN2 ACT STATE STUFF)))

The two functions, FNI and FN2, are used to distinguish the two possible constructions in
French involving conseiller, conseillera ... and simply conseiller Functions like these in
stereotypes are evaluated by the generationroutines. Each function either evaluates to NIL,
in which case it

fails,

or to a word that will appear in the output text. Hence the
stereotypes also serve the purpose of a text generation grammar,providing complex context-
sensitive rules where required, without search of a large store of such rules. This is an
example of procedural representation of knowledge (see Article Representation^).

The first stage in analysis, then, involves replacement of the original words with theirformula-stereotype pairs. This representation for the text is then separated into fragments,
where the fragment boundaries are determined by punctuation marks, conjunctions,prepositions, and so on. The next stage involves matching these fragments against a built-inlist of templates, networks of formulas based on a basic actor-action-object triple Examples
of bare templates are "MAN CAUSE THING," and "MAN DO THING." It is assumed that it is
possible to build up a finite inventoryof such bare templates that would be adequatefor theanalysis of ordinary language. The inventory for this system has been determined empiricallyand is easily modified.

.„, ,At !he n!xt stage of the analysis, an attempt is made to expand the bare templates.This is done by noting semantic dependencies between the formulas in a fragment andselecting the structuring of formulas with the most dependencies. Notice is taken of thepossible preferences expressed by the formulas at this stage. Thus the formulas specifynot only word-senses but also procedures to be used in construction of complete templates.The preference of the overall system for semantic density is one of the key ideas in Wilks'swork and produces a good solution to the problem of ambiguity.

I

)

Wilks's Mechanical Translation System 275F2

t

i

1

In the final stage of analysis, the templates for individual fragments are tied together

with higher level dependencies, expressed in terms of paraplates. Once again, the chief
preference of the system is for semantic density. After this has been done, the system
uses some commonsense inference rules to deal with situations in which more explicit world-
knowledge is required. At the completion of this stage in the analysis, the input text has
been replaced by an interlingual representation with suitable markers, and other information
is used by the generation routines in a relatively straightforward manner to produce the final
output text.

i

\

Summary

Wilks's machine translation system is founded on three principles: (a) the use of
templates for analysis, (b) the use of stereotypes for generation, and (c) the notion that

the word-senses and much of the grammar will be properly interpreted by construction of a
highly connected semantic representation for the input text. The fact that no explicit use is

made of syntactic information reflects the current emphasis on understanding as a
prerequisite for translation.

*

References /

This description of Wilks's work is based primarily on Wilks (1973). More recent
descriptions include Wilks (1975), Wilks (1977a), Wilks (1977b), and W.lks (1978).

Also of interest: Charniak & Wilks (1976) and Schank (1975).

[

i

276 Natural Language%

F3. LUNAR

LUNAR is an experimental, natural language information retrieval system designed by
William Woods at BBN (Woods, 1973b; Woods, Kaplan, & Nash-Webber, 1972) to allow
geologists to access, compare, and evaluate chemical-analysis data on moon rock and soil
composition obtained from the Apollo 1 1 mission (see Article Applications.F4 for a discussion
of Al information retreival systems). The primary goal of the designers was research on the
problems involved in building a man-machine interface that would allow communication in
ordinary English. A "real-world" application was chosen for two reasons: First, it tends to
focus effort on the problems really in need of solution (sometimes this is implicitly avoided in
"toy" problems); second, the possibility of producing a system capable of performing a
worthwhile task lends some additional impetus to the work.

LUNAR operates by translating a question entered in English into an expression in a
formal query language (Codd, 1974). The translation is done using an augmented transition
network parser coupled with a rule-driven semantic interpretation procedure, which is used to
guide the analysis of the question. The "query" that results from this analysis is then
applied to the database to produce the answer to the request. The query language is a
generalization of the predicate calculus (Article Representational). Its central feature is a
quantifier function that is able to express, in a simple manner, the restrictions placed on a
database-retrieval request by the user. This function is used in concert with special
enumeration functions for classes of database objects, freeing the quantifier function from
explicit dependence on the structure of the database. LUNAR also served as a foundationfor the early work done on speech understanding at BBN (see Article Speech.B3).

Detailed Description

The following list of requests is indicative of the types of English constructions thatcan be handled by LUNAR (shown as theywould actually be presented to the system):

1 . (WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN
HIGH-ALKALI ROCKS?)

2. (WHAT SAMPLES CONTAIN P205?)
3. (GIVE ME THE MODAL ANALYSES OF P205 IN THOSE SAMPLES)
4. (GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM)

LUNAR processes these requests in the following manner:
Syntactic analysis using an augmented transition network parser andheuristic information (including semantics) to produce the most likely derivationtree for the request;

Semantic interpretation to produce a representation of the meaning of therequest in a formal query language; and

Execution of the query language expression on the database to produce theanswer to the request.

LUNAR's language processor contains grammar for a large subset of English, the

LUNAR 277F3

I

X

semantic rules for interpreting database requests, and a dictionary of approximately 3.500
words. As an indication of the capabilities of the processor, it is able to deal with tense and
modality, some anaphoric references and comparatives, restrictive relative clauses, certain
adjective modifiers (some of which alter the range of quantification or interpretation of a
noun phrase), and embedded complement constructions. Some problems do arise in .parsing
conjunctive constructions and in resolving ambiguity in the scope of quantifiers. Emphasis

has been placed on the types of English constructions actually used by geologists so that
the system knows how they habitually refer to the objects in its database.

f

i

The Query Language

The formal query language contains three types of objects: "designators," which name
classes of objects in the database (including functionally defined objects); "propositions,"

which are formed from predicates with designators as arguments; and "commands," which

initiate actions. Thus, if 5 10046 is a designator for a particular sample, OUV is a designator

for the mineral olivine, CONTAIN is a predicate, and I£§l is a truth-value testing command,

then "(TEST (CONTAIN 510046 OUV))" is a sample expression in the query language. The
primary function In the language is the quantifier function FOR, which is used in expressions

of the following type:

where <quant> is a quantifier like each or every, or a numerical or comparative quantifier; X

is a variable of quantification; CLASS determines the class of objects oyer which the
quantificationis to range; PX specifies a restriction on the range; and Q* is the proposition

or command being quantified. FOR Is used with enumeration functions that can access the
database. Thus, FOR itself is independent of the database structure. As an example (taken

from Woods, 1973bTif SEQ is an enumeration function used to enumerate a precomputed list,

and if PRINTOUT is a command that prints a representation for the designator given as its

I

!
argument, then

(FOR EVERY XI|(SEQ TYPECS) : T

;

(PRINTOUT X1))

prints the sample numbers for ail type-C samples. In this case there is no restriction on the
range of quantification in that PX = T, the universally true proposition.

A more complete example of the operation of LUNAR (simplified slightly from the same
source) is shown below.I

(FOR <quant> X|CLASS : PX

;

QX)

278 Natural Language%

Request:
(DO ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALUMINUM?)

Query Language Translation (after parsing):

(((TEST (FOR SOME Xl/(SEQ SAMPLES) : T ; (CONTAIN X2
(NPR* X3/'AL2O3) (GREATERTHAN 13 PCT))))

Response:
YES

LUNAR is perhaps the best operationalexample of a finely tuned ATN parsing system
applied to a real-world problem. Since the system has limited performance goals (i.e.,
facilitating database inquiry as opposed to holding an interesting conversation), many of the
complications inherent in language understanding are avoided.

References

See Codd (1974), Woods (1973b), Woods & Kaplan (1971), and Woods, Kaplan, &
Nash-Webber (1972).

279F4 SHRDLU

!i
i
Ii

"I

f

li

i

F4. SHRDLU

f SHRDLU was written by Terry Winograd (1972) as his doctoral research at MIT. It was
written in LISP and MICRO-PLANNER, a LISP-based programming language (see Article Al
Languages.C2), The design of the system is based on the belief that to understand
language, a program must deal in an integrated way with syntax, semantics, and reasoning.
The basic viewpoint guiding its implementation is that meanings (of words, phrases, and
sentences) can be embodied in procedural structures and that language is a way of
activating appropriate procedures within the hearer. Thus, instead of representing
knowledge about syntax and meaning as rules in a grammar or as patterns to be matched
against the input, Winograd embodied the knowledge in SHRDLU in pieces of executable
computer code. For example, the context-free rule saying that a sentence is composed of a
noun phrase and a verb phrase,

S -> NP VP

is embodied in the MICRO-PLANNER procedure:

j (PDEFINE SENTENCE _
ATI<{!»£_ 9) ?SlFKit RETURN,),)

When called, this program, called SENTENCE, uses independentprocedures for parsing a noun
phrase followed by a verb phrase. These, in turn, can call other procedures. The process
FAILS if the required constituents are not found. With these special procedural representations
for syntactic, semantic, and reasoning knowledge, SHRDLU was able to achieve
unprecedentedperformance levels in dialogues simulating a blocks world robot.

SHRDLU operates within a small "toy" domain so that it can have an extensive model of
the structures and processes allowed in the domain. The program simulates the operation of
a robot arm that manipulates toy blocks on a table. The system maintains an interactive
dialogue with the user: It can accept statements and commands as well as answer questions

about the state of its world and the reasons for its actions. The implemented system
consists of four basic elements: a parser, a recognition grammar for English, programs for
semantic analysis (to change a sentence into a sequence of commands to the robot or into a
query of the database), and a general problem solver (which knows about how to accomplish
tasks in Blocks World).

Each procedure can make any checks on the sentence being parsed, perform any
actions, or call on other procedures that may be required to accomplish its goal. For
example, the VERB PHRASE procedure called above contains calls to functions that establish
verb-subject agreement by searching through the entire derivation tree for other
constituents while still being in the middle of parsing the VP. SHRDLU's knowledge base
includes a detailed model of the blocks world it manipulates, as well as a simple model of its
own reasoning processes, so that it can explain Its actions.

Reasoning in SHRDLU

SHRDLU's model of the world and reasoning about it are done in the MICRO-PLANNER

280 Natural Language%

programming language, which facilitates the representation of problem-solving procedures,
allowing the user to specify his own heuristics and strategies for a particular domain.
Knowledge about the state of the world is translated Into MICRO-PLANNER assertions, and
manipulative and reasoning knowledge is embodied in MICRO-PLANNER programs. For
example, the input sentence "The pyramid is on the table" might be translated into an
assertion of the form:

(ON PYRAMID TABLE)

SHRDLU's problem solver consists of a group of "theorems" about the robot's
environment and actions, represented as MICRO-PLANNER procedures. The system's
reasoning process tries to simulate that of a human understander. It is not based on a set of
well-defined primitive symbols but tries to categorize its reality as humans do—with many
redundant interconnections between fuzzily defined concepts. In operation, the theorem
prover manipulates the state of the domain by running MICRO-PLANNER programs that perform
the actions requested by the user.

The philosophy and implementation of PLANNER are described in the Al Programming
Languages section of the Handbook, but a brief discussion here will illustrate its use in
SHRDLU. The main idea of PLANNER is to solve problems using specific procedures built into
the problem statements themselves, as well as using general problem-solving rules. The
advantage of using these problem-specific rules or heuristics is that they can radically
increase the efficiency of the process. Furthermore, the problem statements are programs
and thus can parry out actions in the problem-solving process. Thus, to put one block on
another, there might be a MICRO-PLANNER program of the form:

(THGOAL (ON ?X ?Y)
(OR (ON-TOP ?X ?Y)(AND (CLEAR-TOP ?X)

CLEAR-TOP ?Y(PUT-ON ?X ?Y)))

which means if X is not already on V, clear off everything that is stacked on top of X (so that
the robot can move X), clear off V (so that X can be placed on top of V) and then put X on Y.
This procedure resembles a predicate calculus theorem, but there are important differences.The. PLANNER procedure is a program and its operators carry out actions. The THGOAL
procedure finds an assertion in the database or proves it using other procedures. AND and
OR are logical connectives. The crucial element is that though PLANNER may end up doing a
proof, it does so only after checking some conditions that may make the proof trivial, orimpossible, and it only performs the proof on relevant arguments, rather than checking allentities in the database as a blind theorem prover might. In addition to the article onPLANNER Al Languagss.C2, the reader is referred to the Knowledge Representation sectionfor a general discussion of these issues.

Grammar, Syntax, and Semantics

SHRDLU's grammar ts based on the notion of systemic grammar, a system of choicenetworks that specifies the features of a syntactic unit, how the unit functions, and how itInfluences other units, discussed in Article C3. Thus, a systemic grammar contains not onlythe constituent elements of a syntactic group but also higher level features such as mood,
tense, and voice.

SHRDLU 281F4

f

!

f

1...;

U f <

In order to facilitate the analysis, the parsing process looks for syntactic units that
play a major role in meaning, and the semantic programs are organized into groups of
procedures that are applicable to a certain type of syntactic unit. In addition, the database
definitions contain semantic markers that can be used by the syntactic programs to rule out
grammatical but semantlcally incorrect sentences such as "The table picks up blocks."
These markers are calls to semantic procedures that check for such prohibited structures,

such as that only animate objects pick up things. These semantic programs can also
examine the context of discourse to clarify meanings, establish pronoun referents, and
initiate other semantlcally guided parsing functions.

Parsing

To write SHRDLU's parser, Winograd first wrote a programming language, embedded in
LISP, which he called PROGRAMMAR. PROGRAMMAR supplies primitive functions for building
systemically described syntactic structures. The theory behind PROGRAMMAR is that basic
programming methods, such as procedures, iteration, and recursion, are also basic to the
cognitive process. Thus, a grammar can be implemented in PROGRAMMAR without additional
programming paraphernalia; special syntactic items (such as conjunctions) are dealt with
through calls to special procedures. PROGRAMMAR operates basically in a top-down, left-to-
right fashion but uses neither a parallel processing nor backtracking strategy in dealing with
multiple alternatives (see Article 01). PROGRAMMAR finds one parsing rather directly, since

decisions at choice-points are guided by the semantic procedures. By functionally
integrating its knowledge of syntax and semantics, SHRDLU can avoid trying all choices in an
ambiguous situation. If the choice made does fail, PROGRAMMAR has primitives for returning
to the choice-pointwith the reasons for the failure and informing the parser of the next best

choice based on these reasons. This "directed backup" is far different from PLANNER'S
automatic backtracking in that the design philosophy of the parser is oriented toward making
an original correct choice rather than establishingexhaustive backtracking.

The key to the system's successful operation Is the interaction of PLANNER reasoning

procedures, semantic analysis, and PROGRAMMAR. All three of these elements examine the
input and help direct the parsing process. By making use of this multiple-source knowledge
and programmed-in "hints" (heuristics), SHRDLU successfully dealt with language issues such

as pronouns and referents. The reader is referred to Winograd's Understanding Natural
Language (1972), pages 8-16, for an illustrative sample dialogue with SHRDLU.

Discussion

SHRDLU was a significant step forward in natural language processing research
because of its attempts to combine models of human linguistic and reasoning methods in the
language understanding process. Before SHRDLU, most Al language programs were
linguistically simple; they used keyword and pattern-oriented grammars. Furthermore even
the more powerful grammar models used by linguists made little use of inference methods and

semantic knowledge in the analysis of sentence structure. A union of these two techniques
gives SHRDLU impressive results and makes it a more viable theoretical model of human
language processing.

SHRDLU does have its problems, however. Like most existing natural language

282 Natural Language
%

systems, SHRDLU lacks the ability to handle many of the more complex features of English.
Some of the problem areas are agreement, dealing with hypotheses, and handling words such
as the and and.

Wilks (1974) has argued that SHRDLU's power does not come from linguistic analysis
but from the use of problem-solving methods in a simple, logical, and closed domain (blocks
world), thus eliminating the need to face some of the more difficult language issues. It
seems doubtful that If SHRDLU were extended to a larger domain, it would be able to deal
with these problems. Further, the level at which SHRDLU seeks to simulate the intermixing of
knowledge sources typical of human reasoning is embedded in its processes rather than
made explicit in its control structure, where it would be most powerful. Lastly, its problem
solving is still highly oriented to predicate calculus and limited in its use of inferential and
heuristic data (Winograd, 1974, pp. 46-48).

References

Winograd (1972) is, of course, the principal reference on SHRDLU. Boden (1977)
presents a clear and concise discussion of the system. Also of interest are

Sussman,

Winograd, & Charniak (1970), the MICRO-PLANNER manual; and Wilks (1974), Wilks (1976a),
Winograd (1971), Winograd (1974) and Winograd (forthcoming).

283MARGIEF5

|

!

i
[

f

ll'
h;"!■'

r

1

F5. MARGIE

MARGIE (Meaning Analysis, Response

Generation,

and Inference on English) was a
program developedby Roger Schank and his students at the Stanford Al Lab (Schank, 1975).

Its intent was to provide an intuitive model of the process of natural language understanding.
More recent work by Schank nnd his colleagues at Yale on story understanding and conceptual
dependency theory are described in Article FB on their SAM system.

ConceptualDependency Theory

The central feature of the MARGIE system was the use of a knowledge representation-

scheme called Conceptual Dependency. Conceptual dependency is intended to represent

meaning in a sufficiently deep manner so that all ambiguity is eliminated. Every sentence
maps into a canonical form, and any two sentences with the same "meaning" will have the

same representation. This goal was approached by designing a graph-structure formalism
based on a set of primitive concepts. There are 6 basic types of concepts: things, actions,

attributes of things, attributes of actions, times, and locations (the first four correspond

roughly to nouns, verbs, adjectives, and adverbs). Relations among concepts are called
dependencies, and there are 15 types of these. Among them are case relationships such as
those between an act and its object, its direction, or its recipient and donor (see Article C 4
on case grammars). Graphically, each type of dependency is denoted with a special arrow
symbol (link), and each concept is denoted by a word representing it. For example, John
gives Mary a book" would be expressed as:

where John, book, and Mary are concept nodes. Also, the concept node ATRANS (abstract

transfer^Te.^rTnsfer of possession) is one of a small set of primitive.verba (about twelve)

from which all actions must be built up. Other primitives include PTRANS physical transfer--
1.e., movement) andPROPEL (apply a force). The complicated, three-pointed arrow labeled R
indicates a recipient-donor dependency between Mary and John and the book, since Mary

got the book from John. The arrow labeled o Indicates an "objective" dependency; that

is,

the book is the object of the

ATRANS,

since it is the thing being given. Dependency links
may link concepts or other conceptual dependency networks.

Another example, "John eats the ice cream with a spoon" would be represented as:

0 D f—■♦ John I John
John <-»> INGEST Ice cream —|_^ < JJMOVE

ice cream f
a I

o R f——► Mary

John <=«> ATRANS " book « [, Joh
_

284 Natural Language%

where the D and [arrows indicate DIRECTION and INSTRUMENT, respectively. Notice that in
this example, "mouth" has entered the diagram as part of the conceptualization, even though
it was not in the original sentence. This is part of the fundamental difference between
conceptual dependency networks and the syntactic tree that a grammar may produce in
parsing a sentence. John's mouth as the recipient of the ice cream is inherent in the
"meaning" of the sentence, whether it is expressedor not. In fact, the diagram can never be
finished, because we could add such details as "John INGESTed the ice cream by TRANSing
the ice cream on a spoon to his mouth, by TRANSing the spoon to the ice cream, by GRASPing
the spoon, by MOVing his hand to the spoon, by MOVing his hand muscles," and so on. Such
an analysis is known to both the speaker and the hearer of the sentence and normally would
not need to be expanded. (However, if we were actually designing a robot to perform such
an action, we would want access to a more detailed network that would represent the
robot's procedural knowledge about eating.)

For some tasks, like paraphrasing and question answering, this style of representation
has a number of advantages over more surface-oriented systems. In particular, the fact that
sentences like

Shakespeare wrote Hamlet
and

The author of Hamlet was Shakespeare ,
which in some sense have the same meaning, map into the same deep structure. They can
thus be seen to be paraphrases of each other. Another important- aspect of conceptual
dependency theory is Its independence from syntax; in contrast with earlier work in the
transformational grammar paradigm, a "parse" of a sentence In conceptual dependency bears
little relation to the syntactic structure. Schank (1975) also claims that conceptual
dependency has a certain amount of psychological validity, in that it reflects intuitive notions
of human cognition.

MARGIE

The MARGIE system, programmed In LISP 1.6, was divided into three components. The
first, written by Chris Riesbeck, was a conceptual analyzer, which took English sentences and
converted them into an internal conceptual dependency representation. This was done
through a system of "requests," which were similar to demons or production systems. A request
is essentially a piece of code that looks for some surface linguistic construct and takes a
specific action if it is found. It consists of a "test condition," to be searched for in the input,
and an "action," to be executed If the test is successful. The test might be as specific as aparticular word or as general as an entire conceptualization. The action might contain
information about: (a) what to look for next in the input, (b) what to do with the input justfound, and (c) how to organize the representation. The flexibilityof this formalism allows the
system to function without depending heavily on syntax, although it is otherwise quite similar
to the tests and actions that make ATNs such a powerful parsing mechanism

The middle phase of the system, written by Chuck Rieger, was an inferencer designedto accept a proposition (stated in conceptual dependency) and deduce a large number of
facts from the proposition in the current context of the system's memory. The motivation forthis component was the assumption that humans "understand" far more from a sentence than

I

I

MARGIE 285F5

[

)

\i

!

\

is actually stated. Sixteen types of inferences were identified, including "cause," "effect,"
"specification," and "function." The inference knowledge was represented in memory in a
modified semantic net. Inferences were organized into "molecules," for the purpose of
applying them. An exampleof this process might be:

John hit Mary.

from which the system might infer (among many other things)

John was angry with Mary.
Mary might hit John back.
Mary might get hurt.

The module does relatively unrestricted forward inferencing, which tended to produce large
numbers of inferences for any given input.

The last part of the system was a text generation module written by Neil Goldman. This
took an internal conceptual dependency representation and converted it into English-like
output, in a two-part process:

1. A discrimination net was used to distinguish between different word-senses.
This permitted the system to use English-specific contextual criteria for
selecting words (especially verbs) to "name" conceptual patterns.

2. An ATN was used to linearize the conceptual dependencyrepresentation into a
surface-like structure.

The text generation module is also discussed in Article E.

MARGIE ran in two modes: inference mode and paraphrase mode. In inference mode, it
would accept a sentence and attempt to make inferences from that sentence, as described
above. In paraphrase mode, it would attempt to restate the sentence in as many equivalent
ways as possible. For example, given the input:

John killed Mary by choking her.

it might produce the paraphrases:

John strangled Mary.
John choked Mary and she died because she was unable to breathe.

Discussion

MARGIE is not, and was not intended to be, a "finished," production-level system.
Rather, the goal was to provide a foundation for further work in computational linguistics. Of
particular interest in MARGIE was the use of conceptual dependency as an interlingua, a
language-independent representation scheme for encoding the meaning of sentences. Once
the sentence was processed, the surface structure was dropped and all further work was
done with the conceptual dependency notation. This method has certain beneficial effects

j

i

■i
I

286 Natural Language%

on the control structure: All interprocess communication can be done through conceptual
dependency, without the need to resort to the surface level, although the more subtle
information in the surface structure may be lost. Since the intermediate representation is
"language-free," It should facilitate translation of the original sentence into another
language, as Weaver indicated in his original discussion of Machinese (see Article B). As
mentioned above, the existence of a unique representationfor any fact should also facilitate
tasks like paraphrasing and question answering.

References

Conceptual dependency theory and all three parts of the MARGIE system are described
well in Schank (1976). Since the early work described here, the theory has evolved
considerably and several new systems have been built using the CD formalisms, all described
very well in Schank & Abeison (1977). Other important references for MARGIE are Schank
(1973) and

Schank,

Goldman, Rieger, & Riesbeck (1973).

SAM and PAM 287F6

\

,i

x

1

F6. SAM and PAM

Story Understanding

SAM (Script Applier Mechanism) and PAM (Plan Applier Mechanism) are computer
programs developed by Roger Schank, Robert Abeison and their students at Yale to
demonstrate the use of scripts and plans in understanding simple stories (Schank et al., 1975,
and Schank & Abeison, 1977). Most work in natural language understanding prior to 1973
involved parsing individual sentences In isolation; It was thought that text composed of
paragraphs could be understood simply as collections of sentences. But just as words are
not formed from the unconstrained juxtaposition of morphemes, and sentences are not
unconstrained collections of words, so paragraphs and stories are not without structure. The
structures of stories have been analyzed (Propp, 1968; Rumelhart, 1973; Thorndyke, 1977),
and it is clear that the context provided by these structures facilitates sentence
comprehension, just as the context provided by sentence structure facilitates word
comprehension(see the

Overview;

also, the Speech.A article discusses top-down processing in
speech understanding research). For example, If we have been told in a story that John is
very poor, we can expect later sentences to deal with the consequences of John's poverty,
or steps he takes to alleviate it.

Different researchers have very different ideas about what constitutes the structure
of a story. Some story grammars are rather "syntactic," that is, they describe a story as a
collection of parts, like setting, characters, goal introduction, plan, etc., determined by their
sequential position in the story, rather than by their meaning. The work of Schank and
Abeison reported here has a more semantic orientation. They propose an underlying
representation of each phrase in a story which is based on a set of semantic primitives. This
representation, called conceptual dependency, is the theoretical basis for more complex story
structures such as themes, goals, plans, and scripts. The SAM and PAM programs understand
stories using these higher level structures. (Article F3 describes the early work on
conceptual dependency theory, and Articles Representation.Cs and Representstion.CB
discuss related representationschemes.)

Parsing: A Brief Introduction to Conceptual Dependency

Prior to his work with stories, Schank (1973) developed conceptual dependency (CD)
for representing the meaning of phrases or sentences. The "basic axiom" of conceptual
dependency theory is:

For any two sentences that are identical in meaning, regardless of
language, there should be only one representation of that meaning in
CD.

Schank thus allies himself with the early machine translation concept of interlingua, or
intermediate language (see Articles B and Overview), and has in fact done some mechanical
translation research in conjunction with the story understanding project. A second important
idea is:

288 Natural Language
%

Any information in a sentence that is implicit must be made explicit in
the representationof the meaning of the sentence.

This idea is the basis for much of the sophisticated inferential abilities of SAM and PAM: We
shall see a sense in which the fact that "John ate food" is implicit in the sentence "John
went to a restaurant," and how the former sentence can be inferred at the time that the
program reads in the latter.

A third important idea is that conceptual dependencyrepresentations are made up of a
very small number of semantic primitives, which include primitive acts and primitive states
(with associated attribute values). Examples of primitive acts are:

ACTS
PTRANS The transfer of the physical location of anobject. For one to -go" is to PTRANS oneself"Putting" an object somewhere is to PTRANS itto that place.

PROPEL The application of physical force to an object

ATRANS The transfer of an abstract relationship. To"give" is to ATRANS the relationship of "ownership."

MTRANS The transfer of mental information between people
or within a person. "Telling" is an MTRANS betweenpeople; "seeing" is an MTRANS within a person.

MBUILD The construction of new information from old."Imagining," "inferring," and "deciding" are MBUILDs
In the most recent version of CD theory, Schank & Abeison (1977) included 11 of these
primitive acts.

Examples of primitive states include:

STATES
Mary HEALTH(-ie) Mary is Dead.John MENTAL STATE(+IO)
Vase PHYSICAL STATE(-ia)

John is Ecstatic.
The Vase is Broken.

The number of primitive states in conceptual dependency theory is much larger than the
number of primitive actions. States and actions can be combined; for example, thesentence:

John told Mary that Bill was happy

can be represented

John MTRANS (Bill BE MENTAL-STATE(S)) to Mary.

An important class of sentences involves causal chains, and Schank and Abeison haveworked out some rules about causality that apply to conceptual dependency theory. Fiveimportant rules are:

SAM and PAM 289F6

S

1 . Actions can result in state changes.
2. States can enable actions.
3. States can disable actions.
4. States (or acts) can initiate mental events.
5. Mental events can be reasons for actions.

These are fundamental pieces of knowledge about the world, and conceptual dependency
theory includes a shorthand representation of each (and combinations of some) called causal
links.

Conceptual dependency representation is, in fact, the interlingua that is produced

when SAM or PAM parse sentences. The parser which is used by these programs is an
extension of the one developed by Chris Riesbeck (1975) for the MARGIE system (Article
F3). As this program encounters words, it translates them into conceptual dependency
representation; but, in addition, it makes predictions about what words and linguistic
structures (verbs, prepositions, etc.) can be expected to occur and what conceptual

dependencystructures should be built in that eventuality.
. At

Conceptual dependency is the underlying representation of the meaning of sentences
upon which SAM and PAM operate. We turn now to higher level knowledge structures:
scripts, plans, goals, and themes. Schank and Abeison make a distinction between scripts

and plans that must be clear before the differences between SAM and PAM becomeI
apparent.

*■

Scripts

A script is a standardized sequence of events that describes some stereotypical

human activity, such as going to a restaurant. Schank and Abeison-. assumption is that
people know many such scripts and use them to establish the context of events A script is

functionally similar to a frame (Minsky, 1975) or a schema (Bartlett, 1932 and Rumelhart,
1973), in the sense that it can be used to anticipate the events it represents For example,

the RESTAURANT script (see Figure 1) involves going to the restaurant, being seated,
consulting the menu, and so on. People who are presented with an abbreviated description

of this activity, e.g., the sentence "John went out to dinner," infer from their own knowledge

about restaurants that John ordered, ate, and paid for food. Moreover they anticipate from
a sentence which fills part of the script ("John was given a menu") what sort of sentences

are likely to follow, e.g., "John ordered the lamb." Scripts attempt to capture the kind of

knowledge that people use to make these Inferences. (Article Repressntat.on.Cß discusses
scripts, frames and related representation schemes.)

■i

I

i

I

290 Natural Language*

Players: customer, server, cashier

Props: restaurant, table, menu, food, check, payment, tip

Events:

1. customer goes to restaurant
2. customer goes to table
3. server brings menu
4. customer orders food
5. server brings food
6. customer eats food
7. server brings check
8. customer leaves tip for server
9. customer gives payment to cashier

10. customer leaves restaurant
Header: event 1

Main concept: event 6

Figure 1 . Restaurant Script

Two components of scripts are of special importance. We will discuss later how the script
header is used by SAM to match scripts to parsed sentences. The second important
component is the main concept or goal of the script. In the restaurant script the goal is to eat
food.

The scripts used in SAM grew out of Abelson's (1973) notion of scripts as networks of
causal connections. However, they do not depend on explicit causal connections between
their events. In hearing or observing events which fit a standard script, it is not necessary
to analyze the sequence of events in terms of causes, since they can be expected just from
knowing that the script applies. The Identification of events as filling their slot in the script
gives us the intuition of "understandingwhat happened."

Scripts describe everyday events, but frequently these events (or our relating of
them) do not run to completion. For example:

I went to the restaurant. I had a hamburger.
Then I bought some groceries.

This story presents several problems for a system like SAM that matches scripts to input
sentences. One problem is that the restaurant script is "left dangling" by the introduction of
the last sentence. It is not clear to the system whether the restaurant script

1) has terminated, and a new (grocery shopping) script has started;2) has been distracted by a "fleeting" (one-sentence) grocery script; or

SAM and PAM 291F6

Sir1.

t

m
at

Jii

i

3) is interacting with a new grocery script (e.g., buying groceries in the
restaurant).

Another thing that can happen to everyday scripts is that they can be thwarted, as in:

I went to the gas station to fill up my car.
But the owner said he was out of gas.

This is called an "Obstacle".

Scripts describe rather specific events, and although it is assumed that adults know
thousands of them, story comprehension cannot simply be a matter of finding a script to
match a story. There are just too many possible stories. Moreover, there are clear cases
where people comprehend a story even though it does not give enough information to cause
a program to invoke a script, as in

John needed money. He got a gun and went to a liquor store.

Schank and Abeison point out that even if the program had a script for Robbery, this story
offers no basis for invoking it. Nonetheless, people understand John's goals and his intended
actions.

There must be relevant knowledge available to tie together sentences
that otherwise have no obvious connection The problem is that
there are a great many stories where the connection cannot be made
by the techniques of causal chaining nor by reference to a script. Yet
they are obviously connectable. Their connectability comes from these
stories' implicit reference to plans. (Schank & Abeison, 1977, p. 75)

Plans

Schank and Abeison introduce plans as the means by which goals are accomplished, and
they say that understanding plan-based stories involves discerning the goals of the actor and

the methods by which the actor chooses to fulfill those goals. The distinction between
script-based and plan-based stories is very simple: In a script-based story, parts or all of
the story correspond to one or more scripts available to the story understander; in a plan-

based story, the understander must discern the goals of the main actor and the actions that
accomplish those goals. An understander might process the same story by matching it with a
script or scripts, or by figuring out the plans that are represented in the story. The
difference is that the first method is very specialized, because a script refers to a specific
sequence of actions, while plans can be very general because the goals they accomplish are
general. For example,in

John wanted to go to a movie. He walked to the bus-stop.
i

we understand that John's immediate goal (called a delta-goal because it brings about a

change necessary for accomplishment of the ultimate goal) is to get to the movie theater.
Going somewhere is a very general goal, and does not apply Just to going to the mov.es. In

Schank and Abelson's theory, this goal has associated with It a set of pianboxes, which are

i
1

292 Natural Language%

standard ways of accomplishing the goal. Planboxes for going somewhere include riding an
animal, taking public transportation, driving a car, etc.

Obviously, a story understander might have a "go to the movies" script in its repertoire,
so that analysis of John's goals would be unnecessary—the system would just "recognize"
the situation and retrieve the script. This script would be the standardized intersection of a
number of more or less general goals and their associated planboxes. It would be a
"routinized plan" made up of a set of general subplans: Go to somewhere (the theater),
Purchase something (a ticket), Purchase something (some popcorn), etc.

A routinized plan can become a script, at least from the planner's
personal point of view.

Thus, plans are where scripts come from. They compete for the same
role in the understanding process, namely as explanations of
sequences of actions that are intended to achieve a goal. (Schank &
Abeison, 1977, p. 72)

The process of understanding plan-based stories involves determining the actor's goal,
establishing the subgoals (delta- or D-goals) that will lead to the main goal, and matching the
actor's actions with planboxes associated with the D-goals. For example, in

John was very thirsty. He hunted for a glass.

we recognize the D-goal of PTRANSIng liquid, and the lower level goal (specified in the
planbox for PTRANSing liquid) of finding a container to do it with.

Goals and Themes

In story comprehension, goals and subgoals may arise from a number of sources. For
example,they may be stated explicitly, as in

John wanted to eat

they may be nested in a planbox, or they may arise from themes. For example, if a LOVEtheme holds between John and Mary, it is reasonable to expect the implicit, mutual goal of
protecting each other from harm: "Themes, in other words, contain the background
information upon which we base our predictions that an individual will have a certain goal"
(Schank & Abeison, 1977, p. 132).

Themes are rather like production systems In their situation-action nature. A themespecifies a set of actors, the situations they may be in, and the actions that will resolve the"situation in a way consistent with the theme. The goals of a theme are to accomplish theseactions. Schank and Abeison have proposed seven types of goals; we have already
considered D-goals. Other examples are:

SAM and PAM 293F8

V'l

t

i. f

B

A- or Achievement-goals. To desire wealth is to have an
A-Money goal.

P- or Preservation-goal. To protect someone may be a P-Health
or P-Mental State goal.

C- or Crlsls-goal. A special case of P-goals, when action is
immediately necessary.

The LOVE theme can be stated in terms of some of these goals:

X is the lover; V is the loved one; Z 1s another person.

SITUATION ACTION
Z cause V harm A-Health(Y) and possibly

cause Z harm
or C-Health(Y)

not-Love(Y.X) A-Love(Y.X)

General goals: A-Respect(Y)
A-Marry(Y)
A-Approval(Y)

To summarize the knowledge-structures we have discussed, we note their
interrelationships:

Themes give rise to goals.

A plan is understood when its goals are identified and its actions are consistent

with the accomplishmentof those goals.

Scripts are standardized models of events.

Scripts are specific; plans are general.

Plans originate from scripts.

Plans are ways of representing a person's goals. These goals are implicit in
scripts, which represent only the actions.

A script has a header, which is pattern-matched to an input sentence. Plans do
not have headers, but each plan is subsumed under a goal.

SAM

Both SAM and PAM accept stories as input; both use an English- o-CD parser to
produce an internal representation of the story (in conceptual dependency). Both are able
to paraphrase the story and to make intelligent Inferences from .t. They differ with respect

to the processing that goes on after the CD representation has been built.

294 Natural Language*

SAM understands stories by fitting them into one or more scripts. After this match is
completed, it makes summaries of the stories. The process of fitting a story into a script has
three parts, a PARSER, a memory module (MEMTOK), and the script applier (APPLY). These
modules cooperate: The parser generates a CD representation of each sentence, but APPLY
gives it a set of Verb-senses to use once a script has been identified. For example, once
the restaurant script has been established, APPLY tells the parser that the appropriate
sense of the verb "to serve" is "to serve food" rather than, for example, "to serve in the
army."

The parser does not make many inferences; thus it does not realize that "it" refers to
the hot dog in "The hot dog was burned. It tasted awful." This task is left to MEMTOK. This
module takes references to people, places, things, etc., and fills in information about them. It
recognizes that the "it" in the sentence above refers to the hot dog, and "instantiates" the
"it" node in the CD representation of the second sentence with the "hot dog" node from the
first sentence. Similarly, in a story about John, MEMTOK would replace "he" with "John"
where appropriate, and would continuallyupdate the "John" node as more information became
available about him.

The APPLY module has three functions. First, it takes a sentence from the parser and
checks whether it matches the current script, a concurrent (interacting) script, or any script
in the database. If this matching is successful, it makes a set of predictions about likely
inputs to follow. Its third task is to instantiate any steps in the current script that were
"skipped over" in the story. For example, if the first sentence of a story is "John went to a
restaurant," APPLY finds a match with the script header of the restaurant script in its
database (see Figure 1). APPLY then sets up predictions for seeing the other events in the
restaurant script in the input. If the next sentence is "John had a hamburger," then APPLY
successfully matches this sentence into the restaurant script (event 6). It then assumes
events 2-5 happened, and Instantiates structures in its CD representation of the story to
this effect. Events 7-10 remain as predictions.

When the whole story has been mapped into a CD representation in this manner, the
SAM program can produce a summary of the story, or answer questions about it. (See
Schank & Abeison, 1977, pp. 190-204, for an annotated sample protocol with the program.)
Consistent with the idea of Interlingua, SAM can produce summaries in English,

Chinese,

Russian, Dutch, and Spanish. An example of a SAM paraphrase follows; note the powerful
inferences made by instantiating intermediate script steps:

ORIGINAL: John went to a restaurant. He sat down. He got mad.He left.

PARAPHRASE: JOHN WAS HUNGRY. HE DECIDED TO GO TO A RESTAURANTHE WENT TO ONE. HE SAT DOWN IN A CHAIR. A WAITER*DID NOT GO TO THE TABLE. JOHN BECAME UPSET. HEDECIDED HE WAS GOING TO LEAVE THE RESTAURANT. HE

SAM inferred that John left the restaurant because he did not get any service. The basis for
this inference is that in the restaurant script, event 3 represents the waiter coming over to
the table after the main actor has been seated. SAM knows that people can get mad if their
expectationsare not fulfilled, and infers that John's anger results from the nonoccurrence of
event 3.

SAM and PAM 295F6

PAM

Wilensky's (1978) PAM system understands stories by determining the goals that are
to be achieved In the story and attempting to match the actions of the story with the
methods that it knows will achieve the goals. More formally:

The process of understanding plan-based stories is as
follows:

a) Determine the goal,

b) Determine the D-goals that will satisfy that goal,

c) Analyze input conceptualizations for their potential realization of one of the
planboxes that are called by one of the determined D-goals.

(Schank & Abeison, 1977, p. 75)

PAM utilizes two kinds of knowledge structure in understanding goals: named plans and themes.
A named plan is a set of actions and subgoals for accomplishing a main goal. It is not very
different from a script, although the emphasis in named plans is on goals and the means to
accomplish them. For example, a script for rescuing a person from a dragon would involve
riding to the dragon's lair and slaying it—a sequence of actions—but a named plan would be
a list of subgoals (find some way of getting to the lair, find some way of killing the dragon,
etc.) and their associated planboxes. When PAM encounters a goal in a story for which it
has a named plan, it can make predictions about the D-goals and the actions that will follow.
It will look for these D-goals and actions in subsequent inputs. Finding them is equivalent to
understanding the story.

Themes provide another source of goals for PAM. Consider the sentences:

a) John wanted to rescue Mary from the dragon.
b) John loves Mary. Mary was stolen away by a dragon.

In both of these cases, PAM will expect John to take actions that are consistent with the
goal of rescuing Mary from the dragon, even though this goal was not explicitly mentioned in
(b). The source of this goal in (b) is the LOVE theme mentioned above, because in this
theme, if another actor tries to cause harm to a loved one, the main actor sets up the goal of
Achieving-Health of the loved one, and possibly harming the evil party. (It is assumed that
the dragon stole Mary in order to hurt her.)

PAM determines the goals of an actor by

1. their explicit mention in the text of the story,

2. establishing them as D-goais for some known goal, or

3. inferring them from a theme mentioned in the story.

To understand a story is to "keep track of the goals of each of the characters in a story and

%.

i

'

r

f.

; i *
\ r

t

j

k

$!

296 Natural Language%

to interpret their actions as means of achieving those goals" (Schank & Abeison, 1977, p.
217). The program begins with written English text, converts it into CD representation, and
then interprets each sentence in terms of goals (predicting D-goals and actions to
accomplish them) or actions themselves (marking the D-goals as "accomplished"). When this
process is completed, PAM can summarize the story and answer questions about the goals
and actions of the characters.

Summary

Scripts, plans, goals, and themes are knowledge structures built upon conceptual
dependency theory. SAM is a program for understanding script-based stories. It matches
the input sentences of a story to events in one or more of the scripts in its database. As
such, it is relatively top-down in its operation—it processes input based on expectations it has
built up from the scripts. PAM understands plan-based stories by determining the goals of
the characters of the story and by interpreting subsequent actions in terms of those goals or
subgoals that will achieve them. A great deal of Inference can be required of PAM simply to
establish the goals and subgoals of the story from the input text.

Schank and Abeison argue that human story understanding is a mixture of applying
known scripts and inferring goals (where no script is available or of obvious applicability).
They are experimenting with interactions of SAM and PAM, in particular, with using SAM to
handle script-based sub-stories under the control of PAM.

References

The recent book by Schank & Abeison (1977) is the most complete and readable
source on both of these systems and on the current state of Conceptual Dependency theory.
For the whole truth about PAM, see the Ph.D. dissertation by Wilensky (1978a).

Also of interest: Abeison (1973), Bartlett (1932), Minsky (1975), Propp (1968),
Riesbeck (1975), Rumelhart (1973), Schank (1973), Schank et al. (1975), Thorndyke
(1977)..skipc

F7. LIFER

The natural language systems described in the preceding articles fall into two
categories: those built to study natural language processing issues in general and those builtwith a particular task domain in mind. In contrast, LIFER, built by Gary Hendrix (1977a) as
part of the internal research and developmentprogram of SRI International, Inc., is designed
to be an "off-the-shelf" natural language utility available to systems builders who want to
incorporate an NL front-end interface to improve the usability of their various applications
systems. The bare LIFER system is a system for generating natural language

interfaces;

theinterface builder can augment LIFER to fit his particular application, and even the eventualusers can tailor the LIFER-supported front-end to meet their individual styles and needs.

I

I

I

Language Specification and Parsing

The LIFER system has two major components: a set of interactive language
specification functions and a parser. Initially it contains neither a grammar, nor the
semantics of any language domain. An interface builder uses the language specification
functions to define an application language, a subset of English that is appropriate for
interacting with his system. The LIFER system then uses this language specification to
interpret natural language Inputs as commands for the application system.

The interface builder specifies the language primarily in terms of grammatical rewrite
rules (see Article C1). LIFER automatically translates these into transition trees, a simplified
form of augmented transition networks (Article 03). Using the transition tree, the parser
interprets inputs In the application language. The result is an interpretation in terms of the
appropriate routines from the applications system, as specified by the interface builder. The
parser attempts to parse an input string top-down and left to right (see Article D 1) by
nondeterministically tracing down the transition tree whose root node is the start symbol
(known as <LT.G.) for "LIFER top grammar"). For example suppose the interface builder has
specified the following three production rules as part of his application language:

<L.T.G.) -> WHAT IS THE ATTRIBUTE) OF <PERSON> | e1
<L.T.G.) -) WHAT IS <PERSON'S> ATTRIBUTE) | e2
<L.T.G.> -> HOW <ATTRIBUTE> IS <PERSON> | e3

If an input matches one of these patterns, the corresponding expression (el, e2, or e3) is
evaluated—these are the appropriate interpretations that the system is to make for the
corresponding input. The transition tree built by the language specification functions would
look like this:

/_-THE-<ATTRIBUTE> OF <PERSON> | el
'—UHAT TS

\—<PERSON> ATTRIBUTE) | e2
<L.T.G.)

HOW ATTRIBUTE) IS <PERSON) | e3

Sentences such as:

What is the age of Mary's sister?
How old is Mary's sister?
What is John's height?
How tall is John?

might be parsed using this simple transition tree, depending on how the nonterminal symbols,
or meta-symbols, ATTRIBUTE) and <PERSON> are defined.

During parsing, LIFER starts at the symbol <L.T.G.) and attempts to move towards the
expressions to be evaluated at the right. The parser follows a branch only if some portion at

the left of the remaining input string can be matched to the first symbol on the branch.
Actual words (such as what or of in the above example) can be matched only by themselves.
Meta-symbols (such as ATTRIBUTE) or <PERSON» can be macthed in a number of ways,
depending on how the interface builder has defined them:

I.

i ,[*

i

I

i

'I

297F7 LIFER

" {

298 Natural Language
*

(a) as a simple set (e.g., <PERSON> = the set {Mary, John, Bill});

(b) as a predicate that which is applied to the string to test for satisfaction (for
example, some meta-symbol used in a piece of grammer to recognize dates
might test if the next string of characters is a string of digits, and thus a
number); or

(c) by another transition tree which has this meta-symbol as its root node.

The above example is typical: A large amount of semantic information is embedded in
the syntatic description of the application language. JOHN and HEIGHT are not defined as
instances of the single meta-symbol <NOUN) as they would be in a more formal grammar, but
rather are separated into the semantic categories indicated by the meta-symbols <PERSON)
and <ATTRIBUTE>. The technique of embedding such semantic information in the syntax has
been referred to as semantic grammar (Burton, 1976), and it greatly increases the
performance of

LIFER'S,

automatic spelling correction, ellipsis, and paraphrase

facilities,

described below.

Applications

LIFER has been used to build a number of natural language

interfaces,

including a
medical database, a task scheduling and resource allocation system, and a computer-based
expert system. The most complex system built with a LIFER interface involved a few man-
months of development of the natural language front-end: The LADDER system (Language
Access to Distributed Data with Error Recovery) developed at

SRI,

which provides real-time
natural language access to a very large database spread over many smaller databases in
computers scattered throughout the United States (Sacerdoti, 1977, and Hendrix, et al.,
1978). Users of the system need have no knowledge of how the data is organized nor
where it is stored. More importantly, from the point of view of this article, users do not need
to know a data query language: They use English, or rather a subset that is "natural" for thedomain of discourse and which is usually understood by the LIFER front-end. Theinterpretations of the inputs by LIFER are translations into a general database querylanguage, which the rest of the LADDER system converts to a query of the appropriate
databases on the appropriate computers (See Article Applications.F4 on Al in InformationRetrieval systems).

Another interesting system to use a LIFER front-end was the HAWKEYE system (Barrow,
et al., 1977), also developedat SRI. This is an integrated interactive system for cartographyor intelligence, which combines aerial photographs and generic descriptions of objects and
situations with the topographicaland cultural Information found in traditional maps The userqueries this database and cues image-processing tasks via a LIFER natural languageinterface. A unique feature of this interface is the combination of natural language andexternal referents. For instance, using a cursor to point to places within an image, the usercan ask questions such as "What is this?" and "What is the distance between here andhere? The interpretation of such expressions results in requests for coordinates from thesubsystem providing graphical Input, which are then handed to subsystems that have accessto the coordinates-to-object correspondences.

[

LIFER 299F7

Human Engineering

LIFER is intended as a system which both facilitates an interface builder in describing
an appropriate subset of a language and its interpretation in his system, and also helps a
non-expert user to communicate with the application system in whatever language has been
defined. For this reason, close attention was paid to the human engineering aspects of
LIFER. Experience with the system has shown that, for some applications, casual users of
LIFER have been able to create usable natural language interfaces to their systems in a few
days. The resulting systems have been directly usable by people whose field of expertise is
not computer science.

The interface builder. Unlike PROGRAMMAR (in SHRDLU, Article F5), there is no
"compilation" phase where the language specification is converted into a program to
recognize the defined language. Instead, changes are made incrementally every time a call

to the language specification functions is made. Furthermore, it is easy (by typing a prefix
character) to intermix statements to be interpreted by the specification functions,
statements to be parsed using the partially specified grammar, and statements to be
evaluated in the underlying Implementation language of LIFER, namely, INTERLISP (see Article
Al Languages.Cl). Thus, the interface builder can define a new rewrite rule for the grammar
or write a predicate for some meta-symbol and test it immediately, which leads to a highly

interactive style of language definition and debugging. A grammar editor allows mistakes to
be easily and quickly undone. The ability to intermix language definition with parsing allows
the interface user to extend the interface language to personal needs or taste during a
session using the application system. This extension can either be done by directly invoking
the language specification

functions,

or, if the interface builder has provided the facility, by
typing natural language sentences whose interpretations invoke the same language
specification functions.

The interface user. LIFER provides many features to ease the task of the user typing

in sentences to be understood by the system. First of all, it provides feedback indicating
when LIFER is parsing the input sentence and when the applications software is running.

When LIFER fails to parse a sentence, it tries to give the user useful information of how it
failed. It tells the user how much of the input was understood and what it was expecting
when it got to the point where it could no longer understand. Interactions with the user are
numbered and the user can refer back to a previous question and specify some substitution
to be made. For instance:

Notice the "PARSED'" printed by LIFER to indicate parsing success. This facility can be used

to save typing (and more errors), both when similar questions are being asked and when
errors in previous inputs are being corrected. The user can simply specify synonyms to be
used. For instance:

I

%

■"!

'1 i

i-

t2. How many minority students took 28 or more uni
quarter?

s o ere as

ARSEDI
87

3. Use women for minority in 12
ARSED!

300 Natural Language*

28. Define Bill like William

will cause LIFER to treat the word BILL the same as WILLIAM. LIFER also allows for easy
inspection of the language definition, which Is useful for both interface builders, and
sophisticated users.

There are three more sophisticated aspects of LIFER designed to make interactions
easier for the user—the spelling correction, ellipsis, and paraphrase mechanisms: When the
parser is following along a branch of a transition tree and reaches a point where it can go no
further, it records its failure in a failure list. If the input is eventually parsed correctly, the
failure list is forgotten. However, if no successful parse can be found, the parser goes back
to the last (rightmost) fail point and attempts to see if a misspelling has occurred. (Fail
points to the left in the sentence are assumed not to be caused by spelling errors, since at
least one transition using the word must have been successful to get to the fail point further
to the right. This is not foolproof, however, and sometimes LIFER will fail on a spelling
mistake). The INTERLISP spelling correction facility is used to find candidate words that
closely match the spelling of the suspect word. The use of semantlcally significant syntatic
categories (such as <PERSON)) above greatly restricts the allowable word susbstitutions
and improves the efficiency of the spelling corrector.

While interacting with an applications system, the user may want to carry out many
similar tasks (for example, in a database query system, one often asks several questions
about the same object). The LIFER system automatically allows the user to type incomplete
input fragments and attempts to interpret them in the context of the previous input (1.c., the
interface builder need not consider this issue). For instance, the following three questions
might be entered successively and understood by LIFER:

42. What is the height of John
43. the weightthe weight
44. age of Mary's sister

If an input fails normal parsing and spelling correction, LIFER tries elliptic processing. Again,
because languages defined in LIFER tend to encode semantic information in the syntax
definition, similar syntactic structures tend to have similar semantics. Therefore LIFER
accepts any input string that is syntactically analogous to any contiguous substring of words
in the last input that parsed without ellipsis. The analogies do not have to be in terms of
complete subtrees of the syntactic tree, but they do have to correspond to contiguous
words in the previous input. The elliptical processing allows for quite natural and powerful
Interactions to take place, without any effort from the interface builder.

The paraphrase facility allows users to define new syntactic structures in terms of old
structures. The user gives an example of the structure and interpretation desired, and the
system builds the most general new syntactic rule allowed by the syntactic rules already
known. The similarity between the semantics and syntax is usually sufficient to ensure that a
usable syntax rule is generated. The following example assumes that the interface builder
has included a rule to interpret the construction shown to invoke a call to the language
specification function PARAPHRASE with appropriately bound arguments. After typing

F7 LIFER 301

!

I:

:(

ft

li

63. Let "Describe John" be a paraphrase of "Print the height, weight
and age of John" ,

the user could expect the system to understand the requests

64. Describe Mary
65. Describe the tallest person

Describe Mary's sister66.

even with a fairly simply designed LIFER grammar. (In the context of the earlier examples,
this example assumes that "the tallest person" can correspond to the meta-symbol
<PERSON>.) The method used tocarry out paraphrase (which, as can be seen, is a much more
general form of synonymic reference) is quite complex. Basically it invokes the parser to
parse the model (the second form of 64.) that is already understood. All proper subphrases
(i.e., subphrases that are complete expansions of a syntatic category) of the model that also
appear in the paraphrase are assumed to play the same role. A new syntatic rule can then
be written, and the actions involved by the model can be appropriately attached to the
paraphraserule.

Conclusions

Although grammars constructed with LIFER may not be as powerful as specially
constructed grammars, LIFER demonstrates that useful natural language systems for a wide
variety of domains can be built simply and routinely without a large-scale programming effort.
Human engineering features and the ability of the naive user to extend the system's

capabilities are important issues in the usefulness of the system.

References

Hendrix (1977a), Hendrix (1977b), and Hendrix (1977c) ail describe the LIFER system.
The LADDER information retrieval application is described in Hendrix, et al. (1978) and
Sacerdoti(l977). Barrow, et al. (1977) describes the HAWKEYE system.

302 Natural Language%

References

Abeison, R. The structure of belief systems. In R. Schank &K. Colby (Eds.), Computer
Models of Thought and Language. San Francisco: W. H. Freeman, 1973. Pp. 287-
-339.

Akmajian, A., Culicover, P., & Wasow, T. Formal Syntax. New York: Academic Press, 1977.

Akmajian, A., & Heny, F. An Introduction to the Principles of Transformational
Syntax. Cambridge: MIT Press, 1975.

Bar-Hillel, Y. The present status of automatic translation of languages. In F. L. Alt (Ed.),- Advances in Computers (Vol. 1). New York: Academic Press, 1960. Pp. 91-163.

Bar-Hillel, Y. Language and information. Reading, Mass.: Addison-Wesley, 1964.

Bar-Hillel, Y. Some reflections on the present outlook for high-quality machine
translation. Mimeo, University of Texas, 1970.

Barrow, H. G., Bolles, R. C, Garvey, T. D., Kremers, J. H., Lantz, X., Tenembaum, J. M., &

Wolf,

H. C. Interactive aids for cartography and photo interpretation. Proceedins ARPA
Image Understanding Worshop, Palo Alto, Ca., October 1977, 1 1 1-127

Bartlett, F. C. Remembering: A Study in Experimental and SocialPsychology. Cambridge: Cambridge University Press, 1977. (Originally published in1932.)

Bobrow, D. G. Natural language input for a computer problem-solving system. In M. Minsky
(Ed.), Semantic Information Processing. Cambridge: MIT Press, 1968. Pp. 146-226.

Bobrow, D. G., & Collins, A. (Eds.) Representation and Understanding. New York: AcademicPress, 1975.

Bobrow, D. G., & Fraser, J. An augmentedstate transition network analysis procedure. UCAI1, 1969, 557-567.

Bobrow, D. G., & PARC Understander Group. GUS-1, a frame driven dialog system. ArtificialIntelligence, 1977, 8, 165-173.

Bobrow, D G., & Winograd T An overview of KRL, a knowledge representation language.Cognitive Science, 1977, 1, 3-46.

Boden, M. Artificial Intelligence and Natural Man. New York: Basic Books, 1977.
Booth, A. D. (Ed.). Machine Translation. Amsterdam: North-Holland, 1967.
Bresnan J A realistic transformational grammar. In M. Halle, J. Bresnan, & G. A. Miller

" ' n9Ulstic Theory and Psychological Reality. Cambridge, Mass.: MIT Press,
1978. Pp. 1-59.

303References

!

h

1

1

M'

1

Bruce, B. Case systems for natural language. Artificial Intelligence, 1975, 6, 327-360.

Burton, R. R. Semantic grammar: An engineering technique for constructing natural
language understanding systems, BBN Report 3453, December 1976.

Burton, R. R., and Brown, J. S. Toward a natural-language capability for computer-assisted

instruction. In H. O'neil (Ed.), Procedures for Instructional Systems
Development. New York: Academic Press, 1979, 273-313.

Chafe, W. L. Discourse structure and human knowledge. In R. 0. Freedle & J. B. Carroll
(Eds.), Language Comprehension and the Acquisition of Knowledge. Washington,

D. C: Winston, 1972. Pp. 41-69.

Charniak, E. Toward a model of children's story comprehension, AI-TR-266, MIT Al Lab.
1972.

Charniak, E. A brief on case (Rep. 22). Lugano: Istituto per gli Studi Semantic! c Cognitivi,
1975.

Charniak, E., & Wilks, Y. Computational Semantics: An Introduction to Artificial
Intelligenceand Natural Language Comprehension. Amsterdam: North-Holland, 1976.

Chomsky, N. Three models for the description of language. IRE Transactions on
information Theory, 1956, 2, 113-124. (Also in R.Luce R. Bush &E. Galanter
(Eds.), Readings in Mathematical Psychology (Vol. 2). New York: John Wiley & Sons,

1965. Pp. 105-124.)

Chomsky, N. Syntactic

Structures,

The Hague: Mouton &

Co.,

1957.

Chomsky, N. On certain formal properties of grammars. Information and Control 1 959 2

137-167. (Also in R. Luce, R. Bush, &E. Galanter (Eds.), Readings m Mathemat.cal

Psychology (Vol. 2). New York: John Wiley &

Sons,

1965. Pp. 125-155.)

Chomsky. N. Formal properties of grammars. In R. Luce, R. Bush & E Galanter
(Eds.), Handbook of Mathematical Psychology (Vol. 2). New York: John Wiley & Sons,

1963. Pp. 323-418.

Chomsky, N. Aspects of the Theory of Syntax. Cambridge: MIT Press, 1965.

Chomsky, N. Deep structure, surface structure, and semantic interpretation In D. Steinberg

& L Jakobovlts (Eds.), Semantics. Cambridge: Cambridge University Press, 1971.
Pp. 183-216.

Cllppinger, J. H. Jr. Speaking with many tongues: Some problems in modeling speakers of
actual discourse. TINLAP-1, 1975. Pp. 78-83.

Codd.E.F. Seven steps to rendezvous with the casual user \n J
H

Klimbie &

K. I. Koffeman (Eds.), Data Base Management. New York: North-Holland, 1974.
Pp. 1 79-200.

304 Natural Language%

Cohen, P. R. On knowing what to say: Planning speech acts. Ph.D. thesis, Computer
Science Department, University of Toronto, 1 978.

Colby, X., Weber, S., & Hilf, F. Artificial paranoia. Artificial Intelligence, 1971, 2, 1-25.

COLING76. Preprints of the 6th International Conference on Computational Linguistics.
Ottawa,

Ontario, Canada,

June 1976.

Conway, M. E. Design of a.separable transition diagram compiler.

CACM,

1963, 6, 396-408.

Feigenbaum, E.,. & Feldman, J. (Eds.). Computers and Thought. New York:

McGraw-Hill,

1963.

Fillmore, C. The case for case. In E. Bach & R. Harms (Eds.), Universals in Linguistic
Theory. New York: Holt, Rinehart, & Winston, 1968. Pp. 1-88.

Fillmore, C. Some problems for case grammar. Georgetown University Monograph Series on
Languages and Linguistics, No. 24, 1971, 35-56. (a)

Fillmore, C. Types of lexical information. In D. Steinberg & L. Jakobovits (Eds.), Semantics.
Cambridge: CambridgeUniversity Press, 1971. Pp. 370-392. (b) (Also in F. Kiefer,

Studies in Syntax and Semantics. Dordrecht: Reidel, 1969. Pp. 109-137.)

Firschein, 0., Fischler, M., Coles, L., & Tennenbaum, J. Forecasting and assessing the impact
of artificial intelligence on society. UCAI 3, 1973, 105-120.

Friedman, J. Directed random generationof sentences. CACM, 1969,12 40-47.

Friedman, J. A Computer Model of Transformational Grammar. New York: American
Elsevier, 1971.

Goldman, N. Conceptual generation. In R. Schank, Conceptual InformationProcessing. Amsterdam: North-Holland, 1975. Pp. 289-371.

Green, B. F., Jr., Wolf, A. X., Chomsky, C, & Laughery, K. BASEBALL: An automatic questionanswerer. In E. Feigenbaum & J. Feldman (Eds.), Computers and Thought. New York:McGraw-Hill, 1963. Pp. 207-216.

Hailiday, M. A. K. Categories of the theory of grammar. Word, 1961, 17, 241-292.
Hailiday, M. A. K. Notes on transitivity and theme in English. Journal of Linguistics, 1967,

3, 37-81, 199-244; Journal of Linguistics, 1968, 4, 179-215.
Hailiday, M. A. K. Functional diversity in language as seen from a consideration of modalityand mood in English. Foundations of Language, 1970, 6, 322-361. (a)

Hailiday, M. A. K. Language structure and language function. In J. Lyons (Ed.), NewHorizons in Linguistics. Harmondsworth: Penguin Books, 1970. Pp. 140-165. '(b)
Herman, G. (Ed.). On Noam Chomsky: Critical essays. Garden City, New York: AnchorBooks, 1974.

305References

I
t

II

Harris, L. R. ROBOT: A high performance natural language processor for database
query. SIGART Newsletter, 1977, No. 61, pp. 39-40.

Heidorn, G. E. Automatic programming through natural language dialogue: A survey. IBM
Journalof Research and Development, July 1976, 20(4), 302-313.

Hendrix, G. G. Human engineering for applied natural language processing. UCAI 5, 1977,
183-191.

Hendrix, G. G. The LIFER manual: A guide to building practical natural language interfaces
SRI Tech Note 138, February, 1977.

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D. &

Slocum,

J. Developing a natural language

interface to complex data. ACM Transactions on Database Systems, Vol. 3, No. 2. June
1978, 105-147.

Hendrix, G. Speech understanding research. SRI International, Inc., Menlo Park, Calif.,
October 1976.

Hendrix, G. LIFER: A natural language interface facility. SIGART Newsletter. No. 61,

February 1977, pp. 25-26.

Hendrix,

G.,

Thompson, C, &

Slocum,

J. Language processing via canonical verbs and

semantic models. UCAI 3, 1973, 262-269.

Hewitt, C. PLANNER: A language for proving theorems in robots. UCAI 1, 1969, 295-301.

Hewitt, C. Procedural embeddingof knowledge in PLANNER. UCAI 2, 1971, 167-182.
I

Hewitt, C, Bishop, P., & Steiger.R: A universal modular ACTOR formalism for artificial
intelligence. UCAI 3, 1973, 235-245.

Hopcroft, J. E., & Ullman, J. D. Formal languages and their relation to automata. New

York: Addison-Wesley, 1 969.

An introduction to Systemic Grammar.Hudson, R. A. English Complex Sentences
Amsterdam: North-Holland, 1971.

Hudson, R. A. Arguments for a non-transformational grammar. Chicago: University of
Chicago Press, 1976.

Huffman, D. Impossible objects as nonsense sentences. In B Meltzer & D. Michie (Eds.),

Machine Intelligence6. New York: American Elsevier, 1971. Pp. 295-323.
I

Hunt, E. Artificial intelligence. New York: Academic Press, 1975.

Jackson, P. Introduction to artificial intelligence. New York: Petrocelli, 1974. I

Kaplan, R. M. A general syntactic processor. In R. Rustin (Ed.), Natural Language

Processing. New York: Algorithmics Press, 1973. Pp. 193-241.

306 Natural Language*

\

Katz, J. & Postal, P. An integrated theory of linguistic descriptions. Cambridge: The MIT
Press, 1964.

Kay, M. The MIND system. In R. Rustin (Ed.), Natural Language Processing. New York
Algorithmics Press, 1973. Pp. 155-188.

Kellogg, C. A natural language compiler for on-line data management. Proc. Fall Joint
Computer Conference, 1968. Pp. 473-492.

Klein, S. Automatic paraphrasing in essay format. Mechanical Translation, 1965, 8, 3-4.

Knuth, D. The art of computer programming: Fundamental Algorithms (Vol. 1). Reading,
Mass.: Addison-Wesiey, 1973.

Landsbergen, S. P. J. Syntax and formal semantics of English in PHLIQAI. In L. Steels (Ed.),
Advances in Natural Language Processing. Antwerp: Universityof Antwerp, 1976.

Lindsay, R. K. A program for parsing sentences and making inferences about kinship
relations. Proceedings of Western Management Science Conference on

Simulation,

1962.

Lindsay, R. K. Inferential memory as the basis of machines which understand natural
language. In E. Feigenbaum & J. Feldman (Eds.), Computers and thought. NewYork: McGraw-Hill, 1963. Pp. 217-236.

Locke, W. N., & Booth, A. D. (Eds.). Machine Translation of Languages. New York:Technology Press of MIT and John Wiley & Sons, 1955.

Lyons, J. Introduction to theoretical linguistics. Cambridge: Cambridge University Press,
1968.

Lyons, J. Noam Chomsky. New York: Viking Press, 1970.

Manna, Z. Mathematical theory of computation. New York:

McGraw-Hill,

1 974.

Marcus, M. A computational account of some constraints on language. TINLAP-2, 1978,
pp. 236-246.

Matuzceck, D. An implementation of the augmented transition network system ofWoods. University of Texas at Austin, Computer Science Department, CAI Lab, 1972.
McCord, M. On the form of a systemic grammar. Journal of Linguistics, 1975, 11,1 95-21 2.
McDermott, D. Assimilation of new information in a natural language-understandersystem, MIT Al Memo TR-291 , MIT Al Lab, February 1 974.
Mcintosh, A., & Hailiday, M. A. K. Patterns of language. Bloomington: Indiana UniversityPress, 1 966.

Minsky, M. A framework for representing knowledge. In P. Winston (Ed.), The Psychology ofComputer Vision. New York: McGraw-Hill, 1976.

307References

M

Minsky, M. (Ed.) Semantic Information Processing. Cambridge: MIT Press, 1968.

Nash-Webber, B. Semantics and speech understanding (BBN Rep. 2896). Cambridge: Bolt
Beranek & Newman, October 1974.

Newell, A., & Simon, H. A. GPS, a program that simulates human thought. In E. Feigenbaum &

J. Feldman (Eds.), Computers and Thought. New York:

McGraw-Hill,

1963. Pp. 279-

I

Norman, D., & Rumelhart, D. Explorations in cognition. San Francisco: W. H. Freeman, 1975.

Oettinger, A. G. The design of an automatic Russian-English technical dictionary. In W.N.
Locke & A. D. Booth (Eds.), Machine Translation of Languages. New York:

Technology Press of MIT and John Wiley &

Sons,

1955. Pp. 47-65.

Paige, J. M., & Simon. H. A. Cognitive processes in solving algebra word problems. In
B. Kleinmuntz (Ed.), Problem Solving. New York: John Wiley &

Sons,

1966. Pp. 51-
119.

Perrault, C. R., Allen, J. F., & Cohen, P. R. Speech acts
coherence. TINLAP-2, 1978, pp. 125-132.

is a basis for understanding dialogue

Petrick, S. R. Transformational analysis. In R. Rustin, Natural Language Processing. New
York: Algorithmics, 1973. Pp. 27-42.

Plath, W. REQUEST: A natural language question-answering system. IBM Journal of

Research and Development, 1976, 20(4), 326-335. I"

Postal, P. On the limits of context-free phrase structure description (RLE Quarterly

Progress Rep. No. 64). MIT, January 1962.

Postal, P. Limitations of Phrase Structure Grammars. In J. A. Fodor & J. J. Katz. The

Structure of Language. Englewood Cliffs, N. J.: Prent.ce-Hall, 1964.

Propp, V. Morphologyof the Folktale. 2nd edition, translated by L. Scott. Austin: University

of Texas Press, 1968.

Quillian, M. R. The teachable language comprehends A simulation program and theory of

language. CACM, 1969, 12, 459-476.

Quillian, M.R. Semantic memory. In M. Minsky (Ed.), Semantic Information Processing.

Cambridge: MIT Press, 1968. Pp. 227-270.

Raphael, B. A computer program which understands

Conference,

1964, 26, 577-589.
Proc. of the AFIPS Fall Joint Computer

Raphaei, B. SIR: A computer program for semantic information retrieval In (Ed.).

Semantic Information Processing. Cambridge: MIT Press, 1968. Pp. 33-145.

Raphael, B. The Thinking Computer. San Francisco: W. H. Freeman, 1976
%

293.

308 Natural Language*

Rieger, C. Conceptual memory and inference. In R. Schank, Conceptual Information
Processing. Amsterdam: North-Holland, 1975. Pp. 157-288.

Riesbeck, C. Conceptual analysis. In R. Schank, Conceptual Information
Processing. Amsterdam: North-Holland, 1975. Pp. 83-156.

Rumelhart, D. Notes on a schema for stories. LNR research memo, UC San Diego, 1973

Rustin, R. (Ed.). Natural language processing. New York: Algorithmics, 1973.

Sacerdoti, E. D. Language access to distributed data with error recovery. UCAI 5, 1977,
196-202.

Samlowski, W. Case grammar. In E. Charniak and Y. Wilks (Eds.), Computational
Semantics. Amsterdam: North-Holland, 1976. Pp. 65-72.

Scha, R. J. H. A formal language for semantic representation. In L. Steels (Ed.), Advances in
Natural Language Processing. Antwerp: University of Antwerp, 1976.

Schank, R. Identification of conceptualizations underlying natural language. In R. Schank &
K. Colby (Eds.), Computer Models of Thought and Language. San Francisco: W. H.

Freeman, 1973. Pp. 187-247.

Schank, R. Conceptual information Processing. Amsterdam: North-Holland, 1975.

Schank,

R., & Abeison, R. P. Scripts, Plans, Goals, and Understanding. Hillsdale: Lawrence
Eribaum Assoc, 1977.

Schank, R., & Colby, K. Computer models of thought and language. San Francisco: W. H.
Freeman, 1973.

Schank, R., Goldman, N., Rieger, C, & Riesbeck, C. MARGIE: Memory analysis, response
generation,and inference on English. UCAI 3, 1973, 255-261.

Schank, R., & Yale Al Project Group SAM — A story understander. Yale University
Computer Science Research Report 43, August 1975.

Schwartz, J. T. On programming: An interim report on the SETL Project. New York
University, Computer Science Department, 1973.

Searle, ?. Speech Acts. Cambridge University Press??? 1970.

Self, J. Computer generation of sentences by systemic grammar. American Journal of
ComputationalLinguistics, Microfiche 29, 1975.

Shapiro, S. A net structure for semantic information storage and deduction, and retrieval.
UCAI 2, 1971, 512-623.

Simmons, R. F., Burger, J. F., and Schwarcz, R. M. A computational model of verbal
understanding. ACM FJCC, 1968, 441-466.

309References

0

-I
ii

I;

t

Simmons,

R. F. Answering questionsby computer: A survey. CACM, 1965, 8, 53-70.

Simmons, R. F. Storage and retrieval of aspects of meaning in directed graph structures.
CACM, 1966, 9, 211-214.

Simmons, R. F. Natural language question-answering systems: 1969.

CACM,

1970. 13, 15-
-30.

Simmons, R. F. Semantic networks: Their computation and use for understanding English

sentences. In R. Schank & K. Colby (Eds.), Computer models of thought and
language. San Francisco: W. H. Freeman, 1973. Pp. 63-1 13.

Simmons, R. F., Burger, J. F., & Long, R. E. An approach toward answering English questions

from a text. Proceedings of the Fall Joint Computer Conference. New York:
Spartan, 1966. Pp. 357-363.

Simmons, R. F., &

Slocum,

J. Generating English discourse from semantic networks. CACM
1972, 15, 891-905.

Steinberg, D., & Jakobovits, L Semantics. Cambridge: Cambridge University Press, 1971.

Sussman, G., Winograd, T., & Charniak, E. MICRO-PLANNER reference manual, Al Memo 203,
MIT Al Lab, July 1970.

Taylor, 8., & Rosenberg, R. S. A case-driven parser for natural language. AJCL, Microfiche
31, 1975.

Thompson, F. B. English for the computer. Proceedings of the Fall Joint Computer

Conference. New York: Spartan, 1968. Pp. 349-356.

Thorndyke, P. Cognitive structures in comprehension and memory for narrative discourse.
Cognitive Psychology, 1977, 9, p. 77.

TINLAP-1.

Schank,

R., & Nash-Webber, B. (Eds.). Theoretical Issues in Natural Language
Processing: An Interdisciplinary Workshop in Computational Linguistics, Psychology,

Linguistics, and Artificial Intelligence. Association for ComputationalLinguistics. June
1975.

TINLAP-2. Waltz, D. L. (Ed.) Theoretical Issues in Natural Language Processing-2. New
York: Association for Computing Machinery, 1978.

Waltz, 0. L Natural language interfaces. SIGART Newsletter, Februrary 1977, No. 61, 16-
-64.

Waltz, D. L. An English language question answering system for a large relational data
base. In press, 1979.

Weaver, W. Translation (1949). In W. N. Locke & A. D. Booth (Eds.), Machine Translation
of Languages. New York: Technology Press of MIT and John Wiley & Sons, 1955. Pp.

15-23.

310 Natural Language%

Weizenbaum, J. Symmetric list processor. CACM, 1963, 7, 524-545.

Weizenbaum, J. ELIZA. CACM, 1966, 9, 36-45.

Weizenbaum, J. Computer power and human reason: From judgment to calculation. San
Francisco: W. H. Freeman, 1976.

Welin, C. W. Semantic networks and case grammar (Publ. 29). University of Stockholm,
Institute of Linguistics, 1975.

Wilensky, R. Understanding goal-based stories. Doctoral dissertation, Yale Research Report
140. September, 1978.

Wilensky, R. Why John married Mary: Understanding stories involving recurring
goals. Cognitive Science, 1978, 2, 235-266.

Wilks, Y. Time flies like an arrow. New Scientist, 15 December 1977. (a)

Wilks, Y. What sort of taxonomy of causation do we need for language understanding?
Cognitive Science, 1977, 1, 235-264. (b)

Wilks, Y. An artificial intelligence approach* to machine translation. In R. Schank &
K. Colby (Eds.), Computer models of thought and language. San Francisco: W. H.
Freeman, 1973. Pp. 114-151.

Wilks, Y. Natural language understanding systems within the Al paradigm: A survey
and some comparisons, Al Memo 237, Stanford Al Lab, December 1974.

Wilks, Y. Preference semantics. In E. L. Keenan (Ed.), The formal semantics of natural
language. Cambridge: Cambridge Univ. Press, 1975. Pp. 329-350.

Wilks, Y. A survey of syntactic analysis procedures for natural language.

AJCL,

Microfiche47, 1976. (a)

Wilks, Y. Processing case. AJCL, Microfiche 56, 1976. (b)

Wilks, Y. Making preferences more active. Artificial Intelligence, December 1978, 1 1(3),
197-224.

Winograd, T. Procedures as a representation for data in a computer program forunderstanding natural language, MIT Tech. Rep. TR-17, MIT Al Lab, 1971.
Winograd, T. Understanding natural language. New York: Academic Press, 1972.
Winograd, T. Five lectures on artificial intelligence, Al Memo 246, Stanford Al Lab,

September 1974.

Winograd, T. Parsing natural language via recursive transition net. In R. Yeh (Ed) AppliedComputation Theory. Englewood Cliffs, N.J.: Prentice-Hall, 1975. Pp. 451-467.

311References

\

Si

I
I

Cognitive Process. Book in preparation, Addison-Wesiey,Winograd, T. Language
1980.

Wong, H. K. Generating English sentences from semantic structures, Tech. Rep. 84,
University of Toronto, Computer Science Department, 1975.

Woods, W. A. Transition network grammars for natural language analysis. CACM, 1970,
13(10), 591-608.

Woods, W. A. An experimental parsing system for transition network grammars. In R. Rustin
(Ed.), Natural Language Processing. New York: Algorithmics Press, 1973. Pp. 111-
-154. (a)

Woods, W. A. Progress in natural language: An application to lunar geology. National
Computer Conference Proceedings, 1973, pp. 441-450. (b)

Woods, W. A. What's in a link: Foundations for semantic networks. In D. Bobrow & A. Collins
(Eds.), Representation and understanding. New York: Academic Press, 1975. Pp.
35-82.

Woods, W. A., & Kaplan, R. The lunar sciences natural language information system (BBN
Rep. 2265). Cambridge: Bolt Beranek & Newman, 1971.

Woods, W. A., Kaplan, R., & Nash-Webber, B. The Lunar Sciences Natural Language
Information System: Final report (BBN Rep. 2378). Cambridge: Bolt Beranek &
Newman, June 1972.

Yngve, V. Random generation of English sentences. 1961 International Conference on
Machine Translation of Languages and Applied Language Analysis. London: Her
Majesty's Stationery Office, 1962.

312 Natural Language%

Index

parsing strategies 248

Abeison, Robert 287
ad hoc parsers 272
ad hoc representation 225
agreement 252
ALGOL 230
anaphoric references 277
application language 297
Artsouni, G. B. 228
ATN 225, 228, 230, 250, 252, 254-255,

256, 258, 264-265, 276-278, 284,
285, 297

augmented transition network 254

BABEL 264, 265
backtracking 248, 254, 259, 281
Bar-Hillel, Yehoshua 228, 230
BASEBALL 225, 230, 267-268
blackboard 248, 258
blocks world 263, 279
Bobrow, Daniel 227, 269
Booth, A. Donald 228
bottom-up processing 249, 258, 296
Britten, D. H. V. 228
Burton, Richard 298

case 264, 283
case frame 226, 245
case grammar 244-246, 264
case grammars 242
causal chain 288
causal links 289
chart 250, 256-258
Chomsky, Noam 230, 233, 238
co-routining 259
Codd, E. 276
combinatorial explosion 250
competence vs. performance 238
computational linguistics 1 , 228, 285
conceptual analyzer 284

conceptual dependency 227, 231, 262,
264-265, 283-284, 287-289

concordances 224
context-free grammar 228, 235-236, 238

240, 250, 252, 261, 262, 267
context-sensitive grammar 228, 234-235,

238
control mechanisms 248
CONVERSE 225
cybernetics 228

DEACON 225
declarative representationof

knowledge 226
deductive mechanism 225
deep structure 240, 254
demons 284
dependency grammar 263
derivation tree 236, 238, 239, 247, 254,

261,276,279
dictionary 228
discrimination net 265, 285

early NL programs 224-225, 230, 248,
249, 267-273

ELIZA 225, 248, 249, 270-272
ellipsis 300
embedding 252
EPAM 264
expectations 227
extended discourse 265
extended grammar 238-246
extended grammar parsers 250

Fillmore, C. 244
finite-state transition diagram 252
formal grammar 233-237
formal languages 233-237, 252
frame 227, 246, 289
Friedman, Joyce 256, 261
FSTD 252, 253

313Index

a

Machinese 229,231,273.286
MARGIE 227,231,246,264,283-286,

Hailiday, Michael 242
hashing 271 287, 289

mechanical translation 1, 224, 228-233,
262, 265, 267, 273-276, 285, 287

MICRO-PLANNER 279-280
HAWKEYE 298
Hendrix, Gary 296
heuristic 225, 249, 260, 264, 268, 270,

MIND 256, 259
mood system 242276, 279, 280, 282

heuristics 281 morpheme 239
multiple sources of knowledge 248, 281human engineering 299

human problem solving 270

named plan 295
natural language 1
nondeterminism 254, 281
nonterminal symbols 233

ideational function 242
inference 225, 230, 231, 246, 262, 264,

267, 284, 285
information retrieval 224, 262, 268, 276,

298
interlingua 229, 231, 273, 284, 285, 287

obligatory transformations 239
Oettinger,Anthony G. 229
optional transformation 240

INTERLISP 300
interpersonal function 242
interpretive semantics 240
IPL-V 267-268
island driving 249 PAM 287, 295-296

parallel processing 248, 254, 281
paraphrase 264, 300
paraphrasing 224, 246, 262, 284, 285
paraplates 265, 275

Kaplan, Ronald 250, 266
Katz-Postal hypothesis 240
Kay, Martin 256
Klein, Sheldon 262
knowledge-based systems 225
KRL 227

PARRY 248
parser 276,281,289,297
parsing 1, 233, 234, 236, 247-252, 268,

270, 272, 279, 284
pattern matching 249, 268-273

'f

i:

I
I

\

generative grammar 238, 240
generative semantics 240
goal 290, 292-293

Goldman,

Neil 264, 285
grammar 1 , 228, 233-246, 247, 250, 252,

276, 280, 297
grammarless parsers 249, 250

Green,

Bert 267
GSP 256-260
GUS 227

LADDER 298
lexicon 240
LIFER 227,250,251,296-302
limited logic systems 225
Lindsay, Robert 267
LISP 230, 268, 279, 284
list-processing languages 267-273
logic 226
LUNAR 225, 255, 276-278

*
A'
I

314 Natural Language%

Petrick, S. 250
PHLIQAI 227
phonemes 239
phonologicalcomponent 240
phrase marker 239
phrase-structure grammar 228, 234-237,

238-239, 250, 251
phrase-structure marker 261
plan 287, 291-292
PLANNER 262, 279-280
pragmatics 242, 260
predicate calculus 262, 276, 280, 282
problem solving 269, 279
procedural representationof

knowledge 274, 279-280, 284
procedural represetation of knowledge 225
procedural semantics 226
procedural/declarativecontroversy 226
production systems 284
productions 233
PROGRAMMAR 281, 299
PROTOSYNTHEX I 225
PROTOSYNTHEX II 225
pseudo-language 228

quantifier 276
query language 276
question answering 224, 262, 267, 273,

279, 284
Quillian,Ross 225, 262

random text generation 228
random text generation 261
Raphael, Bertram 225, 268
recursive pattern matcher 247
recursive transition networks 253
regular grammar 236, 238, 252
Reifler, Erwin 229
Reisbeck, Chris 289
representation of knowledge 1, 224-227,

229, 231, 245, 261-266, 274, 279-
-280, 283, 287-292

rewrite rules 233, 250, 297
Richens, R. H. 228
Rieger, Chuck 284
Riesbeck, Chris 284
ROBOT 227
RTN 252-254

SAD-SAM 225, 230, 250, 267
SAM 227, 231, 246, 264, 283, 287, 293

294
Schank, Roger 227, 231, 245, 264, 283-

-286, 287
schema 289
script 287, 289-291, 294
scripts 227
semantic component 240
semantic density 274
semantic grammar 250, 298
semantic markers 281
semantic net 226, 245, 262, 264, 285
semantic primitives 227, 231, 246, 264,

273, 283, 287, 288
semantics 1,229,272,297
SHRDLU 225, 243, 248, 250, 263, 279-

-282, 299
Simmons, Robert 225, 264
SIR 225, 230, 249, 268-269
SLIP 271
Slocum, J. 264
Smirnov-Troyansky, P. P. 228
SOHPHIE 250
SOPHIE 248
speech acts 242
speech understanding 1, 226, 248, 249,

255, 276, 287
SPEECHLIS 255, 276
spelling correction 300
start symbol 234
stereotypes 274-276
story grammars 287
story understanding 227, 283, 287
STUDENT 225, 230, 249, 269-270
stylistics 265

Index 315

i

surface structure 240,244,261,264
syntactic categories 233
syntactic component 240
syntax 1
systemic grammar 230, 242-243, 280

template matching 249
templates 245, 265, 273, 274-276
terminal symbols 233
text generation 1, 231, 246, 255, 256,

259, 261-266, 274, 285
text-based systems 225
textual function 242
theme 292-293, 295
theorem prover 280
TLC 225, 262
top-down processing 249, 287, 296
transformational grammar 228, 230, 238-

242, 243, 244, 250, 255, 261, 284
transformational grammar parsers 250
transformationalrules 239-242
transition trees 297
transitivity system 242
tree 256
Turing machine 254

verb sense 265

Weaver, Warren 224, 228, 231, 273, 285
Weizenbaum, Joseph 270
Wilks, Yorick 231,265,273-276
Winograd, Terry 225, 227, 243, 260, 263,

279-282
Wong, H. K. 264
Woods, William 225, 250, 252, 276-278
world knowledge 1 , 226

Yngve, Victor 228,261,263

316

Speech Understanding Systems

77

318

Speech Understanding Systems

Table of Contents

A. Speech Understanding Systems Overview 319
1. The HEARSAY I Speech Understanding System . i?6B. Selected Early Speech Systems
1. DRAGON Speech Recognition Program . . .

'

*»

rnrr/tiii -r#»

""""""""" vC32. speechlis!!;;;::: 331
1. The HARPY System «t

2. The HEARSAY-II System ,«"» TL-

HUTU

- «.-_ """"....... OJt>3. The HWIM System * ?424. The SRI Research on Speech Understanding . .. '. '. ', [] '. * *
345

References . 348
Inde* 351

C. Recent Speech Systems ■»■>«;
1 1-1-

_ . I«r>rtw - i """""""""" OJV

A. Speech Understanding Systems Overview

A major objective of current computer science and engineering efforts is to obtain more

comfortable, efficient,

and natural interfaces between people and their computers. Since
speech is our most natural communication modality, using spoken language for access to
computers has become an important research goal. There are several specific advantages
of speech as an input medium: The computer users, especially "casual" users, would need
less training before interacting with a complex system; interactions with the system would
be quicker, since speech is our fastest mode of communication (about twice the speed of the
average typist); and the computer user's hands are free to point, manipulate the display,
etc. Speech Input capability is particularly important in environments that place many
simultaneous demands on the user, as in aircraft or space flight operations. 4

The speech understanding task is best described in terms of the types of information
at various "levels" that are used in processing. From the "bottom" up, these are:

(a) signal, the utterance created by the speaker at a microphone and recoded in
digital form for storage in the computer;

(b) templates, the representations of acoustic patterns to be matched against the
signal;

(c) phonetics, representations of the sounds in all of the words in the vocabulary,
including variations in pronunciation that appear when words are spoken
together in sentences (coarticulation across word boundaries, prosodic

fluctuation in stress and intonation across the sentence,etc.);

i

(d) lexicon, the dictionaryof words in the system's vocabulary;

(c) syntax, the grammar or rules of sentence

formation,

resulting in important

constraints on the number of sentences-not all comb.nat.ons of words in the
vocabularyare legal sentences;

(f) semantics, the "meaning" of sentences, which can also be viewed as a
constraint on the speech understander-not all grammatically legal

sentences have a meaning-e.g., "The snow was loud"; and

(g) pragmatics, the rules of conversation-in a dialogue a speaker's response

must not only be a meaningful sentence, but must also be a reasonable reply

to what was said to him.

Most speech understanding systems (SUS) can be viewed in terms of a "bottom end" and a
"top end" (Klatt 1977). The task of the bottom end is to use lexical and phonetic

knowledge to recognize pieces of the speech signal by comparing the signal with pre-stored

Patterns The top end aids in recognition by building expectations about which words the
speaker is likely to have said, using syntactic, semantic, and pragmatic constraints. In some
systems, the top end is also responsible for deciding what the utterance means, once it is

recognized, and for responding appropriately. Top-down processmg, based on predicting
what words will be in the utterance (from the context and o her words that have already

been recognized), is an important feature of some systems that can respond without actually

recognizing every word that was said.

I!

320 Speech Understanding Systems*

The Problem: Understanding Connected Speech

Several early isolated-word recognition systems in the 1960s preceded the work on
speech understanding systems of the early 19705. The technique used by these isolated-
word systems was to compare the acoustical representation of each word in a relatively
small vocabulary to the speech signal and to select the best match, using a variety of
"distance" metrics. The Vincens-Reddy system was one of the first isolated-word systems
to be successfully demonstrated (Vincens, 1969). Until quite recently, these systems would
cost in the tens of thousands of dollars and offer about 95% accuracy on a small vocabulary.
This methodology has recently been refined to produce commercially available products for
isolated recognition of up to 100 words, costing under $1,000, although the utility of theseproducts has yet to be demonstrated.

Unfortunately, connected speech signals could not be handled with the same techniques:
Ambiguities in human speech and erroneous or missing data in the voice signal preclude
obtaining a simple, complete set of steps for the direct transformation of acoustic signalsinto sentences. Non-uniformities are introduced into the acoustic signal in several ways:
First,.the microphone and background noise of the environment introduce interference in the
recording of the spoken utterance. Second, a given speaker does not pronounce the same
words quite the same way every time he speaks: Even if the program is "tuned" to one
speaker, the matching process between the phonetic characteristics of words (the
templates) and the actual utterance is inherently inexact. Third, the pronunciation of
individual words change when they are juxtaposed to form a sentence. Lastly, the wordsare not separated in the voiced sentence. On the contrary, whole syllables are often
"swallowed" at word boundaries. Taken together, these factors imply that the basicacoustic signal, which is the foundation for the rest of the processing, does not look at all
like 'a concatenation of signals of individual words.

The difficulties introduced in recognizing "connected" speech required a new viewpoint
on the methodology. Researchers speculated that expectations about the form of the
utterances could be gleaned from contextual information, such as the grammar and currenttopic of conversation, and that these expectations could be used to help identify the actual
content of the signal. Thus, the task came to be viewed as one of interpretation of acousticsignals, in light of knowledge about syllables, words, subject matter, and dialogues, andcarried with it the problem of organizing large amounts of diverse types of knowledge. Theway that the speech systems enable communication between the "sources" of these varioustypes of knowledge is one of the most interesting aspects of their design

The ARPA Speech Understanding Research Program

In the early 19705, the Advanced Research Projects Agency of the US Department ofDefense decided to fund a five-year program in speech understanding research aimed atobtaining a breakthrough in speech understanding capability. A study group met in 1971 toset guidelines for the project (Newell et al., 1971). This group of scientists set specificperformance criteria for each dimension of system inputs and outputs: The systems were to
i

C
nnn "T V !P!*en sentenCßS (connected speech), in a constrained domain with a1,000-word vocabulary, and were to respond reasonably fast ("a few times real-time" oncurrent high-speed computers)with less that 10% error. This was one of the few times thatAl programs had had design objectives set before their development. Setting these

A Speech Understanding Systems Overview 321

.■j

U

standards was important since they approximated the minimum performance requirements for
a practical, connected speech understanding system in a highly constrained domain (although
producing a practical system was notably not a goal of the ARPA program). The final
performanceof the ARPA SUS projects will be discussed later in this article.

A number of different designs were explored during the ARPA effort, from 1971 to
1976, including alternative control structures and knowledge representations for
transforming the speech signal into a representation of the meaning of the sentence (from
which an intelligentresponse could be generated). These systems employed several types
of knowledge, including a vocabulary and syntax tailored to the task area. In a typical
system, a series of complicated transformations are applied to the analog signal, which
represents the intensity of the utterance as recorded by the microphone, resulting in a
compact digital encoding of the signal.

Some ImportantDesign Ideas

Futher processing of the digitized signal was the task of the systems developed in the
ARPA program. These systems will be described in more detail later; but first some general
design considerations should be illuminated. In many ways these ideas, which are übiquitous
in Al research, appear especially clearly in the context of the large speech understanding
systems.

Top-down and Bottom-up Processing. As mentioned above, the ARPA systems all
used "top-end" knowledge about "likely" utterances in the domain to help identify the
contents of the speech signal. Knowledge of the possible "grammatical" sentences
(syntax), "meaningful" sentences (semantics), and "appropriate" sentences (pragmatics)
was used at each point in the dialogue. For example,consider the HEARSAY-I speech system
(article B1), which played "voice chess" with the speaker by responding to the moves that
he spoke into the microphone, using a chess program- (see SearcKHeuristies in Games) to
figure out the best response. Not only did HEARSAY-I use syntactic knowledge about the
specific format of chess moves (e.g., "pawn to king-4") to anticipate the form of incoming
utterances, but it also used its chess program's legal-move generator to suggest moves that
were likely to be tried by the opponent—and then examined the speech signal for those
particular moves.

The importance of top-down or "expectation-driven" processing has also been pointed

out by workers in natural languageunderstanding research (see Natural Language, especially
the articles on MARGIE and SAM). Although there is no word recognition problem in
understanding type-in sentences, determining the meaning of the input, so that an
appropriate response can be evoked, requires the use of much knowledge about the world.
Similarly, in vision research where, as in speech, the task is one of recognition as well as
understanding, a strong model of the physical world, as well as knowledge about what things
the camera is likely to find, are typically used to help figure out what is in the scene (see
Vision).

It is generally agreed that this constraining knowledge is necessary for adequate
performance in the speech understanding task: Without expectations about what to look for
in the input, the task of identifying what is there is impossible. "Experiments" with several
systems demonstrated the effect of removing syntactic and semantic constraints on the

I

i

" i1 1.

!
i. > . r

322 Speech Understanding Systems%

processing of the speech signal. The HARPY system, which combined all of the phonetic,
syntactic, and semantic knowledge into one integrated network, was 97% accurate in
actually identifying the words in the utterance, even though it showed only 42% accuracy in
phonetic segmentation of the utterance. In other words, since "top end" knowledge aboutwhat words were allowed to follow others was incorporated in the network, HARPY could
often guess the right words even when it didn't have an accurate phonetic interpretation ofthe signal. In the HEARSAY-I system, where the phonetic, syntactic, semantic, etc.,
knowledge was separated into independent subsystems (called knowledge sources), a more
convincing kind of experimentcould be performed: the system was designed so that it couldrun with only some of the knowledge sources "plugged in." Compared with its performance
with just the phonetics and lexicon knowledge sources operating, the performance of
HEARSAY-I improved by 25% with the addition of its syntax knowledge source and by another
25% with the addition of the semantics knowledge source (Lea, 1978).

Generality vs. Power. The way that top-down processing is used to constrain the
expected content of sentences reflects an important universal issue in Al systems design.
The top end of the speech systems contains knowledge about a specific language (grammar)
and a specific domain. In the development of all of the speech understanding systems,
general grammatical knowledge gave way to grammars that were very specific to the task
requirements (called performance grammars), making use of the structure of the stereotypicalphrases used in a particular task domain (Robinson, 1975). The generality vs power trade-off, between domain independence and the use of domain specific knowledge to constrainhypothesis formation, is an important idea in ail areas of Al research.

Cooperating Knowledge Sources. Another major design idea was to separate the
various types of knowledge (phonetics, syntax, semantics, etc.) into independent knowledgesources. These, in turn, communicate with each other about the possible interpretationsof the
incoming signal. Typical of this design were the HEARSAY systems developed at Carnegie-Mellon University. In the HEARSAY model, theknowledge sources were theoretically to know
nothing about each other, not even of each other's existence. They were thought of asindependent processes that looked at the signal and generated hypotheses about words,
phrases, etc., on the blackboard-a global data-structure accessed by all of tne knowledgesources via an established protocol. Hypotheses generated by the bottom-end knowledgesources (about syllables and words) could be examined for feasibility by the syntactic andsemantic knowledge sources; and these knowledge sources, in turn, could post suggestionsabout what words might be expected. Thus top-down and bottom-up processing found an
explicit, natural implementationIn this paradigm.

The advantages of the HEARSAY model were those generally associated withmodularization of knowledge (see Representation): adding, modifying, or removing aknowledge source could theoretically be accomplished without necessitating changes in theother knowlege sources. In a multiprocessor environment, where the different knowledgesources are. running as processes on different machines, such a system would be lesssensitive to transient failures of processors and communication links-i.e. exhibit eracefuldegradation, as it is called. 6 J

Compiled knowledge. The other principal type of speech processing system is onewhere the knowledge about all of the sentences that are meaningful in the task domain areprecompiled into one network. The nodes in the network are phonetic templates that are to

323Speech Understanding Systems OverviewA

t

I

be matched against the voice signal. The links in the network are used to control the
matching process: After a successful match at node N, only the nodes that are linked in the
net to node N need be tried next—no other sound is "legal" at that point. The processing of
the input signal starts at the beginning of the utterance, matching the first sound against the
"start" nodes of the net, and proceeds left-to-right through the network, trying to find the
"best path" according to some matching metric. Since all paths through the net are legal
sentences, the best path corresponds to the system's best interpretation of the utterance.
The DRAGON system, and its successor HARPY, both developed at Carnegie-Mellon, are
examplesof compiled knowledge systems.

The Status of Speech Understanding Research

The HARPY system was the best performer at the end of the ARPA program. The
performance requirements established by the working committee and the final results of the

HARPY system are compared below (after Klatt (1977)):

HARPY (November, 1976)GOAL (November, 1971)

Yes
5 (3 male, 2 female)Accept connected speech

from many
cooperative speakers
in a quiet room
using a good microphone
with slight tuning/speaker
accepting 1008 words
using an artificial syntax
in a constraining task
yielding < 10 percent

semantic error
requiring approximately

380 million instructions
of per second of speech
(MIPSS).»

5 percent

requiring 28 MIPSS

using 256K of 36-bit words
costing J 5.08 per sentence.

* The actual specs stated "a few times real-time" on a 100 MIPSS machine.

Comparing the performance of the various systems at the termination of the ARPA

project (September, 1976) is complicated by several factors A standard set of utterances

was not prepared for testing, since each system usedla different task domain The task
domains, which included document retrieval (HARPY, HEARSAY-I) "mjwtnnfl questions from a
database (SRI system and BBN's HWIM), and voice chess (HEARSAY-), had a range of
difficulties (as measured by branching factor) from 33 for HARPY to 196 for HWIM Systems

also varied according to the number of speakers and amount of room noise that could be
accommodated and the amount of tuning required for each new speaker.

For example, in a variety of tasks, DRAGON recognized from 63-94/. of the words and
from 17-68% of the utterances with up to a 194-word vocabulary. This variation of results
across domains displayed by DRAGON demonstrates the difficulty of specifying how well a

yes
computer terminal room
close-talking microphone
20-38 sentences/talker
1011 word vocabulary
average branching factor = 33
document retrieval

i

j

f . f

I

324 Speech Understanding Systems%

system performs. It appears that the number of words in the lexicon alone is an inadequate
measure of the complexity of the understanding task. The CMU speech group proposes a
measurement termed average branching factor, based on the number of sounds that can
typically follow at each point in each legal sentence. For example, DRAGON'S performance
was better with a particular 194-word vocabulary than with another 37-word vocabulary
(consisting of just the alphabet plus numbers), with a higher branching factor, due to the
similiarity in phonemic structure of the 26 letters.

The complexity of the speech understanding task is also demonstrated by the impact
of the problem on other areas of Al. During the recent speech efforts, new research in
natural language, representation of knowledge, search, and control strategies has been
required to deal with the objective of recognizing continuous speech in the presence of
ambiguity. For a more detailed comparison and discussion, see Lea & Shoup (1978b) and
Klatt (1977).

Summary

Considerable progress towards practical speech understanding systems has been made
during the 19705, and work in this area has generated ideas that influenced work in other
areas of Al, such as vision and natural language understanding. Following is a summary of the
conclusions of the same study group that established the requirements for the ARPA project
at the beginning of the decade:

The gains go beyond empirical knowledge and engineering technique to basic
scientific questions and analyses. A few examples: Network representations for
speech knowledge at several levels have been created that have substantial
generality. A uniform network representation for the recognition process has
been developed. Rule schemes have been created to express certain
phonologicaland acoustic-phonetic regularities.... Techniques have been found for
measuring the difficulty and complexity of the recognition task. The problem of
parsing (syntactic analysis) with unreliable or possibly missing words (so that one
cannot rely on parsing left-to-right, but must be able to parse in either direction
or middle-out from good word matches) has been successfully analyzed. New
paradigms have been developed for many of the component analysis tasks and
for the control structure of intelligent systems. Substantial progress has been
made on understanding how to score performance in a multi-component system,
how to combine those scores, and how to order search priorities. (Medress et
al., 1977)

Most of the principal Speech Understanding Systems are described in the articles in
this chapter. Many of the ARPA contractors produced multiple systems during this time
period. Work at Bolt, Beranek and Newman, Inc., produced first the SPEECHLIS and then the
HWIM system, using previous BBN research in natural language understanding (see NaturalLanguage.LUNAß). Carnegie-Mellon University produced the HEARSAY-I and DRAGON systems
in the early developmentphase (1971-1973) and the HARPY and HEARSAY-II programs in thelater stage. SRI International also developed several speech understanding programs, partly
in collaboration with the Systems Development Corporation. Additional systems, not reported
in this chapter, include work at Lincoln Labs, Univac, and IBM. The current IBM system

Speech Understanding Systems Overview 325A

i „

I
t

f ■■■
IS

' 1

It 'If

I'h ■M

utilizes the dynamic programming approach explored in the DRAGON system and is the most
active speech understanding project under developmentsince the end of the ARPA program
(Bahl et al., 1978).

References

The recent book by Lea (1978) contains the best comparative overview of the ARPA
speech systems, as well as detailed articles on the systems themselves written by their
designers. Other good summary articles are Lea & Shoup (1978b) and Klatt (1977). For a
popular account of the ambiguites inherent at the phonetic level of encoding, see Cole
(1979). Descriptions of early speech research and the goals of the ARPA program are in
Neweil (1975) and Reddy (1976).

326 Speech Understanding Systems%

Al. The HEARSAY I Speech Understanding System

The HEARSAY I speech understanding system was developed at Carnegie-Mellon
University (Reddy, Erman, Fennell, & Neely, 1973). The design of HEARSAY I was based on a
theory that the best approach to a complicated domain such as speech understanding was to
divide the problem into a group of competing knowledge sources. Each of these is an expert at
some small part of the task, such as combining syllables to make words. The theory also
assumes that each of these knowledge sources can be used when appropriate, responsive
to changes in the Interpretation (understanding) of the utterance. HEARSAY I was the first
system to break up a problem into small components, to utilize an evaluation of what the
program accomplished to guide what would be done next, and to include knowledge sources
reflecting the content of the domain of expertise from which the sentences would be taken.
These techniques allowed HEARSAY I to become the first system to recognize connected
speech.

The domain of voice-chess was used to provide a semantic base for the HEARSAY I
program. Voice-chess pits the computer against a person in a game of chess where the
person speaks his moves to the computer. The fact that only particular phrases make sense
in the world of chess was utilized to limit the searching required by the program. The
following demonstrates the relationship between domain knowledge and understanding. If a
person heard the Incomplete utterance "Pawn toKing [missing word]" and knew a little about
the way chess moves are stated, he could deduce that the missing word would have to be a
small number corresponding to the rows of the chess board. Moreover, if a person knew the
positions of all the pieces and the rules for making moves, guessing at the missing word
would be limited to just the few places that pawns could move. And, if a person knew a lot
about chess strategy and this was the first move of the game, he could guess that it was
likely that this was one of the standard moves—e.g., Pawn to King-four. This level of
semantic constraint could be available in very specialized domains (e.g., air traffic control).
HEARSAY I tied directly into the legal move generator of a chess-playing program that
provided the syntactic and semantic constraints mentioned above. The syntactic constraints
utilized a grammar based on the domain—e.g., piece takes/moves to position instead of the
subject-verb-object grammar—which became the standard representation for later systems.
Furthermore, the fact that only a few legal moves were possible put semantic constraints on
which moves "made sense"--roughly corresponding to the situation where a person doesn't
quite hear a sentence but comes up with an idea of what is being said, which is completely
wrong but which still makes complete sense relative to the conversation in progress. No
attempt has been made to directly tie the design of speech systems to psychological
research, but several of the Intuitive psychological concepts have been borrowed and
explored.

Special Features

Segmented acoustical signal. The acoustic signal was divided into regions based on
features in the waveform. The acoustic labeling process was on time-varying segments that
(hopefully) matched the syllables in the original utterance. The typical method in use when
HEARSAY was designed divided the speech signal into fixed time intervals and labeled these
intervals for future processing, which introduced artifactual labelings where syllable
boundaries had been crossed.

The HEARSAY I Speech Understanding System 327A1

I

,l

Separate, independent, anonymous knowledge sources. Isolating the knowledge
along functional lines allowed efficient modification of the problem-solving structure of the
program, by allowing a free substitution of modules. Substitution was possible since each KS
was not dependent on the methodologybehind, or the existence of, any other KS.

Representationof Knowledge

Three knowledge sources were provided in HEARSAY I (compared to the 1 2 in HEARSAY
ll):- (a) speaker- and environment-dependentknowledge and acoustic-phonetic knowledge,
(b) syntactic knowledge, and (c) semantic knowledge. The speaker and environmental
knowledge was used to adjust the phonetic analysis to match the variations that arose
between individuals and different user settings. The acoustic-phonetic knowledge source
contained the relation betweenfeatures in the acoustic signal and their associated syllables.
The semantic component was tied directly into the chess-playing program to provide the
type of constraints explainedabove.

Control Structure

The main task of the control structure was to utilize the appropriate knowledge sources
in a sequence that would lead to the recognition of all the words in the sentence. The
application of knowledge sources was a three-phase process: Poll the knowledge sources,
hypothesize, and test. The poll phase determined which knowledge sources could contribute
to the sentence hypothesis and determined an estimate of the efficiency of each
contribution. The hypothesis phase invoked the knowledge source with the most confident
proposal and made the results-e.g., a few new words-available for further processing. The
test phase evaluated (verifies) each of the hypothesized words with respect to all of the
existing hypotheses. Unverified hypotheses were stored away, in case the system had to
backtrack and attempt a different path to recognize the utterance, using an alternate set of
hypotheses.

Limitations

There were several problems with this implementation of the HEARSAY design, which led
to the HEARSAY II implementation. Most of these limitations were overcome during the ARPA
speech project.

The hypothesize-and-test paradigm was used only at the word level. Subwords
(such as syllables and phonemes) and superwords (phrases and concepts) were
not directly used in the dynamic portions of the recognition task.

Different phases of the speech recognition task could not be done in parallel

because of the lock-step nature of the control structure.

The hypotheses were not represented as competing hypotheses in the global
database; therefore each hypothesis was processed separately, which caused

redundant computation.

; j

j

i

t

i

■

If

y IA*

328 Speech Understanding Systems

There was no explicit system structure to implement policy decisions; hence it
was hard to create policy algorithms that controlled the order of evaluation of
knowledge sources, in order to create or test new hypotheses.

Summary

HEARSAY I was the first demonstrable system for the recognition of nontrivial
connected speech. This system marked a radical departure in both knowledge
representation and control structure from previous speech recognition systems. The use of
semantics to help judge the relevance of words derived from the acoustic processing was a
very useful idea. It is believed (Lea & Shoup, 1978a) that had current acoustic processing
techniques been available in the early 19705, HEARSAY I, using the chess domain, might have
met the 1976 speech goals. Many of the concepts used in this system have been adapted
for the HEARSAY II and HARPY systems developedat CMU.

References

See Reddy, Erman, Fennell, & Neely (1973), Reddy (1975) and Reddy (1976).

329Selected Early Speech Systems

M

B. Selected Early Speech Systems

81. DRAGON Speech RecognitionProgram
i

The DRAGON connected speech recognition system was developed at Carnegie-Mellon
University (Baker, 1975; Lowerre, 1976). The recognition problem was represented as a
network that incorporatedpaths corresponding to each of syntactic combinations of words
defined by the grammar. Each word was represented in the network by each of its possible
pronunciations. Transition probabilities were associated with each arc in the network to
represent the likelihood that a phone (phonetic unit) would follow another phone for each
legal sentence. A dynamic programming approach considered all pathways in the network "in
parallel" across the entire utterance. The program stored the state with the highest
probability (and how to get there) corresponding to each 10 ms. slice of acoustical
waveform information. These best states were connected together to select the path

through the net that best matched the sequence of sounds in the utterance. This design
demonstrated the capability of a mathematically based, nonheuristic approach to speech
recognition.

i

_

t

Special Features

Delayed decision. A global best path through the network was found by considering
the entire utterancebefore collecting the local best path segments; so no backtracking was
needed. The computation time for finding the best path grows linearly with the length of the
utterance.

i

General theoretical framework/generative form of the model. A uniform
mathematical framework was used to represent the speech processing task in DRAGON. The
model assumed a probabilistic relation between the internal variables and the observed
variables (e.g., from all phrases to the acoustic waveforms), that is, that each of the
observed variables (e.g., acoustic waveform) could be considered probabilistically linked to a
series of Internal (as yet unknown) variables (e.g., the basic phones in the sentence). For a
given sequence of phones, a procedure existed to generate the corresponding acoustic
representation. Bayes's Theorem was used to reverse the computation and generate all
possible phones from the given acoustic signal. An additional constraint was placed on this
mapping process, the Markov assumption, which limited how much past history of the
variables was used in the computation. The DRAGON system assumed that only the current
state and the immediatelyprevious state were relevant to the mapping process.

c

1 E

Hierarchical system/integrated network. The same mathematical framework for
considering the relationship between acoustic signals and phones was used between phones

and words and between words and their position in the grammar. These levels nested well,

with each higher level state (e.g., a single word) composed of a collection of lower level
states (e.g., the phones that compose that word). This hierarchy was stored as a single
large network with each level of processing embedded in the next most complex level. The
implication of this technique was to merge all of the knowledge sources into one integrated
unit, such that cooperation between knowledge sources was maximized (see HEARSAY II
article for alternativemethods of cooperation).

IIJ"
M

330 Speech Understanding Systems%

Representationof Knowledge

The knowledge sources for DRAGON were: (a) integrated networks composed from the
syntax and lexical/phonetic spellings, (b) user-dependent acoustic-phonetic templates, (c) a
heuristic matching routine to rate the templates against actual acoustic signals, and (d) a
table of conditional probabilities to relate internal variables to external observations,
calculated from training data.

Control Structure

The control structure for DRAGON was very simple since most of the work was done
before the program was run on any speech input. A major section of the program was the
generation of the finite-state network that represented the legal discourse for a particular
task. When the program operated on the input, it traversed the entire graph using the
results of the acoustic parameterization to determine likelihoods that a particular phoneme
existed at the corresponding point in the utterance. When the graph was filled out, the
overall best route through the graph was selected as the result of the program. Since all
paths were covered, the globally optimalpath was selected.

Limitations

The major difficulties with this approach were long computation times, network size that
grew combinatorially with the size of the language, the difficulty of adding knowledge that
didn't fit the representation scheme, and unnatural segmentation of the acoustic signals.
The major computational expense came from the requirement that for every 10 ms. segment
of signal, all acoustic-phonetic templates had to be matched and all state probabilities
updated. The decision to break the acoustic signal at a fixed interval, rather than have
"naturally" occurring (but difficult to pinpoint) segmentation, introduced several artifacts into
the system. These included a proliferation of templates (168 templates for 33 phones) and
unusual phonemic spellings in the dictionary.

Summary

The DRAGON system stressed the importance of a mathematicaly admissible algorithm.
This system design was utilized as the basis for the HARPY system. While DRAGON computedfor a significantly longer time than its contemporary heuristic-based system, HEARSAY I, itsrecognitionpercentage was higher.

References

See Baker (1975), Lowerre (1976), and Reddy et al. (1977).

B2 SPEECHLIS 331

82. SPEECHLIS
i

SPEECHLIS (Woods, 1975) was a speech understanding system developed at Bolt.
Beranek, and Newman. The task domain was queries about the chemical analysis of the
Apollo 1 1 moon rocks, based on previous work on the LUNAR system, a natural English
question-answering system Natural Language.LUNAß. An "incremental simulation" approach
was taken in the design of SPEECHLIS; that-is, experiments with it were begun before the
complete system was built, using combinations of computer programs and human simulators.
The system used a vocabulary of approximately 250 words and a subset of the complete
LUNAR grammar. SPEECHLIS was organizedaround the following knowledge sources:

1. Acoustic feature extraction: first-pass segmentation and labeling of the
acoustic signal into partial phonetic descriptions.

2. Lexical retrieval: retrieval of words from the lexicon, to be matched against
the input signal. Candidates are retrieved on the basis of knowledge of
the vocabularyand partial phonetic descriptions.

Word verification: determination of the degree to which a particular word
matches the acoustic signal at a particular location in the signal.

4. Syntax: judgment of the grammatically of a hypothesized interpretation of
the signal, and proposal of words or syntactic categories to extend a
partial interpretation.

J
Semantics: notation of coincidences between semantically related words

found at different locations in the signal; a judgment of meaningfulness of
a hypothesized interpretation and a prediction of the particular words or
classes of words to extend a partial interpretation.

Pragmatics: use of knowledge of the current context,situation, or speaker.

Special Features I

Parser driven system. The parser was the main controller of the system, so that the
flow of control Is from the syntax and semantics down to the acoustic processing
components. This flow is quite different from the early speech systems, which started at the
acoustic signal and were not guided by the possible meanings of words derived from a
partially completed analysis.

Lattice representation of results. Both words and acoustic segments were
represented as a lattice of the significant ways to divide up the utterance for a given level
of abstraction.

Levels of representation. SPEECHLIS subdivided the problem into many different

ifit
i1 y ?

332 Speech Understanding Systems
*

levels of interpretation: acoustic, lexical retrieval, word verification, syntax, semantics, and
pragmatics. Each of these levels used a different type of object—e.g., phoneme, words, and
concepts—to store the hypothesesat each level of understanding.

Representationof Knowledge

Acoustic-phonetics. The analysis portions of the system were based on the results of
the encoding of the acoustic waveform. In SPEECHLIS, the technique known as linear
predictive coding was used to obtain a concise digital representation of the utterance. This
method utilized a model of the vocal tract to help distinguish the speech sounds from the
acoustic properties of the vocal tract. Syntax. A parser for speech, unlike a parser for
text, must be able to deal with ambiguity and error in the words that it is presented. Thus, it
must not only detect syntactic ambiguities and inconsistencies, but it must also aid in
selecting a syntactically well-formed sequence of words from the many possible sequences
in the word lattice. To this end, the SPEECHLIS parser uses an ATN grammar (Natural
Language.ATN). When given a hypothesis about the existence of a sequence of "reliable"
words (known as an island) to process, it attempted to create the ways in which the island
might be accepted by the grammar if surrounded by some suitable context. The combinatorial
problems were combatted by the use of the semantics component. Semantics. The
semantics module was used to propose additional words that might have occurred in the
original utterance but which were missing from the initial word lattice because of poor match
quality. It constructed meaningful sets of word matches from a lattice of possible matches,
evaluated the consistency of syntactic structures and semantic hypotheses, and
transformed the best hypothesis about an utterance into a formal procedure that operated
on its databasein order to answer questions or absorb new information.

Two principle data structures were used in the SPEECHLIS semantics processor to
represent the semantic knowledge so as to be easily accessed (see corresponding articles):

1 . A semantic net: a directed graph that represents associations among words
and concepts.

2. Case frames: descriptions of the ways in which the relationships between
concepts (as indicated in the semantic net) hold and how they might be
expressed in an utterance.

Control Structure

The task of the control structure was to organize the application of the various
knowledge sources in the analysis of the speech signal to infer the correct interpretation.
The control structure carried out its task through the manipulation of "theories" that
represented alternative hypotheses about the utterance being interpreted. A theory
contained the words hypothesized to be in the utterance, together with syntactic, semantic,
and pragmatic information, and scoring information, which represented the likelihood of the
theory. The theories generally represented only partial hypotheses, and the control
structure had to manage their creation and refinement, devoting its resources to those
theories estimated as having the greatest likelihood of validity.

1

B2 SPEECHLIS

Monitors played a central role in exploring theories. A monitor is a trap set by a
hypothesis for new information which, if

found,

would result in a change, or extension, to the
monitoring hypothesis. Such traps do not cause Immediate interruptions. Instead, the system
maintained a queue of "events" to be processed, and a monitor caused a new evept to be
created and placed in the queue. In addition to this event-driven mechanism, the control
structure also contained a mechanism for actively seeking out new information by making
"proposals," that is, requests to match a particular word or set of words at some point in the
utterance. In an example from the lunar rocks understanding domain, hypothesizing the word
"concentration" set up monitors for the concepts SAMPLE and CHEMICAL ELEMENT located in
the semantic net. If some element, such as HELIUM, was hypothesized, then the evaluation
of the related concepts in the semantic net, in this case CHEMICAL ELEMENT, would trigger
the monitor set by "concentration" and strengthen both hypotheses (Nash-Webber, 1975).

Central to the success of the control structure was a good evaluation mechanism, able
to assess the likelihood that a particular theory will yield the correct result. The control
structure used scores resulting from theory evaluation by the various sources of knowledge
to allocate its resources.

The general flow of control in SPEECHLIS was (briefly) as follows:

(a) Acoustic-phonetic analysis returns a "segment lattice." This lattice represents
all possible segmentations of the utterance and alternative identities of the
individual segments. The lattice is also analyzed by a phonological rule
processor. i

I
(b) Lexical retrieval and word matching return a "word lattice." These are words

with three or more phonemes that score above a matching threshold.

(c) The Semantics module constructs theories about the consistency of the concepts
implied by each word. It notes words that could be semantically related to the
given word and notes coincidences between two or more semantically related
words or concepts. The semantic coincidences are sorted according to their
order of likelihood, which is used for the construction of larger theories. This
process iterates until the semantics module has nothing more to add.

(d) The Syntax module performs syntactic evaluation of the hypothesized words. It
picks up words from the word lattice and proposes new words (e.g., a, of, the)
to fill in gaps in the theory. Syntax is closely coupled to semantics when making
such proposals.

ti\
Limitations

The outstanding problems were (a) no clearly articulated control mechanism,
(b) recognition of a thrashing state in which no one hypothesis emerged as a good candidate
for the whole utterance, (c) the need for a more rigorous measure of confidence in the
evidence, together with (d) ways of combining such confidence measures.

■

li

r

\J

r

i
t
i

i

334 Speech Understanding Systems
%

Summary

This program demonstrated the application of previously developed natural language
processing techniques, such as the augmented transition net grammar, to speech
understanding research. The HWIM system is the successor to SPEECHLIS, and a great
majority of these ideas were utilized in that system. The use of levels of representation and
a top-down control of the system have become standard features of later systems.

References

See Woods (1975) and the whole special issue on speech recognition lEEE (1975).

I
!

c Recent Speech Systems

C. Recent Speech Systems

Cl. The HARPY System

The HARPY speech recognition program was designed at Carnegie-Mellon University
(Lowerre & Reddy, 1978; Lowerre, 1976). The system was designed after an extensive
evaluation of two previous speech understanding systems at CMU:- DRAGON and HEARSAY I.
Important concepts were drawn from both of these previous systems with an emphasis on
the operations research approach taken by the DRAGON system. This approach views the
speech recognition problem as the traversal of a network of paths through the search space.
Each of these paths corresponds to one pronunciation of one of the possible sentences
formed from the grammar. Since there may be several possible pronunciations of each word
and many ways to put words together to form sentences, the number of paths is quite large.
To limit the size of the network several paths may share common subnetworks.

The design decision to combine the various speech levels: acoustic, phonetic, and
syntactic into one "pre-compiled" data structure is probably the most significant aspect of
the program. One knowledge source in the HEARSAY II system adopted this technique for
verification at the word level and used a HARPY-like search of the network corresponding to
each word in the lexicon.

With such a large network to traverse in order to determine the correct path, search
techniques had to be exploited. Lowerre and Reddy developed the concept of beam
search, which examined the best few paths at each node encountered. The decision to
include a path was based on the spread of likelihoods of success for the paths leaving a
node in the network. If many equally likely paths are available, then a large portion of the
paths are searched or, in less ambiguous cases, a few of the best paths are followed up.

All speech programs use some description of the acoustic signal as the basis for
recognizing words and then sentences. HARPY used the HEARSAY concept of segmenting
speech by characteristic pauses and breaks in the waveform. The DRAGON system used
fixed time intervals to section the acoustic waveform and had to introduce several

artlfactual acoustic labels, because meaningful segments were subdivided.

Special Features

Precompiled network. HARPY creates a large network comprised of all phonetic
spellings for each syntactic path in the grammar. This network includes word junction
Phenomena, which are the adjustments made in the pronunciations of words due to those
preceding and following them in continuous speech.

Beam search. The best paths in the recognition network are selected for further
evaluation. This pruning is determined by the comparison of the likelihood of success with a
variable threshold. This strategy eliminates evaluation of possible sentences that start
correctly but contain one of more incorrect words. HARPY keeps about 1 % of the states at

each step in the evaluation of the network. Experiments showed that neither a fixed number
nor a fixed fraction worked well for this process. Finally, a fixed range of likelihood from the

best state was settled upon (Newell, 1978).

I

si
■ .itill

'Jill

I

|
,i
i

i

!

M

i

336 Speech Understanding Systems%

Processing segmented speech. The decision to use a flexible division of the acoustic
signal according to acoustic events, rather than according to a fixed time interval, allows for
a single acoustic template per phone. However, since the network is composed of a
sequential phonetic representation, the system is very sensitive to missing or poorly labeled
segments.

Heuristics to limit search time and size of network. The computation time of the
program is drastically reduced by the compilation of the speech recognition knowledge into
the network representation. The network is condensed by removing redundant states or by
recognizing common groupings of states. The number of states is slightly increased, but the
number of connections (i.e., pointers) can be markedly decreased, by introducing special
states at common intersections in the network.

Representationof Knowledge

HARPY uses only acoustic, phonetic, and syntactic knowledge sources. These sources
are initially represented as a BNF grammar specification, a dictionary, and interword juncture
rules, which are then compiled into the finite-state transition network structure. Speaker-
dependent acoustic-phonetic templates and a table of data-dependent transition
probabilities are other data structures.

Control Structure

Unlike the DRAGON system, which searched every path in the network, the HARPY
system uses a threshold to limit the active states to only those states whose probability is
within a threshold based on the highest state probability for that time segment (the "beam").
Thus, if the probabilities are well separated, only a few states will be considered, and
conversely, if the probabilities are bunched together, many states will be pursued.

Limitations

The extension to much larger vocabularies must be examined in future research
efforts, since the explicit creation of the network of possibilities can have a large memory
requirement. The design of the current system cannot easily accommodate the pragmatics of
the utterance, which may be needed to constrain search in an expanded speech domain.
HARPY is also sensitive to missing acoustical segments and missing words.

Summary

A case study of two dissimilar speech systems led to a first in system design: a system
that met the 1976 goals of the speech community (see Newell et al.. 1971, and the
overview article). This objective was accomplished by the combination of dynamic
programming techniques with useful heuristics, such as beam search. A current topic of
research is to determine the maximum capabilities of this type of algorithmic approach. This
system has been singled out as an example of how far speech recognition can be pursued

1
I

i

C1 The HARPY System

without the use of semantic and pragmatic constraints. The fact that this system was able
to meet the 1976 goals demonstrates the distance that speech understanding has come
since the early single-word recognition systems available in 1970.

References

See Lowerre (1976), Lowerre & Reddy (1978) and Reddy et ai. (1977).

338 Speech Understanding Systems%

t

C2. The HEARSAY-II System

The HEARSAY-II speech understanding system was developed at Carnegie-Mellon
University (Reddy et al., 1977). HEARSAY-II was designed to provide a general framework
for Al problems with the following characteristics: a large search space, knowledge at
different levels of abstraction (in this case varying from acoustical signals to semantic
networks), and ambiguous or noisy data. The design of HEARSAY-II Incorporates lessons from
experiences with previous CMU systems: DRAGON, HEARSAY I, and HARPY (see respective
articles).

The HEARSAY model divides the speech understanding domain into many levels of
representation—from the acoustic signal data at the "bottom," through phonemes, words,
phrases, and concepts, to the relationship of a particular utterance to the entire ongoing
dialog at the "top." The key concept of HEARSAY is the creation of "knowledge sources"
that take information at one (or more) level and create, confirm, or deny a hypothesis at
another level or at the same level. Each of these knowledge sources (KS) is designed to be
separate and to work independent of other knowledge sources; but each is also meant to
cooperate with the complement of KSs in verifying hypotheses. Each hypothesis is stated in
terms of a location In time (calculated from the start of the utterance) of a particular word,
phrase, etc., gleaned from the acoustic signal; for example, concluding the likelihood that the
word "give" is located at the beginning of the sentence. Restrictions are placed on the
implementation of the KSs to allow for an easy reconfiguration of the modules without
necessitating complementary changes in other components of the system.

Each knowledge source accesses a global data structure, the "blackboard," for storing
current hypotheses and for inter-KS communication. In the September 1976 version of the
system, the blackboard was divided into 6 hierarchical levels—parameter, segment, syllable,
word, word sequence, and phrase—upon which 1 2 KSs operated. Example KSs are: (a) the
syllable-based word hypothesizer, whose function is to generate hypotheses at the word
level in a time area near the location of the syllable; or (b) a predictor of possible time-
adjacent grammatical word extensions. These 6 levels and 12 KSs were selected from a
considerable number of other possibilities developed over the course of the project.

The great flexibility of this design is exhibited in its method for utilizing knowledge
sources. After several words are postulated for each segment of the acoustical signal,
knowledge sources are activated to work on the most promising hypotheses

first,

both
throughout the levels and across the span of the utterance. Thus the program utilizes the
"higher" levels of knowledge to control the "lower" levels. For example, after a given
phrase has been derived by acoustic means, the syntactic knowledge source predicts words
that often occur immediately following the original phrase: These predictions are then used
to examine the acoustic signal for possible instances of the hypothesized word, for
verification. Thus, processing works bidirectionally among the levels of representation until a
conceptual translation, spanning the utterance, is formed. Each knowledge source addssome partially plausible information about what can be deduced in one section of the problem
space; and when these hypotheses are integrated with the results of other knowledgesources, they produce a coherent interpretationof the utterance.

■

j

1

I

)

I

i

i

I

i

i
I

C2

Special Features

These special features are based on the original HEARSAY concept. Some of these
design goals were modified in the demonstration version.

Separate, independent, anonymous knowledge sources. Isolating the knowledge
along functional lines allows efficient modification of the problem-solving structure of the
program, by allowing a free substitution of modules. Substitution is possible since each KS is
not dependent on the methodologybehind, or the existence of, any other KS. Of course, a
minimal number of KSs must exist to provide sufficient knowledge content for any analysis to
take place. In particular, there must be enough KSs to span all the levels of representation.

Self-activating, asychronous, parallel processes. The KSs can be viewed as
individual knowledge-based programs that respond to patterns in the database as
necessary. No temporal relationship between the execution of the KSs is explicitlyrequired.
A parallel processor version of portions of the HEARSAY design has been built to exploit
these features.

Globally accessed database. The blackboard acts as a structure on which the
hypotheses and their support criteria can be stored. The data structure is fixed for each
information level on the blackboard. This feature allows the creation of kernel accessing
routines, used in common by each KS for manipulating the global store at each level. A
snapshot of the blackboard during HEARSAY execution reveals a partial analysis of the
utterance as a three-dimensional network consisting of the levels of representation, time,
and the possible alternatives—with the contextual and structural support for each
alternative explicitly marked in the network.

Data-directed knowledge invocation. The knowledge sources react to changes in the
blackboard and criticize or create hypotheses wherever practical. This procedure sets up a
new pattern over the blackboard, to which Other KSs may be able to respond. This activity
continues until no knowledge source can respond or until the time and space limits of the
program are exceeded.

RepresentationofKnowledge

The HEARSAY knowledge framework for speech processing is broken into many fixed
levels (e.g., acoustic segments, words, etc.), to provide the appropriate representations for
designing knowledge sources. The majority of the knowledge is stored in individual
processes that monitor the appropriate levels of the framework. The monitoring is
accomplished by "attaching" to the knowledge source both a list of the patterns in the
database to which the KS is designed to respond and a summary of the kinds of hypotheses
it creates. Thus, each knowledge source acts like a large production rule (see article on
production rules).

Control Structure

The HEARSAY li implementation provides a general framework for the manipulation of
knowledge sources. The following description is based on the set of interactions established
for the September 1976 configuration of knowledge sources.

i

> '.f
i h

The HEARSAY-il System

A '

it
■i■if
v

340 Speech Understanding Systems%

The acoustical processing and segmentation knowledge sources are invoked to
establish enough seed hypotheses to start the interpretationprocess. Possible syllables are
postulated from the segmented signal. Possible words are derived from the syllables. Wordsare rated by a HARPY-like KS that contains a network representation for ail the possible
pronunciations of each word in the vocabulary. At present, about 75% of the correct wordsare hypothesized, but a large number of incorrect words are also being considered (Erman,
1977).

The next task is the conversion of word hypotheses into short sequences called
islands, by utilizing legal word pairs (abstracted from the grammar) and acoustic and phonetic
criteria related to word juncture. The highest rated single words are "expanded" by the
addition of words to which they relate temporally or syntactically. The best of these multi-
word islands are hypothesized at the next level in the blackboard. This string of words is
checked for syntactic consistency and may be used to generate surrounding words that, if
verified, would extend the island. This process continues until at least one complete
sentence is recognized and all other possible interpretations have lower credibilities, or until
the system runs out of resources.

Focus of Attention. Since the island-building and verification activities can take place
anywhere in the utterance, a typical search problem develops. Each potential action is rated
by a statistically based scheduler (Hayes-Roth & Lesser, 1977) that estimates the utility of
a given operation against the goals for recognition of the entire utterance. In particular, the
scheduler tries to make sure that good hypotheses are being generated in each time
segment of the utterance.

Limitations

The major problem with the design of HEARSAY II is that there is the trade-off between
generality and processing time. The cost of generality is Increased computational load. In
the HARPY system, which figures out a priori how to process a given utterance, a substantial
time savings has been demonstrated. Some of the design goals for completely asychronous
and functionally separate KSs had to be relaxed in order to get the performancedemonstrated in the September 1976 system (see Article Overview on DesignConsiderations). The major reason for decreasing the asynchronous activity is theunreliability of the results at the lower levels, thus making it dangerous to proceed based ononly partial results.

Summary

HEARSAY II has achieved the ARPA five-year specifications for a "successful" speechrecognition program. The generalityof this design for knowledge-based systems has beendemonstrated beyond speech understanding; currently, vision and protein crystallographyresearch. The system design is currently being refined and coordinated with otherapproaches, particularly the HARPY design, as well as with a multi-processor configuration.

342 Speech Understanding Systems%

C3. The HWIM System

The HWIM ("Hear What I Mean") speech understanding system was designed and
constructed during the period 1974-1976 at Bolt, Beranek, and Newman (Woods et al.,
1974-1976). The HWIM system is the successor to the SPEECHLIS speech understanding
system. The domain of discourse of the HWIM system is the role of a travel budget manager
that answers questions about trips and the status of the travel budget. Typical sentences
that the system could recognize are: "List all trips to California this year," "What is the
registration fee for the next ACL conference?", and "The registration fee is twenty dollars."
Each of these types of statements requires a different kind of interaction with the database
and with the pragmatic information about planning trips. In particular, the statement about a
registration fee only makes sense after the context of a specific conference has been
established.

The goal of the HWIM design was to form a global hypothesis or theory about the input
(stimulus) presented to the system. This complete theory is often accomplished by a
refinement and integration of partial theories, until all of the input data is accounted for. The
process is divided into several steps: (a) Form a seed hypothesis from elementary
constituents (e.g., acoustic wave phenomena), (b) form the set of possible constituents,
given a partial theory (called theory-driven or predicted hypothesization), (c) measure the match
between a hypothesis and the input stimuli, and (d) rate the content and reliability of
created hypotheses. In the speech setting, a typical theory is a set of compatible word
hypotheses, with possible gaps between words, and partial syntactic and semantic
interpretations.

The perceptual theory uses two computational devices to create and verify
hypotheses: the monitor and the proposal. The monitor is a marker in the knowledge structure
that starts processing when the appropriate partial theories concerning a piece of
knowledge have been created. The monitor helps relate different partial theories by stating
what interpretations can be drawn, if enough supporting evidence has been supplied, for the
existence of a particular entity in the utterance. The monitor concept eliminates the
requirement that the system must always go from lowest levels of processing ("raw data")
to the highest (interpretation of the sentence). The proposal results in a comparison, of the
input and the current elementary hypotheses. The monitors are passively looking for
verification information, and the proposals actively attempt verification. Triggered monitors,
known as events, are ranked and queued for later action. At any point in the operation of
the program, the next action of the system is determined by selecting from the best ranked
event in the queue. One major research goal of the BBN speech project was understanding
the control structure issues of when (and how) to create new hypotheses, as opposed toverifyingolder hypotheses.

Special Features

Uniform scoring policy. All hypotheses from all knowledge sources are rated on thesame scale, as opposed to individual ad hoc ratings.

General linguistic consultant using ATN grammars. Syntactic, semantic, and
pragmatic information are combined into a single linguistic knowledge source.

343The HWIM SystemC3

1

t

i

Bidirectional parsing. The system can work outwards from "islands" of strongly
hypothesizedwords. The parser can extend the hypotheses by suggesting words occurring
just before or after the island.

Improved hypothesis verification strategies. The HWIM verification technique
generates a synthetic acoustic signal based on hypothesized words and then compares this
signal with the original acoustic features at the parametric level.

i

Control strategies with proven characteristics. Several control strategies were
developed, some of which can be guaranteed to find the best possible interpretation of an
utterance without systematically enumerating all possibilities.

Representationof Knowledge

Several knowledge structures exist in HWIM that correspond to the different levels of

processing. The basic structures are: (1) dictionary, which contains the words known to the
system; (2) segment lattice, which contains an exhaustive list of segments that match the

acoustic signal; and (3) general linguistic consultant that is built around the augmented

transition net parsing technique.

The dictionary contains the phonetic "spelling" for each word and the usual variations
in pronunciation. The dictionary is algorithmicaliy expanded to include all predictable

pronunciation deviations,using the application of phonological rules.

The segment lattice allows for the representation of alternate segmentation paths

where the acoustic evidence is sufficiently ambiguous to make unique segmentation

decisions impossible. Segment labels are selected from the list of phoneme's and include the

likelihood of a phoneme's existence in the acoustic information.

The linguistic consultant is based on a "pragmatic" grammar that includes the

constituents of the domain-e.g., "trips" and "budgets"-in place of the typical linguistic

subdivisions of "subject" and "verb," etc.

Control Structure

HWIM has the ability to select from one of many different control strategies, all based
on the concept of finding islands of reliability and working out towards the point of
understanding the rest of the query. All the strategies per orm an in^ial scan of some region

of the utterance and form initial seed events, consisting of single words at indiv.dua points n
the utterance. For left-to-right strategies, the Initial scan considers only words that could

begin the utterance. Combination strategies then examine the beginning of the utterance
and, next, switch to the island driven method to complete the task.

These control strategies drive the three major components of the system^ (a) the
lexical retrieval component, (b) the verification component, and (c) the syntactical

component. The lexical retrieval component is used to match
against the segment lattice in two ways: (a) without regard to «^J»*t. on b) ' anchored" of

a previously found word match or set of word matches, to take advantage of the effects ofi

% 344 Speech Understanding Systems

known adjacent words. In either case, this component can seek either ail words or only
those in a specified set. it uses the tree-structured dictionary in order to do matching and
across-word acoustical analyses.

The verification component takes a word pronunciation and the available context and
generates a spectral representation (a synthesized acoustic signal) for words that are
hypothesized by other knowledge sources. The actual acoustic signal is compared to this
synthesized signal and a distance metric is calculated. This feature allows an independent
verification method for hypothesized words, since all other methods are using the same
acoustic source as a basis for making conclusions. This method uses a large amount of
computational time.

The syntactical component utilizes syntactic, semantic, pragmatic, and factual
knowledge to determine the likelihood of hypothesized words. The parser is used: to test
the grammaticality of a sequence of words, to predict possible extensions of words, and to
build up a semantic representationof the utterance for analysis and response.

Summary

This system has received recognition for several important features based on the
word/acoustic matching and retrieval components and the extension of the ATN parsing
methodology. The HWIM designers performed extensive research on control strategies, which
will be very important to later system designs.

References

See Woods et al. (1974-1976).

C4 The SRI Research on Speech Understanding 345

J ,

C4. The SRI Research on Speech Understanding

One segment of the ARPA Speech Understanding Project was the joint workings of SRI
International (Walker, 1978) and the Systems Development Corporation (SDC). The signal-
processing, acoustics, and phonetics portions of the system were derived from the original
SDC system, known as the Vocal Data Management System. SRI provided the parsing,
syntax, semantics, pragmatics (commonsense knowledge about the world), and discourse
analysis sections of the system. At different stages of development, domains of discourse
included: the Blocks World of Winograd, the repair of small appliances, and the areas of data
management concerning naval fleet movements (based on SDC experience) and
electromechanical equipment maintenance (in conjunction with the SRI Consultant system).
As in the other articles in this section of the handbook, we will concentrate on the non-
acoustical processing levels, therefore on the work done at SRI.

Special Features

Top-down control. The higher level processing (e.g., the phrase level) controls the
sentence interpretation, as opposed to acoustic considerations. Top-down control allows the
semantic information to guide the search of the potentially ambiguous acoustic information.
The system utilizes an Increased unit size for hypothesis generation, the phrase, for guiding
the top-down processing. The phrase consists of a sequence of words. Bottom-up control is
also utilized in the system.

Flexibilityof processing. Lingistic capabilities include: starting processing anywhere
in an utterance, mapping from the phrase to the phonemic representation, and handling
ellipses (implied information based on previous utterances) and anaphoric references
(pronoun reference to recent phrases).

Focus of attention. Certain areas of each information structure are singled out as
most relevant to the current discourse. Focus of attention can dramatically impact the
amount of processing and help to increase the understanding of utterances with multiple
meanings by cohsidering the most recent topics of interest.

Representation of Knowledge

, Semantic Nets. The SRI system uses a modified form of semantic nets with case
frames to encode the concepts of the domain and previous utterances. The network is
divided into task-domain knowledge and a scratch area that represents current utterances.
The network is separated into spaces that are utilized to handle quantification, to separate

real and hypothetical worlds, and to distinguish different levels of abstractions. The
semantic processor, for example, contains a series of functions that map between the
surface and the deep case structures; these functions facilitate suggestions of which
surface features to examine, based on semantic knowledge. Functions also exist to use the
semantic representation to answer simple questions. Versions of the system designed for
use with the SRI consultant task contain a process model, or script, that encodes the oourse
of normal construction of some object.

ii

i

1 v
" j

346 Speech Understanding Systems%

Language Definition System. The language definition system contains the complete
specification of that portion of the English language to be accepted by the system. All words
known to the system form the lexicon. The lexicon is divided along syntactic boundaries into
categories for nouns, verbs, etc. Associated with each word and category are attributes
based on information from each knowledge source (e.g., semantics, phonology, grammar,
etc.). Each category is provided with instructions for calculating attributes for each
member-word that is found in the current utterance. Redundancy rules contain attributes in
common for the entire language definition. Compositionrules are available that can generate
plausible phrases out of words or smaller phrases; these are usually based on grammatical
considerations. These rules also specify which attributes can be assigned to the new
phrase; for example, they determine the focus of the phrase or relate the semantics of a
particular word to the whole phrase. Compositionrules designatewhich grammatical factors-
such as case, mood, number, and person—should be used to judge the phrase when
considered by the parser. Also included is prosodic information, for example, the expected
change in pitch at the end of an utterance that is a question.

Control Structure

The system is controlled from the parsing mechanism that tries to form words, and
eventuallyphrases, out of the acoustic signal. The parser uses the language definition system,which is a structured listing of the legal discourse (domain-specific) and its attributes, to
integrate all knowledge sources in a coherent way. Thus, the main program representation is
at the phrase level, with the meaning and ramifications— e.g., likelihood—of each phrase
recorded. Semantic nets are used to show the relations between concepts in both .the
discourse area and in the representationsof the contents of previous utterances. Pragmaticinformation is used to predict likely utterances, based on previous utterances. Acoustic
processing represents the input speech as formants, which is a catagorization of the
frequency content, together with special features, such as rising pitch in prosodic analysis.

Parser. The parser controls system performance and integrates ail knowledge sources
in its attempt to produce the best of several interpretations of the utterances. The maindata structure for the parser is the parse net, which includes phrases generated by the
language definition system. A task queue holds a selection of operations waiting to beperformed to expand the parse net. Requests for checking the acoustic information for a
specific word or phrase are typical examplesof waiting tasks. The parse is completed whenthe queue is empty or when limits on resources are exceeded. Tasks are scheduled to run
based on priorities determined by the language definition system and are moderated by
expectationsof interpretations likely to be generated and how close the task is to the focusof attention. The parsing strategy is called a "best-first" approach. To help coordinate thechoice of which phrases to expand next, a particular part of the parse net is singled out as
being the most relevant direction to take, and this decision biases future decisions untilanother area looks more promising.

The parse net is made up of nodes representing phrases generated and predictions tobe -examined (usually against acoustic data). Predictions are of the form: Category X,
tocation V? (e.g., look for a verb at some start time). The nodes are linked by connectionsbetween unverified phrases and the predictions they spawn. The parse net also containsattribute information such as the expected start and stop time of the candidate phrases.

I I

The SRI Research on Speech Understanding 347C4 l

False steps are avoided in the parsing process by storing past mistakes, but the generated
mistaken phrases can be reused if they are recognized as appropriate in another context.

Discourse Analysis and Pragmatics. An important capability is the use of information
gleaned frpm previous utterances to help disambiguate the current (possibly incomplete)
phrase. The system is designed to handle both anaphoric references and ellipses by looking
at the recent dialogue. Anaphoric reference replaces a pronoun in the current phrase with a
noun from a preceding piece of discourse. For example, "What is the depth of the Ethan
Allen? What is its speed?" This substitution process is accomplished by examining the case
frame of the current utterance and using those constraints to search previous phrases for a
match. Elliptic references deal with filling out Incomplete phrases using terms already
mentioned. For example, "What is the depth of the Ethan Allen? The Lafayette"?, where the
second question is assumed to be the same order as the first. The capability to make
assumptions of this kind is accomplished by determining the attributes of the elliptic phrase
(i.e., "The Lafayette") and attempting a match of these against segments or phrases of the
preceding utterance. Discourse analysis is also used to suggest what type of questions
might be expected in subsequent utterances.

Summary

The SRI system stressed the natural language understanding aspects of the speech
recognition problem. Detailed symbolic models of the domain of discourse were available for
assisting in the interpretation and response phases of the program. Since the system was
never fuliy tested, it must be evaluated on the application of the processing techniques to
natural language understandingresearch.

References

See Paxton (1976), Reddy (1976), and Walker (1978).

j

i

!

i

i

348% Speech Understanding Systems

References

lEEE Transactions on Acoustics, Speech, and Signal Processing, February 1975 (a
special issue on Speech Understanding).

Bahl, L. R„ Baker, J. X., Cohen, P. S., Cole, A. G., Jelinek, F., Lewis, B. L, & Mercer, R. L.
Automatic recognition of continuously spoken sentences from a finite state grammar.

Proceeding of the 1978 lEEE International Conference on Acoustics, Speech, and
Signal Processing, Tulsa, Oklahoma, 1978, pp. 418-421.

Baker, J. K. The Dragon System —An Overview. lEEE ASSP, February 1975, ASSP-23(1),
24-29.

Cole, Ronald A. Navigating the slippery stream of speech. Psychology Today, 12:11, April
1979,77-87.

de Mori, R. On speech recognition and understanding. In K. S. Fu &A. B. Whinston (Eds.)
Pattern recognition, theory and application. Leyden:

Nordhoff,

1977. Pp. 289-330.

de Mori, R. Recent advances in automatic speech recognition. Proc. of the 4th Int. Joint
Conf. on Pattern Recognition,Kyoto, Japan, November 1978.

Erman, L. D. A functional description of the Hearsay-li speech understanding system.
Speech Understanding Systems, Summary of Results of the Five-year Research

Effort at Carnegie-Mellon University, CMU Computer Science Tech. Report, August
1977. (Also: lEEE Conf. of Acoustics, Speech, and Signal Processing,

Hartford,

Conn., May 1977.)

Erman, L. D., & Lesser, V. R. The HEARSAY-II speech understanding system: A tutorial. In
W. A. Lea (Ed.) Trends in Speech Recognition. Englewood Cliffs, N.J.: Prentice-Hall.

In press, 1978. (a)

Erman, L. D., & Lesser, V. R. System engineering techniques for artificial intelligence
systems. In A. Hanson & E. Riesman (Eds.), Computer vision systems. New York:Academic Press. In press, 1978. (b)

Hayes-Roth, F., & Lesser, V. Focus of Attention in the Hearsay-ll Speech Understanding
System, CMU Computer Science Tech. Report, Carnegie-Mellon University, January

Klatt, D. H. Review of the ARPA Speech Understanding Project. Journal of the AcousticalSociety of America, 1977, 62, 1345-1366.

Lea, W. A. (Ed.) Trends in Speech Recognition. Englewood Cliffs, N.J.: Prentice-Hall. In
press, 1978.

Lea, W. A., & Shoup, J..E. Review of the ARPA SUR Project and survey of the speech
understanding field (Final report on ONR Contract No. NOOOl4-77-C-0570). Speech
Communication Research Laboratory, Santa Barbara, CA, 1978. (a)

f

References 349

i

;

ii

5 t.

J*-It v
"■ __■

! Lea, W. A., & Shoup, J. E. Specific contributions of the ARPA SUR Project. In W. A. Lea (Ed.),
Trends in Speech Recognition. Englewood

Cliffs,

N.J.: Prentice-Hall. In press,
1978. (b)

Lesser, V., & Erman, L. D. A Retrospective View of the HEARSAY-II Architecture. UCAI 5,
1977, 790-800.

Lowerre, 8., & Reddy, R. The Harpy Speech Understanding System. In W. A. Lea (Ed.),
Trends In Speech Recognition. Englewood Cliffs, N.J.: Prentice-Hall, 1978.

Lowerre, B. The Harpy Speech Recognition System, Doctoral dissertation, CMU Computer

Science Tech. Report, Carnegie-Mellon University, 1976.

Medress, M. F., et al. Speech understanding systems: Report of a steering committee.
Sigart Newsletter, 1977, 62(April). 4-8. (Also in Artificial Intelligence^ 1977, 9,
307-316.)

Nash-Webber, B. L The role of semantics In automatic speech understanding. In D. Bobrow
& A. Collins (Eds.), Representation and Understanding: Studies in Cognitive Science.
New York: Academic Press, 1 975.

Newell, A. A Tutorial on Speech Understanding Systems. In D. R. Reddy (Ed.), Speech
Recognition: Invited Papers Presented at the 1974 lEEE Symposium. New York:
Academic Press, 1975. Pp. 3-54.

i

Newell, A. HARPY, Production Systems and Human Cognition, CMU-CS-78-140. Dept. of
Computer

Science,

Carnegie-Mellon University, 1978.

Newell, A., Barnett, J., Forgie, J., Green. C, Klatt, D. H., Licklider. J. C. R Munson J., Reddy,
D R & Woods W A Speech Understanding Systems: Final Report of a Study

Group, Carnegie-Mellon University, 1971 (reprinted by American Elsevier, Amsterdam,

North-Holland, 1973).

Newell, A., Barnett, J., Forgie, J.,

Green,

C, Klatt, D., Licklider, J CR. Munson. J Reddy, R.,

Sr Woods W Speech Understanding Systems: Final Report of a Study
Group. Amsterdam: North Holland/American Elsevier, 1973 (originally published in
1971).

Paxton, W. H. A Framework for Language Understanding, SRI Tech. Note 131, Al Center,
SRI International, Inc., Menio Park,

Calif.,

June 1978.

Reddy, R., Erman, L, Fennell, R., & Neely, R. The HEARSAY Speech Understanding System:
An Example of the Recognition Process. UCAI 3, 1973, 185-193. (Reprinted m lEEE-
Transactions Computers, 1976,C-25„427-431.)

Reddy, R., et al. Speech Understanding Systems, Summary of Results of the Five-year

Research Effort at Carnegie-Mellon University, CMU Computer Science Tech. Report,

Carnegie-MellonUniversity, August 1977.

Reddy, R. (Ed.) Speech Recognition: invited Papers of the lEEE Symposium. New York:
Academic Press, 1975.

350

Speech Understanding Systems

Reddy, R. Speech Recognition by Machine: A Review. Proceedings of the lEEE, 1976,64,
501-531.

Robinson, Jane J. Performance Grammars. In D. Raj Reddy (Ed.), Speech Recognition: Invrted
Papers of the lEEE Symposium, New York: Academic Press, 1975, 401-427.

Smith, A. R. Word hypothesization for large-vocabulary speech understanding systems.
Doctoral dissertation, Carnegie-Mellon University (also available as Tech. Rep.), 1 977.

Vincens, P. Aspects of Speech Recognition by Computer. Ph.D. Thesis, Computer Science
Department, Stanford University, 1 969.

Walker, D. E. (Ed.) Understanding SpokenLanguage. New York: North Holland, 1978.

Woods, W. A. SPEECHLIS: An Experimental Prototype for Speech Understanding
Research. lEEE

ASSP,

February 1975, ASSP-230), 2-10.

Woods, W. A., et al. Speech Understanding Systems, Final Report (BBN Report
3438). Cambridge: Bolt, Beranek, & Newman, November 1974-October 1976 (Vols. 1-
-5).

I

I

I

l

i

Index

prosodies 1ARPA speech research 320, 324
j

semantic nets 345
semantics 321

blackboard 322
bottom-up processing 1,321
branching factor 323, 324 signal 1

speech recognition 1
speech understanding 1
syntax 321case frames 345

chess program 321 system performance 323
compiledknowledge 322
connected speech 320

template 1
top-down processing 1, 320, 321

DRAGON 323

events 342

graceful degradation 322

HARPY 323
HEARSAY 322

isolated-word recognition 320

knowledge sources 320, 322

legal-move generator 321

modularization 322
Monitors 333

performance grammars 322
phonetics 1
pragmatics 321
prosodic 1

Index

352

354

AI Programming Languages

Table of Contents

Historical Overview of AI Languages
AI Language Features

355

Overview of Language FeaturesData Structures
Control Structures
Pattern Matching
Environment

Important AI Programming Languages
LISP
PLANNER and CONNIVEROLISPSAIL
POP-2

AI Languages

An Historical Overview of Artificial Intelligence Programming Languages

Stephen Westfold

Artificial Intelligence programming languages have had a central role in the history of
Artificial Intelligence. They have two important functions. First, they allow convenient
implementation of programs demonstrating and testing AI ideas. Second, they provide vehicles of
thought; as with other high-level languages, they allow the user to concentrate on higher level
concepts and avoid being distracted by low-level implementation details. In this article we
distinguish between the more general-purpose languages widely used in AI, such as LISP and POP-
2. and the higher level A I languages, such as PLANNER and C4LISP. Using the concepts of the
higher level languages imposes a structure on the way one thinks, which can be restrictive, but
without some such structure it is very difficult to approach the problems of AI. Frequently, new
ideas in AI are accompanied by a new AI language in which it is natural to apply these ideas.
Usually, such a higher level language is built on an existing high-level AI language so that the
desirable features of the host language do not have to be re-implemented in the new language.

Figure 1 gives a rough indication of the directions in which AI languages developed and the
major influences on the languages.

IPL was developed around 1956 by Newell. Shaw, and Simon as the first programming
language specifically for AI. Its design was guided by ideas from psychology, especially the intuition
of association. The primary elements of the language were symbols as opposed to numbers around
which all other languages of the time were built. To form associations of these symbols, list
processing was introduced. The objective was to enable programs to build data structures of
unpredictable size and shape conveniently. The problem of unpredictable shape was solved by
using data elements consisting of two fields,each of which could hold either a symbol or a pomter o
another such data element. This simple arrangement allows arbitrary binary trees or Ustsjructvrc to
be built. The problem of unpredictable size Is handled by having ifree list of data elements that
are allocated to the various data structures as required.

A major advantage of list structure is that elements can be inserted and removed very simply
from existing structure. However, it is clearly desirable that elements deleted from al structures be
available for reuse in new structure. In IPL the user is responsible for returning cells to the free list

when they are no,onger required. For programs that build complex structure,> that include some
faring of substructures, however, it Is difficult to determine »n t""l "*« is de e ted
from one structure whether it, or any structure it points to. is part of any other st ucture. Later list

processing systems have therefore taken responsibility for reclaiming elements no longer used. One
method for doing this is to maintain a reference count for each element showing how many other
elements point to it. Every primitive list operation that deletes a pointer mus decrement the count
of the element pointed to and. if the count is zero, reclaim it and recurs vely de etc any'pointers from
the element. An alternative method for reclaiming elements « ga
as when the free list is empty, the garbage collector traces all the pointer» » d^o *the program. Tracing a pointer consists of marking the element pointed to and /ecur^veiy t acmg
the pointers of this efcment. This process ensures that all ele""ts mil in use """"£«*.»*«unmarked elements can be collected and added to the free lis . This agnihm a so serve 1 « an
example of how desirable it is to allow recursive procedures in P^"^11JL" ~» *"there are some combinations of list operations where it v not feasible to maintain reference counts
correctly [MOSE 1970], whereas garbage collection can still be applied.

i

■

> k

356

AI Languages
%

Another feature of IPL is the generator,which is a procedure for computing a series of values.
It produces one value each time it is called and is then suspended, so that it starts from where it left
off the next time it is called, [see Control Structures section for more information] This idea was to
turn up later in CONNIVER and similar languages.

Most of the programs of the early history of AI were written in IPL, in particular the version
IPL-V. Many of these are described in Computers and Thought CFEIC 1963] including: the Logic
Theorist, General Problem Solver, the Newell-Shaw-Simon Chess Program, EPAM, Feldman's two-
choice decision model, SAD SAM, and Tonge's Assembly Line Balancing program. Some more
recent programs written in IPL are Quillian's [OJJIL 1968] and REF-ARF [FIXE 1971].

135S FORTRAN IPL
1957
1958
1959
1960 ALGOL63 LISP
1961
1962
1963
1964
1965
1966
1967
1968
1969 LEAP
1978 .SA L
1971 POP-2
1972 CONNIVER
1973
1974 QL SP
1975

Figure 1. Historical chart of the development of AI languages. The dotted lines indicate
major influences. The bold lines indicate stronger relationships.

Many of the ideas of IPL went into LISP. Unlike IPL, a rather low-level language with a
sequence-of-instructlon style although it was considered quite a high-level language at the time of itsinvention, LISP is a high-level language with an algebraic style inspired by, but different from, the
algebraic notation pioneered by FORTRAN. During the design phase of LISP, some of the LISPideas were implemented within FORTRAN leading to the language FLPL. FLPL was created sothat some of the features of LISP would be in a working system that could be used for writing a
plane geometry program. FLPL will not be discussed further. The first dialect of LISP to be widely
used was LISP 1.5. In the late 1960s a number of new dialects of LISP were developed to meet the

ma,v,V^S?!?!! 1ViCated Pr°gramm » n& aWs- The most important of these dialects are MACLISP
fn(^T,E,5!:ISP <derived from 940 LISP throu& h BBN LISP >- Another significantly used dialectis UCI LISP, an extension of STANFORD LISP 1.6 (itself an extended version of LISP 1.5)
developed at the University of California at Irvine. UCI LISP will not be discussed further because

357

* ' ''

AI Languages

its advanced features are basically a subset of those of INTERLISP. Other languages developed
around this time were SAIL at Stanford and POP-2 at Edinburgh. SAIL is a version of
ALGOL6O augmented by LEAP, an associative retrieval formalism. It was intended especially for
those A I applications, such as vision, that require fast arithmetic POP-2 is closer to LISP but with
an ALGOL-like syntax and was designed to be suitable for implementation on mediunvsized
machines.

Toward 1970 a number of AI researchers developed formalisms to allow convenient
expression of special purpose procedural knowledge for controlling problem-solving and deduction -
PLANNER and QA4. CONNIVER embodied a reaction against PLANNER, giving the AI
programmer lower level control while still maintaining many of the ideas of PLANNER. QLISP
bore a similar relation to QjM, thought to a lesser extent, with an additional motivation being the
desire to fit cleanly into the new version of INTERLISP.

A number of features first introduced In AI programming languages have been found to be

useful in Computer Science more generally and have been included in many programming
languages. It is difficult to trace the source of ideas with much certainty; frequently the same or
similar ideas occur independently at different times and places, so some people probably would not
agree with some of the items listed below. Also, the list is not intended to be complete.

Probably the most important idea so far has been list processing. This is one of the basic
ideas of the area of data structures, with applications in many fields of Computer Science including
complexity theory, databases, operating systems, and compilers An early addition of list processing
primitives

7
to a more generally available language yielded SLIP, a subroutine package for

FORTRAN [WEIZ 19631 SLIP was used for some AI work but mainly or other fields Lis
Processing facilities were included in PL/1, based more on the primitives of PL than the sightly
higher-level ones of LISP. Most recent general-purpose programming languages including
PASCAL, have flexible data structures such as records which owe much to the ideas of list
processing. Garbage collection is typically used to manage the storage of such structures.

The designs of LISP and ALGOL overlapped in time with
f

McCarth)'being Invoked with
both. McCarthy was influential in the decision to include bo h conditional expressions and
recursion in ALGOL6O. having already decided to include them in lisp.

Symbol manipulation has been critical for the field of algebraK= ""'P"'^^^"'of them including MACSYMA [MART 1971] and REDUCE [HEAR 1971] I^used LISP as a
base language. Some symbol manipulation facilities were in uded in the language COMIT

developed around 1960. COMIT is primarily a string handling language with son" features

specially designed to help in the analysis of natural language text. It was used for some AI work. It
has been superceded to a large extent by SNOBOL.

The aoolicative style of programming, pioneered in LISP (also used in APL). has beensuggest b
P

a
P "rer orP eop.^nc.uding?

Ba
P
ckus [BACK 1978h0 be a more appropriate style

than the yon Neumann machine-oriented languages thatcurrently dominate.

358

AI Languages

1. LISP

LISP was conceived around 1958 by McCarthy as a programming language for AIapplications, in particular, for those based on the use of formal logic. The development of the
precise form of LISP was determined by an interplay of practical concerns and of theoretical and
aesthetic considerations.

The particular planned programs that motivated the language were a plane geometry theoremprover and McCarthy's Advice Taker [MCCA 1959]. Following is a list of some of the importantdesign features of LISP, along with reasons they were included. The reasons revolved around what
was required for the originally planned programs and for other smaller programs that were
considered during the design process, in particular, a program for symbolic differentiation.

1. List Processing. The originally proposed programs required the representation of formal
language sentences and the ability to perform logical inferences for which the list
processing techniques of IPL were well suited.

2. Algebraic Notation. The algebraic notation of FORTRAN was seen to be convenient because
arbitrary subexpressions of sentences could be extracted using composition of primitive
extraction functions.

3. Prefix Form. For internal use it is convenient to use prefix form rather than infix

form,

because for most applications it is necessary to know the main connective before deciding
what to do with an expression. Thus, unlike almost all other symbolic systems, LISP isbased on prefix rather than infix notation. For example, the infix expression

4*A.;<X

♦ s>:<B
Is represented in the prefix notation of LISP as (PLUS (TIMES 4 A X) (TIMES 5 B». It
is useful for a symbolic differentiation program to have the "PLUS" first because it needs
to know that it is dealing with a sum before it can know how to deal with the subtermsinvolving TIMES .

4. Conditional Expression. McCarthy introduced the conditional expression (if then else) whenspecifying legal move routines for Chess in FORTRAN.
5. Recursive Functions. The recursive nature of the differentiation of algebraic expressionsT^TtLfrc"^ 1 !°. v?c . re,:ursive Unctions. Thus, differentiating the expression (PLUS 4

A (TIMES B X) X) can be done by recursively applying the function that does
differentiation to each of the arguments of "PLUS," returning the sum of the resultsachieved as the answer.

6. Functional Arguments. For expressing the above differentiating process it was convenient to
introduce the<mapllst function, which applies a given function to every element of a list.This required the introduction of functional arguments and a notation for functions; the
X-notation invented by Church [CHUR 1941] was chosen.

7. Garbage Collection. It was difficult to include explicit erasure of abandoned list structure inthe natural definition of differentiation, so it was desirable for the system to collectabandoned list structure automatically. Reference counts could not be used because of
hardware limitations, so the idea of garbage collection was invented.

359

AI Languages

It became clear during the design stage that LISP provided a neater way of describing
computable functions than did Turing machines or other methods used in recursive function theory.
McCarthy considered it useful to have LISP expressions obey convenient mathematical laws to allow
proofs of properties of programs to be constructed using normal mathematical methods. This
objective was made possible for pure LISP although for practical programming reasons, functions
with side effects were also included in the language implemented.

The universal LISP function eval was written to show that it was briefer and easier to
understand than the description of a Universal Turing machine. Writing eval required a
representation of LISP functions as LISP data. When it was realised that eval could be used as an
interpreter for the language, it was hand coded in machine language, and LISP was thereby
available. A consequence was to freeze the specification of the language, in particular, the list format
of LISP programs, even though lists had never been the intended external format.

Following mathematical notation, LISP programs consist only of applicative expressions built
up from variables and constants using functions Thus, LISP is strongly function oriented. A
function call is written as a list with the first element being the function symbol or object and the
other elements the arguments to the function. This orientation gives LISP a distinctly different
flavor than other programming languages. In fact, people who know other programming languages
frequently have difficulty learning LISP, although many users coming from a mathematical
background find it at least as easy a first language to learn as other programming languages.

Over the two decades since 1959. LISP has been the dominant language in AI. being used in
diverse systems, some of which are far removed from the type of system for which it was originally
envisaged. There are many reasons for this dominance, and it is unclear which were the most
important. Some of the reasons are those described above, which influenced the design of LISP, but
others were somewhat incidental to the design and are discussed below.

LISP was the first high-level language that provided convenient symbol manipulation and list
processing facilities (IPL provided these facilities but was a fairly low-level language). This fact
suggests that LISP may have become entrenched because of the costs of people adjusting to new
programming languages, even when a newer language is generally recognized to be superior, as has
happened with FORTRAN. The costs of changing to a new language have become more important
with the introduction of large LISP programming systems, such as INTERLISP, which have many
user facilities. A competing system would need to provide comparable facilities to lure users away
from such a system, and supplying such facilities would involve considerable expense.

LISP has proved an excellent language for interactive programming. The basic LISP
statement, a call to a function, is a convenient and very powerful command language LISP ends
itself to writing programs incrementally:- functions can be defined incrementally without
declarations; data structures and variable names (atoms) can be created dynamically. Using the
interpreted form of functions, it is simple to make try-and-see modifications to functions. The
implements of LISP have tended to stay in fairly close contact with the users; the result has been
that the LISP systems have tended to develop to meet the needs of the users. The simple framework
of LISP has been accommodating to such developments down diverse dimensions.

The ability of LISP programs to obtain functions at run-time and to execute them using the
LISP interpreter eval is a powerful facility, as is the ability to pass around and store functions The
many user facilities provided in current LISP systems, which will be described in the following
section, also rely heavily on these techniques and the ability to manipulate user programs easily.

360

AI Languages
%

The simple correspondence between internal and external forms of LISP functions has proved to be
an advantage particularly when it is desired to manipulate functions by other LISP functions, for
example, in list-oriented editors or in "smart" compile macros. This convenience has encouraged
system builders to provide powerful tools to help users manipulate and manage their programs and
has allowed users to tailor the system to their individual requirements.

As well as being good for interactive programming, LISP has proved itself a good, convenientlanguage for programming in general. It is a powerful, concise language for expressing processes on
arbitrarily sized and shaped list data structures, through recursion and conditional expressions. The
program need not take account of such details as memory managementbecause these are handled by
the LISP system through such features as the garbage collector. Typically, distinct functions are
used for distinct subproblems, which leads to modular programs. By defining functions to represent
the operations that a programmer thinks of as basic, the main procedures can be written using these
functions as primitives and thus reflect the steps that the programmer has in mind. In this way
LISP can effectively be used to build higher level languages. Alternatively, it is easy to write
interpreters of specially designed higher level languages represented as list structure. On the other
hand, the basic functions are at a low enough level so that the user does not often feel limited by the
language, and most implementations have allowed fairly convenient access to the machine and
operating system facilities.

361
i

2. Current General AI Languages

The medium-level, general-purpose programming languages commonly used in AI are SAIL,
POP-2. and several versions of LISP, particularly INTERLISP and MACLISP. A characteristic of
AI programs is that they tend to be large and complex. This fact has led to a demand for
programming systems that provide extra support for developing and debugging programs. [See
section on Environment] The various LISP systems have led the way in this direction because LISP
has been the dominant AI language and because it lends itself to interactive use. LISP programs
are written as list expressions and so are easily manipulate by support programs written in LISP,
such as EDITORS and programs that temporarily redefine functions or expressions in functions,
which are useful when debugging. The presence of these types of features in LISP systems has
increased the demand for them in other systems where they were not such a natural development.
POP-2 was developed by AI researchers in the United Kingdom because there were no good
implementations of LISP on the machines they were using because they disagreed with some of the
features of LISP and thought that others could be improved. It is still the most used AI language in

the United Kingdom but it has never been used much in the United States.

INTERLISP

The system that has gone furthest in the direction of including user facilities is INTERLISP
CTEIT 1978], which evolved from a series of LISP systems at BBN, notably 940 LISP in 1967 and
BBN LISP in 1970 As well as highly developed versions of the facilities described above, it has
the following features: a uniform error-handling system that allows some types of automatic error
correction, such as spelling correction, entry to a special, flexible debugging facility, and handling of
particular error conditions by user functions; CLISP - an alternative extensible expression syntax;
PROGRAMMERS ASSISTANT " which keeps track of a user s commands (which are lists) and so
allows selected commands to be undone, redone or edited, and redone; MASTERSCOPE - a cross-
referencing facility that creates a database of a user's program and uses it to answer user queries;
FILE PACKAGE - which keeps track of the state of a users program, such as storing functions that
have been altered, on a permanent file at the end of a debugging and editing session. These
facilities have been written so as to enable the user to have a large amount of control over the way
they behave, made possible because the user can specify general LISP functions to be executed at

important points of the system, as well as being able to set many global variables which help
determine the system's behavior.

In 1976 an implementation of Bobrow and Wegbreifs 'M*"'^J"*^"T£iincorporated into INTERLISP to provide convenient primitives for building very general control
structures. [See section on Control Structures for further description!

The features that have been added to INTERLISP over the years give a strong
demonstration of how receptive the LISP framework is to the incorporauon of new »de« unrelated
to the design considerations for LISP. One recent example of this is the introduction of an optional
Package for including type declarations in programs. Characteristically for a LISP system feature,
the user can use as much of this as his personal style and particular P;og^ reqmre- Type
checking can be done when the program is running interpretively to aid in debugging, but need not
be mcl u

g
d£ in the compiled version of the same program if cfficicncys

<^than caution. On the other hand the compiler may take advantage ô dec ar^ ?n . '3°d
r
U"more efficient code. General addition of types is allowed in a J16""1"1^ P"<r. °f

specifying arbitrary LISP functions for such things as type checking, or what to do when assigning
to a variable of a given type.

AI Languages

362

AI Languages
%

MACLISP

MACLISP has been under continuous development since it was begun in about 1966 at MIT.
MACLISP developed in parallel with INTERLISP. Fairly frequently, a feature in one that was
found to be useful was implemented in the other. There has, however, been more of an emphasis
on efficiency in time and space utilization in MACLISP. Some of the main forces pushing in this
direction were the increasing requirements of MACSYMA and, to a somewhat lesser extent, of
higher level AI programming languages' such as MICROPLANNER and CONNIVER, which were
implemented in MACLISP. In contrast to INTERLISP, where most of the user facilities are
resident in the system's core image, the user facilities in MACLISP are in separate programs or are
automatically loaded when required. This feature is acceptable because it has a fast loader and the
operating system has good facilities for skipping between one program, such as an editor, to another,
such as MACLISP. The code produced by the MACLISP compiler is very efficient, on the order of
twice the efficiency of INTERLISP compiled code. In particular, effort was directed at producing
efficient compiled arithmetic; and by 1974 this objective had been accomplished to such an extent
that compiled arithmetic was comparable to that of a FORTRAN compiler.

SAIL

In 1969 at Stanford, SAIL resulted from combining LEAP, an associative retrieval

formalism,

with a version of ALGOL 60. It was designed for those AI systems, such as vision and speech
understanding systems, that required fast arithmetic and some of the facilities available in LISP-
Some of the facilities that make SAIL convenient to use are its string-handling capabilities, a macro
facility, and convenient I/O. The associative database consists of attribute-object-value triples,
which were used to do the same sort of things that LISP had done with properties of atoms.
However, they are more powerful than LISP properties in that any of the keys can be used to
retrieve values for the other slots. This and other features they shared with the PLANNER-like
languages discussed in the next section.

Around 1973 some more facilities were added, prompted by other languages, especially LISP.
A restricted type of list was introduced that did not allow lists as its elements. This deficiency was
overcome by the introduction of records. However, unlike LISP, routines for manipulating the lists
and records and for performing I/O on them must be supplied by the user. Another facility added
was a very powerful interactive debugging system: BAIL. General control structures, including
multiple parallel processes, were also added.

POP-2

POP-2 is a language with many of the properties of LISP but with an ALGOL-like syntax.
It was developed around 1971 by Popplestone, Burstall, and others at the University of Edinburgh.
Like LISP it is interactive and allows general manipulation of functions. It was intended for
efficient implementation on the medium-sized machines available to the authors. Thus, it relies on
packages that have to be explicitly loaded when required, to supply user facilities. It allows partially
applied functions to be created that can be used to do the same sort of things as FUNARGs. It also
has dynamic lists, which are lists with a function at their end that is automatically called when more
list elements are required. This feature can be used to implement generators and allows such things
as I/O devices to be treated as lists. The stack can be explicitly pushed and popped, which allows
functions to return multiple values fairly cleanly.

363

AI Languages

\
i

L

3. Higher Level AI Languages

At the end of the 1960s and the beginning of the 19705, a number of languages were
developed that were designed to provide primitives useful for programs that require problem-
solving and deduction facilities. An important idea behind them was that techniques that were
thought to be generally useful should be generally available, so that new systems could be built more
easily.

PLANNER

PLANNER was designed by Hewitt from about 1967 to 1971 as a foundation for problem-
solving [HEWI 19711 It was built around the idea that the essential thing about knowledge was
how it was used in achieving purposes. Hewitt tried to develop a formalism whereby any piece of
knowledge could be naturally expressible in a procedure that would use it where appropriate. This
approach was partly in reaction to the uniform proof procedures that were then widely used, where
domain knowledge is represented as propositions that are manipulated by a domain independent
theorem prover to produce the desired result. Some of the ideas introduced by Hewitt are as follows.
Goal-directed invocation of procedures, whereby each procedure has a pattern that represents the
goals that it can achieve, so that it can be called whenever it is relevant to achieving a desired goal.
He emphasized the importance of backtrack control, whereby choices can be made and their
implications explored, while still maintaining the capability to reject these choices together with all
their consequences, in order to try other choices based on the reasons for rejection [see article on
control structures for further description of backtracking! Rat*X«r than having jin explicit goal tree,
as m previous problem-solving systems such as STRIPS or GPS [ERNS 1969], the goal tree is

implicit in the control structure of the program.

Only a portion of PLANNER was actually implemented as MICRO-PLANNER in 1972
[SUSS 1971] It included pattern-directed Invocation of procedures and automatic backtracking.
Each procedure is indexed in an associative database by a pattern indicating what it is useful for.
There are two types of procedures: consequent theorems and antecedent theorems. A consequent
theorem is called when its pattern matches a subgoal to be solved. An antecedent theorem is called
when its pattern matches an assertion added to the database (there is another kind of antecedent
theorem for assertions deleted from the database). Antecedent theorems can be used for forward
reasoning and for keeping the database consistent. Another use is for setting up "Pectations^ For
example, suppose that it is important when one assertion added to the database ,s followed by the
addition of a certain other assertion to the database. This can be checked by having the first
assertion trigger an antecedent theorem that sets up an antecedent theorem to be triggered if the

second asserfFon Is, in fact, added. The reason for calling them theorems comes |^ "^ "£the way that theorems were used (and are stil used) in AI nference systems Thujia theorem of the
form "A =B" is used in two ways: if it is desired to show B" then this theorem a,,o

w,

you to set up
the subproblem of proving "A", which if true wHI allow you to. eondude. B is true also;
alternatively, if you find that "A" is true the theorem allows you to conclude that B is true.

An important program written in MICRO-PLANNER is SHRDLU [WINO 1972].

CONNIVER

CONNIVER resulted from a reaction by Sussman and Md*"**^*^"^excesses in MICRO-PLANNER [SUSS 1972, MCDE 19741 It retained many of the ideas of

364

AI Languages%

PLANNER, but at a lower level so that fewer of the mechanisms were imposed on the user. In
particular, Sussman and McDermott objected to the use of automatic backtracking. In MICRO-
PLANNER, most of the information gained from following a wrong choice was lost on failure. The
result was that programs tended to get bogged down in blind back-tracking.

CONNIVER introduced the idea of a tree of contexts in the database. This tree was used to
represent the different situations for different choices of actions at the same time. A powerful
pattern matcher was implemented that allowed flexible associative access to the database. A version
of the spaghetti stack was also implemented, using lists rather than a stack, so it was rather
Inefficient. Together, the spaghetti stack and context tree allow, for example, a problem-solver to
suspend a process working on one subproblem and to continue work on another subproblem that
seems more promising, and then, at some later point, to resume the process working on the original
subproblem if necessary.

HACKER [SUSS 1975] was written in CONNIVER.

QA4 and QLISP
QA4 was developed by Rulifson and others [RULI 1971] around the same time as

MICROPLANNER. It was preceded and influenced by QAI, QA2 and QA3, which were all
developed by Cordell Green. QAI was an attempt at formalizing the ideas in Raphael's SIR
program, that Raphael had seen to be too ad hoc and as a result difficult to extend. Before this was
completed it was seen by Raphael and Creen that the ideas of resolution theorem proving were
suitable for the task. This led to the development of the resolution theorem based system of QA2.QA2 introduced the now standard method for extracting answers from the process of proving
theorems with existentially quantified variables - i.e. values for the variables which satisfy the
theorem. QA3 was an improved implementation of QA2 in which Green explored how to tackle
various types of problem using a resolution theorem prover [CREE 1969], including program
synthesis, verification,and problem-solving. QA3 was also used in STRIPS and ZORBA.

QA4 was intended to overcome certain problems found in using QA3 " specifically the
difficulties of guiding search. It was difficult to specify procedural and domain dependent knowledge
in a way that the theorem prover could use. It was seen to be useful to have theorems or procedures
indexed by their purpose, an idea which led to the implementation of pattern directed invocation
similar to that of PLANNER. QA4 was the first language to develop the idea of representing
assertions uniquely, in the way that atoms are represented uniquely, so that properties can be
associated with assertions. It used a context mechanism like that of CONNIVER and also had a
general control structure. To make it more widely available and to take advantage of new facilities
in INTERLISP, a cleaner implementation was embedded in INTERLISP and called QLISP. When
the fpaghetti^stack was implemented in INTERLISP. QLISP was modified to take advantage of it-
Unlike MICRO-PLANNER and CONNIVER. which are interpreted languages on top of LISP,
SHfn ". ,ba

,v,
C4i1iynf,i,ibroUtine packaSe for INTERLISP. This makes it much easier to mixQLISP with INTERLISP.

Additional features of QJ.ISP are extra data types like sets, tuples, and bags, together with
procedures for handling them, and the ability to use them in pattern matching. Pattern matching
plays a larger role in QLISP than in CONNIVER, being used for such things as constructing data.QLISP also makes the distinction, blurred in PLANNER, between finding the truth of an assertionSt A°ljnLa

D
5"!lple lo°^Up in the database and finding it by deduction using consequent procedures

(PLANNER theorems). Everywhere that a pattern-directed procedure call may occur, QjLISP allows

365

the user program to specify a team of procedures that should be considered. A team consisting of a
single procedure corresponds to the traditional style of programming, whereby a "subproblem" is
solved by calling a specific function. On the other extreme, a team consisting of all the goal-
achieving procedures corresponds to the nondeterministic style of PLANNER, where,by the
subproblem is announced and any procedure whose purpose matches the subproblem description
may be called.

POPLER

Developed by Davies in 1973 at the University of Edinburgh, POPLER is a language based
on PLANNER and embedded in POP-2. It has an implementation of the spaghetti stack. It makes
the same distinction as QLISP between testing the database and calling consequent procedures, and
it further distinguishes between those procedures that deduce the value of an assertion in a world
model from those that achieve the assertion as a goal, producing a new world model from the old
model.

I

A I Languages

366

AI Languages%

4. Conclusions

The higher level AI languages have had an important influence on AI. The most striking
thing about them, though, is that none are being used much now. Most were used to write a few
important systems that demonstrated the utility of the Fe__core£ in the system, and
sometimes the limitations of the system, and then were not used again. Now most of the programs of
the type that were written in these languages are written in LISP. Frequently, however, some of the
features of the higher level AI languages, such as the associative database or backtracking, are
implemented in the new programs, although in a form specialized for the particular task.

There are two main reasons for this disuse of higher level languages. First is the problem of
time and space efficiency. Second, the concepts built into the languages have not coincided closely
enough with those that researchers later wanted for AI programs. Although researchers typically
want to use some of the features of the AI languages, they may not want to pay the price of having
all the unwanted features around; and the modularity of the systems is not sufficiently good to allow
the extraction of the desired features (which has also been a criticism of INTERLISP). If what is
wanted is not quite what is provided, then the user may have to struggle with the system to get what
he wants. It has been quite difficult for an embedded system such as MICROPLANNER or
CONNIVER (QLISP is not embedded but is a set of functions callable from INTERLISP) to
communicate cleanly with the host language, mainly because the control and variable stacks are not
shared. Also, for a specific task, there is often a more efficient way of implementing a feature than
the fairly general method used in the programming language. Occasionally a commonly used featurehas been implemented in a lower level language, such as in the case of the spaghetti stack in
INTERLISP. y 5

This situation has resulted in some wasteful duplication of work. Such waste might be
avoided in the future by having more packages with smaller scope and with fairly specialized
application. Then a program builder could select those required. Another possibility is that some
intermediate level language might be designed that allows higher level constructs to be defined easily-

Some Current Directions
A number of programming languages for AI have been developed since those describedabove. None of these have had widespread use and it is too early to know their significance. Three

categories are considered:- new LISP dialects, languages based on logic, and knowledge
representation languages.

A number of LISP machines are being developed using dialects similar to current dialectssuch as MACLISP and INTERLISP. Different machines are being developed at M.I.T. AlLaboratory, BBN, and Xerox PARC. The standard use of lexical binding rather than the usual
dynamic binding for LISP has been proposed and Implemented in SCHEME [STEE 1978], a
variant of MACLISP. Steele and Sussman argue that lexical binding is more natural for commonly
used AI control structures such as coroutines and generators, and that the full generality of the
spaghetti stack is not necessary for AI applications. The latter is supported by the fact that Al
systems have not so far taken much advantage of the full generality offered by the spaghetti stack.A major new LISP implementation, NIL, for new large address space machines uses SCHEME as a
model, in particular, its lexical binding.

Two languages based on first order predicate calculus are PROLOG and FOL [WEYH 19791

367

AI Languages

PROLOG programs consist of "axioms" in first order logic together with a theorem to be proved.
The axioms are restricted to be implications with the left and right hand sides in horn clause form.
If the theorem contains existentially quantified variables the system will return instantiations of these
which make the theorem true (if such exist) using methods developed from those of QA3 [GREE
19691 The style of programming is similar to that demonstrated in QA3 and, to a lesser extent,

PLANNER. Automatic backtracking is used but the programmer may add annotation to control
which order clauses and axioms are considered. A compiler has been implemented for PROLOG
that enables programs in a variety of domains to execute in terms of time comparably to
corresponding compiled LISP programs. Another direction of logic has been explored through
FOL: the uses of meta-theory. FOL is primarily a proof checker that accepts logic statements and
proof step commands that can be carried out and tested for correctness. However, it provides a
powerful theory manipulating structure that allows the building of arbitrary meta-theory. Thus, for
example, a theorem may be proved not only within a theory but also with the help of the meta-
theory. Proving a theorem by going through the meta-theory corresponds closely with executing a
procedure to produce the theorem.

The representation languages have been based on the idea of frames discussed in the
Representation Chapter. These include KRL and FRL, which are built on top of LISP. These
languages provide frame data structures and procedures for manipulating them, including pattern
matchers. Procedures can be attached to slots in the frames to be called in particular circumstances
involving the slot, such as when the slot is filled, changed or examined. The languages do not

provide a separate language for specifying procedures; the host language being used for this.

REFERENCES

Bobrow. D. G.. "Requirements for Advanced Programming Languages for List
Processing Applications", Communications of the ACM, July, 1972, pp. 618-627.

Bobrow, D. G. and Raphael, 8., "New Programming Languages for Artificial Intelligence
Research", ACM Computing Surveys, September, 1974,pp. 153-174.

Bobrow, Daniel G.. and Raphael. Bertram. "A Comparison of List-Processing Computer
Languages," Programming Systems and Languages, cd. Saul Rosen. New York: McGraw-Hill. Inc.,
1967.

Daniel G. Bobrow and Bertram Raphael. A Comparison of List-Processing Computer
Languages, CACM, 7:4, April, 1964, 231-240.

D. G. Bobrow and B. Wegbreit, "A Model and Stack Implementation of Multiple
Environments", CACM. Vol. 16, No. 10, pp.lo-39, October, 1973.

Burstall, R.M.. et al. Programming in POP-2. Edinburgh University Press, Edinburgh, 1971.
Contains a primer and the POP-2 reference manual.

Davies, D. Julian M. POPLER 1.5 Reference Manual, University of Edinburgh, TPU
Report No. l! May 1973.

Ernst, George W., and Newell. Allen. GPS: A Case Study in Generality and Problem Solving.
Academic Press. New York, New York, 1969.

Feigenbaum, E. and Feldman, J. (eds.), Computers and Thought, McGraw-Hill, 1963.

368

AI Languages%

Feldman, J.A. and Rovner, P.D. An ALGOL-based Associative Language. CACM, 1969,
12:8, 439-449.

Green, C. C. The Application of Theorem Proving to QA Systems", Stanford Technical
Report CS 138, SAIL Memo AI-96 1969.

C. Hewitt, "Description and Theoretical Analysis (using schemas) of PLANNER: A Language
for Proving Theorems and Manipulating Models in a Robot", Phd Thesis, MITJFeb., 1971.

C. Hewitt, "Procedural Embedding of Knowledge in PLANNER", 2nd IJCAI, 1971.

Martin and Fateman, The MACSYMA System, in (S. Petrick, cd.) 2nd Symposium on
Symbolic and Algebraic Manipulation. NY: ACM SICSAM. pp 59-75, 1971.

McCarthy "History of LISP", ACM Sigplan Notices, 1978, 13(8), 217-223.

McCarthy "Recursive Functions of Symbolic Expressions and their Computation by Machine",
CACM 3, 4. April 1960, pp. 184-195.

Moses, J., "The Function of FUNCTION in LISP", MIT AI Memo No. 199, June 1970.

D. V. McDermott and G. J. Sussman, The Conniver Reference Manual", MIT AI Memo No.
259A, January 1974.

Popplestone, R.J. The design philosophy of POP-2", in Machine Intelligence 3, pp. -393-402.
D. Michie, cd. Edinburgh University Press, 1968.

Pratt "LISP: An Amicus Curiae Brief"

R.Reboh, E. Sacerdoti, "A Preliminary QLISP Manual" Stanford Research Institute AI Tech.
Note 81. 1973

Reiser, J. Sail Users Manual, Stanford A. I. Memo AIM 249. Stanford, Calif.: SAIL,
Stanford University, 1976.

Rulifson, J. F., Waldinger, J. A.. Derkson, J. A., "A language for Writing Problem c ~'ving
Programs," Proc. IFIP Congress '71, Ljubljana, Yugoslavia, 23-28 August 1971.

Sandewall, E. "Programming in an Interactive Environment the LISP Experience", ACM
Computing Surveys

Smith, R.L. TENEX SAIL, (Technical Report No. 248) Stanford, Calif.: IMSSS. Stanford
University, 1975.

Smith, Douglas K. "An Introduction to the List-Processing Language SLIP," ProgrammingSystems and Languages, cd. Saul Rosen. New York: McCraw-Hill, Inc., 1967.
G. J. Sussman, T. Winograd, and E. Charniak, "MICRO-PLANNER Reference Manual".

MIT AI Memo 203A, DEcember, 1971.

369

1

L

/

Sussman, G. J., A Computer Model of Skill Acquisition, American Elsevier Publishing
Company, New York, New York, 1975.

G. J. Sussman and D. V. McDermott, "Why Conniving Is Better Than Planning", MIT AI
Memo No. 255A, April 1972.

W. Teitelman, "INTERLISP Reference Manual", Xerox Palo Alto Research Center,
December, 1978.)

W. Teitelman. Toward A Programming Laboratory", Proceedings IJCAI3, Stanford
California, August, 1973, pp.l -Ba.

Weizenbaum, J. "Symmetric List Processor," Communications of the ACM, VI (September,
1963).

Weyhrauch, R. "Prolegomena to a theory of mechanized formal reasoning", Stanford A.I.
Memo, 1979.

White, J.L., "A Historical Perspective on MACLISP1

Winograd, T, Understanding Natural Language, Academic Press, Inc., New York, New York,
1972.

I

AI Languages

370

AI Handbook A I Programming Languages*

I. OVERVIEW OP LANGUAGE FEATURES
This overview article attempts to explain the motivation for having special AI languages in the first
place. Then, in the next four articles we will look more closely at various aspects of general-purposeAI languages. The purpose of the articles is twofold: to present some powerful AI programmingtechniques, and to show how they are embodied In some major A I languages.

The aspects covered are data representations, control structures, pattern matching capabilities andthe programming environment. Each aspect will be introduced by a few pages outlining important
general features, for Instance, data types, data bases and context mechanisms in the case of the data
structure aspect. An attempt will be made to motivate the inclusion of specific features in AI
languages, by discussing some of the applications they find.
Six AI languages are covered: basic LISP, PLANNER, CONNIVER, QLISP, SAIL and POP-2. In
each aspect article, the Introduction is followed by a survey highlighting Interesting points about
each language that fall under the that aspect. While the approach will be largely comparative, the
comparisons are Intended to bring out significant tradeoffs and alternatives rather than to tell the
reader which language is "best" or even best for a particular purpose. The latter sort of comparison
would be difficult and controversial, and of limited usefulness since most of the languages are of
very limited availability.

No previous knowledge of the languages is assumed here. Nor is any attempt made to help the
reader learn how to program in them. Experience in programming and familiarity with basic
concepts (e.g. data type, variable) will be very helpful but not absolutely essential to understandingthe discussion. At certain points features of AI languages will be contrasted with those generally
found in other computer languages.

,Readers wishing to do some A I programming would be best advised to consult with someknowledgeable person (assuming there is more than one AI language available to the prospectiveprogrammer, to begin with!) In general, the languages with less in the way of fancy A I features -LISP, SAIL and POP-2 - are more accessible, better supported, and faster running than the moreadvanced PLANNER, CONNIVER and QLISP. It would probably be best to start with one of
them.

1.1. Why Have AI Languages?

The Historical Overview article traces the development of the early AI languages in response
to the fundamental needs for list processing, recursion and symbolic (as opposed to purely numeric)
computation. This early development took place in the late 50's and early 60s. about a decade beforethe developmental period of the languages covered here (with the exception of LISP, which is an
early language but has remained in general use.) LISP. PLANNER, CONNIVER. QLSP, SAIL andPOP-2 all offer list processing, recursion and symbolic computation as basic facilities; indeed thesefeatures have spun off" and are included in many general-purpose computer languages developed
since the early 19605. r 6 6

371
)

Al Programming LanguagesAl Handbook

)

Our focus In these articles is on more advanced features, built on the basic features just mentioned.
These more advanced features represent in a sense a "raising of expectations" concerning what the
A I programmer should be able to expect from a programming language. In writing their programs,
A I system builders tend to use certain general methods such as, for Instance, depth-first search. If
the language had such methods embodied as language primitives, then the the programmer would
be spared the burden of coding them and could concentrate on higher-level issues. Also, a well-
chosen set will tend to lead the programmer to structure his/her thinking and programs In a good
style. PLANNER, CONNIVER and QLISP especially are attempts to Integrate a powerful set of
language primitives.

There has been a tendency for use of the more advanced languages to fall off In recent years, after
considerable Initial enthusiasm, and most AI programs are still written in the old standby LISP.
This phenomenon seems largely due to the restrictions that inevitably accompany the codification of
an (advanced Al) technique into a particular language, together with the inefficiency that results
from trying to make the language constructs as general as possible. As you can see, these two
constraints work against each other; the more general and powerful a language is made, the slower it
will run, and if generality is sacrificed In the name of efficiency, users are likely to find that the
language can't do what they want. Sandewall [sand7B] comments that PLANNER, CONNIVER
and QLISP are clumsy; the particular offerings of each satisfied few users, and they are not used
much anymore.

A programmer building up his/her own high-level constructs can hand-tailor them to do just what is
required for the idiosyncratic needs of his/her system, and no more, and optimize efficiency within
that range. It seems in principle impossible for an advanced A I language to match this. People
respond to this situation In various ways.

Use an advanced AI language anyway. Judging its convenience to be worth the
Inefficiency. (Though as said before, these languages are often inconvenient as well as
Inefficient.)

Write one's own special-purpose AI language, or borrow someone else s. Special
languages have been developed for application in robotics, production systems [rych76],
natural language parsing [yon parser language . from NL chapter], and
other areas Many rule-based systems, for instance MYCIN [yon applications] or
DENDRAL [yon applications], use an ad hoc domain-specific language to express the
rules.

Develop a new advanced A I language (and hope It will not be too Inefficient to use.)

Walt patiently, expecting that in a few years, computers will be fast enough that
Inefficient languages can be tolerated.

Work on an automatic programming system with the idea of eventually being able to

automatically choose an efficient Implementation of advanced AI constructs, [yon AP
chapter of Handbook]

i

372

Al Handbook Al Programming Languages%

1.2. How AI Programs Differ from Other Programs

The purpose of this section is to make general remarks about the peculiar characteristics of AI
programs, contrasting them with "ordinary" programs, in an attempt to provide perspective for the
special language features discussed in the four articles that follow.

From the start, it must be admitted that the class of "AI programs" is not clearly defined.

It is a matter of opinion whether MACSYMA [yon applications], for instance, is an AI program.
Here we will evade the Issue by sticking to things that are clearly AI.

Data Structure

We begin with remarks about data structures In AI. Some feeling for the difficulties of designing
data structures for an A I program may be gained by examining the Knowledge Representation
chapter of this Handbook [yon rep]. The common sort of structure known as a "semantic net" will
serve to illustrate.

As a first cut a semantic net can be represented by a set of records, one per node of the net, having a
field for each kind of link that can emanatefrom the node. But a host of difficult Issues soon arise,
exemplified below.

Perhaps there will be a large number of kinds of link, so that records are impractical.
In that case a property list, I.e. a list of property name-proerty value pairs, should be
used Instead.

Suppose we need to find all nodes having a certain kind of link; should there be an
Index?

How is inconsistency In the net to be avoided as new facts are added? E.g. if "Francis
isa man" Is already encoded, what happens when "Francis isa woman" Is asserted?

Given the difficulties with AI data structures, we would like our languages to help us as much as
possible, by offering a wide range of data types (each with appropriate operations and semantics),
facilities for dealing with large data bases, and the like. But to the extent that an AI language offers
standard data facilities, it will have to embody choices on difficult Issues such as those listed above,
nd it is not to be expected that the choices will be optimal for all applications.

Control Structure

Let us turn now to the control structure needs of AI programs. AI programs are generally quite
large and like most large systems, consist of many modules each carrying out a certain kind of

\ 373

Al Programming LanguagesAl Handbook

X.

subtask, and the subtasks have to be sequenced together so as to perform the whole task. How the
task can be divided up, and how the sequencing can be effected, are highly dependent upon the
control structure facilities offered by the language used.

In a typical block-structured language, modules must obey a strict calling heirarchy. At any point in
the execution there are very limited options as to what to do next, namely options that can be
accomodated by conditional statements (if-then statements, case statements, loop exit tests.) This
discipline becomes a Procrustean bed when applied to most AI programs. As an extreme case
consider HEARSAY-II [yon article In Speech chapter.] There, the action of one expert module
modifies the database (blackboard) and leads in unpredictable fashion to the activation of some
other module. The system is data-driven.

In HEARSAY-II each activation of a given module Is independent of its last activation. In other
systems it is common for modules to have an internal state which survives from activation to
activation. In control structure terms, several procedures must be suspended while another one runs,
then It suspends and control passes to one of the suspended procedures (selected somehow.)

j Pattern Matching

So far we have talked about the divergence of A I programs from other programs in two major
aspects: data structure and control structure. Individually each tends to be looser and more
complicated in AI programs, and there Is also a greater complexity in their interaction. On the one
hand the control structure becomes Increasingly "data-driven". On the other hand more powerful
operations for accessing data are introduced. A striking fact about recent AI languages is the
extensive use of pattern matching to mediate both directions of Interaction, and so we have taken up
pattern matching as a separate subject.

In our control structure example, HEARSAY-11. each module has a set of production rules [yon
somewhere where production rules are explained] whose condition part is a pattern. If some group
of syllables, words or whatever in the database match the pattern, the rule can activate.

In our data strucure example, the semantic net, It is common to think of the net as a graph (with

labelled edges), the retrieval pattern a graph of the same type, and the pattern matching process as a
subgraph isomorphism problem. That is all very well, but the best known algorithms for subgraph
isomorphism require exponential time so It is not practical as a pattern matching method.
Adjustments must be made, to get along with less powerful pattern matchers.

Programming Environment
;

From the discussion so far It should be apparent that AI programs are not easy to design and debug.
This brings up the fourth aspect on which we will compare AI languages, their programming
support facilities. Because they usually are developed as a research project, AI programs tend to
undergo drastic revisions. They are also quite large so the programmer cannot keep everything

I

374
)

%

t A

Al Programming Languages

straight just In his/her head. A I languages have pioneered in the interactive mode of programming.
Considerable effort has gone into the development of extensive programming environments for some
of the major AI languages, providing editors, trace and debugging packages, and other aids in the
construction of large complex systems.

1.3. Languages Covered

High-level computer languages tend to fall into two broad classes. The "ALGOL-like" or block
structured languages are commonly recognizable by the many "begin" and "end" statements,
delimiting blocks, which their programs contain. These languages usually allocate space for
variables, arrays and other data at compile time, so that once a program is compiled the space
available for Its data "Is fixed. The nested structure of blocks Is used to define the scope of program
variables, that Is, the region of the program in which they are accessible, and similarly defines which
procedures can call which other procedures. Only one of the six languages, SAIL, is of the block-
structured type.

SAIL (Stanford Artificial Intelligence Language) resulted from extending ALGOL 60 with an
associative database and real-time and multiprocessing capabilities. Its applications are chiefly in
vision and speech research (plus a good deal of non-AI application.) SAIL Includes some list-
processing data types and these have dynamic allocation (see below.)

The "LISP-IIke" or characterized by dynamic allocation and dynamic scoping. Dynamic allocation
means that the space to be used by a data object is not fixed ahead of time, but is allowed to grow
and shrink as needed. Dynamic allocation is almost essential for list-processing. Dynamic scbping
means that any procedure can call any other, and variable values are passed down the control chain
rather than being determined by the static block structure. That is, once a variable Is declared or
otherwise allocated In. say. procedure A, It can be accessed from within any procedure B that A calls,
or C that B calls, etc,, regardless of where A, B and C appear In the actual program text. LISP-like
languages are usually Interpreter-based and may have a compiler also. LISP, PLANNER.
CONNIVER and QLISP are all LISP-like languages. Indeed they are all built upon LISP itself In
some way.

LISP is one of the very oldest A I languages, dating back to about 1959. It introduced many ideas
fundamental to later AI language designs, and In various dialects it is still the most widely used Al
language. To avoid confusion of dialects, we speak of "basic LISP" which corresponds roughly to
the LISP 1.5 defined in 1962 [mcca62] [weis67] [yon LISP article!
PLANNER Is a problem-solving language that carries out automatic deductions from a database of
assertions and theorems to satisfy some goal. The PLANNER ideas were developed by Carl Hewitt
at MIT, and a subset of them were actually implemented in 1971.

Al Handbook

375)

Al Handbook Al Programming Languages

*

I

CONNIVER was developed at MIT shortly after PLANNER and largely in reaction to it.
CONNIVER is basically a problem-solving language, very similar to PLANNER in some respects
but Intended to correct the perceived excesses of PLANNER. Its data structure and control structure
are more flexible. Neither PLANNER nor CONNIVER are much used any more.

QLISP is also a problem-solving language, developed at SRI independently of PLANNER and
CONNIVER. It relies heavily on data base methods and a powerful pattern matcher to solve
problems.

POP-2 shares characteristics of both classes, In most respects closer to LISP than to ALGOL. It
features a small and flexible core language, reminiscent of basic LISP but with more data types, that
can be extended In different directions by library packages. POP-2 was developed at Edinburgh
and is the major A I language used in Britain.

With the exception of LISP all six languages were developed In the late sixties and early seventies
and have reached a more or less mature form as of now. Significant AI programs have been written
In each of the six languages and those not still in active use have at least been highly influential.

By no means is our list of six exhaustive. Rather than try to give a complete survey and comparison
of languages used in A I we restrict this discussion to the small group of major ones intended for
general application in AI. We have not included any of the newer languages that are still in process
of development or have not seen sufficient use to make clear what is most important about them.

We will now take up the four chosen aspects of A I programming technique one by one, in more
concrete detail, and show how each language provides some of the techniques as standard language
features. Keep in mind that the language features are seldom at the level of global system structure,
eg. heuristic search or cooperating expert modules. They are more like building blocks. An
exception is PLANNER, which provides the global structure of goal-driven backtracking; but as we
shall see, that leads to problems.

376
;

%

1

Al Programming Languages

11. DATA STRUCTURES

11.1. MOTIVATION

The general goals of a data representation are

1. To mirror certain entities which the programmer has in mind, in a natural
convenient way.

and

2. To be efficient In storage space and in the time required to operate on the data.

These goals often come Into conflict. In artificial Intelligence programs, the entities concerned tend to
be rather large and complicated when represented as data structures. But complex data structures
are inefficient, so there is a tendency to sacrifice some naturalness and convenience in order to make
do with simpler data structures. The data structure offerings of various languages may be viewed as
compromises seeking some kind of optimum. In the context of AI languages we will discuss three
data structure Issues: data types, problems of storage and retrieval in large data bases, and division
of the data base into contexts.

11.2. Data Types.
1

Every computer language offers a selection of data types. Since the beginning, AI languages have
Included some "list" data type or types because of the fundamental Importance of list processing in
A I programs. We won't say much about list data here, since all six languages have quite similar list
structures and operations (with the exception of SAIL which is somewhat deficient.) The reader is
referred to [yon LISP article], [yon Hist Overv. article] for further discussion of lists in AI.

Here, our main concern will be with new data types that some of the languages have introduced,
including

set

bag (like a set, but with repeated elements)

tuple (basically a list of fixed length. A tuple with 2 components is
an ordered pair, for Instance.)

record (like a tuple but its components are accessed by name, sothe programmer need not keep track of their actual position.)

function (a procedure treated as a piece of data. See below.)

Al Handbook

377;

Al Programming Languages

Some languages also allow the user to define his/her own data types.

The function (or procedure) data type is of particular Importance. The reader may be puzzled what
It means to say a function is a datum. Basically, a the datum used is a pointer to some internal
representation of the code of the function. In LISP, that internal representation would be list
structure. Programs can manipulate the function in various ways, such as assigning a variable to
the pointer value, passing the pointer as a parameter, or modifying the function's code. And when
desired, the function can be applied to some arguments and executed. The many uses of function
datums will be Illustrated below. All six languages offer them in some form.

Data Base storage and retrieval.

In the last decade there has been a shift away from AI systems built around general problem-solving
methods to systems that rely on a large knowledge base and relatively weak problem-solving or
inference methods, [ref Feigenbaum's Knowledge Engineering paper in SIJCAI.J Accordingly, there
is a growing concern with questions of how to organize and access large data bases. The term
"knowledge base" indicates that these A I data bases are not merely big files of uniform content.

The ideal from the programmer's point of view would be an A I language and supporting system
able to retrieve data according to any specification that might be constructed by his/her program.
Thus a detective program might request a list of all white males in Los Angeles between 59" and
5' II" In height with red hair who work at an auto garage. The programmer would also like the
language system to perform certain updating and bookkeeping tasks, even to the extent of
automatically detecting inconsistencies in the data base. Most of this remains a dream. There are
severe limits on how much a language can do without becoming hopelessly inefficient (or perhaps
too complicated to design In the first place.) The six languages covered here have all stopped at some
compromise set of- data base features which are supposed to be of considerable utility, yet feasible to
implement. If a programmer wishes his/her program to have a data base In the form of, say, a
semantic net (which none of the languages offer), [yon Representation chapter] then he/she will have
to construct the semantic net primitives from whatever data base primitives the language does
provide.

The selection of a good set of data base primitives is crucial. There is still much debate on the
relative utility of alternative schemes. One common scheme is multiple indices. Incoming data are
indexed by several of their attributes, for instance author, title and subject if the data are books, and
the retrieval process Is simple and fast. An attribute and its value are specified; the system looks in
the appropriate Index, finds the entry (if any) for that value, and retrieves all items listed for that
entry.

McDermott [mcde7s] argues that multiple indexing can be Implemented efficiently even when the
data base is split Into contexts (see below) and proposes a detailed scheme for doing it.

A more advanced scheme which was introduced by Carl Hewitt in his PLANNER language, and
has spread widely since then, retrieves according to a pattern - a sort of structural sketch of an item,
with some pieces left undefined. The system retrieves all Items that fit the general pattern.

Al Handbook

378

Al Handbook Al Programming Languages%

i

I

Implementation must be done carefully, though. The simpleminded approach of scanning the entire
data base testing each item against the pattern - the British Museum algorithm - is out of the
question for really large data bases.
Beyond pattern-directed retrieval one can speak of "semantically-directed retrieval" in which items
are somehow selected by their meaning, rather than their explicit structure. One can also raise
legitimate objections to the whole idea that data bases should consist of a set of separate items. We
will leave these Issues aside, since none of our six AI languages have attained such a level of
sophistication, [yon Knowledge Representation chapter.] There Is, however, one quite standard
technique which starts to move away from the crude notion of a set of items. This Is the division of
a data base Into contexts, which will be introduced at some length now.

Contexts

The basic idea is to replace the global data base with a tree of distinct data bases called contexts.
See the figure. The reason for arranging contexts in a tree,rather than a line or graph or whatever,
has to do with the usual Interpretation placed on them, that they each represent a distinct state of
the world or set of assumptions about it. As the world changes or new assumptions are made, a
context naturally gives rise to "descendant" contexts which differ slightly from each other and from
their common parent. Conceptually, each context is a full data base in Its own right; In reality most
of the Information In a given context will be the same as in the (parent) context just above it, so to
save space only the differences are actually stored. The root of the tree, of course, must really be a
full data base.

379

Al Handbook Al Programming Languages

\

I
Figure n.

Contexts are very useful in hypothetical reasoning. One instance is robot planning; here the robot
can simulate alternative sequences of actions, creating contexts to represent the states of the world
that result. If the consequences of an action are undesirable, the robot planner can delete the
context and try something else. (The robot has to simulate the actions, because the real* world does
not allow you to "take back" an action once you do it.) We need to introduce some terminology for
operations on contexts. To begin with, a process at any given time is using one specific context as its
data base. This is called its current context and it is said to be "in" the current context. Referring to
the figure, assume the current context is A and no other contexts exist yet. We will illustrate each
term by its effects on the tree in the figure.

PUSH Create a new context as a descendant of the current context, and enter it.
Initially the contents of the new context are identical to its parent. If we PUSH, in the
figure context B Is created and becomes the current context. Suppose we PUSH again;
now C Is created and is the current context.

SPROUT <cxt> Like PUSH, except that the new context is a descendant of the
designated <cxt> and Is not automatically entered. SPROUT A creates E; and
SPROUT B creates D. We are still in C.

POP The inverse of PUSH. Move up the context tree to the parent of the current
context. POP may be destructive, i.e. the current context may be deleted. POP puts us
back in B.

380

Al Handbook Al Programming Languages»

i

SWITCH <cxt> Leave current context and enter the designated context <cxt>.
SWITCH E makes E be the current context, i.e. puts us in E.

DELETE <cxf> Delete the context <cxt> and all its descendants. DELETE B deletes B,
C and D.

We now discuss the data structure features of the individual languages.

11.3. LISP

Basic LISP has little in the way of sophisticated data facilities, but provides a flexible base on which
they may be built.

As described in the Handbook article on LISP [yon LISP article], the original LISP had only one
data type, namely list structure built up out of cons cells and atoms. This makes for a simple and
elegant language, but at considerable cost in efficiency and readability. A list-structure representation
of arrays, for Instance, Is highly inefficient; and the access of Its elements by a chain of car and cdr
list selector functions is somewhat opaque to the reader of a program. To supplement lists, later
versions of LISP have tended to add more and more data types. Integer, real, string, array and
record types are more or less standard Many versions also allow the user to define new data types.

LISP was the first computer language to represent functions (procedures) as data in a practical way.
Function are denoted by LISP lists of a particular format called the "lambda expression." [yon LISP
article.] Treating functions as data was one of the major pioneering ideas of LISP, and its influence
will be seen In. most of the other AI languages here discussed, [yon LISP artiqle for more ,on
Importance of functions-as-data in LISP.] As an example of the power it gives, a robot planner
could take its functions for moving and for picking up. extract the LISP code for MOVE(here, A),
PICK-UP(OBJ). and MOVE(A, here), and combine the pieces of code to form a single function
FETCH(A, OBJ). Thus the robot has added to its own repertoire of actions.

LISP provides a database facility of a crude sort through the property list. Every atom has attached
to It a list of property-value pairs, for Instance, the property list of atom K2 might include property
RANGE paired with value HIMALAYAS. The main deficiency of property lists as a database
mechanism is that they are Indexed only one way; given atom K2 we can retrieve all its property-
value pairs (or Its value for any given property), but we cannot efficiently retrieve all atoms having
RANGE property HIMALAYAS.

Pattern-matching data retrieval and context mechanisms do not exist in basic LISP, though as we
shall see they are relatively easy to include in languages built on top of LISP. The recursive
structure of LISP Is especially well suited to implementing pattern matchers [yon LISP article on this
score.]

381

Al Handbook Al Programming Languages

1

11.4. PLANNER

Simple PLANNER data types Include all of those supported by MACLISP.

PLANNER was the first language to implement a general format associative database. The
particulars of PLANNER'S database stem from PLANNER'S theorem-proving semantics, in which a
theorem that can prove a fact is just as good as having the fact explicitly stored. The global
associative database can store two semantlcally different classes of data items. The first class is
'assertions' which are LISP lists. Their elements may be of any MACLISP type. All assertions in
the database are assumed to be true for purposes of PLANNER'S automatic deduction control
structure. But beyond that, assertions are treated merely as lists with no inherent semantics. Thus,
either (RED MARS) or (MARS RED) or even (MARS IS RED) could have the same meaning, if
the PLANNER program Is written so as to manipulate them appropriately. Some example
assertions are:

(COLOR GRASS GREEN) (HOT SOUP) (LOCATION PUMP-BASE (10 4 50))
(THIS IS A LONG ASSERTION)

The second class is procedural data in the form of 'theorems' which typically state when they can be
Invoked and what their effects will be. (theorems are further explained In the Control Structure and
Pattern Matching sections).

Assertions are explicitly added to the database by an ASSERT operation, and deleted by ERASE.
They may also be added Implicitly: whenever an assertion is added to or deleted from the database
it may trigger off certain PLANNER theorems to perform updating operations or consistency checks.
More will be said about these "antecedent theorems" or demons in the Control Structure section.
PLANNER theorems can also be added and deleted in the database, but this is seldom actually done
by a PLANNER program.

«

For some time the only context mechanism in PLANNER was the one used by the automatic
backtracking mechanism (see the Control Structures section). This restores the context of a failure
point each time It Is returned to. Later Implementations of PLANNER context mechanisms of the
kind Introduced by CONNIVER.

U.S. CONNIVER

It is sometimes helpful to view CONNIVER as a restructured and extended PLANNER. Both are
built on MACLISP.

All the PLANNER data types are carried over to CONNIVER, with three Important additions.

1. Possibility lists 2. Tags 3. Context tags.

382

Al Handbook Al Programming Languages%

\

\

A

Possibility lists and tags are discussed in the Control Structure article of this chapter. Possibility lists
are used during fetch operations on the database, and tags are used for jumping from one process to
another In CONNIVER's generalized control structure. Context tags are used to designate contexts,
which we will discuss shortly.

The data base facilities of CONNIVER are virtually identical to those of PLANNER. Again, the
data base contains assertions and theorems (called methods in CONNIVER) which are all assumed
to be true, and which are accessed by pattern-match.

The only Important difference between the PLANNER and CONNIVER databases is that
CONNIVER's database Is organized into contexts.

The global variable CONTEXT holds the context tag of the current context. By storing tags for
other contexts and then reassigning CONTEXT to one of them, the program switches its context.
Context tags are generated by standard functions:
(PUSH-CONTEXT <contaxt tag>) sets up a new context as a direct descendant of

<context tag> and returns a context tag
representing It.(POP-CONTEXT <context tag>) returns a context tag representing the direct
ancestor of <context tag>.

Other context functions are not described here.

CONNIVER has the most fully-developed context mechanism of our six languages. Some context
mechanisms were Implicitly present in PLANNER, but were tied to the backtracking control
structure and Inaccessible to the programmer. CONNIVER made them explicit and also permitted
general switching from any node on the context tree to any other, more general than the strict
.heirarchical movement done during PLANNER deductions. In terms of search methods,
CONNIVER programs can execute a breadth-first or best-first search* (or any other kind; [yoi? '
Search chapter]) whereas PLANNER programs are constrained to a depth-first search.

11.8. QLISP

QLISP has a wide range of data types. All the data types of INTERLISP are available In QLISP-These Include integers, reals, strings, list, pointers, arrays of any of the previous types, and recordswith fields of any of the previous types. The user can define new data types, also.

The unique data types that QLISP provides are TUPLE. VECTOR, BAG, and CLASS. Thenames are a bit confusing. VECTORS correspond to what we called "tuples" in the introduction to
this chapter. TUPLEs are just like VECTORS except that their first component Is a function. A
CLASS Is a set. A BAG is a bag. For two QLISP objects to be equal they must be of the samedata type and have the same components. In the case of CLASS and BAG, the order of the
components does not matter. Here are some examples:

383

Al Programming LanguagesAl Handbook

\

a.

(TUPLE F A) * (VECTOR F A)
(VECTOR ABC) 4 (VECTOR BA C)
(CLASS BC A) - (CLASS ABC A)
(BAG AAB C) = (BAG CAB A) * (BAG ABC)
(BAG C A) * (CLASS C A)
(BAG B (CLASS C A B C) A A) = (BAG B A (CLASS C A B) A)

Every datum stored in the database is first transformed to a canonical form, such that any two
datums which are theoretically the same, like (BAG B A A C) and (BAG C A B A), will map onto
the same canonical representation, in this case (BAG A A B C). Pattern matching is greatly
simplified. In theorem-proving, for example, a bag is the natural representation for the operands of
functions such as PLUS where repetition Is important but order is not. QLISP easily can prove that
(PLUS (BAG A B C D)) is equal to (PLUS (BAG C D B A)) by canonicallzing the BAGs. since
the two expressions then become identical. Canonical representation also allows QLISP to use two
unique database methods.

First, the entire database Is stored as a discrimination net. [yon Representation chapter to explain
what a dlscrlm. net is. If It does.] Only the canonical forms are put in the net, making It feasible to
search the database In a uniform top-down manner. Retrieval in general, and especially pattern
matching, Is thereby simplified.

QLISP unfortunately stores every subexpression of an item as a separate Item In the discrimination
net, and suffers from excessive use of space.

Second, since every object Is uniquely represented, a property list Just like that attached to atoms in
LISP (atoms are all uniquely represented in LISP!) can be attached to every object in the database.
In LISP, only atoms are uniquely represented and only atoms can have a property list. Here is a
QLISP property statement.

(QPUT (TUPLE PHONE-NUMBER-OF MIKE) LENGTH 7).-

The example statement adds a TUPLE representing Mikes phone number into the database, if It
Isn't already there, and says that the LENGTH property of the number has value 7. Object
properties provide an elegant solution to the problem, from which PLANNER and CONNIVER
suffer, of being unable to distinguish the mere presence of a statement in the database from its truth.
In QJLISP. truth or falsity is indicated by setting the MODELVALUE property of a statement to be
T or NIL. Thus, to claim it is true that grass is green, execute

(QPUT (VECTOR COLOR GRASS GREEN) MOOELVALUE T)

For automatic Inference and updating of the database, if-added and If-removed demons similar to
those of PLANNER and CONNIVER are available In QLISP.
Context mechanisms were developed In QA4, ancestor of QLISP, Independently of CONNIVER.

"~

' : : -—————-

■—

—: .1

384

f

\

%

\

J

Al Handbook Al Programming Languages

11.7. SAIL

SAIL has three categories of data types. First there are the types inherited from ALGOL, namely
Integer, real, Boolean, string, and arrays. Second, the user can define record types, in which the
components of a record are specifiable as any of the above types or as (the same or different) record
type. Records are especially important in AI applications because they can serve as building blocks
for list structures. The cons cell of LISP is essentially a record with two components (car and cdr),
whereas SAIL records can have any number of components. More general list structures can be
built. However, the LISP approach has the advantage that standard functions are available for
searching lists, deleting, from lists, appending lists etc. In SAIL these must be defined by the user.
Some LISP dialects offer a record package, too. The third data category is the most interesting, the
items of SAIL's associative database mechanism.

Items were the major feature of the earlier LEAP language, which was incorporated in SAIL. The
motivation for LEAP was to Implement an efficient software scheme for associative processing, or
the accessing of data by partial specification of its content rather than by the address of the storage
location it happens to reside in.

An Item is either a primitive identifier (atom), or a triple of items. Triples are formed by the
association of three items, like so:

Attribute " Object i Value

Here are examples of associative triples:

COLOR " MARS i RED
CLASS " RED i COLOR
SATELLITE " MARS s PHOBOS
SATELLITE " MARS i DEIMOS

Notice that Items are not restricted to any one position in associations, nor does the Value have to be
unique. In fact the labels "Attribute", "Object" and "Value" are mere conveniences with no special
significance. Associations can themselves be items:

DISCOVERER " [COLOR " MARS I RED] ■ ANONYMOUS
Associations are created and removed from the global database by the statements:

For efficiency reasons the internal representation of each item is kept down to one PDP-IO word,
causing difficulties when one wishes to have an item that is, say, a large array. As a somewhatawkward solution, each Item can have an attached "DATUM", which is stored separately and can be
of any ALGOL type. A further difficulty comes from the fact that associative triples can themselvesbe Items. At 36 bits per word, this implies 12 bits to address an Item, and an allowable total of only
2 or 4096 Items. For large data bases that would not be enough.

MAKE <Iteml> " <Item2> i <Item3>ERASE <Iteml> " <Item2> i <Item3>

385
f Al Programming LanguagesAl Handbook

\

\

L

Associations In the SAIL data base are triply indexed and can be retrieved quite efficiently.
Retrieval statements will be explained in the Pattern Matching section. There are no automatic
updating or consistency checking facilities for the SAIL data base.

11.8. POP-2

POP-2 has a quite rich collection of data types. Many of them are standard special cases of more
general types, as Indicated in the table below.

Integer , .
Boolean (0 means false, anything else means true)

real
strip (sequence)

string (strip of characters)
record

pointer
atom
ordered palr(Hke the LISP cons cell)
11st

word (It has 8 components which are all characters)
function

array

Data types are classified as "simple" and "composite". Integer, Boolean, real, pointer and atom are
simple, the rest are composite. User-defined data types are allowed.

POP-2 has the helpful (to clarity and ease of programming) property of treating all data types in p
uniform way. Data of any type can be used:

as the actual parameters of functions

returned as the results of functions

assigned to variables of their type

tested for equality.

Components of composite data types are always accessed by four kinds of function llustrated below
for the type "list". In the case of user-defined types, the user must supply the four kinds of function.
Note that the destructor function shown here produces two outputs. In general, POP-2 functions
can produce multiple outputs. Also note that the selector and the updater have the same name.
This Is quite common.

386

Al Handbook Al Programming Languages
%

\

Kind of function For lists

constructor cons(x, (y z)) = (x y z)
destructor dest((x y z)) = x, (y z)
seloctors hd((x y z)) = x, tl((x y z)) = (y z)
updoters hd(MY_LIST) - x, tI(MY LIST) ♦" (y x)

Now MY LIST = (x y x).
I

Associative database and context facilities are not part of the basic POP-2 language but there exist
libraries which provide them. LIB HBASE provides for two-place associations rather similar to
SAIL's except for being only pairs, not the more flexible triples. Pattern-matching retrieval may be
done In HBASE; see the Pattern Matching section. Limited context facilities are found in LIB
CONTEXT, which is compatible with LIB HBASE.

11.9. SUMMARY

Under the heading of data structure, we have discussed three main subtopics: data types, large
database facilities,and context mechanisms. We now take these up one by one, for an overall view.)

Data Types

The languages vary considerably In the number and kind of data types which they offer. Basic
LISP is at one extreme: It began with exactly one data type, and a few supplementary ones were
.added later. Advantages of a sparse set of data types accrue mostly to the writers of compilgtand
interpreters, whose Job Is simplified because there are fewer operations md less need" for^type-
conversion. Also, the relatively small compilers and interpreters produced help conserve available
core space. From the user's point of view there is little to recommend such a small set of data types,
except that It (almost) removes the need for type declarations.
Later versions of LISP such as INTERLISP and MACLISP, and to an even greater extent the
languages QLISP and POP-2. have provided rich sets of data types and the access functions that go
with them. Programming is easier because the data structures can more closely mirror the
programmer's ideas, and type-checking becomes available. Efficiency Is enhanced because the
standard data types can be implemented closer to the machine level than equivalent structures built
of more primitive units. For example, a SAIL or POP-2 record uses fixed-offset fields and avoidsthe overhead of the pointers needed In an equivalent LISP list structure.

A related issue Is whether to allow user-defined data types. The adavantages are similar to thosediscussed In the previous paragraph. However when user-definability Is made available, as in POP-2. It tends to be little used. Probably the main reason is simply the extra effort required from the
user (who has to define all the primitive operations on his/her new data type, remember!) User-
definability also results In "unique" programs that other people may have difficulty understanding.

387

Al Handbook Al Programming Languages

\

Large Data Base Facilities

Data base facilities were present in a crude form in the LISP property list feature. The next "level
of complexity" is represented by the multiple Index scheme of SAIL associations. Next above the
use of fixed-form associations is the structural pattern-match as a general retrieval mechanism, found
In PLANNER, CONNIVER and QLISP. Appropriate retrieval Is somewhat hampered in
PLANNER and CONNIVER because they cannot attach properties to assertions as QLISP can.
PLANNER also keeps the possibilities lists hidden from the programmer, who has always to operate
at the goal level even though it may be inefficient to do so.

I

A higher level of complexity Is indicated in the various "frame" proposals, focus-of-attention
mechanisms, and other techniques in an experimental stage, [yon Representations chapter], [yon
some Individual lang. articles.] Our six languages do not include any of these.

Context Mechanisms

Context mechanisms may also be arranged in a loose ordering of complexity, starting with the
scoping rules which virtually all languages have. These provide a^new "context" whenever a new
function or block Is entered, and restoration of the previous "context" upon exit. This basic level of
contexting Is extremely useful in programming practice. Next comes the ability of a program to
push and pop contexts on demand, whenever they are needed, rather than in rigid correspondence
to the structure of the program. QLISP [In both these forms, the contexts existing at any given time
are simply those In the direct line from the global context down to the current context.
CONNIVER Is more advanced and allows a whole tree of contexts to exist, with freedom for the
program to sprout new contexts below any existing context and to jump around arbitrarily between
contexts.

\

To sum up very briefly, LISP introduced a simple and flexible data type and a way to represent
functions as data. PLANNER introduced the general associative database, and CONNIVER
Improved it by the addition of contexts. QLISP increased the power # the database by defining
special data types and putting everything in a discrimination net. SAft. went In another direction,
developing an efficient multiple index scheme. POP-2 showed how a wide range of data types can
all be treated In a very clear and uniform way.

388

AI Handbook Al Programming Languages
%

)

J

111. CONTROL STRUCTURES

111.1. MOTIVATION

The most Important of the AI control structures we will discuss is coroutining. The central Idea here
is to relax the strict control helrarchy found in most languages (including LISP), in which every
procedure runs for a while, then returns control to the procedure that called It, and vanishes.
Coroutines are procedures that can pass control (note we do not say "return control") to any other
coroutine. Furthermore, the coroutine need not vanish; Instead it can suspend itself, and later
continue from where It suspended.

We now need to introduce a lot of terminology. First of all, it is speaking loosely to talk about
procedures or coroutines suspending or vanishing; a procedure is a piece of code. To draw the
distinction, an instantiation or execution of a coroutine will be called a process. A process can
suspend, so its current state must be saved - the values of its variables, and which statement to
resume execution at. Initially there is only one process, and it can create new processes. This
corresponds to a procedure call in the heirarchical regime. Once it is created, a process can be in
one of three states: running, suspended or terminated. If control is transferred to the process when it
is created, then It Is running; otherwise it is suspended. A running process can resume or activatesome other process. I.e. pass control to the other process, causing itself to suspend. While a process is
suspended Its state is preserved but nothing happens. A running process can also terminate as itpasses control to another process. Terminated processes usually vanish as in the strict heirarchy
scheme, but in certain cases their state will linger on. (Cases in which some other process is stillusing the yariablebindings of the terminated process.) A

Bobrow and Wegbrelt [bobr73] provide a formal and clear model for general coroutining in terms
of stack frames, which also can be efficiently implemented. Their model unified the various types of
procedural interconnections seen in previous AI languages (e.g. recursion, coroutines, generators,funargs, funvals). Each process is represented by one stack frame, which contains the process stateand links Indicating where control was passed from and where the values of free variables are to be
obtained. We will not discuss control at the implementation level, but curious readers should startwith this paper.

The generator is one common special kind of coroutine. Generators are used when a potentiallylarge set of data may be produced by a function (like matching the database) but only a few at a
time are needed. A generatorproduces one item and then suspends. When a process needs anotherpiece of Information it resumes the generator. The generator returns a new piece of informationand suspends again. A generator always returns control to the routine that activated it. Thiscontinues till there are no more items to produce, and the generator terminates.
In a coroutining regime, only one process is running at any given time. There can be a considerableamount of communication and cooperation between processes, but it Is rather awkward since ProcessA must suspend itself In order to pass information to Process B. In a multiprocessing regime, many

389

f Al Programming LanguagesAl Handbook

\

L

processes can run at once, and freely pass messages back and forth. (In actuality, there may be only
one process executing, with rapid switching among the set of "running" processes. Or the processes
may in fact execute simultaneously, on different processors.) SAIL is the only one of our six
languages that allows for multiprocessing; with the declining cost of computers there is Increasing
Interest In languages for multiprocessing and some of the newer AI languages reflect this

I

Coroutining and multiprocessing only provide more flexibility in the flow of control, without
assisting in the problem of determining where control is to flow next, during a process. The usual
method for this Is a conditional statement (If or case statement) that chooses one of a few
predetermined directions. Several of the six languages provide a much more powerful method,
pattern-directed Invocation, described in the Pattern Matching section of this article.

Another important control concept is the demon. Implementations differ, but in concept a demon is a
kind of suspended process, that is waiting for a certain kind of event to occur (for Instance, a certain
kind of update operation on a database). When such an event occurs, the demon is activated
automatically, performs its job, whatever that may be, and either terminates or suspends In wait for
the next event. Typically, demons are used to make inferences as new information comes in, or
perform bookkeeping tasks of some kind, or recognize significant occurrences.

)

Basic LISP completely lacks coroutining or multiprocessing facilities. LISP control structure is suited
to A I programming mainly by its emphasis on recursion. Recursive procedures/functions are often
nearly essential in A I tasks; examples are pattern matching, tree searching and parsing. For further
discussion of recursion and Its importance in AI programming, see [yon AIH article on LISP], . ..
Recursion allied with LISP's dynamic scoping rule allows functions to be used by other functions in
a "context-free" manner: a function's behavior depends only on its arguments and the values^which
Its free variables have when it is called; the context in which the function was originally defined is
not significant. Furthermore, any function is allowed to call any other function. This freedom
makes It easier in many cases to put together separate modules to form an AI system.

The "FUNARC" mechanism of LISP permits functions to be used in a context-dependent or
history-dependent way when desired. A FUNARG consists of a LISP function together with an
environment (an environment is like a context; see [yon Data Structures article]) that the unction, so
to speak, carries along with it. Various things can be done with FUNARGS; for example, they can
be _sed to implement generators. Suppose we tried to write a generator as an ordinary LISP
function. We would define a function that generates Just one Item each time it Is called and changes
the state of the generation process by updating a free variable. Here is such a generator for
square numbers. (If you are unfamiliar with LISP programs you may wish to refer to [yon article
on LISP].)I

111.2. LISP

390

Al Handbook Al Programming Languages%

">

NextSquare: (LAMBDA NIL
(PROG NIL

(SETQ N (ADOI N))
(RETURN (TIMES N N))))

NextSquare uses the free variable N to hold the state of the generation. If initially N-3 and we call
NextSquare repeatedly, we will get the sequence 16, 25, 36 But NextSquare is not really a
generator, an independent process, because if any function happens to use a variable called N
locally, and calls NextSquare, NextSquare will use the local value of N and the sequence will be
disrupted.

A true generator results when we construct a FUNARG which consists of a function (NextSquare)
and a pointer to an environment (in which N has some initial value, say 3.) Call the FUNARG
GenSquare. If we repeatedly evaluate (GenSquare) we get 16, 25, 36, ... as before, only GenSquare
always uses that N which is in it's specified environment, and so is unaffected by local versions of N.
We could contruct another FUNARG with NextSquare and a different environment, in which N
has a different Initial value, say 8. Call It GenSquare2. GenSquare2 will generate its own sequence
81, 100, 121, ... totally Independently of CenSquare or anything else. In general, FUNARGs act
much like coroutines; they "activate" when their function is called, "suspend" when It exits. Unlike
general coroutines, FUNARGs always return control to the function that called them.

i

CONNIVER has a control structure very much like LISP's, with the addition of full coroutining
facilities. PLANNER extends the LISP control structure in a completely different direction.
PLANNER is somewhat like a backtracking version of LISP - functions call each other recursively
as in LISP, but when a function fails (returns NIL) it is automatically called again using the next
possible argument value. This continues until either the function succeeds or all arguments fail.

$

111.3. PLANNER

The control structure of PLANNER is very interesting and we will have a lot to say about it. The
fundamental point to keep In mind is that PLANNER is always goal-directed Functions are Invoked
because It looks like they may cause a goal to be satisfied, not because some other function called
them. PLANNER functions simply do not call each other; they Just state a goal and the system
chooses a function to apply towards that goal.

A rather strong analogy may be drawn to the control structure of GPS [yon Search chapter GPS
article]. Both systems completely separate domain-dependent information from the control structure
and use a uniform depth first search to solve problems. In both systems the problem is represented
by a goal to be reached or established. The starting point is different, however; GPS is given a
single Initial object (which may be thought of as the state of the world) which It tries to transform
Into the goal object. PLANNER is given a whole database of facts and tries to prove that the goal
follows from them. Thus GPS's paradigm is actions on the world, PLANNER'S Is theorem-proving.But the actual methods they use are more similar than this might suggest.

">

I

(

A I Handbook Al Programming Languages

Each first will check to see if the goal is equal to the initial state (or some fact in the
database.) If not, GPS looks for an operator that will reduce the difference between the
goal state and the initial state, and PLANNER looks for a "theorem" which can prove
the goal from the database.

I

Each then sets up subgoals. For GPS, these are to transform the Initial state into
something that the chosen operator can apply to, and to transform the result of the
operator into the goal. The whole GPS method is applied recursively to these two
subgoals. PLANNER theorems can set up any number of subgoals, namely whatever
facts must be established before the theorem will imply the goal. Again, the whole
PLANNER method is applied to each subgoal.

I

If at any point a subgoal fails, both GPS and PLANNER will backtrack and try to
apply a different operator or theorem.

The net result is a depth-first search of an AND-OR tree (OR nodes wherever there is a
choice of operators or theorems; AND nodes for the subgoals induced by each operator
or theorem.)

) Please note that both the GPS and PLANNER control structures were simplified for expository
purposes. The closing paragraph of this section mentions a few complexities of the PLANNER
control structure.

In addition to the goal-directed or "consequent" theorems PLANNER programs can have
"antecedent theorems" which are a species of demon and trigger when facts are added to the
database or deleted. (GPS has nothing analogous.) They can modify the database in arbitrary ways,
generally filling out implications of a new fact or doing some kind of cleanup. Deductions which
would have to be made anew each time a goal called for them can be done just once by an
antecedent theorem, as in the following example. Supposea common goal is to establish"that,so-and-
so is mortal. A consequent theorem for this would read

(CONSE (MORTAL ?X) (GOAL (HUMAN *X)))

1.c., it will prove that something Is mortal if you can satisfy the subgoal of proving that it is human.
Alternatively, write

(ANTE (HUMAN ?X) (ASSERT (MORTAL -X))).

Now, if an assertion such as (HUMAN Me) is added to the database, the antecedent theorem
activates and causes (MORTAL Me) to also be added.

Here is a more extensive example of PLANNER in action. Suppose we have a consequent theorem
giving one set of conditions under which an object can be deduced to be broken:

(CONSE (BROKEN ?X)
(GOAL (FRAGILE -X))
(GOAL (HEAVY ?Y))
(GOAL (ON *-V -X)))

391

392

AI Handbook Al Programming Languages
%

I

And a database containing the following assertions, among others:
(HEAVY Jumbo) (FRAGILE Violin) (ON Jumbo Teacu») (FRAGILE Teacup)

Now let's see what happens when a PLANNER program executes:
(GOAL (BROKEN ?V))

It will first scan the database looking for broken things, then use consequent theorems to deduce thatother things are also broken. The backtracking search produces the tree below.

PLANNER does pure depth first search [yon Search chapter]. In the tree shown above, search

/\ match to conse theorem, v«=x
\

393

A I Handbook Al Programming Languages

proceeds top to bottom and left to right. Initially the goal is to match or prove (BROKEN ?V).
This fails to match any assertion in the database, however it does match to the consequent theorem.
That theorem sets up three subgoals and they are matched one by one, with backtracking whenever
the match fails. When all three eventually get matched, control returns up to the original goal and
V is bound to the value of X, i.e. Teacup. The goal (BROKEN ?V) has been satisfied by the
deduced fact (BROKEN Teacup).

You will notice how PLANNER wastefully re-matches (HEAVY ?Y) to (HEAVY Jumbo) after
choosing a different fragile object. PLANNER unfortunately makes no provision for two choices
being independent.

PLANNER control structure is actually not quite so rigid as pictured here. There is a command
which finalizes a certain portion of the control tree, so that actions are not undone during
backtracking. Also there Is a mechanism to fail back to an arbitrary failpoint (as opposed to the
closest one). But the fundamental control structure is indeed a rigid depth first search.

111.4. CONNIVER

PLANNER control structure was characterized by the use of three different kinds of "theorems", and
automatic backtracking. CONNIVER has exactly the same three "theorems", only it calls them
"methods": If-needed, if-added and if-removed methods. Instead of automatic backtracking the
language provides a set of more primitive control elements out of which a programmer can construct,
If desired, a backtracking scheme identical to PLANNER'S. Normally the programmer will find
alternative schemes more appropriate. Here, the consequent theorem from the Broken example Is
rewritten as a CONNIVER if-needed method. The reader who, finds the CQNNIVER code opaque
may benefit from reading [yon article on LISP], since CONNIVER looks a lot like LISP.

(IF-NEEDED (BROKEN 7X) „ J .
(PROG (Fraglles V Heavies Copy-Heavles)

(CSETQ Fraglles (FETCH '(FRAGILE ?X)))
(CSETQ Heavies (FETCH '(HEAVY ?Y)))

OUTERLOOP:
(TRY-NEXT Fraglles '(ADIEU))
(CSETQ Copy-Heavies Heavies)

INNERLOOP:
(TRY-NEXT Copy-Heavles '(GO 'OUTERLOOP))
(IF (FETCH '(ON -V -X)) THEN (NOTE '(BROKEN -X)))
(GO 'INNERLOOP)))

Some explanation is required

A problem with the PLANNER theorem was its repetition of the search for heavy
objects, every time a new fragile object was found. This was forced because the

394

AI Handbook Al Programming Languages
*

automatic backtracking has to assume that later choices are dependent on earlier ones,
even when, as In this case, they are not. In CONNIVER the list of heavy objects can
be fetched once and re-used. Accordingly, the first section of the program finds all
fragile objects and all heavy objects.

In the second section the generator statement (TRY-NEXT FRAGILEJLIST
'(ADIEU)) grabs the next fragile object in the list and binds X to it. The (ADIEU) is
executed when there are no more fragile objects; it causes the method to terminate.

In the third section the Inner loop scans through all heavy objects In the same fashion,
and each pair of a fragile X and heavy V is tested to see whether V is on X, and if so,
the method NOTEs this and moves on. Noting an item consists in adding it to a
"possibilities list".

That possibilities list becomes the result of the if-needed method after (ADIEU) is
executed. Thus, the effect of the method is to return a list of all dedudble instances of
(BROKEN ?V), which will be just ((BROKEN Teacup)) assuming the same database
as In the PLANNER version.

Possibilities lists are implicitly present in PLANNER too, but are not accessible to the user.
Whenever a choice-point is reached during automatic backtracking, and any of several assertions or
theorems might be invoked to satisfy a goal, they are all placed in a possibilities list. Then one by
one they are removed from the list and tried out until one of them succeeds. All of this is automatic.
In CONNIVER possibility lists are a separate data type and may be manipulated by a user
program. In many respects CONNIVER is like a PLANNER in which implicit control and data
structures are made explicit and put under control of the programmer. Greater flexibility results, at
the cost of longer and messier programs.

CONNIVER allows general coroutining. As one application, a program can be written to do
breadth-first or best-first search [yon Search chapter] (by suspending the process associated with one
node and reawakening a suspended process at some other node. PLANNER, you will recall, always
does a depth-first search. Another use of coroutining is the implementation of generators. The
broken-object finder above can be turned into a generator simply by adding (AU-REVOIR) after(NOTE '(BROKEN *-X)). AU-REVOIR is the CONNIVER function that suspends the current
process and resumes whichever process called it. Now. each time the method is called it finds one
broken Item, produces It and then suspends. The advantage of this technique is that the calling
process can ask for broken Items only as it needs them, and the generator may not have to find them

111.5. QLISP

395

Al Programming LanguagesAl Handbook

L

The GOAL statement In QLISP works like PLANNER'S, first searching the database to try to
match the pattern there, then invoking consequent theorems (if-needed methods) to try to derive it.
Automatic backtracking occurs whenever one of the theorems fails. The main difference is that
consequent theorems to try must be listed in the GOAL statement itself, for instance:

(GOAL (MORTAL Socrates) APPLY Grlm_Reapers)

Grim.Reapers would be the class of theorems, similar to the PLANNER consequent theorem we saw
before. (CONSE (MORTAL ?X) (GOAL (HUMAN «-X))), relevant to establishing that Socrates
Is mortal. It Is called an APPLY team. One could circumvent the need to set up teams by putting
all theorems In one giant team and applying it everywhere (thus simulating PLANNER.) The point,
however, Is to avoid such inefficient means.

Database operations may also have APPLY teams, which take the place of the if-added and if-
erased demons of PLANNER and CONNIVER.

lII.G. SAIL

The most Interesting control structure feature of SAIL is its multiprocessing capability, something
none of the other five languages covered here possess. Designers of SAIL [feld72J wanted to allow
parallel exploration and cooperation by problem-solving processes. There was also the need, for
memory-space reasons, to split large hand-eye systems into multiple communicating processes.

Multiprocessing is Implemented within the ALGOL-like block structure of SAIL. Any process
(Invocation of a SAIL procedure) can SPROUT, or create, another process. The standard ALGOL
scope rules are followed Just as If the new process were started by a procedure call', thus related
processes are automatically able to share a common database. The JOIN primitive suspends a
process until the processes named in the JOIN have terminated, at which point the first process
resumes execution. JOIN is used as a synchronization primitive. Thus we might see the example:

SPROUT(PI, GRAB(HANDI, HAMMER));
SPROUT(P2,GRAB(HAND2,NAIL));

JOIN(PI,P2);
POUNDS HAMMER, NAIL);

The variables PI and P2 hold the (unique) names assigned to the new processes. The names are
used to identify processes in later commands.

Interprocess communication is handled by a mail system implemented as a message queueing system.
The mail is delivered (whenever possible) by the process scheduler. Processes can simply check for
messages as they go along, or can place themselves in a queue while waiting for an appropriate
message.

396

AI Handbook Al Programming Languages

v

%

)

Using the first method, the grab-hammer process could inform the grab-nail process about 'he
movements of the arm and hammer, so the grab-nail process could avoid a collision with the otnerarm.

Demons can be Implemented using the second method. To set up a demon, create a process whichImmediately places itself in a queue waiting for a certain kind of message. And arrange thatwhenever a database update is done, a message is sent out. Demons that are waiting for such amessage will be activated, simulating a direct activation of demons by the database update.
Coroutining Is a special case of multiprocessing, in which only one process is active at any time.The coroutining primitives create, terminate, activate and suspend can all be implemented usingSAILs message-passing mechanism.

Generators are a special case of coroutining, In which the generator process always resumes theprocess that activated It (rather than some third process), and terminates Itself when nothing is left
to generate.

111.7. POP-2

POP-2 control structure is much like that of LISP. The basic language is very simple, partly in theLTTLV,?," 0"' and contains none °f the specialized AI control structures found inPLANNER, CONNIVER and QLISP.
Here is a summary of the POP-2 libraries offering control features.

. LIB CASES merely provides a case statement, which POP-2 lacks. «
LIB COFUNS provides coroutines, parallel processes, semaphores and synchronizing

iVJy aPPears that these are not used for building AI programs; the LIBCOFUNS wrlteup says they are "most useful for the simulation and Investigation of thebehaviour of truly parallel programs." Care was taken to make the process schedulerfair and unpredictable. r

LIB PICO-PLANNER seems to have nothing significant that LIB POPLER doesn'thave.

LIB POPLER provides a "POP-2 PLANNER". A "substantial subset" of PLANNER.Implemented by JuHan Davies who is now at London, Ontario; POPLER Is in usethere, [ref: POPLER: A POP-2 PLANNER"] POPLER Includes database demons andpattern matching like of PLANNER and CONNIVER. It provides automaticbacktracking but also uses the Bobrow & Wegbreit frame structure model and allows
CONNIV^UR

iPTQLIg
p

t0 Pr°erammed with Primit *ves similar to" those of

397

Al Programming LanguagesAI Handbook

)

L

LIB BACKTRACK. LIB SOFT BACKTRACK appear to be superseded by
POPLER.

The basic POP-2 language does not include general coroutining. It does provide for the use of a
generator, to construct a dynamic list. The programmer defines a function of no arguments, say F,
and applies the standard function FNTOLIST to F. The result Is the list LF of values which F
produces on successive calls. Of course, F has to read and change a free varlable(s).representing the
state of the generation, or else every element of LF would be the same. Now comes the interesting
part. The program can operate on FL just as on ordinary (static) lists. But In fact, FL is not all
there; It starts empty and new elements are added onto the back of it only as needed. This means
that FL can be potentially very large or even infinite, and it does not matter so long as only the
initial part of it is used.

The dynamic list allows the programmer to abstract away from the details of how a list is produced;
whether It is computed once and for all, or Is extended when needed. Similarly, the memo function
allows abstraction from the details of how a function Is computed. Memo functions are provided by
one of the POP-2 libraries. The name comes from the notion that a Junction, if it is called several
times with the same argument, would do better to "make a memo of it" (the answer) and store it in a
look-up table. As an example of the utility of memo functions, consider a chess end-game program.
It will tend to evaluate the same board position several times during its search, because of the
limited number of possible positions. If we make the evaluation function into a memo function, then
each position's Value will be stored In a table as the search proceeds, and no position will be
evaluated more than once.

lIJ.B. S.UMMARY f

In the (chronological) sequence PLANNER. CONNIVER, QLISP we observe an increase in the
variety of control structures and in the programmer's access to them. This development seems to
address two major needs: to concisely express powerful control techniques, and without making one's
programs grossly inefficient. PLANNER took a giant step in the direction of power by shifting the
entire domain of discourse in which programs are written from the Imperative level (do this, then do
that, etc.) to the level of goals. The programmer formulates problems in terms of goals that are to be
established, writes "theorems" that reduce a goal to subgoals, and sets the automatic deduction
mechanism going. This approach suffers from the inefficiency of its central method, automatic
backtracking, and the Inability of the user to remedy this by expressing himself at the Imperative
level on occasion. Automatic backtracking in PLANNER is convenient if the user has absolutely no
good Idea of how to guide the program.

CONNIVER was developed largely in response to these problems. Sussman and McDermot (72)
argue the following points against PLANNER and for CONNIVER:

(I) Programs which use automatic backtracking are often the worst algorithms
for solving a problem.

398

Al Handbook Al Programming Languages
*

(2) The most common use of backtracking can alsmost always be replaced by
a purely recursive structure which is not only more efficient but also clearer,
both syntactically and semantically.

(3) Superficial analysis of problems and poor programming practice are
encouraged by the übiquity of automatic backtracking and by the illusion of
power that a function like COAL gives the user merely by brute force use of
invisible failure-driven loops.

(4) The attempt to fix these defects by the Introduction of failure messages
Is unnatural and ineffective.

CONNIVER retreats to the imperative style of programming with some automatic deduction
primitives kept on. namely the 3 kinds of "theorem" or "method". In addition it gives the user the
flexibility implied by coroutines, which enable techniques like breadth-first or depth-first search, and
others, to be expressed conveniently.

OJJSP re-Introduces^ automatic backtracking but as optional and under restrictions (that the
consequent theorems to try must be named.) Overall, it includes practically every control structurefound In PLANNER or CONNIVER.

All three of these LISP-based languages rely heavily on pattern matching to guide the flow of
control. The basic technique is pattern-directed invocation, in which the function to execute next ischosen by its match to some datum that Is held "up for grabs" so to speak. A problem here is that if
one function falls to do anything useful with the datum, that function is simply flushed and anotherone tries. It seems plausible that cooperation and sharing of information between the differentfunctions attempting a goal might be better. This is part of the idea behind SAIL's multiprocessingprimitives, through which processes can access a shared data base and send messages to each otheras they work on a problem. This is reminiscent of the "cooperating experts" or "blackboard"architectures of some major AI systems [yon HEARSAY-ll].[yon maybe others], which, however,
construct their own control facilities out of LISP. Cooperative interaction of expert sub-systems isstill at a relatively primitive level In SAIL.

Randy Davis [ref] discusses several control schemes and when one might want to use each of them,
in the context of his own program, TEIRESIAS [yon AIH ref to TEIRESIAS], which uses strategy
rules to decide (at run time) how to sequence other rules. One major dimension along which controlschemes vary is the degree of data-drivenness. In the heirarchy scheme, conditional statements (and
loop tests) Interrogate a data value and select from a few predetermined paths depending on the
value. In a strategy scheme, complex "strategic reasoning" (whatever that is) would be done, takinginto account various data values of the moment, and the result of the reasoning would be a decisionon what to do next. Most of the six AI languages allow selection of what to do next by a patternmatch. This allows selection from a wide range of options that need not be laid out explicitlybeforehand, according to the structure or "pattern" exhibited by some datum. Sequencing accordingo strategy Is a very high-level method. The AI languages we will discuss are somewhere betweenthat level and the rigid heirarchy scheme.

399

Al Handbook Al Programming Languages

I

L

IV. PATTERN MATCHING

IV.I. MOTIVATION

AI languages use pattern matching for two major tasks: accessing data, and choosing a procedure to
execute.

Pattern matching can be a form of content addressing. In most computer languages data items have
to be accessed by their name, for instance the name of a variable or the particular array location
that holds them. The general idea of content addressing is to eliminate this need for arbitrary
names of things, and rely on their content (meaning) instead. Here is how it can be done by pattern
matching. A pattern such as ((FATHER-OF ?X) ?Y) is a kind of sketch of a data item, and will
match and retrieve any stored Item like ((FATHER-OF MARY) (FLIES KITES)). Thus no name
or address has to be remembered for a stored item. This Is known as pattern-directed retrieval or
retrieval by pattern match.

Similarly, programs need not call procedures by name, if each procedure has a pattern associated
with it. In pattern-directed invocation, a data item is tested against the pattern of each procedure,
and the (first) one that matches is called. All this is be done implicitly, replacing the tests and
branches on data that one would otherwise have to use In choosing a procedure. Pattern-directed
invocation Is a special case of content-directed invocation, which is discussed in

Both methods are highly useful in A I programming because they take such a burden off of the
programmer. Modularization of programs is much easier to accomplish because the programmer
doesn't have to specify who calls whom, or what access path is taken to get to an item in the
database. A price must be paid, in the overhead of running the pattern matcher.

Typically, a pattern Is a structure with variables embedded In it, and it matches another structure if
It cguld be made Identical, by replacing its variables with some values. Occurrences of the same
variable must be replaced by the same value. For example, (A ?X C «-X) will match (A B C B) but
not (ABC D).

The power (and overhead!) of a pattern matching mechanism Is partly related to the type of pattern
variables which can be handled. Here are some common variable types, expressed in terms of
matching on lists.

1) An 'open' variable (?X) matches to any element of a list, and binds X to that element.

2) A 'closed' variable («-X) must have already been bound, and matches only the value
of X.

3) A 'restricted' variable may have arbitrary restriction placed on it. These restrictions
are procedurally attached to the variable in some way; in the simplest case, as a Boolean
function which must return "true".

400

Al Handbook Al Programming Languages«
%

4) Segment variables. These match to a sublist of any length, rather than to an element.
Open and closed segment variables are denoted ??X and ♦-♦-X,respectively.

To avoid confusion the different kinds of var will always be written ?X, *-X, etc. ignoring the
varying notations of the languages.

Some examples may clarify the Ideas. Suppose this is the object we want to match to.

(A B (C A) B)

Here are some patterns, with an Indication whether each matches the object. No restricted variables
are shown.

Pattern Match?

?X yes
no(?X -X (C A) B)

(?X B (C »-X) B)
(?X ?Y (C A) B)
C?X ?X (C A) B)
(A B ?Z B)
(7?X)
(??X (--X) B)
(??X («-«-Y) B)
(A ??Z)
(B ??Z)

yes
yes
Illegal
yes

pattern

yes
no
yes
yes
no

Typically patterns are matched against objects that contain no variables. Some systems, notably
QLISP, allow for patterns to be matched against patterns.

1V.2. LISP

LISP has no pattern matching constructs but lends itself well to implementing them, and since the
next three languages are LISP-based it is appropriate to say a little about this.

Patterns typically take the form of nested structures, standing for (for instance) a mathematicalformula, an assertion, or some kind of structured object. These can ail be uniformly represented as
LISP lists, as described In [yon LISP article.] Uniformity is a big advantage because it means the
same pattern matching algorithm can be used for these different kinds of object. Pattern matching
on nested structures is Inherently a recursive process, so the free use of recursion in LISP helps a lot.

The reader will observe that pattern matching in PLANNER and CONNIVER always operates on
ordinary LISP list structure and In a recursive manner. The QLISP matcher operates on list
structure, and also on the special QLISP data types like CLASS and BAG.

Bindings

X=(A B (C A) B)

X=A
X=A, Y=B

Z=(C A)
X=(A B (C A) B)

X=(A B), Y=(C A)
Z=(B (C A) B)

401

Al Programming LanguagesAl Handbook

I

L

1V.3. PLANNER

PLANNER'S big Innovation was simply to use pattern matching in a thorough way such as no
previous language had done. Access to the PLANNER database is exclusively by pattern-directed
retrieval. Thus, the goal pattern

(?X Socrates)

will match to a database assertion

(MORTAL Socrates)

and X will be bound to Socrates.

As another application of pattern matching. PLANNER functions (theorems) are always called
through pattern-directed Invocation. Consequent theorems have an attached pattern which is
matched to the current goal, and If the match succeeds the theorem is Invoked. For example,

(CONSE (MORTAL ?Y)
(GOAL (HUMAN -V)))

With this consequent theorem, the goal (?X Socrates), meaning roughly "tell me something about
Socrates" will match to the theorem's pattern (MORTAL ?Y) meaning "I can tell you when things
are mortal", with the upshot that the theorem establishes a subgoal (MAN Socrates). If it succeeds
in proving this goal, it returns (MORTAL Socrates).

Antecedent and erasing theorems [yon Control Structure article] similarly have attached patterns,
but these are matched against assertions being added to or deleted from the database, rather than
goals. The same pattern matching method is used in all cases.

There is nothing particularly Interesting about PLANNER'S actual pattern matcher. The
Implements of micro-PLANNER deliberately chose the simplest scheme that would be adequate
for their needs. The matching Is only one level deep; thus (?X (?Y Plato)) Is not a valid PLANNER
pattern. There Is no requirement that PLANNER assertions be single level but the matcher will
treat elements of the top level as simple units, no matter what their internal structure may be. In
practice most PLANNER assertions have only one level of structure. One might guess this is to

accomodate the pattern matcher's limited powers.

Full PLANNER, as opposed to the implemented subset micro-PLANNER, uses general tree
matching, which is the same as multilevel list matching.

For an extensive example of how PLANNER'S pattern matching facility Is used, see [yon
SHRDLU].

402

Al Handbook Al Programming Languages*

;.

1V.4. CONNIVER

CONNIVER uses pattern matching for the same purposes as PLANNER, except that functions can
be Invoked directly as well as via pattern. The pattern matcher is more powerful, first because it
handles multilevel patterns like (?X (?Y Plato)), which it can match to (MORTAL (TEACHER-OF
Plato)). There is no restriction on the level of nesting. Secondly, recall that PLANNER and
CONNIVER patterns are LISP list structures. CONNIVER in fact allows patterns to be general s-
expresslons, using the dot notation of LISP. Whatever comes after a dot stands for the rest of the
list, not Its next element. For example, the pattern (PLUS 0 . ?X) will match to (PLUS 0 12 3 4),
binding X to the list tail (12 3 4). This would be useful in an algebraic simplifier.

These two advances over PLANNER used In combination provide moderately powerful pattern
matching capability. The matcher can be useful on a stand-alone basis, as a way of analyzing the
structure of data; CONNIVER allows this with the MATCH statement. Execution of

(MATCH ((FATHER-OF 7WHO) . 7WHAT) ((FATHER-OF FRED) WHISTLES DIXIE))

binds ?WHO to FRED and ?WHAT to (WHISTLES DIXIE). In another case, ?WHO might get
bound to (OWNER-OF (LOUD TRUMPET)) and ?WHAT to (GRIMACES).

So far all the patterns we have shown contain just two kinds of thing: variables that must match to
something, and constants like FATHER-OF, PLUS. CONNIVER adds flexibility by allowing
variables that are assigned some constant value before the match is done; the effect is as if the
variable were replaced by Its value before the match begins.

1V.5. QLISP

QLISP has by far the most powerful pattern matching facilities of the six languages covered. There
are three contributing factors:

I. The special data types BAG, CLASS. TUPLE and VECTOR when they are used in
patterns and data.

2. Segment variables.

3. A powerful unification algorithm Is used.

Recall one of the examples for CONNIVER pattern matching, that the pattern (PLUS 0 . ?X) will
match to (PLUS 0 12 3 4). binding X to the list tail (12 3 4). Unfortunately that pattern will notmatch to (PLUS I 0 2 3 4) or (PLUS 4 3 2 10) even though they are meant to be equivalent. LISPlist structure forces a spurious ordering of the arguments. In QLISP, one can write the pattern as

(PLUS (BAG 0 ??X))

403

Al Programming LanguagesAl Handbook

I
!

L

where ??X Is a segment variable. A segment variable matches to any number of items, rather than a
single one. Furthermore, the order of the Items following BAG Is Irrelevant. So, the pattern will
match to any of the following objects.

(PLUS (BAG 0 12 3 4))
(PLUS (BAG 1 0 2 3 4))
(PLUS (BAG 4 3 2 1 0))
(PLUS (BAG 0))

X
X
X
X

(BAG 12 3 4)
(BAG 1 2 3 4)
(BAG 4 3 2 1)
(BAG)

The so-called QLAMBDA functions in QLISP have a pattern instead of an argument list, much
like PLANNER consequent theorems. The QLISP programmer can exploit the power of QLISP
pattern matching to express computations very concisely, as in these one-liner examples:

PlusZer- (OLAMBOA (PLUS (BAG 0 77X)) (PLUS (BAG

$$X))

)Pluses: (QLAMBDA (PLUS (BAG 77X 7Y (MINUS 7Y))) (PLUS (BAG $$X)))PlusMlnus:
BothSets: (QLAMBDA (TUPLE (CLASS 7X 770THERS) (CLASS ?X 77YETOTHERS))

$$X)

PlusZero, If its pattern matches, has found a 0 in the arguments to a PLUS and will return the
PLUS without the 0. PlusMinus finds E and -E in the arguments, for some expression E, and
removes them. BothSets finds an element common to the two sets (CLASSes) given to it. and returns
that element. The reader may enjoy writing equivalent LISP functions and comparing them for
length and clarity.I

PLANNER and CONNIVER use pattern matching only in the contexts of pattern-directed retrieval
and pattern-directed Invocation. The QLISP programmer can call the pattern matcher directly, as
well as use It Implicitly In retrieval and invocation.

In most pattern matching applications only the pattern contains variables; it is matched to a constant

object. Unification generalizes this to a "merge" or unification of two.,patterns both containing
variables. The patterns unify if there is some substitution of values or variables such that they (the
patterns) become identical. (A ?X) unifies with (?Y B) under the binding X - B. V - A. Further
discussion of unification may be found [yon AIH chapter on theorem provingj

OJLISP uses a-unlficatlon algorithm extended to handle the special data types and segment variables.
Most commonly one of the patterns Is all constant and unification reduces to a standard match. For
some tasks, notably theorem proving, it is necessary to manipulate objects (like mathematica
formulas) that contain variables, and then unification Is very useful. It is significant that the first
major program written in QLISP was a program verifier.

404

Al Handbook Al Programming Languages%

IV.B. SAIL

In SAIL pattern matching Is done only In the context of database retrieval. The FOREACH
statement is the major way of doing this.

In the FOREACH statement patterns, instead of being list structures, are composed out of four types
of expression:

1. Associative triples such as X " V fi GREEN. MOTHER " ADRIAN fi Z.

2. Restricted variables, using any Boolean function.
3. Expressions of the form X in A, where A is a set.

4. Matching procedures, which are essentially generators.

These Interact In a manner best shown by example.

FOREACH X, V SUCH THAT X IN AnlmalSet AND Gregarlous(X) AND
Desert(Y) AND Range " X * V DO PRINT(X);

The conjunctive conditions In the FOREACH are scanned left to right. Here, a set expression isfirst so some X In AnlmalSet is chosen. Then X is tested to determine whether It satisfies theBoolean function Gregarious. If not, another X in AnimalSet is chosen. If so, the matchingprocedure Desert generates a V and then the database Is checked to determine whether Range " X
fi Y. If not. another V Is generated. Pairs X and V that meet all the conditions are passed on to theaction part which In this case consists merely of printing X. The net effect of this FOREACH is to
print out all gregarious animals that live in deserts.

In general, a FOREACH can have any number of variables and any number of conjoinedconditions. The ordering, of the conditions is critical; for instance if we had put the triple Range *X fi V first, the FOREACH would find alt matching triples in the associative database and try eachpair of X and V on the other conditions. (A matching procedure, when its variable is alreadybound, behaves as a Boolean function.) If the database includes a large amount of Informationconcerning animal ranges, this would be highly inefficient. Note that PLANNER consequenttheorems have a similar property, that the order in which subgoals are listed can enormously affectthe size of the search space. '

1V.7. POP-2

Basic POP-2 does not have pattern matching. As with the AI control structure features, the patternnr'rSL TT

$

.'W! bJ V3ri°US library P ackaSes' whicn consist of Pattern matchingprocedures written in POP-2 which can be compiled so it is as if the user's program contained their

405!

Al Programming LanguagesAl Handbook

!
)

L

declarations. POP-2 Is relatively well suited for doing pattern matching, but not so well as LISP
because of the greater range of types POP-2 data may come in.

Four Incompatible libraries offer significant pattern matching features.

LIB PICO-PLANNER has features similar to those of PLANNER.

LIB POPCORN and LIB POPLER have features similar to CONNIVER's; those of
POPLER are actually a little more powerful than CONNIVER's.

LIB HBASE provides an associative database reminiscent of SAIL associative triples,
except that two instead of three items are associated.

IV.B. SUMMARY

In the sequence PLANNER, CONNIVER. QLISP we saw a general upwards trend in
sophistication of pattern matching and the range of uses it could be put to. PLANNER patterns
had only one level of list structure and so would not be much help in analyzing the structure of data
Items, even if the language allowed that. They were quite effective for fetching assertions from the
data base and choosing a function (theorem) to invoke, however. QLISP patterns are by
comparison very general, and much, perhaps most, of the language's power depends on them. They
serve as a major method for analyzing data, not just in the sense of extracting parts but of
performing quite complicated tests and searches and returning the results.

I

Npt surprisingly, pattern matching is expensive.

In almost any particular case, the pattern match algorithm will be more general than is really
required, Implying that replacing it with ad hoc code would yield a speedup. When the pattern
contains segment variables (as in QLISP) the slowdown is especially severe. In this connection it is
Interesting to note that QLISP is termed by its designers [sace76] a language for the interactive
development of complex systems" with the explicit intention that once a QLISP program works, the
user can cut it over to pure INTERLISP.

The user can even do so In stages, because QLISP and INTERLISP can be freely mixed.

None of the languages offer all the pattern matching power one could wish For one thing, they all
do exact structural matches. A very desirable feature would be best match capability: instead of
matching exactly or failing, the matcher would do the best it could and return Information on points
of disagreement Or, perhaps a "semantic match": match according to the meaning of pattern and
object, whatever that means, instead of their syntactic structure.

QLISP's use of BAGs and CLASSes In which element order Is irrelevant is a crude approach to

semantic. matching.

406

A! Handbook Al Programming Languages%

It is not clear whether pattern matching is somehow an essential or fundamental notion in
data/control interaction. Randy Davis' TEIRESIAS [yon TEIRESIAS] is an example of an AI
system In which control sequencing is guided by a set of strategy rules that take Into account various
data values and the current state of the process (and the application of these strategy rules can beguided by yet higher strategy rules, too.) This scheme bears no particular resemblance to patternmatching. Ideas about "focus of attention" as a way of selecting which data to operate on (attend to)
have been floating around for several years. At any given point in a process there is a "focus" on a
certain class or kind of data, yielding advantages both in efficiency, since the rest of the data base
can be Ignored, and in making the program's behavior more consistent.

Neither strategy rules, nor focus of attention, have been incorporated into any A I language yet. Thisis In accordance with a general rule, that before an advanced programming method is made a
standard feature of any language, it will be experimented with by various people who develop it fortheir own programs.

f

407

Al Programming LanguagesAl Handbook

)

v

1

V. ENVIRONMENT

V.l. MOTIVATION

The purpose of a programming environment is to aid the user in all phases of program
development, from the Initial writing of program text through modification, debugging, assembling
of modules, and documentation, not necessarily in that order. The limitation is feasibility. As will
become more or less apparent, designing and implementing the environment can easily be as much
work as for the language Itself. Given that people don't have Infinite time to write environment
support programs, nor the computer infinite space to hold them, the most crucial (useful) features
need to be identified. The scope and quality of environment that is developed will depend greatly
upon how strong the pressure Is to do it. The amount of work spent on the six languages varies
greatly and this tends to show up most strongly in the less central regions.

Of all computer languages, AI languages generally have the best environment facilities. As major
reason, we cite the special difficulties of writing and improving AI programs.

AI programs tend to have certain characteristics that greatly influence the style of programming
used. Most obviously, perhaps, they are big. As with other large programs, designers and
programmers usually try to break the system down into several discrete modules which can be
written separately. (By "module" we do not necessarily mean a single procedure—often many
procedures which together perform a subtask.) It often happens in AI that the modules will interact
strongly no matter how the breakdown is done; the programmer then has no choice but to write each
module with the necessary flexibility for interactions. Finally, since the development of an AI
program is usually a research

effort,

the program tends to be always in a- state of flux, subject to very
frequent modification and occasional major restructuring.

I

One style frequently used by A I programmers emphasizes incremental development, submodule by
submodule and module by module. Each new module is added to what already exists and the
expanded configuration is tested to see how it behaves with the new module added. An extreme

case of Incremental development occurs in rule-based systems where rules are
added one or a few at a time until there are hundreds of them. During incremental development,
the missing modules may have to be simulated by a person who Interacts with the program. In
other cases the system will run with only some of Its modules. The speech-understanding system
Hearsay-II [yon Speech] Is an example of the latter; if some of its major modules (syntax expert,
semantics expert, etc.) are unplugged It will decay gracefully, still running, but with more recognition
errors.

Another programming style, "structured growth". Is described In [sand7B] (p. 60):

"... an initial program with a pure and simple structure is written, tested, and then
allowed to grow by Increasing the ambition of its modules. The process continues
recursively as each module Is rewritten. The principle applies ... to the flexibility of the

408

AI Handbook Al Programming Languages
*

data handled by the program, the sophistication of deduction, the number and
versatility of the services provided by the system, etc."

The classical "structured programming" method of stepwise refinement Is not so much used in AI.
For discussion of this point see [sand7B] p. 60.

To sum up briefly, A I programmers have to impose some workable organization upon a large set of
Interacting modules, that Is flexible enough to allow constant modification, correction and growth of
the system, and have to do ail this without bogging down In utter confusion. The support provided
by a good programming environment is essential. One might succeed in writing a big AI program
without It, but there is no reason one would want to.

Further on the question of why A I languages tend to have highly-developed environments, it is also
significant that the environment system of a language often resembles an AI system in Its own right.It may rely on a big database describing the program, and consists of several modules (i.e. the editor,
debugger etc.) which can Interact strongly. Consider then the advantages of writing environmentprograms In an A I language - presumably the one being supported, because It Is there anyway. In
general It is advantageous to write environment support in the language being supported, so that the
support programs can be worked on within that environment.

Partly, also, A I environments are better because of closer contact between language users and.
Implementors. Often, they are the same people.

One could make an endless list of desirable environment features. The most basic features are listedbelow.

I. An Interactive language, i.e. one in which statements can be typed in as commandsand are executed Immediately. Compiler-based languages are generally not interactive.

2. A good editor. If possible, one that can deal with a program according to its structure(not Just as a text of characters.)

3. Interactive debugging facilities including breaks, backtraces and examining andchanging program variables.

4. I/O routines. The most common or ordinary I/O actions should be specially supportedby standard system I/O functions, so that the programmer is not burdened with suchdetails.

Some of our six languages are limited to the four features just listed, or even fewer. In theIndividual sections which follow, keep these basic features In mind - not all six languages have allthe basic features - and also observe how some languages go beyond them

409

Al Programming LanguagesAI Handbook

#

L

V.2. LISP

As with pattern matching, basic LISP lends itself quite well to use with various environment
facilities. Basic LISP Included no pattern matching, we saw, but pattern matching appeared in each
of the specialized AI languages built on top of LISP. The situation here is not so extreme. All
dialects of basic LISP have some environment

features,

notably that the language itself is interactive.
PLANNER, CONNIVER and QLISP add more.

I will first list some advantages of LISP from the enviionmental support point of view, then mention
the few environment features which are present in almost any LISP dialect you might run across.
See also the LISP article [yon LISP article] where the former point Is also discussed. With regard to
the points below, keep in mind this idea: it is advantageous to implement the environment system in
the same language It supports, so that environment facilities may be used to help develop and
maintain their own code. Thus, a LISP environment should best be written In LISP.

I. LISP is an Interpretive language. This means LISP is readily used in the interactive
mode, which is a very important environment feature all by itself. The support
programs will also be In LISP and so they, too, will be used interactively. Interpreted
languages are also easier to debug, because in compiled languages a rather opaque the
source program and the object program which actually executes. However, once the
program works a compiled version tends to execute about 10 times faster. Most LISP
systems have a compiler as well as the interpreter.

2. The basic language Is simple and uniform (see LISP article [yon LISP article]),
obviously a help to (environment) programs that have to examine or change LISP user
programs.

3. Further along the lines of (2). there is a standard representation of LISP programs as
list structures which environment programs can exploit.

4. The flexibilityof function-calling in LISP makes it easy for environment programs to
call one another, e.g. the debugger could call the editor to insert or remove printout
statements.

5. LISP possesses an elementary database facility - the property lists and association lists

- which is useful for storing information about user programs.

It Is hard to think of anything about LISP that works against environmental support. In fact, all I
could think of was its ugly (prefix) notation. If you make things easier tor the user by Introducing a
nlcer-formatted external form, as some LISP systems have done, you also complicate the job of your
environment programs to a surprising degree. Some complications also accrue to the user■■Limited
use of external syntax seems to be a viable compromise, as in the CLISP feature of INTERLISP
tteit[??

Almost any LISP system includes some debugging facilities and a scheme for printing LISP
programs with Indentations for easier reading (this is much more significant than you might

410

Al Handbook Al Programming Languages
%

suppose!) Beyond that, they vary widely, in this article we will discuss the two major dialects,
MACLISP and INTERLISP.

V.3. PLANNER

PLANNER is Implemented In MACLISP so we start with a brief description of the environment
features of MACLISP.

The MACLISP system has no residential text editor, so the user has to leave MACLISP, edit
programs with a separate editor, then return to MACLISP to try them again. Most computer
languages, for that matter, are like this. Under the ITS timesharing system at MIT where micro-
PLANNER was Implemented, it is easy to switch back and forth between parallel editor and
MACLISP Jobs.
PLANNER was implemented by writing an interpreter for It in MACLISP. Little of the
MACLISP environment

Only a minimal environment was produced because micro-PLANNER's Implementors wanted to get
a running system quickly and without too much effort The environment also was written in
MACLISP. We need to qualify the point made earlier, that it is best to write environment support
programs for a language in that language itself. Since PLANNER'S interpreter was written in
MACLISP, the MACLISP system had to be around anyway and its environment could be used for
work on the PLANNER environment. Indeed, given PLANNER'S automatic backtracking control
structure, it would be a very bad idea to write environment support programs in it.

Like MACLISP read-evaluate-print loop. If an error break occurs, PLANNER sets up a lower
read-evaluate-print loop and enters it recursively. Inside such loops, the user can examine and
change variables,or even run PLANNER programs it was stopped.

Instead of backtraces from break loops, PLANNER offers a trace-as-you-go facility. By saying
(THTRACE <obJect>) the user requests a trace of some particular function, or goal, or all goals, or
various other "objects"; then as programs run the system prints out Information every time the goal
or whatever is activated. Considering that PLANNER'S control structure results in an extensive tree
of goals and actions, It does make sense to trace the whole tree as it develops rather than backtracing
from one particular node - which would reveal only one branch of the tree.

No new editor had to be provided; the same editor used for MACLISP was available.

■j

I

Al Handbook

V.4. CONNIVER

CONNIVER differs from PLANNER by Including MACLISP as a subset. CONNIVER functions
can freely call LISP functions, but CONNIVER is not just an extended LISP; it includes
coroutining and other control regimes falling outside LISP's domain. The MACLISP environment
will not work for CONNIVER. As with PLANNER, a minimal environment was implemented.

CONNIVER has read-evaluate-print loops very much like PLANNER'S. Backtraces from breaks
are done, rather than a trace-as-you-go. The editor is the same.

V.5. QLISP

QLISP derives from the problem-solving QA4 was embedded into INTERLISP to make it more
efficient and more accessible. Care was taken to preserve the extensive INTERLISP environment
while extending the language with QLISP constructs. QLISP was specifically intended [sace76] as a
"language for the Interactive development of complex systems" and emphasizes environment features
far more than the other five languages we are discussing. Since almost all these features are carry-
overs from INTERLISP, we will first discuss the INTERLISP environment.

INTERLISP

The name INTERLISP, as the reader may have guessed, stands for interactive LISP . This LISP
variant has steadily grown in size for several years, both in..,the language* and " Its supporting
environment For lack of space we will describe only some major environment facilities here. See the
manual [wilb76] for more. Note that INTERLISP is a "residential" system: the facilities reside in
core and can be called without the user leaving LISP. Another importamt general point is that the
facilities are well Integrated with each other. On occasion this Integration can lead to unpredictable
Interactions and consequent difficulties [sand7B] (p. 51).

The editor operates directly on the list structure of programs and data. The user can define
composite editor commands as macros or even define macros that call arbitrary LISP programs.
Conversely, INTERLISP programs can call the editor and give it commands.

The debugging package Is quite ordinary. Upon an (error) break a new read-evaluate-print loop is
entered, In which the user can ask for a backtrace, or evaluate any LISP statement (including
statements to examine or change variables.)The trace-as-you-go (like PLANNER s) Is also available.

Both a compiler and an Interpreter are available.

An extensive I/O file package exists.

411

Al Programming Languages

412

Al Handbook Al Programming Languages
%

*

The "Programmer's Assistant" monitors and records all user inputs and retains a history of the
computation. The user can ask the Assistant to repeat a command, undo its effects, or other things.
The Intended sense (to the user) Is of a loyal flunkie who carefully watches what you do and can
take over a lot of the dirty work if you ask.

The DWIM (Do What I Mean) package will attempt to figure out what you really meant to say, and
do that, rather than follow orders literally. As a major part, DWIM corrects spelling errors. For
Instance, the user defines a function FLATTEN and then says (FLATEN A). DWIM will correct
FLATEN to FLATTEN and proceed. DWIM causes annoyance at times, when it "corrects"
something that wasn't wrong.

CLISP (Conversational LISP) is a set of convenient surface syntax constructs that translate into
LISP. It Includes various abbreviations, a record package, a pattern match compiler, and other
things. It Is Implemented through the error mechanism of INTERLISP: anything not recognized as
LISP is checked to see If it valid CLISP, otherwise it is an error.

QLISP

QLISP is Implemented through the error mechanism of INTERLISP just as CLISP is. When the
Interpreter comes to a QLISP construct it translates It into INTERLISP and executes that. It also
stores the translated version so retranslation need not be done. In programs, LISP and QLISP can
be freely mixed. QLISP is thus a surface extension of INTERLISP, whereas PLANNER and
CONNIVER were distinct language systems built on top of MACLISP. Implementation of QLISP
constructs through the error mechanism implies, you will note, that execution of pure LISP
constructs is not slowed down at all by the presence of QLISP.
Some difficulties arose In trying to treat QLISP contructs as If they were on a par with INTERLISP
constructs. For Instance, because of the translation of QLISP into INTERLISP, QLISP functions
would not show up on a trace or backtrace. . A special QTRACE facility had.to* be" added- to get
around this problem. And some "unfortunate interactions" resulted from the Clever adaptation of
some of the INTERLISP support facilities to implement certain QLISP language features. For
Instance, the CLISP pattern match feature becomes unuseable because QLISP uses it for its own
pattern matching. The QLISP manual [wilb76] contains many warnings about how to avoid
running into these painful effects.

For the most part, though, INTERLISP environment features carry over directly to QLISP.
QLISP also offers a standard function NEWSTATEMENT and an execution routine for some new
statement. This extensibility feature is typically used to "provide alternative control structures for
Invoking the standard QLISP statements, or to provde special syntax for user-defined QLAMBDA

413f

Al Programming LanguagesAl Handbook

V.6. SAIL

SAIL emphasizes good access by user programs to the operating system. That is not an
"environment" feature In the sense of a program-n/ri/in/j environment,but discussion of it fits better
here than anywhere else.

It has many standard functions which are basically monitor calls, and "complete" access to PDP-IO
facilities The language was designed with real-time or close to real-time hand-eye applications in
mind.

The run-time facilities Include especially I/O facilities such as interrupt handling. There is also
provision for linking SAIL programs to hand-coded assembly language algorithms (for efficiency.)

Since SAIL is a compiler-based language and not interactive, the experience of writing and
debugging SAIL programs is considerably different from the other languages. Programs are written
separately using whatever text editor is convenient, then compiled and run. Unlike the other five
languages In which each (small) function is written separately, SAIL programs are block-structured
and usually there will be many procedures nested inside the main program. Testing of individual
procedures (functions) Is less easy, because they cannot (usually) be run in isolation.

There is a quite good interactive debugger, however,The user can modify the error handling.

V.7. POP-2

POP-2 has an Incremental compiler, allowing an Interactive style of programmipg. similar to LISP.
The user can type in any statement and have it executed immediately, or can define functions and
edit them. The functions tend to be even smaller than LISP functions.

You will recall that POP-2 relies on library packages to keep the basic language as small as possible.
The editor (which Incidentally is not especially powerful and is not oriented to POP-2 syntax)
resides In core all the time facilities must be brought in as packages. The packages cannot be
integrated tightly like the environments features in INTERLISP. but compared to INTERLISP the
core space occupied by POP-2 environment code is very small.

Some of the available packages are listed below.

LIB TRACE supports tracing for debugging purposes.

LIB STACKCH helps track down the source of stack errors.

LIB TIME measures execution time of individual functions.

LIB AUDIT reads the text of a POP-2 program, analyzes it. and prints out information
about the functions defined and the variables used.

414

AI Handbook Al Programming Languages
%

LIB CALL AND EXPLAIN allows package writers to attach explanatory messages to
their packages. Package users are then provided with tutoring in the use of the
packages.

V.B. SUMMARY

The programming environment is the least Al-specific of the four A I language aspects we have
examined. At the same time, it is an area in which AI languages have pioneered. We may expect,
therefore, to see a great deal of influence upon other computer language environments In the future.

The key word is "interaction". In the environments we have examined, one can distinguish several
different kinds of feature that all fall under the rubric of "interaction". The most important,perhaps, is for the language Itself to be Interactive. Programs can be built up of small modules
(procedures, functions) which are each tested Immediately, right after typing them in, rather thanhaving to embed them inside a complete program and run it all through a compiler. Variables
affected by the module can be examined and set by typing in appropriate statements of the language(e.g. assignment statements.)

As you can see, an Interactive language provides much of what Is ordinarily provided by an
Interactive debugger. LISP. PLANNER. CONNIVER and QLISP ail do the same thing when anerror break occurs during program execution: they set up a read-evaluate-print loop just like the one
at top level. The user now has the full facilities of the language to figure out what went wrong.
In a break loop, these languages supplement the regular language features with special debuggingfacilities such as back-tracing and commands to abort or resume execution.

SAIL, which is the only non-Interactive language of the six, has a quite extensive Interactivedebugger (BAIL) which Includes special commands to examine and set variables.

Interactive editors are extremely useful. Many AI language environments have no special editor and
the user uses a general text editor to prepare programs. SAIL and many LISPs including
MACLISP have no resident editor. PLANNER and CONNIVER follow MACLISP In this respect.NTERLISP and POP-2 have resident editors; INTERLISP's editor operates on programs as LISPlist expressions rather than as character strings. It has commands to move up and down in the list
structure and can manipulate entire lists as single objects.
The Programmer's Assistant feature of INTERLISP exemplifies another kind of interaction, at the
meta level in a sense. User commands to the Assistant refer not to LISP objects, but to the user'smanipulations of LISP objects. The Assistant may be told to repeat an action, or show the recenthistory of user commands, for instance.

For smooth interaction it is Important that the various components of an environment be well
integrated with each other. INTERLISP is the only one of our six languages that (by and large)

415(

Al Handbook Al Programming Languages

accomplishes this integration. Almost any component can be called form within almost any other. In
the other five languages, components can only be called from the top level generally. POP-2 carries
this to the extreme: the components exist in distinct library packages and have to be loaded Into core
and compiled when you want to start using them.

In the introduction we said that "no matter how good an environment may be, one will have little
difficulty thinking of further desirable features to add." To prod the reader's imagination, here is a
list of a few desirable features that no language environment,to our knowledge, has.

Automatic testing of program modules with sample data. Automatic re-testing whenever
a module Is changed.

Automatic documentation

Program optimization

Transition from Interpreted code to compiled code done automatically based on how
much the program Is being used.

So far we have treated the language environments as givens. But surely no one environment could
please all users. Why not let the user tailor the environment to suit his or her own preferences?
(Why not tailor the language too? That could lead to Babel. Tailoring the environment does not

cause the Babel problem, because once a program works, anyone can use it without concerning
themselves with how it grew.) INTERLISP actually allows user modification of its environment
facilities. At the simplest level, there are a great many environment parameters which can be set as
convenient. More advanced, and less common, a user can redefine environment functions.

What are the future directions of AI environments? At present the state of the art Is represented by
the INTERLISP environment. A few experimental systems are beginning tosurpas* it

416 <

LISP
%

INTRODUCTION

The name LISP stands for LISt Processing. In the late 60's and early 60's several
list-processing languages were developed by Al researchers. Almost all Al computations may
be characterized as symbol-processing, with the symbols embedded In some kind of list
strusture. Numeric processing and the use of "rigid" data structures such as arrays are less
common. The early languages Included IPL, SLIP, FLPL, and also LISP which soon superseded
the others. See [ref: Overview article and perhaps others] for more about the first three.

The beginnings of LISP date from 1956. LISP, as recounted by its inventor John
McCarthy [McCarthy 78], was originally motivated by his desire for a practical list
processing language for artificial Intelligence work on the IBM 704 computer. As the language
developed, It became apparent that LISP could be mathematically elegant as well, and some
care was taken to ensure this. McCarthy's first paper on LISP [McCarthy 1980] described It
both as a practical programming language and as an idealized model of computation suitable
for use In recursive function theory.

As described In [McCarthy 78] the key ideas that were embodied In LISP Include:

Computing with symbolic expressions rather that numbers. Bit patterns
In a computer stand for arbitrary symbols, not just those of
ar l thmet lc.

Llet proceeeing. Representing data as I inked- list structures in the
machine and as multi- level lists on paper,

Control structure bae-ed on the composition of functions to form more
complex functions.

Recursion way to describe processes and problems.

Representation of LISP programs internally as linked-lists and externally
as multi-level lists, I.e. in the same form as the data.

The function EVAL serves as an interpreter of LISP and
formal definition, within LISP, of the language itself.

All these points will be touched on In what follows. We will concentrate on LISP as a practical
programming language, Ignoring most of the theoretical issues. After describing Its
fundamental design, we define several of the most Important language constructs with the
Intent that readers should then be able to understand small LISP programs. The Appendix
contains some sample programs, of an "Alish flavor". After the definitions, some general
Implications of the structure of LISP for the way It Is used are discussed, and some of Its
applications are mentioned. Lastly we list some disadvantages and difficultiesof LISP.We begin by describing the data and control structures of basic LISP, making no effort
to be complete. For fuller Introduction to the language see [Welssman 67], [Friedman 74],
[Slklossy 78], or [Allen 78]. L J L

417

I
I

")

I

f

DESCRIPTION OF LISP

Data Structure in basic LISP there is only one data type, generically referred to as "list
structure". In practice, almost all LISP data takes the specific form of a list or else an atom,
and we shall lose little by Ignoring the other variations. Atoms are identifiers such as
l-AM-AN-ATOM, 3, XYZ and NIL. They have no component parts, hence the name, but various
properties or attributes can be attached to individual atoms. The most important attribute an
atom can have Is a value, In the sense of a variable having a value, and certain atoms have
standard values—NlL has the value NIL, T has the value T, and any number atom such as 1 2,
1.732, -1.066E3 has the corresponding integer or floating-point number as value. Other
atoms can have values bound to them. Lists may have atoms as elements, as In the
four-element list (A B l-AM-AN-ATOM 3), or may have other lists as elements, as In the
two-element list ((A) (B l-AM-AN-ATOM 3)), or any mixture of atoms and lists, for Instance (I
(AM (A (MORE COMPLICATED) LIST))). In general, a list is defined recursively as

(elementl ... elementN)

where N i 0 and each element Is either an atom or a list. When N * 0, we have the null or
empty list, written as 0 or NIL. As mentioned

before,

NIL Is also an atom, and In fact it has
the distinction of being the only datum that Is both an atom and a list. Other special
properties of NIL will appear later.

The recursive structure of lists Is very flexible and allows one to represent many kinds
represented with LISP lists.of Information. Below are examples of information

I

Internally, LISP lists and all other list structures are represented by means of cons
ce//s. Each cons cell Is a pair of pointers (occupying the left and right halves of one
computer word, usually) to other cons cells or to atoms, which do not point anywhere. A
typical cons cell z Is diagrammed below. What its left half points to Is called the car of the
cell z, and what Its right half points to, the coY (pronounced could-er.j

the cone eel I z.

cdr(z)car (z)

2 3 5 7 11 13 17 19) A set of numbers.

(- B) + (SORT ((B * B) - (4 * A * C))l) An algebraic expression.

I (saw ((that (gaeol lne can)) explode))) A parsed sentence.

GREEN GRASS) An assertion. ("Grass is green

(ON A B) (ON A C) (NOT (TOUCH BCD)

(A C R) (A R C) (C A R) (C R A) (R A C) (R C A))

A set of assertions describing
an arch.

Permutations of three atoms.

418

%

Using cons cells, the list (A B ... Z) is represented as follows

In mathematics, sets are taken as the fundamental objects and then ordered pairs,
sequences, tuples, relations and other objects are built up from sets. LISP data may beregarded as an alternative formalism In which the ordered pair, representedby the cons cell,
is fundamental. Sequences and sets are then represented by LISP lists, an n-tuple by a list
of length n, and a relation by a list of tuples. The list structure of LISP can be used to modelessentially any data structure; thus a 2-dimenslonal array may be represnted as a list of
rows, each row In turn as a list of elements. The point, however, Is not so much to model
standard data structures (since this is often clumsy, as when one wishes to Index Into a
two-dimensional array, and often unnecessary, because many LISP systems are augmented
with special numeric, record, array and string data types) as to model the complicated and
often unpredictable data structures that arise In symbol-processing tasks.

Control Structure LISP's control structure Is basically applicative. That Is, the flow of
control Is guided by the application of functions to arguments which may In turn be functionsapplied to their arguments. This contrasts with the sequential control structure of most
languages, In which separate statements are executed one after another. As an example ofthe contrast, compare the ALGOL-llke and LISP-like versions of a program to compute the twosquare roots of a nonnegative number.

ALGOL- like: procedure ROOTS(value X: reah Rl, R2: real);
begin

Rl ♦■ SQRT(X)|
R2 «- -Rl

end

LISP-like: ROOTS (X):
BOTHSIGNSI SGRT(X)) "

where BOTHSIGNS(Y)
LIST(V MINUS(Y))

I""?- f
4
un?*t10«J!9?7.? c°m Putes the positive root and then applies a second

function,

BOTHSIGNS, to It. ROOTS(3.O) = BOTHSIGNS(I.732) = (1.732 -1.732). In LISP, proceduresare not differentiated from functions and each function, whether It Is part of the language or
Is user-defined, returns a (single) value.

Applicative structure similar to LISP's should be familiar to readers already, from thecomposition of functions In mathematics, or the structure of arithmetical and logicalexpressions In various languages. Indeed, LISP makes no distinction between a statementand an expression. The generic term "expression" covers both, and statement-likeoperations such as assigning a value to a variable can be freely Intermixed withexpression-like operations such as taking a square root. The term "evaluation" covers bothevaluation of an expression and execution of a statement. Thus, evaluation of ROOTS(3)
gives the answer (1.732 -1.732).

a«.
S_yntax ,

L,S

,P BVnt«x reflects the uniform control structure. A LISP expression Isdefined recursively as either an atom, which is treated as a variable and has a value, or alist of the form

(function argument ... argument)

with zero or more arguments, each of which Is an expression. Such a list denotes the

419

s

i.

application of "function" (which is given usually by name, but sometimes in the form of a
LAMBDA-expresslon, fo be discussed later) to the arguments. The function may be a
standard function of the language, or may be user-defined. Thus, the body of ROOTS would
actually be written (BOTHSIGNS (SORT X)). X Is a variable, BOTHSIGNS Is the name of a
user-defined

function,

and SORT Is the name of a standard function.
Scoping The scoping rule of LISP Is also closely tied to the applicative control

structure. Purely dynamic scoping is used: during the evaluation of a function F, a variable Z
that is not local to F will have the value given to Z by whatever function G it was that called
F; if G gave no value, then the value given Z by whatever function H called G; and so on.
Scoping, then, depends only upon the calling order of functions ("dynamic") and in no way
depends upon when or where they were declared ("static".)

Recursion Dynamic scoping allows the free use of recursive functions, I.e. functions
that call themselves (with different argument values, one presumes!) The usual exampleof a
recursive function Is Factorial, N! = N"(N-1)! for N > 0, and 0! = 1. In the section "Sample
LISP Programs" we show a LISP version of Factorial and illustrate recursion with some other
LISP programs also. In contrast to many languages, LISP places absolutely no restrictions on
the use of recursion and in fact it Is rare to write a LISP program that does not rely on It. (By
"program", Incidentally, we mean not necessarily a single

function,

but also a system of
functions that together accomplish some task.) Recursion tends to make for concise and
powerful programs. Complex programs that use recursion, especially mutual recursion In
which e.g. F calls G and G calls F, would often be very messy and difficult to write without It.

The control structure of LISP, like the data structure, Is uniform and based on a
recursive definition. These characteristics can make the language quite confusing at times.
They also have the distinct advantage of combining simplicity, flexibilityand power.

420

%

I

Some LISP Functions There are a small number of basic LISP functions, In terms of which
most other LISP functions can be defined. With the exception of the function CONS which
causes a cons cell to be made, none of these basic functions have any side effects, so we
describe them by the value they return.

Most LISP functions evaluate their arguments before computing anything from
them—here, only QUOTE does not—and It Is essential to pay attention to the distinction
between an expression and the value of that expression. For Instance, if B has been bound
to the atom A, then value((QUOTE A)) * A, but value(A) = B. If nothing had been bound to A,
value(A) would be undefined.

In the table below, the symbols "c", "e1", "p1", etc. stand for any expressions given
as arguments to the functions.

Expression value(Expression) Comments

(QUOTE c) QUOTE is essential in order to
manipulate an expression

Itself,

.
rather than its value (if it has any'
value((QUOTE A)) - A.
From now on, we abbreviate
(QUOTE c) as 'a.

(CAR c) first element of the
1 1st value(e).

Not defined if value(e) is an atom.
value((CAR MAB))) - A.

(COR c) what Is left when the
first element of

Not defined if value(e) is an atom.
value((COR '(AB))) - (B) .value(e) is deleted. (CAR (COR el) is abbreviated (CADR e)(
(COR (CDR (CAR c))) is abbreviated
(CODAR c), etc.

(CONS el e2) 1 1 a t that resul ts
from prefixing
value(el) onto the
1 1st value(e2) ,

value ((CONS 'A ' (B))) - (A B) .
value! (CONS NIL NIL)) - (NIL).
Has side effect of setting up a
cons eel I .

(EQUAL el e2) T if value(el) '19
equal to value(e2),
NIL otherwise.

Note how NIL is' used to mean "False " -
value! (EQUAL MB) (CONS 'B NIL)) > "
value((EQUAL c 'c)) - NIL, usually-
but value! (EQUAL NIL 'NIL)) - T.

(ATOM c) T I f value(e) is an
atom, NIL if it isa
list.

value((ATOM NIL)) - T.
value((ATOM (CAR '((A) B)))) - NIL-

(COND (pi el) ... value(ei) , where pi is
the first of the p's
whose value is not NIL.

This is the basic "branching" or
conditional function of LISP.(pn en))

whose value is not NIL. value! (COND (NIL 'A) (T "B))) - B< .„„
If all the p's are NIL, Some LISP systems have the abbreviatethe value is NIL. (IF pi THEN el ELSE e2) for

(COND (pi el) (T e2)).
value! (IF (CONS NIL NIL) THEN 1
ELSE 2)) - 1.

(EVAL c) value(value(e)) EVAL is the opposite of QUOTE; -value((EVAL 'c)) - value(e). SupP°"JfA is bound to a list of variable name
then valuet (EVAL (CAOR A))) - vvale"c
of the second variable in the list*

421

)

L

Using only these functions, any computation can be done in LISP; I.e. these seven functions
have the power of a Turing machine. However, they do not allow one to write programs in the
style common to most programming languages, as a sequence of statements which operate

by causing side effects. The prime example of this kind of statement Is assignment. In LISP,
the SET and SETQ functions perform assignment. ...

�

There are other LISP functions that operate by side-effect,but we need not describe
them here.

,„„ _,

__,_

___....

(SET el c*2) value(e2) Like all LISP functions, SET returns
a value, but its real purpose is to
assign value(e2) to the atom which
i s value(el) .
Thus, after (SET 'A 'B), value(A) - B

(SETQ el e2) is identical in value
and effect to (SET 'el e2) , and Is
the most common form.

(SETQ el e2) value(e2)

Another construct common to most languages Is block-structuring In LISP, this.la Providedl by
the function PROG (meaning "Program".) It Is really stretching terminology to caH IPROG a
"function", since It Is basically a Begin-End block with local va ab PROG does
have the standard LISP function syntax and does always return a value. Here is what a
PROG block looks like.

(PROG (atoml ... atomM) el e2 ... eN)

PROG does not evaluate Its first argument, which has to be a Ist (poss bly empty) o atoms;
Instead each atom Is a local variable with, Initially, no value The subseque n̂t
expressions el, e2, etc. are evaluated In that order, and If any one of them causes the
special RETURN function to be evaluated,

(RETURN e8),

then Immediately evaluation of the PROG stops and value(eO) is returned. If no RETURN Is
encountered, all of e1 ... eN are evaluated and the default value NIL Is returned.

■ Here art? some miacellaneous functions which are commonly used, defltted In terms of
the basic functions:

Example: value* (LIST 'A A)) - <A value(A) ; der|ved from the x.calculus of
Church^c'hlfrche

41
fr C

Th
0
e
nSLS^ j'uMBDA cTesponds to a procedure declaration In an

AL
hGol^.kCc"aUnguag

4
e,

]mlhh| loose' sortTway that PROG corresponds to a Beg.n-End block.

(LAMBDA (atoml ... atomM) c)

H«.,~»

. <>" .-m«t«r« Cnota that no type declarations are necessary!) When adenotes a function of M parameters (note mai nu i/k° ~ .. nrtlJ -i DArametnrs «rofunction Is called, giving M expressions as actual P^meters ' f *c
f
U
tne

P
useT definesevaluated and their values are bound to the formal parameter atoms. So, If the user defines

Exchange. (LAMBDA (X) (LIST (CADR X) (CAR X)))

ir
(NULL c)
(NOT c)

« (IF c THEN NIL ELSE T)

(OR el . . . en) H (COND (el T) ... (en T) (T NIL))

(AND el . . . en) M (CONO ((NOT el) NIL) ... ((NOT en) NIL) (T T)

(LIST el ... en) H (CONS el (CONS ... (CONS en NIL) ...))

422

%
then value((Exchange *(A B))) - value((LIST (CAOR *(A B)) (CAR '(AB))))- (value((CAOR MA BD) value! (CAR '(AB)))) - (B A) .
But value((Exchange (A B))) is not defined unless A is a function and B has a value.

We have now introduced enough of LISP to cover the sample programs In the Appendix.

Allocation and Garbage Collection. LISP relies completely upon dynamic allocation of
space for data storage. During execution of a program, each evaluation of the CONS function
causes one cons cell to be made, and one computer word Is allocated for the cell. Gradually,
the program's core space Is filled up and if nothing were done, It would soon be Jammed full
of cons cells. Fortunately, once the program has used a cons cell It often "forgets" all about
It—l.c. retains no direct or Indirect pointer to it, and can never access it again- so the
storage locations of these old cons cells can be recycled. When core begins to get full, the
user program Is suspended and the so-called Garbage Collector (a system program) Is called.
The Garbage Collector locates all the forgotten cells and makes their storage locations
available to the user program, which is then resumed.

Comparing this scheme to static allocation, In which each variable or array or whatever
has a fixed amount of storage reserved for it before the program executes, It Is clear that
static allocation Involves less overhead. But for LISP, in which list structures grow
unpredictably, It would be hopelessly restrictive. The time spent In garbage collection Is part
of the price paid for the flexibilityof LISP's data structure.

423

SOME MAJOR POINTS ABOUT LISP

»■

a

i.

In the previous section, It was shown how In LISP, data and programs are both highly
recursive, and are represented as nested lists. There are closer connections between them.

Programs mirror data in LISP, functions may be written so as to mirror the structure of the
data they operate upon, best shown by an example. The function Substitute takes any list
"Object" and generates a copy of It In which every occurrence of a given atom "Old" is
replaced by another list or atom "New".

Substitute! (LAMBOA (Object Old New)
(IF (ATOM Object)
THEN (IF (EQUAL Object Old) THEN New ELSE Object)
ELSE (CONS (Substitute (CAR Object) Old New)

(Substitute (CDR Object) Old New))))

Suppose we evaluate (Substitute '(PLUS (TIMES A X) X) 'X (PLUS 2 3)). Substitute is called
a total of 13 times. If one draws out the Internal representation of (PLUS (TIMES A X) B), one
finds It to contain 6 cons cells and 7 atoms. Substitute Is called exactly once for each of
these pieces, and the tree-structure of Instances of Substitute Is Isomorphic to the
structure of Object. There are two cases: either Object Is an atom, and the appropriate
value Is returned without recursion, or Object is a list, In which case Substitute Is applied
recursively to the CAR and CDR of Object, and the results CONSed together. Note that if Old
does not occur In Object, then the body of Substitute simplifies to

(IF (ATOM Object)
THEN Object
ELSE (CONS (CAR Object) (COR Object)))

As the reader can Imagine, this parallelism of control structure to data structure Is an
enormous help In dealing with complex nested data. It Is very characteristici of programm ng
In LISP that when writlna functions one need only concern oneself with the recursivedeSon ofShi; data and

9
not with what it look, like in the^^T^Z^ZriParsing are cases in point. In parsing, the input data Is . »"e«r b"t the _ output la

tree-structured, The grammar used In the parse may be regarded as a recursive deflnltiqn of
the structure of this output.

Programs are data The Internal representation of a LISP program (assuming It has not been
compiled) Is the same as that of any other multi-level list, I.e. cona. cc s and atoms. LISP Is
unique among programming languages In storing its program ' " s'"c« n? tSk«n, > Thilmany languages store them unstructured, as bit strings or sequences of tokens.) This
Property Is very Important, for several reasons. _,„„,_,__i„„_ _„_>

First, it Is particularly easy to write LISP programs that aX9. r̂ax^9aa^a^Programs, as In automatic programming [«"—ref: handbook chapter on automatic
Pr°9ras

m
c
m
con

9
d
3 TuncCnsl^bf^sed as parameters to other functions. (Just as any list"tructSrTSn. FofSa^ce suppose we had a function

[ref Search chaDter 1 We could pass it an evaluation function as a parameter; changing this
Para„;t.;? unde? cont^ofsom'e strategy, would cause different moves to be chosen by
m'nim

Third there Is procedural representation of knowledge. LISP procedures to find facts
cm k ?' !fi 2 ♦ £.--.« if they 2were* facts. For Instance, evaluation of eithercan be stored In a database as If tney «wera nauio i v . " . ,(.
expression below would return the value (7 -7). .BEGIN

ALG;

(QUOTE (7 -7)) or (7 7)

(ROOTS 49) END- In more complicated cases the procedural representation could do
arbitrary deductions berore returning a value v, yet from the outside It Is Just as If one

a uated v.

.„♦„„_,

i<- thn manner In which LISP can be a foundation for
«re 2_^|2Ss_ lr:S'srwm^ln'Ue.e,, ft USP. fer . new Ll*.*.

424

%

language. Syntactic constructs of the now language are represented as multilevel lists justas in LISP Itself, making the interpretation relatively easy to do. The special Al languagesmicro-PLANNER [Sussman 71], CONNIVER [McDermott 72], and QLISP [Sacerdotl 78] were all
Implemented In this way, incorporating powerful features such as automatic backtracking and
pattern matching. Of course there is a severe slow-down inherent In the use of an extralevel of Interpretation, but in a research environment that is usually acceptable.

LISP is interpretive Originally LISP was to be a compiler-based language. While design ofthe first compiler was underway, it was suddenly noticed that the LISP function EVAL was inessence a LISP Interpreter. Before, EVAL had been of theoretical Interest only and existedonly on paper. It was soon hand-coded, and long before a compiler, a LISP Interpreterbecame available.
Interpretive execution (or evaluation) has strong advantages during the programdevelopmenv phase, chiefly that it permits Interactive programming, and sc It remainsgenerallyused. Once a program is fully operational it is usually compiled for greater speed.An Important consequence of interpretation is greater flexibilityof the language Itself.An Interpreter Is much more accessible to change than a compiler, especially when It Iswritten In a high-level language-like LISP. Most of the existing dialects of LISP haveappeared when heavy LISP users (researchers) at an Installation modified and extendedLISP to suit their particular needs.

LISP Is interact ye Any Interactive language system must be Interpreter-basedrather thancompiler-based. LISP interpretation Is far easier than for most languages, because of theuniform syntax, and other features such as dynamic allocation and the abscence of typedeclarations also suit It to interactive use. Essentially all existing LISP systems areInteractive. » /

Since LISP encourages the composition of large programs out of many small

functions,

large programs (like those In Al) can be developed incrementally by writing and debuggingthe component functions one at a time.
.„ There exist a few quite large LISP systems that provide not only the direct languageS-h?m«i»s *."♦6n S "eny'ronment" for Interactive LISP programming, including editors,debugging and tracing facilities, and alternative syntactic forms more convenient than thepure list notation. These LISP systems also extend the basic language with additionalspecial-purpose functions and sometimes new data typesOne such system Is INTERLISP [Tletelman 76] which has over 500 functions; string,record, array and hash-array data types; a special stack for coroutining and other advancedcontrol structures; and an extensive environment. Another Is MACLISP [ref ??], with a muchsmaller environment, but excellent arithmetical facilities

425

<'

APPLICATIONS

i

p

L

Applications in Al Throughout its history the major application of LISP has always been In
artificial Intelligenceresearch. During the Initial Implementationperiod 1958-1962 several Al
programs were written In the new language[Berkeley 66].

The great majority of Al programs since 1960 have been written in LISP, or in a
language built on top of LISP. The table below lists a few such programs, their task domain
and LISP-related features that are prominent In each program.

Program Task domain LISP-related

solving geometrical analogy complex, unpredictable
problems similar to those in data structures representing
Intelligence tests the figures and analogies

Analogy (Evans 68]

SHRDLU Winograd 721 natural language understanding recursive planning, wri tten
and robot planning !__ m __r ?___ A ___ R £?_,'""

parser language, PROGRAMMAR.

LISP functions treated
dataIBoyer and Moore 75J proving theorems about

(Manna 77] LISP functions, program
synthesis

based on production rulesMYCIN (Davis 77] medical diagnosis

The books by Allen [Allen 78] and Winston [Winston 77] have some good examples of how
LISP programs are written for various applications.

Other applications LISP Is widely applied in the mathematical theory of computationi and In
_. rr ...

�

, � ... L„.011.a nf its un form structure and clean semantics;.

etc. Is written In MACLISP. In the larger realms of general scientific or. commercial
PWPjK-B;.-taP

L
,rsJ"!i ta

n
m
ot

Uont the language of choice for Al and a few other fields, but
"i JPu li « r -«-L too and so far has not due to historical and sociologicalahould be used n many other areas too, ana so rar »,as ""l aAAaA «n th»t i i<;p win
n.,..oe rDr«**n it i« nrnued that top- evel syntax can be added so tnat li&h wincauses [Pratt] '* "

9u?f ,;„n „fl __s and that better compilers would make LISP atInclude most features of ALGOL-tlke languages, ana uiai »«""»' * .. h|nh-iowoileast as efficient, In both symbolic and numeric computations, as any other high level
language.

Disadvantages of LISP
Ugly syntax. A common complaint about the list format <of LlSP'W^b** ««iy

. _,_?,,'. ", t, _„i v , -wntnrtie Items are separators such as spaces, andare difficult to read. The only syn tactic items a .
representing structure IsParentheses which provide most of »J .^ ôr n_mans , so In practice programsconven ent for the machine reading it but neon »B"7' 1 ,y,Mtln„ ponolo h«va also trl«ri toare Drlnted so that the structure Is also Indicated by Indenting. People nave also tried toora printed so tnat tne s"u«uro . programs. None of these, however, haveImplement alternative Input languages tor uor proy^ o * nxcpntlon Dei-han*

caught on, and list structure program Input Is still P'e
n
d°m

'"^^
eh| â n

g
e
deSed so thaUtIs CLISP Drovlded by INTERLISP as an alternative Input syntax which is designed so tnat it

n_,T_. P !_.?_, yJi, i icDMnt mi INTERLISP users like this though. One advantage ofcan be mixed with ordinary LISP. Not all NitHU^ v , , dear f user Th|s ,
LISP Input syntax Is that the relation to its lnJerna ' rf pr""' _„ such fIS .n - »st or|enteduseful, for example, where programs manipulate other programs such as In a list oriented

unction editor. |g fu| h , prevent3
type-checkrng at^rrpreSion^tlme or compile-time, which wouid often detect bugs. Many

426

*
LISP systems do support a few additional data types, and QLISP has a wide range of types
that are useful In symbolic computation- bags, tuples, relations, etc.

Inefficiency. As with any language, LISP Is quite slow when executed interpretlvely,
especially If additional levels of Interpretation are Interposed by languages "built on"

LISP,

e.g. PLANNER. Speed Is traded for convenience and extensibility. LISP can be compiled and Is
then of moderate efficiency.

Lack of a Standard. Unlike FORTRAN and other well-known languages, there has never
been an attempt to agree on a standardized LISP. The lack of a language standard and the
proliferation of Incompatible versions make LISP badly suited to be a production language,
and In Al research work there are severe difficulties in transporting LISP programs to
machines using a different LISP. A partial cure is to leave the program on Its home machine
and use It there via a computer network such as the ARPA net

Historical problems. The last common ancestor of the diverse LISPs now in existence
Is LISP 1.5, defined In 1962 [McCarthy 62]. Some of Its limitations are still widespread In
later LISPs, e.g. weak arithmetic and Inconvenient input/output formats.

These disadvantages are mostly Inherent In the language and can only partially be
alleviated. Even the lack of a language standard Is Inherent to the extent that LISP's
flexibility works against standardization. Some of the disadvantages listed are less
bothersome In a research setting (such as that of almost ail Al work) than they would be
elsewhere. The notorious slowness of arithmetic in most LISPs Is not an Inherent problem; as
MACLISP demonstrates, If the demand exists LISP arithmetic can be made quite efficient.

CONCLUSION

LISP Is the second oldest programming language still In widespread use. John McCarthy
[McCarthy 1978] attributes Its longevity to two facts. First, LISP "occupies some kind of
local optimum In the space of programming languages" through Its combination of recursion,
the representation of symbolic Information by list structures, and representation of programs
In the same way. Second, Its uniform syntax and semantics make LISP a good target
language Into which to Interpret or compile from a higher-level language.

The major application of LISP has always been in Artificial Intelligence research, where
It Is currently the dominant language and shows no particular signs of being replaced by the
newer Al languages (PLANNER, CONNIVER, SAIL, POPLER, and others—se.e [""""ref Al Langs
Historical Overview, Comparison of Al Langs].) LISP Is not specialized to artificial Intelligence
applications In the same sense as newer languages with such features as pattern-Invoked
procedures or automatic backtracking. It is first and foremost a list-processing language, and
the basic operations of CAR, CDR and CONS are quite close to the machine level. So

far,

though, It has generallybeen thought of as an Al language.
The basic concepts of LISP serve as a good Introduction to features found In most or

all Al languages, such as representation of information In list structures, recursion, easy
extensibility of the language, and the potential to be used Interactively.

427

"

L

I

APPENDIX: SAMPLE PROGRAMS

Factorial - a simple recursive program. This example was chosen for the sole purpose of
showing how recursion works in LISP. Even so, It is not unreallstically simple; LISP functions
of comparable simplicity are by no means rare.

Factorial t (LAMBOA (N) (IF (EQUAL N 8) THEN 1
ELSE (TIMES N (Factorial (SUBI N)))))

The evaluation of (Factorial 3) proceeds as follows: N Is bound to 3 and the expression (IF
(EQUAL N 0) THEN ... ELSE ...) Is evaluated. Since (EQUAL N 0) evaluates to NIL, I.e. "false",
the expression (TIMES N (Factorial (SUBI N))) Is to be evaluated. Its value Is 3*value(
(Factorial 2)), and so Factorial is called recursively. A separate Instance of the variable N Is
allocated, bound to 2 and the process continues.

value((Factorial 31) - 3 * value! (Factoria 2
value((Factorial 2))- 2 * value((Factor. a 1
value((Factorial 1)) - 1 * valuet (Factorial 8) 1
value((Factorial 8)) - 1.

The fourth call, with N « 0, does not recurse. Control returns to the third call and then to the
second and first.

value((Factorial 1)) - 1 * 1
value((Factorial 2) 1 - 2 * 1
value! (Factorial 3)) - 3 * 2

1.
2,
S.

m

Recursion can be a method of great power when some complex task Is to be performed. If
the programmer can think of a way to reduce It to one or more smaller taska.of the same
kind, then there Is no need to explicitly state (in a P"9"m > »Jow *h« t".\"ri

at^°^i* *_«
done. In the Factorial example,knowing only the reduction N! = N«(N- 1)1 (and the base case
0! = 1), we wrote a recursive program that implicitly computes N! = N*(N-1)"(N-2)« ... «2«1*1.
A more Impressive examplefollows.

Towers of Hanoi- problem solving by recursion, in the. Towers of Hanoi puzzle, a tower of
(generally eight) disks must be transferred from Peg Ato Peg B, moving one- at a time, and
never placing a larger disk on top of a smaller. Peg C may be used.

ABCABC

428

%

To move a tower of two disks, one would move Disk 1 from A to C, Disk 2 from A to B, andthen Disk 1 from C to B. Now suppose we wish to transfer a tower of N disks, this problemcan be reduced to three steps: transfer the tower of Disks 1 through N-1 from A to C, moveDisk N from A to B, then transfer the tower from C to B.

Of course If N = 1, Just move the disk from A to B. Now Immediately we can write a recursiveprogram to print out the solution for any number of disks.
MoveToweri (LAMBDA (DiskList PegA Pegß PegC)

(IF OlskLlst THEN
(PROG ()

22mJ°«e7JC?R DiBkL ''9t> PegA PegC Pegß)PRINT (LIST Move (CAR DiskList)i st) ' from PegA ' to Pegß))
(MoveTower (CDR DiskList) PegC Pegß PegA))))

Here Is the printout resulting from evaluation of (MoveTower '(Dlsk.l Dlsk2 Dlsk3) 'A 'B 'C):
(Move Dlskl from A to B)
(Move Dlek2 from A to C)
(Move Diskl from B to C)
(Move Disk 3from A to B)
(Move Dlskl from C to A)
(Move olsk2 from C to B)
(Move Diskl from A to B)
NIL

Observe the following points:

1. NIL Is returned as the value of the PROG
lnx/itJVo^^hlTJ^9 fUn(! t,on M,OVQTower calls two other Instances. The reader IsSfnrw IL ! 1 recursive calls to MoveTower and calculate how many moves Ittakes for N disks. By the way, it Is not hard to see that the solution is optimal.3. One may regard the tree of calls to MoveTower as a problem-reduction tree
orohmm ,Brt„n,lnß _„„ consisting entirely of AND nodes. Solution of problems by

t IS !\lr "t .♦
C

M

S,On

>a Very common in Al - [*""**refs to thm-proving,Shaotw^ P
>
erhT t0 Some 9eneral Hussion In the Problem-Solvingcnapterj. LISP Is well suited to most such methods.

rttoct ? m.v
9
b. "« h W. Rom the data structure sect,on how assertions aboutSedlctlons y

from ? diiif "# SP The °eXt eXamp,e pro9ram makes s,mP,e ,09

,Cfl

'cJrtSn ored!e.T«% tr,« n# f S,ser 'fns- The assertions are of two kinds: a fact that a
pradleate ImDU« JnSir a '?!" 0bJBfco8

fc
ot ' eg- (MAN Socr«tes), and a generalrule that onepredicate Implies another. A suitable ad hoc representation for the rules Is (ALL predicate1

429

L

predicate2), e.g. (ALL MAN MORTAL). Given a statement such as (MORTAL Socrates) and a
database, the program Prove will return T If the statement can be deduced from its
database, NIL If not.

Provet (LAMBDA (Statement Dataßase) (FindAsser tion Dataßase))

FindAssertlom (LAMBDA (RestOfDataßase)
(IF (NULL RestOfDataßase)
THEN NIL „ _

n ..
ELSE (OR (Proveslt (CAR RestOfDataßase))

(FindAsser tion (COR RestOfDataßase)))))

(LAMBOA (Assertion)
(OR (EQUAL Statement Assertion)

(AND (EQUAL (CAR Assertion) 'ALL
(EQUAL (CADOR Assertion) (CAR Statement))

(Prove (CONS (CADR Assert ion) (CDR Statement))
Dataßase))))

Proves! tt

We would describe this system of three functions In lEnglish by saying ' A statement can be
proven from a database If the first assertion in the database provesit, o -It can be Proven
from the rest of the database. An assertion proves a statement of the form (Predicate

Object) If either It Is Identical with the statement, or it Is .Df the *"^PTe6\c* e2
Predicate) and the new statement (Predicate2Object) can be proven from the database.

Evaluation of (Prove '(MORTAL Socrates) '((MAN Socrates) (ALL MAN MORTAL))) builds up the
following tree of function calls before returning T:

...to prove (MORTAL Socrates)Prove

FindAsser tion
/ \

Proveslt FindAsser t ioni

Provesl t
...to prove (MAN,1 Socrates)Prove

I .
FindAsser tion

Provesl t

TS^?TZES& by splits the prover *£*~^£«~> " ° S'n9 'qfunction, Into three .mallteh statement,.

UBP s^^^^.*!Sr«SSSS .n thl. style, bu, ,or MoveTower I, would
have been clumsy. themselves the functions Prove and Proveslt are

each function, there Is a chain ot colls leadlno back to that function.

430

Prove «-%

I

C FindAsser tion ► Proveslt
I

ef

„h,4, °f__ne tnree mutually recursive functions, only FlndAssertion is recursive as itstands. FindAssertlon Illustrates a very common scheme for recursion do-.vn a list, whichtakes the general form:

F» (LAMBDA (x) (IF (NULL x) THEN NIL ELSE (G (H (CAR x))
(F (CDR x)))))

In FlndAssertion, G s OR, making

value(Flnd Mcl ... eN)) - value(oß (H el) ... (H eN)) ,
where H Is Proveslt. If G were CONS Instead of OR, another very useful function would result:

value(F Mcl ... eN)) - (valuefH el) ... value(H eN)).

rlunJ' lhe variable Statement Is not defined as a parameter to Proveslt, and so the
value or sSrL^ M

f
„

S,Pn
appl,M' Ooes which called Proveslt, define aProveiS nnl ITmJ? £N°' but_Prove- whlcn called FlndAssertion, did. So that value Is used. Ifbecomi; ?2r«!i u.^VJ.11 PaSS6S !t a newly-constructed statement as parameter, thisbecomes the new value of Statement and is used by the next lower Instances of Proveslt.

i

431

%

>

L

LZSP
REFERENCES

Allen, John. Anatomy of LISP.
New York:

McGraw-Hill,

1978.

Berkeley, Edmund C. and Bobrow, Daniel G. (eds.), The Programming Language
LISP: Its Operation and Applications, 2nd cd.
Cambridge, Mass.: The MIT Press, 1966.

Boyer, Robert S. and Moore, J. Strother. "Proving Theorems about LISP
Functions", JACM Vol. 22 No. 1, 1975.pp 129-144.

Church, Alonzo. Calculi of Lambda Conversion.
Princeton, N.J.: Princeton Univ. Press, 1941

Davis, Randall and Buchanan, Bruce. "Production Rules as a Representation
for a Knowledge-Based Consultation Program",
Artificial IntelligenceVol. 8, 1977. pp. 16-46.

Evans, Thomas G. "A Program for the Solution of Geometric-Analogy
Intelligence Test Questions", In Minsky, Marvin (cd.)
Semantic Information Processing.
Cambridge, Mass.: MIT Press, 1968.

Friedman, Daniel P. The Little USPer.
Chicago: Science Research Associates, 1974.

Manna, Zohar and Waldlnger, Richard. "Synthesis: Dreams -> Programs",
SAIL Memo AIM-302, Computer Science Dept,

Stanford,

IV77.

Maurer, Ward D. The Programmer's Introduction to USP-
London: Macdonald, New York: American Elsevier, 197Z.

McCarthy, John "Recursive Functions of Symbolic Expressions and their
Computation by Machine", CACM 3 (1960), pp. 184-196.

McCarthy, John; Abrahams, Paul W.; Edwards, Daniel J.j Hart, Timothy P. and
Levin, Michael I. LISP 1.5 Programmer's Manual.
Cambridge, Mass.: The MIT Press, 1962.

McCarthy, John "History of LISP" ACM SIGPUN Notices,

Vol 13 No 8 August 1978 pp. 217-223.

McDermott, V. et. al. "The CONNIVER Reference Manual",
AI-M-269, MIT, Cambridge, Mass. 1972.

Pratt, Vaughn R. "LISP: An Amicus Curiae Brief. '"*"* where? when?

Sacerdotl, Earl et. al. "QLISP: A languagefor the Interactive development

of complex systems",
SRI International,Menlo Park, Calif. 1976.

Sandewall, Erik. "Programming In an Interactive Environment: The "LISP"
Experience", Computing Surveys, Vol. 10 No. 1
March 1978, pp. 36-71.

Slklossy, Laurent. Let's Talk LISP.
Englewood Cliffs, N.J.: Prentice-Hall, 1976.

432

PLANNER

, :

'

*

%
Sussman,

Gerald;

Winograd, Terry and Charniak, Eugene. "Micro^
Reference Manual", AI-M-203A, Artificial Intelligence Lab,
MIT, Cambridge, Mass. 1971.

Teitelman, Warren. "INTERLISP Reference Manual".
Xerox - Palo Alto Research Center, Palo Alto, Calif. 1976.

The Mathlab Group. MACSYMA Reference Manual.
Laboratory for Computer Science, MIT Version 9,
Cambridge, Mass. 1977.

Welssman, Clark LISP 1.5 Primer.
Belmont, Calif.: Dickenson Publishing Company, 1967.

Winograd, Terry. Understanding Natural Language.
New York: Academic Press, 1972.

Winston, Patrick H. Artificial Intelligence.
Addlson-Wesley, 1977.

433

y
i

L

I. PLANNER and CONNIVER

1.1. PLANNER

Like LISP, PLANNER was developed at MIT. Carl Hewitt of the MIT AI Lab began development
of the PLANNER concepts in about 1967 and thy continued to be developed for several years after
that, [refs] Strictly speaking PLANNER is a loose [?] framework for expressing problem solving
systems, not an actual computer language. Only a smallish subset of the ideas have ever been
Implemented, those included In the Micro-PLANNER language denned In 1971 [Sussman etc 1971.]
That Implementation was made largely because Terry Winograd wanted to write part of his natural-
language dialog robot [ref] In PLANNER. Unless stated otherwise, when we refer to PLANNER
In this article we mean Micro-PLANNER. This loose terminology Is very common.

PLANNER Introduced three Important Ideas.

Automatic backtracking as a control structure

Pattern-directed search of a (global) database

Pattern-directed invocation of procedures
I

Two of these have been extremely Influential, the other less so They are combined into a system

oriented towards achieving goals (by solving problems.) In the typical use of PLANNER the
database represents the staFe of the world and a certain goal Is set up. If patKm-c^ed.; database
search finds that the goal Is already achieved (current state of the world satisfies the goal) then the
program halts. Otherwise pattern-directed invocation fires off an appropriate procedure that reduces

thecal to subgoals, and
P the process recurses. Automatic backtracking comes into play If hat

procedure falls; another one is chosen. The PLANNER process Is described In more detail in
Section 111.

The PLANNER interpreter Is written in LISP and close analogues of "ost b"ic L SP functions «c
present in PLANNER There Is no PLANNER compiler [perhaps that would be impossible] Since
the LISP itself is not especially fast, with the additional layer of f^;^;"JN» l^»
quite slow, and this is severely aggravated by the »«"> m«ic backtracking »̂hich can easily lead to

very big search trees. The upshS is that PLANNER can be grossly inefflcien*. This a ong with
other problems associated with the automatic backtracking, seem to be

o7°J"J°^PLANNER is not used very much any more. However that may be it is «"^^***"MImportance as the first language to allow programming at the level of goa and methods, leaving the
details of choosing which procedure to call at which point, etc.. up to the system.

434

*

1.2. CONNIVER

CONNIVER was largely inspired by the successes " and the defects - of PLANNER.
Sussman and Drew McDermott, both at MIT (recall that Sussman was one of the implementors ofMicro-PLANNER), studied PLANNER and decided that Its basic cotrol structure was wrong:

"automatic backtracking ... is the wrong structure for the domain for which PLANNER
was intended, that is, Artificial Intelligence."

The new language was an integration of
ideas from PLANNER.and elsewhere. As Sussman and McDermott say,

"Conniver embodies few original ideas but is hopefully an original combination of thegood ideas of others.

While rejecting (wholeheartedly) the control structure of PLANNER the developers of CONNIVER
retained essentially all of its data structuring and pattern matching ideas. A: more gene^alcbntrol
structure was adopted, based on the now standard techniques given in [ref Bobrow andWegbreit]. The control primitives of CONNIVER are at a lower level than those of PLANNER
but enable the programmer to construct a wide variety of control regimes, including the backtracking
rpaime if so desired. A maior innovation

I of CONNIVER was the subdivision of the global database into separate contexts" (more about contexts later.)

"

£2^ V,ER IS intcrPreter based lik * PLANNER, the interpreter again being written in LISP.CONNIVER is Integrated quite nicely into LISP; to the CONNIVER programmer LISP appears as
a subset of CONNIVER. Considered as an extension of LISP, CONNIVER has three mainadditions:

A system-maintalned data base organized into a tree of contexts

Pattern matching for database search and procedure invocation

Extended control facilities allowing generators,coroutines etc.

435

v

L

I
I. QLISP and INTERLISP<

The roots of QLISP go back about as far as PLANNER'S, to a deductive question-answering system
known as QA3 [ref to ccg's '69 thesis], and through QA3 to QA4 and then QLISP. All three
language systems were developed at SRI In Menlo Park. QA3 stored a database of facts expressed
In first order predicate calculus and, when given a question, would obtain an answer to It by
resolution with the data base [ref to fuller descr. of QA3 method In AIH].

QLISP started as an expedient for more effective use of QA4. QA4 users suffered from a lack of
good debugging and other environmental facilities; this was overcome by embedding QA4 into the
new version of LISP called INTERLISP, giving access to the strong environmental features of that
language. The result was called QLISP. Users had also suffered from the slowness of QA4, and by
sacrificing some generality in QLISP a factor of about 30 speedup was obtained. Extensions beyond
QA4 were then added, notably a quite sophisticated unification pattern matcher and, after the
"spaghetti stack" machanlsm was added to INTERLISP, coroutining and other generalized control
structures. QLISP reached mature form by 1976, latest of the advanced LISP-based languages
PLANNER, CONNIVER and QLISP. It has been Implemented on the PDP-10 in JENEX
INTERLISP and on the IBM 360 and 370 In INTERLISP-370. A good many of OJJSP's
Interesting features come from or depend upon INTERLISP, so we will have more to say about It In
Section HI.

i

As indicated In the title of [ref "QUSP: a ..."]. QLISP Is intended was It from the start?] as a
language for the Interactive development of complex systems. (Italics mine.) Its designers and
Implements recognized that compared to straight LISP their higher- eve language wou d
inevitably be less efficient, and intended that once a user's program was working In OJ-ISP he could
cut over to straight INTERLISP. This sort of method is quite commonly done In AI for instance
the CONCEN part of the DENDRAL system [ref] was originally written in INTERLISP but once
the algorithm was perfected It was completely rewritten in PDP-10 assembler. In the case of QL SP
the transition to INTERLISP is relatively easy, because free Intermixing of the special QLISP
constructs with INTERLISP code is allowed. From the start those parts of a program for which
INTERLISP is enough can be written in it. and the rest can be translated In stages. Both this
advantage, and the excellent QLISP environment, spring from QLISP , tight Integration with the
underlying INTERLISP.

Two QLISP features of particular interest are its organization of the data base into a
"discrimination net", some new data types, and the use of unification pattern matching.

436

*

I. SAIL

SAIL (Stanford Artificial Intelligence Language) is an extension of ALGOL 60 developed at
Stanford (We will assume the reader has some familiarity with ALGOL or a similar language.) The
first version came out in 1969 and development continued for several years after that. As acompiler-based language and with a more restricted set of AI features than PLANNER,
CONNIVER and QLISP, SAIL provides a programming experience much closer to the general
programming tradition.

The orientation of SAIL is very different from the other languages so far introduced. It was
Intended chiefly for A I research in the areas of vision, speech and hand-eye systems, all domainswhere there is a large quantity of "real-world" data coming in from real devices that must be
processed, including a large component of numeric procssing. (Yet high level tasks like recognitionand planning must also be done.) In SAIL, sacrifices of expressiveness and generality were made sothat high efficiency could be maintained. In consequence of this orientation, SAIL, unlike the otherfive A I languages we are discussing, is used considerably outside AI as well as inside.

The most significant extension of SAIL over ALGOL Is the incorporation of an associative-processing formalism known as LEAP, which we will now describe. LEAP Is itself an extension of
ALGOL 60, developed by Paul D. Rovner at MIT [ref Feldman and Rovner] as a language Inwhich to do associative processing of the sort known to be useful In operating systems, computergraphics, computer aided design, data base management systems, and to be sure, AI. LEAP cameInto active use In early 1967, mostly in computer graphics applications.

The motivation for LEAP was to implement an efficient software scheme for associative processing,or the accessing of data by partial specification of its content rather than by the address of the
storage location it happens to reside in.

LEAP was swal!ow«Twhole Into the developing SAIL language and the problem of'ill-fit betweenassociations and ALGOL types persists. This problem will be explained in the Data Structuresubsection of Section 111.

Besides LEAP quite a few other features were put into SAIL. Among them are set, list and recorddata types, primitives for multiple processes, a large number of functions providing excellent accessto hardware devices and operating system utilities, and an interactive debugger. The features are
not well integrated with each other, partly for efficiency reasons, making the language something of a

SAIL Is implemented only on the PDP-10 under several operating systems. It is used atseveral Installations In the U.S. though not a great many, still primarily for vision, speech androbotics work, plus much non-AI work.

437

i

;i

I

L

I. POP-2

POP-2 was designed by R. M. Burstall and Robin J. Popplestone, based on Popplestone's POP-1
language.

POP-2 arose out of the following situation. AI researchers at the University of Edinburgh and
elsewhere In Britain were faced with the question of what language to use. There were basically two
alternatives: use LISP, or create a new language. There were some new ideas, such as partial
application of functions, and perceptions of things wrong with LISP, like its type structure, or lack
of same?] In addition, the researchers wanted a language suited to relatively small machines like the
ICL-4000. The tendency in LISPs. then as now, was for the language (and core space needed to run
It) to grow monotonlcally as various extensions and facilities are added on. The extremecase of this
at present is INTERLISP. An alternative approach was adopted for POP-2, of designing a small,
clean basic language of high flexibility which is used in conjunction with library packages that
provide extensions. The user calls in only those packages whose features are needed for the
particular program.

The language has been quite successful. It Is currently the majoe AI language used In Britain and is
used at installations in various other countries. POP-2 has been
implemented on the ICL-4000, ICL-1900, ICL System 4, IBM 360 and the PDP-10. A new version
POP-2.5 is scheduled to come out soon after the time of this writing.

The syntax of POP-2 Is ALGOL-llke, yet the underlying structure Is more like the LISP family,
with dynamic scoping, dynamic allocation and extensive use of the Lambda construct for treating
fuctlons as objects. Other features fall Into neither category.

The basic POP-2 language is like basic LISP in having no features that are. oeajllar to .AI
applications. Each provides a flexible framework on which such features may easily be built,.though
in characteristically different manners. For LISP It tends to be done by %£^»*"*"language through an interpreter written in LISP. In the case of POP-2 AI features have been put
in Wary package, which when compiled and loaded define *^'^

h

"^*abl**language in a certain direction, e.g. with data base retrieval functions. The„ are advantages and
disadvantages to both techniques, of which some will come out In later discussion.

Two important facets of the basic language are:

1. Thorough treatment of functions as objects In particular, the notion.of
evaluation* a function is generalized to partial evaluation. This and other POP-2
devices tend to blur the distinction between data and control in a useful way.

2. Extensible data types. It is also easy to change the 'n^*l^"*"^"sed for a

data type without performing major surgery on parts of the program that use It.

438

%

References

Ballard, D. H., Brown, C. M., & Feldman, J. A. An approach to knowledge-directed Image
analysis. UCAI 6, 1977, 664-670.

Bobrow, D. G. Requirements for advanced programming systems for list processing. CACM,
1972, 16(7), 618-627.

Bobrow, D. G., & Wegbrelt, B. A model and stack Implementation of multiple
environments. CACM 1973, 16(10), 691-602.

Davles, D. J. POPLERi A POP-2 PLANNER, Research Memo MIP-R-89 (plus
amendment), Edinburgh University, School of Artificial Intelligence, 1971.

Davles, D., et al. POPLER 1.5 Reference Manual, University of Edinburgh, Edinburgh,
Scotland, 1973.

Derksen, J. A. The QA4 Primer, SRI Pro]. 8721 , Draft Memo 1 6, June 1 972.

Feldman, J. A. 8. Rovner, P. D. An ALGOL-Based Associative Language. CACM, 1969, 12(8),
439-449.

Feldman, J. A., Low, J. R., Swinehart, D. C. & Taylor, R. H. Recent Developments In SAIL,
STAN-CS-308, Stanford University, Computer Science Dept; Artificial Intelligence
Laboratory, AIM-1 78, 1972.

Floyd, R. W. Notes on Programming In SAIL, Computer Science Dept., Stanford University.
1977.

Foster, J. M. Programming language design for the representation of knowledge. In E. W.
Elcock & D. Michie (Eds.), Machine Intelligence 8. New York: John Wiley &

Sons,

1977. Pp. 209-222.

Golomb, S. W., & Baumert, LD. Backtrack Programming. JACM, 1966, 12(4), 616-524.

Grief, 1., & Hewitt, C. Actor Semantics for PLANNER-73. Conference Record of the 2nd
ACM Symposium on Principles of Programming Languages, Palo Alto,

CA,

Januaryl975, pp. 67-77.

Hewitt, C. Description and theoretical analysis of PLANNER, MIT-AIM-268, MIT, Al Dept.,
1972.

Hewitt, C. PLANNER: A language for manipulating models and proving theorems In a robot.UCAI 1, 1969, 296-301.

MacDermott, D., 8, Sussman, G. CONNIVER Reference Manual, MIT-AIM-269, MIT, Al Dept.,
1972.

McCarthy, J. History of LISP. ACM Sigplan Notices, 1978, 13(8), 217-223.

439

Al Handbook

I*

I

McCarthy, J., Abrahams, P. W.. Edwards, D. J., Hart, T. P., & Levin, M.I. LISP 1.5
Programmer's Manual. Cambridge, Mass.: The MIT Press, 1962.

McDermott, D. V. Very Large PLANNER-type Data Bases, MIT-AIM-339, MIT, Al Dept.,
1975.

Moon, D. A. MACLISP Reference Manual. Project MAC, MIT, Cambridge, Mass., 1974.

Newell, A. Heuristic Programming: 111-structured problems. In J. S. Aronofsky (Ed.), Progress
In Operations Research (vol. 3). New York: Wiley, 1969. Pp. 362-414.

Popplestone, R. J. The Design Philosophy of POP-2. In D. Michie (Ed.) Machine Intelligence
3. Edinburgh: Edinburgh University Press, 1967. Pp. 393-402.

[

Pratt, V. R. The Competence/Performanoe Dichotomy In Programming. 4th ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages.Santa Monica,
Calif., 1977, pp. 194-200.

Prenner, C. J., Spltzen, J. M., & Wegbreit, B. An Implementation of backtracking for
programming languages. SIGPLAN Notices, 1972, 7(1 1), 38-44.

Reiser, J. (Ed.) SAIL, STAN-CS-76-674, Stanford University, Computer Science Dept.j
Artificial IntelligenceLaboratory, AIM-289, 1978.

Reiser, J. F. BAILi A Debugger for SAIL, STAN-CS-76-270, Stanford University, Computer

Science Dept.; Artificial IntelligenceLaboratory, AIM-270, 1975.
I

Rlvest, R. L. Partial-Match Retrieval Algorithms. SIAM Journal of Computing 5, 1976, pp.
19-50.

Rullfson, J. F., Waldlnger, R. J., & Derksen, J. A. QA4: A procedural calculus for Intuitive
reasoning, SRI Al Center Tech. Note 73, SRI International, Inc., November 1973.

Rychener

Sacerdotl, E. D. A structure for plans and behavior, SRI Al Center Tec. Note 109, SRI
International, Inc., August 1976.

Sacerdotl, E. D., et al. QLISP: A languagefor the Interactive development of complex

systems, SRI Al Center Tech. Note 120, SRI International, Inc., March 1976.

Sandewall. E. Ideas about Management of LISP Data Bases. UCAI 4, 1975, 586-692.

Sandewall, E. Programming In the Interactive environment: the LISP experience.ACM
Computing Surveys, 1978, 10(1), 36-71.

Sandewall, E. Some observations on conceptual programming In EW Eloook &
D. Michie (Eds.), Machine Intelligence 8. New York: John Wiley & Sons, 1977. Pp.
223-286.

440

% Al Programming Languages

Smith, D. C, & Enea, H. J. Backtracking In MLISP2: An efficient backtracking method for
LISP. UCAI 3, 1973, 677-686.

Smith, N. W. SAIL Tutorial, STAN-CS-76-576, Stanford University, Computer Science Dept.;
Artificial Intelligence Laboratory, AIM-290, 1976.

Sussman, G. J., & McDermott, D. V. From PLANNER to CONNIVER: A genetic approach. AFIPS,
1972, 1171-1180.

Teitelman, W. A display oriented programmer's assistant. UCAI 6, 1977, 905-916.

Teitelman, W., et al. INTERLISP Reference Manual, Xerox PARC, Palo Alto, CA, October
1978.

Tesler, L. G., Enea, H. J., & Smith, D. C. The LISP7O pattern matching system. UCAI 3, 1973,
671-676.

Waldlnger, R. J., & Levitt, K.N. Reasoning about Programs, Artificial Intelligence, 1974,
5(4), 235-318.

Waterman, D. A., 8, Hayes-Roth, F. (Eds.) Pattern-Directed Inference Systems. New York:
Academic Press, 1978.

Welssman, C. LISP 1.5 Primer. Belmont, Calif.: Dickenson Publishing

Co.,

1967.

Wllber, M. B. A QLISP Reference Manual, SRI Al Center Tech. Note 118, SRI International,
Inc., March 1976.

T

Applications-oriented AI Research

Part 1

l

Research on Applications of Al

Table of Contents

A. Overview of Applications of Artificial Intelligence 443
1, TEIRESIAS 449
2. MACSYMA 4622. MACSYMA 462
3. AM 468

B. Miscellaneous Applications of Artificial Intelligence 482
1. The SRI Computer-based Consultant 482
2. PROSPECTOR: An Expert System for Mineral Exploration 487
3. RITA , 4954. Artlflcal Intelligence 1n Information Retrieval 500

References 588
Index ■ 514

A. Overview of Applicationsof Artificial Intelligence

Within the past decade Artificial Intelligence (Al) techniques have been applied to the
development of expert systems, computer systems intended to assist researchers solve
complex problems in their scientific or medical speciality. These systems ate most strongly
characterized by their use of domain knowledge gleaned from experts that enables them to
perform their problem-solving tasks.

While reading this chapter the reader should be aware that nearly all the systems
described here were originally designed to be applications in the intended communities, and
all but a few are in consistent use. Most of the systems are still being researched and
developed. Thus, perhaps a more appropriate title for this chapter might be "Applications-

Oriented Aritificial Intelligence Research." The emphasis here is a description of the
applications and research of Al techniques to real-world problems.

It has been observed that what distinguishes a layman or general researcher from a
specialist in a scientific or technical domain Is the vast amount of empirical knowledge about
the domain that the expert has amassed during the course of his profession. This task-
specific knowledge Is, of course, based on any conceptual or theoretical knowledge that
underlies problem solving in the domain. Any so-called knowledge-based system designed to
assist users in the domain at this expert level requires both the empirical and the theoretical
knowledge as well. Developingrepresentational vehicles that are able to encode this partly
public, partly private knowledge of the domain has occupied the Al researchers during the
construction of all these systems.

Using representations of domain-specific knowledge, artificial intelligenceresearch has
yielded systems with significant problem-solving abilities, at times even going beyond the
abilities of the human experts. In addition to developing adequate representations of this
domain-specific knowledge, research has emphasized the developmentof various reasoning
and explanationprocedures that manipulatethis knowledge. In particular, much emphasis has
been placed on the development of methods of inexact reasoning since for many of these
domains, notably medicine, the experts appraisal of the problem situation cannot always be
completelycertain.

The major domains of expertise that have been developed as applications systems

include: the diagnosis and treatment of various dieases (see section Medicine.Overview), the
design of computer assisltants for both the analytic and synthetic aspects of organic
chemistry (see section Chemißtry.Overview), interactive tutoring systems in education see
section EducationOverview), and assistants for performing advanced mathematics (see
article E3) A number of other notable applications have been developed including
applications of Al to database information retrieval problems (see article F4) and a geological

assistant (see article F3). There are a host of recent applications as well that do not have
articles in this chapter, such as SACON, a system for advising structural eng.neers in the use
of a large finite-element analysis program used to model various mechan.cal structures
(Bennett et al 1978); PUFF, a system for diagnosing a patient with various pulmonary
dysfunctions (Feigenbaum, 1977); and HEADMED, a system for diagnosis and treatment of

Psychiatric patients (Heiser, 1977, 1978).

% 444 Research on Applications of Ai

Typically, these systems will be considered intelligent if they meet the following
criteria: The system gives correct answers or useful advice, and the concepts and
reasoning processes that the system uses to solve the problemresemble those that the user
might employ. These last concerns have motivated the design of systems capable of
explaining their reasoning about a case, capable of maintaining a focused dialogue with a
user when pursuing relevant facts and inferences about the user's case, and capable of
using knowledge at the conceptual level of the user when solving and explaining both the
problem and the system's solution. Achieving these primarily human-engineering concerns has
required many advances In artificial intelligence. These abilities and developments are
detailed for each system In the following articles.

Evolution of Expert Systems

Work in Al during the 1960s identified and explored general-purpose problem-solving
techniques that would be applicable in a large number of problem-solving situations. This
research introduced and refined the concept of heuristic search (see chapter

Search,

Search) as a mechanism of problem solving. These ideas and developmentswere embodied insuch systems as GPS, REF-ARF, QA4, PLANNER, etc. These systems dealt with problems indomains such as chess, robot planning, and blocks world manipulations, as well as the classic
problem-solving situations found in puzzles such as the Tower of Hanoi and The Missonariesand Cannibals.

During the mid 1 9605, the first expert systems were developed, and these includedDENDRAL and MACSYMA.

During 1 965, the Heuristic Programming Project at Stanford University began to apply thesesearch techniques to the design of an intelligent assistant to aid chemists in elucidating thestructure of unknown chemical compounds. Motivated by interest in modeling the thoughtprocess of research scientists, Edward Feigenbaum and Joshua Lederberg of the DENDRALproject began to emphasize and use large amounts of domain-specific knowledge in thesolution of this major real-world problem.

These systems were designed to aid researchers by being able to manipulate and
explore large symbolically expressed problems that were known to be difficult for humanresearchers to solve. These problems were characterized by the fact that as their
specification grew in complexity, so did the number of solution possibilites that had to be
examined. The larger the size of the problem specification (e.g., size of the molecule in
atoms/bonds or complexity of the expression to be intergrated), the more difficult it was forhuman researchers to. discover solutions or be confident that all valid solutions had beenfound. This combinatorial explosion in the solution search space easily outstriped the abilitiesof most human researchers. The ability of these applications systems to deal with theselarger solution spaces extended the limit on the types of problems capable of being solvedwith the present conceptual tools.

More recently, the motivation for constructing these knowledge-based systems hascome to Include a number of other factors. These expert systems promise to have significanteconomic (SYNTHESIS, PROSPECTOR) and social impact. For example, the organic synthesis
systems are used actively by drug and chemical manufacturing companies to uncover

A Overview of Applicationsof Artificial Intelligence 445

inexpensive methods of synthesizing various compounds. In medicine, these systems have
the capability to examine all possible diseases that might be afflicting a patient. In addition,
the ability to codlfiy the expertise in a domain makes these systems potentially available for
tutoring and assessment purposes.

For a system to achieve broad applicability within a speciality and remain complete and
correct in its search for problem solutions, large amounts of domain-specific knowledge have
had to be represented and handled. Thus, while heuristic search management is still a major
concern in the construction of any expert system, the large amounts of expert knowledge
required to achieve an adequate, efficient solution to these problems have fostered
problems in the construction and maintainence of these knowledge bases. The concerns of
effective representation and management of the large, domain-specific knowledge bases
have shifted attention away from development of programs designed to solve large
combinatorial problems, such as those that prompted the DENDRAL programs, to those that
require more empirical knowledge for their solution. Current research emphasizes not only the
representationaladequacyof the existingformalisms but also such issues as the appropriate

grain size of the knowledge (see article Representetiortlssuea) and Improved explanation,
inference, and acquisition abilities (see article CS).

Dimensions of Applications

Most of the application systems described in this chapter can be viewed as consultants
that formulate opinions or as models about cases that give advice to their users. The tasks
these consultants are designed to perform are typically repetitive and sometimes beyond
human abilities-problems that require knowledge of facts and relationships known only by
specialists.

The notion of a consultant implies that the user and the system interact during the
problem-solving task. The current systems emphasize the cognitive abilities that support this
interaction such as the ability to explain lines of reasoning and to interactively acquire new
domain knowledge. This is especially true for the medical and educational systems where
much research has gone into the design of well-engineered, responsive, user interfaces.

The Al research conducted for these application systems is different from other
mainstream Al research such as that on speech or vision. Applications research does not
concentrate on developingmodels of the various physiological functions that are of interest
in these other areas. The cognitive abilities required by the current applications are primarily
conceptual In nature and do not depend on sophisticated perceptual capabilities in order to
be performed. Research concentrates instead on the requirements for systems to utilize
developed human expertise. This expertise is typically at a high conceptual level and is easily

encodable in the symbolic representational formalisms that have been developed.

Representational adequacy. Applications research has proved a valuable testing
ground for the techniques developed in other areas of Al research. In addition to the
augmentation of heuristic search methods by domain-specific knowledge, representation

formalisms developedfor modeling psychological aspects of cognition-such as semantic nets
(see article Repreßer.tation.B2) and production systems (see article Representation.B3)~

have been used übiquitously In the applications described in this chapter. Techniques
developed in the course of natural language research (see chapter Natural Language, Natural

* 446 Research on Applicationsof Al

Language) have been used to achieve the effective man-machine interface required of
these interactive consultant systems.

Domain-independence of the systems. As part of the research on the adequacy of
these representational formalisms, a number of these systems have attempted to maintain a
strict separation between the domain-specific knowledge supplied by the expert and the
domain-independent knowledge and capabilities of problem solving that the systems
intrinsically possess. The task of determining what abilities and what knowledge constitutes
an effective domain-independent system occupies much of the Al research in applications.
For example, the EMYCIN system consists of the basic control structure found in the MYCIN
system (see' article CI) with the infectious disease knowledge base removed; this "empty
MYCIN" system retains the capability to interact with the user during a case, to explain its
reasoning, and to answer questions about a case in a new domain of expertise. This system
has been used successfully to develop the applications in pulmonary dysfunction, structural
analysis, and psychiatric diagnosis mentioned in the beginning of this overview. Numerous
other systems similar to the EMYCIN system are being developed, such as the IRIS system
(see article C7); these domain-independent consultation systems are a major product of this
applications research.

. Explanation and the opacity of knowledge. As mentioned previously, a major design
issue for some of these systems, for the consultants in particular, is whether the system
needs to explain its reasoning to a user. This capability is implemented primarily in the effort
to convince users that the system's reasoning is appropriateand that its conclusions about a
case are reasonable. In some cases, however, the problem-solving expertise used by the
system is in a form that is not at all similar to the expertisethat an expertuser would use to
obtain the solution. For example, in the case of the DENDRAL programs, the generator of
chemical structure solutions uses a procedure for exhaustivelyproducing solutions based on
various graph theoretic notions that the average organic chemist using the system is unlikely
to know or care about. Thus a major portion of the DENDRAL expertise resides in a procedure
that is conceptually opaque to the normal user. The generator was developed because it was
discovered that the method the chemist uses to generate solutions is incomplete and the
method the DENDRAL program uses has been mathematically proven complete. A similar
situation exists in the MACSYMA system, which uses the Risch algorithm for evaluating
various types of integrals. While mathematically correct, it Is rarely employed by human
mathematicians because of its complexity. The correctness and continued success of the
programs serve as their primary form of explanation: The user community is thus convinced
that the performing system is both acceptable and useable.

In contrast, systems such as MYCIN and PROSPECTOR have been designed to represent
and explain the reasoning process used by the system in a manner that is directly
understandable by the knowledgeable user. These systems required a representational
formalism capable of supporting the reasoning and explanation abilities that would closely
approximate the conceptual structure of expert and user. Since most of these scientific and
technical domains have a well-defined set of concepts that its practitioners use
consistently, the systems designers have capitalizedon this consistency and have designed
the programs to accept and reason with knowledge using these concepts.

Assuming a system uses domain-specific knowledge that is in an explainableform and
that the system is capable of explaining its reasoning, the system designer faces another

A Overview of Applicationsof Artificial Intelligence 447

L

issue: Should the system reason and apply the expertise in a manner that resembles the
methods employed by the human expert? In MYCIN, for example, no claim is made by the
designers that the simple back-chaining reasoning methodology has any strong resemblance
to the methods actually employed by human physicians performing

infectious,

disease
diagnosis. Although the medical concepts employed by the system are familiar to most
physicians, the method of Inferring the infections and causal organisms, while understandable
by a physician, bears little resemblance to a doctor's normal diagnostic reasoning. By
contrast, the PIP and INTERNIST systems emphasize the similarities of their diagnostic
procedure to that used by physicians.

Knowledge acquisition. During the developmentof the knowledge base, the expert is
unlikely to present all of the relevant facts and relationships that are required for expert
performance in the domain. Being human, experts tend to forget or simplify details about their
knowledge, requiring the system to be able to augment its knowledge at a later time. Since
the knowledge imparted to the system Is largely empirical and the domains are themselves
rapidly developing, it is necessary that the system be able to perform these changes easily
and In an incremental or modular fashion. Thus, most of the recent applications systems have
emphasized the use of representation vehicles that allow for the Incremental construction of
the knowledge base.

Many researchers use production rules to perform this incremental construction. Each
rule and rule set represents a "chunk" of domain expertise that is communicable to the user
and that can be added or extracted with relative ease. Thus the performance of the system
can be improved by modifying the knowledge base with new rule sets that deal with new
domains or subdomains. Furthermore, the production rule formalism can directly accommodate
the concepts of the domain expert and thus is more easily communicable to the user and
expert.

The Future

A primary research activity In the near future will be the developmentof facilities for
acquiring the domain concepts and the empirical knowledge that these systems require. At
present this is a painful process Involving many individuals including both domain experts and
computer scientists who together construct the knowledge base. The design of more
efficient interfaces for acquiring this domain-specific knowledge, along the lines of the
TEIRESIAS system (see article C6) and the methods used by the Meta-DENDRAL system (see

article B3), need to be developed before significantly larger expert systems can be
constructed.

While the domains and methods that have been developed are Interesting and
challenging In their own right, they, In fact, represent only a small fraction of the total
cognitive or even conceptually cognitive abilities that a human possesses. These abilities are
for the most part as yet undefined in current cognitive research; if they were, they would be
the subjects of further Al research.

The size of current systems Is typically given in terms of some convenient
measurementof the domain-specific knowledge the system contains. For example, the MYCIN
system contains approximately 460 rules and a similar number of clinical parameters that it

448 Research on Applications of Al%

uses to diagnose and prescribe treatments for patients with bacteremia, cystitis, and
meningitis. The SYNCHEM system contains approximately 390 transforms that it uses to
construct plausible organic synthesis routes. The order of magnitude of expert knowledge
has been primarily a function of expert involvement and effort. These systems can
potentially support larger knowledge bases but there has been no effort yet to construct
these larger, more comprehensive systems. At present, only selected subdomains are
actuallyrepresented and used.

While the design of current knowledge-based systems appears adequate for a certain
amount of this scaling of the knowledge base, without large degradation in efficiency or
ease of use, it is clear that Al and computer science will have to develop new techniques for
handling the truly large-scale knowledge bases that will exist in the future. Steps in this
direction have been taken with the development by Davis (1976a) on representing
knowledge about knowledge, or meta-level knowledge about the domain. This domain-specific
knowledge is used to determine the consistency and appropriateness of various knowledge
sources developed and used by the system. The use of meta-knowledge is one of the ways
knowledge can be organized both dynamically and statically so that it is comprehensiblenot
only to the machine but also to the human user and expert.

An ApplicationArticle

An article on the individual applications systems in this chapter will attempt to cover
the following topics:

A description of the problem domain (e.g., chemistry, infectious diesase,
etc.), the particular problem task the application system was designed to
perform (e.g., elucidate chemfcal structures, diagnose and treat a patient
with an infectious disease, etc.), and the major system design motivations,
both for Al and for the task domain.

A description of the task-specific knowledge that had to be represented
to perform the problem-solving task (e.g., knowledge about probable bond
breaks for a compound in a mass-spectrometer, knowledge about possible
infections and their causal organisms, etc.).

A descriptionof the particular Al methods that were used to represent this
knowledge and a description of how the represented knowledge is used to
reason about a particular case. This description sometimes includes an
annotated sample interaction between a user and the system.

An indication of the current level of expertise of these systems and an
indication of their present status and possible future development.

Throughout these articles, emphasis has been placed on illuminating the major issues and
contributions to Artificial Intelligence made by the design of these systems.

TEIRESIAS 449A1

Al. TEIRESIAS

TEIRESIAS is a system for facilitating automatic acquisition and maintenance of the
large knowledge bases used by expert systems. Although TEIRESIAS is not itself an
application of Al to some domain, It deals with many important issues in expert systems
design that are relevant to all of the programs described in this chapter. The system was
developed by Randall Davis as part of his doctoral research at the MYCIN project at
Stanford, and this article assumes some familiarity with MYCIN'S rule-based knowledge
representation scheme and its backward-chaining control structure (see Article CI). However,
the ideas and techniques TEIRESIAS uses are not necessarily limited to MYCIN'S domain of
infectious diseases or to the production-rule formalism used by MYCIN.

Knowledge-based Programs

As discussed in the ApplicetionaOverview, systems that achieve expert-level

performance In problem-solving tasks derive their power from a large store of task-specific
knowledge. As a result, the creation and management of large knowledge bases and the
developmentof techniques for the informed use of knowledge are now central problems of Al
research. TEIRESIAS was written to explore some of the issues involved in solving these
problems.

Most expert programs embody the knowledge of one or more experts in a

field,

like
infectious diseases, and are constructed in consultation with these experts. Typically, the
computer scientist mediates between the experts and the program he is building to model
their expertise. This is a difficult and time-consuming task, because the computer scientist
must learn the basics of the field in order to ask good questions about what the program is
supposed to do.

TErRESIAS's goal is to reduce the role of the human intermediary in this task of

knowledge acquisition, by assisting in the construction and modification of the system's

database. The human expert communicates, via

TEIRESIAS,

with the performance program
(e.g., MYCIN), so that he can discover, with TEIRESIAS's help, what the performance program
is doing and why TEIRESIAS offers facilities for modifying or adding to the knowledge base
to correct errors: Using TEIRESIAS, the human expert can-educate" the program just as he
would tutor a human novice who makes mistakes. Ideas about how this "debugging"process

is best carried out are at the core of TEIRESIAS's success.

TEIRESIAS also recognizes the inexact,experiential character of the knowledge that is
often required to knowledge-based systems and (as examples below £» !"«"«£. 'offers
the expert some assistance in formulating new "chunks of knowledge" of this sort Another
major aim of the system was to provide a mechanism for embodying strategic information.

Meta-rules (discussed below) are used to direct the use of obJeot-leyel rules ,n the
knowledge base and to provide a mechanism for encoding problem-solving strategies.

Interactive Transfer of Expertise.

It is an established result that an expert knows more about a field than he is aware or
capable of articulating completely. Thus, asking a broad question like "Tell me everything

450

Research on Applications of Al

you know about staph-infections" will yield only a fraction of his knowledge. TEIRESIAS's
approach is to present the expertwith some errors made by an already established, but still
incomplete,knowledge-based program and to ask a focused question: "What do you know that
the program doesn't know which makes your expert diagnosis different in this case?"

This interaction is called transfer of expertise: TEIRESIAS incorporates into the
performance program the capabilities of the human expert. TEIRESIAS does not attempt to
derive new information on its own, but instead tries to "listen" as attentively and intelligently
as possible, to help the expertaugment or modify the knowledge base.

Interactive transfer of expertise, between an expert and an expert program, begins
when the expert identifies an error in the performance of the program and invokes TEIRESIAS
to help track down and correct the error. Errors are manifest as program responses that the
expert would not have made or as "lines of reasoning" that the expert finds odd,
superfluous, or otherwise inappropriate. The first kind of error might be, for example, a
wrong conclusion about the identity of a bacteria. On the other hand, the performance
program may just ask the expert, during a consultation, a question that, in the expert's
opinion, does nothing to resolve the identity of the bacteria. This is an example of the "line
of reasoning" type of error.

Both kinds of error are assumed, by TEIRESIAS, to be indicative of a

deficit,

or "bug," in
the performance program's knowledge base. Transfer of expertise begins when TEIRESIAS is
called upon to correct the deficit. TEIRESIAS fixes bugs in the knowledge base by:

1 . Stopping the performance program when the human expert Identifies an error.

2. Working backwards through the steps in the performance program that led to
the error, until the bug is found.

3. Helping the expert fix the bug by adding or modifyingknowledge, -
To identify faulty reasoning steps in the performance program, the expert can use the WHY
and HOW commands to ask TEIRESIAS to back up through previous steps, explaining why they
were taken. The same explanatory abilities can also be used when there is no bug, to help
the user follow the system's line of reasoning. Since many large performance programs carry
out very complex inferences that are essentially "hidden" from the person using the program,
this is a valuable faciltiy.

Meta-level Knowledge

One of the principal problems of Al is the question of appropriate representation and
use of knowledge about the world (see Repreeentetion). Numerous techniques have been
used to represent domain knowledge in various applications programs. A central theme of the
research on TEIRESIAS Is exploring the use of meta-knowledge. Meta-level knowledge is
simply the representation in the program of knowledge about the program itself—about how
much it knows and how it reasons. This knowledge is represented using the same
representation techniques used to represent the domain knowledge, yielding a program
containing object-level representations describing the external world and meta-level
representations that describe the internal world of the program, its self-knowledge. For

A1 TEIRESIAS 451

example, many Al programs use the notion of a frame to represent the knowledge used by the
system (see Article Repreaentation.B7). One can imagine a meta-level frame that describes
the structure of all frames In the system, or one that denotes the different classes of frames
used in the system. One of TEIRESIAS's representations is very close to this notion, the
schema described below.

Meta-level knowledge has taken several different forms as its uses have been
explored, but it can be summed up as "knowing about what you know." In general, it allows
the system to both use its knowledge directly and to examine it, abstract it, and direct its
application. The capabilities for explanation, knowledge acquisition, and strategic reasoning
in TEIRESIAS inspired the incorporation of explicit meta-level knowledge, and these
capabilities are based on the use of that knowledge.

Explanation

There are two important classes of situations where expert systems should be able to
explain their behaviour and results. For the user of the system who needs clarification or
reassurance about the system's output, the explanation can contribute to the transparency
and thus the acceptance of the system. The second major need for explanation is in the
debugging process described above, where a human expert uses the system's explanations

of why it has done what it has done in order to locate some error in the database. The first
of these applications of explanation has been explored in the question-answering facility of
the MYCIN system; the explanation capability in TEIRESIAS has explored both uses but has
concentrated on the latter.

The techniques used in TEIRESIAS for generating explanations are based on two
assumptions about the performance program being examined, namely a) that a recapitulation

of program actions can be an effective explanation,as long as the correct level of detail is
chosen, and 2) that there is some shared framework for viewing the. program's actions that
will make them comprehensible to the user. In the MYCIN-like expert systems that use
production-rule knowledge bases, these assumptions are valid, but It is easy to imagine
expert systems where one or both are violated. For example, the first assumption simplifies

the explanationtask considerably, since it means that the solution requires only the ability to
record and play back a history of events. This assumption rules out, in particular, any need to
simplify those events. However, it is not obvious, for instance, that an appropriate level of
detail can always be found. Furthermore, it is not obvious how this approach of
recapitulation, which often offers an easily understood explanation in programs that reason
symbolically, would be applied to expert systems that perform primarily numeric computations.

A simple recapitulation will be an effective explanation only if the level of descriptive

detail is constrained. It must be detailed enough that the operations the system cites are
comprehensible; the conceptual level must be high enough that the operations are meaningful
to the observer, so that unnecessary detail Is suppressed; and it must be complete enough so
that the operations cited are sufficient to account for all behavior.

The second assumption concerns the user's comprehension of the expert system's
activity, which dependson the fundamental mechanism used by the program and the level at
which it is examined. Consider a program that does medical diagnosis using a statistical
approach based on Bayes's Theorem. It is difficult to imagine what explanationof its actions

452 Research on Applicationsof Al*

the program could give if it were queried about computed probabilities. No matter what level
of detail is chosen, such a program's actions are not (nor were they intended to be) a model
of the reasoning process typically employed by physicians. Although they may be an
effective way for the computer to solve the diagnosis problems, there is no easy way to
interpret these actions in terms that will make them comprehensible to humans unacquainted
with the program.

Thus, the lack of mechanisms for simplifying or reinterpreting computation means that
TEIRESIAS's approach is basically a first-order solution to the generalproblem of explanation.
But, in the context of a MYCIN-like expert system, for which TEIRESIAS was designed, the
simple AND/OR goal tree control structure offers a basis for explanations that typically
needs little additional clarification. (The operation of TEIRESIAS's explanation facility is
illustrated in the sample protocol at the end of this article.) The invocation of a rule is taken
as the fundamental action of the system. This action, within the framework of the goal tree,
accounts for enough of the system's operation to make a recapitulation of such actions an
acceptable explanation. In terms of the constraints noted earlier, it is sufficiently detailed—
the actions performed by a rule in making a conclusion, for instance, correspond closely
enough to the normal connotation of that word—that no more detailed explanation is
necessary. The explanationis still at a high enough conceptual level that the operations are
meaningful and the explanation is complete enough—there are no other mechanisms or
sources of information that the observer needs to know in order to understand how the
program reached its conclusions.

Knowledge-acquisition: Rule Models and Schemata

When the expert has Identified a deficit in the knowledge base of the performance
program, TEIRESIAS questions him in order to correct the deficit. This process relies heavily
on meta-level knowledge about the performance program, encoded in rule-models and
schemata. In other Words, TEIRESIAS khows about what the performance program knows.

The meta-level knowledge about objects in the domain includes both structural and
organizational information and Is specified In data structure schemata. Acquisition of knowledge
about new objects proceeds as a process of instantiating a schema—creating the required
structural components to buHd the new data structure and then attending to its-interrelations
with other data structures. By making Inquiries in a simple form of English about the values
of the schema's components, this knowledge acquisition process is made to appear to the
expert as a natural, high-level inquiry about the new concept. The process is, of course,
more complex, but the key component in the system's description of its own representation.

TEIRESIAS's ruU models are empirical generalizations of subsets of rules, indicating
commonalities among the rules in that subset. For example, in MYCIN there is a rule model for
the subset of rules that conclude affirmatively about organism category, indicating that most
such rules mention the concepts of culture site and infection type in their premise. Another rule
model notes that those rules that mention site and infection type in the premise also tend to
mention the portal of entry of the organism.

This knowledge about the contents of the domain rules is used by TEIRESIAS to build
expectations about the dialogue. These expectations are used to facilitate the process of
translating the English statements into the performance program's internal representation

TEIRESIAS 453A1

L

and to identify information missing from the expert's entry. An example of TEIRESIAS's use
of rule models in its knowledge acquisition dialogueis given in the sample protocol below.

Meta-rules and Performance Strategies

In performance programs with sufficiently small knowledge bases (like MYCIN'S),
exhaustive invocation of the relevant parts of the knowledge base during a consultation is
still computationally feasible. In time, however, with the inevitable construction of larger
knowledge bases, exhaustive invocation will prove too slow. In anticipation of this
eventuality, meta-rules are implemented in TEIRESIAS as a means of encoding strategies that
can direct the program's actions more selectively than can exhaustive invocation. The
following meta-rule is from MYCIN'S infectious disease domain:

METARULE 081

If 1) the Infection 1s a pelvic-abscess, and
2) there are rules which mention 1n their

premise enterobacteriaceae, and
3) there are rules which mention in their premise

gram positive rods,

Then There is suggestive evidence (.4) that the rules dealing
with enterobacteriaceae should be evoked before those
dealing with gram positive rods.I

This rule suggests that since enterobacteriaceae are commonly associated with a pelvic

abscess, it is a good idea to try rules about them

first,

before the less likely rules mentioning
gram positive rods. Note that this meta-rule does not refer to specific object-level rules.
Instead it specifies certain attributes of the rules it refers to, for example, that they mention
In their premise enterobacteriaceae.

An Example: TEIRESIAS in the Context of MYCIN

We will now illustrate TEIRESIAS's operation in affiliation with the MYCIN system (see

Article CD, paying particular attention to TEIRESIAS's explanation and knowledge acquisition

facilities. MYCIN provides the physician with advice about the diagnosisand drug therapy for
bacterial infections. The system asks questions about the patient, the infection, the
cultures grown from specimens from the patient, and any organisms (bacterium) growing in
the culture. (Typically,of course, the exact identity of the organism is not yet known.)

MYCIN'S database is composed of rules that specify a situation (involving information
about the patient, culture, and organism) and the conclusions that can be drawn in that
situation. For example, to conclude whether a patient suffers from a bacteria in the
enterobacteriaceae category, MYCIN invokes Rule 95 of its knowledge base:

% 454 Research on Applications of Al

Rule 095

IF the site of the culture is blood, and
the gram stain is positive, and
the portal of entry is gastrointestinal tract, and
[A-the abdomen is the locus of infection, or
B-the pelvis is the locus of infection]

THEN there is strongly suggestive evidence that
enterobacteriaceae 1s the class of organisms for
which therapy should cover.

MYCIN asks questions of the physician to determine which rules are applicable in the current
case—i.e., to determine the "situation." To determine if the organism is of type
enterobacteriaceae, MYCIN would inquire whether each clause in Rule 95 were true.

The. procedure of working backwards from the conclusion to the situation that would
make the conclusion true is called backward chaining and is MYCIN'S fundamental control
structure. Backward chaining can go "several levels deep," meaning that the clauses in a
situation that must be true (for the conclusion to be true) might themselves be conclusions of
other rules. For example, a condition on the identification of enterobacteriaceae is that the
infection be localized in the abdomen or the pelvis; but this condition is itself a conclusion,
and it is only true if its conditions (that the culture from these places is recent, and is
therapeutically significant) are true. Furthermore, the condition of therapeutic significance
has its own conditions, and so on. Here is a protocol showing MYCIN'S basic style of
Interaction, the human expert's responses are prefixed with **:

-Patient 281
1) Patient's name:
** Albert Hall
2) Sex:
** Male
3) Age:
** 34
4) Have you been able to obtain positive microbiological

information about a possible infection of Albert Hall?
*» Yes

Infection 1
5) What is the infection?
** Primary-Bacteremia
6) Please state when signs and symptoms of infection-1 first appeared:
** 15-Dec-75 12:00

-Culture 1
7) From what site was the specimen for culture-1 taken** Blood
8) Please give the date and time when this blood culture was obtained:** 16-Dec-75 12:00

TEIRESIAS 455A1

L

The first significant organism from this blood culture will be
referred to as:

-Organism-1
9) Enter the identity of ORGANISM-1
*" Unknown
1 0) Is ORGANISM-1 a rod, or coccus, (etc.):
"* Rod
1 1) The gram-stain of ORGANISM-1 :
** Gram negative
1 2) Did ORGANISM-1 grow in the aerobic bottle?
** Yes
13) Did ORGANISM-1 grow in the anaerobic bottle?

Yes

My therapy recommendations will be based on the following probable
infection(s) and potential causative organism(s):

INFECTION-1 is PRIMARY-BACTEREMIA
<ltem-1 > E.COLI [ORGANISM-1]
<ltem-2> PSEUDOMONAS-AERUGINOSA [ORGANISM-1]

I FIGURE 1. PART OF A DIALOGUE WITH MYCIN.

In sum, MYCIN constructs a goal tree (see Article SearchProblem Reduction) of questions that
must be resolved in the course of the consultation to conclude the identity of a bacteria.
When it cannot resolve a question by inference from what it knows already, It asks the
respondent to provide an answer. Each node,of the goal tree has subnodes that result from
the application of a rule:

Enterobacteriaceae
/ / \ \ Rule a95

sites aram= portals locuss
blood positive g.Ltract JWomen or

Rule 021
therapeutically
significant

/ V
recent culture

Rule 054
sterile significant non-

method of number of sterile
collection organisms site

Figure 1 . A MYCIN Goal Tree

% 456 Research on Applications of Al

Explanation: HOW and WHY. Suppose that during a consultation with MYCIN the
clinician wants an explanation of the reasoning behind some question MYCIN has asked him.
The explanation given by TEIRESIAS in response to the physician's question,

WHY?,

involves
backing up the goal tree to the previous node and presenting the rule used to derive the
subnode from its ancestor:

MYCIN: What is the suspected portal of entry of ORGANISM-1 into
this sterile site?

Doctor:WHY
TEIRESIAS: [i.e. why is it important to determine the suspected

portal of entry of ORGANISM-1 into this sterile site?]

[3.0]...in order to find out about an organism or class
of organisms for which therapy should cover.

It has already been established that
[3.1] the site of the culture Is blood
[3.2] the stain of the organism is gram positive

Therefore if:
[3.3] the portal of entry of the organism is g.i.
[3.4] [Abdomen is the locus of infection, or

Pelvis is the locus of infection]
Then

There Is strongly suggestive evidence (.9) that
enterobacteriaceae is the class of organisms for
which therapy should cover.

[Rule 096]

In contrast to WHY, which spells out "higher." nodes in the goal tree, the HOW command
asks TEIRESIAS to explain the nodes that have been or will be expanded lower down the
tree. For example, in the following exchange, the expert asks how MYCIN will determine
whether the abdomen or pelvis is the locus of infection:

Doctor: HOW[3.4] note: 3.4 is the prefix of the statement
of interest in the exchange above

TEIRESIAS: [i.e. how were you determining that the Abdomen Is the
locus of Infection, or that the Pelvis is the locus of infection?]

[4.0] At that point Rule 021 was being used.

If the doctor now wants to see Rule 021, he asks TEIRESIAS to explain HOW it was used,
referring to the prefix (4.0) of the statement in which it was mentioned:

Doctor: HOW [4.0]

TEIRESIAS: [i.e. how was Rule 021 used?]

[5.0] It has already been established that
[5.1] the culture is recent.

A1 TEIRESIAS 457

L

Therefore if:
[5.2] there is therapeuticallysignificant disease
associated with the occurrence of this organism

then
It is definite (1.0) that the site of the culture is
the locus of infection in the patient.

The explanationfacilities of TEIRESIAS Involve climbing up and down MYCIN'S goal tree
explaining WHY questions are asked and HOW they are answered. If MYCIN makes a
misdiagnosis, these same facilities are used (either by the expert or TEIRESIAS, at the
choice of the expert) to back up through the rules that achieved the diagnosis until the
expert has found the faulty one or determined that one Is missing. TEIRESIAS is then used to
expedite the alteration or construction of rules by the expert.

Knowledge acquisition. TEIRESIAS is able to help an expert formulate rules, in English,
because It has expectations about what rules "look like." The expectations are stored
Internally in the form of rule models that are formed automatically by examining all the rules in
the knowledge base. TEIRESIAS knows, for example, that there is a class of rules that have
as their conclusions the probable identity of a bacteria and that these rules typically have
as conditions (a) the site of the culture, (b) the stain of the culture, and (c) the probable
portal of entry of the bacteria. These rule models help TEIRESIAS translate English versions
of new rules into a machine representation acceptableto MYCIN.

To illustrate TEIRESIAS's debugging and correction

facilities,

we will continue with the
consultation from Figure 1. Suppose that after MYCIN presents the expertwith its diagnosis,
TEIRESIAS steps in and checks whether the expert agrees:

MYCIN: My therapy recommendation will be based on the following
probable infection(s) and potential causative organism(s):

INFECTION-1 Is PRIMARY BACTEREMIA
<ltem-1 > E.COLI [ORGANISM-1]
<ltem-2> PSEUDOMONAS-AERUGINOSA [ORGANISM-1]

Now TEIRESIAS steps in.

Are all these identitiescorrect?

The expert, marked with a

**,

says No.

** No.
Are there any identities missing?

** Yes.

458

Research on Applications of Al

Which ones?
** KLEBSIELLA-PNEUMONIAE, PROTEUS-NON-MIRABILIS
Are there any identities which shouldn't have appeared?
** yes
Which on(s)?
** PSUEDOMQNAS-AERUGINOSA

Do you want to
1] track down the problem yourself, or
2] allow me to guide the debugging, or
3] Ignore it for now and fix it another time.

Type 1,2, or 3.

2

If the expert had typed 1, he would have used the HOW and WHY commands
the problem, as discussed above.

to debug

We'll start with PSEUDOMONAS-AERUGINOSA first:

TEIRESIAS starts debugging by trying to find out why an inappropriate
occurred. Frequently solving a problem will make others "go away" as well.

diagnosis

The following rules were used in deducing that the identity of
ORGANISM-1 is PSEUDOMONAS-AERUGINOSA:

Rule 184
Since [1 .1] the category of ORGANISMS is not known

[1.2] the gram stain of ORGANISM-1 is gram negative
[1 .3] the morphology of ORGANISM-1 is rod
[1.4] the aerobicity of ORGANISM-1 Is facultative

There is weakly suggestive evidence (.3) that the Identity of
ORGANISM-1 is PSEUDOMONAS-AERUGINOSA.

Is this rule correct

Note that this rule, which resulted in the wrong conclusion,
is not necessarily an incorrect rule. It might be (and in
fact is) the case that It was Incorrectly invoked because one
or more of its conditions are true when they should be false.

Yes

TEIRESIAS 459A1

L

The expert says the rule is correct.

Should its premise have failed for this case?
** Yes
Which clause of the premise should have failed?

Clause 1.

The expert believes that MYCIN should have known the category
of ORGANISM-1. MYCIN failed to establish the category,
causing Rule 184 to be used.

Should It have been possible to conclude a category?

** Yes
Which one?

Enterobacteriaceae

Our old friend But recall that MYCIN'S rule 095 about enterobacteriaceae requires a
positive gram stain, but it can be seenfrom Fig. 1 that it has a negative gram stain. Thus,
Rule 95 was never evoked. In the course of more debugging, it transpires that MYCIN
has a couple other rules dealing with this category of bacteria, but they weren't evoked
either. The expert decides that another rule is required, and we pick up the dialogue
where he is proposing one to TEIRESIAS:

I

If. !«» THE PATIENT'S INFECTION IS PRIMARY-BACTEREMIA
2 ** THE SITE IS ONE OF THE STERILE SITES

Then: ** THERE IS EVIDENCE (.8) THAT THE CATEGORY IS ENTEROBACTERIACEAE

TEIRESIAS parses this rule into its internal representation and then translates it back
into English, so the expert can check it. We pick up the dialogue after the expert has
agreed on the parse. TEIRESIAS is applying its rule model.

I hate to criticize, Dr. Davis, but did you know that most rules about
what the categoryof an organism might be, that mention-

the site of a culture

460 Research on Applications of Al%

the infection
ALSO mention-

[A]- the portal of entry of the organism
Shall I try to write a clause to account for [A]?
** Yes.

Here we see one of the utilities of the rule model. TEIRESIAS prompts the expert to add
a bit of knowledge that is typcially found in rules like these and offers to fix the ruleitself. This completion is accomplished by looking at other rules that fit the same rule
model, tofind the most likely portal of entry clause.

how about -
[A] The portal of entry is gastrointestinal.Ok?
Yes.

TEIRESIAS now does some finishing up: checking the complete rule with the expert forfinal approval and asking the expert to write a brief description (for bookkeepingpurposes) of why the rule was needed. Finally, it reruns the consultation internally, usingthe responses from Fig. 1, which it has stored. It turns out that adding the rule above did,
in fact, cure the other problems with thefirst consultation, and this time the diagnosis issatisfactory to the expert.

Summary: TEIRESIAS and Expert Systems

TEIRESIAS aids a human expert in monitoring the performance of a knowledge-basedsystem. When the human expert spots an error in the program's performance, either in theprogram's conclusions or its "line of reasoning," TEIRESIAS assists in finding the source ofthe error in the database by explaining the program's conclusions-retracing the reasoning
steps until the faulty (or missing) rule is identified. At this point, TEIRESIAS assists in
knowledge acquisition, modifying faulty rules or adding new rules to the database. Meta-levelknowledge about the kinds of rules and concepts In the database is used to build
expectations in TEIRESIAS's model-based understanding process. Meta-level knowledge is alsoused to encode problem-solving strategies, in particular, to order the invocation of rules sothat those that are most likely to be useful (given the current knowledge of the program) are
tried first.

461A1 TEIRESIAS

L

References

The principal reference on TEIRESIAS is the doctoral dissertation by Davis (1976a).
Uses of meta-knowledge in expert systems are discussed in Davis & Buchanan (19,77). Also
see Davis (1977) and Davis & Buchanan (1978).

>

462 Research on Applications of Al%

A2. MACSYMA

MACSYMA is a large, interactive computer system designed to assist mathematicians,
scientists, and engineers in solving mathematical problems. It has a wide range of algebraic
manipulation capabilities, ail working on symbolic inputs and yielding symbolic results, as well
as an extensive numerical subroutine library (IMSL) and plotting package.

MACSYMA is used extensively by hundreds of researchers from government
laboratories, universities, and private companies thoughout the United States. Many of these
users spend a substantial portion of every day logged in. Currently, the system runs
exclusively on a Digital Equipment CorporationKL-10 at M.I.T. and is accessed through the
ARPA Network; however, there are plans to distribute it to other sites In the near future.
MACSYMA's funding is supplied almost exclusivelyby Its user community.

The original design for MACSYMA was laid out by Carl Engleman, Bill Martin, and Joel
Moses in 1 968. They built on their previous experiencewith the Mathiab '68 system and the
theses of Martin and Moses. Martin had constructed an algebraic manipulation system to
solve certain problems In applied mathematics. Moses had produced a program that was able
to do indefinite integration about as well as a typical graduate student. The system had its
first users in 1971 and has undergone continuous developmentsince then, a total of about
45 man-years of effort.

The implementationof MACSYMA is based on the belief that the way to produce a high-
performance program for general mathematics is to "build in" a large amount of knowledge.
The corresponding approach to system construction is often called "knowledge-based
programming." MACSYMA is an extremely large system, as algebraic manipulation systems
go; at present, it can perform at least 600 distinct mathematical operations, including
differentiation, integration, solution of equations and systems of equations, Taylor series
expansions, matrix operations, vector algebra, order analysis, etc. The current system
consists of about 230,000 words of compiled LISP code and an equal amount of code written
in the MACSYMA programming language. About one half of this code was written by MACSYMA
staff members; the rest was contributed by various users.

The primary goal of algebraic manipulationresearch has been the invention and analysis
of new mathematical algorithms and the extension of previously known numerical algorithms
to symbolic manipulation.

While most of the algorithms incorporated in MACSYMA were known to mathematicians
prior to its construction, a substantial number came about as a result of this research. The
last decade has brought the discovery of new algorithms for finding the greatest common
divisors of polynomials (Brown & Traub, 1971; Moses & Yun, 1973), factoring rational
expressions (Musser, 1975), (Wang & Rothschild, 1975), sum simplification (Gosper, 1977),
symbolic integration (Moses, 1971; Norman, 1975; Risch, 1969; Rothstein, 1977; Trager,
1978), and asymptotic analysis (Fateman, 1976; Norman, 1975; Zippel, 1976). The natureof this work has been largely mathematical; and, although Artificial Intelligence was
instrumental in providing the environment in which MACSYMA was created, it has made little
direct contribution since then.

Knowledge-based programming does, however, engender a number of difficulties for

A2 MACSYMA 463

!

L

which Al techniques offer partial answers. Two general types of difficulties are discussed
here, namely user education and the handling of mathematical problems not amenable to
algorithmic solution.

Non-algorithmic procedures in MACSYMA

One of the most pressing problems in algebraic manipulation is that of simplification.
Symbolic algorithms often generate large, unwieldy expressions that must be simplified into
smaller, more meaningful forms. (Generally, the size of expressions is the most important
criterion for simplicity, with standard formats and particularly revealing forms taking
precedence.) To help users simplify their results, MACSYMA provides a variety of explicit
expression transformation commands (such as expansion,

factorization,

partial fraction
decomposition, etc.) and a simplifier that automatically applies a set of mathematical "rules"
to every new expression as it is constructed. Examples of theserules are:

The user can, of course, define new commands and new rules.

Semantic Pattern Matching

In applying a simplification rule, MACSYMA utilizes a "semantic pattern matcher" (RJF)
to find instances of the rule's pattern. The matcher is "semantic" in that it uses knowledge
about the operators and constants in an expression to find nonsyntactic matches. For
example, the pattern a*x2 + b*x +c, where a, b, and c are pattern variables free of x, will
match the expressions 4*x2 + 4*x +1, x 2 +x+ 1, x

2,

and (x ♦ 1)2. In defining a rule, the
user may specify arbitrary conditions (In the form of procedural predicates) on the pattern

variables. For example, in determining whether an expression matches the above pattern,
MACSYMA would call a user-specifiedfunction to check that any tentative assignments for a,

b, and c are free of x. As a result, the pattern would not match 4*x + 3*x + sin(x).

One problem with this pattern matcher is that the user is unable to control how much

"semantics" the system uses in finding a match. In the very near

future,

a new pattern
matcher will be released, in which the user will be able to specify a set of Identities to use In
attempting to identify instances of patterns. For example,while It is often desirable that the
matcher use inverses, in some situations a user might prefer a simpler matcher, lest the rule
a*b ->. o apply to every lone a and b, as In be/a. -> c/a. With the new pattern matcher, the user
will be able to specify when he wants the inverse axioms to be used.

Simplification by Hillclimbing

While size Is not the sole criterion for simplicity, it is a useful guideline. For those
applications in which the user desires the smallest possible form for an expression, MACSYMA
provides a search-oriented simplifier called SCSIMP. Given an expression and a set of rules,
SCSIMP applies each of the rules to the expression in turn and retains the smallest result. If

X*X

■+

X 2
sin(x+T/2) -» cos(x)
log(a*b) -» log(a)+log(b)

464 Research on Applications of Al%

any such substitution leads to an expression smaller than the original, the process is
repeated. For example, given the identities below, SCSIMP will convert the first expression
into the last.

422 4 2
Intermediate: X M N + X N substituting for L

4 4
Final Expression: X N substituting for M
Note, however, that SCSIMP, being a hillclimbing algorithm, is not guaranteed to produce

the smallest answer. For example,it would not perform the simplification shown below.

22 2 2
First expression X N +L M

222 2 2
Intermediate form: X N - X M + M substituting for L

2 2
Simplest form: X +M substituting for N

The reason for not performing the simplification is that in order to arrive at the simplest
form, a larger Intermediate expression would have to be generated. Due to the combinatorics
involved in generating arbitrarily large intermediate forms, this technique has not been
incorporated in the current version of SCSIMP.

The Relational Database and Inference

In certain problems, the symbols In mathematical expressionshave restrictions on their
ranges or on other properties useful in simplification. In order to allow the user to specify
such properties, MACSYMA maintains a relational database of facts about symbols, stored in theform of a semantic network. For example, a user can declare (via the DECLARE command) that
the symbol n is restricted to integer values, and MACSYMA can then simplify cos((2*n + 1)*n)
to 0. Similarly, one can specify (via the ASSUME command) that x<= y, y<= z, and z<= x,
and MACSYMA can then deduce that x = y = _ (using the algorithm described below).

The database retrieval routines are supplemented by a fast but limited inferencealgorithm called CPM (Genesereth, 1976), which performs taxonomic deductions, property
inheritances, set intersections, and other simple inferences. For example, given the factsthat X is an Integer, that integers are rational, and that the real numbers are partitioned intorationals and irrationals, CPM automatically deduces that X is not an irrational. Given thefact that a rational can ba written as an Integral numerator over an integral denominator,

2 2
K+L = 1

2 2
N-M = 1

II 111 111 I I I IFirst expression: KN+KMN-KLN-KLMN

465A2 MACSYMA

1

CPM automatically deduces that X can be so written. The CPM inference algorithm was
developed to enhance the retrieval capabilities of a high-level database system organized
as a semantic network. It Is an elaboration of Grossman's work (Grossman, 1976) on
constraint expressions but has been carefully restricted so as to be susceptible to
implementation on parallel hardware. The algorithm is a highly "compiled" form of domain-
independent constraint propagation in which constraints, represented by "labels" on the nodes
of the network, propagate across links to other nodes according to the laws of logic. It can
perform certain inferences much more efficiently than their straightforward implementation in
procedural problem-solving languages like CONNIVER. For further details on the CPM
algorithm, the reader should consult Genesereth, 1976. In addition, Fahlman (1977) has
described how such a constraint propagation algorithm can be implemented in parallel
hardware for even greater efficiency.

Heuristic Problem Solving

MACSYMA also includes a number of specialized procedural problem solvers; for
example, the first phase of the integration routine (Moses, 1971), the commands for
performing root contraction and logarithmic contraction, the inequality theorem prover, and
others.

User Education
I The advantage of a large knowledge-based system like MACSYMA over a smal er

sparer system like REDUCE (Hearn, 1973) is that MACSYMA has more mathematical
knowledge built-in (i.e., it is larger and can do more). As a consequence, the user is not
forced to communicate as much mathematical knowledge to the system. The disadvantage is

that MACSYMA can be more difficult to understand and to use. The user might, Tor example,

be unaware of the capabilities available or not know the names of commands, or he mignt get

an unexpectedresult that he cannot explain.

To minimize these

difficulties,

MACSYMA offers a wide range of on-line user aids
(Genesereth, 1977; Lewis, 1977), including a frame-oriented interactive primer (simitar to

PLATO), an information network, and an automatic program for searching th J reTe 'e"c"manual. In addition, some of MACSYMA's commands are able to explain *eir progress in a
fashion that can be comprehended by the user. For example, if «*" VERBOSE option is
selected, the POWERSERIES command prints out the goals and subgoals that it generates

while working on an expansion.

Even with these provisions, users occasionally encounter dOT^w" *" 1;^
of knowledge of the system. Furthermore, such users are often unwilling to learn morei about
MACSYMA than is necessary to solve the immediate problem. The s.mplest way'for such a
user to acquire just the information he needs is to ask a consultant for help Then, armed
with the consultant's advice, he may surmount the difficulty and solve the problem.

Consultation is a method widely used in computer centers as weHas m doma,ns
business, law, and medicine; and, as computer technology becomes more Pervasive and

computer systems become more complex, the need for consults, on V*"^^*"*'human consultants are a scarce resource and quite expensive. Currently, work is underway

466* Research on Applications of Al

on an automated consultant for MACSYMA novices, called the Advisor. It is a program distinct
from MACSYMA, with its own database and expertise. The Advisor accepts a description of a
difficulty from its user and tries to reconstruct the user's "plan" for solving his problem.
Based on this plan and its knowledge of MACSYMA, the Advisor then generates advice
tailored to the user's specific need. For a description of the Advisor's operation, the user
should see Genesereth, 1978.

Future Plans

In addition to the features described above, several other Al-related capabilities are
under development. Two of these are mentioned here, namely a new representation for
algebraic expressions using data abstractions and a knowledge-based, plan-based
mathematician's(or physicist's or engineer's)."apprentice."

Recently, David Barton has designed a radically new scheme for representing algebraic
expressions. MACSYMA has two major representations, the general representation that uses
LISP's traditional prefix format and the rational representation that uses a canonical form for
polynomials and rational functions. The rational representation has become unwieldy over theyears as extensions to the system changed its specifications. For example, coefficients of
polynomials were originally assumed to be integers and were later generalized to include
floating point numbers. A new representation was desired to handle "Taylor series," which
contains rational number exponents, since the former representation,while relatively close to
the rational representation, could not be retrofitted onto the rational representation.
Barton's approach alleviates these difficulties and provides a capability for future
generalization. The approach used is, furthermore, a natural one for abstract algebra.

Consider, for example, a 2X 2 matrix whose elements are Laurent series in y
(truncated at y2), whose coefficients are polynomials in x, whose coefficients are rational
numbers. In order to add such a 2X 2 matrix to another 2X2 matrix, One needs to know
how to add the elements. One approach would be to design a general addition routine that
would check the types of each argument and finally perform the appropriate addition. This is
similar to the approach previously taken by the rational function representation. In a
symbolic system, and, in fact, in most applications, the type of object is intimately related to
a set of operations that can be performed on it. In the MACSYMA context, these operations
Include addition, subtraction, multiplication, division, differentiation, substitution, coefficient
extraction, and GCD computation. Barton's approach is to attach a tree of vectors to each
expression. The tree corresponds to the gross structure of the expression. Each
subexpression, for example, an element in the matrix, has a vector corresponding to it. The
vector's elements are in a fixed order and contain pointers to the procedures that perform
the corresponding operation on the type of the subexpression.

i

The approach indicated above permits expressions to be composed of arbitrarily
nested types. This is a critical requirement in an interactive symbolic system. Preliminary
testing of expressions represented in this manner indicates that common manipulations are
not much slower and often faster than in the existing implementation. The reason for a
speed-up is that less type-testing is needed In this approach.

Work has also begun on the design of an "apprentice" for the MACSYMA user. At
present, MACSYMA is used mostly as a "symbolic calculator," with the user directing its

A2 MACSYMA 467

t

actions line by. line and keeping track of the meaning of each result. The goal of the
apprentice is to relieve the user of much of this drudgery. The approach being taken
involves two components, namelyknowledge about the user's domain and the use of a high-
level problem-solvingplan formalism.

I

Currently, most symbols in MACSYMA have no special meaning, and they can take on
arbitrary values. In particular problem areas, however, certain symbols have particular
interpretations and range restrictions. For example, the symbol MASS has a very special
meaning to physicists and an obvioi's r«nge restriction (nonnegative). A physicist's
apprenticeshould know this range restriction and be able to use it, for example, in discarding
negative roots or performing integrations. Similarly, practitioners in certain fields like to see
their expressions written in standard formats, determined by the interpretation of the
constituent symbols. For example, electrical engineers usually prefer resistance (Ri) and
capacitance (CI) expressions written as f(RI, R2, Rn)*g(Cl, C2 ,.... Cn) rather than having
the Ri and CI intermixed.

" Another way In which an apprentice could be of use Is by keeping track of the user's
plan for solving his problem. If the apprenticeknows the steps involved and the significance
of various results, it could inform the user of potential errors, make suggestions, and in many
cases carry out steps by itself. The apprentice can gain familiarity with the user's plan in
various ways: It may be a well-known mathematical procedure (e.g., some standard
technique for solving partial differential equations or perturbation problems), or the user may
describe his intentions before beginning his MACSYMA session, or the user may re-apply
some previous plan. It is expected that this notion of a problem-solving plan will play an
extremely important role In the next generationof algebraic manipulation systems.

References

Unfortunately, there Is no good introductory reference on the structure of MACSYMA.
The reader is referred to the MACSYMA manual (Mathlab Group, 1977) and the primer
(Moses, 1 975) for an introduction to its use.

See also Brown & Traub (1971), Fahlman (1977), Fateman (1972), Genesereth (1976),
Genesereth (1977), Genesereth (1978), Gosper (1977), Grossman (1976)rHearn (1973},
Lewis (1977), Moses (1971), Moses & Yun (1973), Musser (1975), Norman (1975), Risch
(1969), Rothstein (1977), Trager (1978), Wang & Rothschild (1975), and Zippel (1976).

% 468 Research on Applications of Al

A3. AM

AM is a computer program written by Douglas Lenat that explores elementary
mathematics, enlarging its vocabulary of objects and operators by defining new ones,
gathering empirical data about the concepts it posssesses, and making conjectures to
connect some of these mathematical entities.

The design of AM is a blending of four powerful methodologies: heuristic search,
production systems, best-first' search, and frames. AM Is guided in its exploration by over two
hundred heuristics, which act like plausible move generators; they suggest new definitions
and conjectures, and they give, hints as to how to gather more empirical data. The tutelage
of so many heuristics is coordinated by representing each as a production rule, an
expression of the form "IF some condition is satisfied THEN do some appropriate action" (see
article Repreaentation.B3). The space that AM is exploring is so immense that some kind of
chunking is required; the grain of operators like "conjoin two existing definitions" is too fine.
The third idea woven into AM, that of best-first search, enters in the form of an agenda, a
job-list of fairly large, meaningful tasks—each of which is plausible. The tasks are at a much
higher level, such as "generalize 'Prime numbers'", and each one is supported by a set of
symbolic reasons. Together, the reasons give an overall numeric rating to the task, which
determines its place on the agenda. Only a small fraction of the tasks placed on the agenda
will ever be worked on: At each moment, AM expends its energy on the best task, the one
with the highest rating. Each concept is represented as a frame, a structured entity with
slots (Generalizations, Examples, Definition, etc.). This enables tasks—and heuristics—to talk
about a particular slot of a particular concept.

The program began to run with a collection of one hundred concepts of finite set theory
and relations and data structures, and in a couple hours it had defined about three hundred
new concepts, half of which were quite well known in mathematics. One of the synthesized
concepts was equivalent to natural numbers. AM rated this highly and spent much time
developing elementary number theory, including conjecturing the fundamental theorem of
arithmetic (each number has a' unique prime factorization). This is of course much better
behavior than one could expect from a blind sort of search through the space of legal
mathematical definitions and propositions. At any moment, AM could justify its current efforts
merely by printing put the symbolic reasons for the top-rated task, the one it was working on.

i The significance of the project lies both In the architecture of the program (a blend of
three now-popular methodologies) and in the fact that the program behaved well: An
existence proof that open-ended math research—theorem proposing not theorem proving—
could be adequatelyrepresented (and automated) as a heuristic search. Finally, it Is worth
noting that the ultimate impediment to AM's progress was Its inability to discover new
heuristic rules, as it had discovered new mathematical concepts. Only by constructing and
experimenting with the program were we thus able to learn where the next research thrust
should be, along the direction of automating the discovery and evaluation of heuristics.

THE TASK

1

A3 AM 469

Rationale
f

Few doubt the übiquity of inductive inference, but the archetypical such enterprise is
scientific research and, more specifically, mathematics research. To be more concrete:

1. In math research, one needn't cope with the uncertainties and fallibility of testing
equipment; there are no uncertainties in the data (compared to, e.g., molecular
structure inference from mass spectrograms).

2. Reliance on experts' introspections is one of the most powerful techniques for
codifying the judgmental criteria necessary to do effective work in the field. By
limiting a program to areas of mathematics in which the programmer is competent,
reliance on external sources to guide formulating heuristic rules can be minimized.
There are, however, several excellent sources available (Poincare, 1929, Poiya,
1954, Lakatos, 1976, Knuth, 1974, Brotz, 1974, and Hadamard, 1945).

3. The more formal a science is, the easier It is to automate. For a machine to carry out
research in psychology would require more knowledge about human information
processing than now is known. Also, in a formal science, the languages used to
communicate information can be quite simple, even though the messages
themselves are sophisticated.

4. Since mathematics can deal with any conceivable construct, a researcher in this
field Is not limited to explaining observed data: He can also create. Related to
this is the freedom to investigate—or to give up on—whatever the researcher
wants to investigate. There is no single discovery that is the "goal," no given

I problem to solve, and no right or wrong behavior.

5. Unlike "simpler" fields, such as propositional logic, there is an abundance of
heuristic rules available for the picking.

The limitations of math as a domain are closely intertwined with its advantages. For
example, having no ties to real-world data can be viewed as a limitation, as can having no
clear goal. There is always the danger that AM will give up on each theory as soon as the
first tough obstacle crops up.

Plausible Reasoning in Mathematics

The inadequacy of formal deductive methods in mathematics has long been argued
(Poincare, 1929, Polya, 1954, Lakatos, 1976) and often lamented In the conclusions to
resolution theorem proving articles (Bledsoe, 1971, Wang, 1960). An early use of analogic
models in geometry theorem proving was quite successful (Gelerneter's program [Gelernter,
1963] "drew" a diagram meeting all the premises of the theorem, and [among other things]

presumed that segments or angles which turned out to be equal were not so comcidentally;
all such equalitiescould then be drawn upon as lemmata). Later attempts at the introduction
of heuristics into resolution theorem provers have been made by Bledsoe (in, e.g.,
nonstandard analysis), Pitrat (in propositional calculus), and a few others (Bledsoe, 1971,
Kling, 1971, Brotz, 1974). It Is hypothesized that the limited successes of these schemes is
due to the relatively small number and variety of heuristics they possessed and to the fact

I

470 Research on Applications of Al%

that resolution was the dominant driving force in each program, using heuristics merely to
modulate the resolution search process. The reason for the small number of heuristics is
simply the genuine paucity of informal rules-of-thumb that exist for the general environmentin which the vast majority of those programs operate: domain-independent (asemantic)
predicate calculus theorem proving.

Lenat's thesis (Lenat, 1976) was concerned with the mechanization of the "other half"of mathematical activity (apart from proving): the definition of new concepts and therecognition of plausible conjectures. His "AM" system has no proof capabilities, and this isone part of the AM model of Mathematics Research. Below is the model of math researchthat AM was based upon, pieced together from the writings of Poincare, Polya, Lakatos,
Hadamard, and others:

1 . The order in which a math textbook presents a theory is almost the exact opposite
of the order in which it was actually discovered and developed. In such a text,
new definitions are stated with little or no motivation as they are needed to state
the next big theorem, whose proof then magically appears. In contrast, a
mathematician doing research examines some already known concepts and tries
to find some regularity in experimentaldata involving them. The patterns that he
notices are the conjectures that he must investigate further, and these
relationships directly motivate him to make new definitions.

2. Each step the researcher takes while developing a new theory involves choices
from a large set of "legal" alternatives. The key to keeping this from becoming a
blind, explosive search is the proper use of evaluation criteria. Each
mathematician uses his own personal heuristics to choose the "best" alternative
available at each moment.

3. Non-formal criteria (aesthetic interestingness, inductive inference from empirical
evidence, analogy, and utility) are much more important than formal deductivemethods in developing mathematically worthwhile theories, and in avoiding barrendiversions.

4. Progress in any field of mathematics demands much non-formal heuristic expertise in
many different "nearby" mathematical fields. So a broad, universal core ofknowledge must be mastered before any single theory can meaningfully be
developed.

5. It Is sufficient, and pragmatically necessary, to have and use a large set of informalheuristic rules. These rules direct the sequence of the researcher's activities,
depending on the current situation that he is in. These rules can be assumed to
superimpose: The combined effect of several rules is just the sum of theindividual effects.

6. The necessary heuristic rules are virtually the same in all branches of mathematicsand at all levels of sophistication. Each specialized field will have some of itsown heuristics; those are normally much more powerful than the general-purposeheuristics.

7. For true understanding, the researcher should grasp-that is, have access to, relate

A3 AM 471

to, store, be able to manipulate, be able to answer questions about, etc.—each
concept in several ways: declaratively, abstractly, operationally, knowing its
relevance and examples of it.

8. There are common metaphysical assumptions about nature and science: Nature is
fair, uniform, and regular. Coincidences have meaning. Statistical considerations
are valid when looking at mathematical data. Simplicity and symmetry and
synergy are the rule, not the exception.

Discovery in Mathematics

Before discussing how to synthesize a new mathematical theory, consider briefly how to
analyze one, or how to construct a plausible chain of reasoning that stretches from a given
discovery ail the way back to well-known concepts.

Analysis of a Discovery

One can rationalize a given discovery by working backwards, by reducing the creative
act to simpler and simpler creative acts. For example, consider the concept of prime
numbers. How might one be led to define such a notion, if one had never heard of it before?
Consider the following plausible strategy:

If f is a function which transforms elements of A into elements of B,
and B is ordered, then consider just those members of A which are
transformed into extremal elements of B. This set Is an interesting
subset of A. Name it and study it.

When f(x) means "divisors of x," and the ordering is "by length," this heuristic directs
one to consider those numbers that have a minimal number of factors—that is, the primes. So
this rule actually reduces our task from proposing the concept of prime numbers to two more
elementary problems: (a) discoveringordering-by-lengthand (b) inventing divisors-of..

But suppose we know this general rule: "Iff is an interesting function, consider its inverse."
It reduces the task of discovering divisors-of to the simpler task of discovering
multiplication. Eventually, If followed far enough, this task reduces to the discovery of very
basic notions like substitution, set-union, and equality. To explain how a given researcher
might have made a given discovery, such an analysis must be continued until that inductive
task is reduced to "discovering" the notions that the researcher started with, which were
his conceptual primitives.

Syntheses of Discoveries

Suppose a large collection of these heuristic strategies has been assembled (e.g., by
analyzing a great many discoveries and writing down new heuristic rules whenever
necessary). Instead of using them to explain how a given idea might have evolved, one can
imagine starting from a basic core of knowledge and "running" the heuristics to generate new

472 Research on Applications of Al%

concepts. It is simply the reversal of the process described in the last section: not
explanation, but generation.

Notice that this forward search is much "bushier"—i.e., more branches or paths to follow-
-and much more explosive than the backwards analysis previously described. It is a much
harder task to actually make a discovery than to rationalize—by hindsight—one already
made. This is a common enough phenomenon, the "Why-dldn't-l-think-of-that-sooner!"
feeling.

Unconstrained forward search is too explosive (see Combinatorial Explosion in article
SearcKOverview); thus, we can hypothesize that the scientist employs some kind of informal
rules-of-thumb or heuristics to constrain it. That is, he doesn't really follow rules like "Look at
the inverse of each known functionf, because that would take up too much time. Rather, his
heuristic rules might be more naturally stated as productions (condition/action rules) like
this: "Iffis 1-1 and Range(f) « Domain(f), Then look at f-inverse." Henceforth, heuristic rule will
mean a conditional rule-of-thumb. In any particular situation some subset of these rules will"trigger" and suggest a manageablespace of plausible activities to perform. After exploring
that space for a while, the situation will have changed and the cycle will begin anew. Thislayering of heuristic search Is simply analogous to performing double Induction instead of
standard mathematical induction.

DESIGN OF THE AM PROGRAM

Mathematical inductive syntheses are precisely what AM does. The program consistsof a large corpus of primitive mathematical concepts, each with a few associated heuristics.
Each such heuristic Is a situation-action rule that functions as a local plausible move generator.Some suggest tasks for the system to carry out, some suggest ways of satisfying a given
task, etc. AM's activities all serve to expand AM itself, to enlarge upon a given body ofmathematical knowledge. AM uses its heuristics as judgmental criteria to guide development
in the most promising direction.

Representation

Each concept is represented as a frame-like data structure (unit, Being, schema,
script,...) with 25 different facets (slots, parts, aspects,...). The types of facets include:EXAMPLES, DEFINITIONS, GENERALIZATIONS, DOMAIN/RANGE, ANALOGIES,

INTERESTINGNESS,

and many others. Modular representation of concepts provides a convenient scheme for
organizing the heuristics; for example, the following strategy fits Into the EXAMPLES facetof the PREDICATE concept:

If, empirically, 10 times as many elements FAIL some predicate P, as
SATISFY it, then some generalization (weakened version) of P might bemore interesting than P.

AM considers this suggestion after trying to fill in examplesof each predicate. In

fact,

after AM attempts to find examples of SET-EQUALITY, so few are found that AM decides to
generalizethat predicate. The result is the creation of several new predicates, one of whichhappens to mean "Has-the-same-length-as"-that is, a rudimentary precursor to naturalnumbers.

.*

473A3 AM

Below is a typical concept, PRIMES, in a state long after AM defined and explored it.

NAME: Prime Numbers
DEFINITIONS:

ORIGIN: Number-of-divisors-of(x) s 2
PREDICATE-CALCULUS: Prime(x) > (Yz)(z|x => z=l 111 z=x)
ITERATIVE: (for x>l): For 1 from 2 to Sqrt(x), \(i|x)I

EXAMPLES: 2, 3, 5, 7, 11, 13, 17
BOUNDARY: 2, 3
BOUNDARY-FAILURES: 0, 1
FAILURES: 12

GENERALIZATIONS: Nos., Nos. with an even no. of divisors, Nos. with
prime no. of divisors

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables

CONJECS: Un+que factorization, Goldbach's conjecture, Extremes of
Number-of-divisors-of

INTU'S : A metaphor to the effect that Primes are the building
blocks of all numbers

ANALOGIES: ,
Maximally divisible numbers are converse extremes of

Number-of-divisors-ofI
Factor a non-simple group into simple groups

INTEREST: Conjectures tying Primes to TIMES, to Dlvlsors-of, to closely
related operations

WORTH: 800

Creating a new concept is a well-defined activity: It involves setting up a new data
structure like the one above and filling in entries for some of its facets or slots. Filling in a
Particular facet of a particular concept is also quite well defined and is -accomplished by

executing a collection of relevant heuristic rules.

Control

AM is initially given a collection of 115 core concepts, with only a few facets filled in

for each. Its sole activity is to choose some facet of some concept and fill in that particular

slot. In so doing, new notions will often emerge. Uninteresting ones are forgotten, mildly
interesting ones are kept as parts of one facet of one concept, and very interesting ones
are granted full concept-module status. Each of these new modules has dozens of blank
slots, hence the space of possible actions (blank facets to fill In) grows rapidly The same
heuristics are used both to suggest new directions for investigation and to limit attention,
that is, both to sprout and to prune.

474 Research on Applications of Al%

The fundamental kind of task that AM performs, its basic action, is filling in a given
facet of a given concept. To decide which such task to work on next, AM maintains an agenda
of tasks, a global job-list ordered by priority. A typical task is "Fill-in examples of Primes".
The agenda may contain hundreds of entries such as this one. AM repeatedly selects the
top task from the agenda and tries to carry it out. This is the whole control structure! Of
course, AM creates plausible new tasks to place on the agenda and decides which task will
be the best one to execute next and how to carry it out.

If. the task is "Fill in new Algorithms for Set-union", then satisfying it would mean actually
synthesizing some new procedures, some new LISP code capable of forming the union of any
two sets. A heuristic rule is relevant to a task iff executing that rule brings AM closer to
satisfying that task. Relevance Is determined a priori by where the rule is stored. A rule
tacked onto the Domain/range facet of the Compose concept would be presumed relevant to
the task "Check the Domain/range of Insert-o-Delete".

Once a task is chosen from the agenda,AM gathers some heuristic rules which might be
relevant to satisfying that task. They are executed, and then AM picks a new task. While a
rule is executing, three kinds of actions or effects can occur:

1 . Facets of some concepts can get filled in (e.g., examples of primes may actually be
found and tacked onto the "Examples" facet of the "Primes" concept). A typical heuristic
rule that might have this effect is:

To fill in examplesof X, where X is a kind of V (for some more general
concept V), Check the examples of V; some of them may be examples
of X as well.

For the task of filling in examples of Primes, this rule would have AM notice that Primes is a
kind of Number and therefore look over all the known examples of Number. Some of those
would be primes and would be transferred to the Examples facet of Primes.

2. New concepts may be created (e.g., the concept "primes which are uniquely
representable as the sum of two other primes" may somehow be deemed worth studying). A
typical heuristic rule that might result in this new concept is:i

If some (but not most) examplesof X are also examples of V (for some
concept V), Create a new concept defined as the intersection of
those 2 concepts (X and V).

Suppose AM has already Isolated the concept of being representable as the sum of twoprimes In only one way (AM actually calls such numbers "Unfquely-prime-addable numbers").
When AM notices that some primes are in this set, the above rule will create a brand new
concept defined as the set of numbers that are both prime and uniquelyprime addable.

3. New tasks may be added to the agenda (e.g., the current activity may suggest that

A3 AM 475

»

■*

the following task is worth considering: "Generalize the concept of prime numbers"). A
typical heuristic rule that might have this effect is:

If very few examples of X are found, Then add the following task to
the agenda: "Generalize the concept X."

Of course, AM contains a precise meaning for the phrase "very few." When AM looks
for primes among examples of already known kinds of numbers, it will find dozens of
nonexamples for every example of a prime it uncovers. "Very few" is thus naturally
implemented as a statistical confidence level.

The concept of an agenda is certainly not new. Schedulers have been around for a long
time. But one important feature of AM's agendascheme is a new idea: attaching, and using,
a list of quasi-symbolic reasons to each task that explain why the task is worth considering,
why it's plausible. It is the responsibility of the heuristic rules to include reasons for any tasks theypropose. For example,reconsider the heuristic rule mentioned in (3) above. It actually looks
more like the following:

If very few examples of X are found, then add the following task to
the agenda: "Generalize the concept X," for the following reason: "X's
are quite rare; a slightly less restrictive concept might be more
interesting."

If the same task is proposedby several rules, then several different reasons for it may
be present. In addition, one ephemeralreason also exists: Focus of attention. Any tasks
that are similar to the one last executed get "Focus of attention" as a bonus reason. AM
uses all these reasons to decide how to rank the tasks on the agenda. The "intelligence"
AM exhibits is not so much "what it does" as the order in which it arranges its agenda. For
example, alternating a randomly chosen task and the "best" task (the one AM chose to do)
only slows the system down by a factor of 2, yet It totally destroys its credibility as a
rational researcher (as judged by the human user of AM). This was one conclusion of an
experimentperformed upon AM.

AM uses the list of reasons In another way: Once a task has been selected, the
quality of the reasons is used to decide how much time and space the task will be permitted
to absorb, before AM quits and moves on to a new task.

A crucial heritability property holds: Any method for filling in facet / of concept C will
also work for filling in facet/of any specialization of C. Thus, when the task "Fill in examples
of SET-EQUALITY" Is chosen, AM asks each generalization of SET-EQUALITY for help. It
asks for ways to fill in examples of any Predicate, any Activity, any Concept, and finally of
Anything. One such heuristic rule known to the Activity concept says: "Actually execute the
activity on some random members of its domain." Hence, to fill in examples of SET-
EQUALITY, its domain facet is inspected, and AM sees that It takes a pair of objects as its
arguments. Then AM accesses the Examples facet of the concept OBfECT, where it finds a
large list of objects. Obeying the heuristic rule, AM repeatedly picks a pair of them at random
and sees if they satisfySET-EQUALITY (by actually running the LISP function stored in the

476 Research on Applications of Al%

Algorithms facet of SET-EQUALITY). While this will typicallyreturn False, it will occasionally
locate—by random chance—a pair of equal sets.

Other heuristics, tacked onto other generalizations of SET-EQUALITY, provide
additional methods for executing the task "Fill in examples of SET-EQUALITY." A heuristic
stored on the concept ANY-CONCEPT says to symbolically instantiate the definition. A bag
of tricks is provided for this purpose, one of which ("instantiate the base step of the
recursion") works nicely on the recursive definition provided for SET-EQUALITY. Notice
that, as one might expect, the more general the concept Is, the weaker (more time-
consuming) its heuristics are. For this reason, AM consults each concept's rules in order of
increasing generalization.

Executing a task is achieved by locating relevant rules-of-thumb and evaluating them.
The location is performed efficiently because ail the concepts are related by
generalization/specializationlinks, and because the above "heritability"property holds.

Notice the omnipresent reliance upon heuristic guidance. They propose the tasks (and
associate reasons for them) for the agenda, they propose new concepts to be

defined,

they
discover (by search, synthesis, or analysis) entries that can be put into specific facets of
specific concepts. There are even heuristics for naming new concepts (based on how they
were formed).

RESULTS

An Excerpt

To convey a bit of AM's flavor, we present a brief excerpt of it in action, a bit of a
trace of one of its runs. After reading through it, the reader should be convinced that AM is
not proving theorems, nor is it randomly manipulating entries in a knowledge base, nor is it
exhaustively manipulating or searching. AM is carefully growing a network of data structures
representing mathematical concepts, by repeatedly using heuristics both (a) to guide the
choice of what task to work on next, and (b) to provide methods to satisfy the chosen task.

The following points are important but are not easily conveyed by any one example:

(a) Although AM appears to have reasonable natural language abilities, very little
effort was expended in this area.

(b) It is important to ask how general the program is: Is the knowledge base "just
right" (i.e., finely tuned to elicit this one chain of behaviors)? The answer is
"No": The whole point of this project was to show that a relatively small set of
general heuristics can guide a nontrivial discovery process. Keeping the program
general and not finely tuned was a key objective. Each activity, each task, was
proposed by some heuristic rule (like "look for extreme cases of X") that was
used time and time again, in many situations. It was not considered fair to insert
heuristic guidance that could only "guide" in a single situation. For example, the
same heuristics that lead AM to decompose numbers (using TIMES-inverse) and
thereby discover unique factorization, also lead to decomposing numbers (using
ADD-inverse) and the discovery of Goldbach's conjecture.

±

Now here is the excerpt itself. A few of the lines have been anglicised
addition of "e.g."), and some of the concepts had previously been renamed by the
human observor of the system). Otherwise, this was just as AM typed it:

(e.g., the
user (the

I

I

I

477AMA3

478

Research on Applications of Al

t

TASK 65: Fill in Examples of the concept Divisors-of.

3 Reasons: (1) No known examples of Divisors-of so far.
(2) TIMES, which is related to Divisors-of, 1s now very

interesting.
(3) Focus of attention: AM recently defined Divisors-of.

TASK 66; Consider numbers having small sets of Divisors-of.

2 Reasons: (1) Worthwhile to look for extreme cases.
(2) Focus of attention: AM recently worked on Divisors-of.

Filling 1n examples of numbers with 0 divisors.
0 examples found, in 4.0 seconds.
Conjecture: no numbers have precisely 0 divisors

Filling in examples of numbers with 1 divisors.
1 examples found, in 4.0 seconds, e.g., Dlvlsors-of(l) = (1).
Conjecture: 1 1s the only number with precisely 1 divisor.

Filling in examples of numbers with 2 divisors.
24 examples found, in 4.0 seconds, e.g., Divlsors-of(l3) = {1 13}.
No obvious conjecture. May merit more study.
Creating a new concept: "Numbers-wlth-2-divlsors".

Filling in examples of numbers with 3 divisors.
11 examples found, in 4.0 seconds, e.g., Dlvisors-0f(49) s {l 7 49}
All numbers with 3 divisors are also Squares.
Definitely merits more study.
Creating a new .concept: "Numbers-with-a-divlsors".

TASK 67: Consider the square-rootsof Numbers-with-3-divisors.

2 Reasons:
(1) Numbers-wlth-3-divlsors are unexpectedly also Perfect Squares.
(2) Focus of attention: AM recently worked on Nos-with-3-divisors.

All square-roots of Numbers-with-3-divisors seem to be
Numbers-with-2-divisors.
E.g., Dlvlsors-of(Square-root(l69)) s Divisors-of(13) = {1 13}.

Even the converse of this seems empirically to be true.
1.c., the square of each No-wlth-2-divlsors seems to be
No-wlth-3-dlvisors.
The chance of coincidence is below acceptable limits.

Boosting the interestingness rating of each of the concepts involved.
USER: Rename Numbers-with-2-divisors as Primes

26 examples found, in 9.2 seconds. E.g., Divisors-of (6)={l 2 3 6}.

A3 AM 479

TASK 68: Consider the squares of Numbers-with-3-divisors.
3 Reasons: (1) Squares of Numbers-with-2-dlvisors were interesting.

(2) Square-roots of Numbers-with-3-divisors were interesting.
(3) Focus of attention: AM recently worked on

Nos-with-3-dlvlsors.

AM as a Mathematician

Having seen how AM works and examples of "local" results, the final point here is to
consider the totality of the mathematics that AM carried out. All of this was done by AM
acting alone, with a human user watching it and occasionallyrenaming some concepts for his
or her own benefit. Like a contemporary historian summarizing the work of the Babylonian
mathematicians, current terms are used and criticism is by current standards.

AM began its investigations with scanty knowledge of a few set-theoretic concepts.
Most of the obvious set-theory relations (e.g., de Morgan's laws) were eventually
uncovered; since AM never fully understood abstract algebra, the statement and verification
of each of these was quite obscure. AM never derived a formal notion of infinity, but it
naively established conjectures like "a set can never be a member of

itself,"

and procedures
for making chains of new sets ("insert a set into itself"). No sophisticated set theory (e.g.,
diagonaiization) was ever done.

After this initial period of exploration, AM decided that "equality" was worth
generalizing and thereby discovered the relation "same-size-as." Natural numbers were
based on this discovery, and soon most simple arithmetic operations were defined.

Since addition arose as an analog to union, and multiplication as a repeated
substitution, it came as quite a surprise when AM noticed that they were related (namely,
N+N = 2 x N). AM later rediscovered multiplication in three other ways: *s repeated
addition, as the numeric analog of the Cartesian product of sets, and using the cardinality of
the power set of the union of two sets.

Raising to fourth-powers and fourth-rooting were discovered at this ' time. Perfect
squares and perfect fourth-powers were isolated. Many other numeric operations and kinds
of numbers were found to be of interest: Odds, Evens, Doubling, Halving, Integer-square-root,
etc. Although it isolated the set of numbers that had no square root, AM was never close to
discovering rationals, let alone irrationals. No notion of "closure" was provided to—or
discovered by—AM.

The . associativity and commutatlvity of multiplication indicated to AM that it could
accept a BAG of numbers as its argument. When AM defined the inverse operation
corresponding to Times, this property allowed the definition to be: "Any bag of numbers (>1)
whose product is x." This was just the notion of factoring a number x. Minimally factorable
numbers turned out to be what we call primes. Maximally factorable numbers were also
thought to be interesting.

Prime pairs were discovered in a bizarre way: by restricting the domain and range of
addition to primes (i.e., solutions of p + q = r in primes).

480% Research on Applications of Al

AM conjectured the fundamental theorem of arithmetic (unique factorization into primes)
and Goldbach's conjecture (every even number >2 is the sum of two primes) in a surprisingly
symmetric way. The unary representationof numbers gave way to a representation as a bag
of primes (based on unique factorization), but AM never thought of exponential notation.Since the key concepts of remainder, greater-than, gcd, and exponentiation were never
mastered, progress in number theory was arrested.

When a new base of geometric concepts was added, AM began finding some more
general associations. In place of the strict definitions for the equality of lines, angles, and
triangles came new definitions of concepts comparable to Parallel, Equal-measure, Similar,
Congruent, Translation, Rotation; plus many that have no common name (e.g., the relationshipof two triangles sharing a common angle). A cute geometric interpretation of Goldbach's
conjecture was found [Given ail angles of a prime number of degrees, (0,1,2,3,5,7,1 1.....1 79degrees), then any angle between 0 and 180 degrees can be approximated (to within 1degree) as the sum of two of those angles.] Lacking a geometry "model" (an analogic
representation like the one Gelernter employed [Gelernter, 1963]), AM was doomed topropose many implausiblegeometric conjectures.

Limitations of AM

Although AM fared well according to several different measures of performance, usersof this handbook may better utilize knowledge of its limitations.

As AM ran longer and longer, the concepts it defined were further and further from theprimitives it began with, and the efficacy of its fixed set of 250 heuristics gradually
declined. The key deficiency was that of adequate meta-rules (Davis, 1976a, Lenat, 1976,Laing, 1971): heuristics that cause the creation and modification of new heuristics. This lackwould onlybe felt in a boot-strapping, open-ended task environment such as math research.

Many concepts that one might consider "primitive" are missing from AM: proof, tricksfor finding counterexamples, numbers, etc. Very few of them are ever discovered by AM,and even those that are discovered will not have any powerful heuristics filled In for them.The limitations of a "too small" knowledge base can be overcome only by investing theadditional time to enlarge it. With a learning system like AM, one can spend a couple man-hours wrestling with each new concept or let the program squander a probable greateramount of its time until It has discovered and mastered that concept to the same level ofproficiency. It Is a trade-off that almost always argues for the system-builder to spend moretime enlarging the knowledge base by hand.

Analogies In general were under-utilized. Specifically, analogies between heuristicswere never even considered, if one characterizes an analogy as a (partial) correspondencebetween two collections of objects and operators, then It is a small conceptual step toimagine heuristic rules that look for and develop such mappings: The image of partialmatching comes immediately to mind. AM possesseda few such domain-independentrules,
and they managed to produce some analogies (e.g., between multiplication and addition;between sets/union/same-size and numbers/add/equality), but the overall results werequite meager in this area.

A3 AM 481

Conclusions

The AM project stands as a working demonstration that a few hundred general heuristic
rules suffice to guide a searcher—an automated math researcher—as it explores and
expands a large but incomplete base of math concepts. AM shows that creative theoretical
research can be effectively modeled as heuristic search, just as Meta-Dendral (Buchanan,
1975) established a similar hypothesis for the more constrained, real-world field of mass
spectroscopy.

AM's design combined four now popular themes: modular representation of knowledge,
distributed control via production rules, reliance upon heuristics acting as plausibfe-move
generators, and best-first searching via an agenda scheduler. AM introduced (1975) that
control structure based upon an agenda of small plausible research tasks, each with an
attached list of supporting reasons.

The main successes were the few novel ideas it came up with (including a new result in
number theory, dealing with numbers having very many divisors), the ease with which new
domains were discovered (e.g., number theory) or introduced by hand (plane geometry), and
the apparentlyrational sequences of behavior that AM exhibited.

The continuation of this line of research by Lenat is the EURISKO program. The
hypothesis that has been added is that the meta-level knowledge required to synthesize and
reason about heuristics is a subset of the knowledge already in AM about synthesizing and
reasoning about concepts. That is, EURISKO's meta-rules are merely some of the very
general rules that AM already had. The only real change, then, from AM to EURISKO is to re-
represent (recode) each heuristic from Lisp code, as a full-fledged concept with facets. The
heuristics, which deal with facets of concepts, will then be capable of dealing with each
other. This work is currently in progress at Stanford University.

I

Future AM-llke programs may serve as assistants to scientists and engineers,
synergetically collaborating with them in the conception, planning, and execution of their
research and developmentactivities.

References

See Bledsoe (1971), Brotz (1974), Buchanan (1975), Davis (1976a), Engelmore &
Feigenbaum (1976), Evans (1968), Feigenbaum, Buchanan, & Lederberg (1971), Gelernter
(1963), Hadamard (1946), Hempel (1962), Kling (1971), Knuth (1974), Koestler (1967),
Laing (1971), Lakatos (1976), Lenat (1976), Minsky (1975), Papert (1972), Pivar &
Finkelstein (1964), Poincare (1929), Polya (1954), Simon & Kotovsky (1963), Simon (1973),
Wang (1960), and Winston (1970b).

% 482 Research on Applications of Al

B. Miscellaneous Applications of Artificial Intelligence

81. The SRI Computer-based Consultant

Introduction

A computer-based consultant (CBC) is a computer system that contains a body of
specialized knowledge about a particular task domain and that makes that knowledge
convenientlyavailable to users working in the domain. This article describes some research
done at SRI on a computer-based consultant designed to help a novice mechanic work with
electromechanical equipment. The goal of this research is to build a system that
approximates a human consultant in its communication, perceptual, and reasoning skills.

The consultant was designed to answer spoken English questions from the user and to
monitor the user's progress on the task, offering advice and reminders where necessary. To
fit the needs of individual users, it is essential that the system be able to provide advice
about the task at several levels of detail. In order to determine the appropriate level of
detail, the CBC must form a model of the user, monitor his performance as he executes the
task, and update internal models to reflect the current state of the task environment.

Design of the Computer-based Consultant.

The task of the SRI computer-based consultant is to help an inexperienced mechanic
repair and modify complex electromechanical equipment. The mechanic works on a piece of
equipment in a special "work station" where he is provided with a headset that enables him
to talk to the system and to receive spoken replies, both in natural language. A commercially
available phoneme synthesizer is used by the system to give "spoken" responses to the
user, and a commercially available phrase recognizer is used to "understand" his speech.
There is a television camera and a laser rangefinder that provide the visual component for
the system. The laser rangefinder can also be used as a visual pointer so that the system
can answer questions such as "Show me the pressure switch" by illuminating the pressure
swjtch with the laser beam.

Requests for information by the user are translated into an internal representation or
"model" by the natural language and visual components of the system. These models are
used to structure communications with the user as he performs the task. For example, a
question about the location of a part ("Where is the pump brace) is answered by referenceto a stored geometric model that keeps track of the spatial relations between the parts.
Other models are necessary for the natural language components of the system; forinstance, a discourse model Is needed to understand a spoken utterance.

Planning a sequence of constructions

The user of the CBC can ask it to plan a sequence of assembly steps and relate thissequence to him for execution. The CBC has a planning component for composing assemblyand disassembly sequences. It has received much attention in recent research efforts.There are several types of knowledge that are Important in the planning process. First,

B1 The SRI Computer-based Consultant 483

\

1

there is the model of the air compressor itself, which is essentially a graph whose nodes
correspond to the parts of the compressor and whose arcs correspond to the mechanical
connection between the parts. Second, each type of connection has associated with it a
set of procedures that tells how that connection is physically established. Third, each of
these procedures may contain calls to other procedures that elaborate, in more detail, how a
job is done. This hierarchy of procedural knowledge forms the basis for producing plans that can
be given to the user at several levels of detail. This procedural model is used by the
planning program to determine the order in which parts should be assembled. The planning
program Initially assumes that the parts can be connected in any order. By checking
preconditions and the effects of performing each step, it reorders the steps in the plan to
eliminate conflicts. For example, the pump can be installed only if there is no pulley on its
shaft. The planner recognizes this fact and imposes an order on the plan so that the pump
will be installed before its pulley is placed on the shaft. When all the conflicts have been
resolved, the remaining steps of the plan can be solved in any order. This ability, to
recognize alternative orderings in a plan, is important for a computer-based consultant: The
user may take the initiative and proceed with certain steps of the assembly on his own, and
the planner must recognize if the steps being taken are valid.

The plan is represented as a structure called a procedural net; a sample net is shown
in Figure 1 (Hart, 1975). Each node corresponds to an assembly step at some level of detail.
The procedural net is actually a hierarchy of plans, all of which accomplish the same task,
but at varying levels of detail. The t'th row in the net corresponds to a plan specified at the
t'th level of detail. Notice that the plan splits into two paths at level 2, Indicating that the
two subplans can be performed in either order. The dotted lines indicate the expansion of a
step into a more detailed subplan.

I

j

484 Research on Applications of Al

%

Figure 1. A fragment of a procedural net.

The procedural net is useful in specifying plans at the various levels of detail required
by the user. The net Is also used during planning to represent partially formed plans, so that
the planner can be restarted during execution to modify an existing plan if new information
requiring replanning is discovered as the assembly proceeds.

The system keeps an Internal model of the "connectedness" of the different
components of the air compressor as It is being assembled or disassembled. It also containsa graphical model of the locations of the different components of the air compressor. Forexample, the graphical model knows about the pump, motor, pressure switch, etc.; and theconnectivity model knows about all the visible components.

B1 The SRI Computer-based Consultant 485

)

L

Interfacing to the real world: Vision and Dialogue

Vision is a difficult problem in the domain of electromechanical machinery because the
equipment and its components usually have only a limited range of color and texture for a
great variety of possible shapes. Shadows and highlights also depend on the stage of the
assembly process. For these reasons, an approach has been taken that capitalizes on prior
knowledge of visual appearances and geometric relations: There is a "tool recognizer" that
accepts a limited semantic description of a tool, builds a model of the tool from this
description, and uses this model to differentiate the tool from the set of probable
alternatives.

There are two other visual modules, both of which rely on stored geometric models of
the equipment. The first module allows the CBC to answer user questions of the form "Show
me the X." It points at X with the laser rangefinder, which is accomplished by locating the
outline of the visible surface of X. The second module allows the user to ask "What part is
this?" while he is pointing at the unknown part with a wand equipped with a small light at the
tip. A ray in space is defined by the wand tip and the camera lens. The ray intersects a
geometric model of the equipment, providing the answer to the question.

The following is a portion of a dialogue between a novice mechanic and the CBC on the
task "Assemble the air compressor." The example is taken from Hart, 1975.

CBC: Try to achieve assembled aircompressor.
Novice: How?

CBC: The top level plan is ... install pump ...
install pumpbrace ... install pumppulley ...
install belt ... install belthousingcover ...

I

CBC: Ready for questions.
Novice: Show me the pump.

(Laser beam moves to point at pump.)
CBC: Ready for questions.

Novice: What is this? (Pointing with wand at tank
" platform)

CBC: Tank platform.
CBC: Ready for questions.

Novice: None.
CBC: Install pump.

Novice: How?
CBC: Connect pump to platform.

Novice: How?
CBC: Get 4 1&1/4-Inch 5/16 hexagonal bolts and

4 9/16 flat washers and 4 size 5/16 hexagonal
nuts.

Novice: OK.

486 Research on Applications of At%

Summary

The main goal of the research on the SRI computer-basedconsultant was to create the
fundamental technology needed to build such consultant systems. Much of this technology isindependent of the particular consultant system being built or of the details of the task
environment. Work on the electromechanical CBC described here was stopped in April, 1975.
Since then a new consultant project has been begun at SRI extending many of the ideas
from the 1975 system and adding new features.

The new consultant system is being used in two entirely different domains: mineral
exploration (see article F2) and agricultural pest management. It appears that computer
consultants are likely to remain both a fruitful area for Artificial Intelligence research and a
practical means of deploying knowledge to peopleworking in the specific task domains.

References

See Hart (1975) and Nilsson (1975).

B2 PROSPECTOR: An Expert System for Mineral Exploration 487

!

!

!

L

82. PROSPECTOR: An Expert System for Mineral Exploration

PROSPECTOR (Duda et al., 1978) is a computer-based consultation system that is being
developed to aid geologists working on certain problems in hard-rock mineral exploration.
Like other expert systems, such as INTERNIST (see article C2) and MYCIN (see article C1),
PROSPECTOR attempts to represent a significant portion of the knowledge and the reasoning
processes used by experts working in a specialized domain. The intended user of this
program is an explorationgeologist who is in the early stages of investigating an exploration
site or prospect. We assume that he or she has a professionalunderstandingof geology but,
nevertheless, wants the assistance of a specialist in evaluatingthe findings.

In an attempt to keep the PROSPECTOR system fairly domain independent, the system
maintains a clear separation between the geological knowledge base and the mechanisms
that use this knowledge. Nevertheless, characteristics of the problem domain have certainly
influenced the design of the system.

Expressed abstractly, the main function of PROSPECTOR is to match data from a
particular situation against "models" that describe a moderately large number of disjoint
classes of situations. In PROSPECTOR'S domain, the models are formal descriptions of the
most important types of ore deposits, and the data are primarily surface geological
observations. The available data are assumed to be uncertain and Incomplete, so that the
conclusion is a probabilityor a degree of match. In addition, the program alerts the user to
different possible Interpretations of the data and identifies additional observations that
would be most valuable for reaching a more definite conclusion.

A typical consultation session with PROSPECTOR begins with the user giving the system
information about the most significant features of his prospect: the major rock types,
minerals, and alteration products. The program matches these observations against its
models and, when the user is finished volunteering

information,

proceeds to ask the user for
additional information that will help confirm the best matching model. At any time during the
consultation, the user can interrupt to volunteer new

information,

change previous
statements, or request an evaluation. Thus, PROSPECTOR operates as a mixed-initiative
system.

The following edited excerpt from a PROSPECTOR run illustrates many of these ideas.
The data for the run describe a fictitious porphyry copper deposit that has some, but not all,
of the desired characteristics. We begin at the point where the user starts volunteering
information to the system. In this excerpt, the user's answers are always given in
emboldened upper case, and comments are found in italics.

2: THERE IS A CRETACEOUS DIKE

CRETACEOUS DIKE (6)

3: THERE IS SERICITE AND PYRITE

SERICITE (5)

1: THERE IS QUARTZ MONZONITE

QUARTZ MONZONITE (5)

488 Research on Applications of Al%

I
i

!

i

PYRfTE (5)

5: THERE MAY BE BIOTITE

BIOTITE (2)

6: DONE

These simple assertions describe the most prominent rocks, minerals, and alteration
products in the target area. The system indicates its recognition of each statement by
echoing the statement and appending an assigned certainty. Certainty factors range from-5 (positive that a situation does NOT hold) to 5 (positive that it does hold). All
assertions made by PROSPECTOR have associated certainty factors. The program now
enters the consequent mode ofreasoning.

Presently, the models In PROSPECTOR and their scores are:

1 Komatiitic nickel sulfide deposit — KNSD (0.0)
2 Type-A porphyry copper deposit - PCDA (0.0) "current hypothesis**
3 Kuroko-type massive sulfide deposit — MSD (.001999)
4 Western-states-type sandstone uranium deposit — WSSU (0.0)
5 Mlssissippi-Valley-type lead/zinc deposit — MVTD (-4.8) I
Which of the above would you like to rule out? NONE

[

The volunteered information was sufficient to rule out one of the models, but was not
nearly specific enough to establish any of the others. The choice of the second model as the
current hypothesis was based not on its certainty, but on the number and types ofconnections between it and the volunteered statements. To avoid a possibly fruitlessinvestigation of unpromising models, the system gives the user the opportunity to exclude
models of lesser interest. In this case, the user allows all of the models to be explored, and
the system begins with the current hypothesis.

I am considering the possibility of a
(Type-A porphyry copper deposit — PCDA)
in the target area.

The following questions are intended to establish the nature of the
petrotectonic setting.

1 —To what degree do you believe that:
(the target area is in a continental margin mobile belt) ? -2

PROSPECTOR! An Expert System for Mineral Exploration 489B2

This is a discouraging answer for the PCDA model, and it removes a context needed fOr
the investigation ofother properties of thecontinental margin mobile belt.

The following questions are intended to determine the nature of the
regional environment.

2—To what degree do you believe that:
(there are granitic intrusives in the region) ?

3—To what degree do you believe that:
(the region contains an abundance of small stocks) ? -3

B—To8—To what degree do you believe that:
(igneous rocks in the region have porphyritic texture) ? WHY

I am trying to establish whether some of the intrusive rocks in your
area have textures suggestive of a hypabyssai to subvolcanic environment.
Porphyry textures resulting from the rapid cooling and crystallization
of a silicate melt which contains large mineral grains are suggestive
of relativelyshallow levels of emplacement.

Following MYCIN, PROSPECTOR provides a variety of commands for doing such
things as requesting a summary, changing previous answers, or volunteering additional

formation. The above response to a WHY command is not automatically generated from
the rule but is merely stored text associated with the space.

B—To what degree do you believe that:
(igneous rocks in the region have porphyritic texture) ?

My certainty in (the texture and morphologyof the Intrusive SYB*B '"suggest a subvolcanic (hypabyssai)regional environment) Is now: 4.924

Do you want to pursue this further? NO

At this point the system noted that the certainty for the hypothesis about a hypabyssai
environment was above 4.5, and it also noted that if the remaining rules were "w*red in
the most unfavorable way possible, the certainty could not fall below 4.5. To save time, it

let the user decide whether or not to continue working on this subgoal.

The questioning continues as above until it becomes necessary to considt\P"ffJ"*h"vary within the target area. Thus, for thefirst time it becomes necessary to be able to use

490% Research on Applications of Al

)

the rules more than once, and a communication convention must be established to
distinguish different spatial locations.

Porphyry copper deposits are often composed of characteristic zones of
alteration and mineralization. (In some cases these can be looked upon as
different stages superimposed upon one another.) I shall call the most
prominent such zone Zone 1 . Even though you may have already identified
this zone as, say, the propylitlc zone or the sericitic zone, I need to
consider other possibilities as well. Thus, the following questions are
intended to determine the possibilities for Zone 1 .
25—To what degree do you believe that:
(there are fresh-looking feldspars in Zone 1) ?

I
Questioning continues in this manner. Eventually, PROSPECTOR establishes that two
zones exist in the region of interest, and after examining each in detail, it concludes that
their geologic makeup supports the hypothesis that Type-A porphyry copper exists in the
region.

On a scale from -5 to 5, my certainty that (there are alteration zones
that are favorable for a Type-A porphyry copper deposit) is now 4.833

I

There are two favorable

factors;

in order of importance:

2.3.1 : 1 . there is a sericitic zone in Zone 1 (4.834)
** establishes 2.3.1 **

2.3.1 : 2. there is a potassic zone in Zone 2 (4.499)

There are many factors that would have been unfavorable, had no favorable
factor existed to override them; in order of importance:

2.3.1 : 3. there is a barren-core zone in Zone 1 (-6.0)

2.3.1 : 4. there is a potassic zone in Zone 1 (-6.0)

2.3.1 : 6. there is a propylitlc zone In Zone 1 (-6.0)

2.3.1 : 6. there is a sericitic zone in Zone 2 (-6.0)

2.3.1 : 7. there is a propylitic zone in Zone 2 (-4.989)

B2 PROSPECTOR: An Expert System for Mineral Exploration 491

2.3.1 : 8. there is a barren-core zone in Zone 2 (-4.495)

For which of the above do you wish to see additional information?

Knowledge representation

The network structure that is used to represent the the geological knowledge
embodied in PROSPECTOR is called the inference network, which guides the plausible
reasoning performed by the system. The nodes in this network correspond to various
assertions, such as "Tl-3re is pervasively biotized hornblende" or "There is alteration
favorable for the potassic zone of a porphyry copper deposit." In a particular run, any
assertion may be known to be true, known to be

false,

or suspected to be true with some
probability.

Most of the arcs in the inference network define inference rules that specify how the
probability of one assertion affects the probability of another assertion. For example, the
presence of pervasively biotized hornblende suggests the potassic zone of a porphyry
copper deposit, and the absence of any biotized hornblende, is very discouraging for that
conclusion. These inference rules correspond to the production rules used in MYCIN. The
remaining arcs indicate that an assertion is the "context" for another assertion, preventing
conclusions from being drawn until the right contexts are established. For example, one
should establish that hornblende has been altered to biotite before asking about the degree
of alteration.

The primary task confronting a geologist who wants to prepare a new model for
PROSPECTOR is the representation of his or her model as an Inference network. The current
system contains models of five different types of deposits, developed in cooperation with
five different consulting geologists. The following statistics give a rough indication of the
size and complexity of these models.

Number of
Assertions

Number of
RulesModel

39 34Koroko-type massive sulfide
Mlssisslppl-Val ley-type lead/zinc
Type-A porphyry copper
Komatiltic nickel sulfide
Roll-front sandstone uranium

2028
187 91
75 49

133212
327541Total :

To allow certain kinds of logical reasoning by the system, we represent each assertion
"space" in a partitioned semantic network (Hendrix, 1975a). A typical space asserts

% 492 Research on Applications of Al

the hypothetical existence of physical entities having specific properties (such as being
composed of biotite) and participating in specific relations (such as an alteration relation). In
addition, a large taxonomic network describes Important element/subset relations among the
terms mentioned, such as the fact that biotite is a mica, which in turn is a silicate, which in
turn is a mineral.

The articulation of assertions as a set of relations allows the system to recognize
subset/superset connections between pairs of assertions. For example, the assertion that
"There is pervasively biotized hornblende" is clearly related to the assertion that "There is
mica"; assertion of the first also asserts the second, and denial of the second denies the
first. This kind of recognition is used in two main ways. First, it provides important intermodel
and intramodel connections beyond those given explicitlyby the Inference rules.

Second,

it
allows the system to recognize connections between information volunteered by the user and
the coded models.

Probabilistic reasoning

Some of the logical constraints that exist between spaces have probabilistic
implications. In particular, if A is an Instance of (subset of) B, then the probability of A can
never exceed the probability of B. We maintain this constraint by automatically generating
certain inference rules. For example, if evidence E could raise the probability of A above the
probability of B, then we generate a rule from E to B that will Increase the probability of B
sufficiently to just satisfy the constraint. The exact procedure used here is described in
Duda et al., 1977. ,

I

»

Since the various inference rules interconnect to form an inference network, when the
user provides some evidence this information can change the probabilities of several
hypotheses, which in turn can change the probabilities of hypotheses that depend upon
them. The probability formulas determine exactly how these probability changes propagate
through the inference net. (The reader might also refer to the handbook articles on IRIS and
CASNET for other discussions of propagation.)

Control

As mentioned earlier, PROSPECTOR is a mixed-initiative system that begins by allowing
the user to volunteer Information about the prospect. This volunteered information is
currently limited to simple statements in constrained English about the names, ages, and
forms of the rocks and the types of minerals present. These statements are parsed by
LIFER— a natural language interface facility developed by Hendrix (1977)—and represented
as partitioned semantic networks. A network matching program compares each of these
volunteered spaces against the spaces in the models, noting any subset, superset, or
equality relations that occur.

If a volunteered space is exactly equal to a space in a model, the probability of the
model space is updated, and that change is propagated through the inference network. If a
volunteered space is a subset of a space In a model and if it has a higher probability than
the model space, then once again the probability of the model space Is updated, and that
change is propagated through the inference network.

B2 PROSPECTOR: An Expert System for Mineral Exploration 493

Unfortunately, if the volunteered space matches as a superset of a model space(which usually occurs), no probability change can be made unless the user expresses doubtabout the situation. For example, if the user mentions biotite, the probability of the space
that asserts that there is pervasively biotized hornblende is unchanged, unless the user hassaid that he or she doubts that there is any biotite. However, it is obvious that the systemmay want to follow up this observation, and the existence of the connection to the model isrecorded.

When the user has finished the initial volunteering, PROSPECTOR scores the variousmodels on the basis of the number and types of connections that have occurred and selects
the best matching model for further investigation. Here the basic control strategy is MYCIN-
Wkefackward chaining or consequent reasoning. At any given time there is a current goal space
whose existence is to be determined. The initial goal space is the one that corresponds to
the best matching model. The various spaces in the models either represent evidence that
can be sought from the user (are "askable") or internal hypotheses that are to be deduced
from evidence (are "unaskable"). Naturally, the initial goal space is always unaskable. If the
current goal space has any unestablished context spaces, they are pushed on the goal
stack and one of them becomes the new current goal.

If the current goal is askable and has not been asked

before,

the user is asked about
it; the effects of the answer are propagated through the inference network; and the process
is repeated. If it is unaskable, it must be either the consequence of one or more inference
rules or a logical combination of one or more other spaces. In the former case, the rules are
scored to determine their potential effectiveness in influencing H, and the antecedent of the
best scoring rule becomes the next goal. In the latter case a predetermined supporting
space becomes the next goal. In either case the same procedure is repeated until either:
(a) The top-level goal becomes so unlikely that another top-level goal is selected, (b) all of
the askable spaces have been asked, or (c) the user interrupts with new volunteered
information.

Summary

This brief overview covers the basic knowledge representation and inference
mechanisms used in PROSPECTOR. Many aspects of the system have not been mentioned,
such as the treatment of quantitativeevidence, the matching procedure, the use of graphical
input, the inference network compiler, the explanation system, model acquisition aids, and
the test and evaluation effort.

The five models In the current system are but a fraction of what is needed for
comprehensive coverage, and even these models have only recently achieved the degree of
completeness required for doing meaningful evaluations. Limited initial tests have shown very
close agreement between the evaluations provided by the system and the evaluations of the
model designers, using data from actual deposits of the types modeled. More information on
the system, the extent of its geological knowledge, its performance on known deposits, and
its possible applicationscan be found in Duda et al., 1978.

1

494 Research on Applications of Al

\

\

s

I

References

See Duda, Hart, & Nilsson (1976), Duda et al. (1977), Duda et al. (1978), Hendrix(1975a), Hendrix (1977), Pople, Myers, & Miller (1975), and ZADEH (1965).

«"

i

s
B3 RITA 495

83. RITA

Following a major trend in modern computing toward the wide distribution of small,
inexpensive, powerful personal computers dedicated to single users, research at, the RAND
Corporationon systems and applications has produced RITA (RAND Intelligent Terminal Agent).
Developed by Anderson and Gillogly at the Rand Corporation during the period 1976-1977
(Anderson, 1977), RITA is a production system patterned in some respects after the MYCIN
medical diagnosis system (see article CI). RITA was designed to be a general-purpose
system, capable of operating within a personal computer. A PDP-1 1 minicomputer is currently
being used for the research.

RITA was designed to allow the user to develop powerful working programs
incrementally, without having to master the intricacies of a procedure-oriented language.

Among the applications envisioned for RITA, two seemed especially promising: as user agents
and heuristic models. User agents are programs aimed at performing routine, repetitive
tasks, including automatic interacting with external information systems. The following are
examples of the kinds of services that RITA-based user agents might provide:

(a) automatically file copies of network mail, according to sender, receiver, or
subject keywords;

(b) periodically check for the receipt of new network mail or mail from
particular source and notify the user upon receipt;

(c) transfer a file between two host computers on a network;

(d) format a set of literature references to meet the requirements of a particular
' publisher or journal;

(c) automatically query a remote database every 24 hours to see if new data
has been filed that is specific to a given user's interest; or

(f) check on-line appointment calendars of other personal computers to find a
mutually convenient meeting time, schedule the meeting, and send
announcements to attendees.

Heuristic models are programs aimed at making inferences about systems whose
behavior can be described as a set of production rules and data objects. Heuristic modeling
applications of RITA include TECA, which models naval tactical threats and is discussed in
some detail below, and a model of terrorist confrontations and negotiations (Waterman &
Jenkins,. 1977).

The RITA System Architecture

Production system technology (see article Repreaentation.B3) was used in RITA to
provide features that its designers felt were crucial. In order to give users the ability to
develop and use their own interface

software,

RITA was designed as a system sensitive to
the following two requirements:

496 Research on Applicationsof Al%

"
i

(a) that user-developed software be capable of explaining its behavior upon
request, and

(b) that the user be able to incrementally modify the behavior of an agent.

The specifics of how a production system architecture can achieve these benefits are
discussed in the articles on MYCIN and TEIRESIAS in this chapter (see C1and CS).

All RITA applications are implemented as sets of user-specified production rules
capable of operating upon data objects, files, and communications channels. These basic
notions are illustrated and explainedin the following paragraphs.

Data are stored within the RITA system as named "objects," which are collections of
attribute-value pairs. The value of an attribute may be a scalar (a character string or number)
or a list of values. Examples of RITA data objects are shown below with the RITA keywords
capitalized.

OBJECT message: address-field IS "grm at rand-unix",
status IS "unfiled";

OBJECT known-person: name IS "Gary Martins",
address IS "grm",
site IS "rand-unix".msg-flle IS "m.accat";

RITA rules are stated in a formal, English-like language patterned after the output ruleformat used by MYCIN. The rules test or set attribute values within the database and may
send or receive character- strings from files or external processes. Rules may also test for
patterns of general description within a character string; for example, the pattern
specification .

["date: " followed by 2 chars in "0123466789" 'month'
followed by "/" followed by 2 chars in "0123456789"
'day' followed by "/" followed by 2 chars in
"0123456789" 'year']

would find the date field within the string

"time: 08:22:13 PST, date: 04/12/77, source: usc-isib"
and set temporary pattern variables month, day, and year to the relevant substrings, for uselater within the rule. An example of a RITA rule is shown below; several additional examplesare contained in the discussion of applicationsof RITA at the end of this section.

)

RULE 5 IF: the state of the agent is "check response to 'show'"
and the response of msg contains ["Message" followed
by anything followed by " is discarded" followed by
anything followed by the prompt of msg]

i

THEN: set the state of the agent to "get a message"; I

B3 RITA 497

Rule Application and Control

RITA's monitor is capable of applying rules in two modes: a cyclic and ordered mode,
and a deductive, backward-chaining mode. The cyclic scan is the default; it tests rule
condition-parts by cycling through the rules in a predetermined sequence. Whenever a true
condition-part Is found, the corresponding action-part Is executed and the scan continues.
The ordered scan operates similarly, with the exception that after a rule fires, the scan is
restarted at the first rule in the set. In either case, the agent's operation is terminated if no
applicable rules are found.

The backward-chaining deductive mode is similar to the reasoning method used in
MYCIN (see article CI). It is initiated in RITA by execution of an action clause of the form
"DEDUCE attribute OF object" during a cyclic or ordered scan. The action-part of each rule is
scanned until a rule is found whose action sets the attribute value to that to be deduced. If
its condition-part is true, the action is performed. If more data is required to determine the
truth of the condition-part, then the missing attribute values are treated as subgoals and the
search of the action-parts of rules is reinitiated for rules relevant to the achievement of
these new subgoals. Upon completion of the deductive operation, the prior mode of operation
(either the ordered or cyclic scan of rule condition-parts)continues.

Performance of the System

The RITA system is currently being operated at a number of computer sites around the
country. Diverse RITA-based user agents and heuristic models are under active development
at these sites. Two such applications are discussed briefly below as illustrations of current
RITA applications. Both are under developmentat the Naval Ocean Systems Center (NOSC)
at Point Loma, California, as part of the Advanced Command and Control Architecture Testbed
(ACCAT) program.

TECA (Threat Evaluation and Countermeasures Agent) is a heuristic model of the naval
tactical threat situation. This model gathers updated information from several ARPANET data
sources about the capabilities, positions, and movements of both friendly and hostile ships in
order to produce a specification of the current tactical situation and to make simple

recommendations regarding possible countermeasures.

TECA can interact with a user, guiding the analysis; or it can work in the background,
freeing the user for other work. In either mode, TECA produces color video displays of
current and projected tactical situation data, as well as textual output covering its own
progress and recommendations.

The following is a sample TECA rule:

RULE compute-relative-threat-2

IF the state of the system Is "compute relative threat"
& there Is a force(f) whose designationis

"force'of interest"
& there is a force(tf) whose name Is the

498 Research on Applications of Al%

J

threatening-force of force(f)
& there is a platform(tp) whose name is in the

platforms of force(tf)
& whose name is not in the threat-plats-list

of the system
& whose raid-density is known

THEN set the attack-density of the system to
the attack-density of the system + the raid-density
of the platform(tp)

& put the name of the platform(tp) into the
threat-plats-listof the system;

The TECA model currently consists of about 250 rules. It is anticipated that the agentwill have about 1,000 rules by the end of 1978, allowing the agent to handle situations suchas: multidimensional threats, logistically constrained action radii, and projected courses ofaction.

NWSS (Navy WWMCCS Software Standardization) Man-machine Interface Agent,currently under development,has been designed to provide a flexible, modifiable interface tothe NWSS database system (see article F4) on the WWMCCS (World-wide Military Commandand Control System) computer network. RITA data objects are used to store informationabout the data available within the NWSS system. The user is queried by a set of RITA rulesto determine his data needs, and these needs are then matched against the data available inNWSS. The RITA agent then formulates a valid query to the NWSS system and transmits it tothe system. The response is presented to the user upon receipt

The following Is a sample NWSS Interface Agent rule:

RULE determlne-action-if-query-present:

[This rule will ask the user if he wants to use an existing
query If one Is present. The answer expected is either V
or N.]

IF the state of the agent is "build query"
& the query-flag of the agent is "present"
& there is a message whose category is a type of agent

THEN send query-present-portionof message to user
& receive next (anything 'text' followed by

1 char [carriage return])
& set the answer of the user to uc('text')
& set the type of the agent to the mode of the agent
& send concat(" Value entered - », answer of user)

to user
& set the state of the agent to "validate-reply";

B3 RITA 499

The NWSS Interface Agent illustrates the primary use foreseen for RITA: the
construction of interfaces tailored to external information systems that are too complex or
broad in scope for the specific needs of a particular user. RITA is a prototype system meant
to provide interfaces to the growing complex of systems available over interactive computer
communication networks.

The research group at Rand has also used RITA as a basis for the exploration of
adaptive production systems. These systems, in which RHS actions are used to modify the rule
set Itself (deleting existing rules, composing and instantiating new rules), offer significant
advantages for the automated acquisition of knowledge on an incremental basis, through
interaction with users and external systems. This work is described in Waterman (1977a,
1977b).

References

The purpose and design of the system is discussed In Anderson & Glllogly (1976a); a
recent reference manual (Anderson, 1977) has also been published.

Also see Anderson et al. (1977), Anderson & Glllogly (1976b), Kernighan & Ritchie
(1978), Ritchie & Thompson (1974), Waterman (1977a), Waterman (1977b), and Waterman
& Jenkins (1977).

% 500 Research on Applications of Al

1

84. Artifleal Intelligencein Information Retrieval

Motivation

In dealing with complex databases such as those used by banks and airlines, the
central problem faced by users is the formulation of queries comprehensibleto the system. In
order to make use of a database, a number of preliminary steps must be taken:

(a) The user must decide what needs to be done, to satisfy his/her needs;
(b) he must decide what information needs to be obtained from the
database; and (c) he must translate these needs into queries that will
be understood by the database management system.

Usually, business executives, government

officials,

and other decision makers have a
good idea both of the kind of information they need to satisfy their operational needs and
whether this information resides in their databases. Yet, to obtain the answer to a particular
question, they generally need to employ the services of a technician who works with the
database on a regular basis and who is thoroughly familiar with the detailsof the system: the
file structure, the database management system (DBMS) on which it resides, the distribution
among various computer systems, the coded field names for the data items, the kinds of
values that different fields are expected to contain, and other Idiosyncrasies.

As an example, let us consider a manager who would like to increment John Doe's
salary by 10%. Clearly, this manager knows that the salary is stored in the company
database and that, to satisfy his needs, he will have to find the salary of an employee
named John Doe and update that salary. At this point the problem begins. Typically, all the
salaries of employees—past and present—are kept in a file that does not include the name
of the employee but rather his identification code, say, EMPID. The relationship between
EMPID and his name, EMPNAM, would be found in another file. Then, the simple query "What
is the salary of John Doe" needs to be decomposed Into three steps:

(a) FIND the EMPID of the employee with EMPNAM equal
to 'JOHN DOE.

(b) FIND all salaries of the employee with that EMPID.
(c) FIND the latest salary among those.

Once this sequence of steps has been defined, the last operation to be done is to express it
in the query language of the particular database management system on hand. This
procedure would produce something similar to the following:

FOR EMP IN EMP-FILE WITH EMPNAM EQ 'JOHN DOE'
BEGIN

DECLARE X INTEGER X=o
DECLARE V INTEGER Y=o
FOR SAL IN SAL-FILE WITH SAL.EMPID EQ EMP.EMPID

IF X LT SAL.DATE THEN BEGIN
XsSAL.DATE
Y=SALSALARY
END

B4 Artifical Intelligencein Information Retrieval 501

END
PRINT V;

Translating the above back into English makes it clear that the steps above, currently
performed by a technician, are not trivial.

A program designed to replace the technician would have to understand a decision
" maker's question, reformulate It in terms of the data that is actually stored, plan a sequence
of requests for particular Items from particular files on particular computers, open
connections with remote sites, build programs to query the remote systems' DBMSs, monitor
the execution of those programs, recover from any errors, and correlate the results.

With the goal of making databases directly available to decision makers, researchers in
artificial intelligence have developed a number of prototype systems that, for many classes
of questions, automate the procedures usually performed by technicians. In the following
sections, we present several such systems concentrating on their distinguishing
characteristics.

Current Systems

LUNAR. An early natural language retrieval system was Woods's LUNAR system (Woods,
1973; see article D). The LUNAR system introduced Augmented Transition Networks (ATNs)
as a natural language parsing technique. The system was used to answer queries about the
chemical analysis of lunar rocks.

PLANES. Woods's ATN formalism has been used in a variety of other systems. Waltz
(Waltz,. 1975) has devised a system called PLANES that answers questions about the
maintenance and flight histories of airplanes. PLANES uses both an ATN and a semantic
grammar (see article Natural Language.B3b). The latter is a grammar whose major
components are not syntactic categories such as "subjects," "verbs," "noun-phrases," but
semantic categories such as "planes," "pilots," "command-verbs," and so on. Using such a
grammar, the sentence

Who pilots Air-Force- 1?
would be analyzed as

<WHO> <PILOT-VERB> <PLANE>
and not as

PLANES supports the processing of elliptical Inputs; for example, if the user issues the
question:

Who is the pilot of Air-Force- 1?
and follows up with:

The navigator? ,
the system will correctly interpret the second question as:

Who is the navigatorof Air-Force- 1?
The PLANES system also supports clarification dialogues with users—l.c., it can ask for the
user's help in disambiguating queries.

<NOUN-PHRASE> <VERB> <NOUN-PHRASE> .

502 Research on Applications of Al%

i

The PLANES language makes little use of syntactic information. PLANES looks throughan input for constituent phrases matching certain semantically oriented syntax categories.When one of these constituent phrases is found, its value is placed in a local register that isassociated with the given category. Rather than attempting to combine these constituents
» Llo°mP sentence °y syntactic means, "concept case frames" are used. Essentially,PLANES uses case frames to decide what type of question has been asked, by looking at thetypes and values of local registers that were set by the input. For example, the threequestions

WHO OWNS THE KENNEDY
BY WHOM IS KENNEDY OWNED
THE KENNEDY IS OWNED BY WHOM

would all set an <ACT> register to OWN and a <SHIP> register to KENNEDY. The case framescan determine what question is asked simply by looking at these registers (cf. Article NaturalLanguage.B3b on Case Grammars).

"knovm . Z ,9 °"fu °f thS three auestio"s «°ove is the elliptical fragmentKNOX -i.e., the name of another ship-the <SHIP> register is reset. Because no caseframe is associated with <SHIP> alone and because <SHIP> was used in the last input, the<ACT> register is inherited in the new context, and the elliptical input is properly analyzed.When more than one case frame matches an input, PLANES initiates a clarification dialoguewith the user to decide which was intended. (This dialogueprints interpretationsof inputs inthe query language.)

If the system is given the query,
; , ,s the Kennedy within 500 miles of the Knox?followed by,

The Enterprise? ,
the system would attempt to disambiguate the ellipticalreference as follows:

DO YOU MEAN:
(1) IS THE SHIP NAMED ENTERPRISE AT A DISTANCE OF LESS THAN500 MILES FROM THE SHIP NAMED KNOX?(2) IS THE SHIP NAMED KENNEDY AT A DISTANCE OF LESS THAN500 MILES OF THE SHIP NAMED ENTERPRISE?
ANSWER BY 1 OR 2.

fr/ml ,! "T" I I°iTT ** databaSe ia a,mple- Associated with each request caseIZ ?,J; , skeleton" corresponding to the DBMS query to be executed. Wheneveru^«r^oJSSUeS * C°T? that feqUires Use of several requests, the query isa^n ZZ. l S?"e^0f e,ementary "><**** to the DBMS. Some heuristic procedures arealso used to optimize the generated DBMS request.
«*«"■«* *<

avntJSr f re ?U6!t CaSS framBS iS Very «"r«ctive since it allows many top-levelfn?d.«. ♦ T . . aCCoUnted for *V ■ slogle rule. However, this approach isinadequate for complex Inputs such as the question:
-. . IS KNOX FASTER THAN KENNEDY?test .^trhyeTans^r1

of
tTh0o?H,P>

r
S, and "1 ** Syntactic orderina that tells us which ship totest as the faster of the two. Compound/complex sentences would be extremely difficult to

B4 Artifical Intelligence in Information Retrieval 503

process without extensive use of syntactic data. Waltz is investigating ways of
supplementing his case frames with nominal pieces of syntactic Information.

LADDER. Another information retrieval system using a parser based on Woods's ATN
technology is the LADDER system (Sacerdotl, 1977). It accesses a Naval database and was
developed as a managerial aid to Navy decision makers. The parser used by LADDER is called
LIFER Hendrix (1975a) and is based on a simplification of the ATN and case frame ideas.

In addition to using a semantic grammar, the LIFER system includes certain user-
oriented features, such as spelling correction, processing elliptical inputs, and the ability to
define and understand paraphrases during a query session.

Compared to PLANES, which" has a parser based on case frames (see article Natural
Languaga.B3b), LADDER uses a more syntactically oriented grammar. The LADDER parser
could also support case frames, although this has not been attempted. The other main
difference is that LADDER allows the user to increment the grammar with new patterns, which
correspond to paraphrases of existing expressions. LADDER has also been extended to
allow "macro paraphrases," so that a single sentence can now paraphrase a sequence of
existing queries.

In LADDER, each semantic category corresponds to a portion of an eventual database
query. After the sentence is parsed by LIFER, the query portions that correspond to the
semantic categories found in the sentence are collected and given to a database interface
component, IDA (Sagalowizc, 1977). As far as the user is concerned, the database is
composed of a single file that contains ail the fields appearing in the user question. IDA
automatically builds the DBMS query prdgram that takes into account the real file structure
of the database. IDA uses heuristic techniques to automaticallybuild this query program and,
in particular, to provide the necessary "navigation" through the files and fields of the
database.

Of all the projects presented here, LADDER is the only system to have strongly isolated
the parser from the database. This segregation has required the development of heuristic
techniques to build an efficient DBMS access request.

A number of systems have been developed without any specific domain application.
These general-purpose DBMS access systems are discussed in the following paragraphs.

REL. Another applied natural language system with a design philosophy similar to LIFER
is the REL (Rapidly Extendable Language) system of Thompson and Thompson (Thompson &
Thompson, 1975). REL is a data retrieval system like LADDER and PLANES, but it requires

that data be stored in a special REL database. The grammar rules of REL contain a context-
free component and an argumentation component very much like those In LADDER. As its
name implies, REL was intended to be easily extendable by interface builders. Much effort

504

Research on Applications of Al

t

I

i

has gone into making REL run rapidly. It is almost certainly faster than the other retrieval
systems mentioned here. This speed was gained by an assembly language implementation,
with the concomitant disadvantage that (new) DBMS access expressions cannot be written
easily.

ROBOT. The Artificial Intelligence Corporation (Harris, 1977) introduced a commercial
product for interfacing to databases called ROBOT. ROBOT is a system that maps English
language queries into a language of database semantics that is independent of the contents
of the database. The database itself Is used as an extension of the dictionary and the
structure of files within the database helps guide the parser when resolving ambiguities. In
the example

WHICH NEW YORK EMPLOYEES LIVE IN BUFFALO? ,
the phrase "NEW YORK EMPLOYEES" is ambiguous. It could refer to employees, working in
New York city, living in New York city, working for New York city, working in New York state,
living in New York state, or working for New York state. The sentence itself seems to
eliminate three of these six interpretations. By looking in the database, ROBOT finds that
Buffalo is a city In the state of New York and makes the assumption that the only
interpretationremaining is "employeesworking for the state of New York." It appears that it
also needed to check that employees living in Buffalo could not work for the CITY of New
York.

This approach is subject to several problems: The types of queries employed by users
are heavily dependent on the content of the database, and any extensive recourse to a
large database might greatly slow the parsing process. Furthermore, databases are coded
largely in abbreviations that are unsuitable as lexical entries. Nevertheless, the notion of
using the data itself to extend the capabilities of the language system is very attractive,
although much work remains to be done to eliminate the obvious shortcomings.

RENDEZVOUS. The main function of RENDEZVOUS (Codd, 1974) is. to reformulate the
user query into a number of canonical forms. Using canonical words stored in a dictionary and
numerous transformation rules, the system attempts to produce a query to issue to the
relational DBMS. The transformation rules have direct access to the relational schema, and
the structure of the database Is used directly when parsing a user's request.

For example, consider the request,
List US carriers in the Mediterranean on 5/3/78.

First, RENDEZVOUS would use Its first class of rules to rephrase the request as,

F US carriers in the Mediterranean on 5/3/78.
It will then translate "US carriers" to obtain:

F SHIP [NAM] WITH SHIP (NAT = US) AND SHIP (TYPE = CV)
in the Mediterranean on 5/3/78

Next, it will detect that "Mediterranean" and "5/3/78" are ambiguous. Europeans typically
write dates as day/month/year rather than month/day/year, and "Mediterranean" could be
either a ship or a place name. To resolve the ambiguity, RENDEZVOUS engages in the
following dialog:

"Mediterranean", do you mean:

B4 Artificai Intelligencein Information Retrieval 505

1 . the ship named MEDITERRANEAN
2. the region of the world named Mediterranean
3. Other

Answer by 1 ,2 or 3... (Answer)2
By "5/3/78", do you mean:

1. the date May 3rd 1978
2. the date March sth 1978
3. Other

Answer by 1,2 or 3... (Answer) 1

Finally, the request becomes:

F SHIP [NAM] WITH SHIP (NAT = US) AND SHIP (TYPE = CV) AND
POSIT (REGION = 4) AND POSIT (POS-DATE = 050378)

where it Is assumed that the database includes two

files,

a SHIP file containing static
information about ships and a POSIT file containing the ship positions.

At this point, the request is in terms of the database. However, before handing it to the
database for processing, the system rephrases the request in English as:

LIST THE NAMES OF SHIPS
WHOSE NATIONALITY IS US
AND WHO HAVE THE TYPE CV
AND WHO WERE LOCATED IN REGION 4 ON MAY 03 1978.

and asks the user to confirm this interpretation. If the user doesn't agree with this
rephrasing, the system would use a multiple choice selection system to let the user revise
the query. Finally, RENDEZVOUS can fall back on this multiple choice selection process if the
natural language processing fails completely. A first implementation currently exists but has
only been tested on a very simple, small database.

In ail of these systems, almost no artificial intelligence techniques are used except by
the natural languageparsers. Only the LADDER system appears to use any heuristic methods
to plan the actual database query, and this feature was forced by the isolation of the parser
from the database. In the projects presented in the next section, a great deal of emphasis
has been placed on using artificial intelligence techniques in all aspects of database
processing.

Long-term Projects

A number of researchers are currently addressing the many long-range problems of
accessing databases using natural language. These researchers include Mylopoulos and
Roussopoulos (Mylopoulos & Roussopoulos, 1975); Sowa (Sowa, 1976); Walker, Erman,
Newell, Nilsson, Paxton, Winograd, and Woods (Walker et al., 1977); and Sacerdoti et al.
(Sacerdoti, 1977).

TORUS (Mylopoulos & Roussopoulos, 1 975) is one such system. It provides access to

506 Research on Applicationsof Al%

i

information about students and the educational process at the University of Toronto. This
general information is contained in a semantic network. English queries are parsed into a
semantic network, and functions are used to select the portion(s) of the semantic network
that must be used as a response to the query.

The first implementation suffers from a number of limitations. Although TORUS was
intended as a front end to an arbitrary

DBMS,

the first implementationencoded the database
entirely in the semantic network and therefore never required access to the external
database. The present scheme would require the entire database to be encoded into the
semantic net, an immense and unnecessary task. Research currently in progress
investigates this problem.

The intention Is to distinguish two portions of the network: the upstairs portion, where
only general semantic descriptions are contained, and the downstairs portion, where
"examples"of the upstairs descriptions are stored. Supposedly, whenever a traversal of the
upstairs/downstairs boundary was needed to answer a query, the database would be
accessed.

Sacerdotl et al. (Sacerdoti, 1977) plan to extend their LADDER system. Among the
many Ideas they are exploring, one is to use a "partitioned semantic network" (see article
Representation.B2) to represent the equivalentof the TORUS "upstairs," general knowledge
about the information in the database. Partitions would be used to represent "theorems" that
would help during the deductive question answering. One type of theorem might be used to
indicate how to obtain relevant information from the database. An example of such a
theorem to be used with the Naval database might be stated as follows:

For every ship, there exists one record In the SHIP file
where the field NAM is the name of the ship, the
field NAT its nationality, the field GLASS its class, ...

For every ship, there exists one record in the SHIPCLASS
file where the field CLASNAM is the class of the
ship, the field LGH its length, the field DFT its

draft,

...
For every ship, there exist records in the POSITION file

where the field POSIT represents the position of the
ship, POS-DATE the time where the ship was at that
position, ...

A small demonstration of this capability has already been made using a very small semantic
network.

Conclusions

All the above systems attempt to provide the user with a relatively easy, direct access
to databases. Most of the research has emphasized the natural language understanding
abilities of the systems and the use of artificial intelligence techniques to understand
requests. A few of these systems have also attempted to represent the knowledge

I

contained in the database using semantic nets. Practically no one has seriously studied the
interface between such systems and the DBMS. Hopefully, in the future, some of the ideas
being investigated currently by researchers in artificial intelligencewill be integrated as part
of a DBMS, rather than as later additions to these large systems. Much more investigation
must be done to evaluate the special needs of the DBMSs and to find what artificial
intelligence technologies are appropriateto satisfy these needs.

References

See Codd (1974), Harris (1977), Hendrix (1975a), Hendrix (1975b), Mylopoulos &
Roussopoulos (1975), Sacerdoti (1977), Sagalowizc (1977), Sowa (1976), Thompson &
Thompson (1976), Walker et al. (1977), Waltz (1975), and Woods (1973).

i

507Artif ical intelligence in Information RetrievalB4

>

% 508 Research on Applications of Al

References

Anderson, R. H. The Use of production systems In RITA to construct personal computer
agents. Proceedings of the Workshop on Pattern-directed Inference
Systems, SIGART Newsletter (No. 63), 1977, pp. 23-28.

Anderson, R. H., & Glllogly, J. J. Rand Intelligent Terminal Agent (RITA): Design
philosophy (R-1809-ARPA). Santa Monica, Ca.: The Rand Corp., February 1976. (a)

Anderson, R. H., & Glllogly, J. J. The Rand Intelligent Terminal (RITA) as a network access
aid. AFIP Proceedings, 1976, 45, 501-609. (b)

Anderson, R. H., Gallegos, M., Glllogly, J. J., Greenberg, R., & Villanueva, R. RITA Reference
Manual (R-1806-ARPA). Santa Monica, Ca.: The Rand Corp., September 1977.

Bennett, J. S., Creary, L. A., Engelmore, R. M., & Melosh, R. E. SACON: A Knowledge-based
consultant in Strucutral Analysis, HPP 78-23, 1978.

Bledsoe, W. W. Splitting and Reduction Heuristics in Automatic Theorem Proving. Artificial
Intelligence 2, 1971, p. 73.

Bledsoe, W. W. Splitting and Reduction Heuristics in Automatic Theorem Proving. Artificial
Intelligence2, 1971, p. 73.

Brotz, D. Embedding Heuristic Problem Solving Methods in a Mechanical Theorem
Prover, Stanford University, Computer Science Dept., Rep. No.

STAN-CS-74-443,

August 1974. ...
Brotz, D. Embedding Heuristic Problem Solving Methods in a Mechanical Theorem

Prover, Stanford University, Computer Science Dept, Rep. No.

STAN-CS-74-443,

August 1974.

Brown, J. S., & Traub, J. F. On Euclid's Algorithm and the computation of polynomial greatest
common divisors. JACM, 1971, 18(4), 505-614.

Buchanan, B. G. Applications of Artificial Intelligence to Scientific Reasoning, Second USA-
Japan Computer Conference. AFIPS and IPSJ, Tokyo, 1975, pp. 189-194.

Codd, E. F. Seven Steps to Rendezvous with the Casual User. In J. W. Klimbie & K. I.
Koffeman (Eds.), Data Base Management. New York: North Holland, 1974. Pp. 179-
-200.

Davis, R. Applications of Meta-Level Knowledge to the Construction, Maintenance and
Use of Large Knowledge Bases, Stanford Al Lab Memo AIM-283, Al Lab, Stanford
University, 1976. (a)

Davis, R. Interactive transfer of expertise: Acquisition of new inference rules. UCAI 5,
1977,321-328.

(

1

References 509

Davis, R., & Buchanan, B. Meta-level knowledge: Overview and Applications. UCAI 5, 1977920-928.
I

Davis, R., & Buchanan, B. Knowledge acquisition in rule-based systems: Knowledge aboutrepresentations as a basis for system construction and maintenance. In D. Waterman& F. Hayes-Roth (Eds.), Pattern-directed Inference Systems. New York: AcademicPress, 1978. Pp. 99-134.

Duda, R. 0., Gaschnig, J., Hart, P. E., Konolige, X., Reboh, R., Barrett, P., and Slocum, J.
Development of the PROSPECTOR consultation system for mineral exploration.

Final Report, SRI Projects 5821 and 6415. SRI International, Inc., Menlo Park, Calif.,
1978.

Duda, R. 0., Hart, P. E., & Nilsson, N. J. Subjective Bayesian methods for rule-based
inference systems. AFIPS, 1976, 45, 1075-1082.

Duda, R. 0., Hart, P. E., Nilsson, N. J., Reboh, R., Slocum, J., & Sutherland, G. L, Development
of a computer-based consultant for mineral exploration. Annual Report, SRI Projects
5821 and 6415. SRI International, Inc., Menlo Park,

Calif.,

1977.
Engelmore, R. S., & Feigenbaum, E. A. Inductive determination of the structure of proteins by

automatic processing of electron density X-ray crystollographic data.Informal communications, Stanford University, 1976.

Evans, M. A Program for the Solution of Geometric-Analogy Intelligence Test Questions. In
M. Minsky (Ed.), Semantic Information Processing. Cambridge: MIT Press, 1968. Pp.
271-353.

Evans, M. A Program for the Solution of Geometric-Analogy IntelligenceTest Questions. In
M. Minsky (Ed.), Semantic Information Processing. Cambridge: MIT Press, 1968; Pp.
271-353.

Fahlman, S. E. A System for representing and using real world knowledge. Doctoral
dissertation, MIT Al Lab, September 1.977.

Fateman, R. J. Essays In Algebraic Manipulation, TR-95, MIT Computer Science Lab, April
1972.

Fateman, R. J. An Approach to Automatic Asymptotic Expansions. Proc. of an ACM
Symposium on Symbolic and Algebraic Computation, August 1976.

Feigenbaum, E. A. The art of artificial intelligence: Themes and case studies in knowledge
engineering. UCAI 5, 1977, 1014-1029.

Feigenbaum, E. A. , Buchanan, 8., & Lederberg, J. On Generality and Problem Solving: A Case
Study Using the DENDRAL Program. In Meltzer & Michie (Eds.), Machine Intelligence 6.
New York: American Elsevier, 1971. Pp. 165-190.

Gelernter, H. Realization of a Geometry-TheoremProving Machine. In E. A. Feigenbaum &
Feldman (Eds.), Computers and Thought. New York: McGraw-Hill, 1963. Pp. 134-152.

)
Research on Applications of Al% 510

L

Gelernter, H. Realization of a Geometry-Theorem Proving Machine. In E. A. Feigenbaum &
Feldman (Eds.), Computers and Thought. New York: McGraw-Hill, 1963. Pp. 134-152.

I
Genesereth, M. R. DB: A high level data base system with inference, Memo 4, MACSYMA

Group, MIT, December 1976.

Genesereth, M. R. The difficulties of using MACSYMA and the function of user aids. Proc. of
the Ist MACSYMA Users' Conference, NASA Report CP-2012, July 1977.

Genesereth,

M. R. Automated Consultation for Complex Computer Systems. Doctoral
dissertation, Harvard University, September 1978.

Gosper, R. W. Indefinite hypergeometric sums In MACSYMA. Proc. of the Ist MACSYMA
Users'

Conference,

NASA Report CP-2012, July 1977.

Grossman, R. Some Data Base Applications of Constraint Expressions, TR-158, MIT
Computer Science Lab, February 1976.

Hadamard, J. The Psychology of Invention in the Mathematical Field. New York: Dover,
1945.

Hadamard, J. The Psychology of Invention in the Mathematical Field. New York: Dover,
1945.

Harris, L. R. ROBOT: A high performance natural language processor for data base query.
SIGART Newsletter (No. 61), Feb. 1977, pp. 39-40.

Hart, P. E. Progress on a Computer Based Consultant. UCAI 4, 1975, 831-841.

Hearn, A. REDUCE 2 User's Manual, Stanford Al Project Memo AI-90, May 1969.

Hearn, A. REDUCE 2: A system and language for algebraic manipulation. Proceedings of
the 2nd Symposium on Symbolic and Algebraic Manipulation, March 1971.

Hearn, A. C. REDUCE-2 Users' Manual, Univ. of Utah Computational Physics Group Report
No.

UCP-19,

March 1973.i

Heiser, J. A computerized Psychopharmacology Advisor. HEAD-MED Report in the SUMEX
Annual Report. Computer Science Dept., Stanford University, 1977-1978.

Hempel, G. Fundamentals of Concept Formation in Empirical Science. Chicago: University
of Chicago Press, 1 952.

Hendrix, G. G. Expanding the utility of semantic networks through partitioning. UCAI 4,
1975, 115-121. (a)

Hendrix, G. G. Expanding the utility of semantic networks through partitioning. UCAI 4,
1975, 115-121. (a)

Hendrix, G. G. Expanding the Utility of Semantic Networks through Partitioning, SRI
Artificial IntelligenceGroup Technical Note 105, June 1975. (b)

511References

\

Hendrix, G. G. Human engineering for applied natural language processing. UCAI 5, 1977,
183-191.

I
Kernighan, B. W., & Ritchie, D. M. The C Programming Language. New Jersey: Prentice

Hall, 1978.

Kling, R. Reasoning by Analogy with Applications to Heuristic Probllem Solving: A Case
Study, Memo AIM-147, CS Rep. CS-216, Stanford University, August 1971.

Kling, R. Reasoning by Analogy with Applications to Heuristic Probllem Solving: A Case
Study, Memo AIM-147, CS Rep. CS-216, Stanford University, August 1971.

Addison-Wesley, 1974.Knuth, D. Surreal Numbers. Reading, Mass.

Addison-Wesley, 1974.Knuth, D. Surreal Numbers. Reading, Mass.

Dell, 1967.Koestler, A. The Act of Creation. New York

Koestler, A. The Act of Creation. New York Dell, 1967.

Laing, R. D. Rules and Metarules. In R. D. Laing (Ed.), The Politics of the Family and Other
Essays. New York: Vintage Books, 1971. Pp. 103-116.

Lakatos, I. Proofs and Refutations: The Logic of Mathematical Discovery. London
Cambridge Univ. Press,'l976.

Lakatos, I. Proofs and Refutations: The Logic of Mathematical Discovery. London
Cambridge Univ. Press, 1976.

Lenat, D. B. AM: An Artificial Intelligence Approach to Discovery in Mathematics as
Heuristic Search, SAIL AIM-286, Al Lab, Stanford University, July, 1976. (Also issued
as Comp. Sci. Rep. No- STAN-CS-76-570.)

Lewis, V. E. User aids for MACSYMA. Proc. of the Ist MACSYMA Users'

Conference,

NASA
Report CP-2012, July 1977.

Mathlab Group MACSYMA Reference Manual, MIT Computer Science Lab, December 1977.

Minsky, M. Frames. In P. Winston (Ed.), The Psychology of Computer Vision. New York:

McGraw-Hill,

1975.

Moses, J. Symbolic integration: The Stormy Decade. CACM, 1971, 14(8), 548-560.

Moses, J. A MACSYMA Primer, Mathlab Memo No. 2, MIT Computer Science Lab, October
1975.

Moses, J., & Yun, D. Y. The EZGCD Algorithm. Proc. of the ACM National

Convention,

August

1973.

Musser, D. R. Multivariate polynomial factoring.

JACM,

1975, 22(2), 291-307.

512 Research on Applicationsof Al%

i
i

L

Mylopoulos, .J. & Roussopoulos, N. Using Semantic Networks for Data Base
Management. Proc. International Conf. on Very Large Data Bases, Framingham,
Mass., Sept. 1975,pp. 144-172.

i

Nilsson, N. (Ed.) Artificial Intelligence—Research and Applications. Stanford Research
Institute, Inc., Menlo Park, Calif., 1975.

Norman, A. C. On Computing with Formal Power Series. Transactions on Mathematical
Software (ACM), 1975, 1(4), 346-356.

Papert, S. Teaching Children to be Mathematicians Versus Teaching About Mathematics.
Intl. Jour. Math Ed. Sci. Tech. 3, July-Sept. 1972, No. 3, pp. 249-262.

Papert, S. Teaching Children to be Mathematicians Versus Teaching About Mathematics.
Intl. Jour. Math Ed. Sci. Tech. 3, July-Sept. 1972, No. 3, pp. 249-262.

Pivar, M., & Finkelstein, M. Automation, using LISP, of Inductive Inference on Sequences. In
E. C. Berkeley & D. G. Bobrow (Eds.), The Programming Language LISP: Its Operation
and Applications. Cambridge: Information International, 1964.

Poincare, H. The Foundations of Science:

Science,

Science and Method. NewYork
Science and Hypothesis, The Value of
The Science Press, 1929.)

Poincare, H. The Foundations of Science:

Science,

Science and Method. New York
Science and Hypothesis, The Value of
The Science Press, 1929.

Polya, G. Mathematics and Plausible Reasoning (2 vols.). New York: John Wiley &

Sons,

1954.

Polya, G. Mathematics and Plausible Reasoning (2 vols.). New York: John Wiley &

Sons,

1954.

Pople, H. E., Jr., Myers, J. D., & Miller, R. A. DIALOG: A model of diagnostic logic for internal
medicine. UCAI 4, 1975,848-855.

Risch, R. The Problem of Integration in Finite Terms. Trans, of the AMS, May 1969, 139.

Ritchie, D. M., & Thompson,K. The UNIX time-sharing system. Communications of the ACM,
1974, 17, 365-375.

Rothstein, M. A New Algorithm for the Integration of Exponential and Logarithmic Functions.
Proc. of the Ist MACSYMA Users' Conference, NASA Report CP-2012, July 1977.

Sacerdotl, E. D. Language Access to Distributed Data With Error Recovery, SRI Artificial
Intelligence Center Technical Note 140, February 1977.

Sagalowicz, D. IDA: An intelligentdata access program, SRI Artificial Intelligence Center
Tech. Note 145, SRI International, Inc., Menlo Park, Calif., June 1977.

Simon, H. Does Scientific Discovery Have a Logic? Philosophy of Science, 1973, 40(4),
471-480.

References 513

*

Simon, H., & Kotovsky, K. Human Acquisition of Concepts for Sequential Patterns.
Psychology Review 70, 1 963, No. 6, 534-546.

Sowa, J. F. Conceptual Graphs for a Data Base Interface. IBM Journal of Research and
Development, 1976, 20(4), 336-357.

Thompson, F. 8., & Thompson, B. H. Practical Natural Language Processing: the REL System
as Prototype. In M. Rubinoff &M. C. Yovits (Eds.), Advances in Computers 13. New
York: Academic Press, 1978. Pp. 109-168.

Trager, B. M. Integration of Algebraic Functions. Doctoral dissertation, MIT Computer
Science Lab, (in progress) 1978.

Walker, D. E., Erman, L. D., Newell, A., Nilsson, N. J., Paxton, W. H., Winograd, T., & Woods,

W. A. An Overview of Speech Understanding Research at SRI. UCAI 5, 1977, 970-
-974.

Waltz, D. L. Natural language access to a large database: An engineering approach. UCAI
4, 1975, 868-872.

Wang, H. Toward Mechanical Mathematics. IBM Jour. Research and Development4, 1960,
1, 2-22.

IBM Jour. Research and Development4, 1960,Wang, H. Toward Mechanical Mathematics
1, 2-22.

Wang, P., 8c Rothschild, L. Factoring Multivariate Polynomials over the Integers. Math, of
Comp., July 1975, 29, 935-960.

Waterman, D. A. Exemplary programming in RITA. In D. Waterman &F. Hayes-Roth (Eds.),

Pattern-directed Inference Systems. New York: Academic Press, 1977. Pp. 261-
-279. (a)

Waterman, D. A. Rule-directed Interactive Transaction Agents: An Approach to

Knowledge Acquisition (R-2171-ARPA). Santa Monica, Ca.: The Rand Corp.,

1977. (b)

Waterman, D. A., & Jenkins, B. Heuristic Modeling Using Rule-based Computer Systems

(P-681 1). Santa Monica, Ca.: The Rand Corp., 1977.

Winston, P. H. Learning Structural Descriptions from Examples, EE TR-76, Project MAC
TR-231, MIT Al Lab, September, 1970. (b)

Woods, W. A. Progress In natural language understanding, An application to lunar
geology. Proc. 1973 NCC,

AFIPS,

1973, 42, 441-450.

Zadeh, L. A. Fuzzy sets. Information and Control, 1 965, 8, 338-353

Zippel, R. Univariate Power Series Expansions in Algebraic Manipulation. Proc. of an ACM
Symposium on Symbolic and Algebraic Computation, August 1976.

% 514 Research on Applications of Al

)

i

i

L

Index

Advisor, consultation system 465
agenda 468, 474
agricultural pest management system 486
algebraic manipulationresearch 462
algebraic problems 462
AND/OR tree 452, 455
Anderson, R. H. 495
askable hypotheses 493
ATNs 501, 503
ATNs, augmented transition networks 501
attribute-value pairs 496
augmented transition networks 501

back-chaining 447
backward chaining 454, 493, 497
backward-chaining 449
backward-chainingreasoning 497
Barton, David 466
best-first search 468

canonical forms 504
case frame 502
case frames 502, 503
clarificationdialogues 501
cognitive abilities 445
combinatorial explosion 444, 472
combinatorics 464
computer assistants 1
concept, AM 468, 472
concepts, creation 473
conceptual primitives 471
conceptual primitives, AM 471, 473
consequent reasoning 493
constraint 465
constraint expressions 465
consultants 445
context-free grammar 503
CPM, limited inference algorithm 464
cyclic reasoning 497
cyclic scan 497

database queries 500
Davis, Randall 449
DBMS, Database Management System 500
deductive mode 497
DENDRAL 444, 446
dialogue 1
discourse model 482
discovery, heuristics 468
discovery, mathemaical concepts 468
domain independence 446
domain-independentconstraint

propagation 465
domain-specific knowledge 1-449

elliptical reference 502
empirical knowledge 1,445,447
EMYCIN 446
Engleman, Carl 462
EURISKO 481
exhaustive search 470
expert systems 1-449
expert systems, history of 444
explanation 1, 446-447, 450, 451-452,

456, 487
explanationprocedures 1
explanationsystem 444

Feigenbaum, E. 444
focus of attention 475
focus of attention, AM 475
formal deduction 469
formal domains 469
forward search 472
frame 451
frame-oriented interactive primer 465
frames 468
frames, AM 472

generalization,concept 475
geologicaldata models 487
geologymineral explorationsystem 487

515Index

t

i

*.

i

■

N

I

i

Gillogly, J. J. 495
goal tree 452, 455
GPS 444
grain size 445
graph of model 482
Grossman, R. 465

HEADMED 1
heritability property 475
heuristic models 495
Heuristic Programming Project, HPP 444
heuristic rule 472
heuristic search 444-445, 468, 470
heuristics 468-482
hierarchy of proceduralknowledge 483
hillclimbing 463
hpotheses , askable 493
human engineering 1
hypotheses, unaskable 493

IDA, database interface component 503
impacts, economic and social 444
incremental knowledge acquisition 499
inductive inference 469
inexact reasoning 1-449
Inference network 491
inference rules 491
Information Retrieval 500
inheritance of properties 475
interactive dialogue 487
interactive program 497
interactive transfer of expertise 445
interactive tutoring systems 1
INTERNIST 447
IRJS 446

LADDER 503
laser vision component 482
Lederberg, J. 444
LIFER, NL interface facility 492, 503
LUNAR 501

MACSYMA 444, 446, 462
MACSYMA apprentice 466
Man-machine interactions 445
Man/machine interaction, MACSYMA 465
Martin, Bill 462
mathematical problems 462
mathematical programs, advanced 1
Mathlab '68 462
medical consultant systems 445
medical diagnosis systems 1
Meta-DENDRAL 447
meta-knowledge 448, 450, 452
meta-level knowledge 448
meta-rule 449, 453
meta-rules, AM 480
mineral explorationsystem 486
minicomputer 495
mixed-initiative knowledge acquisition 487
mixed-initiative system 487, 492
modeling inference networks 491
models, evidence 493
models, internal hypothesis 493
modular inference mechanism 487
modular inference mechanisms 503
modular knowledge 487
modular knowledge representation 447
modular knowlege 503
Moses, Joel 462
multiple choice processing 605
MYCIN 446-449, 452, 453, 496

natural language interface 482
natural language, AM 476
naval tactical threat system 497
Non-algorithmic procedures 463
NOSC, Naval Ocean Systems Center 497

knowledge acquisition 1 , 445, 447-449,
452, 457

knowledge base 445-449
knowledge-based programming 482
knowledge-based systems 1-449

i% 516 Research on Applicationsof Ai

)

numerical problems 462
NWSS, Navy Man-machine interface

Agent 498

opacity of knowledge 446
ordered scan 497

parallel processing 465
partitioned semantic net 491
pattern matching 487, 496
personal computer 495
PIP 447
PLANES, airplane maintenance and history

system 501-503
PLANNER 444
planning capability 482
planning component 482
planning program 483
plans, MACSYMA 467
plausibility,of tasks in AM 475
plausibility, task 475
plausible move generator 472
plausible reasoning, AM 469
power/generality trade-off 476
probabilistic reasoning 487, 492
problem solving 1
problem-solving systems 444
procedural model 483
procedural net 482, 483-484
production rule 449
production rules 447, 496
production system 495
production systems 468
production systems, adaptive 499
propagation 465
propagation, of probabilistic

hypotheses 492
PROSPECTOR 444, 446, 487
PROSPECTOR trace 487-491
PUFF 1

QA4 444

real-world problem 444
reasoning procedures 1
REF-ARF 444
REL, Rapidly Extendable Language 503 '

relational database 464
RENDEZVOUS, reformulation of user

input 504
RENDEZVOUS, reformulation of user iput

505
rephrasing user input 505
representation of knowledge 1-449
representation, algebraic expressions 466
resolution theorem proving 469
RITA data object 496
RITA rules 496
RITA, RAND Intelligent Terminal Agent 495
ROBOT, parser interface 604
rule model 452, 457
rules 447

SACON 1
scaling 448
schedulers 475
schema 451, 452
scoring models 487
SCSIMP, hiilclimbing algorithm 463
search 444
search skeleton 502
semantic grammar 492, 501
semantic network 464
semantic pattern matcher 463
simplification 463
simplification of expressions 462, 463
situation models 487
slot, AM 468
slots, AM 472
spaces, in partitioned semantic nets 491
specialization, concept 475
speech interface 482

i Index 517

i

i

I

SRI Computer-based Consultant, SRI-
I CBC 482
j SRI-CBC sample dialogue 485

| SRI-CBC, air compressor assembly
system 482

strategy 449, 453
symbolic algorithms 463

} symbolic reasoning 444, 446
SYNCHEM 448
SYNTHESIS 444

task environment 482
[taxonomic net 491

TECA model 498
TECA rule 497
TECA, Threat Evaluation and

Countermeasures Agent 497
TEIRESIAS 447, 449-462, 496

| theorem representation 506' TORUS, DBMS front end 505
transfer of expertise 449

| tree of vectors 466
type-testing 466

unaskable hypotheses 493
user agents 495
user model 482

vision 485
vision, electromechanical domains 485
vision, geometric models 485

i vision, semantic descriptions 486

WWMCCS 498

518

f

Applications-oriented AI Research

Part 2: Chemistry

520

Al Applications in Chemistry

■Table of Contents

A. Applications of Artificial Intelligence to Chemistry 521
1. Overview of Applications of Artificial Intelligence to Chemistry . . 521
2. Chemical Analysis 524 }
3. The DENDRAL Programs 527

a. DENDRAL 527
b. CONGEN and its Extensions 531
c. Meta-DENDRAL 536

4. CRYSALIS 545 !
5. Artificial Intelligence and Organic Synthesis . 555

References 565

Index . 578

>

t

A. Applications of Artificial Intelligenceto Chemistry

Al. Overview of Applications of Artificial Intelligenceto Chemistry

Computer programs have been developed to aid In almost every aspect of chemistry.
As evidenced by recent articles in two journals devoted to uses of computers for chemical
problems, Computers and Chemistry and Journal of Chemical Information and Computer
Science, most of the computer programs .have focused on numeric problems of data
acquisition, data reduction, complex electronic energy calculations, and the like. By contrast,
Al methods have found application in two major classes of nonnumeric chemical reasoning
problems: (a) determining the molecular structure of an unknown organic compound, the
"analysis" or "structure determination" problems; and (b) planning a sequence of reactions
in order to synthesize organic chemical compounds, the "synthesis" problems. These
problems are difficult for chemists, but not impossible. Solving them, however, requires more
than a straightforward application of an algorithm to some data, since both the requisite
knowledge about organic chemistry and the criteria for when to apply It are judgmental.
Here, Al techniques are used to reduce combinatorlally intractable hypothesis spaces (e.g.,
pruning an enormous set of candidate chemical structures or reactions to achieve a smaller
set of plausible ones) and to represent knowledge in a way that makes its augmentation and
revision simple.

Representing Chemical Information Inside a Computer

Even before Al found an application in chemistry, computer scientists and chemists
used a common tool: The graph. One insight that made chemical analysis and synthesis
programs possible was that the "ball and stick" model used to represent molecules by some
chemists was similar to the "nodes and arcs" model used by computer scientists in many
applications (although the former Is three-dimensional and the latter is two-dimensional). As

can be seen In any textbook, many of the Important structural features of a chemical
compound can be represented by a planar graph: Using the terminology of graph theory the

molecular structure is represented as a bidirectional, planar graph where tne eoges
represent chemical bonds and the nodes are labeled to represent the different types or
chemical atoms. Thus, any convenient computer notation that captures these features wil

suffice for manipulating chemical structures In a computer-although some internal
representations will be better for some purposes. Along with these 'ePre»enta*'°"s' , "number of graph manipulation methods have been developedfor manual and machine use; but
these are beyond the scope of the present discussion. Among other things, these include

defining canonical forms for chemical graphs and methods for computing *hem e^ic'en ly

defining efficient graph Isomorphism comparison methods, and defining graph enumeration
methods.

The standard graphical representation of ethyl alcohol, or ethanol, is shown »" Figure 1.
The corresponding tabular representation of the same structure shown in Table 1 c.n be

used to represent the same molecule inside a computer. (Double or triple bonds are eas,y
represented by repeating the number of the connected node in the I sting neigh^«-> "«'«
are many internal representations of the Information In this table: lists, >IPh>nu'nerle arrays,

record structures, or property lists. For example, the molecular structure can be

522

Al Applications in Chemistry

;

I

I

I

)

)

\

I

l
/

represented as a list of lists, where each sublist captures the information about one of the
atoms--i.e., the sublist (2 C (1 3 7 8) from row two of Table 1 captures the information
about the second atom. However, this representation gives us only topological information
about the molecule—the connectidns between atoms. It does not give us information about
the lengths of edges (bond lengths), the angles between edges (bond angles), or the
relative orientation of atoms in three-space(stereochemical information).

H H 4 7
I III LI

H-C-C-O-H 5-1 -25-1 - 2 - 3 - 9
II II
H H 6 8

Figure 1. Graphical representation of ethyl alcohol
with arbitrary numbering of nodes.

Storage requirements have been cut dramatically by following the simple convention of
suppressing explicit mention of ail hydrogen atoms, since' they are so common in» organic
compounds. The number of hydrogen atoms attached to any other atom is always computed
as the difference between the maximum number of allowed neighbors or atom valence and
the number of nonhydrogen neighbors. Table 1 is thus simplified to the connection matrix
shown in Table 2.

Table 2
Connection Marix for Ethyl Alcohol

Without Hydrogen Atoms

Node Type Neighbors

1 C
2 C
3 0

2
1,3
2

Overview of Applicationsof Artificial Intelligenceto Chemistry 523A1

)

I

I

I

)

)

\

I

I
/

The Difficulty and size of Chemistry Problems

The combinatorics of chemical graphs is awesome. The number of possible ways of
connecting 20 chemical atoms within valence constraints (say, 16 carbons, 2 oxygens, and 2
nitrogens) Is in the millions or tens of millions. Pharmaceutical chemists, among others, often
Investigate much larger molecules.

Whether the problem is analyzing structures or combining structures with synthetic
reactions, the combinatorial possibilities are greater than chemists can explore manually.
Moreover, the knowledge base of chemistry Is growing rapidly, as noted by Wipke [Ref
Wlpke-Ouchl-Krishnan-78]:

Over 250,000 chemical papers appear annually in the chemical literature
reporting new facts and principles and according to Chemical Abstracts,

the chemical literature is increasing at 8.5% per year compounded. Over
4,000,000 different chemical compounds have been reported in the
literature. As in all fields of science it is virtually impossible for a single
person to keep track of all the developments taking place, even in this
seemingly narrow field of specialization.

New instruments are constantly under development for measuring properties of unknown
compounds, and chemists are constantly seeking new methods of synthesizing compounds in

the effort to produce them more economically (or, In some cases, to produce them at all;.

The complexity of both synthesis and analysis problems varies from those whose

solutions are immediately obvious, to a trained chemist, to those whose solutions require

many years of innovative work by the world's best chemists. As mentioned, the problems are
far from trivial because the requisite knowledge Is both vast and incomplete and because

the strategies for applying this knowledge are less than precise. In spue ot nese
limitations, chemists have been highly successful In their problem solvng, eVen without
computers. One of the Al goals of the work described in this section is to "nd«rst«ndJ2!kinds of knowledge mechanisms by which chemists are able to arrive at plausible hypotheses

without exhaustivelyconsidering complete hypothesis spaces.

We have noted that Al techniques have been useful in determining Restructure of

unknown chemical compounds (analysis), and specifying a set of steps to synthesize organic

compounds (synthesis). The next *N* articles discuss analysis programs.

References

524 Al Applications in Chemistry%

t

i

A

A2. Chemical Analysis

Structure Elucidation

The elucidation of molecular structures Is fundamental to the application of chemical
knowledge to important problems In biology and medicine. Some of the areas in which
chemists maintain active interest include: (a) identification of naturally occurring chemical
compounds isolated from terrestrial or marine organisms; (b) verification of the identity of
new synthetic materials; (c) identification of drugs and their metabolites in clinical studies;
and (d) detection of metabolic disorders of genetic, developmental, toxic, or infectious
origins through the identification of organic constituents excreted in abnormal quantities in
human body fluids.

In most circumstances, especially in the areas of interest mentioned above, the
powerful technique of xray crystallography is inapplicable (see article), and chemists must
resort to structure elucidation based on data obtained from a variety of other methods.
Foremost among them Is mass spectrometry (discussed in detail in the next section). If a
chemist wants to determine the molecular structure of an unknown chemical compound, s/he
first isolates a sample of the compound that Is pure—i.e., contains no other compounds. Two
questions must be answered:

1 . What are the atoms in the molecules that make up
the compound?

2. How are the atoms arranged (joined together) In the
molecule?

The latter is addressed by structure elucidation programs. It is relatively simple to determine
what the constituents of the molecule are (the first question), but the enormous number of
possible combinations of these constituents makes the second-question especially*hard to
answer. If the unknown substance Is a crystal, or can be crystalized, then xray
crystallographycan be used to determine the exact locations and connections of atoms in a
molecule in space. If this technique cannot be used, then the chemist must take a more
complicated approach to structure elucidation. No other tests are available to tell the
chemist the EXACT structure of his molecule; at best he can identify two groups of small,
connected clusters of atoms, called molecular fragments. The first group of molecular
fragments contains those that are guaranteed to occur in the unknown molecule. Thus,
although the chemist does not know the structure of his molecule, he does know some of the
subparts. The second group of molecular fragments is comprised of fragments that cannot
occur in the unknown molecule. The fragments in both of these groups are called constraints,
and they are derived from a variety of tests, including mass spectrometry. Said differently, a
constraint is a piece of a graph that must or must not occur In the final graph of the
molecule, which is how constraints are represented in the structure elucidation programs that
we will discuss.

A group of atoms can be combined into literally millions of different molecular
structures. An algorithm was developed by Lederberg (1964) to generate all possible
acyclic molecules from a set of atoms; and Brown et al. developedan algorithm without this
limitation. Thus it is possible to generate every possible molecularstructure, but enormously
expensive. However, given a set of constraints—molecular fragments guaranteed to occur in

525Chemical AnalysisA2

or be absent from the unknown molecule-the exhaustive generation algorithm can be
constrained to produce a relatively small set of molecular structures, one of which is very
likely to be the unknown molecule. (There Is no guarantee that the set will contain the

unknown molecule, because of the heuristic nature of the reasoning that derives constraints
from mass spectrometry tests.)

In the past, If the number of atoms in an unknown molecule was relatively small and the
number of known constraints was relatively large, a chemist could figure out the molecular
structure by hand. However, the manual approach has been successfully augmented by

computer programs developed In the DENDRAL project at Stanford University. These

programs either infer or are told of a set of constraints and the atomic constituents of tne

molecule. They use this Information to constrain the set of molecular structures that is

generatedby Lederberg's (or more recently Brown's) algorithm. They do not generate all tne
possible moelcular structures and then discard some according to the constraints; rather,

they use the constraints to Insure that only some structures get generated.

Structure Elucidation with Constraints from Mass Spectrometry

Structure elucidation programs are designed to help organic chemists determine the

molecular structure of unknown compounds. Experimental data from the unknown may oe
gatheredfrom many different analytic techniques including mass spectrometry VMS), nuclear
magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR). u"rav '°,et

spectroscopy (UV), and "wet chemistry" analysis. Mass spectrometry Is still new ana a
developing technique. It Is particularly useful when the quantity of the sample to oe
identified is very small, for mass spectrometry requires only micrograms of sample.

A mass spectrometer bombards the chemical sample with electrons causing

fragmentations and rearrangements of the molecules. Charged fragments are co"ecte<i tiy

mass. The data from the instrument, recorded in a histogram" known as a mass sPectrum-
show the masses of charged fragments plotted against the relative abundance of tne

fragments at a given mass. Although the mass spectrum for "<*
y
da

b
t
e
a "*?n *unique, it is still a difficult task to infer the molecular structure from he ""°°"a pomt*

in the mass spectrum, because not only does a spectrum contain noisei peaks and

overlapping peaks originating from many parts of the molecule, but the theory of mass

spectrometry Is not complete.

Throughout this section the following terms will be used to describe the actions of
molecules in the mass spectrometer:

Fragmentation-the breaking of a connected graph (molecule) Into fragments by

breaking one or more edges (bonds) within the graph.

Atom migratfon-the detachment of nodes (atoms) from one fra 9ment a"d **9*
reattachment to other fragments. This process alters the masses of all of

the fragments.

Mass spectral process-a fragmentation followed by zero or more atom

migrations.

526 Al Applications in Chemistry%

t

i

i

Other analytic techniques are commonly used in conjunction with, or instead

of,

mass
spectrometry. Some rudimentary capabilities exist in structure elucidation programs to
interpret proton NMR and Carbon 13 (13C) NMR spectra. For the most part, however,
interpretation of other spectroscopic and chemical data has been left to the chemist. The
programs still need the capability to integrate the chemist's partial knowledge into the
generation of structural alternatives.

We will now consider two programs that utilize mass spectrometry constraints in the
elucidation of organic compound structures: DENDRAL and Meta-DENDRAL.

527A3 The DENDRAL Programs

L

A3. The DENDRAL Programs

A3a. DENDRAL

Historical Perspective

In 1 964 Joshua Lederberg developed the DENDRAL algorithm which would produce all
possible acyclic (unringed) molecular structures, given a set of atoms. This enabled an
exhaustive approach to structure elucidation. In 1965 the DENDRAL project started at
Stanford. One intent of the project was to show that algorithmic programs which produced
results exhaustively and at enormous expense could be augmented by some of the heuristic
knowledge used by experts to produce much the same results with a fraction of the effort.
The Heuristic DENDRAL Program achieved this end by augmenting the DENDRAL algorithm with
a set of rules, those used by expert chemists to infer constraints on molecular structures
from mass spectrographic information about the molecule. Unfortunately, pressing expert
chemists to formulate rules about mass spectrometry was an arduous process. The theory of
mass spectrometry was Incomplete, and the rules about it were inexact and heuristic. In
1970, the Meta-DENDRAL project addressed the problem of inferring the rules of mass
spectrometry from two sources of information: molecular structures, and their associated
mass spectra. This is a.continuing project.

In 1976, the CONGEN program became the center of attention in the DENDRAL project.
This program replaced the original Heuristic DENDRAL structure generator (which could
generateonly unringed molecular structures) with a generator without this limitation. CONGEN
is discussed in a separate article (03b) because it has been used as a stand-alone system
by research chemists.

DENDRAL

The Heuristic DENDRAL program was designed to find a relatively small set of possible
molecular structures, given the atoms In the molecule and the mass spectrum of the molecule.
The limitations of the DENDRAL algorithm were such that Heuristic DENDRAL could generate
only acyclic (unringed) structures: Ketones, alcohols, ethers, thiols, thioethers, and amines.
Pig. 1 shows an abbreviated taxonomyof these compounds.

COMPOUND
OXYGE& NITROGEN SULFUR rCONTAINING CONTAINING CONTAINING

NO DOUBLE ONE OR MORE
BONDS DOUBLE BONDS

SATURATED SATURATED : : KETONE (Associated with Rule 1)
ALCOHOL ETHER / \

: : METHYL ETHYL
: KETONE KETONE
Figure 1. Fragment of a taxonomy of mono-functional

acyclic organic compounds.

Heuristic DENDRAL has three functional parts:

528

Al Applications in Chemistry

i

1. PLAN: Planning in this context means redefining the problem in terms which will
reduce the effort of the problem solver, e.g. redefine the problem of finding all

" possible combinations of a set of atoms to the problem of finding all such
combinations which are consistent with constraints derived from mass-
spectrometry. Automatic inference of these constraints is the planning part of
Heuristic DENDRAL. The list of constraints has two parts: a list of molecular
fragments (clusters of atoms) which must be in the final molecular structure, and a
list of fragments which are forbidden to appear in the final structure.

2. GENERATE: Use these constraints to prevent the DENDRAL algorithm from generating
structures which include forbidden subparts and which exclude mandatory
subparts. The generator was originally derived from Lederberg's algorithm. When
CONGEN was Implemented as a stand-alone system, these constraints were
provided by the chemists using the program, not by the planning part.

3. TEST:Rank the resulting list of candidate structures by simulating its behavior in a
mass spectrometer. The structures which result in simulated spectra close to the
empirical one are ranked high.

Planning: Inferring Constraints From The Mass Spectrum

Heuristic DENDRAL has available to It the mass spectrum and the atomic constituents of
a molecule. From the latter it can infer the molecular weight, M, of the molecule. Many of the
rules for interpreting mass spectra include M, for example,rule 1 (In Fig. 1):

If the spectrum for the molecule has 2 peaks at masses
x1and x2such that

b. x 1♦' 28 is a high peak
c. x2- 28 is a high peak
d. at least one of x1or x2is high

Then the molecule contains a ketone group.

In the context of Figure 1, we see that this piece of knowledge about mass spectrometry
allows Heuristic DENDRAL to constrain Its structure generating algorithm to produce molecules
with a ketone group as a mandatory constituent. Rules 1, along with a number of other rules,
significantly constrains the number of molecules generated by the structure generator. For
example, given the spectrum for a molecule containing 8 carbons, 16 hydrogens and 1
oxygen, the constraint generating program eliminated from consideration (i.e., placed on a list
of forbidden structures called BADLIST) all possible structures except those containing ethyl
ketone 3, and so reduced the number of generated molecular structures from the
topologically possible 790 to a constrained set of 3 (called the GOODLIST).

The Generator

The algorithm for generating molecular structures is complicated and has no Al content;
we will discuss it only in general terms and refer the reader to Buchanan,

Sutherland,

Feigenbaum (1969) for a detailed discussion. The following article (A3b) and (Refs?) discuss
the more recent CONGEN generator.

a. x1+ x2= M + 28

529A3a DENDRAL

L

There are several design characteristics of the generator which are related to the
enormous number of molecules that are combinatoriallypossible in an analysis problem. First,
the generator must be proved to be complete—it must be able to generate all topologically
possible molecular structures. It should also be non-redundant, that is, it should generate
each structure only once. This was a problem for structures with rings, because Lederberg's
algorithm treated synmetrical molecules as unique structures. A third characteristic is that
the generator should be flexible enough to be focussed by constraints from the planning
part. It should not blindly generate all possible structures, but only those which fulfill the
constraints.

The structure generator is supplied with the composition of the molecule (its atoms and
their numerosity), a spectrum, a list of constraints (GOODLIST and BADLIST) including likely
substructures and impossible substructures. Its task is to generate all structures compatible
with these data. Note that if GOODLIST and BADLIST are empty it will generate all isomers
(structural variants) of the given composition.

Some simple checks are made by the generator. The composition should be compatible

with the constraints Inferred from the spectrum, and the structures generated should have
only the types and amounts of atoms specified in the composition. Finally, the generator
should not produce a structure which is known by DENDRAL tobe unstable.

The structure generator essentially "grows" molecules, starting with a small fragment
of the molecule and adding pieces of the composition to it. At any point in the growing

process, there are numerous atoms or molecular fragments that can be added onto the

growing structure, and there are many places where these parts can be attached. But

generally the constraints offerred by GOODLIST and BADLIST limit the number of possible

structures that might be grown at any point in the growing process.

The Testing and Ranking Programs

The programs MSPRUNE and MSRANK (Varkony, Carhart. and

Smith,

1977) use a large

amount of knowledge about mass spectrometry to make testable predictions from each

Plausible candidate molecule. Predicted data are compared to the data from the unknown

compound, and some candidates are thrown out, while others are ranked.

MSPRUNE works with: (a) a list of candidate structures from the structure
and (b) the mass spectrum of the unknown molecule. It uses a fairly simple model of mass
spectrometry to predict commonly expected fragmentations for each candidate structure.

Predictions that deviate greatly from the observed spectrum are consid«re
f
d_^r

'^■/?"'
evidence of incorrectness, and the corresponding structures are pruned fromi tne list.

MSRANK then uses more subtle rules of mass spectrometry to rank the r"a^*"?x"aa
according to the number of predicted peaks found (and not found) In the observed data,
weighted by measures of Importance of the processes producing those peaks.

Research Results

The Heuristic DENDRAL project, from 1968 to the present, and including CON^N, jas
Produced a number of results of significance to chemists. The effort has shown that ,t is

530 Al Applications in Chemistry%

)

L

possible to write a computer program that equals the performance of experts in some very
specialized areas of science. Published, papers on the program's analysis of aliphatic
ketones, amines, ethers, alcohols, thiols, and thioethers (Duffield et al., 1969; Schroll et al.,
1969; Buchanan (1970)) make the point that although the program does not know more than
an expert (and in fact knows far less), it performs well because of its systematic search
through the space of possibilities and its systematic use of what it does know. A paper on
the program's analysis of estrogenic steroids notes that the program can solve structure
elucidation problems for complex organic molecules (Smith et al., 1972). Another paper, on
the analysis of mass spectra of mixtures of estrogenic steroids (without prior separation),
establishes the program's ability to do better than experts on some problems (Smith et al.,
1973). With mixtures, the program succeeds where people fail; the task of correlating data
points with each possible fragmentation of each possible component of the mixture is too
difficult for people to do. Several articles based on results from CONGEN demonstrate its
power and utility for solving problems of medical and biochemical importance (Smith, 1975;
Smith, 1976; Buchanan, 1976; Mitchell, 1978, and (Varkony, Carhart, & Smith, 1977)).

DENDRAL programs have been used to aid in structure determination problems of the
following kinds:

terpenoid natural products from plant and marine animal sources,
marine sterols,
organic acids in human urine and other body fluids,
photochemical rearrangementproducts,
Impurities in manufactured chemicals,
conjugates of pesticides with sugars and ammo acids,
antibiotics,
metabolites of microorganisms, and
insect hormones and pheremones.

CONGEN (discussed next) has also been applied to published structure elucidation problem^
by students in organic chemistry classes to check the accuracy and completeness of
published solutions. In several cases, the program found structures that were plausible
alternatives to the published structures (based on problem constraints that appeared in the
article). This kind of information served as a valuable check on conclusions drawn from
experimental data.

References

See Buchanan, Sutherland, & Feigenbaum (1989), Buchanan, Duffield, & Robertson
(1971), Buchanan et al. (1976), Buchanan (1970), Buchanan (1970), Cheer et al. (1976),
Churchman & Buchanan (1969), Duffield et al. (1969), Feigenbaum & Buchanan (1968),
Lederberg (1964a), Lederberg (1964b), Lederberg (1965a), Lederberg (1965b), Lederberg
(1965c), Lederberg (1969), Lederberg & Feigenbaum (1968), Mitchell (1978), Morrill,

Smith,

& Djerassi (1977), Schroll et al. (1969), Smith et al. (1972), Smith et al. (1973), Smith
(1976), Smith & Carhart (1976), Smith, Konopelski, & Djerassi (1976), and Varkony,

Carhart,

& Smith (1977).

A3b CONGEN and its Extensions 531

N

)

k

A3b. CONGEN and its Extensions

CONGEN: Interpretationof Constraints

CONGEN (for CONstralned GENerator) is a program that was designed in 1976 to
replace the old DENDRAL generator of acyclic structures. It has proved to be a powerful
stand-alone program to assist the chemist in determining the molecular structure of unknown
compounds. Its objective was twofold: (a) to allow the user to interactivelyspecify certain
types of structural information determined from any of several sources (e.g. spectroscopy,
chemical degradation, method of Isolation, etc.); and (b) to generate an exhaustive and
nonredundant list of structures consistent with this Information. Unlike the original Heuristic
DENDRAL program, it does not infer constraints from mass spectra, but allows the chemist to
specify them. Another difference between CONGEN and Heuristic DENDRAL is that the former
can generatecyclic as well as acyclic molecules. The generation Is a stepwise process, and the
program allows interaction at every stage. Based upon partial results, the chemist may be
reminded of additional information that he can specify, thus limiting further the number of
structural possibilities.

CONGEN breaks the problem statement given by the chemist down in several different
ways, for example: (a) hydrogen atoms are omitted until the final steps of processing;

(b) parts of the graph containing no cycles are generated separately from cyclic parts (and

combined at the end); (c) cycles containing only unlabelled nodes are generated before the

nodes are labeled with the names of chemical atoms (e.g., carbon or nitrogen); and (d) cycles
containing only three-connected nodes (e.g., nitrogen or tertiary carbon) are generated
before two-connected nodes (e.g., oxygen or secondary carbon) are mapped onto the edges.
At each step, several constraints may be applied to limit the number of emerging chemical
graphs (Carhart et al., 1975).

there are two algorithms at the heart of CONGEN whose validity Producing

nonredundant structures has been mathematically proven (Brown and Maslnter, ia^;

Masinter, et al., 1974) and whose computer implementation has been well tested Combined
they are designed to determine all topological^ unique ways of assembling a given set ot

atoms, each with an associated valence, Into molecular structures. The atoms may oe
chemical- atoms with standard chemical valences, or they may be names representing

molecular fragments (superatoms) of any desired complexity, where the valence corresponds to

the total number of bonding sites available within the superatom. The algorithms can be

thought of as performing problem reduction, and reconstruction or subproblem recom position on
molecular structures. The i\rst,partitioning, algorithm breaks down the prob em of finding a
complete molecular structure Into subproblems, for example, to find the structures or tne

ringed and non-ringed components of the molecule. The second,embedding, algor thm comb,lnes

the substructures, found by partitioning. Into complete molecular structures

;

Clearly, neither
Partitioning nor reconstruction can be unconstrained processes because of the c°mf '""Jo^;
involved: There are simply too many possible subproblems to solve, and each of hem may
have many solutions. Consequently, combining subproblem solu ons exhaustively is not

feasible. In both algorithms, constraints are brought to bear to limit the size of the problem.

Three types of constraints are:

1 . Graph theoretic: Do not treat symmetric structures as unique.

532 Al Applications in Chemistry%

i

2. Syntactic: Structures are constrained by the valences of the constituent
atoms, e.g.

C

C--0-- C

is impossible because oxygen is bivalent, i.e. only has two bonding sites

3. Semantic: The chemist can provide additional information about the molecule
which will help to determine its structure.

Substantial effort has been devoted to modifying these two basic procedures,
particularly the structure generation algorithm—getting it to accept a variety of other
structural information (constraints) and using it to prune the list of structural possibilities.
Current capabilities include specification of good and bad substructural features, good and
bad ring sizes, proton distributions and connectivities of isoprene units (Carhart & Smith,
1976). Usually the chemist has additional information (if only some general rules about
chemical stability) of which the program has little knowledge, which he can use to limit the
number of structural possibilities. For example, he may know that the chemical procedures
used to Isolate the compound would change organic acids to esters; thus the program would
not need to consider structures with unchanged acid groups. In

CONGEN,

he is given the
facilities to impart this knowledge interactively to the program.

To make CONGEN easy for research chemists to use, the program has been provided
with an interactive "front end." This interface contains EDITSTRUC, an interactive structure
editor; DRAW, a teletype-orientedstructure display program; and the CONGEN "executive"
program, which ties together the Individual subprograms and aids the user with various tasks
such, as defining superatoms and substructures, creating and editing lists of constraints or
superatoms, and saving and restoring superatoms, constraints, and structures from
secondary storage (disc). The resulting system, is running on the SUMEX computing facility
at Stanford and is available nationwide over the TYMNET network. It has recently been
completely re-written In the BCPL language to run on a variety of other machines.

Limitations and Extensions

Although computer programs, including CONGEN, now exist to assist chemists in
constructing structural isomers based on information about partial structures, the programs
have one serious, common limitation. Each program must use non-overlapping structural
fragments as building blocks. This limitation leads to at least two important problems. First,
the chemist using such a program must select non-overlapping partial structures; otherwisean incomplete set of structures will result. This procedure, done manually, is time-consuming,
and prone to error. Second, as a consequence of the first step, problems are solved less
efficiently by the programs because a detailed environment of fewer atoms has been
specified—to ensure the absence of overlaps.

The GOODLIST INTERPRETER is a first attempt to remove this limitation by simulating the
manual procedure that the chemist uses to arrive at a set of nonoverlappingconstraints. It is

533A3b CONGEN and its Extensions

L

designed to make more efficient use of information about required (GOODLIST plus
superatoms) structural features of an unknown. Some early successes have demonstrated
that new problems are brought within the realm of solution by use of the GOODLIST
INTERPRETER that are impossible in CONGEN alone, due to the constraints on computational
resources.

Stereochemistry

One of the most important new additions to CONGEN deals with the problem of
enumerating all the stereoisomers of a given compound.

The mathematical problem of enumerating stereoisomers was solved by Jim Nourse.
Considerations of symmetry as embodied in the mathematical theory of groups played a
decisive role In the solution. Coupled with the stereoisomer generator, and given an empirical

formula and a number of constraints, CONGEN can generate all the stereoisomers that are
possible solutions to the unknown target molecule to be elucidated.

While the solution to the enumeration of stereoisomers uses very little, if^any, Al
techniques, it solves a problem that human beings find very difficult to solve. Chemists

usually learn to solve this problem by using visual intuition. The mathematics involved are
deep enough so that the average chemist will not have the patience necessary to learn

enough about the algorithm to use its insights in enumerating stereoisomers. One of central

problems for Al work in chemistry now Is how to use this new facility in structure elucidation.

EXAMINE

Often in the course of a structure elucidation problem, a large number of candidate
structures, perhaps a hundred or more, are generated; and «^itlonalconsta,J must be

derived, either from further data analysis or from new experiments. The EXAMINE function

written by Neil Gray is used from within CONGEN to survey, classify, display, "*B°*°structures. This Is very useful to the chemist who Is searching for f"ture» °""°" *° *
large number of the structures or for features that are unique to certain structures, in*

insights gained from using EXAMINE can be used in planning new «PJ""^ w '" '"**"'data analysis. In pursuit of these objectives, the chemist can define functional OWa «£other structural features, or he can work with a predefined library of them. The'EXAMINE
function is then called, and It examines the list of candidate structures for the presence or

absence of these features.

For example, the chemist can ask EXAMINE to look for all "^'V^Vhv**!"!!.abi,e proton. A labile proton ls a hydrogen atom attached to^n> rogen £^~;
atom attached to an oxygen atom. The chemist can express *"'■ ro = -tmctura OR
exclusive OR: exactly one hydrogen attached to an oxygen atom in he structure OR
(exclusive) exactly one hydrogen attached to a nitrogen atom In the structure.

The user can then request EXAMINE to draw those structures th t have this

characteristic and those that do not, In order to produce, summary statists' "J*J£j"tZ
of occurrence or to discard those structures with or without it. While CONGEN is always able

534 Al Applications in Chemistry*

I

1

to discard or prune away structures that do not satisfy certain constraints, EXAMINE
provides the Interactive ability to develop boolean combinations of constraints for pruning,
substructure search, or subsequent classification.

REACT

Before spectroscopy became a major tool of the structural chemist, all structure
elucidation had to be done by means of reaction chemistry, and it is still a major tool in
solving structures. REACT is an interactive program written by Ray Carhart, Tomas Varkony,
and Dennis Smith. Although It Is a close relative to the synthetic programs described below(see article D5), its purpose is to aid chemists in the structure elucidation task rather thanto aid them in finding new synthetic routes.

To show how REACT can be used to reduce the number of candidate structures found
by CONGEN, consider the following example. A dehydration reaction can be expressed as a
production rule of the form: "If you see the pattern C-C-O, convert it to the pattern C=C."
We now suppose that a dehydration reaction was applied to the unknown in question and
yielded three distinct structures, which happened because the pattern C-C-0 occurred in
the molecule in three different places. This information can be used to eliminate structuresfrom those under consideration: The structure list, generated by CONGEN is passed to REACT;
the dehydration reaction is defined by the user and then applied to all the candidate
structures; those that do not yield exactly three products can be eliminated from
consideration as candidate structures.

Although REACT does not contain stereochemical information, conformational information,
or electronic Information (the electro-negativitiesof its atoms and groups), it still can be
used reliably in its structure elucidation function. Reactions used for structure determination
tend to have high yield, to be reliable, and to involve simple separations. The reactions
operate under a wlde'variety of conditions and usually Involve rather simple changes to theunknown molecule. This being so, the perception routines do not need the sophisticated
stereochemical, conformational, and electronic information of the organic synthesis programs
discussed above.

Summary

Research in the DENDRAL project has followed two themes: To build a performance
program for analysis of molecular structures, and to explorewith Al methods some problems
of scientific inference. The performance of Heuristic DENDRAL has been evaluated in thesame way as that of a research chemist: by publications. (See the conclusion of the article03a on DENDRAL for references.) In addition, CONGEN is used daily by chemists to aid in
solving structure elucidation problems.

Because of the combinatoric size of analysis problems, exhaustive problem-solving
methods were not an option, and much thought was given to the knowledge which enabledchemists to solve these problems. DENDRAL was one of the first programs to demonstratethe power of encoding domain-specific, heuristic expertise, and was therefore one of thefirst projects to recognize knowledge acquisition as a major problem in Al (Buchanan, 197x;
Davis, 1976a). The next article (D3c) discusses automatic inference of rules as onesolution to the knowledge acquisitionproblem.

A3b 535CONGEN and its Extensions

L

References

See Brown, Masinter, & Hjelmeland (1974), Brown & Masinter (1974), Carhart et al.
(1975), Carhart & Smith (1976), Masinter et al. (1974), Sheikh et al. (1970), and Smith &
Carhart (1978).

536 Al Applications in Chemistry%

\

A3c. Meta-DENDRAL

Overview

The domain specific rules that constitute DENDRAL's knowledge about mass
spectrometry were derived from consultation wjth experts in that field. Since the
consultation process is time consuming, two alternatives to "handcrafting" knowledge bases
have been explored. One Is Interactive Transfer of Expertise (Davis ref. AIH ref). The other
is automatic theory formation. Meta-DENDRAL is a program of the latter type. The rule
formation task that Meta-DENDRAL performs is similar to the task of grammatical inference,
sequence extrapolation, and concept formation (Hunt (1975), Hedrick (1974), Winston
(1970a)). Programs that perform these tasks can all be thought of as "induction" programs
because they formulate general rules (or concepts, or patterns) from examples.

Meta-DENDRAL is designed to infer theories for the Heuristic DENDRAL program, which
represents knowledge about mass-spectrometry as production rules. Automatic rule formation
was chosen as a paradigm for Meta-DENDRAL for two general reasons. First, this design
poses interesting epistemilogical questions, and second, it is an arduous task to derive rules
from human consultants, especially when the task-domain has only a small number of experts
(as is the case in mass-spectrometry.

Representationof Knowledge about Mass-spectrometry

In DENDRAL, knowledge Is represented in production rules, each of which specifies
bond fragmentation in a particular context in a molecule. For example, one simple rule is:

(R1) N-C-C-C —-> N-C"C-C

Rules are interpreted for each molecule in the following way:

(1) Find all places in the molecule that match the subgraph expressed by the left-
hand side of the rule.

(2) For each match, break the molecule at the bond marked with an asterisk in the
right-hand side of the rule and save the fragment associated with the atoms to the
left of the asterisk.

(3) Record the mass of all saved fragments.

No migration of atoms between fragments is predicted by (R1).

The language of processes (right-hand sides of rules) is relatively simple: One or more
bonds from the left-hand side may break and zero, or one or more, atoms may migrate
between fragments. The interpretationof rule R1 In the above example is straightforward:
If a molecule contains a nitrogen atom and three carbon atoms bonded as N-C-C-C, then it
will fragment in the mass spectrometer between the middle two carbon atoms, and the N-C
fragment will be recorded In the spectrometer as a peak at the point in the spectrum
corresponding to the molecular weight of this fragment.

537A3c Meta-DENDRAL

L

Formation of Mass Spectral Rules

The task of Meta-DENDRAL is to infer rules like R1 above from empirical data. Meta-
DENDRAL is provided with descriptions of the structures of a related set of molecules, and
with the set of peaks produced by the fragmentation of each molecule in the mass
spectrometer, and from these data it infers a small and fairly general set of mass-spectral
rules to account for the fragmentations of the molecules and the corresponding spectral
peaks.

Training Instances. In order to learn rules, the Meta-DENDRAL piogram is presented
with many examples of actual I/O pairs from the mass spectrometer. Each I/O pair
represents a molecular graph structure, together with a data point from the mass spectrum
for that structure. The rules to be learned constitute a representation of the relevant
fragmentations in the mass spectrometer. Typically, the program starts with a training set of
six to ten related molecules and their associated spectra, each containing 50-150 data
points—peaks marking the masses of recorded fragments (together wth the relative
abundance of fragments at those masses). (These are drawn from an infinitely large space
of possible instances, of which only a few for each structural class of molecules are
available from spectra libraries. Figure 1 shows part of a set of training data for a class of
simple molecules containing the nitrogen atom and no rings. This structural class is known as
aliphatic amines).

In a large molecule, rule (R1) may apply more than once. For example, the spectrum of CH3-
CH2-CH2-NH-CH2-CH2-CH2-CH3 will contain data points at masses 72 and 86 corresponding
to the two fragments derived from the application of this rule:

CH3-CH2-CH2-NH-CH2
and

CH2-NH-CH2-CH2-CH2-CH3" .
For a number or reasons, data points are not uniquely associated with a single

fragmentation and atom migration process (rule). For example, a single process may occur
more than once in a molecule (as above), and more than one process may produce identical

fragments, producing peaks at the same mass points In the spectra.

Spectral Data Points and Mass-spectral Processes:
Statistical and Semantically Constrained Associations

Purely statistical learning programs (Jurs, 1974) find associations indicated by the
data without judging the meaningfulness of these associations. This feature can be

advantageous; at times an investigator's bias Inhibits his seeing assoc at'ons Jor an
investigator may be looking for ail possible associations. But it is a dlsadva"ta9e. "*«"J .he
number of associations is so large that the meaningful ones, unmarked, get lost in the crowd.

In contrast to statistical approaches, Meta-DENDRAL utilizes " ««»* "del of the
domain. This model has been included for two Important reasons. First, it povWes guidance

for the rule formation program in a space of rules that is much too large tosearch

exhaustively and in a domain of input data that is often ambiguous.

Second,

it provides a

538 Al Applications in Chemistry%

i

1

check for the meaningfulness of associations produced by the program, in a domain where
the trivial or meaninglessassociations far outnumber the important ones.

Semantic model of the domain. The base-level, or zero-order, theory of mass
spectrometry states that every subset of bonds within a molecule may break and that the
resulting fragments, plus or minus migrating atoms, will all be recorded. This zero-ordermodel
of mass spectrometry is not specific enough to effectively constrain the rule search.
Therefore, some general guidelines have been imposed on it, the so-called half-order theory.

The half-order theory asserts that bonds will break and atoms will migrate to produce
data points. This theory orders the break-and-migrate process according to the following
constraints:

Constraints on fragmentations:
Double bonds and triple bonds do not break.
No aromatic bonds break.
Only fragments larger than 2 carbon atoms show up In the data.
Two bonds to the same carbon atom cannot break together.
No more than 3 bonds break in any one fragmentation.
No more than 2 complete fragmentations occur in one process.
At most 2 rings fragment in a multiple-step process.

Constraints on atom migration:
At most 2 hydrogen atoms can migrate after a fragmentation.
At most 1 H2O unit is lost after any fragmentation.
At most 1 CO unit is lost after any fragmentation.

One of the most helpful features of this model is its flexibility; Any of the parameters can be
easily changed by a chemist with other preconceptions; any of these assumptions can be
removed and, as discussed in the following section, additional statements be substituted or
added. This power to guide rule formation results in the program's discovering only rules
within a well-known framework; on the other hand, it also results automatically in rules
meaningful to the domain.

A chemist will often know more about the mass spectrometry of a class of molecules
than is embodied In the half-order theory. It is important then to be able to augment the
program's model by specifying class-specific knowledge to the program. This capability
provides a way of forming new rules in the context of additional Intuitions or biases about
mass spectrometry. A chemist can thus see the "most Interesting" rules (as defined by the
augmentations) before the other rules. For example, one might be interested first in rules
that mention at least one nitrogen atom before the numerous (and generally less interesting)
rules that mention only carbon and hydrogen substructures.

Learning strategy. The Meta-DENDRAL program is based on a generatorof production
rules that uses predetermined syntax operating under the constraints of a semantic world
model. The operationof Meta-DENDRAL can be summarized as follows:

1 . Input.

the structure of each of a set of related molecules (recall that Meta-DENDRAL

539A3c Meta-DENDRAL

L

is not a structure elucidation program but infers rules of mass spectrometry,
which associate molecular structures and their mass spectra),

b. the spectral data points (peaks) for each of the molecules, and

c. the half-order theory (or some semantic theory to constrain the generation of
rules).

2. Step 1. (INTSUM)

For each molecule, explain each peak in its spectrum by finding one or more
fragmentation processes that would account for the peak. The number of
plausible fragmentation processes is limited by:

a. considering only the fragmentations which are allowed by the half-order theory
(e.g., no spectral peak can be explainedby a fragmentation process that involves
breaking a double bond), and

b. considering only fragmentations which produce fragments with a molecular
weight corresponding to the weight represented by the peak. (Recall that each
peak in a mass spectrum represents a number of molecular fragments of a given

mass.) For example, if the total weight of the molecule under inspection is M, and

the spectrum has a large peak associated with a molecular weight of M-47 mass
units, then the only fragmentation processes considered as explanations for this
point would be those that produce a fragment with' a molecular weight of M-47.

The tens, or hundreds, of other processes which are consistent with the half-

order theory, like cleaving off a hydrogen atom, are not even considered.

After each data point in the spectrum for each molecule has been explained by a
plausible fragmentation process, the list of processes' is summarized, since tne

same fragmentation processes will often be found to account for many spectral

data points. The final product of INTSUM Is a list of fragmentation processes witn

the total evidence for each such process.

3. Step 2. (RULEGEN)

The rules provided by INTSUM each account for a single fragmentation Process in

the context of a single molecule. As such, they are not general. The problem.with

general rules, on the other hand, is that a single one may subsume several of

INTSUM's very specific fragmentations, BUT ALSO fragmentations not rep' 6*B"6*
in the set produced by INTSUM. That is. a general rule may correctly explain many

data points in mass spectra, (positive evidence), but may also Pred ct Points
which do not occur in any of the spectra (negative evidence). The purpose of

RULEGEN is to find a set of rules which are more general than those of INTSUM
using positive evidence as a criterion of success. Negative evidence which is

introduce by these rules is handled by a later step, called RULfcNiuu.

RULEGEN works by "growing" a tree of fragmentation rules, starting, withi an

overgeneral one and adding features to it so that it becomes more^onstrained^
The rule that RULEGEN starts with is X - X, that Is, the bond between any atoms

1

540

Al Applications in Chemistry

i

will break, and the mass of fragment X will be recorded in the mass spectrometer
as a peak. Obviously, every fragmentationrule is a specializationof this one, and
it is too general to be interesting. But by specifying values for four features—the
identity of X, the number of non-hydrogen neighbours X has, the number of
hydrogen neighbors X has, and the number of doubly-bonded neighbors X has—the
general rule X * X can be "grown" Into something more interesting. This process
will be described below.

4. Step 3. (RULEMOD)

RULEGEN can generate rules which predict non-existent data points in the mass-
spectral data. This negative evidence is the cost of the coarse method used by
RULEGEN to find general rules. RULEMOD "tidies up" the rules produced by
RULEGEN by merging rules, eliminating redundancies, and making rules more
specific or general. In addition, if a rule has been used succesfully for a time, but
an instance is found in which it is inappropriate, RULEMOD can modify the rule
accordingly.

5. Output.

A set of mass spectral fragmentation rules which are specialized enough to be
interesting, but general enough to be efficient and nonredundant.

We will now consider INTSUM, RULEGEN, and RULEMOD in more detail.

The Meta-DENDRAL program

The program itself is organized as a series of plan-generate-test steps, as

found in many Al systems (Feigenbaum, MI6). After pre-scanning a set of several hundred
molecular structure/spectral-data-point pairs, the program searches the space of
fragmentation rules for plausible explanations and then modifies its rules on the basis of
detailed testing. When rules generated from a training set are added to the model and
another block of data is examined, the rule set is extended and modified further to explain
the new data. The program iteratively modifies rules formed from the initial training set
(adding to them); but it is currently unable to "undo" rules.

Planning: Data Interpretation and Summary. The planning step in the procedure is
carried out by INTSUM. In this step, each spectral data point is reinterpreted as a list of
fragmentation and atom migration processes (potential right-hand sides of rules) that are
feasible explanations of the data point within the specified model (the half-order theory).
This step must be done since the final rules should propose the underlying mass spectral
processes that produce data points, not Just the data points themselves. For each molecule
in a given set, INTSUM produces the plausible mass spectral processes that might occur, that
Is, the breaks and combinations of breaks, with and without migratidn of atoms. INTSUM thenexamines the data points associated with each molecule, looking for evidence (spectral
peaks) for each process. Finally, the planning step produces a summary showing the total
evidence associated with each possible process. This summary is used during rule generation
to avoid considering uninstantiated candidate rules.

A3c Meta-DENDRAL 541

Generating Rules. After the data have been interpreted in

INTSUM,

control passes to
a heuristic search program known as RULEGEN, for rule generation. RULEGEN creates general
rules by selecting "important" features of the molecular structure around the site of the
fragmentations proposed by INTSUM. These important features are combined to form a
subgraph description of the local environment surrounding the broken bonds. Each subgraph
considered becomes the left-hand side of a candidate rule whose right-hand side is
INTSUM's proposed process. Essentially, RULEGEN searches through a space of these
subgraph descriptions, looking for successively more specific subgraphs that are supported
by successively "better" sets of evidence. To constrain this search, it uses the constraints
of the half-order theory, discussed above.

Conceptually, the program begins with the most general candidate rule, X*X (where X is
any unspecified atom and where the asterisk is used to indicate the broken bond, with the
detected fragment written to the left of the asterisk). Since the most useful rules He
somewhere between the overly general candidate, X*X, and the overly specific complete
molecular structure (with specified bonds breaking), the program generates refined
descriptions by successively specifying additional features. This Is a coarse search; for
efficiency reasons, RULEGEN sometimes adds features to several nodes at a time, without
considering the intermediate subgraphs.

The program adds features (attribute-value pairs) to subgraphs, starting with the
subgraph X*X, always making each successor more specific than its parent. (Recall that each
node can be described with any or all of the following attributes: atom type, number of
nonhydrogen neighbors, number of hydrogen neighbors, and number of doubly bonded
neighbors.) The program assigns one attribute at a time to all atoms that are the same
number of atoms away from the breaking bond. Each of the four attributes is considered in
turn, and each attribute-value for which there is supporting evidence generates a new
successor. Although different values for the same attribute may be assigned to each atom at
a given distance from the breaking bond, the coarseness of the search prevents the
examination of subgraphs where this attribute is totally unimportant on same of these atoms.

A portion of the rule search tree leading to R1 is shown in Figure 1. Starting with the
parent subgraph SO, the "number-of-neighbors" attribute is specified for each atom adjacent
to the break In subgraph Sl. "Atom type" Is then specified for atoms adjacent to the break
in S2, and for atoms one bond removed from the break in S3. At each step in the search
there are also many other possible successors corresponding to assignments of other values
to these same attributes, dr assignment of values to other attributes.

Figure 2. Portion of the RULEGEN search.

1

542 Al Applications in Chemistry

i

i

Each descendant is checked, to see if the supporting evidence is "better" (see below)
than the evidence for the parent. Those that satisfy the test become new parents for a next
level of descendants, which have one more feature specified. The program adds
specifications to candidate rules until it finds a rule that is (a) specific enough to make
correct predictions and (b) general enough to account for more than a few special cases.
Subgraph S3 in Figure 2 meets these conditions and is output by the program as rule Rl.

(R1) N-C-C-C —-> N-C«C-C

In (R1) the features that have been judged important are the atom types and the
connections of four atoms; the other features and atoms have been generalized away. The
point of generalizing is to abstract away unimportant attributes of atoms and unimportant
atoms.

Modifying Rules. The last phase of the program (called RULEMOD) evaluates the
plausible rules generated by RULEGEN and modifies them by making them more general or
more specific. In order to extend the range of applicability of the rules, RULEMOD uses a
less constrained model than RULEGEN. Rules generated by RULEGEN under an augmented
half-order theory, for example, in which only fragments containing a nitrogen atom were
considered, cannot immediately be applied by a performance program using a more general
model. Therefore, RULEMOD refines the rule so that it can stand on its own in the context of
a more general model. In contrast to RULEGEN, RULEMOD considers negative evidence
(incorrect predictions) of rules in order to Increase the accuracy of the rule's applications
within the training set. RULEGEN performs a coarse search of the rule space, for reasons of
efficiency, whereas RULEMOD performs a localized, fine search to refine the rules.

RULEMOD will typically output a set of 8 to 12 rules covering substantially the same
training data points as the input RULEGEN set of approximately 25 to 100 rules, but with
fewer incorrect predictions. This program is written as a set of five tasks (mentioned below)
that are closely analogous to this aspect of human problem solving.

(1) Remove redundant rules—give preference to simpler rules;

(2) Merge similar rules;

(3) Make rules more specific to avoid false predictions;

For example, rule (RV) below would be a specification of (R1) that RULEGEN
would miss because it specifies different attributes (not just different values) for
atoms that are the same distance from the broken bond (asterisk):

(R1 ■) N - CH2 -C - C -—> N - CH2 ■C - C .

In this case, the number of hydrogen neighbors Is specified for the first left-hand
atom from the broken bond, but not for the first right-hand one.

(4) Make rules more general to avoid unnecessary detail.

A3c 543Meta-DENDRAL

i

Rule (RV) for example, could be made more general by removing the atom type
specification on one of the first atoms next to the asterisk , and by removing
completely the rightmost atom in the subgraph, resulting in rule (R1").

(R1") N-CH2-X > N - CH2 * X

Again, because of the coarseness of its search, RULEGEN could not have
considered this form of the rule. It Is assumed that RULEGEN will produce good
approximationsto rules, and that RULEMOD will refine them.

Integrating Subsequent Data. A requirement for any practical learning program is the
ability to integrate newly acquired data in an evolving knowledge base. New data may
dictate that additional rules be added to the knowledge base or that existing rules be
modified or eliminated. New rules may be added to the rule base by running RULEGEN on the
new data and then running RULEMOD on the combined set of new and previously generated
rules.

When an existing rule is modified, it is important to maintain the Integrity of the modified
rule over past training instances. Consider the following example: A new training instance is
acquired and, after credit assignment questions are resolved, it is decided that rule R was
incorrectly "triggered" by some situation S. The left-hand side of rule R must be modified so
that it will no longer match S. In general, there would be many changes possible to R that
would kill the match to S, but some are better than others. The correct changes to R are
those which do not alter past correct applications of R. Of course there is no way of
knowing which of the possible changes to R will turn out to be correct for future data; and
once a change Is selected, the possibility exists for the necessary backtracking at some
future point.

A method has been developed for representing all versions of the lef*hand side of a
rule that are consistent with the observed data for all iterations thus far (Mitchell, 1977).

This representation is referred to as the version space of the rule. By examining the version

space of R, one can answer the question "Which of the recommended changes, to R wm
Preserve its performance on past instances?" The answer is simply "Any changes that yield
a version of the rule contained in the version space." Using version spaces avoids the
problem of selecting a single unresectable modification to R and therefore eliminates tne
need for backtracking. For example, all the elements of the version space that match some
negative Instance S are eliminated. Similarly, when new data are encountered in which a
situation S' Is found to correctly trigger R, only those elements of the version space tnat

match S' are retained.

Results

One measure of the proficiency of Meta-DENDRAL is the ability of a DENDRAL Program

using the learned rules to predict correct spectra of new molecules. One of the DENDRAL
Performance programs ranks a list of plausible hypotheses (candidate molecules) according

to the similarity of their predictions (predicted spectra) to observed data. The rank of the

correct hypothesis (i.e., the molecule actually associated with the observed spectrum)

Provides a quantitative measure of the "discriminatorypower" of the rule set.

* 544 Al Applications in Chemistry

i

i
i

The Meta-DENDRAL program has successfully rediscovered known, published rules ofLam JLT H°metry
M

f°r !W° C'aSr S °f

mo,eCUieS

'

inC,Udin

9 the a,iPha«c amines used asS«f OV9; M°r,8 im
„
orlant,y,Iant,y, " haS discove'*d "« for three closely relatedTTnnlTr, a

f°\Wh 'Ch T? h'd not PreV,OUS,y been re P°rted - Th^ *<° tL mono-, di-, and tri-keto androstanes which share the common structural skeleton shown in Figure 2.

Meta-DENDRAL's rules for these classes have been published in the chemistry literature(Buchanan et al., 1976). Evaluations of ail five sets of rules are discussed in thaiSJ^JS^^S "̂"^ °f for rule formation ,n mass spectrometry

terhnimi T*?"* app,,Cation °f M^'^^ has been to a second spectroscopictechnique: 13C-nuclear magnetic resonance (13C-NMR) spectroscopy (Mitchell 1978) Thisnew version provides the opportunity to direct the induction macLery of Meta-DENDRALunder a model of 13C-NMR spectroscopy. It generates rules that associate the resonance
atom "Tar°NMP.Carbr aH°m V ma9netiC fiHd With the ,ocal structural environment of theatom. 13C-NMR rules have been generated and used in a candidate molecule-rankinaprogram similar to the one described above. 13C-NMR rules formulated by the program form^r a«rrnr tn UCtUr^ I68: SUCCessfu,,y »**« to identify the spectra of additTonamolecules (of the same classes, but outside the set of training data used in generating the
h "/i

he.r^c;.baSed mo,ecu,e -rankina P'°cram Performs at the level of a welf-educatedchemist in both the mass spectral and 13C-NMR domains. eoucaieo

References

A4 545CRYSALIS

)

I
i

A4. CRYSALIS

Motivation

The CRYSALIS system, which is still under development, is an attempt to apply Artificial
Intelligence methodology to the task domain of protein crystallography. Although the
computer has been an essential tool in x-ray crystallography research for many years, nearly
all its applications have been in the areas of data collection, data reduction, Fourier analysis,
graphics, and other essentially numerical tasks (Feigenbaum, Engelmore, & Johnson, 1977).
Those aspects of molecular structure inference that require symbolic reasoning or that use a
significant amount of judgmental knowledge have traditionally been performed manually. A
prime example is the task of electron density map interpretation.

In the course of deriving a protein structure, the crystallographer generates an
electron density map, a three-dimensional description of the electron density distribution of a
molecule. Due to the resolution Imposed by the experimental conditions, the electron density
map is an indistinct image of the structure that does not reveal the positions of individual
atoms. The crystallographer must interpret the map in light of auxiliary data and general
principles of protein chemistry In order to derive a complete description of the molecular
structure. The goal of the CRYSALIS system is to integrate these diverse sources of
knowledge and data to try and match the crystallographer's level of performance in electron
density map Interpretation. Automation of this task would shorten the time taken for protein

structure determination by several weeks, to months, and would fill in a major gap in the

construction of a fully automated system for proteincrystallography.

Description of the problem

When c'rystallographers use the term "electron density map,? they usually have in mind
some pictorial representation of the electron density defined over a certain region of space.

The most commonly used representation is a three-dimensional contour map, constructed by
stacking layers of conventional two-dmensional contour maps drawn on transparent sheets.
By carefully studying the map, the experienced protein crystallographer can find features

that allow him to infer approximate atomic locations, molecular boundaries, groups of atoms,

the backbone of the polymer, etc. After several weeks (or months), he has built a model of
the molecular structure that conforms to the electron density map and is also consistent with
his knowledge of protein chemistry, stereochemical constraints, and other available cnemicai

and physical data (e.g., the ammo acid sequence). Figure 1 shows a portion of a protein

structure and the associated electron density map from which it was inferred.

546 Al Applications in Chemistry
%

I

t

FIG.

' A stereo-view of the electron density (b) at 2.8 A

of

an a-helix inlysozyn.o, and the molecular structure (a) corresponding to thisdensity (Snape
1074).

The automation of this task would require a computational system that could generate
its own structural hypotheses, as well as display and verify them. This capability requires:
(a) a representation of the electron density function suitable to machine interpretation, (b) a
substantial chemical and stereochemical knowledge base, (c) a wide assortment of model-
building algorithms and heuristics, (d) a collection of rules and associated procedures for
using this knowledge to make inferences from the experimental data, and (c) a problem-
solving strategy for applying the knowledge sources (KSs) effectively, so that the
appropriateprocedures are executed at the times that they are most productive.

)

547A4 CRYSALIS

I

I

)

)

Protein crystallographers who build models move continually across a large field of
basic facts, special features of the data and implications of the partial model(s) already
built, looking for any and all opportunities to add another piece to their structure. There are
several desiderata to working in this "opportunistic" mode of hypothesis formation: (a) The
inference-generating rules and the strategies for their deployment should be separate,

(b) the rules should be separate from the mechanics of the program in which they are
embedded, and (c) the representation of the hypothesis space should be compatible with the
kinds of hypothesis-generating rules available. The modularity of such a system would allow
users to add or change rules for manipulating the database, as well as to investigate

different solution strategies without having to make major modifications to the system.

The CRYSALIS Architecture: The Blackboard

A problem-solving paradigm that meets the above specifications, to a large degree, is

that of HEARSAY-II (see article Speech.Da)~specifically with respect to the issues of

knowledge integration and focus of attention. In Hearsay-H, an "iterative guess-bu.ld.ng
process takes place: A number of different knowledge sources (facts, algorithms, heuristics)

cooperate when working on various descriptions of the hypothesis. In order to use the

knowledge sources efficiently, a global database-the "blackboard"-is constructed that

contains the currently active hypothesis elements at all levels of current description, me
decision to activate a particular knowledge source is not preestablished but depends on tne

current state of the solution and what available knowledge source is most likely to mane

further progress. The control is, to a large extent, determined by what hasJus'been

learned: A small change In the state of the "blackboard" may provide the Preconditions to

instantiate further knowledge sources (an illustration of this process in the context or
electron density map Interpretation is given below).

Figure 2 shows the types of data and hypotheses that are used in C"YSALI.S. Is ln

Hearsay-11, the hypotheses are represented in a hierarchical -data *"*»T*yl »D Jn2s" butdifferent information levels can be partitioned into three, distinctly different panels but

the concept of a globally accessible space of hypotheses Is essentially *c **my°r *°"
systems. Figure 2 also illustrates how knowledge sources (only> a subset is shown)

Play the same role as in Hearsay-11-addlng, changing, or t^nfl "ypotheaia elemeirts on the

blackboard. Further explanation of these diagrams is given in Engelmora. & Nil, 19". me

Processes of generating or modifying hypotheses and of Invoking knowledge sources is

nearly Identical to those described for the AGE system (Nii & Aiello, iaro;.

Representation of Knowledge In the System

As mentioned above, there are many diverse a"£j^X^talloT Us
structure inference. The problem of representing aH the I^'^ sof central concern to
cooperative and efficient use In the search for plausible hypotheses is^ot c

the developers of CRYSALIS. The system currently under dcvelopm«"t dra^ _"any

concepts that have emerged in the design of other large systems e.g

the use of production rules and blackboards. We describe here how these concepts have

been adapted to our particular task.

Knowiedge consists of

facts,

algorithms, and heuristics (rules of good guessing). Facts

548 Al Applications in Chemistry

)

!

%

i

required for protein structure inference are general physical, chemical, stereochemical, and
crystallographic constraints. Typical factual knowledge stored in the system includes physical
properties of the elements commonly found in proteins, the molecular structure and chemical
properties of the twenty ammo acids, the bond lengths, and the symmetry properties of
various crystal structures. These facts are encoded as tables or as property lists attached
to specific structural entities.

Algorithms and heuristics comprise both the formal and informal knowledge that
generates or verifies hypothesis elements. The representation of this type of knowledge in
CRYSALIS follows two general principles:

1) Decompose identifiable areas of knowledge into elementary
units, where each unit increments the hypothesis when specified
precondition? are met.

2) Represent the elementary units as situation-action rules.

To illustrate:

IF: the name of the current-residue is GLU, and
the shape of the subgraph is forked, and
the length of the subgraph Is between 40 and 75, and
the number of associated peaks of the subgraph is

greater than 1

THEN: conclude that the subgraph is matched, and
generate a new superatom on the blackboard,

with the following properties:
Type is 'side-chain
Belongs to current-residue
Data-link to subgraph with certainty factor 500

Note that several actions may be performed for a given situation. Not shown here, but
present in the LISP Implementation of these rules, Is a position in the rule for variable
bindings, to avoid repetitious calculation of parameters appearing in several situation-action
clauses. Also note that at least one of the actions of each rule Is to place a token on an
event list. In the actual implementation, the syntax of the "action" clause is represented as a
single function. An example follows:

syntax: (inference type> <element being changed> <att-value pairs»

example: (SUBGRAPH.MATCHED (GENSUPATOM)((TYPE 'SIDECHAIN)(BELONGSTO
CURRENT.RESIDUEXDATALINK (SUBGRAPH . 500))))

In this example, an event, SUBGRAPH.MATCHED, will be generated and queued on the event
list. The event-list is used by the interpreter (discussed in the next section) to determine
what to do next, that is, which set of knowledge sources to invoke after the current event
has been processed.

* Panels of the CRYSALIS blackboard, and examples of the application of
knowledge sources.

2. Heavy atom hypothesizer
3. Heavy atom verifier
h. Co-factor hypothesizer
5. Co-factor verifier
6. Co-factor location

DENSITY PLANE

%

549A4 CRYSALIS

i

I

i

I

Event-driven control

The CRYSALIS system uses an event-driven control structure. In this scheme, the current
state of the hypothesis space determines what to do next. The monitor continuallyrefers to
a list of current events-the event-list-that is used to trigger those knowledge sources
most likely to make further headway. As a knowledge source makes a change in the current
hypothesis, it also places an item on the event-list to signify the type of change made.
Thus, as events are drawn from the event-list for processing, new events are added, so that
under normal conditions the monitor always has a means for choosing its next move.

The normal Iterative cycle of problem solving uses the event-list to trigger knowledge

sources, which create or change hypothesis elements and place new events on the event-

lists. The system's behavior is opportunistic: It is guided primarily by what has been most

recently discovered, rather than by the requirement to satisfy subgoals. An event-driven

control structure was chosen partly to be

efficient,

in selecting appropriate knowledge

sources, and partly to conform with the structure-modeling process normally employed by

protein crystallographers.

Rules

The formal and informal procedures that comprise our knowledge sources are
expressed as rules, as discussed above. These rules are collected into sets,_ eacr, sex
being judged appropriate to use when particular types of events occur. The^ events

generally reflect the level at which the inference is being made, which in turn reT,ects "c

model's level of detail. The correspondencebetween event classes and rule sets is established

by another set of rules, the task rules. The task rules are used to d",de. h
wn'?rnlirKt^ °r

sequence of KSs to call In order to perform one of the typical tasks In building^t^ structure

-e.g., tracing the protein backbone between two anchor points. The *acm^**aae*£"l
state of the blackboard and' the items on the event- list. The task rules thus 'orm a "eeond
layer of rules, which directs the system's choice of knowledge sources for a given event,

reflecting the system's knowledge of what it knows.

Once . task Is either completed or fails, the system look, to . Mgher level „. ="«"| »
determine whs, to do next At this m

t̂ <^-Z^S,S^^T^J^SS,process can either try to solve the current subproblem by anotner mßl"
to another region of the structure. Strategy level decisions are also "pressed as ru es and

make use of the current state of the blackboard and event list. For example, one strategy

rule is

IF: the initialization task Is complete, and
the locations of two or more atoms are known

(also called 'toeholds'), and
these toeholds are separated by less than 6 residues

in the ammo acid sequence, and
none of the interveningresidues are Identified from the data,

THEN: select the two-point chain-tracing task and focus on the
subsequence bounded by the toeholds.

% Al Applications in Chemistry550

The part of the monitor that interprets and obeys the event rules may be likened to a
middle-level project manager who knows which specialists to call in as new, partial solutions
to a particular problem are discovered. Continuing the analogy, the middle-level manager
occasionallygets stuck and needs help from higher level management. As mentioned earlier,

some high-level decision (such as merging two or more events to produce a new event or
shifting attention to another part of the blackboard), is required. This level of decision making

is embodied in a set of strategy rules, which are used to direct the top-level flow of control.
We thus have a completely rule-based control structure that employs three distinct levels of
rules (or knowledge): the specialists, commonly called the knowledge sources; the task
rules, representing knowledge about the capabilities of the specialists; and the strategy
rules, which know when to use all available knowledge to solve the problem. Although this
pyramidal structure of rules and meta-rules could continue indefinitely, the flexibility of
knowledge deployment offered by our three-tiered system appears sufficient for this
problem-solving system. Similar ideas in a simpler context have been explored by (Davis,

1976a) for the MYCIN system.

A4 CRYSALIS 551

System Performance — an example

To give some indication of the system's current level of performance, we present an
annotated typescript in which a typical hypothesis formation task is completed. The example
is the subproblem of extending the model from an "Island of certainty," or anchor point, by
using the crytallographic data to determine where to extend the model in space and by using
the ammo acid sequence to generate expectations of features that ought to be present in
that region. The knowledge sources invoked in this example use an abstraction of the
density map called subgraphs. A subgraph is a collection of segments obtained from a
skeletonized density map, which hopefully matches an identifiable substructure in the
protein—e.g., a side chain. The ammo acid sequence assumed here is METhionine, LYSine,
LYSine, TYRosine, etc. (the example uses data from the protein Rubredoxin). The example
starts after passing control to a knowledge source called ANCHOR.TOEHOLD. The toehold of
Interest in this case is the sulphur atom in the methionine sidechain. This toehold is just a
point in space and must be connected to the skeleton.

INFERENCE: EVENT-1 BY RULE 1 IN RULESET ANCHOR.TOEHOLD

EVENT NAME: TOEHOLD.ANCHORED
CURRENT HYPOTHESIS ELEMENT: SA2
NEW PROPERTIES: ((TYPE SIDECHAIN) (BELONGSTO (MET . 1))

(SEGS (((1 SEG24O) . 100) ((1 SEG23B) . 100))) (MEMBERS (A3)))

The ANCHOR.TOEHOLD knowledge source has found subgraphs of the skeleton, but its
limited knowledge cannot assign much certainty to the inference. The "real" matching of
skeleton parts with expected residue is accomplished by MATCH.SDCHN. This knowledge
source uses the shape of the subgraph, its length, the number of peaks associated with the
candidate subgraph, and their heights. If a certainty factor (CF) of 600 or more is assigned,
the sidechain is considered located (CF's have a range of -.1 000 to 1 000; the CF combining
function being the same as that used by MYCIN; see article C2).

INFERENCE: EVENT-2 BY RULE 3 IN RULESET MATCH.SDCHN

EVENT NAME: TOEHOLD
CURRENT HYPOTHESIS ELEMENT: SA3
NEW PROPERTIES: (SEGS (((1 SEG23B) . 823) ((1 SEG24O) . 555))))

If a sidechain is found, the trace tries to find the alphacarbon location by finding a peak of a
certain type near the root of the sidechain. The KS used to propose an alpha carbon position
is called POSSIBLE.CALPHA. The system assumes that the location of this peak is a more
accurate guide than the skeleton for locating this class of atom.

INFERENCE: EVENT-3 BY RULE 5 IN RULESET POSSIBLE.CALPHA

EVENT NAME: C.ALPHA
CURRENT HYPOTHESIS ELEMENT: A4
NEW PROPERTIES: ((TYPE C) (NAME CA) (BELONGSTO (MET . 1))

(D.PEAKS ((PKO76 . 500))))

552

Al Applications in Chemistry

i

Once the toehold has been anchored, this trace becomes essentially a generate-and-
test search, heavily constrained by the sequence. The basic control cycle for the trace is:
Propose a sidechain, match it; propose a peptide, match that; and loop until a match fails.
Sometimes the carbonyi group present in each peptide will appear as a small sidechain. If
this happens, the proposed peptide will extend only from the last sidechain up to this
pseudo-sldechain, and the peptide will fail to match. This failure prompts the system to try
matching the "sidechain" as a carbonyi. Success of this match would mean that only half of
the peptide has been found; the system can then propose a larger peptide which contains
the old one, and proceed as before.

INFERENCE: EVENT-4 BY RULE 4IN RULESET MATCH.PEPTIDE

EVENT NAME: PEPTIDE
CURRENT HYPOTHESIS ELEMENT: SA4
NEW PROPERTIES: ((TYPE PEPTIDE) (BELONGSTO (MET . 1))

(SEGS (((SEG6 SEGB) . 84))) (PEAKS (PKO76 PK078)))

INFERENCE: EVENT-5 BY RULE 5 IN RULESET MATCH.CARBONYL.SC

EVENT NAME: CARBONYL.FOUND
CURRENT HYPOTHESIS ELEMENT: A5
NEW PROPERTIES: ((TYPE CO) (NAME CARBONYL) (BELONGSTO (MET . 1))

(SEGS (((1 SEGS) . 581))) (PEAKS (PKO36)))

INFERENCE: EVENT-6 BY RULE 4 IN RULESET MATCH.PEPTIDE

EVENT NAME: PEPTIDE
CURRENT HYPOTHESIS ELEMENT: SA4
NEW PROPERTIES: ((SEGS (((SEG6 SEGB SEGIO) . 420)))

(PEAKS (PKO76 PKO7B PKO36)))

INFERENCE: EVENT-7 BY RULE 7 IN RULESET MATCH.SDCHN

EVENT NAME: SIDECHAIN
CURRENT HYPOTHESIS ELEMENT: SA6
NEW PROPERTIES: ((TYPE SIDECHAIN) (BELONGSTO (LYS . 2))

(SEGS (((1 SEG242) . 527))))

INFERENCE: EVENT-8 BY RULE 5 IN RULESET POSSIBLE.CALPHA

EVENT NAME: C.ALPHA
CURRENT HYPOTHESIS ELEMENT: A6
NEW PROPERTIES: ((TYPE C) (NAME CA) (BELONGSTO (LYS . 2))

(D.PEAKS ((PKO7B . 500))))

INFERENCE: EVENT-9 BY RULE 4 IN RULESET MATCH.PEPTIDE

EVENT NAME: PEPTIDE
CURRENT HYPOTHESIS ELEMENT: SA6
NEW PROPERTIES: ((TYPE PEPTIDE) (BELONGSTO (LYS . 2))

(SEGS (((SEG232 SEGI6) . 600))) (PEAKS (PKOI 7 PKI2S)))

A4 CRYSALIS 553

i.

(Three more events, similar to those preceding, have been omitted.)

INFERENCE: EVENT-13 BY RULE 6 IN RULESET MATCH.SDCHN

EVENT NAME: SIDECHAIN
CURRENT HYPOTHESIS ELEMENT: SA9
NEW PROPERTIES: ((TYPE SIDECHAIN) (BELONGSTO (TYR . 4))

(SEGS (((6 SEG2I2 SEG4O SEG3B SEG3S SEG22B) . 502))))

The matching cycle terminates in one of two ways. If the skeleton becomes so
overconnected that the access function cannot propose the next subgraph (sidechain or
peptide), the trace

fails;

or if the certainty of a match is too low and there are no rules to
save the situation, the trace fails. Upon termination, one final knowledge source is called to
link together hypothesis elements belonging to the same residue, creating an organizing
"backbone."

INFERENCE: EVENT-14 BY RULE 3 IN RULESET TRACE.CLEANUP

EVENT NAME: LINK-CA-TO-PEPTIDE
CURRENT HYPOTHESIS ELEMENT: SA4
NEW PROPERTIES: ((MEMBERS (A4)))

(Two more events, like the preceding one are omitted here.)

INFERENCE: EVENT-17 BY RULE 7 IN RULESET TRACE.CLEANUP

EVENT NAME: BACKBONE
CURRENT HYPOTHESIS ELEMENT: STI
NEW PROPERTIES: ((TYPE BACKBONE) (CF 51 1) (DIRECTION 1)

(RANGE (1 .4)) (MEMBERS (SAI SA2 SA3 SA4 SAS SAB SA7 NIL))

Summary

At the present time, CRYSALIS is capable of performing only a small portion of the total
task of electron density map interpretation. The developmentand Implementation of all the
knowledge sources required for the complete task is a long-term effort. CRYSALIS currently
contains a relativelysmall knowledge base that permits the interpretation of portions of high-
quality, high-resolution (2.0 Angstroms or better) electron density maps. The system is
expected to evolve toward an extensive knowledge-based problem solver capable of
complete Interpretationof medium-quality, medium-resolution (2 to 2.5 Ang.) electron density
maps. Although CRYSALIS is not yet worthy of serious attention by the protein-

crystallographic community, its defects lie primarily in its relatively meager knowledge base
and not In its design. As new knowledge sources are added to the system, its level of
Performance is expected to rise to the point where Its use will be a significant aid in the
determination of new protein structures.

554 Al Applications in Chemistry

i

i

References

See Davis, 1976a, Engelmore & Nil, 1977, Erman, 1976, Feigenbaum, Engelmore, &
Johnson, 1977, Hayes-Roth & Lesser, 1976, and Nil & Aiello, 1978.

A5 Artificial Intelligence and Organic Synthesis 555

k

A5. Artificial Intelligence and Organic Synthesis

The Problem of Organic Synthesis

Organic chemists are interested in the logic and beauty of organic synthesis for its own
sake, just as computer scientists are interested in the correctness and elegance of their
programs. Organic synthesis is also central to the creation of new chemical products and
more efficient processes for manufacturing old products.

Therefore,

there is great interest
among both academic and industrial chemists in providing new tools to aid in finding new
synthetic routes.

A synthesis problem begins with the structural descriptionof a compound that someone
wants synthesized, often because the compound has useful properties (e.g., a drug or a
vitamin). Synthesis can also be a definitive confirmation of a postulated structure for an
unknown compound in an analysis problem, since the synthesized compound and the unknown
compound will, if identical, produce identical test results.

Chemists use the computer and Al techniques to systematically explore the synthesis
tree and to help organize the immense body of available knowledge about chemical reactions.
This approach.of exhaustively exploring the interesting branches of the synthesis tree, Was
called the logic-centered approach by Corey and Wipke, who first explored computer-aided
organic synthesis. "Interesting" branches are those most likely to produce the desired
result. "Interesting" is an extremelydifficult concept to define and to cast into an algorithm,
therefore, for now, the search must be guided interactively by the chemist. Some of the
relevant considerations are: the efficiency of a reaction, the cost of materials, and the
difficulty of meeting the experimentalconditions that support a reaction.

The chemist represents the "target" structure graphically, as discussed in D, and
relates It to simpler chemicals via known chemical reactions. He relates those to still simpler

ones, until he reaches a set of commands, comparable to starting materials readily available
from chemical supply houses or which can be easily synthesized in a few steps in the
laboratory. One plan for synthesizing the compound, called a "synthetic route,' may involve

dozens of separate reactions. If the molecule Is at ail complicated there are an immense
number of distinct synthetic routes. For example, it has been calculated that for « simple

steroid (about 20 atoms), over 2.4 x 10"18 direct routes are possible Hendnckson (ier&;.

Synthetic routes can be visualized by means of an AND/OR tree (see section). The
tree descends from the goal node, the target molecule, to the terminal nodes, equivalent to
the starting materials. The branches connecting the nodes are chemical reactions, since a
synthesis plan Involves combining compounds in reactions, the AND-links of the tree are
Present in any one synthesis route; alternative ways of making a compound anywhere witnin
the plan are represented by OR-nodes.

The Three Major Programs

There are three major programs in computer-aided organic synthesis. The earliest is
LHASA (Logic and Heuristics Applied to Synthetic Analysis), which was written by Corey and
Wipke at Harvard and is maintained at Harvard by Corey and his research group. SECS

556

Al Applications in Chemistry

i

(Simulation and Evaluation of Chemical Synthesis) is an outgrowth of LHASA, written by Wipke
and maintained by Wipke and his research group at the University of California at Santa Cruz.
It extended the LHASA paradigm by the inclusion of stereochemical and conformational
information into all aspects of the computer program. The third major program is SYNCHEM
(Synthetic Chemistry), written and maintained by H. L. Gelernter and his research group at
the State University of New York at Stony Brook. The main features of these three programs
are summarized in Table 3.

Since SECS was designed to extend the methods in LHASA, much of the discussion of
SECS is true of LHASA. However, SECS has additional features that are of interest to
computer scientists. Of the three, only SECS is demonstrably machine Independent.

Two Different Approaches

A major distinction between SECS (and LHASA) and SYNCHEM is that the former is
oriented to high performance, while SYNCHEM is oriented more to Al issues. As a
consequence of this fact and the fact that chemists' intuitions about "interesting" pathways
are hard to define, SECS relies on a chemist's Interacting with the program. SYNCHEM, on
the other hand, searches the space without interactive guidance from a chemist. (This is not
to say that SECS and LHASA lack interest or that SYNCHEM is incapable of high
performance.)

Table 3
Chemical Synthesis Programs

Principal Language
Program Designer \ Computers Main Features

LHASA E. J. Corey Fortran IV Large procedural knowledge base
PDP-18 of "transforms."

Interactive, high-performance.

SECS W. T. Wipke Fortran IV Separate knowledge base of
many "transforms" with special

Interactive language for
defining new ones (ALCHEM).
Interactive graphics, and
high-performance.

SYNCHEM H. Gelernter PL/1 Motivated by AI search problems.
IBM 378 Evaluation during search done by. , the program not by a chemist.

A6 Artificial Intelligenceand Organic Synthesis 557

In operational terms, the main difference Is whether the evaluation function for the
search procedure is explicitly given to the program and used without guidance from the
chemist (SYNCHEM) or whether the evaluation function is not explicitly given to the program
(SECS and LHASA). These are called the noninteractive and interactive approaches below.
Although SECS can be reconfigured to run noninteractively, it is not the preferred way to run;
a chemist's guidance gives better results.

The Chemical Knowledge Base

The primary item of knowledge in chemical synthesis is the chemical reaction—a rule
describing a situation in which a change can occur (to a molecular structure) plus a
description of that change. For example, the reaction shown in Figure 2 describes a change
to a molecule containing the substructure O=C-C-C=o in the presence of the reagent oxalyl
chloride.

Figure 2. Graphical representation of a chemical reaction.

To design a synthesis route from starting materials to target molecule, knowledge of
reactions can be used in either of two ways:

1 . Forward direction: Apply known reactions to starting materials, then to the
products of those reactions, the products of products, etc., until the target is

reached. The combinatorics of this approach make it impossible in practice

because there are thousands of possible starting compounds and only one target.

2. Reverse direction: Starting with the target molecule, determine which
reactions might produce it. Then look for ways to make the precursors, and the
precursors of precursors, etc., until starting materials are reached. Storing the

reactions in the reverse direction makes it easier to search the tree of possible

pathways.

All three programs have a large knowledge base of reverse chemical reactions called
transforms, similar to production rules of the condition-action

form,

with the lett-nana siae

being a substructure pattern to be matched In the target structure (or Intermediate
structure) and the right-hand side being a description of precursors that will produce the
goal structure under specified reaction conditions. Figure 3 shows the reverse reaction plus

all the associated conditions needed for the SECS program to work with the reaction in
Figure 2. Each of the three projects have dealt with the problems of constructing a
knowledge base in very different ways.

1. The LHASA knowledge base is a set of procedures. Although it contains very
sophisticated chemistry knowledge, it is difficult to modify.

O=C-C-C=o + Oxalyl Chloride > O=C-C=C-CL

558

Ai Applications in Chemistry

I

!

i

2. The SECS knowledge base contains about 400 separate transforms. New
transforms can be defined by users and entered into the knowledge base without
changes to the program. Because of its clarity, it is used for illustration and is
discussed in detail below.

3. The SYNCHEM knowledge base is a library of reactions that can be updated by
chemists without reprogramming. Each reaction is automatically compiled into a
reverse reaction. In addition, the knowledge base contains a large library of
starting compounds that are available commercially.

Each of the SECS transforms is stored on external storage independent of the SECS
program; this feature enables the knowledge base to be tailored to a specific problem
domain. Further, the number and complexity of transforms is not limited by the size of core
memory. A simple, flexible language, called ALCHEM, is provided In which chemists can enter
new transforms into the knowledge base.

ALCHEM embodies a model of what information is needed in order to adequately
describe a reaction. According to this model, a transform consists of the following six
sections:

(1) Transform name.
(2) Substructure key or pattern to be matched.
(3) Character—used to help judge the relevance to strategic

planning.
(4) Scope and limitations.
(5) Reaction conditions—which must not be violated by the

remainder of the molecule containing the substructure key.
(6) Manipulationstatements—describing the graph transformations

to be performed. '

■

This will be clarified below with an example.

In the reaction shown in Figure 2, one of the Oxygens double bonded to Carbon Is
replaced by a single bond to a Chlorine. To go from a graphical representation of a synthetic
reaction to the graphical representation of a SECS transform, we reverse the left- and
right-hand sides and specify additional important conditions. Using the ALCHEM language, the
Chemist could interactively enter the following representation of this transform.

559A5 Artificial Intelligence and Organic Synthesis
I

i.

comment
comment
comment
comment
comment
comment

transform name
substructure key
Priority

Character

Scope
and Limitations

; Chloroenones
; O=C-C=C-CL GOES TO*
; Reagent: Oxalyl Chloride
; Ref: C.H. Heathcock, R.D.Clark
; Journal of Organic Chemistry,

;

41,636-643 (1976).

CHARACTER ALTERS GROUP

IF ACID IS OFF PATH THEN KILL
IF ESTER IS OFF PATH THEN KILL
IF HYDROGEN IS ALPHA TO ATOM 4 THEN

BEGIN .___„
IF HYDROGEN IS ALPHA TO ATOM 2
THEN SUBTRACT 75 FROM PRIORITY
DONE

BREAK BOND 3
DELETE ATOM 5
ADD 0 OF ORDER 2 to ATOM 4 .

Manipulation
Statements

"In the actual reaction, of course, the chlorinated compound
COMES FROM the precursor.

Referring to the manipulation statements, "BREAK BOND 3" refers to the third bond
left In the substructure key; the double bond between the two carbons is reduced to

bond. Similarly, "DELETE ATOM 5" refers to the Chlorine atom CL, the fifth atom from

When the program is actually run, a compiler called SYNCOM translates tne

statements into machine readable form before the program is run.

from the
single

the left.
ALCHEM

A Brief Description of SECS

SECS and LHASA have been designed to divide the work between the chemist
computer in the most optimal way. In a recent paper Wipke et al. (197H,

and the

explain their philosophy.

Our performance goal for the program was that the program

should be able to help a chemist find many more good and innovatwe

syntheses than the chemist could working alone. Because of tne

complexity of the problem domain, we felt the chemist and computer

working together with each assigned tasks for which they are best

suited, and with efficient interaction between the two, woulel be more

effective than either working alone. Our goal was not to replace me
chemist, but to augment the chemist's problem solvingcapabilities.

CHLOR-ENONE
O=C-C=C-CL <1 =2-3= 4 - 5>
100

560 Al Applications In Chemistry
%

i

Graphics

The chemist communicates with the SECS. program using a graphics terminal with a

CRT,

a mini-computer, a keyboard, and a light pen. Using the pen, the chemist draws on the
screen the graphical structure of the "target" molecule to be synthesized. Much effort has
gone into human engineering. The SECS graphics routines are designed to be as near as
possible to the chemists' normal modes of thought, which is the structure diagram or the
molecular model. There are similar facilities in LHASA. By convention, hydrogen atoms are
suppressed, as discussed above. Another convention is that only noncarbon atoms (called
"heteroatoms") are labeled. This is useful since the majority of nonhydrogen atoms in organic
molecules are carbon.

Application of a Transform

Applying a transform is not simply a matter of matching the substructure key to a
molecule and, if the subgraph fits, executing the graph manipulation statements. The scope
and limitations determine much of the context in which the transform applies. Also, it is
necessary to check three-dimensional information and electronic environment information
(that Is, the tendency of the atoms in the molecule to be positively or negatively charged) in
order to make an accurate assessment about whether a transform applies. A common
situation in synthetic chemistry is that we have a functional group to modify and a reagent to
change it, but the functional group is hindered (spatially) by another functional group or
another portion of the molecule. In such cases, the reagent molecules cannot react with the
group and change it; although they might in other spatial contexts.

Without the three-dimensional information given by the so-called "model-building"
routines, the program has no way of knowing that the transform cannot apply. After the
spatial modelling has been done, the program can perceive that even though the required
functional group is present, the transform cannot be applied directly because it is
inaccessible to the reagent molecules. If the transform is very high priority, a means-end
analysis can be done to find ways of altering the molecule, so that the given functional group
is accessible.

Strategies for Applying Transforms

Like the transforms in the knowledge base, the strategies are stored separately from
the program. Strategies is one of the major areas of exploration and research for all three
of the programs. Examples of strategies used to choose which transforms to apply in a given
situation are shown below (Wipke et al., yr.?):

1) Try to cleave the target into two nearly equal fragments.

2) Simplify rings of eight or more members by joining the opposite sides to form
two smaller rings.

3) Try to break bonds along elements of symmetry to generate Identical
fragments.

Artificial Intelligenceand Organic Synthesis 561AS

Given a molecule to synthesize, the strategies are used to create goals. Operationally, the
goals are the Instantiation of a strategy in a particular instance. The chemist also has

access to these goals and can add, modify, or delete them interactively before letting the
program attempt to satisfy them.

The problem of how to organize the interaction between a rule base and strategies is
an active area of Al research. It has been discussed, for example, by Davis (Davis, 1976a)

in the context of using meta-rules to guide the invocation of domain rules by MYCIN. There

are several issues of interest to Al in the implementationof chemical synthesis strategies.
First is how much strategy to use. If the strategies capture too many of the chemists

strong biases about fruitful and unfruitful reaction pathways, then the program will be

unlikely to discover, or help the chemist discover, any novel synthetic routes. The whole
point of the logic-centered approach is to explore pathways outside the chemist s normal

Intuitive beam. On the other hand, If the strategies are too weak then the chemist is

swamped with too much Information; the program then explores pathways that a cnemist
regards as absurd.

Second is the problem of how to organize the rules so that the strategy component

determines which to apply. In SECS the strategy component uses the "character sio 01_ tne

transform (see Figure 3 above). If the strategy Is to cleave a large ring, then the st "»tegy

component will look at the statement of the character of each transform to see wnicn ones

break rings. Those that do are candidates to be applied to the molecule. Ho^er, this is

merely a first

filter;

the transform must be examined In detail to see if it applies to me

molecule in question.

Third are the issues of what knowledge should go Into the strategy rules and what
should go Into the rule base of transforms. Strategy rules can save time, at^the pos'mie

expense of missing pathways that are unlikely but that would still work. For example 1 r tne

chemist has a year to work on a particular molecule, to explore as many of '» P°""'*
synthetic pathways as he can, then he will employ quite a different set of strategies tnan

he has only a few months for the problem.

A Brief Description of SYNCHEM

The aims of Gelernter's group on SYNCHEM are stated very clearly in Gelernter et al.,

1977:

Extraordinarily rapid progress during the early stage l of an

attack on a new problem area is a rather common occurrence in a.

research; It merely signifies that the test cases with *** <~
system has been challenged are below the level of dlfnf^JTa'a
combinatorial explosion of the number of pathways ""the problem

space sets in....1t Is the goal of Al research to move that threshold
higher and higher on the scale of problem complexity thwj_ the

Introduction of heuristics-heuristics to reduce the rate of growth o^
the solution tree, heuristics to guide the development of the tree so

that It will be rich in pathways leading to satisfactory problem

solutions, and heuristics to direct the search to the "best of these

pathways.

Al Applications in Chemistry562%

I

J

SYNCHEM is noninteractive. The molecule to be synthesized is input, and the program
uses heuristic search to look for the best synthetic route. The program decides which node
of the tree to develop

further,

by estimating the "cost" of reaching the goal from that node
plus the estimated "cost" of reaching that node from starting materials. One of the
interesting Al issues is that the program's definition of "cost" depends on the context of the
problem as well as on static features such as efficiency of reactions, the monetary cost of
materials, etc. For example, costs are measured differently in an exploratory research
context than in an industrial production context.

The long-range hope of the SYNCHEM group is that the study of Al in this domain will
lead to new insights in Al and also eventually to a noninteractive system that will be of use
to chemists.

The first version of SYNCHEM, written largely by N. S. Sridharan, was operational
between 1971 and 1974. SYNCHEM2 supersedes it and contains many improvements, some
of which are discussed below. One improvement is a switch from Wisswesser Linear Notation
(WLN) for molecular structures to a more manageable linear notation. As a result, however,
the catalog of starting materials is no longer available to the evaluation

function,

so that
weaker criteria are now used for detecting a starting material.

SYNCHEM2 has been designed so that further changes in the representation can be
made easily, with minimum reprogramming. One of the main drawbacks of the original
SYNCHEM was that it entirely neglected stereochemistry. SYNCHEM2 now incorporates
stereochemistry Into its representation of molecules and into its transform evaluation rules.
The representation Is flexible enough to Include electronic and conformational (roughly bond
lengths, bond angles, and other three-dimensional information) Information. The format for
specifying a

transform,

which had been a simple fixed-field input

form,

was redesigned to be
similar to the ALCHEM facility In SECS.

Transforms were always applied serially in SYNCHEM, .that is, to one : functional group at
time in a molecule. A new feature in SYNCHEM2, called "multiple match," allows the

program to apply transforms more intelligently to all the appropriate functional groups in a
molecule. More specifically, the new program now recognizes that multiple occurrences of a
functional group, under certain circumstances, can all be transformed by a reaction.

SYNCHEM Solution Evaluation

The following quotation (Gelernter et al., 1977)

illustrates the difference between organic synthesis and a more familiar domain such as
theorem proving.

In particular, unlike much of the earlier work in problem-
solving....where any valid sequence of transformations from premises
to goal provided an acceptable solution, we were not to be satisfied
by an indicated synthesis route of very low yield, or one requiring
difficult or inefficient separations of goal molecules from by-products
along the way, at least not before the machine had tried and failed to
find a more efficient procedure of higher yield....lt is the question of

563A6 Artificial Intelligenceand Organic Synthesis

L

relative merit of proposed solutions under the constraints of the
problem that represents a substantial departure from most of the work
reported in the literature of artificial intelligence.

The complexities of the domain are highlighted by the fate of one of the most
significant results produced by the program. SYNCHEM proposed a synthetic route for a
naturally occurring antibiotic that was at that time under development by A. R. Rinehart's
group at the University of Illinois. The route was considered interesting enough to merit a
laboratory investigation. However, the laboratory attempt failed. One of the crucial steps in
the synthesis route could not be accomplished in the laboratory and the proposed route had
to be reluctantly abandoned. No successful routes to the molecule have yet been found. All
synthetic routes, whether proposed by a computer program like SYNCHEM or by a person, are
provisional until they can be verified by experiment.

SYNCHEM Search Strategy

SYNCHEM'S search strategy algorithm first expands the goal node to find all its
precursors. Next It computes the cost of reaching the target molecule from the precursors,
taking into account the efficiency and difficulty of the reactions. It also estimates the
difficulty of synthesizing the precursor nodes from the available starting materials. Subgoal

selection criteria are a function of both the accumulated heuristic estimates of reaction merit

and yield along the path from subgoal to goal, and of a prediction of the ProbabJ«* reaction

merit and yield along the best path from starting materials to the subgoal. SYNCHEM updates

the merit ratings with information associated with each intermediate structure. Merit, as
mentioned above, is based on most recent estimates of compound complexity (i.e., difficulty

In synthesizing it) and reaction path merit (yield, cost, etc.) after each cycle of subgoal

generation. The selection of a new subgoal always begins with a new scan of the tree from

the top. It Is a best-first procedure: If newly acquired information changes the ratings tor

subgoals, the next subgoal selectedcan He on a completely different branch of the tree, in

this way, the program will never develop an unfortunate choice (pathway down to starting

materials)before backtracking and exploring more fruitful branches.

Summary

Computer-aidedchemical synthesis is a potentially powerful new tool 'or both, r^search
and industrial chemists. The utility of any of the programs discussed here critically oepenos
on the size and accuracy of their knowledge base of organic chemical reactions. A'thoug*

far from complete, the knowledge bases now contain highly detailed descriptions of numerous
synthetic reactions. AH of the programs have convincingly demonstrated their abilitY to find

Plausible synthetic routes for important organic materials, often in Jess time "f" °he""*"working alone. The SECS program is known to have a user community of chemists � Europe

and North American, who add new transforms as well as use the P"*'" 1" 8*"9*"
Planning. The effort spent on human engineering for chemists has made it Ipossible for

chemists to use the program effectively (and want to use it) and '^^^^"^.^..^Program's designers. One of the long-range hopes of chemists and co^"ter sc 'en 'st*
working in computer-aided organic synthesis is that this work on knowledge bases will lead
to an improved classification of chemical reactions.

564 Al Applications in Chemistry
%

i

i

t

i

Because the heuristic search paradigm fits the synthesis planning problem well, Al
research has had much to offer. In addition, current Al work on knowledge-based expert
systems provfdes concepts and tools for representation and management of these large,
ever changing sets of chemical facts and relations. In return, the complexityof this problem
area has challenged current Al methods and has led to the exploration of new ideas for
search and planning.

References

See Banks (1976), Cory & Wipke (1969), Gelernter et al. (1977), Gund, Andose, &
Rhodes (1977), Kernlghan & Ritchie (1978), Streitwieser & Heathcock (1976), and Wipke et
al. (1977).

References 565
i

V

References

Banks, J. E. Naming Organic Compounds. Philadelphia: W. B. Saunders

Co.,

1976.

Brawn, H., & Masinter, ~L. An Algorithm for the Construction of the Graphs of Organic
Molecules. Discrete Mathematics, 1974, 8, 227.

Brown, H., Masinter, L., & HJelmeland, L. Constructive Graph Labeling Using Double Cosets.
Discrete mathematics, 1974, 7, 1.

Buchanan, B. G. Scientific theory formation by computer. Proceedings of NATO Advanced
Study Institute on Computer Oriented Learning Processes,

Noordhoff,

Leydon, 1976.

Buchanan, B. G. ,

Smith,

D. H., White, W. C, Gritter, R. J., Feigenbaum, E. A., Lederberg, J., &
Djerassi, C. Application of Al for Chemical Inference XXII. Automatic rule formation in
mass spectrometry by means of the Meta-DENDRAL program. Journal of the
American Chemical Society, 1976, 98(20), 6168-6178.

Buchanan, B. G. , Sutherland, G. L., & Feigenbaum, E. A. Heuristic DENDRAL: A Program for
Generating Explanatory Hypotheses in Organic Chemistry. In B. Meltzer & D. Michie
(Eds.), Machine Intelligence 4. Edinburgh: University Press, 1969.

Buchanan, B. G. Ml 5

Buchanan, B. G. , 1976

Buchanan, B. G. , DENDRAL

Buchanan, B. G. , DENDRAL

/ An Application of Artificial Intelligence to

n' G. W. A. Milne (Ed.), Mass Spectrometry

John Wiley &

Sons,

1971. P. 121.

Buchanan, B. G., Duffield, A. M., Robertson, A,
the Interpretation of Mass Spectra.
Techniques and Appliances. New York

V.,
In

Buchs, A., Delfino, A. 8., Duffield, A.M., Djerassi,

C,

Buchanan, B„ Feigenbaum E. A.. &

Lederberg, J. Applications of Artificial Intelligencefor Chemical Inference VI. Approacn

to a General Method of Interpreting Low Resolution Mass Spectra with a computer.

Helvetica Chimica Acta, 1970, 53, 1394.

Buchs, A., Duffield, A. M., Schroll, G., Djerassi, C,

Delfino,

A. 8., Buchanan, B. G.,

Sutherland,

G.L., Feigenbaum, E. A., & Lederberg, J. Applications of Artificial Intelligence For
Chemical Inference IV. Saturated Amines Diagnosed by Their Low Resolution Mass

Spectra and Nuclear Magnetic Resonance Spectra. Journal of the American Chemical

Society, 1970, 92, 6831.

Carhart, R. E, & Smith, D. H. Applications of Artificial Intelligencefor Chemical Inference XX.
Intelligent Use of Constraints in Computer-Assisted Structure Elucidation. Computers

and Chemistry,1976, 1, 79.

566 Al Applications In Chemistry%

I

1

Carhart, R. E., Smith, D. H., Brown, H., & Djerassi, C. Applications of Artificial Intelligence for
Chemical Inference XVII. An Approach to Computer-Assisted Elucidation of Molecular
Structure. Journal of the American Chemical Society, 1975, 97, 5755.

Cheer, C, Smith, D. H., Djerassi, C, Tursch, 8., Braekman, J. C, & Daloze, D. Applications of
Artificial Intelligence for Chemical Inference XXI. Chemical Studies of Marine
Invertebrates XVII. The Computer-Assisted Identification of [+]-Palustrol in the Marine
Organism Cespitularia sp., aff. Subvirdis. Tetrahedron, 1976, 32, 1807.

Churchman, C. W., & Buchanan, B. G. On the Design of Inductive Systems: Some
Philosophical Problems. British Journal for the Philosophy of Science, 1969, 20,
311-323.

Cory, E. J., & Wipke, W. T. Computer assisted design of complex organic synthesis.

Science,

1969,166,178-192.

Davis, R. Applications of Meta-Levet Knowledge to the Construction, Maintenance and
Use of Large Knowledge Bases, Stanford Al Lab Memo AIM-283, Al Lab, Stanford
University, 1978. (a)

Davis, R. Applications of meta-level knowledge to the construction, maintenance, and
use of large knowledge bases. Doctoral dissertation (STAN-CS-76-552), Stanford
University, July 1976. (b)

Duffield, A. M., Robertson, A. V„ Djerassi, C, Buchanan, B. G. Sutherland, G. L„ Feigenbaum,
E. A., & Lederberg, J. Application of Artificial Intelligence for Chemical Inference 11.
Interpretationof Low Resolution Mass Spectra of Ketones. Journal of the American

Chemical Society, 91(11), 1969.

Engelmore, R. S., & Nii, H. P; A Knowledge-based System for the interpretation of
Protein X-ray Crystallographic Data, Stanford Heuristic Programming Project Rep.
HPP-77-2, Computer Science Dept., Stanford University, 1977.

Erman, L. D. Overview of the Hearsay Speech Understanding Research. Working Papers in
Speech Recognitlorv-IV—The HEARSAY II System, Carnegie-Mellon University,
Computer Science Speech Group, 1976.

Feigenbaum, E. A. , Engelmore, R. S., & Johnson, C. K. A Correlation Between
Crystallographic Computing and Artificial Intelligence Research. Acta
Crystallographica, 1977, A33, 13.

Feigenbaum, E. A. , & Buchanan, B. Heuristic DENDRAL: A Program for Generating
Explanatory Hypotheses in Organic Chemistry. In B. J. Kinariwala & F. F. Kuo (Eds.),
Proc. Hawaii Int. Conf. on System Sciences, University of Hawaii Press, 1 968.

Feigenbaum, E. A. , Machine Intelligence 6

Gelernter, H. L., Sanders, A. F., Larsen, D. L., Agarival, K. X., Boivie, R. H., Spritzer, G. A„ &
Searleman, J. E. Empirical explorations of SYNCHEM. Science, 1977,
197(4308), 1041-1049.

567References

L

Gund, P., Andose, J. D., & Rhodes, J. B Computer assisted analysis in drug research. In W. T.
Wipke & W. J. Howe (Eds.), Computer-assisted Organic Synthesis. Washington,
D. C: American Chemical Society, 1977. Pp. 179-187.

Hayes-Roth, F., & Lesser, V. R. Focus of attention in a distributed-lbgic speech
understanding system. Proc. of lEEE, Int. Conf. on ASSP, Philadelphia,Pa., 1976.

Hedrick, C. A computer program to learn production systems using a semantic net.
Doctoral dissertation, Graduate School of Industrial Admin., Carnegie-Mellon, July 1974.

Hendrickson ??

Hunt, E. B. Artificial Intelligence. New York: Academic Press, 1975.

Jurs, P. C. Chemical data interpretation using pattern recognition techniques. In W. T.
Wipke, S. R. Heller, R. J. Feldman, & E. Hyde, (Eds.), Computer Representation and
Manipulation of Chemical Information. New York: Wiley-lntersclence, 1974. Pp. 265-
-285.

Kernighan, B. W., & Ritchie, D. M. The C Programming Language. New Jersey: Prentice
Hall, 1978.

Lederberg, J. Computation of Molecular Formulas for Mass Spectrometry. San
Francisco: Holden-Day, 1964. (a)

Lederberg, J. DENDRAL-64: A System for Computer Construction, Enumeration and
Notation of Organic Molecules as Tree Structures and Cyclic Graphs. Part I.

Notational algorithm for tree structures. NASA

CR.57029,

1964. (b)

Lederberg, J. DENDRAL-64: Part If. Topology of cyclic graphs. NASA

CR.68898,

1965. (a)

Lederberg, J. Systematics of organic molecules, graph topology and Hamilton circuits.
A general outline of the DENDRAL system. NASA

CR-48899,

1965. (b)

Lederberg, J. Topological Mapping of Organic Molecules. Proc. Nat. Acad.

Sci.,

1965,
53(1), 134-139. (c)

Lederberg, J. DENDRAL-64i Part 111. Complete chemical graphs; embedding rings in
trees. TR,

NASA,

1969.

Lederberg, J., & Feigenbaum, E. A. Mechanization of Inductive Inference in Org^'c
Chemistry. In B. Kleinmuntz (Ed.), Formal Representations for Human Judgment. New
York: John Wiley, 1968.

Masinter, L, Sridharan, N. S., Carhart, R., & Smith, D. H. Application of Artificial Intelligence

for Chemical Inference XII: Exhaustive Generation of Cyclic and Acyclic Isomers.
Journal of the American Chemical Society, 1974, 96, 7702.

Minsky, M. Steps toward artificial Intelligence. In E. A. Feigenbaum &J. Feldman (Eds.),

Computers and Thought. New York: McGraw-Hill, 1963. Pp. 406-450.

568 Al Applications in Chemistry*

t

t

i

Mitchell, T. M. Version spaces: An approach to rule revision during rule induction. UCAI 5,
1977, 305-310. (Also Heuristic Programming Project Memo HPP-77-13, Computer
Science Dept., Stanford University, 1977.)

Mitchell, T. M., & Schwenzer, G. M. Applications of Al for chemical inference, XXV: A
computer program for automated empirical 13C NMR rule formation. Organic Magnetic
Resonance, 1978, 11(8), 378.

Morrill, X., Smith, D. H., & Djerassi, C. Computer-assisted Analysis of the High Resolution
Mass Spectra of Macrolide Antibiotics. Organic Mass Spectrometry, 1977, XXX,

Nii, H. P., & Aiello, N. AGE (Attempt to Generalize): Profile of the AGE-0 System,
Heuristic Programming Project Working Paper HPP-78-5, Computer Science Dept.,
Stanford University, June 1978.

Samuel, A. L. Some studies of machine learning using the game of checkers. In E. A.
Feigenbaum & J. Feldman (Eds.), Computers and Thought. New York:

McGraw-Hill,

1963. Pp. 71-106.

Schroll, G., Duffield, A. M., Djerassi, C, Buchanan, B. G. Sutherland, G. L., Feigenbaum, E. A., &
Lederberg, J. Application of Artificial Intelligence for Chemical Inference 111. Aliphatic
Ethers Diagnosed by Their Low Resolution Mass Spectra and NMR Data. Journal of the

American Chemical Society, 1969, 91, 7440.

Sheikh, Y. M., Buchs, A.,

Delfino,

A. 8., Schroll, G. Duffield, A. M., Djerassi, C, Buchanan, 8.,
Sutherland, G. L., Feigenbaum, E. A., & Lederberg, J. Applications of Artificial
Intelligence for Chemical Inference V. An Approach to the Computer Generation of

Cyclic Structures. Differentiation Between All the Possible Isomeric Ketones of
Composition, C6HIOO. Organic Mass Spectrometry, 1970, 4, 493.

Simon, H., & Lea, G: Problem solving and rule induction: A unified view (rev.). CMU
Complex Information Processing Working Paper 227, Carnegie-Mellon,June 1973.

Smith, D. H. Applications of Artificial Intelligence for Chemical Inference. XV. Constructive
Graph Labelling Applied to Chemical Problems. Chlorinated Hydrocarbons. Analytical
Chemistry, 1975,47, 1176.

Smith, D. H., Buchanan, B. G., Engelmore, R. S., Duffield, A. M., Yeo, A., Feigenbaum, E. A.,
Lederberg, J., & Djerassi, C. Applications of Artificial Intelligence for Chemical
Inference VIII. An Approach to the Computer Interpretationof the High Resolution Mass
Spectra of Complex Molecules. Structure Elucidation of Estrogenic Steroids. Journal
of the American Chemical Society, 1972, 94, 5962.

Smith, D. H., Buchanan, B. G., Engelmore, R. S., Adlercreutz, H. & Djerassi, C. Applications of
Artificial Intelligence for Chemical Inference IX. Analysis of Mixtures Without Prior
Separation as illustrated for Estrogens. Journal of the American Chemical Society
1973, 95, 6078.

Smith, D. H., & Carhart, R. E. Applications of Artificial Intelligence for Chemical Inference
XXIV. Structural isomerismof Mono- and Sesquiterpenoid Skeleton 1,2-. Tetrahedron,
1976, 32, 2513.

References

569

i.

Smith, D. H., & Carhart, R. E. Structure Elucidation Based on Computer Analysis of High and
Low Resolution Mass Spectral Data. In M. L. Gross (Ed.), High Performance Mass
Spectrometry: Chemical Applications. Wash., D. C: American Chemical Society,
1978. P. 326.

Smith, D. H., Konopelski, J. P., & Djerassi, C. Applications of Artificial Intelligence for
Chemical Inference. XIX. Computer Generation of lon Structures. Organic Mass
Spectrometry, 1976, 11, 86.

Smith, R. G., Mitchell, T. M., Chestek, R. A., Buchanan, B. G. A model for learning systems.
UCAI 5, 1977, 338-343. (Also Heuristic Programming Project Memo HPP-77-14,
Computer Science Dept., Stanford University, 1977.)

Smith, R. L. Artificial Intelligence in CAI. Unpublished working paper,

IMSSS,

Stanford
University, 1976.

Streitwieser, A., & Heathcock, C. H. Introduction to Organic Chemistry. New York:
MacMillan, 1976.

Varkony, T. H., Carhart, R. E., & Smith, D. H. Computer Assisted Structure Elucidation,
Ranking of Candidate Structures, Based on Comparison Between Predicted and
Observed Mass Spectra. Paper presented at the ASMS meeting, Washington, D.C.,
1977.

Waterman, D. A. Generalization learning techniquesfor automating the learning of heuristics.
Artificial Intelligence, 1, 1970, 121-170.

Waterman, D. A. Adaptive production systems. Complex Information Processing Working
Paper 285, Dept. of Psychology, Carnegie-Mellon, December 1974.

Winston, P. H. Learning structural descriptionsfrom examples. Doctoral dissertation
(MIT AI-TR-231), MIT, September 1970. (a)

Wipke, W. T., Braun, H., Smith, G., Choplin, F., & Sieber, W. SECS-Simulation and evaluation
of chemical synthesis: Strategy and planning. In W. T. Wipke & W. J. House (Eds.),
Computer-assisted Organic Synthesis. Washington D. C: American Chemical
Society, 1977. Pp. 97-127.

570 Al Applications in Chemistry%

i

Index

13C-NMR 544 cyclic molecules 524, 531

acyclic molecular structures 527
acyclic molecules 524, 531
AGE 547
ALCHEM 558
aliphatic amines 537

Davis, R. 561
DENDRAL 525-527-530-531,536,543
di-keto androstanes 544
domain rules 561

analysis, molecular structures 1-524-627
analytic chemistry 553
AND/OR tree 555
atom migration 536
attribute-value pairs 541
automatic rule formation 536
automatic theory formation 636

backtracking 543
BADLIST 528
best-first procedure 663
blackboard 547-553
Brown, H. 524

canonical forms 1
Carhart, Ray 534
CF, certainty factors 551
chemical applications 1-565
chemical reactions 555
chemical synthesis 1
combinatorial explosion 523, 556, 567,

562
combinatorics 1-524
completeness 561
CONGEN 527, 531-536
constraint generator 527-531
constraint satisfaction 524, 545-553
constraints 524-527-531-536,547
constraints, bond fragmentations 538
constraints, combinations 533
constraints, semantic 537
Corey, E. J. 555
cost 562
CRYSALIS 545

EDITSTRUC, interactive structure
editor 532

electron density map 545
electron trees 534
evaluation function 563
event classes 549
event list 548
event-driven control structure 549
EXAMINE 533
explanation 540
explanation,mass spectral data 540

flexibility 1, 538, 550
fragmentation 525, 536-545 .
fragmentations 525

Gelernter 561
Gelernter, H. 555
generality,of rules for molecular

processes 539
generate and test 552
GOODLIST 528
GOODLIST INTERPRETER 532
graphical representations 1
graphics 560
Gray, Neil 533

half-order theory 538
HEARSAY-II 547
heuristic reasoning, structural

elucidation 527

571Index

L

heuristic reasoning, structure
elucidation 525

heuristic search 541,562
heuristics 562
hypothesis formation 545, 546
hypothesis spaces 523

I/O pairs 537
imbedding algorithm 531
induction programs 536
induction/inference,in mass spectral

processes 537
Inference 549
instances, training 537
interactive constraint satisfaction 533
interactive goal definition 561
interactive knowledge acquisition 636, 568
interactive transfer of expertise 536
interestingness 538, 556
interestingness, synthesis 555
INTSUM, interpretation and data summary

program 540, 542
Isomer enumeration 533
isomers 529

knowledge base, chemical syntheis 567
knowledge source 553
knowledge sources 546, 647
KS sequence 649

learning strategies 538
Lederberg, J. 524
LHASA, Logic & Heuristics Applied to

Synthetic Analysis 555
library of reactions 558
LISP 548

"nan/machine interactions, chemical
synthesis 556

manipulationstatements 558

mass spectral process 525
mass spectrometry 524-527-531-536
matching cycle, example of 552
means-end analysis 560
META-DENDRAL 527-531,536
meta-rules 561
meta-rules, CHRYSALIS 550
migration 525
model building 560
modular system 647
molecular fragments 524-527, 531
molecular structures 1 -524
molecular weight 539
mono-keto androstanes 544
multiple match 562
MYCIN 550, 561

negative evidence 539
Nourse, Jim 533

opportunistic problem solving 549
organic synthesis program 555

pattern matching 558
plan-generate-test 540
plausible hypotheses 523
positive evidence 539
power/generality trade-off 561
problem space 562
production rules 536, 547, 557
protein x-ray crystallography 545
pruning 533

REACT, Interactive structure elucidation
program 534

reaction representations 558
representation of formal knowledge 548
representation of informal knowledge 548
representation of knowledge, mass

spectrometry 536

572

Al Applications in Chemistry

representationof synthetic reaction
routes 555

synthesis tree 555
synthesis, molecular structures 1-524
synthetic chemistry 555-565representation, molecular structures 1

reverse chemical reactions 557
rule-basedcontrol 550
RULEGEN 539 target structure 555, 557

task rules 549RULEGEN, rule generation 540-542
RULEMOD 540 topologyof molecules 522

transforms 557, 561RULEMOD, rule modification 542
rules, mass spectrometry 527-631, 536-

-545
transforms, application 560
tri-keto androstanes 544
triggering 543, 549

search strategy 563
SECS, Simulation and Evaluation of Chemical

Synthesis 555
version space 543

semantic model 537
simulation of laboratoryreactions 534 Wipke, W. T. 555
situation-action rules 548 Wisswesser Linear Notation 562

working backwards, chemicalslots, chemical transforms 561
specialization 539 synthesis 557
specialization,of fragmentation rules 539 working

forward,

chemical synthesis 557
statistical learning 537
stereochemistry 522, 533, 582
stereoisomer generation 533 xray crystallography 524
strategies, applying transforms 560
strategy rules 561
strategy, CHRYSALIS 549 zero-order theory, mass spectrometry 538
structure determination 1
structure elucidation 1, 524-527, 531-

-536-553
structure generationalgorithm 631
structure generator 527-631
subgoal selection function 563
subgraphs 551
substructure keys 568
substructure search 533
substructure specifications 532
superatoms 531t
symbolic reasoning, chemistry 1
SYNCHEM 561
SYNCHEM, Synthetic Chemistry 555
SYNCHEM2 562
SYNCOM 559

I

Applications-oriented AI Research

Part 3: Medicine

574

i

■■

i
i

I

Al Applications in Medicine

Table of Contents

A. Overview of Artificial Intelligence Applications in Medicine 575
B. MYCIN 581
C. CASNET 589
D. INTERNIST " 593
E. Present Illness Program - PIP 598
F. Digitalis Advisors 682
G. IRIS . 685

References 618

Index 612

i

"

.

I

I

1

A. Overview of Artificial IntelligenceApplications in Medicine

There are two main areas where Al techniques are being used in medicine. One area is
the applicationof pattern recognition and scene analysis techniques to the interpretationof
x-rays; the other is medical decision making where the task Is the construction of
consultation programs for various medical domains. It is the second area that is the subject
of this section.

The motivation for the development of expert computer-based medical consultation
systems' is twofold. First, there are obvious benefits to society from providing reliable and
thorough diagnostic services—perhaps even at a reduced cost. It has been observed
(Ledley & Lusted, 1959) that most of the errors made by clinicians are errors of omission,
that Is, they did not consider enough diseases. A computer program could be designed to
exhaustively consider all of the diseases in its domain. Furthermore, there are some tasks
that computers can perform more rapidly and accurately, such as calculating doses of
medicines, particularly In cases where dosage is critical and many factors must be taken into
account in the calculation (as with digitalis). There are also some tasks that physicians are
notoriously poor at performing and that are routine enough for the computer to do, such as
the prescription of anti-microbial therapy.

The second motivation for developmentof these systems stems from current interests
in computer science. Clinical medicine has been a very fertile area for the study of cognitive
processes ever since the diagnostic process has been studied extensively(Jacquez, 1963).

There is a highly developed medical taxonomy; a large, relatively well-organized knowledge
base; and a large number of experts in the domain. Furthermore, the type of problem solving
that occurs in the domain is repetitive. These attributes reflect some of the prerequisites of
the domain for a developing field of Al known as knowledge engineering. This field takes Al
beyond the stage of "toy" problems to confront large,real-world problems.

: Computer-based consultation brings with it many formidable social, psychological, and
ethical problems that must be addressed by the system builders. These problems include:
validating the systems, exporting them to hospitals and clinics, getting physicians and
patients to accept them, and deciding the responsibility for decisions made by these
systems.

In the following sections, aspects of the diagnostic process and medical decision
making wilt be discussed, as well as a number of Al Issues related to the representation and
manipulation of medical knowledge.

Medical Decision Making

There are three main aspects of medical decision making: data gathering, diagnosis,

and treatment recommendation. Data gathering is concerned with obtaining the patient

history and clinical and laboratorydata. The clinical data consist of symptoms, which are the

subjective sensations reported by the patient-such as headache, chest pain, etc.-and
signs, which are objective and observable by the physician (Feinstein, 1967). Manifestation

refers to any sign, symptom, or finding. Laboratory results generally are referred to as
findings. Diagnosis is the process of using this data to determine the Illness. The three
aspects are not independent; disease hypotheses are used to direct further information

%

576

Al Applications in Medicine

i

i

i

J

gathering, while treatment recommendation depends on the diagnosis and generallyrequires
more information gathering. Often, the decision to do a test includes a physician's estimate
of the cost, both in terms of money and danger to the patient, which are weighed against the
va|ue of the information gained. Gathering information, diagnosing the disease, and deciding
on a treatment regimen constitute a consultation. Figure 1 illustrates this process in relation
to the course of the disease.

UNTREATED

PATHO-
CURRENT »j PROGNOSIS

GENESIS ILLNESS
TREATED

future
IOW-

Figure 1. Consultation process depicting current state
of medical knowledge.

This characterization of a consultation highlights the current state of medical knowledge.
Etiology refers to the ultimate causes of the disease; pathogenesis refers to the way in
which the disease developed from its causes. A consultation proceeds by determining the
etiology. A treatment is then formulated for the identified diseases and their causes.

Often,

however, the medical knowledge is incomplete and it is not possible to determine the causes
of a disease. In these cases, treatments must be based only on the knowledge of the
symptoms or characteristics of the diseases. Some diseases are very well understood and
knowledge about them is based on various kinds of models and knowledge about specific
mechanisms.. Other diseases are not very well understood and knowledge about them is only
associational; for example, treatment is prescribed on the basis of symptoms of closely
associated diseases for which treatments are known.

During a consultation the physician performs at least two mental processes: reasoning
and judgment (Ledley & Lusted, 1959). Reasoning Involves making clinical decisions using
various formal and logical techniques. This process Is evident primarily in the diagnosis
phase. Judgement has come to mean the use of various "Intangibles" such as general
feelings about the case and past clinical experience, which help the physician to make
clinical decisions. These are evident during prognosis and therapy recommendations.
Artificial intelligence has attempted to model both of these processes.

There are, however, some aspects of consultations that computers cannot do, such as
the physical examination. The physician gains much firsthand Information from general
appearance, facial expressions, etc., that is inaccessible to the computer. The design of
computer consultation systems must, therefore, take this factor into account and offer
mechanisms for the representation of these types of information secondhand.

577A Overview of Artificial IntelligenceApplications in Medicine

History of Computers in Medicine

The use of computers in medical decision making began in the early 1 980s with the
implementation of programs that performed well-known types of statistical analyses. These
programs focused on the diagnosis aspect of the consultation: They accepted a set of
findings and selected one disease from a fixed set, using methods such as pattern
recognition through discriminant functions, Bayesian decision theory, and decision tree
techniques (Croft, 1972; Nordyke, Kulikowskl, & Kulikowski, 1971). Slightly more complex
programs performed "sequential diagnosis." Here, when there is not enough information to
make a reliable diagnosis, the next patient test (to get more information) is determined by a
strategy that selects the "best" test based on three factors: the cost of the test, the
danger to the patient, and the amounts of discriminating Information needed and made
available by the test.

The appeal of using statistical methods is that the resulting decisions are "optimal"
according to specified criteria. Unfortunately, these statistical systems proved
unsatisfactory. The mathematics that these systems have been based upon have assumed
that the patient has only one disease and that the data Is not erroneous. More
fundamentally, certain assumptions and simplifications concerning the independence and
mutual exclusivity of various disease states that were made In order to make the statistical
techniques practical were found to be unjustified. Furthermore, many prior and conditional
probabilities required for complete analysis were simply not available.

Since the early 1970s there has been an increasing application of Al techniques to
performing medical decision making. Some of the

formalisms,

techniques, and languages
developed in Al were directly applicable to medicine

before,

but the new understanding of
the nature of the task called for new ways of representing knowledge and reasoning. For
example, the classical Al problem-solving techniques of state-space search and theorem
proving (see chapter

Search,

Search) were not directly applicable. Consider a simple

application of state-space search to the planning of a treatment. If one assumes that* the
"initial state" is the diseased patient, that the final state is the "healthy patient, and that
the "operators" are various drugs, physical therapies, surgical procedures, etc., it would
appear that simple search would find a path between the initial and final states. But there

are two fundamental problems. First, the initial state, the disease of the patient, is rarely

known with certainty.

Second,

the application of an operator—i.e., a treatment—is not
guaranteed to result in an expectedstate. In order to deal with these problems, methods for

representing Inexact knowledge and for performing plausible reasoning have been
developed in each of the consultation systems described below.

From the standpoint of Al, medical diagnosis is a hypothesis formation (see article C4)

Problem. The diagnosis task is to use the clinical findings to form a consistent set of disease

hypotheses (not to use findings to select one disease from a fixed set of possible diseases;.

These hypothesesare typically related to one another in various ways. Each existing system

exhibits a different approach to this hypothesis formation problem.

The State of the Art

The state of the art in computer-based medical decision maki"9'8
I_r1_r%r

he î
n
f
t
ff f^"fPrograms described in the following articles. These programs are MYCIN

i&nortiiTTe, iaro;,

578

Al Applications in Medicine

I

i

1

INTERNIST (Pople, 1975), CASNET/GLAUCOMA (Weiss, Kulikowski, &

Safir,

1978), PIP
(Szolovits & Pauker, 1978), IRIS (Trigoboff & Kulikowski, 1977), and the digitalis advisors
(Silverman, 1974;

Swartout,

1977b). There are now several other programs under
development that use the techniques and ideas developed in the above systems. These
include PUFF (Feigenbaum, 1977), a pulmonary function program, HODGKINS (Safrans,
Desforges, & Tsichlis, 1976), a system for performing diagnostic planning for Hodgkins
disease, and HEAD-MED (Heiser, 1977, 1978), a psychopharmacology advisor. During the
development of all these programs, certain issues arose concerning the construction of the
programs and their acceptance by the medical community. The major issues and the ways in
which these were addressed by the individual systems are also described below.

Representation of knowledge. Two distinct types of medical knowledge must be
represented: (a) general knowledge of diseases, manifestations, causal mechanisms, etc.,
and (b) specific knowledge about the patient, the current medical history, the current
therapies, etc. The usual representation formalisms of Al—semantic nets (see article
Representation.B2), production rules (see article Represent.ation.B3), frames (see article
Representstion.B7), and predicate calculus (see article Representetion.B4)— are not directly
applicable because of the inexact nature of medical knowledge. In all of the consultation
systems that have been developed, these representations have been augmented, for
example,'using a numerical way of expressing strength of belief or strength of association.
For example, In MYCIN, the medical knowledge is represented as a set of production rules
augmented by "certainty factors." These certainty factors express the strength of belief in
the conclusion of a rule, given that all of the premises are true. CASNET uses a causal
network representation (basically a semantic network with the one relation, CAUSES) where
each CAUSES link is qualified by a number that represents the strength of causality. In
INTERNIST, a taxonomy of diseases is stored as a huge tree with each node representing a
disease. Associated with each disease node is a list of manifestations, with numerical
weights reflecting the strength of association between the disease and the manifestation.
In PIP, the frame formalism is augmented by numbers that reflect both the strength of belief
in a slot filler and the degree to which the frame itself applies to this patient. In

IRIS,

where
the semantic net and production rule formalisms have been combined, a facility for
Incorporating an arbitrary representation of strength of belief has been included. Finally, the
procedural representation is used in the Digitalis Advisors; it contains a mathematical model
of the action of digitalis.

Clinical reasoning. Clinical reasoning is based on the ways different pieces of
evidence for particular hypotheses are combined. Each system has a different approach to
this problem but most employ the technique of thresholding; if the numerical score of a
hypothesis exceeds a certain pre-set threshold (defined by the expert physician), then the
hypothesis is believed to be true. The clinical reasoning of MYCIN involves determining
parameters (e.g., the infections and causative organisms of a patient) using production rules.
The premises of a rule are considered true if the combined value of the associated certainty
factors exceeds a predefined threshhold. If several rules contribute to a conclusion about a
parameter, then their certainty factors are functionally combined to form a composite
certainty factor for this conclusion. These confidence-factor combining functions are based
on probability theory. In CASNET, a status measure is associated with each state in the
causal network. Weights are propagated both In the forward and backward direction
depending on disease causality. A state is considered "confirmed" if its status exceeds a
specified threshhold. In INTERNIST, disease hypotheses are scored by a procedure that

A Overview of Artificial Intelligence Applications in Medicine 579

1.

takes account of the strength of association among: (a) the manifestations exhibited by the
patient and the disease, (b) the manifestations associated with the disease that are not
present in the patient, (c) and the confirmed diseases causallyrelated to this one. Disease
hypotheses are ranked, and the top-ranked diseases are Investigated furthef. When the
difference between the scores of the top two disease hypotheses reaches a predefined
criterion, the top ranking disease is confirmed. PIP combines two different methods of
reasoning: categorical and probabilistic. Categorical decisions are based on logical criteria
rather that numerical values. The probabilistic reasoning involves scoring the disease frames.

A frame can be confirmed either on logical or probabilistic criteria. In IRIS, an attempt is
made to confirm nodes of a semantic net as being true for the patient. Information is passed
between the nodes of the semantic net via sets of production rules associated with the
links. These production rules can encode both logical and probabilistic decisions.

Explanation and justification. The explanation and the justification of a system's line
of reasoning are important factors for the acceptance of consultation systems by physicians.
Explanation Involves showing the user the line of reasoning used in making a particular
diagnosis; justification is concerned with the medical accuracy and reliability of the
knowledge and the reasoning strategies used.

Only two systems currently address the Issue of explanation. MYCIN explains a
diagnosis by printing out an English version of the chain of rules used. More complex
explanation facilities are provided by TEIRESIAS (Davis, 1977), an explanation and
knowledge acquisition system developedin the context of MYCIN. The OWL Digitalis Advisor
provides English explanations of its reasoning that are generated directly from the OWL
code. The detail of the explanationcan be controlled by the program.

Both INTERNIST and CASNET are able to summarize the consultation by displaying scores of
the hypotheses and statuses of states; however, they are unable to explain the methods
they used to arrive at these scores. .

The issue of justification is a complex one. Both CASNET and MYCIN can cite
references to the research literature in support of diagnoses and treatment
recommendations. CASNET Is able to provide alternative recommendations based on differing
expert opinions. At the heart of the justification issue is the accuracy and reliability of the
expert's knowledge and whether this knowledge has been accurately captured in the
representation formalism. Often medical experts have differing opinions, and It is not clear
whether a consensus should be sought or whether the different opinions should ail be
represented. CASNET and MYCIN have been developedwith the collaboration of groups of
experts, and the rules typically represent a general consensus of opinion. The other systems
were developedwith one main expert; so consensus was not an Issue.

Validation. Just as the various instruments and drugs used by physicians must be
validated, so must consultation programs. So

far,

CASNET and MYCIN have undergone
relatively extensive clinical trials and have been rated as "expert" in their respective

domains by human experts. INTERNIST has yet to undergo formal clinical trials, but it Is

informally rated as an expert in internal medicine. The Digitalis Therapy Advisors have
Performed well in limited trials.

Acquisition of knowledge. Knowledge acquisition Is the transfer of the experts'

580 Ai Applications in Medicine%

i

I

J

knowledge and expertise to the program. Currently the only successful way of doing this is
through a knowledgeable intermediary. TEIRESIAS was an attempt to let the expert
communicate directly with the consultation program; It took the computer scientist out of the
chain. But it appears that the current state of the art of knowledge acquisition does not yet
permit this facility.

Summary

Despite the extensive work that has been done, none of these systems is in routine
clinical use. Physicians have not for the most part accepted them. The main reason is that
they have yet to satisfy the "indispensability" criterion: They are not indispensable to the
practice of medicine and physicians perform adequately without them. The only Al program
that is in routine medical use is PUFF, a pulmonary function program, which is used because it
saves the physician a lot of time. Constructed using EMYCIN (the MYCIN system with the
knowledge of infectious diseases removed), PUFF uses a set of about 55 rules about
pulmonary dysfunction. The program suggests treatment recommendations that can be
overridden by the physician.

In order for Al programs to make a significant impact on health care, at least in the
short term, It appears that PUFF's example should be followed. The ingredients for a
successful application in medicine seem to be (a) a careful choice of the medical problem
and (b) the cooperation of Interested experts. The domain must be narrow and relatively
self-contained; the use of the computer should aid, not replace, the physician; and the task
should be one that the physician either cannot do or is willing to let a computer do.

To summarize, the main focuses of activity in the area of medical decision making today
are: knowledge engineering, the acquisition of knowledge from experts; knowledge
representation, for building and maintaining the large medical knowledge bases; strategy
design, for reasoning with the medical knowledge; and program designs that feature
explanation capabilities,of their reasoning to users.

References

See AIM 1975-1978, Davis, Buchanan, & Shortllffe 1977, Croft 1972, Feigenbaum
1977, Felnstein 1967, Gorry & Barnett 1968, Heiser, 1977 1978, Jacquez 1963, Ledley &
Lusted 1959, Nordyke, Kulikowski, & Kulikowski 1971, Safrans, Desforges, & Tsichlis 1976,
Weiss, Kulikowski, & Safir 1977, and Weiss, Kulikowski, & Safir 1978.

581MYCINB

k

The MYCIN system Shortliffe, 1976; Davis, 1977 was designed to provide consultative
advice on diagnosis and therapy for infectious diseases. Such advice is often required in

hospital care because the attending physician may not be an expert on infectidus diseases

that show themselves during a period of hospitalization-as,for example, when a cardiology
patient develops an infection after heart surgery. Time considerations compound the problem.

A specimen (blood, urine, etc.) from a patient can show some early evidence of bacterial
growth within 12 hours, but generally it takes 24 to 48 hours (or more) for positrve

identification. The physician must therefore often decide In the absence of complete

information whether or not to start treatment and what drugs to use if treatment is required.

Both of these may be difficult questions.

The trace that follows shows the initial and final parts of a sample interaction between
a physician and MYCIN (italicized comments provide additional commentary but are not part of

the actual dialogue). MYCIN, in effect, "interviews" the doctor about his patient, collecting

information from which it Infers the diagnosis and selects an appropriate therapy.

-PATIENT-1
1) Patient's name: (first-last)
** FRED SMITH

MYCIN collects some background data about the patient.

2) Sex:
** MALE
3) Age:
** 55
4) Have you been able to obtain positive cultures from a site at which

Fred Smith has an Infection?
** YES

INFECTION-1
5) What is the infection?
** PRIMARY-BACTEREMIA .
6) Please give the date and approximate time when signs or symptoms ot

the primary-bacteremia (INFECTION-1) first appeared, (mo/da/yr;

** MAY 5 1975
The most recent positiveculture associated with the primary-bacteremia
(INFECTION-1) will be referred to as:

CULTURE-1
7) From what site was the specimen for CULTURE-1 taken7
** BLOOD

/■/Mii-rnQF.-n

8) Please give the date and time when this blood culture (CULTUKt

i;

was obtained, (mo/da/yr)
** MAY 9, 1975 11
The first significant organismfrom this blood culture (CULiUMc-u

will be referred to as:
-ORGANISM-1

9) Enter the identity of ORGANISM-1:
** UNKNOWN

B. MYCIN

582 Al Applications in Medicine

l

i

Typically the identity of the organism is not known and hence must be inferred by
MYCIN using various other pieces of laboratory and clinical information. MYCIN
proceeds to ask questions that could help to determine the identity of the organism.

10) Is ORGANISM-1 a rod or coccus (etc.):

** ROD
1 1) The gram stain of ORGANISM-1 :

** GRAMNEG
1 2) Have there been POSITIVE cultures from sites which are NOT

associated with Infections about which you are seeking
advice?

** NO
13) Did ORGANISM-1 grow aerobically?
** YES (.8)
14) Did ORGANISM-1 grow anaerobically?
** YES
15) What is the suspected portalof entryof ORGANISM-1

into this sterile site?
** Gl (.8)

More questions follow, to gather sufficient information to infer possible identities of the
infecting organisms.

My therapy recommendation will be based on the following probable
infection(s) and potential causative organism(s):

INFECTION-1 Is PRIMARY-BACTEREMIA

<ltem 1> The identityof ORGANISM-1 may be PSEUDOMONAS-AERUGINOSA
<ltem 2> The identityof ORGANISM-1 may be KLEBSIELLA-PNEUMONIAE
<ltem 3> The identityof ORGANISM-1 may be E.COLI
<ltem 4> The identityof ORGANISM-1 may be BACTEROIDES-FRAGILIS
<ltem 5> The Identityof ORGANISM-1 may be ENTEROBACTER -
<ltem 6> The identityof ORGANISM-1 may be PROTEUS-NON-MIRABILIS

46) On a scale of 0 to 4, where higher numbers indicate increasing
severity how would you rate Fred Smith 's degreeof sickness?

47) Does Fred Smith have a clinically significant allergic reaction to any
antimicrobial agent?

** NO
48) Fred Smith 's weight in kilograms (or <number> POUNDS):
** 70

Note that 2 drugs cover for 6 potential organisms.

[Rec 1] My preferred therapy recommendation is as follows:
In order to cover for Items <1 2 3 5 6>:

** 3

583B MYCIN

k

Give: GENTAMICIN
Dose: 1 19 mg (1.7 mg/kg) qBh IV [or IM] for 10 days
Comments: Modify dose in renal failure

In order to cover for Item <4>:
Give: CLINDAMYCIN
Dose: 595 mg (8.5 mg/kg) q6h IV [or IM] for 14 days
Comments: If diarrhea or other Gl symptoms develop,patient

should be evaluated for possible pseudomembranouscolitis.

Do you wish to see the next choice therapy?

Alternative choices are available.

** YES
Which, if any, of the above drugs do you wish eliminated from consideration?
** CLINDAMYCIN

[Rec 2] Next best therapy recommendation:
In order to cover for Items <2 3 4 5 6>:

Give: CHLORAMPHENICOL
Dose: 1 gm (15 mg/kg) q6h IV for 14 days
Comments: Monitor patient ' s white count

In order to cover for Item <1>:
Give: GENTAMICIN
Dose: 1 19 mg (1 .7 mg/kg) qBh IV [or IM] for 10 days
Comments: Modify dose in renal failure

Knowledge Base Organization

The medical knowledge used by MYCIN is encoded as production rules article

Representation^) of the sort shown in Figure 1 below. The rules are stored "iternaHy in tne

INTERLISP form shown, from which the English version is generated. Each rule s a singe

"chunk" of domain-specific information indicating an action (in this case a conctus on; mat is

justified if the conditions specified in the premise are fulfilled. Since the rule uses a
vocabulary of concepts common to the domain, it forms, by

itself,

a comprer,ens>D

statement of some piece of domain knowledge. As will become clear, this characteristic is

useful in many ways.

Each rule is highly stylized-with the if/then format and the specified!.et of ay "able
primitives. While the LISP form of each is executable code (the premise, Iri act is simp y

EVALuated by LISP to test its truth; and the action, EVALuated to mafl
e.fe^'U

e
Si0

hn^ *£j
tightly structured form makes it possible to examine the rules as well as "*««*" tnOTI _For
example, the rules can be translated Into a readable English format as in 1 . This

translation capability has been used in MYCIN to explain the Programs In j£n«» to "*
expert. The ability to explain a line of reasoning leading to a cone uston and to just fy why

the program is asking a particular question in a given case is important "£^ *'*"?*
likely to accept the recommendations of a system that can explain its rationale for making

them. This ability is expanded in the TEIRESIAS article CB.

"

%

584 Al Applications in Medicine

i

I

i

RULEOSB

If 1) the infection is primary-bacteremia, and
2) the site of the culture 1s one of the sterile sites, and
3) the suspected portal of entry of the organism is the gastro-

intestinal tract,
then there is suggestive evidence (.7) that the identity of the organism is

bacteroldes.
(J AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)

(MEMBF CNTXT SITE STERILESITES)
SAME CNTXT PORTAL GI))

(CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7)

PREMISE

ACTION
Figure 1. MYCIN production rule.

The current knowledge base contains 450 such rules that enable MYCIN to diagnose and
prescribe therapy for bacteremia (infections of the blood) and meningitis.

Note that the rules are judgmental, that is, they make inexact inferences on a confidence
scale of -1.0 to 1.0. -1.0 represents complete confidence that a proposition is

false,

1.0
represents complete confidence It is true. In the case of the above rule, for instance, the
evidence cited in the premise is enough to assert the conclusion shown with a mild degree of
confidence: 0.7 to 1.0. This number is called the "certainty factor," or CF, and embodies a
model of co/ifirmation described in Shortliffe, 1976. MYCIN uses CFs rather than other, more
standard statistical measures to decide between alternatives during a consultation session.
Standard statistical measures were rejected in favor of CFs because experience with
clinicians had shown that they do not use the information comparable to implemented
standard statistical methods. However, the concept of CFs did seem to fit the clinicians'
reasoning patterns, i.e. their judgments of how they weighted

factors,

strong or weak, in
decision making.

The CFs are a measurement of the association between the premise and action clauses
of each rule. When a production rule succeeds because its premise clauses are true in the
current context, the CFs of the component clauses that indicate how strongly each clause is
believed are combined, and this combined CF is used to modify the CF specified in the action
clauses. Thus, if the premise was only weakly believed (low, positive total CF) then any
conclusions that the rule might make would be modified (reduced) to reflect this weak belief
that the patient was in a particular situation. Questions 13 and 15 in the transcript above
are examples of incomplete confidence on the part of the user. In addition, since the
conclusion of one rule may be the premise of another, reasoning from premises with less-
than-complete confidence factors is commonplace.

The premise of each rule is a Boolean combination of one or more clauses, each of which
is constructed from a predicate function with an associative triple (attribute, object, value) as
its argument. Thus, each premise clause typically has the following four components:

<predicate function) <object> <attribute> <value>

For example, the second clause in ruleOSO, above, is:

The site of the culture Is one of the sterile sites

B MYCIN 585

a

or, in INTERLISP:

(MEMBF CNTXT SITE STERILESITES) | | | | Predicate Object Attribute Value

MEMBF Is a predicate, and the triple says that the site of the current object (an
organism, in this case) is a member of the class of sterile sites. There is a standardized set
of some 24 domain-independent predicate functions (e.g.,

SAME,

KNOWN, DEFINITE^ and a
range of domain-specific attributes (e.g., IDENTITY, SITE), objects (e.g., ORGANISM,
CULTURE), and associated values (e.g., E.COLI, BLOOD). These form the "vocabulary" of
conceptual primitives available for use when constructing rules.

A rule premise is always a conjunction of clauses, but It may contain arbitrarily complex
conjunctions or disjunctions nested within each clause. (Instead of writing rules whose
premise would be a disjunction of clauses, a separate rule is written for each clause.) The
action part indicates one or more conclusions that can be drawn if the premises are
satisfied, making the rules purely inferential.

Medical facts about the patient (see Figure 3 below) are represented as 4-tuples
made up of an associative triple and its current CF. Positive CFs indicate a predominance of
evidence confirming a hypothesis; negative CFs indicate predominance of disconfirming
evidence.

(IDENT ORGANISM-2 KLEBSIELLA .25)
(IDENT ORGANISM-2 E.COLI .73)
(SENSITIVS ORGANISM-1 PENICILLIN -1.0)
(IMMUNOSUPPRESSED PATIENT- 1 YES 1.0)

Figure 3. MYCIN 4-tuple.
MYCIN'S model of inexact reasoning permits the coexistence of several plausible values for a
single attribute, if this is suggested by the evidence. For example, after attempting to
deduce the Identity (IDENT) of an organism, MYCIN may have concluded (correctly) that there
is evidence of both E.coli and Klebsiella.

To summarize, there are two major forms of knowledge representation in use in the
performance program: (a) the attributes, objects, and values—which form a vocabulary of
domain-specific conceptual primitives, and (b) the inference rules expressed in terms of
these primitives.

The Inference Engine

In MYCIN, rules are invoked in a simple backward-chaining fashion that produces an
exhaustive depth-first search of an AND/OR goal tree (see article Search.Problem.Rßduction).
Assume that the program is attempting to determine the identity of an infecting organism. It
retrieves all the rules that make a conclusion about the topic (i.e., that mention the identity of
bacteria in their action) and invokes each one in turn, evaluating each premise to see if the
conditions specified have been met. For the sample rule above, this process would begin
with determining the type of infection. Since the type of the infection is unknown, it is set up

is a subgoal and the process recurs.

586 Al Applications in Medicine%

i

I

The search is thus depth-first (because each premise condition is thoroughly explored
in turn); the tree that is sprouted is an and/or goal tree (because rules may have OR
conditions in their premise); and the search Is exhaustive (because the rules are inexact; so
that even if one succeeds, it was deemed a wisely conservative strategy to continue to
collect all evidence about the subgoal.

The subgoal that is set up is a generalizedform of the original goal. Thus, for the first
clause in the rule ("the infection is primary-bacteremia"), the subgoal set up is "determine
the type of infection." The subgoal is therefore always of the form "determine the value of
attribute" rather than "determine whether the attribute Is equal to <value>." By setting up the
generalized*goal of collecting all evidence about an attribute, the performance program
effectively exhausts each subject as it is encountered, and thus tends to group together all
questions about a given topic. This feature results in a system that displays a much more
focused, methodical approach to the task, which is a distinct advantage where human
engineering considerations are important. The cost is the effort of deducing or collecting
information that is not strictly necessary. However, since this unnecessary effort occurs
rarely—only when the <attribute> can be deduced with certainty to be the <value> named in
the original goal—it has not proven to be a problem in practice.

If after trying all relevant rules to resolve a subgoal, the total weight of the evidence
about a hypothesis falls between -.2 and .2 (an empirical threshold), the answer is regarded
as still unknown. This result would occur if no rules were applicable, if the applicable rules
were too weak, if the effects of several rules offset each other, or If there were no rules for
this subgoal at all. In any of these cases, when the system is unable to deduce the answer,
it asks the user for the value of the subgoal (using a phrase that is stored along with the
attribute itself).

This strategy, of always attempting to deduce the value of a subgoal and asking the
user only when deduction

fails,

insures a minimum number of questions. It could also mean,
however,' that work might be expendedsearching for a subgoal, arriving perhaps at a less
than definite answer when the user might already know the answer with certainty. To
prevent this inefficiency, some of the attributes have been labeled "laboratory data," to
indicate that they represent information available to the program as results of quantitative
tests. In these cases the deduce-then-ask procedure is reversed, and the system will
attempt to deduce the answer only if the user cannot supply it. Given the desire to minimize
both tree search and the number of questions asked, there is no guaranteed optimal solution
to the problem of deciding when to ask for information and when to try to deduce it. But the
distinction described has performed quite well and seems to embody an appropriate criterion.

Two other additions to straightforward tree search increase the inference engine's
efficiency. First, before the entire list of rules for a subgoal is retrieved, the program
attempts to find a sequence of rules that would establish the goal with certainty, based only
on what is currently known. Since this is a search for a sequence of rules with C F= 1, the
result is termed a unity path. Besides efficiency considerations, this process offers the
advantage of allowing the program to make "commonsense" deductions with a minimum of
effort (rules with CF=l are largely definitional). Because there are few such rules in the
system, the search is typically very brief.

Second, the inference engine performs a partial evaluation of rule premises. Since
many attributes are found in several rules, the value of one clause (perhaps the last) in a

587B MYCIN

V

premise may already have been established while the rest are still unknown. If this clause
alone would make the premise

false,

there is clearly no reason to do all the search
necessary to establish the others. Each premise is thus "previewed" by evaluating it on the
basis of currently available information. The result is a Boolean combination of TRUEs,
FALSEs, and UNKNOWNS; and straightforward simplification (e.g., F x U * F) Indicates whether
the rule is guaranteed to fail.

Therapy Selection

After MYCIN determines the significant infections and the organisms that cause them, it
proceeds to recommend an antimicrobial regimen if this is appropriate. The MYCIN therapy
selector (Clancey, 1979) uses a description of the patient's infections, causal organisms, a

ranking of drugs by sensitivity, and a set of drug preference categories (such as "propose 2
drugs: one second choice drug and one third choice drug") to recommend a drug regimen. The
algorithm will also modify dosages in the case of renal failure in the patient. The program can
provide detailed explanations about how it made a regimen choice and can accept and

critique a regimen proposed by the physician.

Acquisition and Use of New Knowledge

The representation of knowledge as production rules and the ability to explain specific

rules allow MYCIN to interact with an expert clinician in a manner that permits the system to

acquire and use new knowledge. The TEIRESIAS system (see article C6; see also uavis,

1976a) works in conjunction with MYCIN and allows the expert to inspect faulty reasoning

chains and then add and modify any rules or clinical parameters required to augment ana
repair the medical knowledge of MYCIN.

When the expert Is dissatisfied with the system's performance on a particular^ case,

MYCIN is able to explain how it made the erroneous conclusions and guide the expert wn

he is- determining the source of the reasoning "bug." To correct the reasoning, tne expert

may elect to enter new rules or alter existing ones. The user enters his requests

what is nearly a natural language interface. These requests are parsed and usee' °V
system to create a new internal rule that is then presented to the user-for^inspection,
interaction helps minimize any misunderstandingbetween the clinician and MYUN.

Once this new rule is accepted and understood by the system, the ne** cons "
,**J'°"

will make use of it and alter its recommendations accordingly. This abilitypermits the system

to interact directly with the domain experts without Intervention of a programme .

Concluding Remarks

Formal evaluations of the MYCIN system have been done that Indicate thai MYCW
compares favorably with infectious disease experts in <M^ *"%£.
Patients with bacteremia and meningitis. At present, of infectious
wards primarily due to its incomplete knowledge of the complete spei.

diseases.

5;

Al Applications in Medicine% 588

i

i

i

MYCIN is one of the first of a new breed of computer systems: systems that step out
of the toy worlds of Al and into the real world. These systems must deal with many of the
social and psychological problems of manlmachine interactions. Issues such as modularity and
representation of knowledge, reasoning in specific domains, explanationof a system's logic,
and the ability to accumulate and use new information must be considered with equal
attention to programming and Interfacing problems. MYCIN has been designed with these
issues in mind and has consequently shown promise as a real-world aid to the clinician.

References

See Shortliffe (1976) and Davis (1976a).

c CASNET 589

L

The Causal Associational NETwork (CASNET) program (Weiss, Kulikowski, &

Safir,

1977)

Is a computer system for performing medical diagnosis developed at Rutgers University. The
major applicationof CASNET has been in the domain of glaucoma. The system represents a
disease not as a static "state," but as a dynamic process that can be modeled as a network of
causally linked pathophysiological states. The system diagnoses a patient by determining the
pattern of pathophysiological causal pathways present in the patient and identifying this
pattern with a disease category. Once the disease category is explicitly

identified,

the most
appropriate treatments can be prescribed. The causal model also makes possible a
prediction of the likely future course of a disease both If treated and if untreated.

Representation of Medical Knowledge

A CASNET model consists of three "plane3of knowledge," as shown in Figure 1

CLASSIFICATION TABLES

+ *♦♦♦"A***
„ + * * * ujl

<_o»oooixoxoct»oooooooocoixoooooooooa^

PATHOPHYSIOLOGICAL * + * * *
STATES * +++++++++++++++ * * _

oooouxixioooooowooouxuoaooooooooooooooeaoooo

OBSERVATIONS
AND TESTS

Legend —♦ «;«"»,leatio„ 11n|cs for angle closure 9j^«ma
***** classification links for chronic angle closure giaucoma

state-observation links
Figure 1. Part of the causal network model for glaucoma.

The plane of pathophysiological states is the heart of the ""del. The. nodes ,„^this

Plane represent elementaryhypotheses about the disease process, and arcs here represent

C. CASNET

590 Ai Applications in Medicine%

*

i

i

k

a causal connection between two elementary hypotheses; for example, INCREASED
INTRAOCULAR PRESSURE....CAUSES....CUPPING OF THE OPTIC DISK. Associated with each
link is a forward weight or confidence factor, a number on a 1-5 scale, where 5 corresponds to
"(almost) always causes" and 1 to "rarely causes." The determination of these weights and
their utility in confirming or disconfirming the presence of a pathophysiological state are
discussed in the section in this article on Reasoning.

The plane of observations contains nodes representing evidence gathered from the
patient. These include signs, symptoms, and laboratory tests. During a consultation some or
all of these nodes will be instantiated. Nodes in this plane are linked to nodes in the
pathophysiological plane. The links have associated confidences, again on a 1-5 scale,
reflecting the degree to which the particular test, symptom, or sign supports the associated
state. For example, a scotoma (a perimetry measurement) strongly indicates VISUAL FIELD
LOSS so it has a confidence value of 5. The same test, however, could have a different
confidence value depending on the results; for example, 15 mm of Hg could be considered
evidence for INCREASED INTRAOCULAR PRESSURE, but a result of 30 would be definite
evidence and would carry a greater confidence value. The confidence values with which
observations are linked to pathophysiological states are predetermined by the designers of
CASNET.

In general, there is usually more than one test for a particular state, and the same test
indicates more than one state. Each test also has an associated cost that reflects both
monetary cost and danger to the patient. Some states might not have a corresponding test
since such a test might not exist or might be judged too difficult or costly to use for a
particular pathology.

The, third plane contains the disease classification tables. A classification table defines
a "disease"' as a set of confirmed and denied pathophysiological states. If also contains a
set of treatment statements for that disease.

STATES DISEASES TREATMENTS

Figure 2. A classification table.
For example, the classification table indicates that if a patient is found to have ANGLE
CLOSURE and INCREASED INTRAOCULAR PRESSURE but neither CUPPING nor VISUAL FIELD
LOSS, then he has ANGLE CLOSURE GLAUCOMA; if he has ANGLE CLOSURE and INCREASED
INTRAOCULAR PRESSURE and CUPPING and VISUAL FIELD LOSS, then he has CHRONIC
ANGLE CLOSURE GLAUCOMA. The concept represented in the classification tables is that a
disease is dynamic with respect to time and that confirmed states further down a pathway

c CASNET 591

L

represent more advanced stages of the disease. The states in a classification table will
generally be on the same pathway. A "starting state" is a state with no causes in the
network (also called a basic disease mechanism). Inadequate understanding of disease
mechanisms

or incomplete models sometimes lead to classification tables containing states from more
than one pathway.

Reasoning

Figure 2 illustrates how CASNET defines a disease as a conjunction of causally related
pathophysiological states. Diagnosis in CASNET is a matter of finding one or more causal
pathways between these states. Reasoning in CASNET Is designed to maximize the likelihood
of finding these pathways, given a set of signs, symptoms, and test results.

A diagnostic session begins with the program's asking the user (physician) a series of
questions about the patient. The physican answers with values for any tests, signs, and
symptoms, or he answers UNKNOWN. These values, together with the confidences associated
with the tests and the weights associated with the causal arcs, are used to compute a
status, or confidence

factor,

for each node in the causal net.

The STATUS of a state is affected both by the results of its associated tests and by
the STATUSs of the states around it. For example, if A causes B and B is confirmed by
observation, then there is strong evidence for A. A general algorithm is used to propagate
these weights on a state, both in the forward direction (i.e., along the direction of the causal
link) and in the backward direction. A state is markedconfirmed if its STATUS is greater than
a preset threshold, it is marked denied if its STATUS is less than a second threshold,
otherwise it is undetermined. The program uses a strategy for selecting the next question,
based on the cost of the test and on the likelihood that it will lead to the confirmation or
denial of a state.

After all available symptoms and findings have been entered and after the STATUS s

have been computed, the classification tables are used to determine diagnoses and

treatments. The tables are selected to cover all confirmed nodes. The strategy tor
selecting the tables is to find the starting states for which causal pathways can be

generated that reach the largest number of confirmed states without traversing a aeniea

state. This procedure is repeated until all of the confirmed states are covered.

The treatment statements of the selected classification tables are then used to select
a therapy for the indicated diseases. Like a state, a treatment has an associated

s>A,ui

that is interpreted as its confidence In Its success as a treatment. The treatment w th the
highest STATUS is selected. This assessment is repeated for all selected c ass.f.Ration
tables. A final algorithm decides whether some treatments are subsumed by others, and then

the final treatment recommendations are printed. If desired, a short summary of

justifying the diagnosis and treatment can also be printed. The current glaucoma model

contains about 1 50 states, 350 tests, and 50 classification tables.

592

Al Applications in Medicine

!

I

i

Concluding Remarks

CASNET adopts a strictly "bottom-up" approach to the problem of diagnosis, working
from the tests, through the causal pathways, to a diagnosis. The separation of medical
knowledge (encoded in the causal network) from reasoning strategies (embodied in the
program) will make the expansion of the disease model, when new research discoveries are
made, a simple matter. The program is continually being tested and updated by a computer-
based network of collaborators. The model also provides a convenient way of following the
progress of a patient's disease over multiple visits— the causal net can be used to view the
disease progression, both forwards and backwards, along the pathways. Although CASNET
has been used primarily in the area of glaucoma, the representationalscheme and decision-
making procedures are applicable to other disease areas that are understood well enough to
make the process of disease known. The program's performance has been evaluated by
ophthalmologistsand is considered close to expert level.

References

See Weiss, Kulikowski, & Safir (1978).

D 593INTERNIST

V

D. INTERNIST

INTERNIST (Pople, 1975; Pople, 1977) is a medical consultation program in the domain
of internal medicine developed jointly by H. Pople, a computer scientist, and J. Myers, a
specialist in internal medicine,both at the University of Pittsburgh. The program is presented
with a list of manifestations, of disease in a patient (e.g., symptoms, physical signs, laboratory
data, and history), and it attempts to form a diagnosis. The diagnosis consists of a list of
diseases that would account for the manifestations. Using information presented during the
course of the consultation, the program is able to discriminate, between competing disease
hypotheses. The current version of the program only formulates diagnoses and does not
recommend treatments.

One of the major goals of the INTERNIST project has been to model the way clinicians
do diagnostic reasoning. The program has been used to explore the way that certain
symptoms evoke particular diseases in the mind of the clinician: how hypothesized diseases
generate expectationsof other symptoms, how a clinician focuses on a particular disease
area and temporarily ignores certain other symptoms that he Judges irrelevant, and how he
decides between competing disease hypotheses.

From the standpoint of computer science, INTERNIST is solving a theory formation or
hypothesis formation problem. Determining a satisfactory diagnosis Involves inferring a set of
hypotheses to explain the patient data. In INTERNIST, the data are manifestations and the
hypotheses are diseases.

Internal medicine is complicated because a patient may suffer from a number of

diseases simultaneously. Although some diseases are more likely to be asJ?rJ*®f Vj8 "others, the possible combinations are too numerous to encode a priori. Pople (1977_lJCAljj
suggests that a conservative estimate of this number is 10 to the 40th. Clearly, diagnosis of

a set of diseases present In a patient is nontrivial. INTERNIST-I accomplishes this diagnosis
by sequentially establishing the diseases that best fit the data. INTERNIST-ll is an
improvement over its predecessor because it establishes the set of diseases in parallel and
therefore avoids some of the annoying artifacts of sequential processing, sucn as
considering a number of incorrect diagnoses before "focusing in" on the correct one.

Overview of INTERNIST-I

For INTERNIST-I a problem is defined as a set of mutually exclusive disease hypotheses.
If a patient has a number of diseases, INTERNIST-I must solve that number of Problems.Jn
brlef , INTERNIST-I finds a set of diseases that account for some or all of a set 0T Y^"01"'then It picks one disease from the set on the basis of a scoring schema, which Is the solution
for one of the problems. Then it finds another set of diseases that account for some or ail or
any remaining symptoms and again picks the most likely of these alternatives. It continues in

this manner until all symptoms have been accounted for.

Representation of Medical Knowledge

INTERNIST'S knowledge of diseases Is organized into a disease «\« ta*?^- va**the "form-of" relation (see Fig. 1). For example, Hepatocellular disease is a form of liver
disease.

594

Al Applications in Medicine

All-(■diseases
form-of

Liver-disease Lung-disease leart-disease
form-of

Hepato-
cellular
disease

form-of

Hepato
cellular

Hepatpo
cellular
infectioninjury

Figure 1. The structure of the disease tree.

The toR-level classification in this tree is by organs—heart disease, lung disease, liver
disease, etc. A disease node's offspring are refinements of that disease, terminal nodes being
individual diseases. A nonterminal node and its subtree are referred to as a disease area,
while a terminal node is referred to as a disease entity. The disease hierarchy is
predetermined and fixed in the system.

Diseases and their manifestations are related in two major ways: (a) a manifestation
can evoke a disease and (b) a disease can manifest certain signs and symptoms. These
relations can loosely be thought of as probabilities: p(D\M) (the conditional probability of D
given M) and p(M\D), respectively. The strength of these relations is given by a number on
a 0-5 scale where 5 means that the manifestation is always associated with the disease
and 0 means that no conclusions can be drawn about the disease and the manifestation.
Each disease in the tree is associated with its relevant manifestations. Several other kinds
of relationships are superimposed on the disease tree to capture causal, temporal, and other
association patterns among diseases.

The disease tree and its associated manifestations are constructed and maintained
separately from the normal diagnosis program. All known evokes and manifest relations are
entered for the terminal nodes (diseases) of the tree. A list of manifestations is then
computed for each nonterminal of the tree by taking the intersection of the manifestation
lists of that node's offspring. In this way, the manifestations "percolate" up through the tree
to the most general disease with which they are associated and are stored only with this
node. This means that manifestations associated with a nonterminal disease node are, by
implication, also associated with every node (terminal or non terminal) beneath it in the tree.
As well as providing storage economy, this Information is used during the consultation for
selecting disease areas on which to focus. For example, jaundice (yellowing of the skin) will
be associated with some nonterminal disease (e.g., hepatitis) under liver diseases, and its
presence in a patient will cause the consultation program to investigate diseases in that
disease area.

595D INTERNIST

k

Various properties are associated with each manifestation. The most important ones are
TYPE and IMPORT. TYPE is a measure of how expensive it is to test for a

manifestation,

both
In terms of financial cost and physical risk to the patient. TYPE is used to order the questions
asked by the consultation program: the questions about less expensive manifestations are
asked first. The IMPORT of a manifestation is a measure of how easily it can be ignored in a
diagnosis. The manifestation "Shellfish ingestion" can easily be ignored, but a liver biopsy
showing caseating granulomas must be explained.

Reasoning

At the beginning of a consultation, a list of manifestations is entered. As each

manifestation is entered, it evokes one or more nodes of the disease tree. A model is

created for each evoked disease node and consists of 4 lists.

Observed manifestations that this disease cannot explain. This list is called
the shelf.
Observed manifestations that are consistent with the disease.

Manifestations that should be present if this disease is the correct diagnosis

but that have not been observed in the patient.

Manifestations consistent with this disease but that have not yet been
observed in the patient.

After the initial entry of manifestations, the disease tree consists of nodes that have

been "lit up" (evoked) and those that have not. A diagnosis corresponds to a »■"

terminal nodes that account for all of the symptoms. Generally at this staae; *cry . .

■

terminal nodes will be lit up, so the program must ask for further 'nformat'°"\ ' ° g<" tmS

further

information,

the program will focus on a disease area and formulate a pro

Each disease model is scored, receiving a positive score

for each manifestation it explains and a negative score for each manifestat'° causa ,|V to a
explain. Both are weighted by IMPORT. It receives a bonus if it »

,nKBa

two sets-
disease that has already been confirmed. The disease models are Pa 't,t,o"e° /_, tßrnat|ves)
(a) the top-ranked model and the diseases that are mutually exclusive tc.lt (altemati^a;.
and (b) the diseases that are complementary to the top-ranked model, ror ** h

top-ranked node Is hepatocellular Injury, then other evoked liver

alternatives to It, while lung or heart diseases will be complementary.

... --« mnHnis the system follows one
Having formulated a problem by partitioning the disssse models, me y

of several strategies, depending on the number of candidate diseases possible,
there are many (>4) alternative hypotheses, it attempts £ rule ou

se|ect
_

dQuestions about manifestations that strongly indicate a disease vn.gn w
)f

first. If these manifestations are not present, then thj%d's"" C_
ate betW een them. Thenare between 2 and 4 possibilities, the program attempts discr.mm)}

__
d w

__
k|y

questions about manifestations that strongly indicate one Di inign vpv \

596

Al Applications in Medicine

(

i

indicate another disease D2(low (p(M\D2))) are selected. These questions are able to
discriminate between the two diseases. If there is only one candidate, then questions that
have a good chance of confirming this disease are asked. Sometimes, if there is not enough
data, It will not be possible to confirm one of the terminal nodes, and a more general
diagnosis is given (e.g., "liver disease").

After a disease is

confirmed,

its manifestations are marked "accounted for"; bonus
scores are given to (previously manifested) diseases that are causally linked to this one;
and focus shifts to the new top-ranked disease and the formulation of a new problem.

INTERNIST-II

There was a major problem with INTERNIST-I. In complex cases the program had a
tendency to begin the analysis by focusing first on totally inappropriate areas. While the
final diagnosis was usually correct, the initial meandering was annoying to clinicians. The
cause of the problem was traced to the sequential method of problem formulation. The
simultaneous formulation of several problems is being investigatedin INTERNIST-11.

Representationof Medical Knowledge

INTERNIST-II uses the same database as INTERNIST-I, but It is augmented by a set of
constrictor relations. These are manifestations that do not evoke a particular disease but,
rather, a general area of Infirmity. For example, jaundice alerts clinicians to the presence of
liver disease. It does not discriminate between liver diseases, but It does delimit this disease
area. Formally, a disease area constrained by a constrictor manifestation is a subtree of the
disease tree, in this case the subtree of liver diseases.

Reasoning

A problem for INTERNIST-I is to find a set of terminal nodes on the disease tree that
account for a set of manifestations. It then chooses one node from the set and formulates
another problem. INTERNIST-II does not start a diagnosis by formulating a set of terminal
nodes, because the number of combinations of terminal disease nodes that may account for a
set of manifestations is enormous. Instead, INTERNIST-II partitions the disease tree into
disease areas, which collectively account for all the manifestations. Constrictor
manifestations are used to make the partitions. If a patient manifests more than one
constrictor, then the disease tree will be partitioned into more than one disease area. The
conjunction of all the disease areas is called the root structure and is formally a set of
subtrees of the disease tree. A root structure accounts for all the patient's manifestations.
The problem for INTERNIST-II is to decide which terminal nodes (actual diseases) within the
root structure best account for the manifestations. This objective is accomplished by
partitioning the root structure into smaller subtrees in exactly the same way that the
disease tree was partitioned into the root structure, namely, by using manifestations that
strongly suggest a disease area, (only this time, the disease area is smaller). The process of
partitioning the root structure into smaller areas continues just as long as all the
manifestations are accounted for.

597D INTERNIST

I

L

This is a summary account of the operation of INTERNIST-11. In actuality it is more
complicated. See Pople (1977) for a complete explication. The main point of INTERNIST-11,
however, Is that it diagnoses a patient's diseases by dividing the disease tree into smaller

and smaller subtrees, until such time as it achieves a set of terminal nodes that account for
all the manifestations.

Concluding Remarks

INTERNIST I and II have successfully combined a bottom-up and top-down approach to

medical diagnosis. The patient data evoke certain disease hypotheses (bottom-up) that are
then used to predict (top-down) other manifestations that should be present if the

hypothesis is to be confirmed. The system is purely associationai. It does not attempt to

model any disease processes but considers a disease as a static category and diagnosis as
the task of assigning a patient to one or more categories. INTERNIST-I has a large database

currently containing over 500 of the diseases of internal medicine (about 75f. complete;, it

has displayed expert performance in complex cases involving multiple diseases. Pople ana
Myers expect that the system will be in clinical use in the next few years.

References

See Pople (1975) and Pople (1977).

598 Al Applications In Medicine%

E. Present illness Program - PIP

The Present Illness Program (PIP) is being developed at MIT (Pauker et al., 1976;
Szolovits & Pauker, 1976; Szolovits & Pauker, 1978). It has been used for taking present
illnesses of patients with edemas (accumulation of excess fluids in the body) and patients
with renal (kidney) disease. Taking a present illness is different from performing a complete
diagnosis. It is the typical consultation a patient has with a general practitioner; the patient
usually presents a chief complaint that becomes the initial focus of the consultation and only
very low-cost sources of information— such as patient history, physical examination, and
routine lab tests—are used to make a diagnosis. High-cost or high-risk procedures that may
be necessary for a complete diagnosis are not used.

The medical knowledge in PIP is represented as a network of frames (see article
Representation.B7). The frames are centered around diseases, clinical states, and
physiological states (hereafter called the "patient situation") and contain data such as
typical findings, relationships to other patient situations, and rules for judging how well a set
of findings exhibited by a patient "match" the situation described by the frame. Matching is
the key strategy in the diagnosis. Diagnosis involves matching findings to disease frames and
then selecting a set of frames that cover ail of the findings. There are, at present, 36
frames for dealingwith renal disease.

Currently, the program does not prescribe treatment recommendations. Originally the
system was written in CONNIVER [AIH ref], but this version was too slow and It has been
recoded to run in MACLISP.

Representationof Medical Knowledge

The general medical knowledge in PIP is knowledge about diseases, the patient
situation; findings, results of the physical examination and reported symptoms; and the
relationships between these entities. This medical knowledge is organized as a frame system.
Part of a typical frame is shown in Figure 1.

ACUTE-GLOMERULONEPHRITIS

Typical Findings
TRIGGERS
FINDINGS

Logical Decision Criteria
IS-SUFFICIENT (None)
MUST-HAVE (None)
MUST-NOT-HAVE (None)

Complementary Relations to Other Frames
CAUSED-BY (STREPTOCOCCAL-INFECTION, ...)
CAUSE-OF (SODIUM-RETENTION, ...)
COMPLICATED-BY (ACUTE-RENAL-FAILURE, ...)
COMPLICATION-OF (CELLULITIS)

Differential Diagnosis

(EDEMA with LOCATION=FACIAL)
(ANOREXIA)

■\

599Present Illness Program - PIP

I

I

L

CHRONIC-HYPERTENSION implies CHRONIC-GLOMERULONEPHRITIS
RECURRING-EDEMA implies NEPHROTIC-SYNDROME

Scoring
(((PATIENT WITH AGE=CHILD) -> 0.8)
((PATIENT WITH AGE=MIDOLE-AGED) -> -.5)

)
(((EDEMA with SEVERITY = not MASSIVE) -> 0.1)
((EDEMA with SEVERITY = MASSIVE) -> -1.0)

)

Figure 1 . Part of the frame for acute glomerulonephritis (kidney stones).

The slots in the frame are grouped into categories as shown. The typical /*"*"£ are
those that are expected in a patient having the disorder that is described by■the frame.

However, patients with the disorder need not exhibit all of the typical findings, it is tnei joo

of the matching algorithm to compute a "goodness of fit" of findings *b2"! * P
P
n, "B LI

frame. Some of the typical findings have the special status TRIGGER. J"""*"" .J,
elements of the clinical decision-making strategy. A TRIGGER Is a finding thatJ8 «""""J"j
strongly related to a disorder that presence of the disorder in the patient mak<" "»^"system attend to the disorder frame as an active hypothesis. For example, nu,

ponaider
listed above as a TRIGGER for ACUTE GLOMERULONEPHRITIS, meaning that PIP will consider

this disease as an active hypothesis if a patient displays facial edema.

The logical decision criteria are rules that permit the confirmation or reject.ono
hypothesis on the basis of a small number of key findings. Findings s*rong,y

ar
C°7

ft

c '„"d they
disease will be listed in the slot IS-SUFFICIENT. If any of these findings are reported, they

will be sufficient to confirm the presence of the disease.

The relations between frames reflect the ways in
medicine. Sometimes disease mechanisms are well understood and it is P noorlv
one disorder CAUSES another or is a COMPLICATION-0F another. If me^" Sm^eS are
understood, the disorders may simply be ASSOCIATED. The iau

complementary, that is, they represent other darat**" J" indicate mutually
addition to the initial disorder. In contrast, the differential *«s"'» *ots

represented by
exclusive disorders—the patient may have one of them and not tne a.sur

the current frame.
j «-, »ha disorderrepresented by the

The final slot indicates how the findings are scored for the oisoru
findings. Tne

frame. This score indicates the "goodness of fit" of this ««"
r

d,„ turn. Witnin a
statements comprising this slot are sets of clauses that are cv

clause, evaluation terminates when one of the conditions in twj c|auseSf normalized by
be used. The local score for a frame is the sum of the values oi

w| arbitrariiy
the maximum total score possible. Thus, 1 denotes complete agreement, while

large negative numbers denote complete disagreement.

E

%

600 Al Applications in Medicine

I

I

l

A.

Reasoning

The clinical strategy used by PIP is based on the manipulations of hypotheses and
findings. Knowledge about findings is stored separately from the frame system since a
finding can be applicable to many frames. A hypothesis Is an instantiation of a disorder
frame. There are 3 kinds of hypotheses: (a) confirmed, (b) active, and (c) semi-active.
Hypotheses with ratings (as computed by the scoring process) that are higher than a preset
threshold

are considered confirmed hypotheses. Active hypotheses are those with at least one confirmed
trigger finding; and these contend for the focus of attention. Semi-active hypotheses are the
immediate neighbors of the active hypotheses in the frame system. They correspond to
hypotheses that, although not strong enough to be investigated, are "at the back of the
consultant's mind."

The consultation begins with the physician telling the system the main symptoms and
signs of a patient. The program then takes the initiative and tries to determine the validity of
any active hypotheses by selecting and asking appropriate questions.

The program works through the following cycle:

1 . Acquire a new finding. This task is accomplished by asking a sequence of
questions that characterizes the finding according to its possible
descriptions.

2. Process the finding. All of the frames where this finding is relevant are
located.

3. Update the list of active hypotheses. Several kinds of actions can be taken
at this point: Remove an active hypothesis if the finding matches a MUST-
NOT-HAVE rule; confirm a hypothesis if the premise of an IS-SUFFICIENT rule
is now true; activate a hypothesis if the new finding is one of the hypothesis
triggers or If the finding allows the premise of a differential diagnosis link to
succeed; or revise the score of the hypothesis if the finding matches
scoring rule. If a new hypothesis is activated, then ail of its immediate
relatives are made into semi-active hypotheses.

4. Select the next finding to ask about. The highest rated hypothesis" becomes
the focus of attention, and a question is generatedfor the next unexplored
finding. If there are no hypotheses, a question about a finding for the
highest rated causally related frame is asked. Questioning terminates when
there are no more active hypotheses or causal relatives with findings to be
determined.

If the logical decision criteria are insufficient to confirm or deny a hypothesis, the
score of the hypothesis is computed by combining (a) the value of a function that measures
the fit of observed findings and typical (expected) findings for the frame (called the
matching score), and (b) the value of a function that is the ratio of the number of findings
accounted for by the hypothesis to the total number of findings (the binding score). The

E Present illness Program - PIP 601

matching score in turn consists of two parts, a local score for the frame (described above)
and a score propagated from causally related frames.

Concluding Remarks

Like INTERNIST (see article C2) and unlike MYCIN (see article C1), PIP is intended to
simulate the clinical reasoning of physicians. The way in which the general medical
knowledge has been represented as a system of hypothesized disorder frames and clinical
findings reflects this intent, as do the strategies used to select questions for confirming a
hypothesis.

The system uses two types of reasoning, categorical and probabilistic. Decisions about
the applicability of a hypothesis are determined using logical decision criteria (the IS-
SUFFICIENT, MUST-HAVE and MUST-NOT-HAVE rules) that a physician uses. When these are
insufficient, the probabilistic methods (the computation of matching scores and binding
scores) are used. Both kinds of reasoning feature a combination of local and global decision
strategies. Local strategies decide how well the findings fit a particular frame, while global
strategies determine how well a set of frames fits the findings.

There are a number of difficulties with the program. The questioning can be erratic,
since the top-ranked hypotheses tend to alternate rapidly. This oscillation is unlike a
physician's line of reasoning, which tends to concentrate on questions that resolve one
hypothesis at a time. There Is also the problem of when to stop the questioning. The current
approach is to stop questioning only when all questions about all possibly relevant
hypotheses have been exhausted. This strategy seems too conservative; many irrelevant
questions tend to get asked.

References

See Pauker et al. (1976), Szolovits & Pauker (1976), and Szolovits & Pauker (1978).

%
602 Al Applications in Medicine

'!

F. Digitalis Advisors

There has been considerable work at MIT to develop programs that advise physicians
on the administration of the drug digitalis (Silverman, 1974; Swartout, 1977a; and

Swartout,

1977b). These programs are not concerned with diagnosing the need for the drug in a
patient; rather they determine an appropriate treatment regimen and its subsequent
managementfor patients known to require digitalis;

Digitalis Is administered to patients with erratic heart-beat to stabilize the heart
rhythm. The therapeutic effect of digitalis Is achieved by maintaining the proper amount of
the drug in the bloodstream. The body, however, excretes the drug through the kidneys and
liver. Furthermore, overdoses of digitalis are toxic and can cause the very symptoms the
drug is prescribed to cure. A typical digitalis regimen consists of an initial dose that is then
modified in response to the effects of the drug on the patient and to the amount of drug
being passed by the kidneys.

A mathematical model of the effect of Digitalis in the body has existed since 1 967

which accounts for the relation betwen the level of body drug stores (as effected by body
weight, renal

function,

etc.) and the incidence of Digitalis toxicity. However, application of
this model requires that a physician adjust the dosages of Digitalis recomended by the model
to allow for special sensitivity a patient might have (or might develop) to the drug. A skilled
physician is still required to monitor a patient's progress after the initial dose of Digitalis is
recommended by the mathematical model.

More recently at MIT, pauk7s-??? have developed a program which makes a model of
the effect of Digitalis in a specific patient, and modifies the model in response to feedback
about the patient over time. Previously, serum (blood) levels pf Digitalis had been used to
provide feedback, but they proved unsatisfactory alone, and now clinical signs (e.g. nausea,
or increased heartbeat Irregularity) are used to assess whether the patient is responding
well- to Digitalis, or suffering from the toxic effects of the drug, or having no reaction at all.

The combination of a general, mathematical model of the effects of Digitalis, and a
patient-specific model which incorporates clinical data in a continuous feedback cycle has
resulted in a Digitalis advisor program which performs comparably to expert cardiologists in
the prescription and maintenance of digitalis therapy.

The Digitalis advisory programs operate as follows

1 . Interact with a physician to build a model of a specific patient. This involves
asking about the heart condition that Digitalis will regulate, about the
condition of the kidneys, etc.

2. Prescribe a daily dosage level on the basis of the patient's height and weight,
and the information gathered in (1).

3. Follow-up sessions assess the patient's response to the dosage
recommendations In (2), and modify the dosage if necessary.

In 1977 this program was augmented with the ability to make explanations, but for the sake
of brevity (and because article C6is devoted to this issue) we will not discuss it here. See

Swartout,

1977afor a complete discussion of the explanationfacility.

F Digitalis Advisors 603

THE PATIENT-SPECIFIC MOOEL

What follows is part of an annotated transcript with the Digitalis advisor.

What is the age of the patient?
Enter numerical value "" 56

What is the weight of the patient?
Units: Kg
Enter numerical value ** 72

What is the sex of the patient?
The possibilities are:

I.Male
2.Female

Enter single value ** MALE

What is the cardiac rhythm?
The possibilities are:

1 .Normal sinus rhythm
2.Atrial fibrillation
3.Atrial flutter
4.Pat
S.Pat with block
6.Non-paroxysmal junctional tachycardia

Enter single value ** 2

So far the system is determining what it needs to know to make a patient-specific model.
Later, it will ask why the patient is being put on Digitalis, whether the patient is
currently using the drug, etc.

Is there regularizationof ventricular rhythm?
The possibilities are:

1 .Present
2.Absent

Enter single value ** WHY?

The user of the system wants an explanation of what motivates a question. The system
responds by converting the goals on its goal stack to English to produce the first two
sentences of the explanation. The system then finds and displays a canned explanation
which is associated with the concept that the question is being asked about. The canned
explanation usually provides information which could not be deducedfrom the code of the
Advisor:

My top level goal Is to begin therapy. I am now trying to check
the cardiac rhythm. If the cardiac rhythm is atrial fibrillation
and there is ventricular-rhythm regularization this suggests that
the pacemaklng impulses from the ventricles are no longer coming
from the atria. If the status of ventricular-rhythm regularization
is present it is possible there may be non-paroxysmal junctional
tachycardia which Is a sign of digitalis toxicity.

604 Al Applications in Medicine

%

I

i

J

The system continues to probe the user so that it can build a patient-specific model.
Eventually it arrives at thefollowing point:

How long do you wish to take to reach full digitalization?
The possibilities are:

I. lnstantaneous rate (1-2 hours)
2.Rapid rate (1 day)
3.Moderate rate (2-3 days)
4.510w rate (4-7 days)

Enter single value *" 3

Parameters used to make recommendations:
Body store goal: 0.544Mg
Projected amount on board: O.OOOMg
Body stores shift: 0.544Mg
Remaining time to reach goal: 48.0 hours
Half -life: 43.7 hours 1.8 days
Daily loss at equilibrium: 0.176 Mg
Absorbtion factor: 0.75

The system then asks how many times a day the user wishes tp administer Digitalis, and
on the basis of this makes dosage recommendations.

The next interaction with the Advisor comes in a follow-up session. The point of this
session is for the Advisor to determine whether the patient shows any therapeutic effect ofthe drug, or whether slhe displays any signs of toxicity, and adjust the dosage accordingly.
There are three levels of therapeutic effect: None, Partial, and Complete. Similarly, there
are three levels of toxicity: None, Possible, and Definite. There are therefore nine
therapeutic!toxic states, and each has an associated set of recommendations associated with
it. Digitalis toxicity is identified by five different types of signs and symptoms, icluding
non-cardiac signs (nausea, etc.), and direct cardiac signs of toxicity (e.g. and increase of
over 207. in the number of premature ventricular contractions). If any cardiac
manifestations are present, the patient is considered definitely toxic; the category ofPossibly toxic is indicated by various combinations of signs and symptoms from calsses
other than thecardiac signs.

We will not consider the follow-up session in detail here. See Swartout, 1977afor a
complete transcript.

Summary

The performance of the Digitalis advisor reported in gorr7B-??? suggest that the
advisor can perform at least as well as physicians In the prescription and monitoring of
Digitalis therapy. In particular, the advisor was used to make recommendations about therapy
for a group of patients who were under the care of house staffin a hospital, with the advice
of an attendingphysician.)

605G IRIS

L

G. IRIS

The design goals for IRIS (Trigoboff & Kulikowski, 1977; Trigoboff, 1978) are different
from those of the other consultation systems constructed to be expert clinical decision-
making systems in a particular medical domain. IRIS was designed to be a tool for building and
experimenting with such systems.

Developed at Rutgers University and written in INTERLISP, it was designed to permit easy
experimentation with alternative representations of general medical knowledge, clinical
strategies, and modes of Interaction. It was designed to be used by a computer specialist in
collaboration with a domain expert. A consultation system for glaucoma has been developed
using IRIS.

IRIS uses a combination of two well-established representation formalisms for
representing knowledge, semantic nets and production rules (see articles Representation.B2 and
Representation.B3). The semantic net consists of nodes representing patient information and
uses a large and extendable set of link types for associating this medical knowledge. A set of
production rules is associated with each link of the network. The transmission of information
between nodes of the semantic network Is controlled by the production rules. This process is

called propagation and is the basis of any clinical strategy implemented in IRIS.

Representationof Medical Knowledge

As with the other medical consultation systems, IRIS makes a (very sharp) distinction
between the general medical knowledge and any patient-specific knowledge. The general
medical knowledge Is represented partly as a semantic net and partly as production rules.
The nodes of the net represent clinical concepts such as pathophysiological states,

diseases, symptoms, findings, treatments, etc. Examples of nodes in the glaucoma
application are OPEN ANGLE GLAUCOMA, SCOTOMA, PILOCARPINE THERAPY. The links
represent relations between the nodes-e.g., CAUSES, TREATMENT-FOR, SYMPTOM-OF,
ASSOCIATED-WITH.

The patient-specific knowledge gathered during a consultation Is represented as a set
of knowledge structures called "Information SPEClfications" (ISPECs). ISPECs are
associated with nodes of the semantic net and are created, deleted, and modified during the
course of the consultation. An ISPEC Is an assertion about the patient and is essentially a
frame (see article Representation.B7) with the following slots:

NODE - The name of the associated node In the semantic net. The node
represents the concept being asserted about this patient.

SIDE - This slot indicates the half of the body to which this ISPEC refers. Its

possible values are LEFT, RIGHT, or NIL. Some nodes in the net will be
applicable to a left organ and a right organ (e.g., eye) while others are not
(e.g., headache, diabetes). The use of SIDE provides an economical
representation, since many nodes might otherwise be duplicated in the net.

MB - This slot is a measure of belief that reflects the degree of system belief in

the assertion represented by the ISPEC. Any numerical method of

606 Ai Applications in Medicine

%

i

'I

J

representing degrees of certainty can be implemented here. In the
glaucoma application, the confidence factor mechanism of MYCIN (see
article CI) has been implemented. The MB is a pair of numbers: SB (strength
of belief) and SD (strength of disbelief). The actual MB is the difference
between these two numbers and ranges from total belief to total disbelief.

TIME - The time slot is a list of two dates, the date the ISPEC became true of the
patient and the date the ISPEC ceased to be true. The system can also
work with a "coarser" view of time: PAST, PAST-OR-PRESENT, and FUTURE.
This time representation is part of the mechanism for dealing with multiple
visits and for following a patient through a givencourse of therapy.

MODIFIERS - These are further specifications and qualifications of the basic
ISPEC. Examples of modifiers are VALUE, DEGREE, COLOR, and WIDTH. These
modifiers do not appear in all ISPECs, but only in those to which they are
appiicabie. These modifiers allow further patient-specific specifications of
the concept in the semantic net. For example, "severely increased
intraocular pressure" Is represented as an ISPEC for INCREASED
INTRAOCULAR PRESSURE with modifier DEGREE: SEVERE.

TYPE - The type slot of an ISPEC determines the way in which it is interpreted.
An arbitrary number of types Is possible. Currently implemented TYPEs are
NIL (the standard and default), FAMILYHISTORY, PATIENTHISTORY, and
number of others that are used by the diagnosis strategy—CHOSEN,

COVERED-BY,

SUBSUMED-BY, and TREATED-BY;

The statement "The pressure is 10 in the right eye" is equivalentto the ISPEC:

NODE = INTRAOCULAR PRESSURE
SIDE = RIGHT «

TIME = PRESENT
MODS = VALUE: 10
TYPE = NIL

Reasoning

IRIS makes no committment to any particular strategy of question selection. Currently
a "questionnaire" strategy has been implemented. At the beginning of a consultation the
program runs through a set of questions and the user answers them.

In the applications of IRIS where consultation and diagnosis are the goal, ISPECs are
associated first with the set of symptoms displayed by the patient. In IRIS's knowledge
base, symptom nodes are linked to, among other things, disease nodes. Thus, a set of
disease nodes can be activated by the symptoms; a disease node is said to explain the
symptom nodes that characterize It. Disease nodes are also linked to treatment nodes, and
when IRIS has determined which disease(s) holds for a patient, it will activate the
appropriate (linked) treatment nodes.

MB =(1,0)

G IRIS 607

L

The process of nodes evoking each other in IRIS is called propagation of ISPECs,
because an ISPEC is associated with a symptom, or disease, or treatment node relevant to a
patient. When symptoms evoke a disease or when a disease evokes a treatment, an ISPEC is
created. This propagation of information and generation of inferences between any linked
nodes In the semantic net is controlled by a set of production rules associated with the link.
If the ISPECs associated with the node at the tail of the link satisfy the precondition pattern
of a rule, then the actions specified by the rule will be performed at the node at the head of
the link. Typical actions include the creation or deletion of ISPECs and the modification of
MBs. Thus, IRIS uses a forward-chaining reasoning process.

An importantpropagation pattern is that of the "propagation cone." Consider the rule:
if SYMPTOM 1 and SYMPTOM2and SYMPTOM3then DISEASE 1

In the semantic net, the nodes in this rule would be represented as follows:

DISEASEI

CHARACTERIZES
SYMI SYM2 SYM3

Clearly, an ISPEC should only propagate to DISEASE 1 if all three symptoms are present. In
the case depicted above, propagation should be from the base of the "cone" to the "apex."
This propagation pattern is achieved by (Essentially AND-ing SYMI,

SYM2,

and SYM3 into one
production to insure that ALL symptoms are present before a disease node is evoked,

associating the same decision table with all three CHARACTERIZES links.) In some cases the
direction of propagation will be from apex to base; for example, when propagating
"COVERED-BY" ISPECS from a treatment node to each of the diseases it treats.

The production rules are encoded as decision tables to make their execution more
efficient. Consider the following set of production rules:

R1: if A and B then D
R2: If B and (not C) then (not E)
R3: If A and B and (not C) then F

In evaluating these rules, A and C are evaluated twice and B three times. A decision table
encoding these three rules Is:

Al Applications in Medicine608%

i

i

i

■i

i

A column of the decision table corresponds to a rule. A condition is evaluated only once, and
the result is used In each applicablecolumn.

The IRIS claim is that any clinical strategy can be implemented using the available
medical primitives. In fact, the propagation of weights In CASNET, therapy selection in

MYCIN,

and the formation of composite hypotheses in INTERNIST II were implemented with
very little effort (Trigoboff, 1978).

Clinical strategy of IRIS for glaucoma diagnosis

The clinical strategy for the glaucoma application is implemented via a set of 6 special
nodes In the semantic net: CHOSEN-DIAGNOSIS, CHOSEN-TREATMENT,

POSSIBLE-DIAGNOSIS,

POSSIBLE-TREATMENT, UNEXPLAINED-SYMPTOM, and UNTREATED-PATHOLOGY. The goal of the
consultation .is (a) to have one or more ISPECs associated with the nodes CHOSEN-
DIAGNOSIS and CHOSEN-TREATMENT, and (b) to have all ISPECs associated with
UNEXPLAINED-SYMPTOMS and UNTREATED-PATHOLOGY be TYPE=COVERED-BY. As findings are
entered, they propagate ISPECs to the node UNEXPLAINED-SYMPTOMS. Propagation across
SYMPTOM-OF links will result in ISPECs with varying CFs (confidence factors), associated
with a number of disease nodes. Any disease with a high enough CF will propagate an ISPEC
to the node POSSIBLE-DIAGNOSIS. After all data has been entered, the diseases associated
with POSSIBLE-DIAGNOSIS are then investigated in turn. Each diagnosis temporarilyreceives
TYPE=CHOSEN, and TYPE=COVERED-BY propagates to each symptom explained by this
disease. The number of explainedsymptoms is used as a measure of the explanatorypower
of a disease. This process, of temporary assignment, is repeated for each possible
diagnosis; and the disease that explains the most symptoms is given a permanent
TYPE=CHOSEN. If there are any unexplainedsymptoms, the process is repeated.

A similar strategy using the nodes POSSIBLE-TREATMENT, CHOSEN-TREATMENT, and
UNTREATED-PATHOLOGY is used to select treatments.

G IRIS 609

k

Concluding Remarks

IRIS has been explainedin the context of its Glaucoma application,but it was designed
to represent medical knowledge from ANY domain, and to implement a variety of clinical
strategies. (Recall that aspects of CASNET, MYCIN, and INTERNIST-II have all been
implemented in IRIS.)

This generality is feasible because the representation of knowledge is itself very
general (augmented semantic nets.) In principle, knowledge from any (medical or non-
medical) domain can be represented. A second characteristic of IRIS that makes it very
general is the separation of clinical strategy, both conceptually and operationally, from
medical knowledge. Note that to implement the "consultation" strategy, IRIS needed to "know
about" only six nodes in the knowledge base: chosen diagnosis, chosen treatment, possible
diagnosis, possible treatment, unexplained symptom, and untreated pathology. These six
concepts are inherent to the clinical strategy of consultation; every other node In the
knowledge base is conceptually and operationally independent of the implementation of the
clinical strategy.

References

See Trigoboff & Kulikowski (1977) and Trigoboff (1978).

610 Al Applications in Medicine%

I

1

:

t

k

References

AIM Workshop Proceedings, Proceedings of the Ist Fourth Annual Aim Workshops 1975-
-8, Dept. of Computer

Science,

Rutgers University, 1975-1978.

Clancey, W. Tutoring rules for guiding a case method dialogue. International Journal of
Man-Machine

Studies,

1979, 11, 25-49.

Croft, J. Is Computerized Diagnosis Possible? Computers and Biomedical Research, 1972
5(4), 361-367.

Davis, R. Applications of Meta-Level Knowledge to the Construction, Maintenance and
Use of Large Knowledge Bases, Stanford Al Lab Memo AIM-283, Al Lab, Stanford
University, 1976. (a)

Davis, R. Interactive transfer of expertise: Acquisition of new inference rules. UCAI 5,
1977, 321-328.

Davis, R., & Buchanan, B. Meta-level knowledge: Overview and Applications. UCAI 5, 1977,
920-928.

Davis, R., & Buchanan, B. Knowledge acquisition in rule-based systems: Knowledge about
representations as a basis for system construction and maintenance. In D. Waterman
& F. Hayes-Roth (Eds.), Pattern-directed Inference Systems. New York: Academic
Press, 1978. Pp. 99-134.

Davis, R., Buchanan, 8., & Shortliffe, E. H. Production Rules as a Representationfor a
Knowledge-base Consultation Program. Journal of Artificial Intelligence; 1977, 8(1),
15-45.

Feigenbaum, E. A. The art of artificial-intelligence: Themes and case studies in knowledge
engineering. UCAI 5, 1977, 1014-1029.

Feinstein, A. Clinical Judgment. Baltimore: William & Wilklns, 1967.

Gorry, A., & Barnett, 0. Sequential diagnosis by computer. Journal of the American
Medical Association, 1968, 206, 849-854.

Helser, J. A computerized Psychopharmacology Advisor. HEAD-MED Report In the SUMEX
Annual Report. Computer Science Dept., Stanford University, 1977-1978.

Jacquez, J. A. The Diagnostic Process. Ann Arbor, Mich.: MalloryLithography, 1 964.

Ledley, R., & Lusted, L. Reasoning foundations of medical diagnosis. Science, 1959,
130(3366), 9-21.

Nordyke, R., Kulikowski, C. A., & Kulikowski, C. W. A Comparison of Methods for the
Automated Diagnosis of Thyroid Dysfunction. Computers and Biomedical Research,
1971, 4(4), 374-389.

References 611

i

Pauker, S., Gorry, A., Kassirer, J., & Schwartz, W. Towards the Simulation of Clinical
Cognition—Taking a Present Illness by Computer. American Journal of Medicine, June
197-6, 60, 981-996.

Pople, H. The formation of Composite Hypotheses in Diagnostic Problem Solving—An
Exercise in Synthetic Reasoning. UCAI 5, 1977, 1030-1037.

Pople, H. E. The DIALOG Model of Diagnostic Logic and Its Use in Internal Medicine. UCAI4,
Tbilisi, USSR, 1975.

Safrans, C, Desforges, J., & Tsichlis, P. Diagnostic Planning and Cancer Management,
MIT/LCS/TR-169, MIT, 1976.

Shortliffe, E. H. Computer-Based Medical Consultations: MYCIN. New York: Elsevier,
1976.

Silverman, H. A Digitalis Therapy Advisor, MAC TR-143, Computer Science Dept., MIT,
1974.

Swartout, W. A Digitalis Therapy Advisor with Explanations, MAC TR-176, Computer
Science Dept., MIT, 1977. (a)

Swartout, W. A Digitalis Therapy Advisor with Explanations. UCAI 5, 1977, 819-825. (b)

Szolovits, P., & Pauker, S. Research on a Medical Consultation Program for Taking the
Present Illness. Proc. 3rd Illinois Conf. on Medical Information Systems, November
1976.

Szolovits, P., & Pauker, S. Categorical and Probabilistic Reasoning in Medical Diagnosis
Journal of Artificial Intelligence, 1978, 10. In press.

Trigoboff, M. IRIS: A Framework for the construction of Clinical Consultation
Systems. Doctoral dissertatfon, Dept. of Computer

Science,

Rutgers University, 1 978.

Trigoboff, M., & Kulikowski, C. IRIS: A System for the Propagation of Inferences in
Semantic Net. UCAI 6, 1977, 274-280.

Weiss, S., Kulikowski, C, & Safir, A. A Model-Based Consultation System for the Long-Term
Managementof Glaucoma. UCAI 5, 1977, 826-832.

Weiss, S., Kulikowski, C, & Safir, A. A Model-Based Method for Computer-Aided Medical
Decision-Making. Al Journal, August 1978. In press.

612 Al Applications in Medicine

%

I

ii

I

Index

action clause 583
active hypotheses 600"
active hypothesis 599
AND/OR tree 586
ANNA 602
antimicrobial therapy 581-589
associations, INTERNIST 594
associative triple 584
attribute 584, 586
attribute-value 586
augmented links 605

backward chaining 685
binding score 600
bottom-up approach 592, 597

decision criteria 599
decision tables 607
deniedstates 591
depth-first search 585
diagnosticreasoning 1,595-696
diagnostic strategy 1
differential diagnosis 599
Digitalis Advisors 602
disease area 594, 596
disease category 589-593
disease entity 594
disease hypotheses 593
disease model, INTERNIST 595
disease node 594
disease tree 593
disorder frame 599
dynamic disease process 589, 590

CASNET 577, 589-593, 608
CASNET/GLAUCOMA 589-593
categoricalreasoning 601
causal disease pathway 590
causal model 589-593
causal network 589-593
certainty factor 586
certainty factor, MYCIN 584
CF, certainty factors 584, 585
classification tables 590, 591
clause 584
clinical reasoning 578
clinical strategy 1,595-596
clinical strategy, IRIS 608-610
complementary frames 699
conclusion 585
confidence factor 584, 590
confidence factors 608
confirmed hypotheses 600
confirmedstates 591
CONNIVER 598
constrictor relation 596
consultation systems 1
cost 590, 594

EMYCIN 580
EVOKE relation 594
explanation 602
explanatorydiagnosis power 608

findings 598
findings, PIP 598
forward-chaining 607
frame relations, PIP 599
frame system 598
frames 598-601,605

glaucoma 589, 605
glaucoma consultation system 605
goodnessof fit, PIP 599

HEADMED 577
HODGKINS 577
hypotheses,active 599
hypotheses, semi-active 600
hypothesis confirmation 599
hypothesis formation 577, 593

613Index

hypothesis rejection 599
hypothesis status, CASNET 591
hypothesis status, PIP 500

IMPORT property 594
inexact inferences 584
inexact knowledge 577
Inexact reasoning 1,577,585,593
infectious disease consultant system 681-

-589
Inference 605
inference rules 585
inferential rules 685
INTERLISP 605
internal medicine consultation program 693
INTERNIST 593, 601
INTERNIST II 608
INTERNIST-II 596 -
IRIS 577, 605
ISPEC 606-610

judgemental reasoning 576
justification 579

knowledge acquisition 587
knowledge engineering 1

link types 605
LISP 583

MACLISP 598, 602
Man/machine Interactions 688
MANIFEST relation 594
manifestations 593
matching 598
matching score 600
medical applications 1
medical consultant systems 1
medical decision making 1

medical diagnosis systems 1
model, diagnostic reasoning

(INTERNIST) 593
MYCIN 577,581-589,601,608
MYCIN, Sample dialogue 581-583

natural language, MYCIN 587

object 584
OWL 579

pathway 590
patient-specific model 602
PIP 598-601
planes of knowledge 589
plausible reasoning 1, 577, 595, 596
predicate function 584
preference categories 587
premise 585
premise clause 583
Present Illness Program 598-601
probabilisticreasoning 601
problem 593
production rules 583, 605
production system 581-589
productions, MYCIN 587
propagation 605
propagation of ISPECs 607
propagation, IRIS 606
PUFF 577, 580

representation of medical knowledge 1 .
589, 593-595, 596

representation, clinical strategies 605
representation, medical knowledge 600

root structure 596

scoring 595
semantic grammar 587

614 Al Applications in Medicine%

semantic net 606
sequential diagnosis programs 577
sequential processing, INTERNIST 696
shelf 595
simulation of clinical reasoning 601
status 591
status, of hypothesis in CASNET 591
status, of state 591
strategies 608
strategy, reasoning 591
supports 590

TEIRESIAS 587
theory formation 593
therapy selection 587
thresholding 578
top-down approach 597
treatment regimen system 602
TRIGGER key elements 699
triggering hypotheses 600
TYPE property 594

undetermined states 591
unity path 686

validation 579
value 584, 586I

i
I

f

Applications-oriented AI Research

Part 4: Education

616

\

\

i
j :

\

Al Applications in Education

Table of Contents

A. Historical Overview of Education Applications . 617
B. Issues and Components of ICAI Systems 620
C. ICAI Systems 626

1. SCHOLAR " " 626
2. WHY 631
3. SOPHIE 636
4. WEST 642
5. WUMPUS 649
6. BUGGY 655
7. EXCHECK 659

References 666

Index 671

A. Historical Overview of Education Applications

Educational applications of computer technology have been under development since
the early 1 9605. These applications have included scheduling courses, managing teaching
aids, and grading tests. The predominant application, however, has involved using the
computer as a device that Interacts with the student directly, rather than serving as an
assistant to the human teacher. For this kind of application, there have been three general
approaches.

The "ad lib" or "environmental approach" is typified by Papert's LOGO laboratory
(Papert, 1970), that allowed students more or less free-style use of the machine. Students
are involved in programming; It is conjectured that learning problem-solving methods takes
place as a side effect of using tools that are designed to suggest good problem-solving
strategies to the student. The second approach uses games and simulations as instructional
tools; once again the student is involved in an activity—for example, doing simulated
genetics experiments—for which learning is an expected side effect. The third computer
application in education is computer-assisted instruction (CAI). Unlike the first two
approaches, CAI makes an explicit attempt to instigate and control learning (Howe, 1973).
This third use of computer technology in education is the focus of the following discussion.

The goal of CAI research is to construct instructional programs that Incorporate well-
prepared course material In lessons that are optimized for each student. Early programs
were electronic "page-turners" that printed prepared text and simple, rote drills; and
practice monitors, which printed problems and responded to the student's solutions using
prestored answers and remedial comments. In the Intelligent CAI (ICAI) programs of the
19705, course material is represented independently of teaching procedures so that

problems and remedial comments can be generated differently for each student. Research
today focuses on the design of programs that can offer instruction in a manner that is

sensitive to the student's strengths, weaknesses, and preferred style of learning; The role
of Al in computer-based instructional applications is seen as making possible a new kind of
learning environment. "

This overview surveys how Al techniques have been used In research attempting to
create intelligent computer-based tutors. In the next article, some design issues are
discussed and typical components of ICAI systems are described. Subsequent articles
describe some Important applications of artificial Intelligence techniques in instructional
programs.

Frame-oriented CAI Systems

The first instructional programs took many

forms,

but all adhered to essentially the

same pedagogical philosophy. The student was usually given some '"struct,ona' J8"
(sometimes without using the computer) and asked a question that required a brief answ_er.
After the student responded, he was told whether his answer was right « W ""«

student's response was sometimes used to determine his "path" through the «Kriculum the

sequence of problems he is given (see Atkinson & Wilson, 1969). When the student made an

error, the program branched to remedial material.

% 618 Al Applications in Education

i

j

f;

)

The courseware author attempts to anticipate every wrong response, prespecifying
branches to appropriate remedial material based on his ideas about what might be the
underlying misconceptions that would cause each wrong reesponse. Branching on the basis
of response was the first step toward individualization of instruction (Crowder, 1962). This
style of CAI has been dubbed ad-hoc, frame-oriented (AFO) CAI by Carbonell (1970b), to
stress its dependence on author specified units of information. (The term "frame" as it is
used In this context predates the more recent usage in Al—see Article Representation.B7—
and refers to a block or page or unit of information or text.) Design of ad-hoc frames was
originally based on Skinnerian stimulus/response principles. The branching strategies of some
AFO programs have become quite involved, incorporating the best learning theory that
mathematical psychology has produced (Atkinson, 1972; Fletcher, 1975; Kimball, 1973).
Many of these systems have been used succesfully and are available commercially.

Intelligent CAI

In spite of the widespread application of AFO CAI to many problem areas, many
researchers believe that most AFO courses are not the best use of computer technology:

In most CAI systems of the AFO type, the computer does little more
than what a programmed textbook can do, and one may wonder why
the machine is used at all....When teaching sequences are extremely
simple, perhaps trivial, one should consider doing away with the
computer, and using other devices or techniques more related to the
task. (Carbonell, 1970b, pp. 32, 193)

In this pioneering paper, Carbonell goes on to define a second type of CAI that is known
today as "knowledge-based" or "intelligent" CAI (ICAI). Knowledge-based systems and the
previous CAI systems both have representations of the subject matter they teach, but ICAI
systems also carry on a natural language dialogue with the student, and use the student's
mistakes to diagnose his misunderstandings.

Early uses of Al techniques in CAI were called "generative" CAI (Wexler, 1970), since
they stressed the ability to generate problems using a large database representing the
subject they teach. (See Koffman & Blount, 1975., for a review of some early generative
CAI programs and an example of the possibilities and limitations of this style of courseware.)
However, the kind of courseware that Carbonell was describing in his paper was to be more
than just a problem generator—it was to be a computer tutor that had the inductive powers
of Its human counterparts. ICAI programs offer what Brown (1977) calls a reactive learning
environment, in which the student Is actively engaged with the instructional system and his
interests and misunderstandings drive the tutorial dialogue. This goal was expressed by
other researchers trying to write CAI programs that extended the medium beyond the limits
of frame selection:

Often it is not sufficient to tell a student he is wrong and indicate the
correct solution method. An Intelligent CAI system should be able to
make hypotheses based on a student's error history as to where the
real source of his difficulty lies. (Koffman & Blount, 1975.)

I

619Historical Overview of Education ApplicationsA

The Use of Al Techniques In ICAI

The realization of the computer-based tutor has involved increasingly complicated
computer programs and has prompted CAI researchers to use artificial intelligence
techniques. Artificial intelligence work in natural language understanding, representation of
knowledge, and methods of inference, as well as specific Al applications like algebraic
simplification, calculus, and theorem proving, have been applied by various researchers
toward making CAI programs that are more intelligent and more effective. Early research on
ICAI systems focused on representation of the subject matter. Benchmark efforts include
SCHOLAR, the geography tutor of Carbonell and Collins (see article CI),

EXCHECK,

the logic

and set ' theory tutors by Suppes et al. (article F7), and SOPHIE, the electronics
troubleshooting tutor of Brown and Burton (article C3). The high level of domain expertise in

these programs permits them to be responsive In a wide range of problem-solving
interactions.

These ICAI programs are quite different from even the most complicated frame-
oriented, branching program.

Traditional approaches to this problem using decision theory and
stochastic models have reached a dead end due to their
oversimplified representation of learning.... It appears within reach of
Al methodology to develop CAI systems that act .more like human
teachers. (Laubsch, 1975)

However, an Al system that is expert in a particular domain is no necessarily an expert

teacher of the material-'MCAI systems cannot be Al systems warmed over" (Brown, 1977) A

teacher needs to understand what the student Is doing, not Just what he is supposed to 00.

Al programs often use very powerful problem-solving methods that do not resemble those

used by humans; in many cases, CAI researchers borrowed Al techniques for representing

subject domain expertise but had to modify them, often making the inference routines less

powerful, in order to force them to follow human reasoning patterns, so as to bet e.;expi
their methods to the student, as well as to understand his methods (Smith, 1976; Goidoerg,

1973).

In the mid-19705, a second phase in the development of ICAI tutors has been

characterized by the inclusion of expertise in the tutor regarding 1Hh^tudeiit J learning

behavior and 2) tutoring strategies (Brown &

Goldstein,

1977). Al <^^.^J(See
construct models of the learner that represent his knowledge In terms of jssues \
artirio cal or "skills" (Barr & Atkinson, 1975) that should be learned. This mooei tne

cSls^ng'strategles for presenting the materia.. Finally, some .CA. programs are ow

using Al techniques to explicitly represent these tutoring 'tratejries, gaining * he ad d̂
9
stei-t

flexibility and modularity of representation and control (Burton & Brown, 1979, <»o<o

1977; Clancey, 1979a).

References

The best general review of research in ICAI Is Brown *£^{£" oZlt
papers on recent work are collected In a special issue of the Internat.onal Journ

Machine

Studies,

Volume 11,1979.

620 Al Applications in Education%

I

!

B. Issues and Componentsof ICAI Systems

The main components of ICAI systems are 1) its problem-solving expertise, the
knowledge that the system tries to impart to the student, 2) the student model, indicating
what the student does and does not know, and 3) tutoring strategies, which specify how the
system presents material to the student). (See Self, 1974, for an excellent discussion of
the differences and Interrelations of the types of knowledge needed in an intelligent CAI
program.) Not all of these components are fully developed in every system. Because of the
size and complexity of Intelligent CAI programs, most researchers tend to concentrate their
efforts on the developmentof a single part of what would constitute a fully usable system.
Each component is described briefly below.

The Expertise Module—Representing Domain Knowledge

The "expert" component of an ICAI system is charged with the task of generating
prqbiems and evaluating the correctness of student solutions. The CAI system's knowledge
of the subject matter was originally envisioned as a huge static database that incorporated
all the facts to be taught. This idea was Implicit in the early drill-and-practice programs and
was made explicit in generative CAI (see Article A). Representation of subject matter
expertise in this way, using semantic nets (Article Representetioaß2), has been useful for
generating and answering questions involving causal or relational reasoning (Carbonell &

Collins,

1973; Laubsch, 1975; and see Articles CI and C2on the SCHOLAR and WHY
systems).

Recent systems have used procedural representation of domain knowledge, e.g., how to
take measurements and make deductions (see Article Representation.B9). This knowledge is
represented as procedural experts that correspond to subskills that a student must learn in
order to acquire the complete skill being taught (Brown, Burton, & Bell, 1975). Production
rules (Article RepreBentation.B3) have been used to construct modular representations of
skills and problem-solving methods (Goldstein, 1977; Clancey, 1979a). In addition, Brown &
Burton (1975) have pointed out that multiple representations are sometimes useful for
answering student questions and for evaluating partial solutions to a problem (e.g., a
semantic net of facts about an electronic circuit and procedures simulating the functional
behavior of the circuit). Stevens & Collins (1978) considered an evolving series of
"simulation" models that can be used to metaphorically reason about the behavior of causal
systems.

It should be noted that not all ICAI systems can actually solve the problems they pose
to a student. For example, BIP, the BASIC Instructional Program (Barr, Beard, & Atkinson,
1975), can't write or analyze computer programs: BIP uses sample input/output pairs
(supplied by the course authors) to test students' programs. Similarly, the procedural
experts in SOPHIE-I could not debug an electronic circuit. In contrast, the production rule
representation of domain knowledge used in WUMPUS and GUIDON enables these programs to
solve problems independently,as well as to criticize student solutions (Goldstein, 1977, and
Clancey, 1979a). Being able to solve the problems, preferrably In all possible ways,
correctly and incorrectly, is necessary If the ICAI program is to make fine-grained
suggestions about the completionof partial solutions.

An important idea in this connection is that of an articulate expert (Goldstein, 1977).

621Issues and Components of ICAI Systems

Whereas typical expert Al programs have data structures and processing algorithms that do
not necessarily mimic the reasoning steps used by humans and are,

therefore,

considered
"opaque" to the user, an articulate expert for an ICAI system must be designed to enable
the explanationof each problem-solving decision it makes in terms that correspond (at some
level of abstraction) to those of a human problem solver. For example, the electronic circuit
simulator underlying SOPHIE-I (see Article C3), which is used to check the consistency of a
student's hypotheses and to answer some of his questions, is an opaque expert on the
functioning of the circuit. It is a complete, accurate and efficient model of the circuit, but its
mechanisms are never revealed to the student since they are certainly not the mechanisms
that he is expected to acquire. In WEST, on the other hand, while a (compete and

efficient;

opaque expert is used to determine the range of possible moves that the student could have
made with a given roll of the dice, an articulate expert, which only models pieces of the
game-playingexpertise, Is used to determine possible causes for less-than-optimal student
moves.

ICAI systems are distinguished from earlier CAI approaches by the separation of
teaching strategies from the subject expertise to be taught. However, the separation of
subject-area knowledge from instructional planning requires a structure for organizing the
expertise that captures the difficulty of various problems and the interrelationships of
course material. Modeling a student's understanding of a subject is closely related
conceptuallyto figuring out a representation for the subject itself or for the language used
to discuss it.

Trees and lattices showing prerequisite interactions have been used to organize the
introduction of new knowledge or topics (Koffman & Blount, 1975.). In BIP this lattice took
the form of a curriculum net that related the skills to be taught to example programming tasks
that exercised each skill (Barr, Beard, & Atkinson, 1976). Goldstein (1979) called the
lattice a syllabus in the WUMPUS program and emphasized the developmental path that a

learner takes In acquiring new skills. For arithmetic skills used in

WEST,

Burton & Brown
(1976a) use levels of issues. Issues proceed from the. use of arithmetic operators to

strategies for winning the game, to meta-level considerations for improving performance.

Burton and Brown believe that when the skills are "structurally independent," the order or
their presentation is not particularly crucial. This representation is useful for modeling the

student's knowledge and coaching him on different levels of abstraction.

Stevens,

Collins,

&

Goldin (1978) have argued further that a good human tutor does not merely traverse a
predetermined network of knowledge in selecting material to present. Rather, it Is tne

process of ferreting out student misconceptions that drives the dialogue.

The Student Model

The modeling module is used to represent the student's understand["o ofJ^e mster a

to be taught. Much recent ICAI research has focused on this component The purpose o

modeling the student is to make hypotheses about his "toeonoeptteM snd suboptimai

performance strategies so that the tutoring module can print them out '"f**° *7_ "^4°
wrong, and suggest corrections. It Is advantageous for the system to be ■"" J ;«coani»j
alternate wayfof solving problems, including the incorrect methods' *"* tts "tU^Snt
use resulting from systematic misconceptions about the problem or from inenici

strategies.

622 Al Applications in Education%

/

I

i

\

Some early frame-oriented CAI systems used mathematical stochastic learning models, but
this approach failed because it only modeled the probability that a student would give a
specific response to a stimulus. In general, knowing the probability of a response is not the
same as knowing what a student understands—the former has little diagnostic power
(Laubsch, 1975).

Typical uses of Al techniques for modeling student knowledge Include 1) simple pattern
recognition applied to the student's response history and 2) flags in the subject matter
semantic net or in the rule base representing areas that the student has mastered. In these
ICAI systems, a student model is formed by comparing the student's behavior to that of the
computer-based "expert" In the same environment. The modeling component marks each skill
according to whether evidence indicates that the student knows the material or not. Carr &
Goldstein (1977) have termed this component an overlay model— the student's understanding
Is represented completely in terms of the expertise component of the program (see Article
C5).

In contrast, another approach is to model the student's knowledge not as a subset of
the expert's, but rather as a perturbation or deviation from the expert's knowledge—a
"bug". (See, for example, the SOPHIE and BUGGY systems—Articles C3and CB.) There is a
major difference between the overlay and "buggy" approaches to modelling: In the latter
approach it is not assumed that the student reasons as the expert does, but simply knows
less. Rather the student's reasoning can be substantially different from expert reasoning.

Other information that might be accumulated in the student model includes the
student's preferred modes for Interacting with the program, a rough characterization of his
level of ability, a consideration of what he seems to forget over time, and an indication of
what his goals and plans seem to be for learning the subject matter.

Major sources of evidence used to maintain the student model can be characterized
as: (a) Implicit, from student problem-solving behavior; (b) explicit, from direct questions
asked of the student; (c) historical, from assumptions based on the student's experience;
and (d) structural, from assumptions based on some measure of the difficulty of the subject
material (Goldstein, 1977). Historical evidence is usually determined by asking the student
to rate his level of expertise on a scale from "beginner" to "expert." Early programs like
SCHOLAR used only explicit evidence. Recent programs have concentrated on inferring
"Implicit" evidence from the student's problem-solving behavior. This approach is
complicated because it is limited by the program's ability to recognize and describe the
strategies being used by the student. Specifically, when the expert program indicates that
an Inference chain is required for a correct result, and the student's observable behavior is
wrong, how is the modelling program to know which of the intermediate steps are unknown or
wrong applied by the student? This is the apportionment of creditIblame problem; it has been an
important focus of WEST research.

Because of inherent limitations in the modelling process, it is useful for a "critic" in the
modeling component to measure how closely the student model actually predicts the
student's behavior. Extreme Inconsistency or an unexpected demonstration of expertise in
solving problems might indicate that the representation being used by the program does not
capture the student's approach. Finally, Goldstein (1977) has suggested that the modeling
process should attempt both to measure whether or not the student is actually learning and
to discern what teaching methods are most effective. Much work remains to be done in this
area.

623Issues and Componentsof ICAI Systems

The Tutoring Module

The tutoring module of ICAI systems must integrate knowledge about natural language
dialogues, teaching methods, and the subject area to be taught. This is the module that
communicates with the student: selecting problems for him to solve, monitoring and criticizing

his performance, providing assistance upon request, and selecting remedial material. The
design of this module involves issues tike "When Is it appropriate to offer a hint?" or "How
far should the student be allowed to go down the wrong track?"

These are just some of the problems which stem from the basic fact
that teaching is a skill which requires knowledge additional to the
knowledge comprising mastery of the subject domain. (Brown, 1977)

This additional knowledge, beyond the representation of the subject domain and of the
student's knowledge, is about how to teach.

Most ICAI research has explored teaching methods based on diagnostic modelling in

which the program debugs the student's understanding by posing tasks and evaluating his

response (Collins, 1976; Brown & Burton, 1975; Koffman & Blount, 1975.). The student Is

expected to learn from the program's feedback of which skills he uses wrongly, which he

does not use (but could use to good advantage), etc. Recently, there has been more
concern with the possibility of saying the just right thing to the student so that he will

realize his own inadequacy and switch to a better method (Carr &

Goldstein,

1977; Burton &

Brown 1979; Norman,

Gentner,

and Stevens, 1976). This new directionis based on attempts

to make a bug "constructive" by establishing for the student that there is something

inadequate in his approach, and giving enough information so that the student can use what

he alreadyknows to focus on the bug and characterize it so that he avoids this failing in tne

future.

However, it is by no means clear how "just the right thing" is to be said to the student.
We do know that it depends on having a very good model of his understanding Pr

°^
sJ (I

methods and strategies he used to construct a solution). Current research '» fo£"»*n° .
means for representing and isolating the bugs themselves (Stevens,

Collins,

& Goldin,

Brown & Burton, 1978a).

Another approach is to provide an environment that encourages the student to *h '"* Jn
terms oTdebug^ing his own knowledge. In one B.P experiment (Wescourt and HempML

1978), explicit debugging strategies (for computer programming) fostered a
document and then a controlled experiment was undertaken to see whether this fostere

more rational approach for detecting faulty use of (programming) skills.

Brown,

Collins,

and Harris (1978) suggest that one might *7^?P^l.n.s
hypotheses and test them (the basis of understanding tar^m"^Z^i^Jm how
in which the student's first guess is likely to be wrong, Jhus "W^B Wm to o

he detects that his guess Is wrong and how he then intelligently goes about revising

The Socratlc method used in WHY (Stevens 3,

student in a way that will encourage him to reason about wha he *no
of real.world

conceptions. The tutor's strategies are constructed by analyzing pr

student/teacher interactions.

624 Ai Applications in Education

%

I

)

1

Another teaching strategy that has been successfully implemented on several systems
Is called coaching (Goldstein, 1977). Coaching programs are not concerned with covering a
predetermined lesson plan within a fixed time (In contrast with SCHOLAR). Rather, the goal
of coaching is to develop the acquisition of skill and general problem solving abilities, and it
works by engaging the student in a computer game (see Article A). In a coaching situation,
the immediate aim of the student is to have

fun,

and skill acquisition is an indirect
consequence. Tutoring comes about when the computer coach, which is "observing" the
student's play of the game, interrupts him and offers new information or suggests new
strategies. A successful computer coach must be able to discern what skills or knowledge
the student might acquire, based on his playing style, and to judge effective ways to
intercede In the game and offer advice. WEST and WUMPUS (Articles C4and C5) are both
coaching programs.

Socratic tutoring and coaching represent different styles for communicating with the
student. All mixed-initiative tutoring involves following some dialogue strategy. This will
Include decisions about when and how often to question the student, and methods for
presentation of new material and review. For example,by design, a coaching program is not
intrusive, and only rarely lectures. On the other hand, a Socratic tutor questions repetitively,
requiring the student to pursue certain lines of reasoning. Recently ICAI research has turned
to making explicit these alternative dialogue management principles. Collins (1976) has
pioneered the careful investigation and articulation of teaching strategies. Recent work has
explored the representationof these strategies as production rules (see Clancey, 1979aand
Article C2on Collins and Stevens' WHY system).

For example, the tutoring module In the GUIDON program, which discusses MYCIN-like
"case diagnosis" tasks with a student (see Clancey, 1979a, and Article C1on MYCIN), has an
explicit representation of discourse knowledge. Tutoring rules select alternative dialogue
formats on the basis of economy, domain logic, and tutoring or student modeling goals.
Arranged into procedures, these rules cope with various recurrent situations in the tutorial
dialogue:, for example, introducing a new topic, examining a student's understanding after he
asks a question that Indicates unexpected expertise, relating an Inference to one just
discussed, giving advice to the student after he makes a hypothesis about a subproblem, and
wrapping up the discussion of a topic.

Conclusion

In general, ICAI programs have only begun to deal with the problems of representing
and acquiring teaching expertiseand of determining how this knowledge should be integrated
with generalprinciples of discourse. The programs described in the articles to follow have all
investigated some aspect of this problem, and none offer an "answer" to the question of how
to build a computer-tutor. Nevertheless, these programs have demonstrated potential
tutorial skill, sometimes often showing striking insight into students' misconceptions.
Research continues toward making viable Al contributions to computer-based education.

625issues and Componentsof ICAI SystemsB

References

Goldstein (1977) gives a clear discussion of the distinctions between the modules
discussed here, concentrating on the broader, theoretical issues. Burton & Brown (1976a)
also discuss the components of ICAI systems and their interactions and present a good
example. Self (1974) Is a classic discussion of the kinds of knowledge needed In for a
computer-based tutor.

% 626 Al Applications in Education

I
M

I

C. ICAI Systems

Cl. SCHOLAR

An important aspect of tutoring is the ability to generate appropriate questions for the
student. These questions can be used by the tutor to indicate the relevant material to be
learned, to determine the extent of a student's knowledge of the problem domain, and to
identify any misconceptions that he might have. Given that the knowledge base of a tutoring
program can't contain all of the "facts" that are true about the domain, the tutor should be
able to reason about what it knows and make plausible inferences about facts in the domain. In
addition to responding to the student's questions, the tutor should be able to take the
Initiative during a tutoring dialogueby generating good tutorial questions.

SCHOLAR is one such mixed-initiative computer-based tutorial system; both the system
and the student can initiate conversation by asking questions. SCHOLAR was the pioneering
effort in the development of computer tutors capable of coping with unanticipated student
questions and of generating subject matter in varying levels of detail, according to the
context of the dialogue. Both the student's Input and the program's output are in English
sentences.

The original system, created by Jaime Carbonell, Allan Collins, and their colleagues at
Bolt, Beranek and Newman, Inc., tutored students about simple facts in South American
geography (Carbonell, 1970b). SCHOLAR uses a number of tutoring strategies for composing
relevant questions, determining whether or not the student's answers are correct, and
answering questions from the student. Both the knowledge representation scheme (see
below) and the tutorial capabilities are applicable to other domains besides geography. For
example, NLS-SCHOLAR was developed to tutor computer-naive people in the use of a
complex text-editingprogram (Grignetti, Hausman, &

Gould,

1975).

In addition to Investigating the nature of tutorial dialogues and human plausible
reasoning, the SCHOLAR research project explored a number of Al issues, including:

1 . How can real-world knowledge be stored effectively for the fast, easy
retrieval of relevant facts needed in tutoring?

2. What general reasoning strategies are needed to make appropriate inferences
from the typically incomplete database of the tutor program?

3. To what extent can these strategies be made independent of the domain
being discussed (i.e., be dependentonly on theform of the representation)?

The Knowledge Base—Semantic Nets

In SCHOLAR, knowledge about the domain being tutored Is represented in a semantic net
(see Article Representetion.B2). Each node or "unit" in the net, corresonding to some
geographical object or concept, is composed of the name associated with that node and a
set of properties. These properties are lists of attribute-value pairs. For example, Figure 1
shows a representationof the unit for Peru:

627SCHOLARC1

PERU:
((EXAMPLE-NOUN PERU))

'importance" of unit is high(10)

(SUPERC (I 0) COUNTRY)
(SUPERP (I 6) SOUTH/AMERICA)

link to superordinate units

(LOCATION (I 0) values of LOCATION attribute follow:
(IN (I 0) (SOUTH/AMERICA (I 0) WESTERN))
(ON (I 0) (COAST (I 0) (OF (I 0) PACIFIC))
(LATITUDE (I 4) (RANGE (I 0) -18 0))
(LONGITUDE (I 5) (RANGE (I 0) -82 -68))
(BORDERING/COUNTRIES (11)

(NORTHERN (I 1) (LIST COLUMBIA ECUADOR))
(EASTERN (I 1) BRAZIL)

Figure 1 . The unit for PERU.

Attributes can be English words (other units) that are defined elsewhere in the net or one of
several special attributes such as "SUPRA" for superattribute, "SUPERC" for superconcept
or superordinate, "SUPERP" for superpart, or case structure attributes used in Parsin9 (se «;
befow). An example of SUPRA might be the fact that "fertile" refers to "soil' and soil

refers to "topography"; of SUPERP, that Peru Is part of South America; of SUPERC, thart^Peru
is a country Values can also be importance tags, like the expressions "(I 0)" after LOOAiiuim

in Figure 1 and "(I D" after EASTERN: the lower the number, the more Important the Pr°Perty-
SCHOLAR uses these tags to measure the relevance of a node with respect to the topic

under discussion (see below).

Tutorial Dialogue

An important part of the SCHOLAR research has been an^^pha'.s on th; £"*£ £
tutorial dialogue, in particular the Socratic style of tutoring, where the tutor ■«"«»»

dlaonose the student's misconceptions and then present material that will force xne

Sl

t^eThis own errors (Coil.ns, Warnock, & Passaf.ume. 1974). Many human tu oria,£»toeos

have been analysed to see what strategies human students follow In order tojj*
incorporate these strategies in the system (see also Article C2 on «"" "J^^, h the
research in this direction). The following example Is an excerpt rom a a«aion „„„
South American geography tutor. The student's questions and answers are preceded y

and annotations,are shown In italics:

What is the language of Argentina?

628 Al Applications In Education

/'
I
I

** PROBABLY SPANISH

Very good.
Approx what is the area of Argentina?

Student changes topic...

** TELL ME SOMETHING ABOUT PERU

Peru is a country.
It is located in South America
The capital of Peru is Lima.
Now answer the question you didn't answer before.

...andfinally answers the question.

** THE AREA OF ARGENTINA IS 1,100,000 SQUARE MILES

Approximately true, but a more exact value is 1,200,000.
The eastern bordering country of Peru is

Student makes an error and is corrected...

** CATHOLICISM

Wrong. Catholicism is not a country but a religion.
The correct answer is: Brazil
Where is Peru?

L
...and once again changes topic.

** Is Asuncion hot?
Since Asuncion Is part of Paraguay, yes.

** WHAT IS THE MOST IMPORTANT DIFFERENCE BETWEEN PERU AND
The primary difference is: The population of Peru is larger by a
factor of 7.8.

PARAGUAY?

The natural languageprocessing used by SCHOLAR is based on a case grammar system
(Article Natural Language.B3b), and the semantic interpretation of a student's response is
heavily guided by the geography knowledge in the semantic net. Natural language
processing is important in SCHOLAR because it allows the student to take the initiative and
ask questions that were not anticipated by the program. However, comprehension of English
input is facilitated by a taxonomy of expected "question types." The case grammar is also
used by the system to construct questions and presentations of new material from the
semantic network. English output Is composed of short, simple sentences, with no embedded
clauses and a limited repertoire of verbs—generally some form of the verb "to be."

A simple agenda is used to keep track of topics that are being discussed. Timing
considerations and relevance (importance tags) affect the generation and pruning of topics

SCHOLAR 629C1

v

on this agenda. Continuity between questions is weak, however, since SCHOLAR does not
plan a series of questions to make a point. SCHOLAR is capable of diagnosing a student's
confusion only by following up one question with a related question.

Making Inferences

SCHOLAR'S inference strategies, for answering student questions and evaluating
student answers to its questions, are designed to cope with the incompleteness of the
information stored in the semantic net database. Some of the Important strategies used to
reason with incomplete knowledge are given below. These abilities have been explored
further in current research dealing with default reasoning (Reither, 1978) and plausible
reasoning (Collins, 1978).

Intersection search. Answering questions of the form "Can X be a V?" (e.g., "Is Buenos
Aires a city in Brazil?") is done by an intersection search: The superconcept (SUPERC) arcs
of both nodes for X and V are traced until an intersection is found (i.e., a common
superconcept node is found). If there is no intersection, the answer is "NO." If there is an
intersection node Q, SCHOLAR answers as follows:

For example, the question "Is Buenos Aires in Brazil?" is answered YES because Brazil is a

SUPERC of Buenos Aires In the net (Q=Y):

SOUTH AMERICA
/ (Superconcept)

BRAZIL (V)

(Superconcept)
BUENOS AIRES (X)

But, the question "is Brazil in Buenos Aires?" gets the response "NO, BRAZIL is a country."

SOUTH AMERICA
(Superconcept)

BRAZIL (X)

/ (Superconcept)

BUENOS AIRES (V)

Common superordinate. Otherwise, if Qis not Xor V, the program focuses.on the.two

elements tZhav'e 0 as a common superordinate. If they ""CONTRA properties) or have distinguishing, mutually exclusive properties (e.g., airie

If Q=Y, then "YES";
If

Q=X,

then

"NO,

V IS AN X."

630 Al Applications in Education

■*i

s.

i

LOCATIONS), the answer is "NO"; otherwise the system answers "I DON'T KNOW." Answering
"Is X a part of V?" questions is similar, except SUPERP (superpart) arcs are used for the
intersection process.

Open and closed sets. In order to look for all objects in the system that satisfy some
condition (e.g., "How many cities in Columbia are on the Atlantic?"), a distinction must be
made about whether the resulting set of these objects is closed (explicitly contains ail such
objects) or open (contains some and need not contain ail such objects). In SCHOLAR'S net,
-sets are tagged by the course author as either open or closed, thus giving an indication of
the incompleteness of the system's knowledge.

While it is easy for SCHOLAR to answer questions (such as, "Is France a country in
South America?") about closed sets, similar questions about open sets require the use of
special techniques—SCHOLAß must be able to reason about the extent of its knowledge. For
example, if we ask SCHOLAR whether or not rubber is a product

of,

say, Guyana and if there
is no explicit information about Guyanese rubber production in the semantic net, SCHOLAR
starts to reason with what it knows: It compares the importance tags of the agricultural
products of Guyana with the importance tags for rubber In countries that it knows produce
rubber. It happens that Peru is a known rubber producer. SCHOLAR looks at the l-tag of
rubber for Peru and compares this tag to the largest (least important) l-tags associated with
Guyana. If It finds that these are comparable, SCHOLAR infers that it knows as much about
Guyana (up to some large l-tag value) as it knows about Peru. Therefore SCHOLAR infers
that it would know about rubber production in Guyana if it were important. Since rubber is
not listed for Guyana, SCHOLAR makes the plausible (though uncertain) conclusion that rubber
is not produced there. At this point SCHOLAR answers that it doesn't know for certain and
gives the information about rubber and Peru.

SCHOLAR'S use of knowledge about the extent of its knowledge in this kind of plausible
reasoning is unique In Al research and representsan application of meta-level knowledge (see
RepresentatioaOverview).

Summary

The inferencing strategies used by SCHOLAR are independent of the content of the
semantic net, and are applicable in differnt domains. The inferences produced are fairly
natural; that is, they cope with the incompleteknowledge by employing reasoning processes
similar to those that people use. The SCHOLAR project as a whole provides an ongoing
environment for research on discourse, teaching strategies and human plausible reasoning
(see Article C2on recent research, including the WHY system).

References

Carbonell (1970a) is a classic paper, defining the field of ICAI and introducing the
SCHOLAR system. Collins (1976) is an illuminating study of human tutorial dialogues. Collins
et al. (1975) discusses inference mechanisms and Collins (1978) reports extended research
on human plausible reasoning. Grignetti,Hausman, & Gould (1975) describes NLS-SCHOLAR.

C2 WHY 631

fc

C2. WHY

Recent research by Allan Collins, Al Stevens, and their ICAI research group at Bolt,
Beranek and Newman, Inc., has focused on developing computer-based tutbrs that can
discuss complex systems. Their previous research on SCHOLAR (Article CI), a system that
tutors facts about South American geography, led them to investigate the nature of tutorial
dialogues about subject matter that was not just factual—where the causal and temporal
interrelations between the concepts in the domain were of interest and where student's
errors could involve not only forgotten facts, but also misconceptions about why processes
work the way they do. Stevens & Collins (1977) are building a new system, called WHY, that
tutors students in the causes of rainfall, a complex geophysical process that is a function of
many Interrelated

factors;

no single factor can be isolated that is both necessary and
sufficient to account for rainfall.

In their research on tutorial dialogue of this type, the BBN group has focused on three
questions that are central themes throughout ICAI research (Stevens,

Collins,

&

Goldin,

1978):

1. How can a good tutor's use of questions, statements, and examples be
characterized? What Is the "goal structure" of a Socratic tutor? (See
below.)

2. What types of misconceptions do students have? How do tutors diagnose
these misconceptionsfrom the errors students make?

3. What are the abstractions and viewpoints that tutors use to explain physical
processes?

By analyzing tutorial dialogues between human experts and students, Collins and Stevens
identify elements of a theory of tutoring. These are incorporated into a tutorial program,
which is then used to find the weak points of the theory for further investigation. The

current version of the WHY system Is the first of a series of iterations of this sort. The work
so far has concentrated on the first topic above, the nature of Socratic tutoring.

Socratic Tutoring Heuristics

Collins (1976) argues that learning to reason about and understand complex processes
Is best accomplished by dealing with specific problems and cases and trying to generalize
from them. Socratic dialogue is especially appropriate for tutoring complex subjects wnere
factors Interact and where their Interaction accounts for the phenomenon under

consideration. In an effort to explicitlymodel the nature of the Socratic dialogue the current

version of the WHY system incorporates 24 heuristics which control the student/system

interaction, like:

// the student gives as an explanationof causal dependence one or more

factors that are not necessary,

then pick a counterexample with the wrong value of the factor and ask the

student why his causal dependence doesn't hold in that case.

*

%

Al Applications in Education632

i

t

!y

|

I

"\
i

!

This rule forces the student to consider the necessity of a particular factor. For
example, if the student gives rainfall as a reason for growing rice, then the computer-

generated counterexample "Why do they grow rice in Egypt, where there isn't much
rainfall?" challenges the student's explanation of rice growing. These, heuristic rules are
designed to facilitate tutorial dialogues in which students must consider combinations of
factors that are necessary for rainfall, eliminate irrelevant factors, and attempt to generalize
from specific cases to general conditions. (See Collins, 1976, for a complete discussion of
the tutoring rules.)

WHY'S knowledge base about rainfall is represented in script-Wke data structures, which
encode temporal relations in the rainfall process; for example, "First water evaporates from
an ocean or sea, then the water-laden air mass is carried over land by winds, which in turn
causes the air mass to cool, which causes precipitation." (See Schank & Abeison, 1977, on
scripts, as well as Article Representatioaß7.) This knowledge representation is adequate for
capturing many of the characteristics of a tutorial dialogue, but there are other kinds of
knowledge about rainfall that aren't represented here, discussed below.

* The following excerpt is from a dialogue with the current version of the WHY system.
The system prompts the student to suggest causes of rainfall, to look for prior or
intermediate causes, and finally to suggest a generalrule. When such a rule is proposed, the
system finds a counterexample and forces revision of the rule to account for it. The system
proceeds in this way until a rule of sufficient generality is found. The protocol is annotated
with the heuristics employed by, the system at each juncture In the conversation.

Heuristic I: Ask for a prediction about a particular case.

Do you think the Amazon junglehas heavy rainfall or light rainfall?
** HEAVY RAINFALL

Heuristic 2: Ask for prior causes.

Why does the Amazon jungle have heavyrainfall?
** BECAUSE ITS NEAR THE ATLANTIC
Yes, the Amazon jungle is near the equatorialAtlantic.

Heuristic 2: Ask for intermediate causes.

How does that affect rainfall In the Amazon jungle?

** THE WATER IN THE CURRENT IS WARM

(Section Omitted)

Heuristic 4: Ask for subsequent causes.

What happens after the moisture-filled air reaches the land?
** I DON'T KNOW

633WHYC2

!

Heuristic 5: Suggest a factor and ask if it is a cause.

Do you think the Andes mountain range has any effect on the rainfall
in the Amazon jungle?
** YES

Heuristic 3: Ask for intermediate causes.

How?
** THE PREVAILING WIND HITS THE ANDES AND THE AIR COOLS

Heuristic S: Ask for intermediate causes.

How does the fact that prevailing wind hits the Andes, lead to

air cooling?

(Section Omitted)

Heuristic 6: Form a general rule for an insufficient cause

Do you think that any place with mountains has heavy rainfall?

** YES

Heuristic 7: Pick a counterexample for an insufficient cause, and Heuristic 2: Ask for
prior causes.

Southern California has mountains. Why doesn't Southern California
have heavy rainfall?

Current Research

Tutorial goals. One of the shortcomings of the existing system is that it doMnthave
lonn-tlrm "aoals" for the tutorial dialogue. Implicit in the tutorial rules are some idea about

ooai mlnaoement of the Interaction, but global strategies about the tutoring session are

LbsinTnurn tutors, however, admit to having goals like "Concentrate on °"c particular

D-rt of thecausai structure of rainfall at a time," or "Clear up one misconception before

d7«rn«J« another" Stevens & Collins (1977) set about codifying these goals.and

B

S
into the WHY system. They analyzed tutoring protocols in which

iTalTjJTco^Zeo- on what they thought the students did
they responded to the students as they did. From this analysis, two top levei g

1 Refine the student's causal structure, starting with the mostJw°«*«lfactors in a particular process and gradually incorporating more subtle

2. Refine the student's procedures for applying his causal model to novel

situations.

apparent:

factors.

634 At Applications in Education

I

I

i

Student misconceptions. The top-level goals involve subgoals of identifying and
correcting the student's misconceptions. Stevens & Collins (1977) classified these
subgoals into five categories corresponding to types of bugs and how to correct them:

Factual Bugs. Dealt with by correcting the student. Teaching facts is not
the goal of Socratic tutoring; interrelationshipsof facts are more important.

Outside-domain bugs. Misconceptions about causal structure, which the
tutor chooses not to explain in detail. For example, the "correct" relationship
between the temperature of air and its moisture-holding capacity is often
stated by the tutor as a

fact,

without futher explanation.

Overgeneralization. When a student makes a general rule from an
insufficient set of factors (e.g., any place with mountains has heavy rainfall),
the tutor will find counterexamples to probe for more factors.

Overdifferentlation. When a student counts factors as necessary when
they are not, the tutor will generate counterexamples to show that they are
not.

Reasoning bugs. Tutors will attempt to teach students skills such as forming
and testing hypotheses and collecting enough Information before drawing a
conctusjon.

If a student displays more than one bug, human tutors will employ a set of heuristics to
decide which one to correct first:

1 . Correct errors before omissions.

2.

Correct,

causally prior factors before later ones.

3. Make short corrections before longer ones.

4. Correct low-level bugs (In the causal network) before correcting higher
levehones.

Functional relationships. The bugs Just discussed are all domain independent, that is,
they would occur in tutorial dialogues about other complex processes besides rainfall. But
some bugs are the results of specific misconceptions about the functional interrelationships
of the concepts of the specific domain. For example, one common misconception about
rainfall is that "cooling causes air to rise" (Stevens,

Collins,

&

Goldin,

1978). This is not a
simple factual misconception, nor is It domain independent. It Is best characterized as an
error In the student's functional model of rainfall.

In fact, the script representation used In the WHY system for capturing the temporal

and causal relations of land, air, and water masses In rainfall proved Inadequate to get at all
of the types of student misconceptions. Recent work has investigated a more flexible
representation of functional relationships, which allows the descriptionof the processes that
collectively determine rainfall from multiple viewpoints—e.g., temporal-causal-subprocess view

635C2 WHY

captured in the scripts, functional viewpoint which emphasizes the roles that different
objects play in the various processes (Stevens,

Collins,

&

Goldin,

1978). Misconceptions

about rainfall are represented as errors in the student's model of these relationships. A
functional relationship has four components: (a) a set of actors, each with a role in the
process; (b) a set of factors that affect the process—the factors are all attributes of the
actors (e.g., water is an actor In the Evaporation relationship and its temperature is a
factor); (c) the result of the process—this is always a change In an attribute of one of the
actors; and (d) the relationship that holds between the actors and the result, or how an
attribute gets changed. These funtional relationships may be the result of models from other
domains that are applied metaphorically to the domain under discussion (Stevens & Collins,
1978).

Summary

The WHY system started as an extension of SCHOLAR by the implementation of rules
that characterize Socratic tutoring heuristics. Subsequently, an effort was made to describe
the globalstrategies used by human tutors to guide the dialogue. Since these were directed
towards dispelling students' misconceptions, five classes of misconceptions were
established, as well as means for correcting them. Many misconceptions are not domain
independent and the key to more versatile tutoring lies in continuing research on knowledge
representation.

References

The most recent reference on the research reported here is

Stevens, Collins,

& Goldin
(1978). The tutorial rules are discussed fully In an excellent article by Collins (1976). The
later work on the goal structure of a tutor is reported in Stevens &

Collrhs,

1977. Finally,

recent work on conceptual models and multiple viewpoints of complex systems is discussed
in Stevens & Collins (1978).

i

Al Applications in Education636

I
,Hj

i.

s

I

h
i

C3. SOPHIE

SOPHIE (a SOPHlsticated Instructional Environment) is an ICAI system developed by
John Seely Brown, Richard Burton, and their colleagues at Bolt, Beranek and Newman, Inc., to
explore the objective of a wider range of student initiatives during the tutorial interaction
(Brown, Burton, & Bell, 1975). The SOPHIE system provides the student with a learning
environment in which he learns problem-solving skills by trying out his ideas, rather than by
instruction. The system has a model of the problem-solving knowledge in its domain as well
as numerous heuristic strategies for answering the student's questions, criticizing his
hypotheses, and suggesting alternative theories for his current hypotheses. SOPHIE enables
the student to have a one-to-one relationship with an "expert" who helps him create his own
ideas, experiment with these ideas and, when necessary, debug them.

Figure 1 illustrates the component modules of the original SOPHIE-I system (Brown,
Rubinstein, & Burton, 1976) and the additional capabilities added for the SOPHIE-II system,
discussed later in this article.

AUGMENTATIONS FOR SOPHIE-11.

Articulate
ExpertDebugger/
Explainer

Figure 1. SOPHIE-I and SOPHIE-II

SOPHIE-I SYSTEM

C3 SOPHIE 637

SOPHIE-I

SOPHIE teaches problem-solving skills in the context of a simulated electronics
laboratory. The problem facing the student is to find the "faults" in a malfunctioning piece of
equipment whose characteristics have been given to him by taking "measurements." The
student obtains a sequence of measurements (such as voltages, currents, resistances, etc.)
to determine what is wrong with the equipment and asks questions about the measurements
and about what fault hypotheses he should consider, given the information he has discovered
so far. SOPHIE evaluates the hypotheses by considering all of the Information that the
student should have been able to derive from his current set of measurements. The system
also Judges the merits of a student's suggestion for a new measurement in light of the prior
sequence of measurements. SOPHIE can decide if a measurement is valuable, depending on
whether it eliminates or isolates a fault, and will inform the student when a proposed
measurement provides no new information.

The following portion of a sample protocol illustrates some of the linguistic and
inferential capabilities of the SOPHIE system (from Brown & Burton, 1975). SOPHIE randomly
selects a fault (in the performance of a circuit component), inserts it into a model or
simulation of the circuit, and tells the student how the controls are set. The student is given
a schematic diagramof the circuit, and the dialogue refers to components in the schematic
diagram (e.g., resistor 8 (R8), node connection 1 (N1), capacitor 5 (C5)). The student begins
his troubleshootingby performing measurements In the faulted circuit.

Welcome to Sophie, a reactive learning environment. The piece of
equipment you are studying is a regulated power supply. Would you like
to start with a faulted Instrument that needs fixing?
** YES

The instrument has a fault and Its present control settings are:

CC 1 .0 CURRENT CONTROL
CR HIGH CURRENT RANGE SWITCH
LOAD 20 LOAD RESISTANCE IN OHMS
VC 1.0 VOLTAGE CONTROL
VR HIGH VOLTAGE RANGE SWITCH

** WHAT IS THE OUTPUT?

The output voltage Is 1 1.7 volts.

Notice that "output" was disambiguated as "output voltage."

* WHAT IS IT IN A WORKING INSTRUMENT?

In a working circuit the output voltage is 19.g VO|ts.

In case the student does not know what the required value of measurement should have
been, he can ask for any measurement in a properly functioning instrument. The student
then requests an internal measurement.

■" WHAT IS THE VOLTAGE BETWEEN R8 AND Q1?

% 638 Al Applications in Education

/

I

!

i

The voltage at N1 is 47.8 volts.

REPLACE Q6
(

The student believes that he has discovered the problem (in transistor 06) and tries to fix
it. Before a component is replaced, however, the system queries him as to how he thinks it
is faulted.

I am going to ask you some questions about how Q6 Is faulted.
Are any junctions shorted?

** I DON'T KNOW

Are any terminals open?

** YES

Which terminal(s) are open?

** THE BASE

Q6 is not faulted in that manner. Q6 not replaced.

After learning that 06 does not have an open base, the student asks if this was at least a
reasonable hypothesis.

** IS IT POSSIBLE THAT Q6 HAS AN OPEN BASE? \

Before the system's evaluation procedures can be applied to the student's idea or
hypothesis, the hypothesis must be completely specified. To help the student out, the
system suggests a plausible complete specification of it in an abbreviated form familiar to
the student.

Is the complete fault mode EB/EC/BC » Open/Ok/Open what you intended?

** SURE

That fault Is consistent with all of the measurements you have made.

The hypothesis is reasonable, but other measurements will indicate that another component
is faulty.

639

SOPHIEC3

Natural Language Processing—Semantic Grammar

In an instructional environment, it Is important that the student be provided with a
convenient way in which to communicate his ideas to the system. The student will become

quickly frustrated if he has to try several ways of expressing an idea before the system can

understand it SOPHIE'S natural language understander copes with various linguistic problems

such as anaphoric references and context-dependent deletions and ellipsis, which occur

frequently in natural dialogues.

SOPHIE'S natural language capabilities are based on the concept of a semantic grammar
in which the usual syntactic categories such as noun, verb, and adjective areßeplaced^by
semantically meaningful categories (Burton, 1976b, and Burton and Brown 1979). These
categories represent concepts known to the system-such as "measurements «"*
elements," "transistors" and "hypotheses." for each concept there is a V^'"*'*?*
gives the alternate ways of expressing that concept in terms of its 9^
Each rule is encoded as a LISP procedure that specifies the order of application of the

various alternatives In each rule.

A arammar centered around semantic categories allows the parser to deal with a

certain SS"of "Juzziness" or uncertainty In Its understanding oMfe^ords m

statement; that Is, if the parser is searching for a V^^f^^TSZm
cateaorv and the current word in the sentence fails to satisfy this instantiation, it skips

iTSZi we'd a^d continues searching. Thus, if the student uses certain, words, or concepts

that the system doesn't know, the parser can ignore these words "n-tryto make sense o

what remains In order to limit the negative consequences that ma//MU" "" "misunder?tc!od question, SOPHIE responds to the student's question with a fui. sentence that

tells him what question Is being answered.

In order to Interact with the student, SOPHIE performs several Afferent logical and

tutor., tasks. First, there Is the task of answering S^'th«
student might ask, "If the base-emitter junction of the voltage limiting transistor ope

what happens to the output voltage?"

A second task SOPHIE must perform Is that of hypothesis *valuationr»«*"J£ BQ38
Q3 be

asks, "Given the measurements I have made so

far,

could the base of transWo

open?" The problem here is not to determine if the assert on "the base o^o3 s P

true, but whether this assertion is logically consistent with the
xda ĥ^y

ha
t
Vrs „_t. when it

collected by the student. If It Is not consistent, the program explains why-nAs n

is consistent, SOPHIE identifies which Information supports the assertion

information is independent of it.

A third task that SOPHIE must perform hypothesis gen«*«^Xe »Zn Information.
Involves constructing all possible hypotheses that are be wrong with the
This procedure enables SOPHIE to answer questions like, What g

_
circuit (given the measurements that I haw taken)? ThJ Jsk ,s s_

ye performing the "test"
and-test paradigm with the hypothesis evaluation task described
function.

Inferencing Strategies

640 Al Applications in Education

t

Finally, SOPHIE can determine whether a given measurement is redundant, that is, if the
results of the measurement could have been predicted from a complete theory of the circuit,
given the previous measurements.

SOPHIE accomplishes all of these reasoning tasks using an inference mechanism that
relies principally on a general-purposesimulator of the circuit under discussion. For example,
to answer a question about a changed voltage resulting from a hypothetical modification to a
circuit, SOPHIE first interprets the question with its parser and then, using this interpretation,
simulates the desired modification. The result is a Voltage Table that represents the
voltages at each terminal In the modified circuit. The original question is then answered in
terms of these voltages.

The tasks of hypothesis evaluation and hypothesis generation are handled in a similar
manner, using the simulator. When evaluating hypotheses, SOPHIE attempts to determine the
logical consistency of a given hypothesis. To accomplish this task, a simulation of the
hypothesis is performed on the circuit model and measurements are taken of the result. If
the values of any of these measurements are not equivalent to the measurements taken by
the student, then a counterexample has been established and it is used to critique the
student's hypothesis.

When generating hypotheses, SOPHIE attempts to determine the set of possible faults
or hypotheses that are consistent with the observed behavior of the faulted instrument.
This task is performed by a set of specialist procedures that propose a possible set of
hypotheses to explaina measurement and then simulate them to make sure that they explain
the output voltage and all of the measurements that the student has taken. Hypothesis
generation can be used to suggest possible paths to explore when the student has run out
of ideas for what could be wrong with the circuit or when he wishes to understand the full
implications of his last measurement. It Is also used by SOPHIE to determine when a
measurement is redundant.

SOPHIE-II: The Augmented SOPHIE Lab

Extensions to SOPHIE Include: (a) a troubleshooting game Involving two teams of students
and (b) the development of an articulate expert debugger!explainer. The simple reactive
learning environment has also been augmented by the development of frame-oriented CAI
lesson material, used to prepare the student for the laboratory interaction (Brown,
Rubinstein, & Burton, 1976). The articulate expert not only locates student-inserted faults
In a given Instrument, but can articulate exactly the deductions that lead to its discovery, as
well as the more globalstrategies that guide the trouble-shootingscenario.

Experience with SOPHIE indicates that Its major weakness is an inability to follow up on
student errors. Since SOPHIE is to be reactive to the student, it will not take the initiative to
explore a student's understanding or suggest approaches that he does not consider.
However, the competitive environment of the troubleshooting game, in which partners share a
problem and work it out together, was found to be an effective means of exercising the
student's knowledge of the operation of the Instrument being debugged. Finally, an
experiment involving a minicourse—and exposure to the frame-based texts, the expert, and
the original SOPHIE Lab—indicated that long-term use of the system is more effective than a
single, concentrated exposure to the material (Brown, Rubinstein, & Burton, 1976).

641SOPHIEC3

4

Summary

The goal of the SOPHIE project was to create a learning environment in which tho

student would be challenged to explore ideas on his own and to create conjectures or
hypotheses about a problem-solving situation. The student receives detailed feedback as to

the logical validity of his proposed solutions. In cases where the student's ideas have

logical

flaws,

SOPHIE can create relevant counterexamples and critiques. The SOPHifc

system combines domain-specific knowledge and powerful domain-independent "nferencing

mechanisms to answer questions that even human tutors might find it extremely difficult to

answer.

References

Brown, Burton, & Bell (1975) give a complete description of the early work: on

SOPHIE,

and Brown, Rubinstein, & Burton (1976) report on the later work. Also see Brown & Burton
(1975).

\

Al Applications in Education

642

I
Al

i

'I

i

C4. WEST

Development of the first computer coach was undertaken by Richard Burton and John
Seely Brown at Bolt, Beranek and Newman, Inc., for the children's board game of "How the
West Was Won." The term "coach" describes a computer-based learning environment where
the student Is involved in an activity, like playing a computer game, and the instructional
program operates by "looking over his shoulder" during the game and occassionally offering
criticisms or suggestions for improvement (Goldstein, 1977). This research focused on
identifying: (a) diagnostic strategies required to infer a student's misunderstandings from his
observed behavior and (b) various explicittutoring strategies for directing the tutor to say the
right thing at the right time (Burton & Brown, 1976a, and Burton & Brown, 1979). The
intention of this work was to use these strategies to control the interaction so that the
instructional program took every possible opportunity to offer help to the student without
Interrupting so often as to become a nuisance and destroy the students fun at the game. By
guiding a student's learning through discovery, computer-based coaching systems hold the
promise of enhancing the educational value of the increasingly popular computer gaming
environments.

Philosophy of the Instructional Coach

The pedagogical ideas underlying much of computer coaching research in WEST can be
characterized as guided discovery learning. It assumes that the student constructs his
understanding of a situation or a task based on his prior knowledge. According to this theory,
the notion of misconceptionor bug plays a central role in the construction process. Ideally, a
bug in the student's knowledge will cause an erroneous result in his behavior, which the
student will notice. If the student has enough information to determine what caused the
error and can then correct it, the bug is referred to as constructive. The role of a tutor in an
informal environment is to give the student extra information in situations that would
otherwise be confusing to him, so that he can determine what caused his error and can
transform nonconstructive bugs into constructive ones (see Fischer, Brown, & Burton, 1978
for further discussion).

* However, an important constraint on the coach is that it should not interrupt the
student too often. If the coach immediately points out the student's errors, there is a
danger that the student will never develop the necessary skills for examining his own
behavior and looking for the causes of his mistakes himself. The tutor must be perceptive
enough to make relevant comments, but not be too intrusive, destroying the fun of the game.
The research on the WEST system examined a wide variety of tutorial strategies that must
be included to create a successful coaching system.

How the West Was Won

"How the West Was Won" was originally a computer board game designed by Bonnie
Anderson of the Elementary Mathematics Project at the PLATO computer-based education
system at the University of Illinois (Dugdale & Kibbey, 1977). The purpose of this original
(nontutorlai) program was to give elementary-schoolstudents drill and practice in arithmetic.
The game resembles the popular Chutes and Ladders board game, and briefly goes something

643WESTC4

like this: At each turn a player receives three numbers (from spinners) with which he
constructs an arithmetic expression using the operations of addition, subtraction,

multiplication, and division. The numeric value of the completed expression is the number of
spaces the player can move, the object of the game being to get to the end first

However, just trying to combine the three numbers to make the biggest valued
expression is not always the best strategy, because there are several special features on
the game board. Towns occur every ten spaces and if a player lands on one, he skips ahead
to the next town. There are also shortcuts, and If he lands on the beginning of one a player

advances to the other end of the shortcut. Finally, if the player lands on the space that his
opponent is occupying, the opponent is bumped back two towns. The spinner values in WEST

are small, so these special moves are encouraged (i.e., landing on towns or shortcuts or on
your opponent).

Diagnostic Modeling

There are two major related problems that must be solved by the computer coach.
They are (1) when to interrupt the student's problem-solving activity, and (2) what to say

once it has been interrupted. In general,solutions to these problems require both techniques

for determining what the student knows (procedures for constructing
explicit tutoring principles about Interrupting and advising. These, in turn require theories

about how a student forms abstractions, how he learns, and when he Is apt to be most

receptive to advice. Unfortunately, few, if any, existing psychological theories ere precise

enough to suggest anything more than caution.

Since the student is primarily engaged in a gaming or problem-solving activ^y,
of his strengths and weaknesses must be unobtrusive to his main actMty. Thia object

means that the diagnostic component cannot use pre-stored tests or pose a tot of diagnoauc

questions to the student. Instead, the computer coach must restrlot J«lt«»«"J"
a student's shortcomings from what he does in the context of playing th«J^^"?us*
problem. This objective can create a difficult problem-just because a student do"" "°^a certain skill while playing a game does not mean that he does not know that 3m. Althoug

this point seems quite obvious, it poses a serious dlagnostto ,°? m̂ "J^?****
potential skill carries diagnostic value if and only if an expert <" a" e«u,va^jTcomputer-
have used that skill. Hence, apart from his outright errors, the maln_ "*J a C

t°m
h
P
nique

based coach has on a student's misconceptions is through a f^/^^f.f, ws p"ace.
that compares what the student is doing with what the "J^^^^^Tf^ty«t
This difference provides hypotheses about what the student does not know or nas

mastered. (See the related discussion of overlay models in Article C5.)

Constructing the differentia, mode, requires that
using the computer Expert (the subprogram that is expert at playh g the oam-.
first task of the coach is to evaluate the student's current move with respect

possible alternative moves that an Expert might were used to select
circumstances. The second task is to determine what underly ngskUls were

and compose the student s move and each of the better moves
knowledge and

accomplish the evaluative task, the Expert need only use the results

644 Al Applications in Education

j
i-

I*-

reasoning strategies, available as better moves. However, for the second task, the coach
has to consider the "pieces" of knowledge involved in move selection and in the generation
of better moves, since the absence of one of these pieces of knowledge might explainwhy
the student failed to make a better move.

Tutoring by Issue and Example — A General Paradigm

One of the top-level goals driving the coach is the objective that its comments be both
relevant to the situation and memorable to the student. The Issues and Examples tutoring
strategy provides a framework for meeting these two constraints. Issues are concepts used
in the diagnostic process to identify, at any particular moment, what is relevant. Examples
provide concrete Instances of these abstract concepts. Providing both the description of a
generic Issue (a concept used to select a strategy) as well as a concrete example of its
use increases the chance that the student will integrate this piece of tutorial commentary
into his knowledge. In the Issues and Examples paradigm, the Issues embody the important
concepts underlying a student's behavior. They define the space of concepts that the
Coach can address—the facets of the student's behavior that are monitored by the Coach.

In WEST, there are three levels of Issues on which a Coach can focus: At the lowest
level are the basic mathematical skills that the student is practicing (the use of
parentheses, the use of the various arithmetic operations, and the form or pattern of the
student's move as an arithmentic expression). The .second level of Issues concerns the
skills needed to play WEST (like the special moves: bump, town, and shortcut) and the
developmentof a strategy tor choosing moves. And at the third level are the general skills of
game playing (like watching your opponent to learn from his moves), which are not addressed
by the WEST program.

Each of the Issues Is represented in two parts, a recognizer and an evaluator. The issue
recognizer Is data-directed; it watches the student's behavior for evidence- that he does or
does not use a particular concept or skill. The recognizers are used to construct a model of
the student's knowledge. The issue evaluators are goal-directed; they interpret this model
to determine the student's weaknesses. The Issue recognizers of WEST are fairly
straightforward but are, nevertheless, more complex than simple pattern matchers. For
example, the recognizer for the PARENTHESIS Issue must determine not only whether or not
parentheses are present in the student's expression, but also whether they were necessary
for his move, or for an optimal move.

Figure 1 is a diagram of the modeling/tutorial process underlying the Issues and
Examples paradigm. Figure 1a presents the process of constructing a model of the student's
behavior. It Is important to observe that without the Expert it is impossible to determine
whether the student is weak in some skill or whether the skill has not been used because
the need for it has arisen infrequently in the student's experience.

645C4 WEST

Figure 1, Diagram of the Modeling/Coaching Process

%

646 Al Applications in Education

t

.»!

i

I

The Coaching Process

Figure 1b presents the top level of the coaching process. When the student makes a
less than optimal move (as determined by comparing his move with that of the Expert), the
Coach uses the evaluation component of each Issue to create a list of Issues on which it has
assessed that the student Is weak. From the Expert's list of better moves, the Coach
invokes the Issue recognizers, to determine which issues are illustrated by these better
moves. From these two lists of Issues, the Coach selects an Issue and the move that
illustrates It (1.c., creates an example of It) and decides, on the basis of tutoring principles,
whether or not to interrupt. If the two lists have no Issues in common, the reason for the
student's problem lies outside the collection of Issues, and the Coach says nothing.

If the Coach decides to interrupt, the selected Issue and Example are then passed to
the explanation generators, which produce the feedback to the student. Currently, the
explanations are stored in a procedures, called Speakers, attached to each Issue. Each
Speaker is responsible for presenting a few lines of text explainingIts Issue. (See also the
related discussion of computer coaching in Article C5on WUMPUS).

Tutoring Principles

General tutoring principles dictate that, at times, even when relevant Issues and
Examples have been identified, it may be inappropriate to interrupt. For example, what if
there are two competing Issues, both applicable to a certain situation? Which one should be
picked? The Issues in WEST are sufficiently Independent that there is little need to
consider their prerequisite structure, e.g., whether the use of parentheses should be tutored
before division (but see the description of the syllabus In WUMPUS, Article C5). Instead,
additional tutoring principles must be invoked to decide which one of the set of applicable
Issues should be used.

In WEST, experiments have been conducted using two alternate principles to guide this
decision. The first is the Focus Strategy, which ensures that, everything else being equal,
the Issue most recently discussed is chosen—the Coach will tend to concentrate on a
particular Issue until evidence is present to indicate that it is mastered. The alternative
principle is the Breadth Strategy, where Issues that have not recently been discussed tend
to be selected. This strategy minimizes a student's boredom and insures breadth of concept
coverage.

The rest of WEST'S strategies for deciding whether to raise an issue and what to say
can be placed in the four categories listed below, with examplerules of each:

1. Coaching Philosophy. Tutoring principles can enhance a student's likelihood
to remember what is said. For example, "When illustrating an Issue, use an
Example (an alternative move) only when the result or outcome of that move
is dramatically superior to the move made by the student."

2. Maintaining Interest in the Game. The Coach should not destroy the
student's inherent interest in the game by interrupting too often. For
example, "Never tutor on two consecutive moves," or "If the student makes
an exceptionalmove, identify why it is good and congratulate him."

C4 WEST 647

t

3. Increasing Chances of Learning. Four levels of hints are provided by the
WEST tutor, at the student's request: (a) isolate a weakness and directly
address that weakness, (b) delineate the space of possible moves at this
point in the game, (c) select the optimal move and tell why it is optimal, and
(d) describe how to make the optimal move.

4. Environmental Considerations. The Coach should consider the game-playing
environment. For example, "If the student makes a possibly careless error,
one for which there Is evidence he knows better, be forgiving."

Noise in the Model

When the student does not make an optimal move, the program knows only that at least
one of the Issues required for that move was not employed by the student. Which of these

issues blocked the student from making the move is not known. In practice, blame Is
apportioned more or less equally among all of the Issues required for a missed better move.
One effect of this apportionment Is the Introduction of noise into the model, that is, blame will
almost certainly be apportioned to Issues that are, in

fact,

understood. Also, since the
system does not account for the entire process that a person uses to derive a move, the set

of Issues is, by

definition,

Incomplete. This is the second source of noise in the differential
model. A third source of noise in the model is the difficulty of modeling certain human factors

such as boredom or fatigue that cause Inconsistent behaviors. For example, students are
seldom completely consistent. They often forget to use techniques that they know, or get

tired and accept a move that is easy to generate but which does not reflect their
knowledge.

Another source of noise is Inherent in the process of learning. As the student plays the
game, he acquires new skills. The student model, which has been accumulating during the

course of his play, will not be up to date, that is, it will still show the newly learned issues as
"weaknesses." Ideally, the "old pieces" of the model should decay with time. Unfortunately,

the costs involved In this computation are prohibitive. To avoid this particular falling of tne

model, the WEST Coach removes from consideration any Issues that the student has useo
recently (In the last three moves), assuming that they are now part of his knowledge.

To combat the noise that arises In the model, the Evaluator for each Issue tends to

assume that the student has mastery of the Issue. Some coaching opportunities may oe

missed but eventually, If the student has a problem addressed by an Issue, a pattern

emerge.

Experiences with West

WEST has been used in elementary school classrooms. In a controlled experiment,^the
coached version of WEST was compared to an uncoached version. Tha ?oachea] a"*"X*t
showed a considerably greater variety of patterns, indicating that they had acquired many of

?he more subtle patterns and had not fallen permanently into "ruts" that= P^ted them from

seeing when such moves were Important. Moreover, and Perhaps mos '^
an* °' *£

students in the coached group enjoyed playing the game considerably more than tne

uncoached group (Goldstein, 1979).

648 Al Applications in Education

*
i

/

11.

References

The most recent and most complete discussion of the WEST coach is Burton & Brown
(1979).

C5 WUMPUS 649

C5. WUMPUS

This article describes a computer coach for WUMPUS, a computer game in which the
player must track down and slay the vicious Wumpus while avoiding pitfalls that result in
certain, if fictional, death (Yob,. 1975). The coach described here is WUSOR-11, one of three
"generations" of computer coaches for WUMPUS developed by Ira Goldstein and Brian Carr at
MIT (Carr &

Goldstein,

1977). (For discussions of WUSOR-I and -111, see

Stansfield, Carr,

&
Goldstein, 1976, and Goldstein, 1979, respectively.) To be a skilled Wumpus-hunter one must
know about logic, probability, decision theory, and geometry. A deficit in one's knowledge
may result in being eaten by the Wumpus or falling through the center of the earth. In
keeping with the philosophy of computer coaching, students are highly motivated to learn
these fundamental skills.

The design of the WUSOR-II system involves the interactions of the specialist programs
shown in Figure 1. There are four modules: the Expert, the Psychologist, the Student Model,

and the Tutor. The Expert informs the Psychologist of two facts: (a) if the player's move is
nonoptimal and (b) which skills are needed for him to discover better alternatives. The
Psychologist employs this comparison to formulate hypotheses about which domain-specific
skills are known to the student. These hypotheses are recorded in the Student Model, which
represents the student's knowledge as a subset of the Expert's skills—an overlay model (see

Article B and Carr &

Goldstein,

1977). The Tutor uses the student model to guide its
Interactions with the player. Basically, it chooses to discuss skills not yet exhibited by the
player In situations where their use would result in better moves. Goldstein (1977) provides
a more detailed discussion of the structure and function of these coaching modules. (Also

see the discussion of the WEST computer coach in Article C4.)

The central box of Figure 1 contains a representation for the problem-solving skills of
the domain being tutored. It is, In essence, a formal representation of the syllabus. The

Expert Is derived from the skills represented therein, as is the structure of the stude"tmodel. The Psychologist derives expectations from this knowledge regarding which skills tne

student can be expected to acquire next, based on a model of the relative difficulty of items

in the syllabus. The Tutor derives relationships between skills such as analogies and

refinements,

which can be employedto improve its explanationsof new skills (see

Goldstein,

1979).

Theoretical Goals: Toward a Theory of Coaching

The approach to the design of computer coaches in WUSOR-II is to construct rule-based
representation (see Article RepTßBentation.B3) for (a) the skills needed by th« Expert to P ay

the game, (b) the modeling criteria used by the Psychologist, and (c) the alternative tutoring

strategies used by the Tutor. Each is expanded below:

I

660 Al Applications in Education

!■
M

"i

i
U

\

Fig. 1 . Simplified block diagram of a computer coach.

661WUMPUSC6

The Expert uses rules that embody the knowledge or skills required to play the game

to analyze the player's behavior. The virtue of a rule-based representation of expertise s

that its modularity both allows tutoring to focus concisely on the discussion of specific skills

and permits modeling to take the form of hypotheses regarding which rules are known by tne

player.

The Psychologist uses rules of evidence to make reasonable hypotheses about which of

the Expert's skills the player possesses. Typical rules of evidence are:

Increase the estimate that a player possesses a skill if the player explicitly

claims acquaintance with the skill, and decrease the reliability if the player

expresses unfamiliarity.

Increase the estimate that a player possesses a skill if the skill is manifest in the
player's behavior, and decrease the estimate if the skill is not manifest in a

situation where the Expert believes It to be appropriate; hence, implicit as well

as overt evidence plays a role.

Decrease the estimate that a player possesses a skill If there is a long interval
since the last confirmation was obtained (thereby modeling the tendency for a

skill to decay with little use).

The Tutor uses explanation rules to select the appropriate topic to discuss with the

player and to choose the form of the explanation. These rules include:

Rules of simplification that take a complex statement and reduce it to a simpler

assertion. Simplification rules are essential if the player is not to De

overwhelmed by the Tutor's explanations.

Rules of rhetoric that codify alternative explanationstrategies. The tw«xtr«nM

are explanation in terms of a general rule and explanation in terms of a concrete
Instance.

The WUMPUS Expert

in WUMPUS, the player is mi .ally placed somewhere in a Wumpus
caves and told the neighbors of his current location His goal is to locate the no
and slay it with an arrow. Each move to a neighboring cav«yield^'ni0'3a

eneeof dangers in
cave's neighbors. The difficulty in choosing a move arises from «^ "^^Ji,fair, he
the larren-bats, pits, and the Wumpus itself. If the player movea jlnto the Wumpu

Is eaten. If he walks Into a pit, he falls to his death. Bats pick the player up an

drop him elsewhere in the warren.

The player can minimize risk and locate the Wumpus by making Jhe pr P 0

probable Inferences from warnings that he U, give^ These *a "JXd within one or
whenever the player is In the vicinity of a danger. The^Wumpus can b

& f
two caves. The squeak of bats can be heard one cave away ana

|f th- p|ayer
„„«, X»,o Au/av The game is won by shooting an arrow into the wu"p"8

exhaU* « hT/e« of Aye .r-ow, without „««„, the c,..«.r., «. *"*<* - '<»<"

T

662 Al Applications in Education

l<

The Wumpus Expert uses a rule-based representation, consisting of approximately 20
rules, to infer the risk of visiting new caves. Five of these rules are shown below:

L 1positive evidence rule. A warning- in a cave implies that a danger exists in
neighbor.

L 2negative evidence rule. The absence of a warning implies that no danger exists
in any neighbors.

L 3elimination rule. If a cave has a warning and all but one of its neighbors are
known to be

safe,

then the danger is in the remaining neighbor.

P1 equal likelihood rule, in the absence of other knowledge, all of the neighbors
of a cave with a warning are equally likely to contain a danger.

P2 double evidence rule. Multiple warnings increase the likelihood that a given
cave contains a danger.

A Sample Protocol with the WUSOR-II Computer Coach

A transcript of an interaction with the WUSOR-II coach is illustrated below. The
player's responses are preceded by a "*.

Hello, Timmy. There are 1 6 caves, 2 bats, 2 pits, and 1 Wumpus. You
are now at cave 1 6 with neighbors 4, 1 4 and 0. Brrr! There is a draft. You
are near a pit. What a stench! The Wumpus Is near. What now?

*« 4

You are now at caye 4 with neighbors 1 6, 1 4 and 2. Brrr! Squeak!
A bat is near. What now?

The goal of the Coach is to tutor a beginner in the relevant logical, probabilistic, and
strategic knowledge needed to play the game. For example, the Expert informs the Tutor
that cave 14 should be treated as more dangerous than 0 or 2 since there is multiple
evidence (from the drafts in 15 and 4) that 14 contains a pit. If the player now moved to
cave 14, a coaching situation might occur as follows:

Timmy, it isn't necessary to take such large risks with pits. One of
cave 2 and 14 contains a pit. Likewise one of cave 0 and 1 4 contains a pit.
This is multiple evidence of a pit in cave 14 which makes it quite likely
that cave 1 4 contains a pit. It is less likely that cave 0 contains a pit.
Hence, we might want to explorecave 0 instead. Do you want to take back
your move?

663CS WUMPUS

Although it is not apparent from these simple remarks, every module of the Coach
contributed to the dialogue. These contributions are summarized below:

The Expert analyzes all possible moves, using its set of skills. The outcome of its
analysis is a ranking of possible moves with an attached list that associates the skills that
would be needed to make each move. For example, using the five skills listed earlier, the
Expert recognizes that cave 1 4 is the most dangerous move and cave ois the safest move.

Essentially, the Expert provides the following proof for use by the Psychologist and
Tutor modules. (The proof is given here In English for readability: the Expert's actual
analyses are in the programming languageLISP.)

Lemma 1: The Wumpus cannot be in 0, 2, or 14 since there is no smell in 4.
(Application of the negative evidence rule L2for 2-cave warning of Wumpus.)

Lemma 2: Caves 0 and 2 were better than 14 because there was single

evidence that caves 0 and 2 contained a pit, but double evidence for cave 1 4.
(Applicationof the double evidence rule P2.)

Lemma 3: Cave 2 is more dangerous than cave 0, since 2 contains a bat, and the
bat could drop you in a fatal cave. (We know this fact because the squeak in 4

implied a bat in 1 4 or 2; but the absence of a squeak in 15 implies no bat in 1 4.
Hence, by elimination rule L3, there is a bat In 2.)

The Psychologist, after seeing Timmy move to cave 14, decreases the Student Model
weight Indicating familiarity with the Double Evidence rule P2, since the Expert's proof

indicates that this heuristic was not applied. Table 1 is the Psychologist s hypotheses
regarding which skills of the Expert the student possesses.

Table 1.

A Typical Student Model Maintained by the Coach

Modeling raises many issues. One subtlety is that the move to 1 4 above may be

eviden
Mc°edof a9more elementary llmltatlon-a failure to ""^"^^J^'JSS.Sthe draft warning-1.e., that a pit is in a neighboring cave. The current state OTJn" k|||

Mo
e
de. ts u^Vthe Psychologist to determine, In the event of a nonopt^a^ move, wWch «

is in fact missing. The Student Model indicates the level of play^ hat an be exP

this player-the player might be a beginner with incomplete knowledge ot me o«

ULES APPROPRIATE USED PER CENT KNNOWN

LI
L2
L3
L4
L5

5
4
4
5
4

5
3
2
5
1

100
75
50

100
25

Yes
Yes

?
Yes
No

Al Applications in Education664

\

/

A

1
!r

the game, a novice with understanding of the logical skills, an amateur with knowledge of the
logical and the more elementaryprobability skills, etc. The Psychologist would attribute the
student's error in the current situation to unfamiliaritywith a skill at his current level of play-
-in this case, Timmy Is a player who has mastered the logical skills and is learning the basic
probability heuristics. Hence, the coach's explanation focused on explaining the double
evidence heuristic.

The Tutor is responsible for abridging the Coach's response to the player's move to
cave 14. (The complete explanationgeneratedby the Expert were the three lemmas shown
above.) Such pruning is imperative if the Coach is to generate comprehensible advice.
Hence, the Tutor prunes the complete analysis on the basis of simplification rules that delete
those parts of the argument that are already known to the player on the basis of the
Student Model and those portions that are too complex. Here, the coach deleted Lemma 1 ,
the discussion of the Wumpus danger, because it is based on the negative evidence skill
that the Student Model attributes to the player. Lemma 2, the elimination argument for bats,
is potentially appropriate to discuss; but a simplification strategy directs the Coach to focus
on a single skill. Additional information will be givenby the Coach if requested by the player.

Conclusions'

The novelty of this research is that in a single system there is significant domain
expertise, a broad, range of possible interaction strategies available to the tutor, and a
modeling capability for the student's current knowledge state. Informal experiencewith over
20 players of various ages has shown WUSOR-II to be a helpful learning aid, as judged by
interviews with the players. The short-term payoff from this research is an improved
understanding of the learning and teaching processes. The long-term payoff is the
development of a practical educational technology, given the expected decrease in
hardware costs.

References

Carr & Goldstein (1977) describe WUSOR, the overlay model, and related theory. Also
see Goldstein (1977), Goldstein (1979), and Stansfield,

Carr,

& Goldstein (1976).

656C6 BUGGY

£

*

BUGGY is a program that can accurately determine a student's misconceptions (bugs)
about basic arithmetic skills. The system, developed by John Seely Brown, Richard Burton
and Kathy Larkin at Bolt, Beraneck and Newman, Inc., provides a mechanism for explaining
why a student is making a mistake, as opposed to simply identifying the mistake. Having a
detailed model of a student's knowledge that indicates his misconceptions is important for
successful tutoring.

A common assumption among teachers is that students do not follow procedures very
well and that erratic behavior is the primary cause of a student's inability to perform each
step correctly. Brown & Burton (1978a) argue that students are remarkably competent
procedure

followers,

but they often follow the wrong procedures. By presenting examples of
systematic incorrect behavior, BUGGY allows teachers to practice diagnosing the underlying
causes of a student's errors. Using BUGGY, teachers gain experience at forming hypotheses
about the relationship between the symptoms of a bug that a student manifests and the
underlying misconception. This experiencehelps teachers become more aware of methods or
strategies available for diagnosing their student's problems properly.

Manifesting Bugs

Experience with BUGGY Indicates that forming a model of what Is wrong with a

student's method of performing a task is often more difficult than performing the task itself.
Consider, for example, the following addition problems and their (erroneous) solutions. They

were provided by a student with a "bug" in his addition procedure:

Once you have discovered the bug, try testing your hypothesis by simulating the buggy

student—predict his results on the following two test problems:

The bug Is simple. In procedural terms, after determining the carry, thV_UdB^ '^fhe
to reset the "carry register" to zero; he accumulates the amount carried, acrossi xne

columns For example, In the student's second prob.em (328 + 017 ■ 1 3«15 JJhe proceeds as

follows 8+7»16 , so he writes 6 and carries 1; 2♦l ' 3 plus the 1 carried is 4, finally,

3 + 9=12 but the 1 carried from the first column Is still there-It has not been;^et--so
adding It to the final column g.vea 13. If this is the correct bug. then the answer to the

tesToroblems will be 1361 and 700. (This bug is really not so unusual; a chrtd often uses his

lnge?s to remember the carry and might forge? to bend them back after each column.)

The mode, built by BUGGY Incorporates bothc^^simulate the student's behavior on particular problems and^rtm«*Jt Pa"s
fIS

skill are correct and what parts are incorrect. BUGGY represents a skill, sucn as

C6. BUGGY

41
9

328
+917

989
+ 52

66
+887

216
+ 13

50 1345 1141 1053 229

446
815

20
+39

%
656 Al Applications in Education

;i.

!

a collection of subskills, for example, one of which is knowing how to "carry" a digit into the
next column. The subprocedures in BUGGY that correspond to human subskills are linked into
a procedural net (Sacerdoti, 1 974), which is BUGGY'S representation of the entire human skill.
If all the subprocedures in BUGGY'S procedural net for addition work correctly, then BUGGY
will do addition problems correctly. On the other hand, replacing correct subprocedures with
ones that are faulty will result in systematic errors of the kind shown above. Brown and
Burton call a procedural network with one or more faulty subprocedures a diagnostic model
because It Is a way of representing systematic errors. The model has been used in two
ways. First, it can diagnose a student's errors and pinpoint the bug(s) in the student's skill.

Second,

it can help to train a teacher to diagnose student errors by "playing the part" of a
student with one or more buggy subskills.

When BUGGY is to diagnose a student's errors, its task is to modify the correct
procedural network of, say, subtraction until it accounts for ail of the student's answers,

both right and wrong. This modification is done by systematically replacing correct
subprocedures with incorrect variants until a consistent diagnostic model is found. There are
currently 70 primitive faulty subprocedures for subtraction. These are explored
exhaustivelywhile attempting to determine a consistent diagnostic model. If a single variant
or bug is insufficient to explain a student's behavior, then combinations of two bugs are
tried. (Because of the overwhelming number of combinations of three or more bugs, these
are not used to form diagnostic models.) In this manner, 330 "bugs" have been

identified,

each with a bug description. Interactions among bugs and the ramifications of a buggy
subprocedure's being called by several high-order procedures constitute major challenges
for designing efficient simulations of multiple bugs. Note also that this technique requires a
large amount of compute time and is amenable only to domains where bugs can be explicated
In a more or less complete way.

The procedural network for subtraction (and its bugs) was tested in an experiment
using the results of a test administered to 1,325 students in the

fourth, fifth,

and sixth
grades. Using the BUGGY model, it was found that about 40% of the students demonstrated
consistently buggy behavior. That is, BUGGY was able to construct a diagnostic model for
student's errdrs demonstrating that they were using nonrandom, though incorrect procedures.

Using Buggy to Train Teachers

BUGGY can also be used to train teachers to diagnose student errors. This facility is
Illustrated by a protocol excerpted from Brown, 1977 in which BUGGY presents a team of
teachers with incorrectly solved math problems and supervises their diagnosis of the bug.

Protocol of a Team Using BUGGY

Welcome to Bugland. I have chosen a bug.
Here is an example of the bug.

17
+5

BUGGY 657C6

13

The system presents an example in which the student didn't get the right answer.

Now you can give me problems to determine the bug.

16 23

The teachers generate problems, and BUGGY solves them incorrectly, following a buggy
procedure. The team is trying to diagnose the bug in BUGGY'S addition procedures by
presenting BUGGY with problems to solve. However, they are using problems similar to the

original one, which is a poor strategy because it may leave other symptoms of the bug
undiscovered.

** GOT THE BUGI

The team thinks that they know what the problem is. Omitted here for space, but shown
below BUGGY asks them to formulate the bug in English. This step has the effect of
making the team verbalize the bug clearly. It is a difficult task, and the results are often
ambiguous BUGGY does not "read" the description of the bug, because it does not have

the natural language abilities to do so. Instead, it generates a »rit\°ff^?J?!h *
team to solve. The team must solve them incorrectly, using the bug that they think tney

have identified, to convince BUGGY that they have in fact discovered thebug.

Here are some problems to test your theories about the bug.

What is:

21
+39

*» 51

That's not the bug I have. Using my bug:

21
+39

15
Try giving me some more examples...

ra, t

o*m

fails BUGGY'S test by being unable to solve the given problem. That is, 'A"r *"£I no Z same one that BUGGY is using. If they had solved 5 problems '^tiy^hatZXcotctZiecause of a bug), then BUCcf wild .edit them witha correc dia^osi,
Nov, however they must set more problems for BUGGY to solve, in an auemp

the bug.

** 51 99 68

** +1707 +99 +9

** 18 43
** +6 +79

1

658 Ai Applications in Education

I

'!

21 36 23

** GOT THE BUGI

Please describe the bug you think I have:

** THE STUDENT IS ADDING ALL THE DIGITS TOGETHER.

Here are some problems to test your theory about the bug.
What are:

** 24 17 15 17 15

Very good. My description of the bug is:
The student always sums up all the digits, with no regard to columns.

Summary

The central idea of this research Is that procedural networks can be used to build
diagnostic models. This representation scheme facilitates an appropriate decompositionof a
skill into subskills, to make explicit the control structures underlying a collectionof skills, and
to execute directly the resulting diagnostic model. Rather than being a subset or simplification
of expert rules, as in overlay modeling (Carr & Goldstein, 1977; see Articles B, C5and C4),
the procedural network is a model of a student's behavior that is structured in terms of
semantically meaningful deviations from the correct procedure. Each subskill, whether
correct or incorrect, is explicitlyrepresented as a subprocedure in the network.

References

Brown & Burton (1978a) is the most recent and complete report on BUGGY. Also see
Brown, Burton, Hausmann, Goldstein, Huggins and Miller (1977) and Brown, Burton, and Larkin
(1977).

ft

33 1091 8 28 90
+99 +60 +34 +70 +6

C7 EXCHECK 659

EXCHECK is an Intelligent Computer-aided Instruction system designed and" implemented
by Patrick Suppes and his colleagues at the Institute of Mathematical Studies in the Social
Sciences (IMSSS) at Stanford University. It is a general-purpose instructional system used
principally to present complete, university-level courses in logic, set theory, and proof
theory. In the courses taught using the EXCHECK system, lesson material is presented to
the student at his computer terminal, followed by exercises consisting of theorems that he is
to prove using the program's theorem prover. The courses are taught on IMSSS's CAI
system, which uses computer-generated speech and split-screen displays. Several hundred
Stanford students take these courses each year.

From an Al point of view, the most Interesting aspects of the EXCHECK system are the
procedures and the underlying theories of mathematical reasoning that permit this interaction
to take place In a natural style closely approximating standard mathematical practice. These
include natural language facilities, natural-deduction based proof procedures, theorem
provers, decision procedures for some simple mathematical theories, procedures for analyzing
and summarizing proofs, and procedures for conducting dialogues about some elementary
mathematicalstructures.

Examples of the kind of natural language accepted and generated are given in the
proofs and dialogues presented below. The basic logic- is a variant of Suppes's (1957)
formulation of natural deduction augmented by high-level inference procedures that are the
analogs of proof procedures used In standard mathematical practice.

Understanding Informal Mathematical Reasoning

The mathematical reasoning, involved in the set theory and proof theory courses is
complex and subtle. The fundamental Al problem of EXCHECK is making the program capable
of understanding informal mathematical reasoning: The program must be able to follow
mathematical proofs presented in a "natural" manner. That is, just as the intent of natural
language processing is to handle languages that are actually spoken, the intent of natural
proof processing is to handle proofs as they are actually done by practicing mathematicians.
In general, such proofs are presented by giving a sketch of the main line of argument along

with any other mathematically significant information that might be needed to completely
reconstruct the proof. This style should be contrasted with the derivations familiar from
elementary logic, where each detail is presented and the focus of attention is on syntactic
manipulationsrather than on the underlying semantics.

A major aspect of the problem of machine understanding of natural proofs is finding
languages that permit users to express their proofs in the fashion described above. Such
languages, in turn, must find their basis in an analysis or model of informal mathematical
reasoning. Finding these natural proof languages should be compared to the problem of
finding high-level "natural" or "English-like" programming languages. For more detailed
discussions of these issues, see Blame & Smith (1977), Smith (1976), and Smith et al.
(1975). A simple example of understanding informal mathematical reasoning and fuller
discussion of the techniques involved follows.

C7. EXCHECK

660 Al Applications in Education

/

}

rt

A

Student Proof

We present two proofs of the elementarytheorem,

Thm: If A c B then -(B c A)

where "c" Is used for proper subset and "c" is used for subset.

First, the proof is given in the informal style of standard mathematical practice.

We want to show that if A c B, then -<(B c A).

Assume A c B. We show -(B c A) by indirect proof. Assume that B£ A. Since A c
B then, by definition, A c B and A } B. Since A c B and B c A then A = B. But this is
a contradiction and, hence, the assumption that Be A Is false. Therefore, -(B c
A).

The following typescript shows how one student did the proof in the EXCHECK system.
Input from the student is in boldface type and comments are in italics; everything else is
generatedby the program. The program keeps track of the goal that the student is currently
trying to establish; the initial goal is the theorem to be proven. EXCHECK indicates
acceptance of an inference by returning the top-levelprompt **; if a suggested inference is
not acceptable, EXCHECK returns an error message.

Derive: If A c B then -(B c A)

** hyp (1) ** Ac B

The hypothesis of the theorem is assumed. The goal is automatically reset to the
consequent of the theorem.

** raa
assume (2) ** G B c A

The student begins an indirect proof (the command 'raa' is a mnemonic for reductio ad
absurdum). The program assumes the negation of current goal. The goal is now any
contradiction.

** 1 definition Number or Name? ** proper subset
1 Df. proper subset

(3) A c B and A } B

The definition of proper subset is applied to line I.

** 2,3establish *B = A
■ 2,3 Establish

(4) B = A

C7 EXCHECK 661

±

The studenf asks the theorem prover to check the simple set theoretic inference.

** 3,4contradlction
Using ** ok

r

3,4.Contradiction
(6) B-cA

The student indicates that lines 3 and 4 lead to a
contradiction. EXCHECK returns the negation of assumption (2).

** qed
Correct

EXCHECK accepts the derivation.

The following informal review printout was generated by the program from the proof given in
the above typescript.

Derive: If A c B then -(B c A)

Assume (1) Ac B
By raa show: -(B c A)
Assume (2) B_A
From 1 , by definition of proper subset,

(3) A c B and A } B
From 2,3 It follows that,

(4) A » 8
3,4 lead to a contradiction; hence, assumption 2 is false:

(5) -(Be A)

Natural Inference Procedures

There are no significant structural differences between the detailed informal proof and
the student's proof as presented to EXCHECK. The same steps occur in the same relations
to each other. Such global or structural fidelity to natural proofs is a major research goal of
the EXCHECK project and depends upon the development of natural inference procedures.
Some of these, such as the HYPOTHESIS and INDIRECT PROOF procedures used In the above
proof, are familiar from standard logical systems. The procedure used in the application of
the definition of proper subset to line (1) is called IMPLIES. It Is used to derive results that,

intuitively speaking, follow by applying a previous result or definition. It is considerably more
complex than the inference procedures usually found in standard logical systems. An even
more complex natural Inference procedure used in the above proof is the ESTABLISH
procedure. In general, ESTABLISH is used to derive results that are consequences of prior

results in the theory under consideration, in this case in the theory of sets. Eliminating the

need to cite specific results in the theory, which would disrupt the main line or argument, is
important and is discussed further In the section on

ESTABLISH,

below.

662 Al Applications in Education%

X

M

1
!i.

i

The inference procedures in EXCHECK are intended not only to match natural
inferences in strength but also to match them in degree and kind. However, there are
differences. EXCHECK Inference procedures must always be invoked explicitly—in standard
practice, particular inference procedures or rules are usually not cited explicitly. For
example, compare how the student expresses the inferences that result in lines (3) and (4)
with their counterparts In the informal proof. The explicit invocation of inference procedures
basically requires that two pieces of information be given: first, the inference procedure to
be used; and, second, the previous results to be used—in particular, explicit line numbers
must be used.

Explicitness is not disruptive of mathematical reasoning—neither is the reduction of
complex inferences to smaller inferences nor the use of explicit line numbers disruptive, in
the sense of distracting the student from the main line of the mathematical argument. They
are both simple elaborations of the main structure. However, having to think about what
inference rule to use can Interrupt the main line of argument. The success of a system for
interactively doing mathematics depends crucially upon having a few powerful and natural
inference procedures with clear criteria of use, which are sufficient to handle all the
inferences.

IMPLIES

IMPLIES Is used to derive results by applying a previous result or definition as a rule of
Inference in a given context. This form of inference is probably the most frequent naturally
occurring inference. While the basic pattern is simple, the refinements that must be added to
the basic form to get a procedure that handles most of the naturally occurring cases result in
a computationally complex procedure. The following is a simple exampleof the basic pattern:

(i) A is a subset of B

I defiinition (Name or number) "subset

(i) (V x)(x c A -» x

€

B)

In this example, the student directed the program to apply the definition of subset to line (i)
and IMPLIES generated the result: (V x)(x <A-» x < B). While the student thinks he is
applying the definition of subset to line (i), the procedure actually invoked is the IMPLIES
procedure. It is Important to note that in a use of the IMPLIES procedure the student
indicates what axiom, definition, theorem, or line to apply to which lines, and the IMPLIES
procedure generates the formula that is the result of the Inference.

The IMPLIES procedure seems to correspond closely to naive notions of

inference,

in
that logically unsophisticated but mathematically sophisticated users can use it very well
after seeing the basic explanation and a few simple examples. However, the IMPLIES rule
does have a fault: It is a purely logical inference procedure and that can occasionally cause
problems for users, because mathematicians tend to think in terms of set theoretic rather
than logical consequence. (See the discussion of the ESTABLISH rule for more on this
distinction.)

C7 EXCHECK 663

ESTABLISH

The following example of a simple use of ESTABLISH is taken from the typescript above.
f

(2) Be A
(3) A c B and A } B

«2,3establish *B = A
2,3 Establish

The ESTABLISH rule allows users to simply assert that some formula Is an elementary set-
theoretic truth or is an elementary set-theoretic consequence of prior results. In the above
example, ESTABLISH is used to infer from A c B and B c A that A = B. A = B is a set theoretic
consequence but not a logical consequence of A c B and B c A. If ESTABLISH handled only
logical consequence, the student would have had to explicitly cite the relevant set theoretic
theorems or definitions needed to reduce the inference to a purely logical Inference. This is
not only disruptive of the line of argument but also difficult to do. Even the most
experienced logicians and mathematicians have difficulty ferreting out all the axioms,
definitions, and theorems needed to reduce even simple inferences to purely logical
inferences.

All of the examples so far are extremely simple If considered in terms of the full
capabilitiesof the ESTABLISH procedure. ESTABLISH uses a theorem prover that can prove
about 85% of the first 200 theoremsin the set theory course.

Proof Analysis and Summarization

EXCHECK contains procedures that generate informal summaries and sketches of
proofs. Such analyses and summaries are useful not only as a semantic basis for the prog(am,
to better understand proofs and to better present proofs, but also to give guidance to the
student (see the proof summary below for an example of the kind of guidance that can be
generated). The summarization procedures analyze the proof by breaking it into parts (or
"subproofs") and isolating the mathematically important steps. They also permit a goal-
oriented interpretation of the proof where the program keeps track of what is to be
established at that point (1.c., the current goal); which lines, terms, etc., are relevant; and
how the current line or part fits into the whole structure. MYCIN'S consultation explanation
system (see article CI) uses a similar approach. Goldstein (1977) also uses summarization
techniques in the rhetorical modules of the WUMPUS coach (article C5).

The summaries presented below were generated by EXCHECK from a student proof of
the Hausdorff maximal principle. The original line numbers have been retained in to give a
sense of how much of the proof has been omitted in the summary. In the first summary only

the top-level part of the proof is presented; the proofs of its subparts are omitted. Also, all
mathematicallyor logically insignificant Information is omitted. In these proofs and summaries
"D contains E " is synonymous with "E c D". Also, C is a chain iff both C Is a set of sets, and
given any two elements of C, at least one is a subset of the other.

(4) B = A

Al Applications in Education% 664

t

'!

Derive: If A is a family of sets then
every chain contained in A is contained in some maximal chain in A

Proof:
Assume (1)" A is a family of sets

Assume (2) C Is a chain and C£ A
Abbreviate: {B: Bis a chain and C£ B and B£ A}

by: Clchains
Zorn's lemma,

(23) Clchains has a maximal element
Let B be such that

(24) B is a maximal-element of Clchains
Hence,

(25) B Is a chain and C £ B and B£ A
It follows that,

(31) Bis a maximal chain in A

Therefore,

(32) C is contained in some maximal chain in A

Figure 1 . Informal summary of a proof of the Hausdorff
maximal principle.

The summary above is not the only one that could be generated; it essentially presents only
the main part of the proof. Subparts of the main part could have been included or even
handled independentlyif so desired.

The proof analysis and summarization procedures will also generate the following kind
of summary, which is an attempt to sketch the basic idea of the proof.

Derive: If A Is a family of sets then
every chain contained in A is contained in some maximal chain in A

Proof:
Use Zorn's lemma to show that

{B: B is a chain and C_B and B_A}

contains a maximal element B. Then show that B is a maximal chain in
A which contains C.

Figure 2. An examplesummarization.

The summarization in Figure 2 was obtained from that in Figure 1 by tracing backwards
the history of the maximal chain in A that contains C. That is, the general form of the
theorem to be proven Is (3 x)FM(x), which is proven by showing FM(t) for some term t.
Usually, in proofs of this

form,

the most important piece of information is the term t. Tracing
backwards in this particular proof yields that there are two terms involved. The first is the
set of all chains in A containing C, and the second is any maximal element of the set of all
chains in A containing C.

C7 EXCHECK 665

Elementary Exercises and Dialogs

Another form of reasoning done by students is the solution of problems. A great many
problems in elementary mathematics take the form of asking the student, to give finite
objects satisfying certain conditions. For example, given the finite sets A and B the student
might be asked to give a function F that is a bijection (i.e., 1-1 and onto) from A to B. For a
large class of such problems there are programs that will generate a tree of formulas and
other information from the original statement of the problem. We call such trees verification
trees for the problem. Essentially, the verification tree for a problem constitutes a reduction
of the original (usually not directly verifiable) condition to a collection of directly verifiable
conditions (the formulas at the leaves). These trees have the property that the failure of
the formula at a node in the tree explains the failure of formulas at any of its ancestors.
Similarly, the failure of a formula at a node Is explained by the failure of formulas at any of
its descendants.

For example, In the above problem of supplying a bijection F from A onto B, suppose
that the student forgets to specify a value for some element of A, say, 3. The first response
to the student might be: "The domain of F isn't A." The student might then ask: " Why?" The
program would then answer (going towards the leaves), "Because there is an element of A
that has not been assigned a value In B." The student might then ask, "Which one?" Since
the routines that evaluate the formulas at the leaves provide counterexamples if those
formulas fail, the program could then respond, "3." Or going back to the first response by the
program ("The domain of F Isn't A") the student might say, "So?" The program could then
move a step towards the root (the original statement of the conditions) and say, "Then F is
not a map from A into B." The student might then again say: "So?", to which the program
could respond: "F Is not a bijection from A onto B."

The highly structured information in the verification tree provides the semantic base for
a dialogue with the student in which the program can explain to the student what is wrong
with the answer. It should be noted that more complex forms of explanation are available.
In particular, the program could have said at the beginning that, "Because 3 is not given a
value by F, the domain of F is not A and hence F is not a bijection from A onto B."

Summary

A primary activity in mathematics Is finding and presenting proofs. In the EXCHECK
system an attempt is made to handle natural proofs—proofs as they are actually done by
practicing mathematicians—instead of requiring that these proofs be expressed as
derivations In an elementarysystem of first order logic. This objective requires the analysis
of Inferences actually made and the design and Implementationof languages and procedures
that permit such inferences to be easily stated and mechanically verified. Some progress has
been made in handling natural proofs In elementary mathematics, but there is a considerable
amount of work yet to be done.

References

See Blame & Smith (1977), Smith et al. (1975), Smith & Blame (1976), Suppes (1957),
and Suppes (1960).

i

Al Applications In Education

666

/I

i«i

1
\

t

References

Atkinson, R. C. Ingredients for a theory of Instruction. American Psychologist, 1972, 27,
921-931.

Atkinson, R. C, & Wilson, H. A. (Eds.) Computer-assisted instruction. New York: Academic
Press, 1969.

Barr, A., & Atkinson, R. C. Adaptive instructional strategies. Paper presented at the IPN
Symposium 7: Formalized Theories of Thinking and Learning and their Implications
for Science Instruction, Kiel, September 1975.

Barr, A., Beard, M., & Atkinson, R. C. A rationale and description of a CAI program to teach
the BASIC programming language. Instructional Science, 1975, 4, 1-31.

Barr, A., Beard, M., 8. Atkinson, R. C. The computer as a tutorial laboratory: The Stanford BIP
project. International Journal of Man-Machine Studies, 1976, 8, 567-696.

Blame, L. H., & Smith, R. L. Intelligent CAI: The role of curriculum in suggesting computational
models of reasoning. Proceedings: 1977 Annual

Conference, ACM, Seattle,

1977.

Brown, J. S. Uses of artificial intelligence and advanced computer technology in
education. In R. J. Seidel & M. Rubin (Eds.), Computers and Communications:
Implications for Education. New York: Academic Press, 1977.

Brown, J. S., Burton, R. R., and Larkin, X .M. Representing and Using Procedural Bugs for
Educational Purposes. Proceedings 1977 Annual Conference of Association for
Computing Machinery, Seattle* Oct. 1977, 247-255.

Brown, J. S., Burton, R. R-, Hausmann, C,

Goldstein,

1., Huggins, 8., and Miller, M. Aspects of a
theory for automated student modelling. (BBN Report No. 3549). Cambridge, Mass.:
Bolt, Beranek and Newman, 1977

Brown, J. S., Burton, R. R., Miller, M„ deKleer, J., Purcell, S., Hausmann, C, and Bobrow,
R. Steps toward a theoretical foundation for complex, knowledge-based CAI. (BBN
Report No. 3135). Cambridge, Mass.: Bolt, Beranek and Newman, 1975.

Brown, J. S., Collins, A., and Harris, G. Artificial Intelligence and Learning Strategies. In H.
O'Neil (Ed.), Learning Strategies. New York: Academic Press, 1978.

Brown, J. S., Rubinstein, R., Burton, R. Reactive Learning Environment for Computer
Assisted Electronics Instruction (BBN Report No. 3314). Cambridge: Bolt, Beranek, 8.
Newman, 1976.

Brown, J. S., &< Burton, R. Multiple Representations of Knowledge for Tutorial Reasoning. In
D. G. Bobrow & A. Collins (Eds.), Representation and Understanding: Studies in
Cognitive Science. New York: Academic Press, 1976. Pp. 311-349.

References 667

♦■

Brown, J. S., & Burton, R. R. Diagnostic models for procedural bugs in basic mathematical
skills. Cognitive Science, 1978, 2(2), 155-192. (a)

Brown, J. S., Burton, R. R., & Bell, A. G. Sophie: A Sophisticated Instructional Environment for
Teaching Electronic Troubleshooting(An Example of Al in CAI). International Journal of
Man-Machine Studies (1975), 7.

Brown, J. S., & Goldstein, I. P. Computers In a Learning Society, Testimony for the House
Science 8c Technology Subcommittee on Domestic and Internaional Planning, Analysis,
& Cooperation, October 1977.

Burton, R. R. Semantic grammar: An engineering technique for constructing natural
language understanding systems, BBN Report 3453, December 1976 (b).

Burton, R. R., and Brown, J. S. A Tutoring and Student Modelling Paradigm for Gaming
Environments. Proc. for the Symposium on Computer Science and Education, Irvine,
CA, February 1976. (Also, SIGCSE Bulletin, 1976, 8, 236-246.) (a).

Burton, R. R., and Brown, J. S. An investigation of computer coaching for informal learning
activities. International Journal of Man-Machine Studies (1979) 11,5-24.

Burton, R. R., and Brown, J. S. Toward a natural-language capability for computer-assisted
instruction. In H. O'Neil (Ed.), Procedures for instructional Systems
Development. New York: Academic Press, 1979, 273-313.

Carbonell, J. R. Al In CAI: An artificial intelligence approach to computer-aided instruction.
lEEE Transactions on Man-machine Systems, 1970, MMS-11(4), 190-202. (a)

Carbonell, J. R. Mixed-initiative Man-computer Instructional Dialogues (BBN Rep. No.
1971). Cambridge, Mass;: Bolt, Beranek, & Newman; 1970. (b)

Carbonell, J. R., 8c Collins, A. Natural Semantics in Artificial Intelligence. UCAI 3, 1973, 344-
-351.

Carr, B. 8c

Goldstein,

I. Overlays: A theory of modeling for computer aided instruction, Al
Memo 406, Massachusetts Institute of Technology, Cambridge, Mass., 1977.

Clancey, W. Tutoring rules for guiding a case method dialogue. International Journal of
Man-Machine

Studies,

1979, 11, 25-49.

Clancey, W. Dialogue managementfor rule-based tutorials. UCAI 8, 1979, in press

Collins, A. Processes In Acquiring Knowledge. In R. C. Anderson, R. J. Spiro, 8. W. E.
Montague (Eds.) Schooling and the Acquisition of Knowledge. Hillsdale, N.J.: Erlbaum
Assoc, 1976. Pp. 339-363.

Collins, A. Fragments of a Theory of Human Plausible Reasoning.Proceedings of TINLAP-2,
1978, 194-201.

Al Applications in Education

668

i

i»l

'}

X
'!

j'

il

Collins, A., Warnock, E. H., Aiello, N., & Miller, M. L. Reasoning from Incomplete Knowledge. In
D. G. Bobrow 8c A. Collins, Representation and Understanding. New York: Academic
Press, 1975. Pp. 383-415.

Collins,

A., Warnock, E. H., 8c Passafiume, J. J. Analysis and synthesis of tutorial dialogues
(BBN Report 2789). Cambridge,Mass.: Bolt, Beranek, 8. Newman, 1974.

Crowder, N. A. Intrinsic and extrinsic programming. In J. E. Couison (Ed.), Proceedings of the
conference on application of digital computers to automated instruction, New York:
Wiley, 1982, 58-55.

Dugdale, S. 8c Kibbey, D. Elementary mathematics with PLATO. Urbana, IL: University of
Illinois (Computer-basedEducation Research Laboratory), July 1977.

Fischer, G., Brown, J. S., 8c Burton, R..R. Aspects of a theory of simplification, debugging, and
coaching. Proceedings of the 2nd Annual Conf. of Canadian Society for
Computational Studies of Intelligence, July 1978.

Fletcher, J. D. Modeling the learner in computer-assisted instruction. Journal of
Computer-Based Instruction, 1975, 1, 118-126.

Goldberg, A. Computer-assisted instruction: The application of theorem-proving to
adaptive response analysis (Tech. Rep. 203). Stanford, CA: Stanford University,
Institute for Mathematical Studies in the Social

Sciences,

1973.

Goldstein, I. The Computer as Coach: An athletic paradigmfor intellectual education, Al
Memo 389, Massachusetts Institute of Technology, Cambridge, Mass., 1977.

Goldstein,

i. 'The genetic epistemology of rule systems. International Journal of Man-*
Machine

Studies,

1979, 11, 51-77.

Goldstein,

1., 8c Papert, S. Artificial Intelligence, language, and the study of knowledge.
Cognitive

Science,

1977, 1(1), 84-123.

Grignetti, M. C, Hausmann, C, 8c Gould, L. An intelligent on-line assistant and tutor—NLS-
SCHOLAR. Proceedings of the National Computer

Conference,

San Diego,

Calif.,

1975, pp. 775-781.

Groen, G. J. The theoretical Ideas of Plaget and educational practice. In P. Suppes (Ed.),
Impact of research on education: Some case studies. Washington, D.C.: National
Academy of Education, 1978. Pp. 267-31 7.

Hart, R. 0., & Koffman, E. B. A Student Oriented Natural Language Environment for Learning
LISP. UCAI 4, 1976, 391-396.

Howe, J. A. M. Individualizing computer-assisted instruction. In A. Elithorn St D. Jones (Eds.),
Artificial and human thinking. Amsterdam: Elsevier, 1973. Pp. 94-101.

References 669

Kimball, R. B. Self-optimizing computer-assisted tutoring: Theory and practice (Tech.
Rep. 206). Stanford, Calif.: Stanford University, Institute for Mathematical Studies in
the Social Sciences, 1973. ,

Koffman, E. 8., & Blount, S. E. Artificial Intelligence and automatic programming in CAI.
Artificial Intelligence, 1975, 6, 215-234.

Laubsch, J. H. Some Thoughts about Representing Knowledge in Instructional Systems.
UCAI 4, 1975, 122-125.

Miller, M. L. , & Goldstein, I. Problem solving grammars as formal tools for Intelligent CAI.
Proc. of the Fall Conference of the Assoc, for Computing Machinery, Seattle,
October 1977.

Miller, M. L. A structured planning and debugging environment for elementary programming.
International Journal of Man-Machine Studies, 1979. In press.

Norman, D. A., Gentner, D. R., and Stevens, A. L. Comments on learning schemata and memory
representation. In D. Klahr (Ed.), Cognition and instruction. Hillsdale: Erlbaum
Associates, 1976.

IFIP Conference on Computer Education.Papert, S. Teaching children programming
Amsterdam: North Holland, 1970.

Reither, R. On Reasoning by Default. TINLAP-2, 1 978, 210-218.

Ruth, G. Analysis of algorithm Implementations (MAC TR-1 30). Cambridge, Mass.:
Massachusetts Institute of Technology, 1974.

Sacerdoti, E. D. Planning In a hierarchy of abstraction spaces. Artificial Intelligence, 1974,
5, 115-136.

Schank, R. C, 8c Abeison, R. P. Scripts, Plans, Goals, and Understanding. Hillsdale, N.J
Lawrence Erlbaum, 1977.

Self, J. A. Student models in computer-aided Instruction. International Journal of Man
Machine Studies, 1974, 6, 261-276.

Smith, R. L. Artificial intelligence in CAI. Unpublished working paper,

IMSSS,

Stanford
University, 1976.

Smith, R. L., & Blame, L. H. A generalized system for university mathematics instruction.
SIGCUE Bulletin, 1976, 8(1), 280-288.

Smith, R. L., Graves W. H., Blame, L H., 8> Marinov, V. G. Computer-assisted axiomatic
mathematics: Informal rigor. In 0. Lacarme 8c R. Lewis (Eds.), Computers in education,
IFfP (Part 2). Amsterdam: North-Holland, 1976. Pp. 803-809.

% Al Applications in Education670

/r

i*i

i
\

Stansfield, J. L., Carr, B. P., 8. Goldstein, I. P. WUMPUS Advisor I: A First Implementationof
a program that tutors logical and probabilistic reasoning skills, MIT Al Memo 381,
October 1976.

Stevens,

A. L. & Collins, A. Multiple Conceptual Models of a Complex System (BBN Rep. No.
3923). Cambridge, Mass.: Bolt Beranek 8c Newman, 1978. To appear in R.

Snow,

P.
Federico and W. Mantague (eds.), Aptitude, learning and Instruction: Cognitive
Process Analysis.

Stevens, A. L., & Collins, A. The Goal Structure of a Socratic Tutor (BBN Rep. No.
3518). Cambridge, Mass.: Bolt, Beranek, 8c Newman, 1977.

Stevens,

A. L., Collins, A., 8c Goldin, S. Diagnosing Student's Misconceptions in Causal
Models (BBN Rep. No. 3786). Cambridge, Mass.: Bolt, Beranek, & Newman, 1978.

Suppes, P. Introduction to logic. New York: Van Nostrand Reinhold, 1 957.

Suppes, P. Axiomatic set theory. New York: Van Nostrand, 1960. (Slightly rev. cd. publ.
by Dover, New York, 1972)

Suppes, P., 8c Morningstar, M. Computer-assisted instruction at Stanford, 1966-68:
Data, models, and evaluation of the arithmetic programs. New York: Academic
Press, 1972.

Wescourt, K. T., and Hemphill, L. Representing and teaching knowledge for
troubleshooting/debugging. IMSSS Tech. Report No. 292, Stanford University, 1978.

Wexler, J. D. Information networks in generative computer-assisted instruction. lEEE Trans.
Man-Machine Systems, 1970, 11, 181-190.'

Yob, G. Hunt the Wumpus. Creative Computing, Sept.-Oct. 1975, pp. 51-54.

Index 671

Index

r

anaphoric references 639 EXCHECK 619,659-666
Anderson, Bonnie 642 EXCHECK informal proof 663
arithmetic skills 655 expert program 649
articulate expert 620,640 expertise module 620-621,643,651
Atkinson, Richard C. 618 explanation 619,646,651,654,663

BIP 620,621 frame-oriented CAI 1,622,640
Brown, John Seely 619,620,636,642, functional relationships 634

655
BUGGY 622, 655-669
Burton, Richard 619,636,642,655 generate-and-test 639

generative CAI 618,620
geography tutor 626

CAI 1 Goldstein, Ira 622, 624, 649
Carbonell, Jaime 618,619,626 GUIDON 620,624

Carr,

Brian 649
case grammar 627, 628
case method tutor 624, 631 heuristics 631
Clancey, William 624 How the West Was Won 642
closed sets 630 hypothesis evaluation 639, 640
Collins, Allan 619,623,626,631 hypothesis generation 639,640
computer coach 621, 624, 642, 646-649
"computer coach. 624
computer gaming 624,640,642,649 ICAI 1,618-620-666
conceptual bugs 655 Importance tags 627
constructive bugs 642 incompleteknowledge 630
courseware author 618,630 individualization of instruction 618

inference 619
inference procedures 659

diagnosis of student errors 618,628,642 inference strategies 629,639
diagnostic model 643, 656, 658 informal mathematical reasoning 659
diagnostic modelling 623 informal proofs 659
diagnostic models 655 intersection search 629
diagnostic strategies. 642 issue evaluators 644
dialoguemanagement 624, 628, 632, 633, issue recognizers 644

646, 651 issues and examples tutoring 644
differential modeling 643
discourse model 628, 646, 661
discussion agenda 628 Koffman, Elliot 618

education applications 1-666 learning by discovery 642
ellipsis 639 LISP 639

IWH

Al Applications in Education672

LOGO 1 rule-based representation 662
rule-based systems 651

meta-level knowledge 630
mixed-initiative dialogue 624, 626, 636
multiple representations 620

SCHOLAR 619,620,624,626-631
scripts 632

MYCIN 663 search 656
semantic grammar 639
semantic net 620, 622, 626, 628
set theory 659natural deduction 659

natural inference procedures 661
natural languageinterface 659

simulation 640
Socratic method 623, 627, 631
SOPHIE 619,622,636-642
SOPHIE-I 620, 621, 636, 637-639
SOPHIE-II 636, 640-641

natural languageunderstanding 619, 628,
639, 659

NLS-SCHOLAR 626

Stevens,

Albert 623, 631
stochastic learning models 622

open problems 630
open sets 630

student model 1, 619, 621-623, 624, 644,
647, 649, 653

overlaymodel 622, 643, 649, 658 Suppes, Patrick 619,659
syllabus 646

Papert, Seymour 1
pattern matching 622, 661 teaching strategies 624

temporalrelations ,632
text generation 628

PLATO Project 642
plausible reasoning 626, 629, 630
problem-solving expertise 619, 620-621,

636, 643, 651
tutorial goals 633!/ tutorial programs 1-620-666
tutorial rules 632procedural knowledge 649

procedural net 656 tutoring principles 646
("i procedural networks 658 tutoring strategies 619, 623-625, 626,

procedural representation of
knowledge 620

627, 642, 643, 644, 646

production rules 620, 624, 651
proof checking 669 Wescourt, Keith 623
proof summary 659 WEST 621,624,642-649
protocol analysis 627, 633 WHY 620,623,624,630,631-636

WUMPUS 620,621,624,646,649-655,
t 663X reactive learning environment 618, 636, WUSOR 649-655

640r ;i
reasoning from incomplete knowledge 626
representation of knowledge 619, 620-

621, 626, 632, 636

*

i

r

Automatic Programming

I

674

i* '1/
I ,

[i

I

\ \
\ 'i

;

I

j

Automatic Programming

Table of Contents

A. An Overview of Automatic Programming 675
B. Methods of Specification [684C. Basic Approaches ... !!!!!!! 689[|- _^L '.'.'.'.'.'.'.'. 699E. SAFE . 708
F. Programmer's Apprentice 714
G. PECOS . 771H. DEDALUS ' " ' 7?k
I. PROTOSYSTEM I!.'!!!!!! 734J. NLPQ: Natural Language Programming for Queuing Simulations . ! \ '. '. 739K. LIBRA 744
References 74^

A. An Overview of Automatic Programming

Automatic Programming (AP) is a new, dynamic, and not precisely defined area of
artificial intelligence. This overview discusses the definitions, history, motivating forces and
goals of AP, along with a brief description of the basic characterstics and central issues of
AP systems. The article begins with a section discussing the various possible definitions of
AP, along with a brief presentation of the background and some of the general motivating
forces and goals of AP. The next section describes four characteristics of ail AP systems:

the method by which a user of such a system specifies or describes the desired program,
the targeflanguageIn which the system writes the program, the problem or application area
to which the system Is addressed, and the approach or operational method employed by the
system. Next, a section discusses four basic Issues. All AP systems are primarily involved
with one or more of these: the representation and processing of partial or incomplete
information; the transformation of structures, and especially the transformation of program
descriptions into other descriptions (in this chapter, the term program description includes
the user's specification of the desired program, any internal representations of the program,
as well as the target language implementation); the efficiency of the target language
implementation; and the system's capabilities for understanding the desired program.
Following this overview, the reader will find articles on the methods of specifying programs In
AP systems, on some of the basic operational methods employed in such systems, and then
eight article's describing most of the major AP projects.

Definition

The bulk of the research in AP has appeared in the 19705, and it is not surprising that

there is lack of agreement as to the

definition,

scope, and direction of the endeavor.
Several brief definitions of automatic programming have been suggested in the literature,but
considering the newness of the area, one should not expect these definitions to be precise.

One definition says simply that AP is something that will save people from the chores of
programming Biermann (1976a). Another states that an AP system carries out part of the
programming activity currently performed by a human in constructing, from the definition of a
problem to be solved, a program written in some machine executable language; here, the

essence of an AP system is that it assumes some responsibilities otherwise borne by a
human and thereby reduces the person's task Hammer & Ruth (1979). Yet another states
that AP means having the computer help write its own programs Heidorn (1977). AP is the
application of a computing system to the problem of effectively utilyzing that or another
computing system in the performance of a task specified by the user Balzer (1973b). To
summarize perhaps we can define AP here as an automation of some part of the program
writing activities that, currently, are typically performed by people and not yet performed by

machine Therefore the definition excludes such systems and software environments as
assembly languages and high level languages such as FORTRAN, COBOL, PL/1,

ALGOL,

or LISP;
and such programming aids as symbol tables, cross reference generators, text editors, and
debugging systems.

Other more extensive definitions have been suggested. One such definition Balzer
(1973b) would "rate" AP systems according to a measure of merit, which includes the

following factors:

(a) the amount of time and effort needed by the programmer to formulate and
specify the desired program;

%

676 Automatic Programming

I

fA
}

I

\

.1:

(b) the effeciency of the decisions made by the system in designing the
program, and consequently the overall effeciency of the program that is
produced by the system;

(c) the ease with which future modifications can be incorporated in the program;

(d) the reliability and ruggedness of the program;

(c) the amount of computer resources, including time and memory, used by the
system to produce that program; and

(f) the range, as well as the complexity, of the tasks that can be handled by the
system.

Notice that, according to such a measure, a FORTRAN language compiler would rank as
an AP system. However, its rank would be significantly less than the potential of current AP
research projects. .

Another source (see article D3) lists some specific factors that bear on factor (a)
above, the factor concerned with the effort required of the programmer. The specific
factors are informality, language level, and executability. Informality refers to the degree of
informality with which the user may specify the desired program to the AP system. It is
informal to the degree that the user can be ambiguous (various interpretations of the
specification are possible) and partial or Incomplete (pieces of information, including perhaps
information about referencing and sequencing, have been omitted). Language level refers to
the degree to which the AP system can accept specifications in a terminology natural to the
problem area under consideration. Executability refers to the degree to which the system
can achieve a desired program state on the basis of a descriptionof that state, that is, the
user need only specify what |s wanted rather that how to obtain it.

Another definition of AP is obtained by first defining the development phases of a
software system (software development refers to the creation of a program or collection of
programs, from their inception to the completed product). On this basis, it would follow that
AP assists the programmer with one or more of these phases. For example, in a later article
that describes the PROTOSYSTEM research project 07, the development of data-processing
systems(programs) is seen as passing through five phases. First, the programming problem is
defined by clearly Identifying and understanding what the desired software is to accomplish;
sedond, what the program is to do in order to alleviate this problem is clearly and precisely
determined; third, the organization, flow of control, and data representations are selected
from standard Implementationpossibilities; fourth, this very high-level specification in terms
of standard Implementations Is transformed into code in some high-level language, and; fifth,
this code is compiled.

These, then, are some of the more detailed definitions that have been presented for
AP. Altogether, they define a somewhat amorphous direction of research. In this new area
there is still no widespread agreement as to exactly what constitutes AP.

The present period is not the first time the term automatic programming has been used.
The term was employedonce before, about twenty years ago, to mean writing a program in a

te_sf?®ji#SBSsSs*

An Overview of Automatic ProgrammingA 677

high-level language (e.g., FORTRAN), and having a compiler transform the program into
machine languagecode. Thus, one finds "Automatic Coding," Franklin Institute, January 1957
(see Automatic Coding, 1957), or The Annual Review of Automatic Programming, first
appearing in 1959 (see The Annual Review In Automatic Programming, 1960). At that time,
when "real" programming referred to writing a program in machine or assembly language, AP
meant writing a program in FORTRAN. Today, when most programming is done in high-level
languages, AP means programming in a software environment much more advanced than the
ones created by these high-level languages.

Though the early meaning of the term automatic programming differs from the current
meaning, nevertheless, at both times AP meant assisting and automating the process of
writing programs.

In a general way, the forces responsible for AP twenty years ago are similar to those
responsible for the appearance of AP today. At both times there was a feeling that
programmers were burdened with the need to specify many details, with the need to keep
track of the many relations between these details, and with a programmng environment that
was not, perhaps, natural to the way in which they thought about the problem. At both times
there was a feeling among some that new programming environments might be within grasp
(twenty years ago the new environements were high-level languages) and that the required
software technologies required to realize such environments might be feasible. Out of the
desire for new programming environments and out of the feeling that these new environments
might be attainable, there appeared, In each period, an endeavor called AP.

The current motivations for AP, while similar to those twenty years ago, are more
Intense Today software is costly and unreliable. So much time, money, and effort is
currently being expended, with even greater expenditures forecast for the future. Too
infrequently is software produced within budget or on time. Too often the supposedly

finished product, when delivered,fails to meet specifications. As programming applicationsof
increasingly greater complexityare addressed, not only does reliability become more difficult
to attain, but the costs of

software,

in terms of time, money, and

effort,

spiral upward.

To help alleviate these problems, AP should aim at certain general goals. AP would like
to restyle, in more natural terms, the way in which the programmer specifies the desired

program This restyling should allow the programmer to think of the problem at a higher and
more natural level AP would like to relieve the programmer of mundane portions of
programming, thereby relieving the programmer of the need to keep track of too many details.
By changing the programming environment, AP could allow programmers to construct, with
greater ease and with greater accuracy, the programs of the present and the more complex
programs of the future.

These last goals circle back to a succinct definition of AP: The computer itself writes
its own programs, or parts of its own programs, that is, the computer performs a portion of
the program-writing activities. Neither the goals nor this definition are especiallyprecise, but
the next sections are more specific. They describe the common characteristics and primary

issues of AP systems.

%

Automatic Programming678

■i-

i»i

:|"

1

'I

Characteristics of AP Systems

All AP systems have a specification method, a target language, a problem area, and an
approach or method of operation.

Users of an AP system must be given some means or method for conveying to the
system the program that they desire. This means is referred to as the specification method of
the AP system. As will be seen in the remainder of this chapter, AP systems possess a
variety of specification methods. Formal specification methods are those that might be
considered to be very high-level programming languages. In general, the syntax and
semantics of such methods are precisely and definitelydefined. Formal methods also tend to
be complete; that is, the specification, within this method, of the desired program will
completely and precisely indicate what it is that the program is to accomplish, though, of
course, the specification may not indicate the form of the program or how the program is to
accomplish it. Formal specification methods are usually not non-interactive,which is to say,
the system does not interact with the user in order to obtain missing

information,

to verify
hypotheses, or to point out inconsistencies in the specification. For example, it is
comparable to the passive acceptance of a program's specification by a compiler of a high-
level language (e.g., FORTRAN).

A different method- of specification is by examples. Here the user would specify the
desired program by simply giving examples of what the desired program is to do; the AP
system would then construct the desired program. The specification might consist of
examplesof the input/output behavior of the desired program, or it might consist of traces of
the desired program's behavior (a trace Is an example showing how the program should
process a given input). Specification by examples (or traces) is certainly not complete: The
examples do not fully describe in all cases the behavior of the desired program.

Natural language (e.g., English) is another method of specification. The user specifies
in natural language what the desired program is to db. These are often interactive (cf.
articles on PSI and NGPS), since they check hypotheses, point out inconsistencies, and ask
for further information.

A more detailed discussion of specification, Including some advantages and
disadvantages of the various methods, is presented In the article on program specification.
Examplesof program specification are found in most of the remaining articles of this chapter.

If the specification method refers to the input to the AP system, the target language is
concerned with the system's output of the finished program. The language In which the AP
writes the. finished program, or parts of the finished program, is called the target language.
The target languages of the AP systems described in this chapter are high-level languages
such as LISP, PL/1, or GPSS. As an example, suppose that the target language of an AP
system were LISP. The user, possibly employing a very high-level language, or examples, or
natural language, would specify to the AP system what the desired program is to do. Then
the AP system would eventuallyoutput a LISP program to do just that.

It is possible to view specification method and target languageas relative terms. In an
AP system that carries the process of writing programs through several phases, the input
method to each phase could be thought of as a specification method, and the output
specification as being written in a target language, which then becomes the input

An Overview of Automatic Programming 679A

specification method to the next phase. However, In this chapter, target language is usually
reserved for the language in which the output program of the whole AP system is written.

Another characteristic of an AP system is its problem area or area of intended
application. Problem area, problem domain, application area, and application domain are
synomous terms. For some AP systems, the scope of its problem area Is relatively precise.

Thus, the problem area of the NLPQ system is that of simple queuing problems. The problem
area of the PROTOSYSTEM project (see article below) is that of input/output Intensive data-
processing systems, including Inventory control, payroll, and other record-keeping systems.
On the other hand, the problem area of some AP systems can be relatively large; the
application domain of the PSI system (see article below) is symbolic computation, including

list processing, searching and sorting, data storage and retrieval, and concept formation. The
problem area of a system can have a bearing on the method of specification, introducing
terminology that is relevant to the problem area, influencing the method of operation or
approach used by the AP system, etc.

The fourth characteristic of AP systems is the approach or method of operation. The
AP area is too new for there to be very many clear-cut categories of methods of operation.

While there are some systems whose approach falls Into a basic, though general, category,

the approach of most systems Is not easily categorized. A separate article on basic
approaches discusses some of the more clear-cut categories, including theorem proving,
program

formation,

knowledge engineering, automatic data selection, traditional problem

solving, and Induction.

In the theorem-proving approach, the user specifies the conditions that must hold for
the input data (to the desired program) and the conditions that the output data should
satisfy The conditions are specified in some formal language,often the predicate calculus. A

theorem prover is then asked to prove that for ail given Inputs, there exists an output that
satisfies the output conditions. The proof, then, yields a program. Briefly, theorem proving

uses theorem provers to produce certain kinds of proofs from which the desired program Can

be extracted.

The program transformation approach refers to transforming a specification or
description of a program into an equivalent description of the program. The reason for the

transformation might be to convert a specification that can be easily written and read into
one that is more complicated but more efficient; or the reason might be to convert a very

high-level description of the program into a description closer to a target language

Implementation.

Knowledge engineering (see section Applicationa), applicable to many areas in addition
to AP refers to identifying and explicating knowledge; and it often means "realizing" the
knowledge as specific rules that can be added to or removed from the knowledge base of a
system.

Traditional problem solving (see section Search), also applicable to many areas, refers

to the use of goals to direct the choice and applicationof a set of operators.

These approaches or paradigms overlap, and many systems utilize a method that may,

in oart draw on elements from several. While it is hard to categorize the approaches of AP
systems, there are now enough systems so that It is possible to identify some common
issues, and these are the topic of the next section.

%

Automatic Programming680

/

I

'!■

Basic Issues

In the article on basic approaches and in all the articles describing the individual
research projects, the reader will find one or more of several explicit basic issues

addressed: partial

information,

transformation, efficiency, and understanding.

Partial information pertains to systems whose methods of specification allow for partial

or fragmentary descriptions of the desired program: Not all of the required information is

present in the specification, or, where it Is present, it may not be explicit. Since the problem

of partial Information does not apply to systems that have complete methods of specification,

systems such as DEDALUS, PROTOSYSTEM I, LIBRA, and PECOS are not concerned with this

problem. On the other hand, systems that accept incomplete specifications, especially

natural language specifications, are very much concerned with partial information. The NLPQ,

PSI, and SAFE systems fall in this category. In the article on the SAFE project, one will find a

classification of the different kinds of missing information that might occur in a natural
language specification.

Usually going hand in hand with the problem of partial information is the problem of
consistency. Incomplete methods of specification often permit inconsistency between
different parts of the same specification. In such cases, the system must check for

inconsistencies and, if they are found, resolve them.

In trying to fill in missing information in one part of the specification or checking for
consistency between different parts and resolving any discovered inconsistency, the system

may use information that occurs either explicitly or implicitly in other parts of the
specification. Also, it might utilize a knowledge base containing Information about the problem

area. Finally, the system may consult the user in an attempt to gain the sought-for

information. One of the explict devices for utilizing such information is constraints. For
examples of these, see the article on PSI and especially the article on SAFE.

Another issue addressed by AP systems Is transformation. The term

refers,

simply, to
transforming a program description, or part of a program description, into another form. All AP
systems use transformation, if only to transform an internal description of the program into a
target language Implementation (description). Even a compiler of high-level languages (e.g.,

FORTRAN,

PL/I, ALGOL) will often transform a program description several times, taking it
through several internal representations, the last of which is the machine language

description. However, a compiler differs from an AP system in that it applies the
transformations in a rigid, predetermined manner; in an automatic programming system there
might be no predetermined manner of applying the

transformations,

the application depending

on an analysis and exploration or the results of applying various transformations. Such
systems as DEDALUS and PECOS, systems that use extensive transformation on the program
description, have a knowldege base containing many transformation rules that convert parts

of a higher level description into a lower level description closer to a target language

implementation. Such rules are repeatedly applied to parts of the program description with
the goal of eventually producing descriptions within the target language. These systems

develop a tree of possible descriptions of the program, with each descendant of a node

being the result of a transformation. One of the goals, then, In developing the tree is to find a
description that Is a target language implementation of the desired program. Another goal

might be to find an efficient target language Implementation.

An Overview of Automatic Programming 681A

I

!

-"

Other AP systems may use transformation rules in various ways. For instance, the NLPQ
system uses transformation rules to parse the natural language input from the user, to
generate natural language output to the user, and to generate the target language program

from an internal description.

Another concern of AP systems is the efficiency of the target language implementation.

The twTprojects that dealt with this Issue are PROTOSYSTEM I and the PSI subsystem LIBRA.
While the PROTOSYSTEM approach to creating efficient programs combines artificial
intelligence with the mathematical technique of dynamic programming, the LIBRA approach

uses a more extensive range of artificial intelligence techniques, employing a variety of

heuristics, estimates, and kinds of knowledge to guide Its search for an efficient program.

When it is said that an AP system optimizes a program for efficiency, it does not mean

that the system finds the absolutely most efficient implementation; combinatorial explosion

makes such a task Impossible. Instead, optimizing means making some reasonable choices in

the Implementation so as to achieve a reasonably efficient program.

a h«in rnneern of all AP systems is understanding. Understanding a program might be
HofinoH A th«t which enables a system to talk about, analyze, modify, or write parts of a
program On of *. celZ concerns of the PROGRAMMER'S APPRENTICE described below isprogram, one o ine A p|a

_
represents one partlCular

understanding through he explicit y
&

understanding or -"ay o «fl APPRENTICE). Understanding In the other\ys^^^£*- - res,de ,n any one part,cu,ar c,ass of structures -

Overview of the System Articles

,-,.♦«

Ascribed in the system articles cover much of the current research ifr

hanSp-ail Information, and explicit understanding.

.„„ ,_ fhfl first AP system to utilize natural language dialogue as a
The NLPQ system is flr*JJ.a

y
part of . simple queuing simulation problem in

specification method. The us p
efS questions posed by the user, as well

English, and then the system as is n J, M^ton or to resolve inconsistencies.
as queries the user in order ro p

d
__

ired program ..
The partial knowJ«J« is

y
eventua.|y used to generate the program in the target

represented|«i« a^£Zs£„ produc tion rules analyze the user's natural language

.pe'omoatS» LdTand modify the semantic net, produce natural language responses, and

finally generate the target language program.

i« mnm recent and consists of many subsystems; it stresses the
The PSI system is moreßecent and Qf know|edge The problem

integration of a nu^er
bo))c programming, including information retrieval, simple sorts,

■PP""^-"?'"^^^.^^; specify the desired program with a mixture of
and coneeP

n
t/°r. v̂ia

l
tL natural language dialogue; for an easier and more natural

examples *»«"**dJ""Z°system maintains and utilizes a tree of the topics that occur
interaction with the user, tne ay

dialogue, PSI creates a complete,

cSten? de^^on" rSred proW H, the last phase, the system explores

[

%

Automatic Programming682

Fa

i

T
Sift

i
f>.\

I-

A.

repeated application of transformation rules in order to convert the description into a target
language implementation. This last phase, the synthesis phase, is carried out by two
subsystems: PECOS provides suitable transformation rules and LIBRA directs and explores
the application of the rules with the goal of obtaining an efficient target implementation.
PECOS and LIBRA are described in separatearticles.

Both PECOS and DEDALUS are examples of full-fledged, dynamic transformation
systems. They each start out with a completespecification of the desired program. Each has
a knowledge base of many transformation rules that are repeatedly applied to the
specification. These repeated applications produce a sequence of specifications that
eventually terminate with a specification that is a target language implementation. Because
more than one transformation rule can apply in some cases, each system actually develops a
tree of specifications (descriptions), with eventually one or more of the final nodes of the
tree being a program implementation within the target language. Part of the differences
between these two systems lies in the fact that DEDALUS is concerned with the logic of
such programming concepts as recursion and subroutine. On the other hand, PECOS is more
concerned with the multiplicity of implementationsof very high-level programming constructs
and operations, because that is the task of PECOS within the PSI system. Though PECOS
stresses knowledge of various implementations and DEDALUS stresses knowledge of
programming constructs, both are systems where transformation is the primary emphasis.

The SAFE system article contains an extensive description of constraints and their use
in handling partial information. SAFE processes a variety of different kinds of constraints, in
order to fill in different kinds of information In the specification of the desired program, and
employs different methods of processing these constraints. There are constraints related to
type of object referenced in the specification, as well as related to sequencing of steps.
Constraints are processed by backtracking and by carrying out a form of symbolic execution.

One of the Ideas of the SAFE project is that a completely specified program satisfies a
very large number of constraints, information in the user's partial, fragmentary specification
(partial and fragmentary since the specification does not mention all objects explicitly, or
partially mentions other objects, and may not contain explicit sequencing of actions)
combined with the many constraints that a formal program satisfies (and possibly with
information from a knowledge base of the application area or, in special cases, from
information obtained from queries to the user), taken together, fully determine a complete
and formal descriptionof the program. No other system deals in so central a way with partial
information and constraints as does the SAFE system.

The LIBRA and PROTOSYSTEM I projects are concerned with efficiency of the target
language implementation. LIBRA uses an artificial intelligence approach, while PROTOSYSTEM
I uses a combination of some artificial intelligence with primarily the mathematical approach
of dynamic programming. Dynamic programming, modified by approximations and heuristics,
produces an optimized target language Implementation. On the other hand, LIBRA guides the
application of the transformation rules furnished by the PECOS subsystem of PSI and directs
the growth of the resulting tree (see above discussion of PECOS) with the goal of finding an
efficient target implementation.LIBRA determines and utilizes estimates of what it is likely to
achieve by exploring the developmentof a particular node. LIBRA has knowledge about how
its own allocation of space and time should influence its strategy in searching for an efficient
implementation. Though both LIBRA and PROTOSYSTEM I are concerned with producing
efficient implementations, they approach the problem in different contexts. The first

An Overview of Automatic Programming

683

A

.V

explores configurations of a data-processing program and the second explores applications

of transformation rules.

The PROGRAMMER'S APPRENTICE does not necessarily write the program, but instead
functions as an apprentice to the user, with the user writing none, some, or ail of the program
and the apprentice assisting with such tasks as writing parts of the program, checking for
consistency, explaining pieces of program, and helping the user modify programs. The
central concern of this project is understanding, understanding through the explicit device of
plans A plan may be thought of as a template that expresses an understanding or viewpoint.

Matching the plan to a part of a program description corresponds to understanding the part in
that way Several plans can match the same part of a program, corresponding to different
ways of understanding that part. Plans can also be built up in a hierarchical fashion. The goal

is that the PROGRAMMER'S APPRENTICE, with the understanding attained through the use of
plans, can assist the programmer with correcting mistakes, writing parts of the program, and

effecting modifications.

All of these are research projects: At present none hase been responsible for an AP
production system. Much research remains before most of these systems can be of use to
programmers.

References

See The Annual Review in Automatic Programming (1960), Automatic Coding (1957),

Balzer (1973a), Balzer (1973b), Balzer (1973c), Biermann (1976a), Hammer (1977), Hammer
& Ruth (1979),'Heidorn (1976)-, and Heidorn (1977).

Further references for specific research areas are listed with the other articles in this

chapter.

/

i

684 Automatic Programming

/

!

;

I

I
?-
i

i

i

s

\

I

k.
i

A

B. Methods of Specification

There must be some means or method by which the user conveys to the AP system
what kind of program the user wants. This method is called the program specification. It might
entail fully specifying the program in some formal programming language, or possibly just
specifying certain properties of the program. It might involve giving examples of the input
and the output of the desired program, giving formal constraints on the program in the
predicate calculus, or giving interactive descriptions of the program at increasing levels of
detail in English. (The subject of specificationis introduced in general terms in the overview
article.)

Formal Specifications

One method of formal specification is that used with the basic approach of theorem
proving (see below for this basic approach). Here one might specify a program as

(1) Vsl (P(sl)o3s2Q(sl,s2))

where s1 are the input variables, and s2 the output variables. P(s1) is the input predicate(or
Input specification); it gives the conditions the Inputs s1 can be expected to satisfy at the
beginning of program execution. Q(s2) is the output predicate(specification); it gives the
conditions the outputs s2 of the desired program are expected to satisfy.

Expression (1) states that for all s1 the truth of P implies there is an s2 such that
Q(sl ,s2) is true. If there are no restrictions on the inputs, one may simply write

V s1 3 s2Q(sl,s2) .

For example, a program that computes the greatest common divisor of two integers x
and y might be specified by taking P(x,y) as the condition that x and y are positive, and
Q(x,y,z) as the condition that z is the greatestcommon divisor. P(x,y) could be written as

x > 0 and y > 0 ,
and Q(x,y,z) could be written as

divide(z.x)and divide(z.y) and
Vr((r>o and divlde(r,x) and divlde(r.y))= z i r)

The expression

V x y 3 z (P(x,y) o Q(x,y,z))

would then state that for all positive integers x and y, there is a z such that z is their
greatest common divisor.

In the basic approach for this kind of specification, the above expression is given to a
theorem prover that produces a proof from which a program can be extracted (see basic
approach of theorem proving below). One is required to give to the theorem prover enough

Methods of Specification 685B

l

facts concerning any predicates and functions that occur in P and Q so that (1) is provable.
Thus, in the above, one would have to specify a number of facts concerning the predicates
"divide", "<", and ">" over the integers.

Another very similar method of specification is that used with the basic approach of
program transformation and of very high-level languages. This specificationmethod stresses
the use of entities that are not immediately implementabie on a computer, or at least not
Implementable with some desired degree of efficiency. There is considerable leeway in this
classification. For instance in some program transformation systems the entities employed
may be quite abstract without any hint of the desired algorithm. In other systems the
algorithm most naturally suggested by the specification of the program could be inefficfent.
but the AP system will produce an efficient but perhaps convoluted program.

One example of a specification used with program transformation is (see article DB)

gcd(x.y) - compute max (z: divide(z.x)and divide(z.y))
where x and y are nonnegative integers greater than zero .

This expression states that the gcd (greatest common divisor) of x and y is the maximum of
ail those z such that z divides x and y. Furthermore It is assumed that x and y are
nonnegqatlve integers one of which Is non-zero. By successive transformations of this
definition of gcd, the system would produce an efficient recursive program. Another example

(Darlington & Burstall, 1973, p. 280) Is

The system, then, by various transformations produces a more efficient non-recursive though

more tortuous program.

Advantages and Disadvantagesof Formal Specifications

The first specification method, that involving the input and the output predicates, and
based on formal logic, is completely general: anything can be specified. On the other hand
the user must have a sufficient understanding of the desired program in order to give a full
formal descrlotlon of the Input and output. This understanding can sometimes be

difficult,

even for simple programs. Also, the present form of theorem provers and problem reduction

methods makes synthesis of longerprograms difficult.

ThP second type of formal specification does not have such arbitrary generality, but
the terminology used in the specification often is closer to our way of thinking about a
particular subject, and so it should be easier to create such specifications.

f thouah some of the above formal methods are arbitrarily general and others are
not thotall are complete: there the specification of the desired program fully and
not, iney "■

what the program is to do. This is not true of some of the other methods

discussedfbelow where the specification does not uniquely determine what the program is to

Hnwfth^.rh methods it becomes a concern whether the program produced by the system

" t iiv what the user desires. Sometimes a system employing such a method may have to

ve^vwhether the program it produces is the program the user wants. On the other hand,

wtth the specification methods dicussed here, there is no such problem. For further reading

on this subject see Slbel, Furbach, & Schreiber (1978).

factorial(x) :■ if x*o then 1 else times(x,factorial(x-1))

?.

Automatic Programming

i

I

*"

ii:

■?

I A

Specificationby Examples

Some simple programs are most easily described using examples of what the program is
supposed to do.

Examples of INPUT/OUTPUT Pairs In this specification method, the user gives
examples of typical inputs and the corresponding outputs. Consider specifying or describing
a concatenation of lists to someone who is unfamiliar with the term "concatenation". It might
be most straightforward to use an example:

which states that when the input of the function "concat" consists of the two lists (A B C)
and (D E), then the correspondingoutput is (A B C D E).

Given certain common sense assumptions, this example input/output pair should suffice
to specify what it is that the desired program is to do. In more complicated cases, where the
common sense assumptions are not sufficient, more examples must be given in order to
specify the program. For instance, the above example could be misinterpreted as a
"constant" program that always gave (A B C D E) as output:

In such a case, giving an additional example

would probably clear up any confusion.

Another instance of this method is the specification of the function "prime" by a set of
input/output pairs:

prime(2) = 2
prime(3) = 3
prime(4) = 5
prime(s) = 7

prime(6) = 1 1

Generic Examples of INPUT/OUTPUT Pairs In certain cases, generalizations of
specific examples or generic examples are more useful in order to avoid the problems
inherent in partial specifications. For instance, the generic example

reverse [(X1X2X 3... Xn)] = (Xn ... X3X2X 1)

describes a list reversal function. Here, the X1,X2,...,Xn are variables which may be
anything. This specification is still partial (must n > 0 hold, or could n = 0 ?), but it is more
complete than any specification of this function given by example of Input/output pairs.

Program Traces Traces allow more imperative specifications than do example pairs. A
sorting program may be specified with input/output pairs (e.g., Green et al., 1974):

concat [(A B C), (D E)] = (A B C D E) ,

concat [x,y] = (A B C D E)

concat [(L M),(N 0 P)] » (L M N 0 P) ,

primed) = 1

Methods of Specification 687B

sort [(3 1 4 2)] ■ (1 2 3 4) ,

but it would be hard to specify an insertion sort program in the same way. Yet, a program
trace could express such a program as follows:

sort [(3 1 4 2)] --> ()
(1 4 2) --> (3)
(4 2) --> (1 3)
(2)--> (1 3 4)
() --> (12 3 4)

Another example of specification by traces might be

for the specification by trace of the Euclidean algorithm which computes the greatest

common divisor. An example of using a trace to specify part of a concept formation program
is presented in 02.

More formally, a trace may be defined as follows. A programming domain can be thought

of as consisting of a set of abstract objects, a set of possible representations (called data
structures) for these abstract objects, a basic set of operators to transform these
representations, and a class of questions or predicates that can be evaluated on these data
structures. Thus, a programming domain characterizes a class of programs that might be
constructed to operate on representations of the set of abstract objects in the domain. A
trace is a sequence of data structure changes and control flow decisions that have caused
these changes. Traces are usually expressed in terms of domain operators and tests (or

functional compositions of these). Traces are classified as complete if they carry all

information about operators applied, data structures changed, control decisions taken, etc.;

otherwise they are called incomplete. An Interesting subclass of the latter is the class of
protocols In which all data flow information is explicit but all control Information is omitted.

Generic Traces Like generic examples of input/output pairs, these may also be
useful In general, there is a whole spectrum of trace specifications depending on how much

imperative information and how much descriptive information Is present in the trace. For

instance the trace above is completelydescriptive; traces that contain function applications

and/or sequencing information tend to be more imperative.

Advantages and Disadvantages of Specification by Examples

As stated above, generic examples are less ambiguous than non-generic examples.

Traces are less ambiguous than input-output pairs, but the user is required to have in mind
some idea of how the desired program Is to function. On the other hand, traces do allow
some imperative specification of the flow of control.

Specification by examples can be natural and easy for the user to formulate Manna

gcd(l2.lB)->
(6,12) ->
(0,6) ->

8

Automatic Programming%

<*

v

i

il

ML

',1

(1977). Examples have the limitations inherent to informal program specifications: the user
must choose examples so as to unambiguously specify the desired program. The AP system
must be able to determine when the user's specification is consistent and complete, and that
the system's "model" of what the user wants is indeed the right program.

Natural Language Specifications

Given an appropriate conceptual vocabulary, English descriptions of algorithms are
often the most natural method of specification. Part of the reason for this is that natural
language allows greater flexibility in dealing with basic concepts than do, say, very high-
level languages. This flexibilityrequires a fairly sophisticated representational structure for
the model, with capabitities for representing the partial (incomplete) and often ambiguous
descriptions users provide. In addition, it may be necessary to maintain a database of
domain dependentknowledge for certain applications. Experience with Implemented systems
such as SAFE Balzer, Goldman, & Wile, 1977a; see also D3, suggests that the relevant
Issues are not in the area of natural langauge processing but in how the specifications are
modeled in the system and what "programmingknowledge" the system must have.

Mixed-InitiativeNatural Language Dialogue

More versatile, this specification method involves interaction between the user and the
system as the system builds and tries to fill in the details in its model of the algorithm. In
addition to maintaining a model of the algorithm, such systems sometimes for purposes of the
dialogue will even maintain a kind of model of the user to help the system tailor the dialogue
to a particular user's Idiosyncracies. Various techniques mentioned previously, such as
examples or traces, could be used in the dialog as a description of some part of the
algorithm. The system might be so designed as to allow users to be as vague or ambiguous as
he pleases; the system will ultimatelyask them enough to fill in the model.

This method is probably the closest to the usual method of program specification used
by people, allowing both the specifier and the programmer to make comments and
suggestions. Users do not have to keep every detail in mind, nor do they have to present
them in a certain order. The system will eventually question the user for missing details or
ambiguous specifications. On the other hand, this method requires a system that deals with
many problems of natural language translation, generation, and representation. A
representation Is also required for the system's model of the algorithm.

The PSI system

Green,

1976b; see also D2and the NLPQ system Heidorn, 1974; see
also D8use this method of program specification. Floyd (1972) and Green (1977) give
hypothetical dialogs with such a system, illustrating the problems that researchers have
encountered with this approach.

References

See Biermann (1976a) and Heidorn (1977). For examples of Individual specification
methods see the remaining articles of this chapter.

Basic Approaches 689C

C. Basic Approaches

The following are some of the basic approaches used in Automatic Programming (AP)

systems to synthesize desired programs from user specifications. There is not always a
clear distinction between synthesis and specification. Furthermore, as will be seen from the
later articles, some systems employ primarily one approach while others employ more
elaborate paradigms that use several approaches. (This material is introduced In the
overview article above.)

Theorem Proving

The theorem-proving approach is used for the synthesis of programs whose input and
output conditions can be specified in the formalism of the predicate calculus. As stated" in

the section on formal specifications, the user specifies the desired program for the theorem
prover in the form

where s1 Is one or more input variables, s2 is one or more output variables, P is the

predicate that s1 is expected to satisfy, and Q is the predicate that s2 is expected to
satisfy after execution of the desired program. In addition to the above expression, the

theorem prover must also be given enough axioms to make the above expression provable.

From the proof produced by the theorem prover, a program is extracted. For instance,

certain constructs in the proof will produce conditional statements, others sequential
statements- and occurrences of induction axioms may produce loops or recursion. There are
several variant methods of accomplishing this (see Green, 1969, Waldinger & Levitt, 1974,

Kowaiski, 1974, Clark 8. Sickel, 1977).

Although any interesting example would be far too long to work out in all of its detail
here it may be worthwhile to show how such a problem is set up. Consider the very simple

problem of sorting the dotted pair of two distinct numbers, in LISP. The axioms that would
prove useful for this synthesis would be:

The specification of the desired program, and the theorem to be proved, would be:

Yx. 3y. [car(x)<cdr(x) s y=x] a
[car(x)_cdr(x) s car(x)=cdr(y) a cdr(x)=car(y)]

This says that for every dotted pair input x, there is a dotted pair output y such that if x is
already sorted, then y is the same as x, and if x is not sorted, then y is the interchange of

the two elements of x. Using the techniques of resolution theorem proving (Theorem

Proving.C), we would obtain the following program:

V s1 (P(sl)3 3 s2Q(sl,s2)) ,

1) x = car (cons(x.y))
2) y » cdr (cons(x.y))

3) x = nil 3 cond(x,y,z) ■ z
4) x * nil 3 cond(x,y,z) = y

5) Vx,y (lessp(x.y)4 nil ♦♦ x < y)

I- ■■

i

;iS

I
X

Automatic Programming

In general, programs to be synthesized will not be as simple as the one above. One of
the major problems that more complicated programs introduce is that they require some form
of iteration or recursion for solution. To form a recursive program, one needs the proper
induction axioms for the problem. A general schema for the induction axiom sufficient for
most programs is:

<* [P(h(nil),nil) a Vx[ATOM(x) a P(h(cdr(x)),cdr(x)) 3 P(h(x),x)]]
o Vz [P(h(z),z)] ,

where P Is any predicate and h is any function. Somehow this predicate and function must
be determined. Necessitating the user to supply the induction axioms for each program to be
synthesised somewhat defeats the purpose of the synthesis, yet having the system
generate induction axioms until one of them works takes up far too much time and memory.
Systems that determine the P and h usually use various heuristics to limit search.

\

There are several constraints inherent to the approach of theorem proving. First, for
more complicated programs, it is often more difficult to correctly specify programs in the
predicate calculus than it Is to write the program itself.

Second,

the domain must be
axiomatlzed completely, that is, one must give enough axioms to the theorem prover so that
any statement that is true of the various functions and predicates that occur in the
specification of the program can actually be proved from the axioms—otherwise, the theorem
prover may fail to produce a proof, and thereby fall to produce the program. Third, present
theorem provers lack the power to produce proofs for the specification of very complicated
programs. To summarize, the user must fully and correctly specify the desired program, the
theorem prover must be given enough axioms so that the specification is provable, and the
theorem prover must be strong enough to prove the specification.

\y.

f

It should be noted that this approach does not allow partial specification: Users cannot
specify the program partially with the system helping them to fill in details. On the other
hand, when a theorem prover does succeed in producing a proof of the specification, the
correctness of the extracted program is guaranteed. Thus, AP systems might incorporate
theorem proving where it is either convenient or where correctness is an important requisite.

<r.

Program Transformation

The transformation approach has been used to automatically convert an easilywritten,
easily understood LISP function into a more efficient, but perhaps convoluted program. One
such system, described in Darlington & Burstall (1973), performs recursion removal, the
elimination of redundant computation, expansion of procedure calls, and reuse of discarded
list cells.-

The recursion removal transforms a recursive program into an interative one, which is
generally more efficient, avoiding the overhead of the stacking mechanism. Candidates for
recursion removal were determined by pattern matching the parts of the program against a
recursive schema input pattern. If the match Is successful and If certain preconditions are
met, then the program is replaced by an iterative schema. A simple example of such a
transformation rule is:

y=cond(lessp(car(x),cdr(x)),x,cons(cdr(x),car(x)))

Basic Approaches 691c

input pattern: f(x) ::= if a then b else h(d,f(e));
precondition: h is associative,x does not occur free in h;
result pattern: f(x) ::= if a

then result "- b
else begin

result "" d;
x *■ c;

end;
result - h(result.b)
end

where a, b, d, c,

f,

and h in the input pattern are matched against arbitrary expressions in
the candidate functions. For example, the

function,

would match the above input pattern with f - FACTORIAL, a «- (x=l), b - 1, h - TIMES, d - x,
and c - (x-1). The resulting program would be the resulting pattern with these values
substituted for a, b, d, c, f, and h.

Eliminating redundant computations includes traditional subexpression elimination as
well as combining loops that Iterate over the same range. The latter includes implicit

iteration. Thus, If A, B, and C are represented as linked lists, the sequence:

X * INTERSECTION (A,B)
V - INTERSECTION (A,C) ,

is really two implicit iterations, each over the set A. A suitable transformation rule would
convert this Into a single Iteration over the set A.

Expanding procedure calls generally involves substituting the body of a procedure for
each of the calls to it. The potential benefit arises from simplifications made possible by use
of the local context. This technique is the starting point for a general class o*

transformations explored in Burstali & Darlington (1975), Wegbreit (1975a).

Program transformation Is also used to convert very high-level specifications into
target languageimplementations (see 06, D5, as well as summaries of these articles in A).

Knowledge Engineering

AP systems are said to be "knowledge-based" when they are built by identifying and

codifying the knowledge that is appropriate for the program synthesis and understanding
(i.e. ability to manipulate and analyze programs) and by embedding this knowledge in some
representation. Many of these systems use large amounts of many kinds of knowledge to

while not a
do begin

result "- h(result.d);
x «- c

FACTORIAL(x) ::= if(x=l) then 1 else TIMES (x, FACTORIAL (x-1))

."

Automatic Programming692

S

-' %

f
i

j|

>l

■

.

% ■'

!: !t i

analyze, modify, and debug large classes of problems. While the distinction is relative, it is
possible to divide this knowledge into two types: programming knowledge and domain
knowledge.

Programming knowledge includes both progamming language knowledge, which is
knowledge about the semantics of the target language in which the system will write the
desired program, and general programming knowledge, which is knowledge about about such
things as generators, tests, initialization, loops, sorting, searching, and hashing. Programming
knowledge includes: (a) optimization techniques, (b) high-level programming constructs
(loops, recursion, branching), and (c) strategy and planning techniques.

Domain knowledge is what is necessary for a system to infer how to go from the
problem description or specification to what needs to be done to solve the problem. This
"know-how" includes how to structure the concepts in the domain or problem area and find
interrelationships among them. It must also include knowledge about how to achieve certain
results in the problem domain (cf., HACKER'S learning of procedures Problem Solving.Bs).
Moreover, it should be able to define the problem in alternative ways and find alternative
ways to solve the task—such knowledge represents an "understanding" of the domain.

Knowledge-based systems need a method of reasoning. Since they are not restricted
to using the traditional formalisms of logic, they often supply their own flexible reasoning
techniques for guiding the synthesis. Some of these techniques include

inference,

program
simplification, Illustration and simplification for the user, decision trees, problem-solving
techniques, and refinement.

The basic concern in representing the knowledge is that the knowledge be structured
in such a way that the search for relevant facts does not cause a combinatorial explosion.
Various representations employed include:

PLANNER-like procedural experts (Al Languagee.Cl),
Refinement rules (D5),
Modular, frame-like experts(OWL (Martin, 1974)

and BEINGS (Lenat, 1975))
Semantic nets (DB), and
Amorphous systems that try several ad hoc techniques

((Biggerstaff, 1976)).

Methods of accessing knowledge bases include: pattern Invocation (D5), "when
needed" (Sussman, 1975); frame relations and assertions, including the filling in of process
models (Martin, 1974,

Green,

1969, Lenat, 1975, 08 03, D3); and subgoal or case analysis
(Green, 1977 and D6).

Automatic Data Slection

This approach refers to the selection of efficient low-level data-structure
implementationsfor a program specified In terms of high-level abstract information structures

Basic Approaches 693C

(e.g., sets). Generally, programming languages containing abstract data types have default
representations that are a compromise between all likely uses of the structures; these data
types are typically far from efficient in any one particular program. But a system with
automatic data selection would choose, from a collection of possible implementations, an
implementation more efficient for the particular program under consideration. For example,

the abstract data type set could be represented in low-level implementationsas a linked list,

a binary tree, a hash table, a bit string, or as property list markings. Various operations on
sets are easier In one representation than in another—e.g., set intersection using bit strings

is simply a logical AND operation, while iteration over a set is easier when it is represented

as a linked list—and some representations may not even be applicable in a given case (e.g.,
bit strings require that the domain of set elements be fixed and reasonably small, since one
bit position is used for each possible element). Also, some representations may not permit all
needed operations (e.g., the only way to enumerate the items in a set represented with
property markings is to enumerate all atoms in the system.) By tailoring the representation to

the particular programmer's intension, it is possible to produce much better code.

One such system performing data-structure selection for the user is Low (1974), Low
(1978) This system handles simple programs written in LEAP, a sublanguage of SAIL. It
selects representations for sets, sequences, and relations from the fixed library of low-level
data structures available in LEAP. The selection is guided by the goal of minimizing the
product of the memory and time required to execute the resulting program.

The system begins with an information-gathering phase that searches out the relevant
characteristics of the program's data structures, such as their expected size, number, the
operations performed on them and their interactions. Some of this information is obtained by
questioning the user, and some Is obtained by monitoring the actual execution of the program
on typical data, using default representations for each structure. Then the system partitions

into equivalence classes the variables whose values will be of the same type of data

structure. The system employs a method similar to hill climbing Search.Overview in order to

determine a good assignment of data structures to the equivalence classes (1.c., the
representations assigned to the equivalence classes are repeatedlyvaried, one at a time, to

see if an improvement will result). For further details, see the above references.

Other AP systems are also concerned with the selection of an efficient set of data
structures or file structures, but this concern is part of the general goal of writing an
efficient program (see Articles 07 and 09).

Traditional Problem Solving

Traditional problem solving refers to using goals to direct the application of operations

in a state space (see Search). The Heuristic Compiler (Simon, 1972) regards the task of
writing a program as a problem-solving process using heuristic techniques, like those of GPS
(see Article Search.o2). This pioneering work recognized the value of both a state language,
to describe problem states and goals, and a process language, to represent the solver's
actions.

In the Heuristic Compiler, the State Description Compiler is quite similar to later work on
synthesis from examples. The program being synthesized is defined by specifying

input/output conditions on the memory cells that It affects. The difference between the

li

Automatic Programming694

I

!
I

*

iI
f

! .
i

i

i'- i <

.'SI

U :

.; \

i

:'.

■j-.

i

current state and the desired state is looked up in a table that specifies which operators to
apply to transform the contents of the cells appropriately. The Functional Description
Compiler is an important precursor to later work in automatic modification and debugging of
programs. It uses a means-ends analysis to transform a known (compiled) routine into a new
(desired) routine.

HACKER, a system by Sussman (1975), adds to Simon's work, detecting and
generalizing new differences (bugs) and defining appropriate operators to resolve them
(patches). This system uses many significant Al techniques and language features: learning
through practice how to write and debug programs; modular, pattern-invoked expert

procedures (chunks of procedural knowledge); and hypothetical world models for subgoal
analysis. Sussman's emphasis on generalizing from experience(trying old techniques in new
situations), acceptance of the fact that users have an incomplete understanding of the
desired program, and his goal-purpose annotation technique are ail interesting directions in
the developmentof Automatic Programming.

However, HACKER's preference for ruthless generation of "buggy" code without
detailed planning has led to inadequate handling of subgoal conflicts. The user must
carefully schedule the training sequences and be ready for the combinatorial explosion.as
the system exhaustively searches its base of world facts and programming knowledge. Such
systems must constrain the search problem of large knowledge bases. Other attempts to
distribute knowledge among interacting specialists have encountered the same difficulty
(Lenat, 1975).

We find that systems such as HACKER, which are designed to operate like human
programmers, have experienced a moderate degree of success compared to knowledge-
impoverished formal methods. However, these systems are still often hampered by the rigid
formalism that governs their application: in what order are operatorsto be applied? How can
domain-specific information be specified as differences? The formalisms used to incorporate

the various knowledge sources in these systems seem too methodical; the method is space
and time bound because it is based on search.

Induction

Induction or inductive Inference refers to the system's "educated guess" at what the
user wants on the basis of program specifications that only partially describe the program's
performance. Such specifications are often the examples of input/output pairs and program
traces, in both regular and generic form (B). For each of these kinds of specification, the
corresponding AP system must determine the general rules on the basis of a specification
that contains only a few examples (or in the generic specifications, a limited class of
examples) of the program behavior.

The work in program synthesis from specification by examples had its origin in research
dealing with grammatical

inference,

where the objective was to infer a grammar that
described a language, given several examples of strings of the language. The crucial issue
for programming synthesis is to develop a generalized program, that is, one that can account
for more than the examples given in the program specification. To do this, these programs
break down the input, looking for recursively solvable subparts (Shaw,

Swartout,

&

Green,

1975) or computation repetitions that can be fitted into a known program scheme (Hardy,
1975).

Basic Approaches 695c

The work in program synthesis from trace specifications seeks to invert the transformations
observed in a trace protocol to create abstractions that generalize into loops and variables
(Bauer, 1975). Biermann & Krishnaswamy (1974) has built a system that interprets traces
as directions through a developingflowchart.

All inductive Inference systems are dependent upon a good axiomatization of operations.
In other words, the system must know about all of the possible primitive operations that can
be applied to the data structures If it is to hope to construct, by composition of these
primitives, the desired program. Furthermore, a harmonious relation between the nature of
the constructs in the specification and the most basic constructs in the target language Is
essential; for example, in Siklossy & Sykes (1975), the tasks of tree traversal and
repetitive robot maneuvers are directly translatable into LISP recursion. Moreover, these
programs are required to know quite a bit about generalization. After synthesizing the

program they test it on other examples, sometimes by generating test cases and sometimes
by asking the user for approval. For certain classes of programs, examples and traces
provide a natural way for the user to specify what the desired program is to do.

Induction For Input/Output Pairs

The synthesis of programs from a specification consisting of examples of input/output

pairs is strongly related to the problem domain to which these programs belong (e.g., sorting,
concept formation). A set of program schemata characterize the entire class of programs for

the domain. These schemata are like program skeletons. A schema defines the general

structure of a program, omitting some details. The synthesis of the program, then, amounts to

(a) selecting a given schema that is representative of the program specified by the set of
example pairs, and then (b) using the information present in the examples to instantiate the
unfilled slots of the schema.

So,

there are two steps: a classification process, which selects

the general structure (schema) of the target program, and an instantiation process, which
completes the details of the target program.

What does the classification process require? Every schema defines a subclass of
programs in the problem domain. Every set of examplepairs defines a program in the domain.
Thus the classification process must associate these programs with one of the subclasses
of programs in the domain. In order to accomplish this task, a set of characteristics is
associated with each schema (subclass) that, if present In the set of example pairs,

guarantees that the set specifies a program of this type. Usually this task is accomplished

by (a) providing a set of difference measures to be applied to the inputs and outputs of an
example pair, as well as to different examplepairs in the input collection (if it consists of
more than one), and (b) providing a set of heuristics for each program schema that
determine a fit measure of the exampleset that accompanies it. The task of classifying the
exampleset is then simply reduced to choosing the schema with the highest fit value.

During the instantiation process, in addition to the difference fit measures described
above, every schema has an associated set of rules for filling its empty slots through
extracting necessary features from the examples. For instance, in the domain of list

manipulation functions, cases where the output list contains all elements in the Input and
cases where the output list contains only every other element, etc., suggest different
methods of constructing the output incrementally from the input. In the first case the
function maps down the input list; in the second case it maps down the input using the LISP

p

Automatic Programming696
i

I

i

f. ;

t

i

t'i

I

I'I.

i
t[
I ,
i -
'■-■

;

'.

P.
'i

I
i

CDDR function. Slots are instantiated by these rules in terms of primitive operators of the
domain and their functional compositions (in the above case, the basic LISP functions and
their compositions).

Once a schema has been selected and instantiated, the synthesis algorithm must
validate its hypothesis. This task is usually done either by generatingsome new examplesfor
the program, evaluating the synthesized program on the example set, and checking the
results with the user or presenting the program to the user and letting him/her verify its
correctness.

In summary, the basic algorithm is:

(1) Apply the difference measures to the exampleset.

(2) Based on this application, classify the set into a particular schema class.

(3) Using heuristics associated with the particular schema, hypothesize
complete instantiation of the selected schema.

(4) Validate this hypothesis.

In this basic algorithm, if there is a single l/O-pair in the specification, the difference
measures are just a set of feature-detecting heuristics. If there is more than one pair, the
pairs may be ordered according to the complexity of the input. Difference measures will fall
into two classes: those that associate the structure of a pair with a schema class, and
those that find differences between pairs. The latter are perhaps more crucial in the
inference of a program. From these

differences,

a theory for the operation of the program is
inductively inferred or, what is the same, a formation rule is derived. This operationaltheory
might take the form of a certain schema class or of a recurrence equation that, in turn,
specifies a schema class. In the classification phase it may be necessary to apply the
classification rule to all pairs In order to infer the corresponding schema correctly. When
several different schemes have been

inferred,

a decision rule is required to select the
correct one.

An alternative approach is to reduce the whole problem to another paradigm for
synthesizing programs. For example,if the problem domain has been

formalized,

so that there
is a set of operators for the domain, it is possible to use a traditional problem solver to
generate a solution to the Input/output pair (considered as initial-state, goal-state). The
solution so obtained can be considered a trace of the program to be synthesized and a
trace-based paradigm may be employed.

Specification by examples is suitable for synthesizing a program only in those cases
where the task domain is small and easily axiomatizable. It may also be a feasible approach
in the case where the domain is repetitious enough that a small set of pairs is sufficient to
specify the program.

Specification by example is quite limited and does not lend itself to useful
generalization to large domains. Nevertheless, the power of examples for clarifying concepts
is unquestionable. It seems that the main application that this specification formalism will
have In future automatic programming systems is restricted to the annotation and clarification
of more formal program descriptions.

Basic Approaches 697c

Induction From Traces

The primary approach is first to enumerate, In order of increasing size, all possible
programs constructed from domain operators, tests, and their functional compositions; then
after each new program is generated, to validate the given traces against the. program. If
the program generated produces the traces, then it is the required solution. Note that a
measure of program size is needed for the enumeration (e.g., number of instructions in
program) This paradigm is clearly not generally practical and is suited only to the inference
of small programs in very simple domains. It has been applied with moderate success to the

inference of programs from memory traces. These traces usually consist of register
assignments, tests, and memory modification instructions and, as such, are not very complex.

Programs as'complex as Hoare's FIND algorithm have been synthesized in this manner (Petry
& Biermann, 1976). There are certain other special inference paradigms for some trace
classes.

Problem-solver generated traces If the domain is fully axiomatized, as may be the
case for simple domains like those for robots, it may be possible to synthesize programs from

example pairs using a problem solver that produces a solution to the input pair In the form of
a trace.

(1) Synthesize trace from example pair via problem solver

(2) Using the trace, a set of program schemes for the domain, and a set of

schema selection and instantiation heuristics that operate on trace steps,

produce a program in terms of domain operators and domain predicates that
realizes the examplepair.

Ail these paradigms work only for complete traces and protocols. The problem of
program inference from incomplete specifications is still under investigation, it is possible

that the techniques outlined may be extended to cover the incomplete case by coupling the
proaram synthesizer to a domain-based theory formation module that could, so to speak, "fill

in" the missing elements from the originalspecification. At this point, then, the methodology

discussed above could be used.

Traces have the limitations inherent to informal program specifications, namely, the
difficulty of specifying the required program uniquely with respect to the limited amount of
information conveyed to the synthesizer. Thus, the problem of choosing a good description is

left as a burden, to the user. This problem might be alleviated by the use of greater domain
expertise—toproduce the program that more nearly resembles the user's desired result.

Traces, and informal specification methods, will be a useful for algorithm description and

correction infuture automatic programming systems. Clearly, the reason for this is that these

methods closely reflect the form In which we humans understand and describe programs.

Current applications include the synthesis of calculator-like programs from memory-register

traces (Biermann «. Krishnaswamy, 1974).

3.,

Automatic Programming
!

I

4

s

'I

ill.

■\ '

i

References

For theorem proving, see Green, 1969, Waldinger & Levitt, 1974,Kowalski, 1974. Clark
& Sickel, 1977; for program transformation, (Darlington & Burstall, 1973), (Wegbreit,
1975a),D8, D 5and A; for knowledge engineering, (Martin, 1974), (Lenat, 1975),

(Biggerstaff, 1976), (Sussman, 1975), (Green, 1977),D5, 08, 02, 03, OB; for automatic data
selection,(iref Low78); for traditional problem solving, (Simon, 1972), Sussman, 1975; For
induction from input/output pairs Amaret (1972), Green (1975a), Hardy (1975),

Shaw,

Swartout,

& Green (1975), Slklossy 8. Sykes (1975), and Summers (1977); and for induction

from traces, Bauer (1975), Biermann (1972a), Biermann (1976a), Petry & Biermann (1976),
and Siklossy & Sykes (1975).

/

PSI 699D

D. PSI

The goal of the PSI system being developed by Cordell Green and his colleagues at
Systems

Control,

Inc., and at Stanford is the integrationof the more specialized methods of
automatic programming into a total system. This system then would incorporate specification
by examples, by traces, or by interactive natural language dialogue; knowledge engineering;
model acquisition; program synthesis; and efficiency analysis. Research objectives include
the organization of such a system, the determination of the amount and type of knowledge
such a system would require, and the representation of this knowledge.

The program is specified by means of an interactive, mixed-initiative dialogue, which
may include as a subpart the specification by example of a trace. Plans are also underway

to add specification by means of a loose, very high-level language. The different
specification methods can usually be intermixed.

When the specification is interactive natural language dialogue, the user furnishes both
description of what the desired program Is to do and an indication of the overall control

structure of the program.

The problem area of PSI is symbolic computation, including list processing, searching
and sorting, data storage and retrieval, and concept formation.

The overall operation of the system, illustrated in Figure 1, may be divided into two
phases: acquisition of a description of the program, and synthesis of the program. During the
acquisition phase, several modules of the system—including the parser/Interpreter,
example/trace, explainer, and moderator—will jointly Interact with the user to obtain and

construct a net, called the program net, that describes the desired program. Then the
program model-builder module converts the net into a complete and consistent description of
the program. Afterwards, during the synthesis phase, the coding and efficiency modules,

interacting with each other, convert the program model, through the use of repeated

transformations,

into an efficient program written in the target language.

i
!

i

|

ii

I

A

There were three reasons for separating the operation into acquisition and synthesis
phases. First, the problems of designing such a system are more tractable because of the
separation. Second, It was envisioned that code generators for different target languages
and domain experts for different problem areas could be implemented to result in a versatile
modular system. Third, acquisition requires interaction with the user, whereas, in PSI,
synthesis does not.

PSID 701

In the overall operation, two of the primary interfaces within the PSI system are the
program net and the program model. Both are very high-level program and data structure
description languages. The program net forms a looser description of the program than does
the program model. Fragments of the program net can be accessed in the order of
occurrence in the dialogue,rather than in execution order, which allows a less detailed, local,
and partial specification of the program. Since these fragments correspond rather closely to
what the user says, they ease the burden of the parser/interpreter as well as the
example/trace inference module. As opposed to the program net, the program model includes
complete, consistent, and Interpretable very high-level algorithmic and information structures.
Further description of the program model occurs In the section below on the program model
builder.

The remainder of this article briefly describes the PSI modules, presents the status of
PSI, and then describes several examples (Figures 2 through 5) from the acquisition phase.
The latter includes a specification by interactive natural language dialogue, the resulting
program net and model, and a specification by trace.

Experts

PSI is a knowledge-based system organized as a set of closely interacting modules,
also called experts. These experts include:

parser/interpreter expert, explainerexpert,

dialogue-moderator expert,

applications domain expert, example/trace inference expert,

program model-buildingexpert, coding expert, and the

algorithm analysis and efficiency experts.

Parser/Interpreter

In the acquisition phase, the parser/interpreter expert (Ginsparg, 1978) first parses
sentences and then interprets these parses into less linguistic and more program-oriented
terms, which are then stored in the program net. This expert efficiently handles a very large
English grammar and has knowledge about data structures (e.g., sets, records), control
structures (e.g., loops, conditionals, procedures), and more complicated algorithm ideas (e.g.,
interchanges between the user and the desired program, set construction, quantification).
The parser/interpreter can sometimes assign a concept to an unknown word on the basis of
the context in which the word appears.

Dialogue Moderator Expert

This expert (Steinberg, 1976) models the user, the dialogue, and the state of the
system and selects appropriate questions and statements to present to the user. It also

702 Automatic Programming

I

|

i
i

I.i

r
I

"
I,

)

m

i
ii ;

j

A

determines whether the user or the expert has the initiative, and at what level on what
subject, and attempts to keep PSI and the user in agreement on the current topic. It
provides review and preview when the topic changes. This expert decides which of the
many questions being asked by the other experts should be passed on to the user. Since
experts phrase questions in an internal form based on relations, the dialogue-moderator
expert gives questions to the explainerexpert which, in turn, converts them into English and
gives them to the user.

ExplainerExpert

The explainer expert, developed by Richard Gabriel, phrases questions in terms that
the user finds meaningful (i.e., in terms related to the problem domain and the previous
sentences in the dialogue), rather than using the more programming-oriented terms used in
the program net or by the model builder. For example,rather than asking for the definition of
"A0018," PSI asks what does it mean for "a scene to fit a concept." The explainer also
generates English descriptionsof the net.

Example/Trace Expert

PSI also allows specification by traces and examples, since these are useful for
inferring data structures and simple spatial transformations. This expert Phillips (1977)
handles simple loop and data structure inference and uses several of the techniques
discussed in in the last three articles. The final section of this article illustrates how the PSI
user can specify part of a program using traces,

Domain Expert

The domain expert, developedby Jorge Phillips, uses knowledge of the application area
to help the parser/interpreter and example/trace experts fill in missing Information in the
program net.

Model Builder

The program model-building expert McCune (1977) applies knowledge of what
constitutes a correct program to the conversion of the program net into a complete and
consistent program model, which then will be transformed during the synthesis phase into the
target language implementation. The model-building expert completes the model by filling in
the various pieces of requred information and by analyzing the model for consistency; it
checks to see that its parts are legal both with respect to each other and with respect to
the semantics of the program-modeling language. Information is filled in either by

default,

by
inference mechanisms (which are in the form of rules and which make use of consistency
requirements), or by queries to other experts, which may eventually result in a query to the
user. As an example, suppose that the program net contains "x part of y" and that the model
builder needs to fill in whether "part of" Is to mean set membership, subset inclusion,
component of y, the image of x under some correspondencerelation with y, or whether there
might be an unspecified intervening subpart. Such information may be deducible from the
structures of x and y, if these structures are known or when they become known.

D PSI 703

The model builder also corrects minor inconsistencies, adds cross-references, and
generalizes parts of the program description so that the synthesis phase has more freedom
in looking for a good implementation. Thus, if the program net specifies that a certain object
is to be a set of ordered pairs, the program model may, if appropriate, indicate that the
object is to be a correspondence (i.e., a functional mapping).

Coding and Efficiency Experts

These two experts are responsible for the synthesis phase. The coding expert's
knowledge base contains rules that transform parts of a program description to forms closer
to the target language. It is the goal of the efficiency expert to guide the choice of the
different rules so that an efficient target language implementationeventually results. These
two. experts, also known as the systems LIBRA and PECOS, are discussed more explicitly in
articles devoted to their description. See the articles D905.

Status

The entire PSI system can now be used by a knowledgeable user. PSI has
successfully produced LISP code that Implements the specifications given in English
dialogues for four variants of CLASS, a simple pattern classification program. In addition,
other tasks are handled by individual experts in a stand-alone mode; see, for example, 05
D9.

The next section concludes this article by describing examples of PSI at work.

Examples

Figure 2 illustrates an Interactive natural language dialogue held with the PSI system in
which the user specifies a simple program, to be called CLASS. CLASS includes many
programming constructs necessary for more complex programs.

What is the name of the program you want to write?
** CLASS.

Does CLASS have a special program type?

** Classification.

Please describe CLASS.
** CLASS first inputs a concept. Then it repeatedly accepts an input
"""scene from the user, classifies it based on whether or not it fits the
"concept, and outputs this classification to the user.

What is the structure of the concept?
A concept is a collection of relations. Each relation is just a string.

What Is the exit test of the loop?

** Stop when the user types "QUIT" Instead of a scene.

704 Automatic Programming

I

i

1
j

"■i

is;

;l

1.
■ t

X

f

!

i

A.

What is the structure of the scene?
** The same as the concept.

Please define what it means for a scene to fit a concept.
A scene fits a concept if all the relations in the concept are in the scene.

What is the format of the classification output?
** Output "FIT" if the scene fit, "DIDN'T FIT" if it didn't.

Are we finished?
** Yes.

Figure 2. Specification by interactive natural language dialogue: CLASS

The user intends that the CLASS program Input a sample set of items (e.g., a list of job
qualifications) and then repeatedly input a trial set (e.g., the qualifications of an applicant),
each time testing whether the sample set (required qualifications) is a subset of the trial set
(applicant qualifications) and printing "FIT" or "DIDN'T FIT," accordingly. The user further
intends that a person will be able to terminate CLASS simply by typing the word "QUIT,"
instead of a trial set.

Based upon its understanding of the dialogue, the parser/interpreter expert produces
the program net, which is summarized in Figure 3 (the algorithmic part of the net is shown in
an ALGOL-like notation). Then the program-model building expert creates the very high-level
complete and consistent model of Figure 4. After repeated application of transformation
rules during the synthesis phase, the coding and efficiency experts will convert this model
into an efficient target language implementation.

A2is either a set whose generic element is a string or a string whose
value \s "QUIT":

A 1is a set whose generic element is a string.
A4is the generic element of Al.
A3 is either TRUE or FALSE.

B1 is a variable bound to A2.
B2 is a variable bound to Al.
B3 is a variable bound to A4.

CLASS
PRINTC'Ready for the CONCEPT")
A 1- READO

LOOP1:
PRINTC'Ready for the SCENE")
A2- READO
IF EQUAL(A2,"QUIT") THEN GO_TO EXITI
A3 - FIT(A2,AI)
CASES: IF A3 THEN PRINT("FIT")

ELSE IF NOT(A3) THEN PRINTC'DIDN'T FIT")
GO TO LOOPI

EXITI:

0 PSI 705

FIT(B1,B2)
FOR ALL B3 IMPLIES(MEMBER(B3,B2),MEMBER(B3,BI))

Figure 3. Summary of the program net.

706 Automatic Programming
I'".

i

\

I

1 ■ !

i
A

program CLASS;
type

a0032 : set of string ,

aOOU , aool4 , a0035 , a0036 : a0032 ,
a0055 , mOOBO : a0053 ,
m0095 : string = "DIDN'T FIT" ,
m0092 : string = "FIT" ,
mOO9l : Boolean ,
mOOS! : string = "QUIT"

;

procedure a0067(a0036 , a0035 : a0032) : Boolean

;

a0035 X a0036

;

procedure a0065(a0055 : a0053) : Boolean ;
a0055 - "QUIT"

;

begin
aOOll - input(aoo32 , user , "READY FOR CONCEPT" ,
"Illegal input. Input again: ")

;

until AOO5l
repeat

Input again: ") ;
if a0065(m0080) then-assert.exit_condition(AOosl)

;

aOOl4 - mOOBO

;

moo9l - a0067(a0014 , aOOll)

;

finally
A005 1:
endloop

end

;

Figure 4. The program model.

. Traces are another method of specification allowed by the PSI system. Figure 5 shows
the use of a trace to specify part of the behavior of a program called TF ("Theory
Formation"). A simplified version of Pat Winston's concept formation program,(Winston, 1975),
TF builds and updates an internal model of a concept. A concept is a collection of "may" and
"must" conditions. TF builds and updates the model by repeatedly reading in a scene,
guessing whether the scene is an instance of the concept, verifying with the person using
TF whether the guess was correct or incorrect, and updating the model of the concept
accordingly. The trace In Figure 5 shows the specification for only a part of the behavior of
TF, the part that describes how TF is to update the model, given that a scene does or does
not fit a concept. The other parts of TF can be specified by trace or by Interactive natural
language dialogue.

Concept: []
Scene: [(block a)(block b)(on a b)]

a0053 : alternative of [<string = >"QUIT" , aoo32]\
vars

begin
mOOSO - input(aoos3 , user , "READY" , "Illegal Input.

& mOO9l : in/orm_uj.r("piDN*T FIT")

;

■mOO9l : inform_user(nFW)

;

.
endcase

end

PSID 707

Figure 5. A specificationby trace.
From this specification the example/trace inference expert generates the following
information about the desired program: If the scene fits the concept, then add all relations in
the scene but not present In the concept to the concept and mark them with "may."
Otherwise, if the scene doesn't fit the concept, then change the marking of ail relations
marked "may" in the concept and not appearing in the scene from "may" to "must." .

References

See Barstow (1977a), Barstow (1977b), Barstow (1977c), Barstow & Kant (1977),
Glnsparg (1978), Green (1975a), Green (1975b), Green (1976a), Green (1976b), Green
(1976c), Green (1977), Green (1978), Green & Barstow (1975), Green & Barstow (1977a),
Green & Barstow (1977b), Green & Barstow (1978), Kant (1977), Kant (1978), McCune
(1977), Phillips (1977), and

Shaw,

Swartout, & Green (1975).

708 Automatic Programming

I

/

%

r\

\

1

I

"

E. SAFE

The 'SAFE system, developed at USC Information Sciences Institute by Robert Balzer,
Neil Goldman, David Wile, and Chuck Williams (with the recent addition of Lee Erman and Phil
London), accepts a program specification consisting of pre-parsed English, with limited
syntax and vocabulary, including terms from the problem domain. The phrases and sentences
of this specification, however, may be ambiguous and may fail to explicitly provide all the
information required in a formal program specification. Therefore, using a large number of
built-in constraints (that must be satisfied by any well-formed program), any specified
constraints on the problem domain, and an occasional interaction with the user, SAFE resolves
ambiguities, fills In missing pieces of Information, and produces a high-level, complete program
specification. To decide on missing pieces of information, SAFE uses a variety of techniques,
including backtracking (see article Al Languages) and a form of symbolic execution.

The SAFE system views the task of Automatic Programming as the production of a
program from a description of the desired behavior of that program. There are four major
differences between a conventionallyspecified program and a program described in terms of
its desired behavior.

Informality: The behavioral description is informal. It contains ambiguity
(alternative interpretations yielding distinct behaviors) and "partial"
constructs (constructs missing pieces of information that must be supplied
before any interpretation is possible). A conventionally specified program, on
the other hand, is formal; its meaning is completely and unambiguously defined
by the semantics of the programming language.

Vocabulary: The primitive terms used in the behavioral description are those of
the problem domain. General-purpose programming languages, on the other
hand, provide a primitive vocabulary that is significantly more independentof
particular problem areas.

Executability: Informality aside, it is possible, and sometimes desirable, to
describe behavior in terms of relationships between desired and achieved
states of a process , rather than by rules that specify how to obtain the
desired state. Conventionally specified-programs must specify an algorithm
for reaching the desired state.

Efficiency: Conventionally specified programs contain many details of operation
beyond the desired input/output behavior. Among these are data
representation, Internal communication protocols, store-recompute decisions,
etc., that affect a program's efficiency (utilization of computer resources and
time). In general, these details should not appear in the description of
input/output behavior.

When one writes a program in the conventional manner, one must formalize the
behavioral specification, translate the terms of the problem domain into those of a general
programming language, guarantee that the specified algorithms actually achieve the desired
results, and make a myriad of decisions for the sake of an efficient implementation.

E SAFE 709

The ISI group has attempted to split the task of creating a program into two separate
parts by designing a

formal,

complete specification language Balzer & Goldman, 1979 that
allows behavioral specifications to be stated in terms specific to the problem domain while
avoiding efficiency and representational concerns. This formal specification language acts as
an interface between two projects that deal respectively with the finst issue, translation
from informal to formal specifications, and the last issue, optimization of a formal
specification. The former project is the subject of this article, while the latter is described
elsewhere Balzer,

Goldman,

& Wile (1976). The other issues, domain-specific vocabulary and
executability,are addressed within the formal specification language.

The SAFE project has concentrated on only the first of the above specification Issues:
automatically producing a formal description from an informal description. It is not, therefore,
a complete automatic programming system. The user of the SAFE system provides a
behavioral description in a pre-parsed, limited subset of English, including terms from the
problem area. SAFE then seeks to determine a way of resolving all ambiguities and of filling in
all missing information in a way that satisfies SAFE'S knowledge of the constraints that ail
programs must satisfy. The result is a complete, unambiguous, very high-level program
specification in a languagecalled AP2.

Partial Descriptions

After studying many examples of program specifications written in English, the SAFE
research group concluded that the main semantic difference between these specifications
and their formal equivalent is that partial descriptions rather than complete descriptions
were used. When such partial descriptions were used, it was because the missing
information could be determined from the surrounding context. These partial descriptions
possess some of the useful properties of natural language specifications that are lacking in
formal languages. They focus both the writer's and reader's attention on the relevant issues
and condense the specification. Furthermore, the extensive use of context almost totally
eliminates bookkeeping operations from the natural language specification.

A partial description may have zero or one or more valid interpretations in a given
context. If a single valid interpretation is found for a description, it is unambiguous in that
context. Multiple valid interpretations indicate that there is not sufficient information from
the context to complete the description and that interaction with the user is required to
resolve the ambiguity. If a partial description possesses no valid interpretation, it is
inconsistent within the existing context.

The SAFE system incorporates the most prevalentforms of partial descriptions found in
natural language specifications:

Partial sequencing: Operations are not always described in the order of
execution. While sequencing may sometimes be described explicitly, it is
frequently implicit in the relationships between operations. Example: "Output
generated while compiling is sent to a scratch file. This file must be opened in
write only mode, (file should be opened before compiling commences)."

Missing operands: The operands of operations are frequently omitted because
they are recoverable from context. Recovering them may involve considering

I;

710 Automatic Programming

4

\

I
i
I

i, !■

p

I
i 5

ft
\
\

.4.

the operation's definition, other operands, and the procedural context.
Example: "Do not mount a tape for a job unless the tape drive has been
assigned (to that job)."

Incomplete reference: A description of an object(s) may match several objects
whereas it was intended to refer to only one or possibly a subset of these
objects. A complete description may be recovered by methods similar to that
for missing operands. Example: "When the mail program starts, it opens the
file named MESSAGE (In the directoryof the job running the program)."

Type coercions: Often, people using natural language do not precisely specify
the object intended, but instead specify an associated object or a subpart of
an object. This situation can be recognized by a mismatch between the type
of object actually specified and the type of object expected. Example:
"Information messages are copied to each logged-in user (to the terminal of
the jobof each logged-in user)."

Operationof SAFE

The goal of SAFE Is to complete the various partial descriptions in the user's
specification of the desired program so as to produce a formal specification of the whole
program. SAFE goes through several phases, but in all phases the system uses a variety of
constraints to achieve the goal of completing the partial descriptions. These include built-in
criteria that any formal program must meet (e.g., information must be produced before it is
consumed), built-in heuristics that "sensible" programs will meet (e.g., the value of
conditional must depend on the program data), as well as any known or discovered
constraints particular to a program's domain (e.g., each file In a directory has a distinct
name). In

fact,

since programs are highly constrained objects, there are a large number of
constraints that' any "well-formed" program must satisfy, and this is one reason programs are
hard to write.

In general, each partial description has several different possible completions. Based
on the partial description and the context in which it occurs, an ordered set of possible
completions is created for it. But one decision cannot be made in isolation from the others;
decisions must be consistent with one another and the resulting program must make sense as
a whole, satisfying all the criteria of well-formed programs.

The problem of finding viable completions for a collection of partial descriptions
provides a classical backtracking situation, since there are many interrelated individual
decisions that, in combination, can be either accepted or rejected on the basis of the
constraints. SAFE utilizes the constraints so that earlyrejection possibilities can be realized.

The operation of SAFE consists of three sequential phases: the linguistics, planning,
and meta-evaluatlon phases. The cumulative effect of these phases is to produce a formal
specification that is composed of declarative and procedural portions. The declarative part,
or domain model, specifies the types of objects manipulated by the process, the various
ways they may relate to one another, the actions that may be performed on various object
types, and other global regularities of the problem domain. The procedural portion specifies
the controlled applicationof actions to objects.

E SAFE 711

The linguistic phase, using production rules, transforms the parse trees of the English
specification into fragments that retain the semantic content while discarding the syntactic
detail. The production rules capture many context-sensitive aspects of natural language
such as various uses of the verb "be" and of quantifiers. The production rules may also add
declarations to the domain model, with user approval, when this is required for interpretation
of the input. This procedure is accomplished by distinguishing two sets of conditions on each
rule: those relating to the linguistic form of the phrase being processed, and those relating a
form to the domain model. If the linguistic form conditions are not satisfied (e.g., a clause
using a transitive verb) but the domain model conditions are (e.g., the verb names an action
in the problem domain that has operands of types compatible with the verb arguments), then
the domain model conditions are assumed.

The planning phase determines the overall sequencing of the operations in the program.
It also determines which fragments belong together and how they are to interact. It does
this by using explicit sequencing information in the description, such as "A is executed
immediately after B," "A Is invoked whenever the condition C becomes true," as well as
static flow constraints on well-formed processes such as:

Before information is consumed (used by one fragment), it must be produced
(created by the same or another fragment).

Expected outputs of the whole program or of a subprogram must be produced
somewhere within that program.

The results of each described operationmust be used or referenced somewhere.

The final phase, meta-evaluation, uses dynamic constraints to help determine the
proper completion of partial descriptions. Dynamic constraints are those that apply, or at
least relate to, the program during execution. Examples of such constraints are:

It must be possible (in general) to execute both branches of a conditional
statement (otherwise why would the user have specified a conditional).

The constraints of a domain must not be violated.

Since no actual input data is available for testing the execution of the program and
since the program must be well-formed for all allowable inputs, inputs are represented
symbolically. Instead of actual execution, the program is symbolicallyexecuted on the inputs,
which provides a much stronger test of the constraints than would execution on any
particular set of inputs. The result is a database of relationships between the symbolic
values and, implicitly, a database of relationships between program variables that are bound
to these values.

All decisions concerning the proper interpretationof partial descriptions that affect the
computation to some point in the execution (but not beyond) must be made before these
dynamic criteria can be tested at that point in the execution. Thus, decisions are made as
they are needed by the computation of the program, and the symbolic state of the program is
examined at each stage of the computation. This arrangement allows the dynamic state-of-
computation criteria to be used to obtain early rejection of infeasible alternatives.

I
712 Automatic Programming

I

i

i

\

! N

i

There is an additional point worth noting. Representing the complete state of a
computation during symbolic execution is very difficult (e.g., it is quite hard to determine the
state after execution of a loop or conditional statement) and more detailed than necessary
for testing the constraints.

Therefore,

the SAFE system uses a weaker form of symbolic
interpretationcalled Meta-Evaluation, which only partially determines the program's state as
the computation proceeds (e.g., loops are executed only once for some "generic" element).

Notice that symbolic execution requires that the sequential relationships between the
fragments be known; therefore the meta-evaluation phase must follow the planning phase.

, Finally, the global referencing constraints (such as "The body of a procedure must
make use of the procedure's parameters") test the overall use of names within the program
and, thus, cannot be tested until ail decisions have been made. These criteria can be tested
only after the Meta-Evaluation is complete.

Status

The prototype system has successfully handled the 75-200 word specifications of
three quite distinct programs. In these cases the SAFE output of a completed specification,
including domain structure

definition,

requires approximately two pages. One example

concerned part of a system for scheduling transmissions in a communications network. Given
a table (SOL) containing entries for various network subscribers and for various unassigned
time slots (RATS), a schedule of absolute times when a particular subscriber could broadcast
on the network was tabulated. The input specification to SAFE is:

((THE SOL)
(IS SEARCHED)
FOR
(AN ENTRY FOR (THE SUBSCRIBER)))

(IF ((ONE)
(IS FOUND))

((THE SUBSCRIBER'S (RELATIVE TRANSMISSION TIME))
(IS COMPUTED) ACCORDING TO ("FORMULA-1")))

((THE SUBSCRIBER'S (CLOCK TRANSMISSION TIME))
(IS COMPUTED) ACCORDING-TO ("FORMULA-2")))

WHEN ((THE TRANSMISSION TIME))
(HAS BEEN COMPUTED))
((IT)
(IS INSERTED)
AS (THE (PRIMARY ENTRY))
IN (A (TRANSMISSION SCHEDULE))))

FOR (EACH RATS ENTRY)
(PERFORM)
(: ((THE RATS'S (RELATIVE TRANSMISSION TIME))

(IS COMPUTED) ACCORDING TO ("FORMULA-1"))

E SAFE 713

((THE RATS'S (CLOCK TRANSMISSION TIME))
(IS COMPUTED) ACCORDING TO ("FORMULA-2"))))

((THE RATS (TRANSMISSION TIMES))
(ARE ENTERED)
INTO (THE SCHEDULE))

Figure 1. Actual input for link scheduling example.

In formalizing this description, SAFE
characteristics of informal specifications:

encountered and resolved the following

number of missing operands
number of incomplete references
number of implicit type coercions
number of implicit sequencing decisions 4

Robustness of the system has been increased by processing a number of
perturbations of each of the major examples. These have involved specifying the same
process but varying the syntax and vocabulary used, the partial descriptions used, and the
formal knowledge provided about the problem domain.

Future Developments

The key technical restrictions of the prototype system appear to be (a) the sequential
application of the three phases, which prohibits adequate interactions between the
expertise embodied in each, and (b) the backtracking within the meta-evaluation phase,
which corresponds to restarting the symbolic execution from an earlier point, which can lead
to much unnecessary search. To correct these limitations, a reformulation of the system
architecture within a framework derived from the HEARSAY II speech understanding system
(see article Speech-C) is currently In progress. This framework consists of a number of
cooperatingexperts interacting via a "blackboard" database.

Simultaneously, the system is being scaled up to handle larger practical specifications
(approximately 20 pages). Later, the project will consider the formalization of incremental
informal specifications so that it can also provide help during both specification formulation
and maintenance activities.

References

See Balzer,

Goldman,

& Wile (1976), Balzer, Goldman, & Wile (1977a), Balzer, Goldman,
& Wile (1978), and Balzer & Goldman (1979).

= 7
= 12
= 3

I
I714 Automatic Programming

i

i
i

%

%

\

i

It ';

U
i

Il' ;

li

I

i !
i . *f-

'i

I

A

F. Programmer's Apprentice

The Programmer's Apprentice (PA) is an interactive system for assisting programmers
with the task of programming. It is being designed and implemented at MIT by Charles Rich,
Howard Shrobe, and Richard Waters. Currently, most, but not all, of the modules that
comprise the PA system are running. It should be kept in mind that the scenario described
here illustrates the projected operation of the system, not the present operation. The intent
of the PA is that the programmer will do the hard parts of design and implementation, while
the PA will act as a junior partner and critic, keeping track of details and assisting the
programmer in the documentation, verification, debugging, and modification of his program. In
order to cooperate with the programmer in this fashion, the PA must be able to "understand"
what is going on. From the point of view of Artificial Intelligence, the central development of
the Programmer's Apprentice project has been the design of a representation (called a
"plan") for programs and for knowledge about programming that serves as the basis for this

. "understanding." Developing and reasoning about plans is the central activity of the PA.

The "plan" for a program represents the program as a network of operations
interconnected by links explicitly representing data flow and control flow. The advantageof
this aspect of the plan formalism is that it abstracts away from the specific syntactic
constructs used by various programming languages in order to implement control flow and
data flow. The most novel aspect of the plan formalism is that it goes beyond this level in
order to create a vehicle for expressing the logical interrelationships in a program. First, a
plan is not just a graph of primitive operations. Rather, it is a hierarchy of segments within
segments, where each segment corresponds to a unit of behavior and has an input/output
specification that describes features of this behavior. The plan specifies how each
nonterminal segment Is constructed out of the segments contained within it. This
segmentation is important because it breaks the plan up into localities that can be
understood in isolation from each other. Second, the behavior of a segment is related to the
behavior of its subsegments. This interrelationship is represented by explicit dependency
links that record the goal-subgoai and prerequisite relationships between the input-output
specification for a segment and those for Its subsegments. Taken together, the links
summarize a proof of how these specifications for a segment follow from the specifications
of its subsegments and from the way the subsegments are interconnected by control flow
and data flow. A final aspect of the plan formalism Is that there may be more than one plan
for a given-segment of a program, with each plan representing a different point of view on
the segment. The data structures used by a program are represented by specifying their
parts, properties, and the relationships between them In a method similar to data
abstractions (Zilles, 1975; Liskov, 1977).

Knowledge about programming in general is also represented using plans and data
structure descriptions. This knowledge is stored in the PA in a database of common
algorithms and data structure implementations called the "plan library." The PA's
"understanding" of a program is embodied in a hierarchical plan for it. In general, the subplan
for each individual segment in terms of its subsegments will be an instance of some plan
stored in the plan library. This structure gives the PA access to ail of the information stored
in the plan library about the particular subplan as soon as it can make a guess as to what the
subplan is.

Programmer's ApprenticeF 715

A Scenario of Use of the Programmer's Apprentice

The following imagined conversation between a programmer and the PA is presented in
order to illustrate the intended operation of the system. (Comments discussing the scenario
are printed in italics.) The scenario illustrates the following four basic areas in which the PA
can assist a programmer:

(1) Documentation: One of the primary services the PA provides is automatic,
permanent, and in-depth documentation of the program. The PA remembers
not only explicit commentary supplied by the programmer with the code, but
also a substantial body of derived information describing the logical
structure underlying the program, such as the dependency relationships
between parts of the program.

(2) Verification: The development of a program is accompanied by the
construction of a sequence of plans at various levels of abstraction. At
each step, the PA attempts to verify that the current plan is both
consistent and sufficient to accomplish the desired goal. As more
information is specified, the PA's reasoning about these plans approaches a
complete verification of the program.

(3) Debugging: Any discrepancy betweeri .the PA's understanding of the
programmer's intent and the actual operation of the program is reported to
the programmer as a potential bug.

(4) Managing Modification: Perhaps the most useful aspect of the PA is that it
can help a programmer modify his program without introducing new bugs.
Based on its knowledge of the logical relationships between parts of
program, the PA is able to determine what parts of a program can be
affected by a proposed change, and how they can be affected. It can use
this information to warn the programmerof impending difficulties.

The scenario traces the design, coding, and subsequent modification of a program that
deletes an entry from a hash table. The scenario picks up in the middle of a session, at a
point where the programmer has already made many design choices and conveyed them to
the PA. In particular, he has stated the Input-output specifications for the subroutine
DELETE and chosen the basic data structures to be used. The hash table is Implemented as
an array of linked lists called "buckets." Each of the entries in a bucket is a dotted-pair
whose CAR is the key for the entry.

Programmer: The plan for the routine DELETE has three main steps: The
first one hashes the input key to get an index; the second one fetches the
bucket corresponding to that index from the table; and the third splices
out the entry in the bucket whose key part is equal to the input key.

The onlyfeature of this scenario that is not a current research goal of the Programmer's
Apprentice project is the use of natural English dialogue. Although the system should be
able to support a sophisticated natural language "front-end," no effort has been expended
in this direction to date. As a result, the programmer would actually type in something
like:

M

716 Automatic Programming
%

■ii

i-

J;

i. «

.fi

$■

■hr

X

\

A,

"(subsegments-of-DELETE stepl -step2-step3)
(specifications-for-stepl (inputs-key!) (outputs-index)

The PA uses the programmer's outline of the design in order to build a plan representing
the program's intended structure. References to basic programming techniques such as
"splicing out" (deleting elements from a linked list) trigger the retrieval of plans from the
plan library.

PA: I can't verify that this plan satisfies the specifications for
DELETE. In particular, when the input key Is equal to the key part of
the first entry in a bucket, I can't prove that the entry is no longer in
the table after DELETE is executed. Note that in this situation, the
bucket after splicing out entries has a different initial ceil from the
bucket before splicing out entries, and that therefore the table isn't
changed.

After constructing a plan, the PA uses its reasoning abilities in order to check for bugs.
Above, the PA finds one and reports it to the programmer. In general, it is the
responsibility of the programmer to supply corrections. Below, the programmer corrects the
plan by issuing semantically based editing commands to the PA.

Programmer: Modify the plan as follows. Add a final step that compares
the bucket after splicing with the bucket before splicing and stores the
new bucket in the table under the index if the two initial cells are not
Identical.

PA: OK, the plan now seems correct.

The programmer then types in the code for DELETE. In cases where the programmer
specifies the plan for a program as completely as he does here, he could ask the PA to
write the code. It is expected that the programmer will actually only write code in
situations where it is easier to write the code than tofully explain the plan.

Programmer: (DEFUN DELETE (KEY) ; hash table delete routine.
(PROG (BKTI BKT2)

(COND ((NOT (EQ BKTI BKT2))

;

check If first entry in bucket deleted.

The PA analyzes the code written by the programmer in order to construct a plan for it.
Comparing this plan with the plan directly described by the programmer, the PA discovers
an implementation bug: In the last line of code the user probably meant to store into the
hash table not thefirst bucket, BKTI, but the second bucket, BKT2.

PA: This code is not consistent with your plan. When the first entry is
deleted, the code stores the bucket before splicing, rather than the
bucket after splicing. Did you mean

(assert-(=-index-(hash-key1)))) ..."

(SETQ BKTI (TBL (HASH KEY)) BKT2 (BKT-DELETE KEY BKT1))

(STORE (TBL (HASH KEY)) BKT1)))))

Programmer's ApprenticeF 717

"(STORE-(TBL-(HASH-KEY))-BKT2)"?

Programmer: Yes, fix the code. Also, use the standard list deletion
algorithm to code BKT-DELETE so that it splices out of the bucket all
entries whose key equals the indicated value.

PA: (DEFUN BKT-DELETE (KEY BUCKET)

;

list deletion routine coded by the PA.
(PROG (CURRENT PREVIOUS)

(SETQ CURRENT BUCKET PREVIOUS NIL)
LP (COND ((NULL CURRENT) (RETURN BUCKET))

((EQUAL (CAAR CURRENT) KEY)

;

if keypart equal, splice out entry.
(COND (PREVIOUS (RPLACD PREVIOUS (CDR CURRENT)))

(T (SETQ BUCKET (CDR BUCKET))))) ;special if first element deleted.
(T (SETQ PREVIOUS CURRENT)))

(SETQ CURRENT (CDR CURRENT))
(GO LP)))

The PA is able to code a program like this itself, even though the programmer did not
specify a plan for it, because it is an implementation of a standard algorithm that
corresponds to a plan in the plan library. Code written by the PA can be freely mixed
with code written by the programmer and each can edit the other's work.

Some time later it is necessary to modify the representation of the buckets. The PA helps
the (perhaps new) programmer maintain consistency.

Programmer: I want to make a change in the representationof buckets in
the hashing programs. A bucket now has twoparts: a count field and a
list of entries as before. The count field will contain an integer equal
to the length of the list of entries. Let a bucket be a dotted-pair whose
CAR is the count and whose COR is the list of entries.

When the PA inspects the logical dependencies in the plans, it discovers that a type
requirement has been violated.

PA: The proposed change will affect DELETE as follows: After the
bucket is fetched, it is passed to BKT-DELETE which does the actual
deletion. However, BKT-DELETE requires a list of entries while in
this new implementation, a bucket is no longer just a list of entries.

Programmer: Explain the plan for BKT-DELETE please.

PA: BKT-DELETE Is implemented following the standard list deletion
plan. The inputs are a key and a list of entries. The plan is a search
loop using two pointers: a pointer to the current entry, which Is
Initialized to the input list, and a trailing pointer, which is initialized
to NIL. On each iteration the loop tests the key of the current
entry. If it is equal to the input key, the element is spliced out of the
list by RPLACDing the trailing pointer.

7

i718 Automatic Programming

I

j

, *

i

i

t' J.

!

j

it

» ;

L |
t >

U

A

Acting in its role as documentation, the PA describes the structure of BKT-DELETE by
reporting out the structure of its plan. The programmer then decides how to modify
BKT-DELETE.

Programmer: Change the specifications of BKT-DELETE so that it
expects as input a bucket of the new type, rather than a list of entries.
Also change the Initialization of the pointers to read:
"(SETQ-PREVIOUS-BUCKET- CURRENT-(COR-BUCKET))".

The PA reanalyzes the program in order to verify that this change fixes the problem
without causing any other problems to arise. This analysis reveals the presence ofinaccessible code which the PA reports to theprogrammer.

PA: OK this fixes the problem. However, now the special case tests in
BKT-DELETE and DELETE are not necessary since PREVIOUS is
never NIL and therefore elements are always deleted by side-effect.

and so the session continues with the PA looking over the programmer's shoulder.

Operationof the System

The design of the PA is based on four modules, a surface analyzer, a recognizer, an
interactive module, and a deductive module; and two data bases, the plan library and a
scratch pad called the "design notebook." Only the first three modules have been
implemented so far. As described above, the plan library contains the PA's knowledge of
programming in general. The design notebook contains the PA's evolving knowledge of the
particular programs being worked on and serves as the communication center for the system
as a whole. The modules communicate with one another solely by making assertions in the
design notebook. Each module has predefined trigger patterns which cause it to perform
specific tasks (such as making a deduction or querying the user) whenever appropriate
assertions appear in the notebook. Every assertion added to the notebook is also
accompaniedby a justificationof Its presence. These Justifications make it possible for the
PA to account for its actions.

The surface analyzer is used to construct simple surface plans for sections of code
written by the programmer. It is the only module whose implementation depends on the
particular programming language being used. To date, surface analyzers have been
implemented for both LISP and FORTRAN. The recognition module takes over where the
surface analyzer leaves off in order to construct a detailed plan for a piece of code. It first
breaks up the surface plan by identifying weakly Interacting subsegments that can be
further analyzed in isolation from each other. It then compares these subsegments with the
plans in the library in order to determine more detailed plans for the program.

The interactive module is the communication link between the PA and the programmer.
It converts the programmer's input (which can consist of code, direct specification of a plan,
or various requests) Into assertions in the design notebook and decides what to say to the
programmer based on the information currently in the notebook. The deductive module

Programmer's ApprenticeF 719

operates in the background in cooperation with all of the other modules. It performs the
deductions necessary to verify a proposed match between a program and a plan, to detect
bugs in a plan, and to determine the ramifications of a proposed modification to a program or
plan.

At a given moment, the design notebook holds the sum total of what the PA knows
about the program being worked on. This information triggers additional activity by the
modules. If the recognizer and deductive modules are strong enough and the program is
simple enough, this process will culminate in a complete understanding and verification of the
program. However, typically, this will not be the case, and some questions (such as the
exact plan for a segment or the correctness of a specification) will remain unresolved in the
notebook. The flexible architecture chosen for the PA makes it possible for the PA to exhibit
useful partial performance In this situation. It is able to ignore what it doesn't understand
and work constructively with what it does understand. The programmer can be called upon
to fill in the gaps.

Current Status of the Programmer's Apprentice

Rich and Shrobe (1976) laid out the basic idea of a plan and the initial design of the
PA. Since that time Rich,

Shrobe,

and Waters have been working togetheron further aspects
of the theory along with design and implementationof the PA.

Rich's work (forthcoming) centers on the plan library and the recognition process. He is
using the plan representation in order to codify a large body of common programming
strategies in the domain of non numerical programming. He is also designing a recognition
module that will be able to identify Instances of plans in the library as they occur in
combination in a programmer's program.

Shrobe (1978) has implemented a prototype deductive module that can reason about
programs represented by plans. An important aspect of its operation is that it maintains a
record of the dependency relationships embodied in its deductions. In doing this it builds up
some of the logical structure that is a vital part of a plan for a program. He is currently
designing an improved version of this deductive module.

Waters (1976, 1978) has implemented a system that can analyze the code for a
program and produce the basic structure of a plan for the entire program. The system
corresponds to the surface analysis module and the initial phase of the recognition process.
The basic Idea behind Waters' work is that plans for typical programs are built up in a small
number of stereotyped ways and that features in the code for a program can be used to
determine how the plan for the program should be built up.

The goal for the immediate future is to construct a prototype system that can exhibit
the kind of behavior shown in the scenario. To do this, an interactive module must be built,
and the other modules must be connected together into an integrated system. Looking
further ahead, additional modules (such as a simple program synthesis module, and one
dealing with efficiency issues) will be added to the PA, and the existing ones will be
strengthened so that the PA can assume an even larger part of the programming process.

i

1

(1979),

I

i

i

Automatic Programming

See Liskov et al. (1977), Rich & Shrobe (1976), Rich & Shrobe (1978), Rich
Shrobe (1978), Waters (1976), Waters (1978), Waters (1979), and Zilles (1975).

G PECOS 721

G. PECOS

Developed in 1976 by David Barstow (Barstow, 1976), the automatic programming
system PECOS serves as the coding expert of Standford's PSI project (see article 02 and
Barstow, 1979. Now the PSI project is also being developed at Systems Control Inc..
Though PECOS can act in conjunction with the PSI system, it can also stand on its own and
interact directly with the user. The original problem area of PECOS was symbolic
programming, which Includes simple list processing, sorting, database retrieval, and concept
formation. This domain has recently been extended to graph theory and simple number
theory. Programs are specified in terms of very high-level constructs including data
structures, like collections or mappings, and operations, like testing for membership in a
collection or computing the inverse image of an object under a mapping. Knowledge about
programming In the problem area has been codified (i.e., made explicit and put into machine
useable form) primarily in the form of transformation rules, and these have been entered into
PECOS's knowledge base. Most of the rules describe how constructs and operations can be
represented or implemented in terms of other constructs and operations that are closer to, or
actually in, the target languageLISP (actually a subset of INTERLISP Teitelman et al. (1978)
). These rules can Identify design decisions and can also serve as limited explanations.

The operation of the system proceeds by the repeated selection and applicationof the
transformation rules in the knowledge base to parts of the program. Also referred to as
gradual refinement, this transformation process reduces the high-level specification to an
implementation fully within the target language. Each application of a rule is said to produce

a partial implementation or refinement of the program, and the transformation rules are called
refinement rules.

Conflict Resolution

At some points during the transformation process, a conflict may arise because several
rules apply to the same part of the program. The handling of this situation is important: the
application of the several rules ultimately results in different target language
Implementations that often vary significantly in terms of efficiency. There are three ways to
handle this situation.

(1) If PECOS Is interacting directly with the user, the user may select which rule
should be applied (and thus which implementationwill be constructed).

(2) For the convenience of the user, PECOS can choose one of the applicable
rules, using about a dozen heuristics it has to pick the rule that leads to the
more efficient implementation. These heuristics handle about two-thirds of
the choices that typically arise.

(3) When no heuristic applies and the user is uncertain about which rule is
"best" for his or her purposes, PECOS can apply each in parallel,
constructing a separate implementationfor each rule applied.

When PECOS functions as the Coding Expert of the PSI program synthesis system

Green,

1976b,D2, choices between rules are made by an automated Efficiency Expert known
as LIBRA (see article 09, Kant (1977)), which incorporates more sophisticated analytic

I "

Automatic Programming722

I
j

!

*,

\

i
i
I

\1
I

,i

I

!■ *■
I '"i
I

l< '' .1
Ik.. i

techniques than the simple heuristics used by PECOS. The capability of developingdifferent
implementations in parallel is used extensively in the interactions between PECOS and LIBRA
Barstow & Kant, 1977.

PECOS's Knowledge Base

PECOS's knowledge base consists of about 400 rules dealing with a variety of symbolic
programming concepts. The most abstract concepts are those of the specification language
(e.g., collection, inverse Image, enumerating the objects in a collection, etc.). The
implementation techniques covered by the rules include the representation of collections as
linked lists, arrays (both ordered and unordered), and Boolean mappings, and the
representation of mappings as tables, sets of pairs, property list markings, and inverted
mappings (indexed by range element). As a natural by-product, these rules also cover
sorting within a transfer paradigm that includes simpler sorts such as insertion and selection.
While some of the rules are specific to LISP, about three-fourths of the rules are
independent of LISP or any other target language.

Internally, PECOS's rules are represented as condition-action pairs. The conditions are
particular configurations of abstract operations and data structures that are matched against
parts of the developing program. Where the match is

successful,

the actions replace parts

of the abstract concepts with refinements of those parts.

In the system of refinement rules, intermediate-level abstractions play a major role.
One benefit of such intermediate-level concepts is a certain economy of knowledge.

Consider,

for example, the construct of a sequential collection: a linearly ordered group of
locations in which the elements of a collection can be stored. Since there is no constraint on
how the linear ordering is implemented, the construct can be seen as an abstraction (or
generalization) of both linked lists and arrays. Much of what programmers know about linked
lists is in common to what they know about arrays, and hence can be represented as one
rule set about sequential collections, rather than as two, one about linked lists, and one
about arrays. Another benefit of these intermediate-level concepts is that the process of
choosing between alternative (valid) rules is facilitated: Attention can be focused on the
essential aspects of a choice while ignoring irrelevant details.

Rules about Programming Knowledge

Most currently available sources of programming knowledge (e.g., books and articles)
lack the precision required for effective use by a machine. The descriptions are often
informal, with details omitted and assumptions unstated. Before this programming knowledge
can be made available to machines, it must be made more precise; the assumptions must be
made explicit; and the details must be filled in.

PECOS's rules provide much of this precision for the domain of elementary symbolic
programming. For example, consider the following rule (an English paraphrase of PECOS's
internal representation):

A collection may be represented as a mapping of objects to Boolean values; the default
range object is FALSE.

G PECOS 723

j

Most programmers know this fact: that a collection may be represented by its
characteristic function. Without knowing this rule, or something similar, it is almost impossible to
understand why a bitstring can be used to represent a set (or, for that matter, why property
list markings work). Yet this rule is generally left unstated in discussions of bitstring
representations. As another example, consider the following rule:

An association table whose keys are integers from a fixed range may be represented as an
array subregion.

The fact that an array is simply a way to represent a mapping of integers to arbitrary
values Is well known and usually stated explicitly. The detail that the integers must be from
a fixed range is usually not stated. Note that if the integers are not from a fixed range, then
an array is the wrong representation and something like a hash table should be used.

PECOS's rules also identify particular design decisions involved in programming. For
example, one of the crucial decisions in building an enumerator of the objects in a sequential
collection Is selecting the order in which they should be enumerated. This decision is often
made only implicitly. For example, the use of the LISP function MAPC to enumerate the
objects in a list assumes implicitly that the stored (or "natural") order is the right order in
which to enumerate them. While this is often correct, there are times when some other order
is desired. For example, the selector of a selection sort involves enumerating the objects
according to a particular ordering relation. A second major decision in building an enumerator
involves selecting a way to save the state of the computation between calls to the
enumerator. The use of a location (e.g., index or list cell) to specify the current state is
based on knowing the following rule:

If the enumeration order is the same as the stored order, the state of an enumeration may
be represented as a location in the sequential collection.

Were the enumeration order different from the stored order (as in a selection sort),
then some other state-saving scheme would be needed, such as deleting the objects or
marking them in some fashion.

Another interesting aspect of PECOS's rules Is that they have a certain kind of
explanatorypower.

Consider,

for example, a well-known trick for computing the intersection
of two linked lists of atoms in linear time: Map down the first list and put a special mark on
the property list of each atom; then map down the second list collecting only those atoms
whose property lists contain the special mark. This technique can be understood on the
basis of the following four of PECOS's rules (in addition to the rules about representing
collections as linked lists):

A collection may be represented as a mapping of objects to Boolean values; the default
range object is FALSE.

A mapping whose domain consists of atoms may be represented using property list
markings.

The intersection of two collections may be implemented by enumerating the objects in one,
and while enumerating them, collecting those that are members of the other.

724 Automatic Programming

!
!

s\ ■;

\
i

i
f

I' I ,
i*J
\y
i

"

j
i.
t

il

i

i

: i»

■

'-s

1. 'l
\

i'

I -

// a collection is input, its representation may be converted into any other representation
before further processing.

Given these rules, the trick works by first converting the representation of one
collection from a linked list to property list markings with Boolean values, and then computing
the intersection In the standard way, except that a membership test for property list
markings involves a call to GETPROP rather than a scan down a linked list.

Status

PECOS is able to implement abstract algorithms (i.e., a very high-level speicification) in
a variety of domains, including elementary symbolic programming (simple classification and
concept formation algorithms), sorting (several versions of selection and insertion sort),
graph theory (a reachability algorithm), and even simple number theory (a prime number
algorithm). In each case, PECOS's knowledge about different implementation techniques
enabled the construction of a variety of alternative implementatons, often with significantly
different efficiency characteristics.

PECOS's success demonstrates the viability of the knowledge-based approach to
automatic programming. In order to develop this approach further, two research directions
seem particularly useful.

First, programming knowledge for other domains must be codified. In the process, rules
developed for one domain may be found to be useful in other domains. With the hope of
verifying the wider utility of PECOS's rules about collections and mappings, Yale's
Knowledge-based Automatic Programming Project Barstow, 1978 is currently codifying the
programming knowledge needed for elementarygraph algorithms.

As an example, consider the common technique of representing a graph as an
adjacency matrix. In order to construct such a representation, only one rule about graphs
need be known:

A graph may be represented as a pair of sets: a set of vertices (whose elements are
primitive objects) and a set of edges (whose elements are pairs of vertices).

The rest of the necessary knowledge is concerned with sets and mappings and is
independentof its application to graphs. For example, in order to derive the bounds on the
matrix, one need only know that primitive objects may be represented as integers, that a set
of otherwise unconstrained Integers may be represented as a sequence of consecutive
integers, and that a sequence of consecutive integers may be represented as lower and
upper bounds. To derive the representationof the matrix Itself, one need only know PECOS's
rules about Boolean mappings and association tables, plus the fact that a table whose keys
are pairs of integers in fixed ranges may be represented as a two-dimensional matrix.

Second, different types of programming knowledge need to be codified. Two types
seem particularly important: efficiency knowledge and strategic knowledge. LIBRA (article
D9), which acts together with PECOS in PSl's synthesis phase, embodies a large amount of
efficiency knowledge; but much remains to be done. Very little work on the use of general
strategies (e.g., divide and conquer) in program synthesis has been done. The latter seems

PECOSG 725

.(

an especially important direction, since such strategies seem to play a major role in human
programming.

References

See Barstow & Kant (1977), Barstow (1978), Barstow (1979), Green (1976b), Kant
(1977), and Teitelman et al. (1978).

Automatic Programming726

\

H. DEDALUS

DEDALUS, the DEDuctive ALgorithm Ur-Synthesizer, accepts an unambiguous, logically
complete, very high-level specification of a desired program and through repeated
application of transformation rules seeks to reduce it to an implementation within a simple
LISP-like target language. This target language implementation is guaranteed to be correct
(i.e., logically equivalent to the high-level specification) and to terminate. The knowledge
that ultimately relates the constructs of the specification language to those in the target
language is expressed in the transformation rules. But of special importance are certain
rules that express general programming principles that are independent of the particular
specification language and target language. These rules, which have constituted a major
component of the DEDALUS effort, form conditional statements and recursive and
nonrecursive procedures; they also generalize procedures, construct well-founded orderings
to guarantee the termination of recursive calls, and write code that simultaneously achieves
two or more goals. These general programming principles are described in detail in a
subsequent section, with examples illustrating their application. As pointed out in the
STATUS section, some of the principles are fairly well understood, while others require

further study. Not all the principles are Implemented in the current DEDALUS system.

The DEDALUS specification language can contain constructs that are close to how the
user actually thinks about the problem. Thus, the DEDLAUS specification of the program
lessalKx I), which tests whether a number x is less than every element of a list I of numbers,

and the program gcd(x y), which computes the greatest common divisor of two nonnegative
integersx and y, are specified as follows:

where x is a number and I is a list of numbers,
gcd(x y)<=compute max (z:z|x and z|y)

where x and y are nonnegativenonzero integers .

The all construct in P(all (()), Indicating that the condition P holds for all elements of
the list I, and the set constructor {v: P(u)}, indicating the set of elements for which P is true,

are constructs that, through the repeated application of transformation rules will eventually
be converted into target language code that, for the particular program, is logically
equivalent to the original specification. The specification language is not fixed: New
constructs can be introduced by modifying or adding transformation rules.

The operation of DEDALUS consists of the repeated application of transformations to
expressions In order to produce expressions that are closer to, or within, the target
language. In DEDALUS, the expressions that occur during the transformation process specify
not only programs; they can also specify conditions to be proved, as well as conditions to be
made true. All these expressions are treated as goals to be achieved: For an expression
that specifies a program, the goal is to convert that program into a target language
Implementation; for an expression that is a condition to be proved, the goal is to convert it to

the logical constant true; for an expression that is a condition to be made true, the goal is to
construct a program that will make that condition true.

Transforming a subexpression (of an expression) into another subexpression, require
rules of the form

lessalKx l)<=compute x<all(l)

DEDALUS 727H

the condition P being optional. This rule indicates that the subexpression t can be replaced
by t'. If P is present, then the rule can only be applied provided that the system first prove
that P is true; which is to say, before the rule can be applied, the system must succeed in
achieving the subgoal

Goal: prove P

For example, consider

which expresses the fact that a property P holds for every element of a nonempty list I if it
holds for the first element head(l) and for every element of the list tail (I) of the other
elements. Before the system can apply this rule to some part of an expression, it would
have to succeed in proving that I is not empty.

The application of transformation rules results in a tree of goals and subgoals. Initially
the top-level goals of this tree are established by program specifications. Thus, the common
form of program specification

establishes its output description as the top-level goal

Goahcompute P(x) ,

and in trying to achieve this goal, the system assumes the truth of Q(x). If the top-level
n Is of trees are established by program specifications, most goals are established as the

result of transformations. Thus, by applying the transformation rule

to the top-level goal of the gcd program

Goal 1 : compute max(z:z|x and z|y),

the system establishes
Goal 2: compute max (z:z|x and z|y-x)

subqoal. Such transformations express knowledge about specific constructs. In the

DEDALUS system there is also knowledge of a more general sort.

General Programming Principles

This section describes five general programming principles and presents several

t => t' if p

P(all(l))=>P(head(l)) and P(all(tail(l))) if not empty (I) ,

compute P(x)
where Q(x) ,f(x) <»

u|v and u|w => u|v and u|w-v

728 Automatic Programming

t

s ' i

a

A

examples to illustrate their application. The principles express knowledge about how to formconditionals and procedures (recursive and nonrecursive), how to replace two or moreprocedures by a generalizedprocedure, and how to achieve simultaneous goals. As explainedin the STATUS section, the current implementation of DEDALUS does not incorporate thegeneralizationof procedures or the achievement of simultaneous goals.

Conditional formation. Many of the transformation rules impose some condition P(e g I
is nonempty, x is nonnegative) that must be satisfied for the rule to be applied. Supposethat in attempting to apply a particular rule, the system failed to prove or disprove thecondition P, where P is expressedentirely In terms of the primitive constructs of the targetlanguage; in such a situation, the conditional formation rule is invoked. This rule allows theintroduction of case analysis to consider separately the cases in which P is true and in whichP is false. Suppose the result is both a program segment S1 that achieves the goal underthe assumption that P is true and another program segment S2 that achieves the goal underthe assumption that P is false. The conditional formation principle puts these two programsegments together into a conditional expression

if P then S1 else S2 ,
which solves the problem regardless of whether P is true or false. During the generation ofS2, the system could discover that a conditional expression was unnecessary: Thegenerationof S2 may not have required the assumption that P was false. In such a case, theprogram constructed would be simply S2.

Recursion formation. Suppose, in constructing a program with specifications

the system encounters a subgoal

which is an instance of the output specification, compute P(x). Because the program f(x) isintended to compute P(x) for any x satisfying its input specification Q(x), the recursionformation rule proposes achieving the subgoal by computing P(t) with a recursive call f(t)For this step to be valid, it must ensure that the input condition Q(t) holds when the proposedrecursive call is executed. To ensure that the new recursive call will not cause the programto loop indefinitely, the rule must also establish a termination condition, showing that theargument t is strictly less than the Input x in some well-founded ordering. (A well-foundedordering is an ordering in which no infinite strictly decreasing sequences can exist.) Thiscondition precludes the possibility that an infinite sequence of recursive calls occur duringthe execution of the program.

Example: lessail. The DEDALUS system derived the program lessalKx I), which testswhether a given number x is less than every element of a give list I of numbers. Thespecifications for this program are

compute x < all (I)
where x Is a number and I is a list of numbers

f(x) <= compute P(x)
where Q(x) ,

compute P(t) ,

lessalKx I) <=

DEDALUSH 729

In deriving this program, the system develops a subgoal

compute x < all(tail(D) ,
in the case that I is nonempty. This subgoal is an instance of the output' specification of the
original specification, with the input I replaced by taii(l); therefore, the recursion formation
principle proposes that the subgoal be achieved by introducing a recursive call lessalKx
tail(l)). To ensure that this step is valid, the rule establishes an Input condition that

x is a number and tail(l) is a list of numbers ,

and a termination condition that the argument pair (x taii(l)) is less than the input pair (x I) in
some well-founded ordering. This termination condition holds because taii(l) is a proper
sublist of I.

As the final program the system obtains

lessalKx I) <= if empty(l) then true
else x < head (I) and lessall (x tail(i)) .

Procedure formation. Suppose that while developing a tree for a specification of the
form

f(x) < s compute P(x)
where Q(x) ,

the system encounters a subgoal

Goal B: compute R(t) ,

which is an instance not of the output specification compute P(x). but of some previously
generated subgoal

Goal A: compute R(x)

Then the procedure formation principle introduces a new procedure, g(x), whose output

specification is

g(x) <a compute R(x) .
In this way, both Goals A and B can be achieved by calls g(x) and g(t) to a single procedure.
In the case where Goal B has been derived from Goal A, the call to g(t) will be a recursive
call- otherwise, both calls will be simple procedure calls.

Example: cart. The specification of the program cart(s t) to compute the Cartesian
product of two sets, s and t, is

cart(s t) <= compute ((x y) : xes and yet)
where s and t are finite sets .

730 Automatic Programming

iv

!

I
i

While deriving the tree for the program, the system obtains a subgoal

given that s is nonempty. Developing Goal A further, the system derives

given that t is nonempty. Goal B is an instance of Goal A; therefore, the procedure formation
rule proposes introducing a new procedure carthead (s t) whose output specification is

so that Goal A can be achieved with a procedure call carthead(s t), and Goal B, with a(recursive) call carthead(s tail(t)).

Constructing the carthead procedure by the techniques already described, the finalsystem of programs becomes,

cart(s t) <= if empty(s) then ()
else union(carthead(s t) cart(tail(s) t)) ,

carthead(s t) <= if empty(t) then ()
else union(((head(s) head(t)))

carthead(s tail(t))) .
Generalization. Suppose, in derivinga program, that we obtain two subgoals

Goal A: compute R(a(x))

Goal B: compute R(b(x)) ,

neither of which is an instance of the other, but both of which are instances of the moregeneral expression

compute R(y) .
In such a case the extended procedure formation rule proposes the introduction of the newprocedure,whose output specification is

Thus, Goal A and Goal B can be achieved by procedure calls to g(a(x)) and g(b(x)),
respectively.

Example: reverse. In constructing a program reverse (I), to reverse a list i, we firstderive two subgoals:

Goal A: compute append(reverse(tail(l))

Goal A: compute ((x y) : x=head(s) and yet) ,

Goal B: compute ((x y) : x=head(s) and yetail(t)) ,

carthead(s t) <= compute ((x y) : x=head(s) and yet)

g(y) <= compute R(y) .

DEDALUS 731H

cons(headO)nil))

Goal B- compute append(reverse(tall (tail(l)))
cons(head(tail(D)

cons(headO) nil)))

skip
Each is an instance of the more general expression

compute append(reverse(tail(D)
cons(head(l) m))

;

therefore, the extended procedure formation rule proposes introducing a new procedure
reversegend m), whose output specification is the more general expression:

reversegenO m) <= compute append(reverse(tail(D)
cons(head(l) m)) .

Althouah this procedure, which reverses a nonempty list I and appends the result to m, is a
more general problem than the original reverse program, it turns out that reversegen is
actually easier to construct. The final system of programs obtained is

reversed) <* if empty(l) then nil
else reversegend nil)

reversegend m) <= if empty(taiKQ) then cons(headd) m)
cisc reversegen(tail(l) cons(head(f) m)) .

Simultaneous goals. In order to deal with operations that produce side-effects such
modifying the structure of data objects (e.g., assignment statements), DEDALUS

introduces constructs such as achieve P, to denote a program intended to make the

condition P true.

In constructing a program to achieve two conditions, P1 and P2, it is not sufficient to

oose the problem by constructing two Independent programs to achieve P1 and P2,
decomp concatenation of the two programs might not achieve both conditions

b
BSP

use the program that achieves P2 may in the process make P1

false,

and vice versa.

For example, suppose a program is desired to sort the values of three variables x, y,

In other words, to permute the values of the variables to achieve the two conditions
Z

fid v*z simultaneously. Assume the given primitive Instruction sort2(u v), which sorts

the values of its Input variables v and v. The concatenation

sort2(x y)
sort2(y z)

two segments will not achieve both conditions simultaneously; the second segment

°frtSTz) may, by sorting y and z, make the first condition x_y false.

732 Automatic Programming

': 1

t3

■

, |

"

i.

I■. :I. ; ' .
a

ft.r, \

The simultaneous goal principle, which was introduced to circumvent such difficulties,
states that to satisfy a goal of form

achieve P1 and P2 ,
first construct a program F to achieve Pl, then modify F to achieve P2 while protecting P1 at
the end of F. A special "protection mechanism" (cf. (Sussman, 1975)) ensures that no
modification is permitted that destroys the truth of the protected condition P1 at the end of
the program.

Example: sort. To apply this principle to the goal

achieve x < y and y < z

in the sorting problem, a system would first achieve x < y, by using the segment sort 2(x
y). This program would then be modified to achieve the second condition y _ z. But adding
sort2(y z) at the end of the program will not work because it destroys the truth of the
protected condition x < y.

However, in general, a goal may be achieved by inserting modifications at any point in
the program, not merely at the end. Introducing the two instructions

if y < x then sort2(x y)

if x y then sort2(y z)

at the beginning of the program segment would simultaneously achieve both conditions x y
and y z. The resulting program would be

Currently, the DEDALUS implementation incorporates the principles of conditional
formation, recursion formation (including the termination proofs), and procedure formation, but
it does not include generalization or the formation of structure-changing programs. The
techniques for deriving straight-line structure-changing programs were implemented in a
separate system (see (Waldlnger, 1977)).

Conditional formation and recursion formation are well understood. The method for
proving termination of ordinary recursive calls does not always extend to the multiple-
procedure case. The generalization mechanism and the extended procedure formation
principle are just beginning to be formulated.

The derivation of straight-line programs with simple side-effects is fairly well

if y < x then sort2(x z)
if x < y then sort2(y z)
sort2(x y) .

DEDALUSH 733

A

understood, but much work needs to be done on the derivation of structure-changing
programs with conditional expressions and loops, as well as on the derivation of programs
that alter list structures and other complex data objects.

The DEDALUS system is implemented in QLISP (Wilber, 1976), an extension of
INTERLISP (Teitelman et al., 1978) that includes pattern-matching and backtracking facilities.
The full power of the QLISP language Is available in expressing each rule since the rules are
represented as QLISP programs In a fairly direct manner.

To date, these are some of the representative samples of the programs constructed by
the current DEDALUS system:

Numerical Programs!

- the subtractlve gcd algorithm,

- the Euclidean gcd algorithm,

- the binary gcd algorithm, and
- the remainder of dividing two integers.

List Programs:

- finding the maximum element of a list,
- testing if a list Is sorted,

- testing If a number is less than every element of a list
of numbers (lessall)),and

- testing if every element of one list of numbers is less
than every element of another.

Set Programs:

"computing the union or intersection of two sets,
testing if an element belongs to a set,
testing if one set is a subset of another, and
computing the cartesian product of two sets (cart).

References

See Balzer (1972), Balzer, Goldman, & Wile (1977b), Boyer & Moore (1975), Buchanan
& Luckham (1974), Burstall & Darlington (1977), Dijkstra (1975), Dijkstra (1976), Green
f1976b) Guttag, Horowitz, & Musser (1976), Heidorn (1976), Manna & Waldinger (1978),

Qinn«,«

!v
,
ng74), Sussman (1975), Teitelman et al. (1978), Waldinger (1977), Warren

(1974); Warren (1976), and Wilber (1976).

*

734 Automatic Programming

i

r
i.

j

j 1 1

Phase 5: Compilation and Loading—The high-level code is transformed into a form thatcan be "understood" and executed by the target computer.

The first two phases involve such Al areas as natural language comprehension, program
model formation, and problem solving. Since these areas are still in the process of evolution,
the development of the first two phases has been deferred. At present, PROTOSYSTEM islimited to the automation of phases 3 and 4 since it was felt that these phases were muchmore amenable to solution. Thus, the current PROTOSYSTEM accepts a specification in terms
of abstract relations (in a very high-level language called SSL), and then designs anoptimized data-processing program and generates code for an efficient implementation. In
automatic programming it is usually Impossible for a system to carry out a search for theabsolutely optimal implementation; instead, a system works at optimizing a program only to a
degree.

The particular problem area of PROTOSYSTEM I is that of I/O intensive (file manipulation
and updating), batch-oriented, data-processing programs. Included in this area are programs
for inventory control, payroll, and other record-keeping systems.

The specification method uses a description of the desired data-processing program in
the SSL language. An SSL specification consists of a data and a computation .division. The

I. PROTOSYSTEM I

PROTOSYSTEM I, an automatic programming system designed by William Martin, GregoryRuth, Robert Baron, Matthew Morgenstern, and others of the MIT Laboratory for Computer
Science, is part of a larger research project aimed at modeling, understanding, and
automating the writing of a data-processing system. Hereafter the data-processing system
is referred to as a data-processing program, in accord with this chapter's terminology, whichrefers to the output of an automatic programming system as a program. A model of the largerresearch project was developed that consists of five phases. The successive phases canbe viewed as a series of transformations of the descriptions of the target program, beginning
with a global conceptual description of the problem at hand and progressing, through
increasing specificity, toward a detailed machine-level solution. The aim of the project is todevelopstages of an automatic programming system where each corresponds to one of thefive phases of the model and each embodies the particular knowledge and expertise for thatphase.

Phase 1: Problem Definition— The specification of the data-processing program is
expressedin domain-dependentterms in English.

Phase 2: Specification Analysis and System Formulation—The specification in Phase 1is viewed as a data-processing problem. This problem Is solved, yielding a data-processing
formulation of the desired program.

Phase 3: Implementation—The procedural steps, data representation, and organization
of the target are determined by intelligent selection from, and adaptation of, a set of
standard implementation possibilities.

Phase 4: Code Generation—The implementationof Phase 3 is transformed into code in. some high-levellanguage (e.g., PL/I).

PROTOSYSTEM II 735

A

data division gives the names of data sets (conceptual aggregations or groupings of data),
their keys, and their period of updating. The computation division specifies for each
computed file the calculations to be performed when it is computed. Figure 1 illustrates an
SSL specification of a data-processing program for a warehouse inventory. In the proposed
problem, the warehouse stocks a number of different kinds of items that are sent out daily to
various stores. The data-processing program's task is to keep track of inventory levels,
which items and how many of each item should be reordered from the producer (an item is
reordered when less than 100 remain in stock), and how many items are received from the
producer. In the data division are data sets (e.g., shipments-received, beginning-inventory,
total-items, etc.), and in the computation division are the computation steps that involve
these data sets (e.g., for each item, the beginning inventory is computed by adding the
shipments received to the final inventoryfrom the previous day).

After receiving the SSL specification of the desired program, PROTOSYSTEM transforms
it into an efficient target language Implementationconsisting of a collection of PL/I programs
and its JCL ("Job Control Language") for the IBM 360 system. To accomplish this

transformation,

the following specific design decisions are made with the goal of achieving an
efficient implementation:

(a) Design each keyed

file,

deciding what are to be its data items, organization
(consecutive, index sequential, regional), storage device, associated sort
ordering, and number of records per block;

(b) design each job step, determining which computations the step is to include,
its accessing method (sequential, random, core table), its driving data
set(s), and the order (by key values) in which the records of its input data
sets are to be processed;

(c) determine whether sorts are necessary and where they should be performed;
and

(d) determine the sequence of jobsteps.

Generally, these design decisions, especially the central ones of determining the final
target data sets, computation steps, and sequencing of computation steps, are made by

exploring the different ways of combining data sets and computation steps. The system

carries out these explorations with the goal of minimizing the number of file accesses made
during the run-time of the target implementation. Sometimes, as explainedbelow, the system

also will seek to minimize a more detailed cost estimate of the target implementation.

Described in greater detail In the next section, the method employed by PROTOSYSTEM
for achieving an efficient Implementation does not rely solely on heuristics but instead uses

what is essentially a dynamic programming algorithm with heuristics added to the algorithm,

that it can finish In a reasonable amount of time. An advantage of dynamic programming is
that it can provide a good handle on global optimization when the results of individual
decisions have far-reaching and compounding effects throughout the design of the data-

processing program.

Automatic Programming

I
i

!"

i.
p > i

I: .

I,

'

i'l

»!■<
lit

Although the actual optimization process is performed by the optimizer module, several
other modules provide preparatory and support services. First, the structural analyzer module
generates predicates for the operations in the SSL computation division. These predicates
indicate the conditions under which data items in a data set will be either accessed or
generated during an operation. For example, the condition

(DEFINED A (k1)) = (OR (DEFINED B (k1)) (DEFINED C (k1)))

would indicate that there is a record in data Set A for a value of the key, kl, only when at
least one of the data sets B or C has a record for that value of the key. The structural
analyzer also produces candidate driving data sets for each operation in the computation
division. A driving data set of an operation is a data set whose records are "walked through"
once in order of their occurrence— i.e., the operation is executed once at each step
(record)—to drive the operation.

The predicates produced by the structural analyzer are then used by the question-
answering module to provide information to the optimizer about the average number of I/O
accesses implied by tentative configurations (i.e. tentative choices for the data sets and
computation steps) of the target implementation. The question-answering module maintains a
knowledge base consisting of the predicates, characteristics of the data, as well as
information obtained from interaction with the user, such as average data set size or the
probability of a predicate fragment being true. This knowledge, along with knowledge about
the probability calculus, Is used to answer questions about the size of a data set and about
the average number of items In the data set that are likely to satisfy a certain predicate
(e.g., an access predicate). When the knowledge is insufficient to answer an optimizer
question, the question answerer initiates a dialogue with the user in order to elicit enough
additional information to proceed.

The optimization process itself is performed by the optimizer module. This module
Intermittently obtains information from the question answerer about I/O accesses of
tentative configurations of parts of the data-processing program, in order to explore the
effects of such design parameters as the number of records per block, the file organization,
the data items that are collected into a single data set, and the computations that are
performed during a single reading of a file or files. Since the problem area of PROTOSYSTEM
Is that of I/O intensive programs, the optimizer explores the various design parameters with
the goal of minimizing the number of file accesses of the target language implementation (of
the data-processing program). Sometimes, however, after a number of more important design
decisions have been made, the optimizerwill explore design decisions by computing a' more
detaiJed cost estimate that attempts to approximate the charging structure of the particular
installation on which the target system Is to run (e.g., disc space, core residency charges,
explicit I/O, etc.).

The central part of the optimization process is concerned with the the exploration of
various ways of setting up data sets and computation steps. Basically, the optimization
module starts with the data sets and computation steps in the data division and computation
division of the SSL specification. Then, with the goal of minimizing the number of file
accesses, the module looks at data-processing programs that use various aggregations of
these initial data sets and computation steps (an aggregation of two or more data sets is a

PROTOSYSTEM II 737

1

data set that has all the data items of the original data sets, while an aggregationof several
computation steps is a computation step that performs the functions of the original steps).
The optimizer explores aggregating data sets and aggregating computation steps and
develops and utilizes constraints on the sort order of both data sets and computation steps
(an exampleof a sort order constraint on a data set would be when the data set should hay«

its records sorted on a particular key first).

To avoid the problem of combinatorial explosion, the module uses a form of dynamic
programming with heuristics. Loosely speaking, one may say that dynamic programming is a
set of parameterized recursive equations, which, in this case, express the cost of optimized
longer segments of the program in terms of optimized shorter segments. A pure dynamic
programming algorithm, though it would find the absolute optimum target implementation, would
require an extreme amount of time to do so. Therefore, in order that the algorithm finish in a
reasonable time, a number of heuristics have been employed in the algorithm, including
decoupling decisions where possible (and sometimes even where it is not completely
possible) and carrying out local optimizations before making adjustments for global concerns.
A full explanationof the algorithm is found in Morgenstern (1976).

Status

The SSL specification language has been completely defined and there is an
operationalimplementation of PROTOSYSTEM in MACLISP on the MIT LCS PDP-10. The system
is capable of producing acceptable target language implementations. From a laron*
perspective, the PROTOSYSTEM I project has developeda 5-phase model of the process of

#

writing a data-processing program (system), from its conception to its Implementation as
executable code. Twenty years ago, the fifth phase, compilation and loading, was
automated. At present, a preliminary theory and automation of the third and fourth phases,

the generation of the system and translation into high-level code, are embodied in
PROTOSYSTEM I. It is felt that within the next decade the theory and automation of the
remaining two phases, Including problem definition, specification analysis, and system

formulation,

should easily fall within the realm of presently developing Al technologies.

COMPUTATION DIVISION

DATA DIVISION

FILE SHIPMENTS-RECEIVED
KEY IS ITEM
GENERATED EVERY DAY

FILE BEGINNING-INVENTORY
KEY IS ITEM
GENERATED EVERY DAY

FILE TOTAL-ITEM-ORDERS
KEY IS ITEM
GENERATED EVERY DAY

FILE QUANTITY-SHIPPED-TO-STORE
KEY IS ITEM, STORE
GENERATED EVERY DAY

FILE QUANTITY-ORDERED-BY-STORI
KEY IS ITEM, STORE

GENERATED EVERY DAY
FILE TOTAL-SHIPPED

KEY IS ITEM
GENERATED EVERY DAY

FILE FINAL-INVENTORY
KEY IS ITEM

GENERATED EVERY DAY
FILE REORDER-AMOUNT

KEY IS ITEM
GENERATED EVERY DAY

738 Automatic Programming

%

BEGINNING-INVENTORY IS
FINAL-INVENTORY (from the previous day) + SHIPMENTS-RECEIVED

TOTAL-ITEM-ORDERS IS SUM OF QUANTITY-ORDERED-BY-STORE FOR EACH ITEMQUANTITY-SHIPPED-TO-STORE IS
QUANTITY-ORDERED-BY-STORE IF BEGINNING-INVENTORY IS

GREATER THEN TOTAL-ITEM-ORDERS
ELSE _

QUANTITY-ORDERED-BY-STORE
* (BEGINNING-INVENTORY / TOTAL-ITEM-ORDERS)

IF BEGINNING-INVENTORY IS NOT
GREATER THEN TOTAL-ITEM-ORDERS

TOTAL-SHIPPED IS SUM OF QUANTITY-SHIPPED-TO-STORE FOR EACH ITEMFINAL-INVENTORY IS BEGINNING-INVENTORY - TOTAL-SHIPPEDREORDER-AMOUNT IS 1000 IF FINAL-INVENTORY IS LESS THAN 100.

Figure 1 : SSL relational description for a data processing program.

References

See Baron (1977), Morgenstern (1976), Ruth (1976a), Ruth (1978), and Ruth (1979)

739NLPQ: Natural LanguageProgramming for Queuing SimulationsJ

J. NLPQ: Natural Language Programming for Queuing Simulations

The Natural Language Programming for Queuing Simulations (NLPQ) project was begun

by George Heidorn at Yale University in 1967 as a doctoral dissertation and completed at the

Naval Postgraduate School during the years 1968-1972. The problem area is that of
simulation programs for simple queuing problems. The queuing problem's specification occurs
during an English dialogue in which the user and the NLPQ system each can furnish
information to, and request information

from,

the other. From this dialogue, the NLPQ system

creates and maintains a partial internal description of the queuing problem. This partial

description is used to answer any questions that the user may ask; it is used to generate
questions that are to be asked of the user; and when eventually completed by the dialogue
activity, it is used to generate the implementation of the simulation program in the target
language GPSS. The system's processing — including creating the problem description and
generating the GPSS program, as well as translating and generating sentences—is specified

by production rules.

Specification

In the English dialogue that constitutes NLPQ's method of specification, the user can
make statements, give commands, ask questions, and answer questions. During this process

the system can ask and answer questions and respond to commands. In the very brief
dialogue of Figure 1 , most of the features of the specification method are illustrated in a
simple way (other more complex dialogues are presented in Heidorn, 1972, Heidorn, 1974,
Heidorn, 1975b, and Heidorn, 1976). In the dialogue, line numbers have been added for
purposes of reference; and the lower case typing was done by the user, while the UPPER
CASE typing was done by the computer.

The particular specification concerns a queuing problem about cars that arrive at a
station, get serviced, and leave. The user initially volunteered some information about how

often the cars arrive and about the sequencing of actions, in lines 1 and 2, and then asked
the system what other informationwas needed to complete the queuing model, in line 3. In

lines 4 through 9, the system asked questions about times and actions, which the user
answered, until the problem statement was complete, in line 10. Thenjn line 11 the user
asked a specific question about the queuing model concerning the mean time needed to

service a car, a question that the system answered in line 12. In line 13 the user told the
system to produce a description of the entire problem in English for verification purposes,

which it did, In line 14. Finally, in response to the user command in line 15, the system
produced the GPSS program, in line 16, complete with English comments (preceded by ") and

meaningful symbolic names. The time required for the NLPQ system to process this sample
specification and to produce the GPSS program was 8 seconds of virtual CPU time on an IBM

370/168 running LISP.

/ ** EVERY 6 MINUTES A CAR ARRIVES AT A STATION.
2 ** AFTER ARRIVING, IT IS SERVICED AT A PUMP.
3 ** IS THE PROBLEM STATEMENT COMPLETE?

* How long are the cars serviced at the pump?
5 ** FROM 3 TO 7 MINUTES.
6 After being serviced at the pump, what do the cars do?
7 ** THEY LEAVE THE STATION.

740 Automatic Programming

m\

Pi*'

'fell '■
til I

;

v.
ii

ii!

a.

'/$

8 How long shall the simulation be run?
9 ** 10 HOURS; USE 1 MINUTE AS THE BASIC TIME UNIT.
10 The problem statement is complete.
// ** WHAT IS THE MEAN OF THE TIME TO SERVICE CARS?
12 The mean of the uniform distribution is 5 minutes.
13 ** DESCRIBE THE PROBLEM IN ENGLISH.
14 The cars arrive at the station every 6 minutes.

After arriving at the station, the cars are serviced at the
pump. The time for the cars to be serviced at the pump is
uniformly distributed, with a mean of 5 minutes and a
half-range of 2 minutes. After being serviced at the pump,
the cars leave the station.
The simulation is to be run for 10 hours, using a
basic time unit of 1 minute.

15 ** WRITE THE GPSS PROGRAM.
SIMULATE
STATI EQU I.F.Q
PUMP2EQU 2,F,Q
CARI EQU I,T
1 TABLE M1,1,1,2, 1,1,2

X

" THE CARS ARRIVE AT THE STATION.
GENERATE 6
ASSIGN I.CARI

X

* THE CARS ARE SERVICED AT THE PUMP.
ACTI QUEUE PUMP 2

SEIZE PUMP 2
DEPART PUMP2
ADVANCE 5,2
RELEASE PUMP2

X

* THE CARS LEAVE THE STATION.
ACT3TABULATE P1

TERMINATE
X

* TIMING LOOP
GENERATE 600
TERMINATE 1
START T
END

Figure 1. A very brief NLPQ dialogue.

Operation

The processing to be done by NLPQ is specified by sets of production rules written in

J NLPQ: Natural Language Programming for Queuing Simulations 741

language designed especially for this system. "Decoding" rules specify how strings of
English text are to be converted into records in a semantic net, and "encoding" rules specify
how records are to be converted into text. These rules are basically phrase structure
grammar rules Natural Languaga.Bl, but they are augmented with arbitrary conditions and
structure-building actions . '

The representation of the Internal description of the simulation problem as well as the
representation of the syntactic and semantic structures are in the form of a semantic
network Representation^. A network consists of records that represent such things as
concepts, words, physical entities, and probability distributions. Each record is a list of
attribute-value pairs, where the value of an attribute is usually a pointer to another record
but may sometimes be simply a number or character string.

Prior to a queuing dialogue, the system is given a network of about 300 "named"
records containing information about words and concepts relevant to simple queuing
problems. Also, it is furnished with a set of about 300 English decoding rules and 500 English
and GPSS encoding rules. As the dialogue progresses, the system uses the information it
obtains from the English dialogue to build and complete a partial description of the desired
simulation, a description that is in the form of a network called the Internal Problem
Description (IPD).

Basically, an IPD network describes the flow of mobile entities, such as vehicles,
through a framework consisting of stationary entities, such as pumps, by specifying the
actions that take place in the framework and their interrelationships. Each action is
represented by a record whose attributes furnish such information as the type of action, the
entrty doing the action (i.e., the agent), the entity that is the object of the action, the
location where it happens, its duration, Its frequency of occurrence, and what happens next.
For example, the action "The men unload the truck at a dock for two hours" could be
represented by the record:

Rl: Type unload
Agent men
Object truck
Location dock
Duration 2 hours

From the English dialogue the NLPQ system must obtain ail the information needed to
build the IPD. Thus, the user must describe the flow of mobile entities through the queuing
model by making statements about the actions that take place and about the relations
between these actions. Each mobile entity must "arrive" at or "enter" the model. Then it
may go through one or more other actions, such as "service," "load," "unload," and "wait."
Then, typically, it "leaves" the model. The order In which these actions take place must
eventually be made explicit by the use of subordinate clauses beginning with such
conjunctions as "after," "when," and "before," or by using the adverb "then." If the order of
the actions depends on the state of the queuing model, an "If" clause may be used to
specify the condition for performing an action; a sentence with an "otherwise" in it is used
to give an alternative action to be performed when this condition is not met.

The Information needed to simulate the problem, including the various times involved,
must also be furnished by the English dialogue. It is necessary to specify the time between

742 Automatic Programming

I

■;i

h.
[V

li

h!

arrivals, the time required to perform each activity, the length of the simulation run, and the
basic time unit to be used in the GPSS program. Inter-event and activity times may be given
as constants or as probability distributions, such as uniform, exponential,normal, or empirical.
The quantity of each stationary entity should also be specified, unless 1 is to be assumed.

The user may either furnish this information in the form of a complete problem
statement or state some part of it and then let the system ask questions to obtain the rest
of the

information,

as was done above in lines 1 through 10 of Figure 1. The latter method
results in a scan of the partially built IPD for missing or erroneous information and the
generation of appropriate questions. Each time the system asks a question, it is trying to
obtain the value of some specific attribute that will be needed to generate a GPSS program.
To furnish a value for the attribute, the question may be answered by a complete sentence
or simply by a phrase.

The user may ask the system specific questions about the queuing model, and then the
system generates the answers from the information in the appropriate parts of the IPD. In
order to check the entire IPD as it exists at any time, the user may request that an English
problem description be produced. Such a descriptionconsists of all the information in the IPD
as it is converted into English by the encoding rules (see line 14 of Figure 1). Specifically,
for each action in the IPD, the system generates one or more statements describing the type
of action, its agent, object, location, what action if any follows (if none, a new paragraph is
started), and, if applicable, an inter-event time or duration. Conditional successor actions
may result in two sentences, with the first one having an "if" clause in it and the second one
beginning with "otherwise." After all of the actions have been described, a separate one-
sentence paragraph is produced with the values of the run time and the basic time unit.

After the dialogue is finished and all the required information is obtained, NLPQ uses the
IPD and the GPSS encoding rules to produce the desired program in the GPSS target
language. Such a program was listed in 16 of Figure 1. At the beginning of this program, the
definitions for the stationary entities, mobile entities, and distributions are given. Then, for
each action, a comment consisting of a simple English action sentence is produced, followed
by the GPSS statements appropriate to this action. For example, an "arrive" usually
produces a GENERATE and an ASSIGN; a "leave" produces a TABULATE and a TERMINATE; and
most activities produce a sequence like QUEUE,

SEIZE,

DEPART, ADVANCE, and RELEASE.
These are usually followed by some sort of TRANSFER, depending upon the type of value that
the action's successor attribute has. Finally, the GPSS program closes with a "timing loop"
to govern the length of the simulation run.

Status

Though this project was "completed," a system ready for production use was not
developed. The NLPQ prototype, however, was demonstrated several times on a variety of
problems. Although the capabilities of the implemented system are limited, the research did
establish an overall framework for such a system, and useful techniques were developed.
Enough details were worked out to enable the system to carry out interesting interactions,
as evidenced by the longer more complicated dialoguesfound in the first four references at
the end of this article. More details of the processing done by this system can be found in
any of the references , especiallyHeidorn, 1972,which is a 376-page technical report.

J NLPQ: Natural Language Programming for Queuing Simulations 743

J

References

See Heidorn (1972), Heidorn (1974), Heidorn (1975a), Heidorn (1975b), and Heidorn
(1976).

7

'i '�
i >

i

Automatic Programming744

!

j

i

j.

T j
i

i

I 1!
!I

i ■

h
1:1

K. LIBRA

LIBRA, the efficiency analysis expert of the PSI system D 2is being developed by
Elaine Kant in conjunction with the PSI project at Systems

Control,

Inc., and at Stanford. The
PSI system, through interaction with the user, constructs a very high-level program
specification called the program model. Then LIBRA, working together with the PECOS coding
expert D5, converts the program model Into a target language implementation. The PECOS
system supplies the transformation rules that can convert the program model into various
target language implementations. Using global efficiency analysis ("global analysis" is
analysis with access to the entire program, as opposed to only a local segment), LIBRA
directs and explores the applicationof the transformation rules so as to produce an efficient
implementation.

The transformation process itself consists of repeated applications of transformation
rules to parts of the program, where every application results in a specification closer to a
target language implementation. Each such application of a rule is said to produce a partial
implementationor refinement of the program, and the transformation rules are calledrefinement
rules. Thus refinement rules applied to refinements produce further refinements. Because
more than one refinement rule may be applicable to the same part of a

refinement,

the
transformation process produces a tree of possible refinements (the actual situation is
slightly more complicated since the order in which the rules are applied can affect the tree
that is produced). To avoid the problem of combinatorial explosion, LIBRA develops only part
of the tree. A discussion of the details of this process follows.

It is LIBRA'S function to analyze and guide the development of the refinement tree in
order to achieve an efficient implementation. LIBRA determines what parts of the program to
expand next and what parts not to expand at all. In particular, when more than one
refinement rule is applicable, LIBRA may decide to apply them all so that the resulting
refinements can be considered in greater detail; or LIBRA may decide to apply only one of
the rules. In the latter case, the refinement is implemented directly in the current node of
the tree, and the other possibilities are permanently forgone.

One of the most important ways in which LIBRA attacks the problem of combinatorial
explosion is by estimating the efficiency of possible target language implementations. For
each refinement in the tree, LIBRA maintains two cost estimates; the estimates are in the
form of symbolic algebraic expressions that give the time and space requirements needed to
execute a certain kind of target language implementation. The first estimate is the default
cost that might result if all the constructs and operators In the refinement were assigned
default Implementations. The second is the optimistic cost estimate that might result
assuming: (a) certain efficient implementation techniques that have worked in similar
situations will prove succesful in the present situation, and (b) LIBRA expends enough of its
own resources of time and space to carry out these implementation techniques.

Treating these two costs as upper and lower bounds on the costs of possible target
language implementations of the

refinement,

LIBRA' obtains important guidance in directing the
growth of the refinement tree. These upper and lower bounds can be used to prune a branch
of the refinement tree (without further consideration of the branch) or to calculate the
effect of a partial implementationdecision on the global program cost. As discussed below in
the RULES section, the upper and lower bounds are used to direct attention to high impact
areas, those areas where effort is likely to yield the greatest increases in overall efficiency.

I

X LIBRA 745

Another feature of the LIBRA system, a feature implicit in the above, is the knowledge
LIBRA has about the use and limits of Its own resources of available time and space. This
feature is important because no system can devote unlimited effort to finding an efficient
implementation. Effort must be allocated. The way in which LIBRA performs this allocation is
to assign available resources to high impact areas, where the resources will do the most
good. The RULES section will present the method used to compute Impact, as well as
examples and uses of resource knowledge.

LIBRA also includes mechanisms to assist in the acquisition of new programming
concepts. When new high-level constructs are added (such as new types of sorts, or
trees), new efficiency knowledge is needed to analyze these concepts (their subparts,
running times, data structure accesses, and so on). LIBRA has a model of programming
concepts that is consulted when new concepts are added. Some of the necessary
information can be deduced automatically, and the user is asked specific questions to obtain
the rest. To help construct these estimation functions, LIBRA provides a semi-automatic
procedure for deriving cost estimation functions from the set of cost functions for the target
language constructs.

The knowledge for managing resources, computing upper and lower cost estimates,
directing attention to different parts of the tree, making implementation decisions, and, in
general, for analyzing and directing the growth of the tree is in the form of rules. Each rule
consists of a condition and an action to be performed if the condition is met. The knowledge
that a rule expresses can easily be modified since the rules are replaceable and can be
added, deleted, or altered without requiring a modification to the system itself.

Rules

The rules In LIBRA'S knowledge base generally can be divided into three groups:
attention and resource managementrules, plausible-implementationrules, and cost-analysis
rules.

Attention and resource management rules describe when to shift attention to other
nodes in the tree and also how to set priorities for refining the different constructs and
operations within a refinement node. Some of the more important of these rules determine
how LIBRA'S own resources of available time and space are to be allocated, on the basis of
where they will have the greatest impact. One of the ways of determining impact is to
consider the difference between the upper bound cost estimate (assuming default
implementations) and the optimistic lower bound cost estimate (assuming both the successful
application of efficiency techniques that have worked in similar situations and the sufficient
expenditure of resources to carry the techniques to completion). Other rules in this group
state how to shift attention among nodes. These rules (a) cause complex programs to be
expanded early In order to see what decisions are involved, (b) postpone trivial decisions
until important ones are made, (c) look at ail refinements in the tree and select for
development the one whose optimistic cost estimate is least (when resources for developing

a particular refinement are exhausted), and (d) apply a form of branch and bound which

states that (when resources allocated for considering a particular decision are exhausted)

attention should be directed to the whole tree and that all nodes whose optimistic cost
estimate is worse than the default estimate of some other node should be eliminated. As
described later, when cost analysis rules compare estimates, they take into account the
degree of uncertainty in the estimate.

3 'i\\

1 j

746 Automatic Programming

I "
I
1

!' '

i \: i
i I

i

i. :! i

' Ii .- i
'i-

t

v~'.\
i H

N

j'|
I

Plausible implementation rules express heuristics about when to limit expansion of
nodes, by making a decision about some part of an implementation. For example, when the
question of how to represent a set first arises, LIBRA performs a global examination of the
program to determine ail uses of the set. If there are many places where the program checks
for membership in the set, then a hash-table representation may be suggested. In general,
plausible implementation rules express knowledge derived by human or machine analysis of
commonly occurring situations, such as which sorting techniques are best for different size
inputs. These rules also contain heuristics to make quick decisions. Thus, if LIBRA is running
out of resources, heuristics that are not as dependable as the one just described are used
to make decisions on the spot, without creating any new nodes. These heuristics generally
express defaults, such as "use lists rather than arrays if the target language is LISP"; they
are used to make the less important decisions or to make all decisions if the total resources
for writing a program are nearly exhausted.

The final group, the cost-analysis rules, express how to compute, update, and compare
upper and lower bound estimates of the cost of the final implementation. The cost estimates
are in the form of symbolic algebraic expressions that may involve variables representing set
sizes. The cost estimates are not computed once and for all: Whenever a refinement in the
tree is further refined (i.e., a refinement rule is applied to some part of a node in the subtree
whose root is the refinement), then the cost estimates associated with the refinement are
incrementally updated so as to produce estimates that are more accurate in view of the new
information. Cost estimates are constructed from a knowledge base that includes information
on upper and lower bounds on costs for time and space usage by individual constructs and
operations, and on how to combine such cost estimates for composite programs. The
knowledge needed to Incrementally update the cost estimates is contained in rules
corresponding to the particular construct or operation. The method of comparing the cost
estimates of different refinements involves the addition of a bonus to the refinement that
has a greater degree of completion and that consequently has a greater certainty in its cost
estimates (default and optimistic). This feature favors a nearly complete refinement that
has a slightly worse lower bound'over a less complete (more abstract) refinement that has a
slightly better lower bound. Such a preference is desirable since the cost estimate of the
more abstract refinement is less certain and therefore may not be achievable. By giving a
bonus for the degree of completion, the cost analysisrules take into account the likelihood of
being able to achieve the cost estimate.

Status

LIBRA has guided the application of the PECOS refinement rules to produce efficient
implementation of several variants of simple database retrieval, sorting, and concept
formation programs (see PSI article for an exampleof a concept formation program). Current
plans include extending the problem area to include simple algorithms for finding prime
numbers and for reaching nodes in a graph. For an efficiency expert to be of use in a
complete automatic programming system, a good deal more research is needed. Higher level
optimizations, extended symbolic analysis and comparison capabilities, and more domain
expertise are some obvious extensions. Automatic bookkeeping of heuristics and perhaps
even automatic generation of heuristics from an analysis of symbolic cost estimates of target
language concepts are some long-range goals. In order to write more complex programs such
as compilers or operating systems, more efficiency rules would have to be added to the
system, rules about concepts such as bit-packing, machine interrupts, and multiprocessing.

LIBRA 747X

i

However, even with such additions, the efficiency techniques employed by the LIBRA system
should be significant in controlling the problem of combinatorial explosion that occurs during
the search for efficient implementations.

This article closes with the description of an example illustrating LIBRA'S present
operationproducing a simple sort program.

Example

Suppose that a SORT is specified as a transfer of elements from a SOURCE sequential
collection to a TARGET sequential collection that is ordered by some relation such as LESS-
THAN. After the application of some preliminary refinement rules that do not require any
decisions as to alternative choices, three choice points remain: choosing a transfer order,
and choosing representations for SOURCE and for TARGET.

Since the transfer order is selected as the most important decision, LIBRA directs
attention first to that choice point. A heuristic rule is applied that suggests the use of either
an insertion sort from list to list or array to array, or a selection sort from list to array. The
different refinement possibilities are added to the tree accordingly. Each of the branches is
given a limited amount of resources and told to focus attention only on the parts of the
program directly relevant to the transfer order decision.

After these branches are refined within the limits of the assigned resources, the nodes
of the tree are compared. Branch and bound does not eliminate any of the aternatives here,
but the insertion branch is selected as it has the best lower bound (taking into account
factors related to uncertainty of estimates).

Refinement then proceeds in that node. The choice of a list or array representation for

the TARGET is made by a heuristic that says that lists are easier to manipulate than arrays in
LISP. This heuristic was applied because much of the time and space resources allocated
for finding an implementation had been consumed in the above tasks and a quick decision
was required. The choice of a list representation for TARGET forces a list representation for
SOURCE because of a suggestion made under the transfer-order heuristic.

Thereafter,

the
refinement process is basically straightforward, though several choices of whether to store
or recompute local variables are made.

References

See Barstow (1979), Barstow & Kant (1977), Green (1976b), Green (1977), Green &
Barstow (1978), Kant (1977), Kant (1978), Kant (1979), and McCune (1977).

748 Automatic Programming

'i
I
ii
i

, i
■I

'IS'

i

i

.;!

!*l

!il
ti

ill

;i

1 i
I
|

References

Automatic Coding. Proc. of the Symposium, Franklin institute, Philadelphia, PA, January
1957.

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. The Design and Analysis of Computer Algorithms.
Reading, Mass.: Addison-Wesley, 1974.

Allen, F. E., & Cocke, J. A catalogue of optimizing transformations. In R. Rustin (Ed.).
Design and Optimization of Compilers, Proceedings of the Courant
Computer Science Symposium 5. Englewood Cliffs, N.J.: Prentice-Hall, 1972. Pp. 1-
30.

Allen, F. E., & Cocke, J. A program data flow analysis procedure. Communications of the

ACM,

1976, 19(3), 137-147.

Amarel, S. Representation and modeling in problems of program formation. In B. Meltzer &
D. Michie (Eds.), Machine Intelligence 6. New York: American Elsevier, 1972.
Pp. 411-466.

Balzer, R. M. Dateless programming. Proceedings

FJCC,

1967, 31, 535-544.

Balzer, R. M. Automatic Programming. Information Sciences Institute Tech. Memo
1, University of Southern

California,

Marina Del Rey, 1972.

Balzer, R. M. CASAP: A testbed for program flexibility. UCAI 3, 1973, 601-605. (a)

Balzer, R. M. A globalview of automatic programming. UCAI 3, 1973, 494-499. (b)

Balzer, R. M. A Language-independent programmer's interface. Information Sciences
Institute Report RR-73-15, University of Southern California, Marina Del Rey, November
1973. (c)

Balzer, R. M. Human Use of World Knowledge. Information Sciences Institute Report USC-
ISI RR-73-07, University of Southern California, Marina Del Rey, March 1974 (ARPA
Order 2223/1).

Balzer, R. M. , & Goldman, N. Principles of Good Software Specification and Their Implications
for Specification Languages. Proc. of the lEEE Specifications of Reliable Software
Conf., Cambridge, April 1979.

Balzer, R. M., Goldman, N., & Wile, D. On the Transformational Implementation Approach to
Programming. 2nd Int. Conf. on Software Engineering, October 1976, pp. 337-344.

Balzer, R. M., Goldman, N., & Wile, D. Informality In program specification. UCAI 5, 1977
397. (a)

Balzer, R. M., Goldman, N., & Wile, D. Meta-evaluation tool for program
understanding. UCAI 5, 1977, 398-403. (b)

References 749

Balzer, R. M., Goldman, N., & Wile, D. On the Use of Programming Knowledge to Understand
Informal Process Descriptions. SIGART Newsletter, No. 63, June 1977, pp. 72-
-75. (c).

Balzer, R. M.,

Goldman,

N., & Wile, D. Informality in Program' Specifications. lEEE
Transactions on Software Engineering, 1978, SE-4(2), 94-103.

Balzer, R. M., Greenfeld, N„ Kay, M., Mann, W., Ryder, W., Wilczynski, D., & Zobrist, A.
Domain independent automatic programming. IFIP, 1974, 326-330.

Baron, R. V. Structural Analysis in a Very High Level Language, Master's thesis, MIT
1977.

Barstow, D. A Knowledge based system for automatic program construction. UCAI 5, 1977,
382-388. (a)

Barstow, D. A knowledge base organization for rules about programming. Proc. of the
Workshop on Pattern Directed inference Systems. SIGART Newsletter, No. 63, June
1977,pp. 18-22. (b)

Barstow, D. Automatic Construction of Algorithms and Data Structures using a
Knowledge Base of Programming Rules, Al Memo 308, Computer Science Dept.,
Stanford University, November 1977. (c)

Barstow, D. Codification of programmingknowledge: Graph algorithms, TR-149,
Computer Science Dept., Yale University, December 1978.

Barstow, D. Knowledge-based Program Construction. Elsevier: North Holland, 1979.

Barstow, D. R., & Kant, E. Observations on the interaction between coding and efficiency
knowledge In the PSI system. Proc. of the 2nd Int. Conf. on Software Engineering,
Computer Society, Institute of Electrical and Electronics Engineers, Inc., Long Beach,

CA,

October 1977, pp. 19-31.

Berth, J. M. An interprocedural data flow analysis algorithm. Fourth ACM Symposium on
Principles of Programming Languages,Los Angeles, CA, January 1977.

Bauer, M. A basis for the acquisition of procedures from protocols. UCAI 4, 1975, 226-231.

Biermann, A. W. Computer program synthesis from computation traces. Symposium on
Fundamental Theory of Programming, Kyoto University, Kyoto, Japan, October
1972. (a)

Biermann, A. W. On the inference of Turing machines from sample computations. Artificial
Intelligence, 1972, 3, 181-198. (b)

Biermann, A. W. The Use of Examples in Program Construction and Debugging. ACM
"75: Proceedings of the National Conference, Association for Computing Machinery,
New York, 1975. Pp. 242-247.

f; U:
i
i i

750 Automatic Programming

1

ft;

t

■i

t.

Biermann, A. W. Approaches to automatic programming. In M. Rubinoff &M. C. Yovits(Eds.), Advances in Computers (vol. 15). New York: Academic Press, 1976. Pp 1-
-63. (a)

Biermann, A. W. Regular LISP Programs and Their Automatic Synthesis from Examples,
CS-1 976-12, Dept. of Computer Science, Duke University, June 1976. (b)

Biermann, A. W„ Baum, R. 1., & Petry, F. E. Speeding up the synthesis of programs from
traces. lEEE Transactlonson computers, February 1975, C-24, 122-136.

Biermann, A. W., & Krishnaswamy Constructing programs from examplecomputations, OSU
CISRC TR-74-6, August 1974.

Biggerstaff, T. J. C2: A Super-compiler Approach to Automatic Programming. Doctoral
dissertation, Tech. Rep. 76-01-01, Dept. of Computer Science, University ofWashington, 1976.

Bobrow, D.

G.,

& Wegbreit, B. A model of control structures for Artificial Intelligence
programming languages. lEEE Transactions on Computers, 1976, C-25(4), 347-353.

Bobrow, D. G., & Winograd, T. An overview of KRL, a knowledge representation
language. Cognitive Science, 1977, 1(1), 3-46.

Boyer, R. S., & Moore, J. S. Proving theorems about LISP Functions. JACM, 1975. 22(1).
129-144.

Brown, G. P. A Framework for Processing Dialogue, TR-1 82, Laboratory for Computer
Science, MIT, June 1977.

Brown, R. Use of Analogy to Achieve New Expertise, AI-TR-403, MIT Al Lab, April 1977.

Buchanan, J. R., & Luckham, D. C. On Automating the Construction of Programs, TR-CS-
-433, Artificial IntelligenceLaboratory, Stanford University, Stanford, CA, May 1974.(Also Stanford Al Memo 236)

Burstall, R. M., & Darlington, J. Some transformations for developing recursive programs.
International Conference on Reliable Software, lEEE Computer Society, April 1975

pp. 466-472.

Burstall, R. M„ & Darlington, J. A Transformation System for Developing Recursive
Programs. Journal of the Association for Computing Machinery, 1977, 24(1), 44-67.

Chandrasekaran, B. Al—The past decade—Automatic programming. In M. Rubinoff &M. C.
Yovits (Eds.), Advances in Computers (vol. 13). New York: Academic Press,
1975. Pp. 170-232.

Chang, C, & Lee, R. Symbolic Logic and Mechanical Theorem Proving. New York:
Academic Press, 1969.

References 751

Cheatham, T. E., Jr., & Wegbreit, B. A laboratory for the study of automating
programming. Proceedings of AFIPS Spring Joint Computer Conference, 1972, pp.
11-21.

Cheatham, T. E., & Townley, J. A. Symbolic Evaluation of Programs: A Look at Loop
Analysis, TR-1 1-76, Center for Research in Computing Technology, Harvard
University, 1976.

Clark, K. and Slckel, ?. Predicate logic: A calculus for deriving programs. UCAI 5, 1977,
419-420.

Dahl, 0. J., Dijkstra, E. W., & Hoare, C. A. R. Structured Programming. New York: Academic
Press, 1972.

Dahl, 0. J., Myhrhaug, 8., & Nygaard, K. SIMULA67 Common Base Language, Publ. No.

S-2,

Norwegian Computing Centre, Oslo, 1 968.

Darlington, J. A Semantic approach to automatic program improvement. Doctoral
dissertation, University of Edinburgh, Scotland, 1972.

Darlington, J. Automatic program synthesis In second-order logic. UCAI 3, 1973, 537-542.

Darlington, J. Applications of program transformation to program synthesis. In G. Huet &G.
Kahn (Eds.), Proving and Improving Programs. Rocquencourt, France: Institut de
Recherche d'lnformatique et d'Automatique, July 1976. pp . 133-144.

Darlington, J. A Synthesis of Several Sorting Algorithms, Research Report 23, Dept. of
Artificial Intelligence, University of Edinburgh, Scotland, July 1976.

Darlington, J., & Burstall, R. M. A System which automatically improves programs. UCAI 3,
1973, 479-485.

Dershowitz, N„ & Manna, Z. On automating structured programming. In G. Huet & G. Kahn
(Eds.), Proving and Improving Programs. Rocquencourt, France: Institut de Recherche
d'lnformatique et d'Automatique,JuJy 1975. Pp. 167-193.

Dershowitz, N., & Manna, Z. The evolution of programs: A system for automatic program
modification. Fourth ACM Symposium on Principles of Programming Languages, Los
Angeles, CA, January 1977.

Deutsch, B. G. The structure of task-oriented dialogs. In L. Erman (Ed.), lEEE Symposium on
Speech Recognition: Contributed Papers, lEEE Group on Acoustics, Speech, and
Signal Processing. The Institute of Electrical and Electronics Engineers, Inc., New
York, April 1974. Pp. 250-254.

Deiftsch, B. G. Establishing Context in Task-Oriented Dialogs, Tech. Note 1 1 4, Artificial
Intelligence

Center,

Stanford Research Institute, Menlo Park,

CA,

September 1975.

Dijkstra, E. W. Guarded commands, nondeterminancy and formal derivation of programs.
CACM, 1975, 18(8), 453-457.

li

T
:!ii 752 Automatic Programming

?

■

I?.

' i.
■

Dijkstra, E. W. A discipline of programming. EnglewoodCliffs, N.J.: Prentice-Hall, 1976.
Earley, J. Relational level data structures in programming languages. Acta Informatica1973,2,293-309.

Earley, J. High-level Iterators and a Method for Automatically Designing Data StructureRepresentation, Memo ERL-M425, Electronics Research Laboratory, University ofCalifornia, Berkeley, 1974. (a)

Earley, J. High-level operations in automatic programming. Proceedings of the SIGPLAN
Symposium on Very High-level Languages, March 1974. SIGPLAN Notices. 19749(4), 34-42. (b)

Elcock, E. W., Foster, J. M., Gray, P. M. D., McGregor, J. J., & Murray, A. M. ABSET: Aprogramming language based on sets: Motivation and examples. In B. Meltzer & D.Michie (Eds.), Machine Intelligence 6. Edinburgh: Edinburgh University Press 1971Pp. 467-492.

Feldman, J. A. Towards Automatic Programming. Preprints of the NATO Software
Engineering Conference, Rome, Italy, October 1969.

Feldman, J. A. Automatic Programming, AIM-160, STAN:CS-72-255, Stanford Al Lab,
Computer Science Dept., Stanford University, February 1972.

Fenichel, R. R., Weizenbaum, J., & Yochelson, J. C. A program to teach programming. CACM
1970, 13(3), 141-146.

Floyd, R. W. Toward interactive design of correct programs. In C. V. Freiman(Ed.), Foundations and Systems, Information Processing 71: Proceedings of IFIPCongress 71 (vol. 1). Amsterdam: North-Holland Publishing Co., 1972. Pp. 7-10.(Also Memo AIM-150, Report STAN-CS-71-236, Al Lab, Computer Science Dept.,
Stanford University, September 1971.)

Ginsparg, J. M. Natural Language Processing in an Automatic Programming
Domain. Doctoral dissertation and Memo AIM-316, Rep. STAN-CS-78-671 , Al
Lab, Computer Science Dept., Stanford University,

Stanford, CA,

June 1978.
Goldberg, P. C. Automatic Programming, RC 5148, Computer Sciences Dept., Thomas J.Watson Research Center, IBM, Yorktown Heights, New York, September 1974.

Goldberg, P. C. The Future of Programming for Nonprogrammers, RC 5975, Watson
Research Center, IBM, Yorktown Heights, New York, May 1976.

Goldman, N., Balzer, R. M., & Wile, D. The Inference of Domain Structure from InformalProcess Descriptions, Workshop on Pattern-Directed Inference Systems, Hawaii,
May 1977. SIGART Newsletter, No. 63, June 1977, pp. 75-82.

Goldstein, 1., & Sussman, G. J. Some projects in automatic programming, Working Paper 67
Al Lab, MIT, March 1974.

References 753

Goodman, R. (Ed.) The Annual Review in Automatic Programming (Papers of the
Working Conference on Automatic Programming of Digital Computers, Brighton, April
1 959). New York: Pergamon Press, 1960.

Green, C. The Application of Theorem Proving to Question-answering Systems. Doctoral
dissertation, Electrical Engineering Dept., Memo AIM-96, Report STAN-CS-69-138, Al
Lab, Computer Science Dept, Stanford University, June 1 969.

Green, C. Unpublished lecture surveying Automatic Proramming. Stanford
University, Computer Science Dept, 1975. (a)

Green, C. Whither automatic programming, invited tutorial lecture. UCAI 4, Tbilisi,

USSR,

September 1975. (b)

Green, C. An informal talk on recent progress in Automatic Programming. Lectures on
Automatic Programming and List Processing, PIPS-R-12, Electrotechnicai Laboratory,
Tokyo, Japan, November 1976, pp. 1-69. (a)

Green, C. The design of the PSI program synthesis system. Proc. 2nd International
Conference on Software Engineering,October 1976. Pp. 4-18. (b)

Green, C. The PSI Program Synthesis System, 1976. ACM '76: Proceedings of the Annual

Conference,

Association for Computing Machinery, New York, N.Y., October 1976,
pp. 74-75. (c)

Green, C. A Summary of the PSI Program Synthesis System. UCAI 5, 1977, 380-381

Green, C. The PSI Program Synthesis System, 1978: An Abstract. In S. P.

Ghosh,

&L. Y. Liv
(Eds.), AFIPS Conference Proc: National Computer Conf., 1978, 47, 673-674.

Green, C, et al. Progress Report on Knowiege Based Programming. Systems

Control,

Inc., Computer Science Division, Palo Alto, CA, September 1978.

Green, C,

& Barstow, D. A hypothetical dialogue exhibiting a knowledge base for a
program understanding system. In E. W. Elcock & D. Michie (Eds.), Machine
Intelligence 8: Machine Representations of Knowledge. New York: Halsted Press,
John Wiley &

Sons,

1977. Pp. 335-359. (a)

Green, C, & Barstow, D. On Program Synthesis Knowledge, Memo AIM-306, Report STAN-

CS-77-639,

Al Lab, Computer Science Dept., Stanford University,

Stanford, CA,

November 1977. (b)

Green, C,

& Barstow, D. On program synthesis knowledge. Artificial Intelligence, 1978,
10(3), 241-279.

Green,

C, Waldinger, R., Barstow, D., Elschlager, R., Lenat, D.,

McCune,

8.,

Shaw,

D., &
Steinberg, L. Progress Report on Program Understanding Systems, Memo AIM-240, Al
Lab, Stanford, CA, August 1974.

Green, C, & Barstow, D. Some rules for the automatic synthesis of programs. UCAI 4, 1975,
232-239.

fir

754 Automatic Programming

'-■!

111
\

■

?

i

Gries, D. Programming by induction, TR 71-106, Computer Science Dept., Cornell University,
September 1971.

Guttag, J. V., Horowitz, E., & Musser, D. R. Abstract Data Types and Software Validation,
Tech. Report ISI-RR-76-48, Information Sciences Institute, Marina del Rey,

CA,

August
1976.

Hammer, M. Automatic Programming: An Assessment. Unpublished paper, MIT Lab for
Computer Science, Cambridge, Mass., December 1977.

Hammer, M., & Ruth, G. Automating the Software Development Process. In P. Wegner (Ed.),
Research Directions in Software Technology. Cambridge: MIT Press, 1979.

Pp. 767-792.

Hammer, M., Howe, W. G., Kruskal, V. J., & Wladawsky, I. A Very High-Level Programming
Language for Data Processing Applications, RC 5583, Computer Sciences Dept.,
Thomas J. Watson Research Center, IBM, Yorktown Heights, New York, August 1975.

Hardy, S. Synthesis of LISP functions from examples. UCAI 4, 1975, 240-245.

Heidorn, G. The End of the User Programmer? The Software Revolution, Infotech State of
the Art Conf., Copenhagen, Denmark, October 1977. (To appear in Future
Programming, Infotech, England, 1979.)

Heidorn, G. E. Natural Language Inputs to a Simulation Programming System, Report
55hd72101 A, Naval Postgraduate School, Monterey, CA, October 1972.

Heidorn, G. E. English as a very high level language for simulation programming. IBM
Research 4536, September 1973.

Heidorn, G. E. English as a very high level language for simulation programming, Proceedings
Symposium on Very High Level Languages. SIGPLAN Notices, 1974, 9(4), 91-100.

Heidorn, G. E. Augmented Phrase Structure Grammars. In B. L. Nash-Webber & R. C.
Schank (Eds.), Theoretical Issues in Natural Language Processing. Association for
ComputationalLinguistics, June 1976. Pp. 1-5. (a)

Heidorn, G. E. Simulation programming through natural language dialogue. Amsterdam:
North-Holland Studies in the Management Sciences, 1975. (b)

Heidorn, G. E. Simulation programming through natural language dialogue. In M. A.
Geisler (Ed.), TIMS Studies in the Management Sciences, Logistics (vol.
1). Amsterdam: North Holland, 1975. Pp. 71-85. (c)

Heidorn, G. E. Automatic programming through natural language dialogue: A survey. IBM
Journal of Research and Development, 1976, 20(4), 302-313.

Henderson, P., & Morris, J. H., Jr. A lazy evaluator. Third ACM Symposium on Prihciples of
Programming Languages, Atlanta, GA, January 1976. Pp. 95-103.

References 755

Hewitt, C. Teaching Procedures in Humans and Robots, Memo 208, Al Lab, Massachusetts
Institute of Technology, April 1970.

Hewitt, C. Viewing Control Structures as Patterns of Passing Messages, Working paper
92 (rev. cd.), Al Lab, Massachusetts Institute of Technology, April 1976.

Hewitt, C, & Smith, B. C. Towards a programming apprentice. lEEE Transactions:
Software Engineering, 1975, 1(1), 26-45.

Hill, I. D. Wouldn't it be nice if we could write computer programs in ordinary English—or
would it? Computer Bulletin, 1972, 16(6), 306-312.

Hobbs, J. R. From Well Written Algorithm Descriptions into Code, Research Rep. 77-1,
Dept. of Computer

Science,

City College, City University of New York, July 1977.

Kant, E. The selection of efficient implementations for a high level language, Proceedings
of Symposium on Artificial Intelligence and Programming Languages. SIGPLAN
Notices, 12(8); SIGART Newsletter, No. 64, August 1977, pp. 140-146.

Kant, E. Efficiency Estimation: Controlling Search in Program Synthesis. In S. P. Ghosh &
L. Y. Leonard (Eds.), AFIPS Conf. Proc: National Computer

Conf.,

1978,47, 703.

Kant, E. Efficiency Considerations in Program Synthesis: A Knowledge-
based Approach. Doctoral dissertation, Stanford University, Computer Science Dept.,
1979.

Kowalski, R. Predicate Logic
Holland, Amsterdam,1977.

Programming Language, Information Processing, North

Lenat, D. B. Synthesis of large programs from specific dialogues. In G. Huet &
G. Kahn (Eds.), Proving and Improving Programs. Rocquencourt, France: Institut de
Recherche d'lnformatique et d'Automatique,July 1975. Pp. 225-241.

Liskov, B. H., Snyder, A., Atkinson, R., & Schaffert, C. Abstraction Mechanisms in CLU.

CACM,

1977, 20(8), 564-576.

Lomet, D. B. Data Flow Analysis In the Presence of Procedure

Calls,

RC 5728, Thomas J.
Watson Research

Center,

IBM, Yorktown Heights, New York, November 1975.

Long, W. J. A Program Writer. Doctoral dissertation, TR-187, LCS, Massachusetts Institute
of Technology, November 1977.

Low, J. R. Automatic coding: Choice of data structures, Stanford Al Memo AIM-242,

Stanford University, August 1974.

Low, J. R. Automatic Coding: Choice of Data Structures, ISRI6, Blrkhauser Verlag,

1976. (a)

Low, J. R. Automatic Data Structure Selection: An Example and Overview, TR-14,
Computer Science Dept, University of Rochester, September 1976. (b)

756 Automatic Programming

I

I

■i >i

1
i

i

;t ;

i

Low, J. R. Automatic data structure selection: An example and overview. CACM, 1978, 5,
21-25.

Manna, Z., & Waldinger, R. DEDALUS—The DEDuctive ALgorithm UR-Synthesizer. National
Computer

Conference,

Anaheim, CA, June 1978. Pp. 683-690.

Manna, Z., & Waldinger, R. Synthesis: Dreams Programs, Memo AIM, Al Lab, Stanford,

CA,

November 1977.

Manna, Z., & Waldinger, R. J. Toward automatic program synthesis. Communications of the

ACM,

1971, 14(3), 151-165.

Manna, Z., & Waldinger, R. Knowledge and reasoning in program synthesis. Artificial
Intelligence, 1975, 6(2), 175-208.

Manna, Z., & Waldinger, R. DEDALUS—The DEDuctive ALgorithm Ur-Synthesizer. AFIPS
National Computer Conference, 1978, 47, 683-690.

Martin, W. A. OWL Notes: A System for Building Expert Problem Solving
Systems InvolvingVerbal Reasoning, M.I.T. Project MAC, 1974.

McCune,

B. P. The PSI program model builder: Synthesis of very high-level programs.
Proceedings of the Symposium on Artificial Intelligence and Programming
Languages. SIGPLAN Notices, 12(8), 130-139; SIGART Newsletter, No. 64, August
1977, 130-139.

McCune, B. P. Building Program Models incrementally from Informal Descriptions.
Doctoral dissertation, Al Lab Memo, Computer Science Dept., Stanford University, in
press.

Michie, D. Memo functions and machine learning. Nature, 1968, 218(No. 5136), 19-22

Miller, L. A., & Becker, C. A. Programming in Natural English, Research Report RC
5137, Thomas J. Watson Research

Center,

IBM, Yorktown Heights, New York, November
1974.

Mitchell, J. G The Design and Construction of Flexible and Efficient
Interactive Programming Systems. Doctoral dissertation, Dept. of Computer
Science, Carnegie-MellonUniversity, June 1970.

Morgenstern, M. Automatied Design and Optimization of Information Processing Systems.
Doctoral dissertation, MIT, 1976.

Persson, S. Some Sequence Extrapolating Programs: A Study of Representation and
Modeling in Inquiring Systems. Doctoral dissertation, School of Business
Administration, University of California, Berkeley; Memo AIM-46, Report STAN-CS-66-50,
Al Lab, Computer Science Dept., Stanford University, September 1966.

Petry, F. E., & Biermann, A. W. Reconstruction of algorithms from memory snapshots of their
execution. ACM '76: Proceedings of the Annual

Conference,

Association for
Computing Machinery, New York, October 1976, pp. 530-534.

References 757

Phillips, J. V. Program Inference from Traces Using Multiple Knowledge Sources. UCAI 5,
1977, p. 812.

Pratt, V. R. The Competence/Performance Dichotomy in Programming, TM-400, Al
Lab, Massachusetts Institute of Technology, January 1977. r

Project MAC, Automatic compositionof functions from modules (Section 111 E.l). Project MAC
Progress Report X, Massachusetts Institute of Technology, July 1972-July 1973.

Reisser, J. F. (Ed.) SAIL, Stanford Al Memo No. 289, August 1976.

Rich, C. A Library of Programming Plans with Applications to Automated Analysis,
Synthesis and Verification of Programs. Doctoral dissertation, MIT, Cambridge, MA,
1979.

Rich, C, & Shrobe, H. E. Initial Report on a LISP Programmer's Apprentice, TR-354, Al
Lab, Massachusetts Institute of Technology, December 1976.

Rich, C, & Shrobe, H. Initial Report on a LISP Programmer's Apprentice. lEEE Trans, on
Soft. Eng., 1978, 4(6), 456-467.

Rivest, R. L. Two-Dimensional Programming Languages. Dept. of Electrical Engineering and
Computer Science Dept., MIT, April 1975.

Rosen, B. K. Data Flow Analysis for Procedural Languages, RC 5948, Computer Sciences
Dept, Thomas J. Watson Research Center, IBM, Yorktown Heights, New York, April 1976.

Rosen, B. K. Applications of high-level control flow. Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, CA, January 1977.

Rovner, P. D. Automatic Representation Selection for Associate Data

Structures,

TR-10,
Computer Science Dept, University of Rochester, September 1976.

Ruth, G. Analysis of Algorithm Implementations. Doctoral dissertation, TR- 130. Project
MAC, Massachusetts Institute of Technology, May 1974.

Ruth, G. Automatic Design of Data Processing Systems, Proc. of the Third ACM
Symposium on Principles of Programming Languages, Atlanta, Georgia, 1976 (also
MIT Comp. Sci. TR TM-070). (a)

Ruth, G. Intelligent program analysis. Al, 1976, 7, 65-85. (b)

Ruth, G. Protosystem I: An Automatic Programming System Prototype, Proc. of the National
Computer Conf., Anaheim, CA, 1978. AFIPS, 1978, 47, 675-681.

Ruth, G. Automating the Software Development Process. In P. Wegner (Ed.), Research
Directions in Software Technology. Cambridge: MIT Press, 1979.

Sacerdoti,

E. D. A Structure for Plans and Behavior. New York: Elsevier, 1977.

Automatic Programming

758

j

:

j

,i

■i!

Schwartz, J. T. On Programming: An Interim Report on the SETL Project (rev.
cd.). Computer Science Dept., Courant Institute of Mathematical

Sciences,

New York
University, June 1975.

Shaw,

D.,

Swartout,

W., & Green, C. Inferring LISP programs from examples. UCAI 4, 1975,
260-267.

Shrobe, H. E. Reasoning and Logic for Complex Program Understanding. Doctoral
dissertation, MIT, Cambridge, MA, August 1978.

Sibel, W., Furbach, U., &

Schreiber,

J. F. Strategies for the synthesis of algorithms.

Informatik-Fadbendik,

1978 5, 97-109.

Siklossy, L. The synthesis of programs from their properties, and the insane heuristic.
Proceedings of the Third Texas Conference on Computing Systems, Austin, TX,
1974, pp. 5-2-1 - 5-2-5.

Siklossy, L., & Sykes, D. Automatic program synthesis from example problems. UCAI 4,
1975,268-273.

Simon,

H. A. Experiments with a heuristic compiler. JACM, 1963, 10(4), 493-503.

Simon,

H. A. The heuristic compiler. In H. A. Simon & L. Siklossy (Eds.), Representation and
Meaning. Englewood Cliffs, N. J.: Prentice-Hall, 1972. Pp. 9-43.

Summers, P. D. A Methodology for LISP Program Construction from Examples.

JACM,

1977,
24(1), 161-175.

Sussman, G. J. A Computer Model of Skill Acquisition. New York: American Elsevier,
1975.

Szolovits, P., Hawkinson, L. 8., 8c Martin, W. A. An Overview of OWL, A Language for
Knowledge Representation, TM-86, LCS, Massachusetts Institute of Technology, June
1977.

Teitelman, W. PILOT: A Step Toward Man-Computer Symbiosis. Doctoral dissertation,
MAC-TR-32, Project MAC, Massachusetts Institute of Technology, September 1966.

Teitelman, W. Toward a programming laboratory. UCAI 1, 1969, 1-8,

Teitelman, W. Automated programming—The programmer's assistant. Proceedings
Fall Joint Computer Conference (Vol. 41), December 1972, pp. 917-921

Teitelman, W. Interlisp Reference Manual. Xerox Corp., Palo Alto, CA, 1974.

Teitelman, W. A Display Oriented Programmer's Assistant, CSL 77-3, Palo Alto Research

Center,

Xerox Corp., Palo Alto,

CA,

March 1977.

Teitelman, W„ et ai. INTERLISP Reference Manual. Xerox PARC, Palo Alto, CA, October
1978.

759References

j

Van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., & Koster, C. H. A. Report on the
algorithmicLanguage ALGOL6B. Numerische Mathematik, 1969, 14, 79-218.

Waldinger, R. Constructing Program Automatically Using Theorem Proving. Doctoral
dissertation,Carnegie-Mellon University, Pittsburgh, Perm., 1 969.

Waldinger, R. Achieving several goals simultaneously. In E. W. Elcock &D. Michie (Eds.),
Machine Intelligence 8: Machine Representations of Knowledge. New York: Halsted
Press, John Wiley &

Sons,

1977. Pp. 94-136.

Waldinger, R. , & Lee, R. PROW: A step toward automatic program writing. UCAI 1, 1969,
241-252.

Waldinger, R. , & Levitt, K. N. Reasoning about programs. Artificial Intelligence, 1974,

5(3), 235-316.

Warren, D. H. D. WARPLAN: A System for Generating Plans, Memo No. 76, Dept. of
Computational Logic, School of Artificial Intelligence, University of Edinburgh,

Scotland, June 1974.

Warren, D. H. D. Generating conditional plans and programs. Proceedings of the

Conference on Artificial Intelligence and Simulation of Behavior, Edinburgh,

Scotland,

July 1976, pp. 344-354.

Warren, D. H. D. Implementing PROLOG: Compiling Predicate Logic Programs (vols. 1-2),

Research Reports 39-40, Dept. of Al, University of Edinburgh, Scotland, May 1977.

Warren, H. S., Jr. Data Types and Structures for a Set Theoretic Programming Language,

RC 5567, Thomas J. Watson Research Center, IBM, Yorktown Heights, New York, August

1975.

Waterman, D. A. Generalization Learning Techniques for Automating the Learning of
Heuristics. Artificial Intelligence, 1970, 1, 121-170.

Waters, R. C. A System for Understanding Mathematical FORTRAN Programs, MIT-AIM-
-168, MIT, Cambridge, MA, August 1976.

Waters, R. C. Automatic Analysis of the Logical Structure of Programs, MIT-AI-TR-492,
December 1978 (based on doctoral dissertation, A Method for Automatically

Analyzing the Logical Structure of Programs, August 1978).

Waters, R. C. A Method for Analyzing Loop Programs. To appear in lEEE Trans, on Soft.
Eng„ 1979.

Wegbrelt, B. Studies in Extensible Programming Languages. Doctoral dissertation, Center

for Research in Computing Technology, Harvard University, January 1972.

Wegbreit, B. Goal-directed program transformation, CSL-75-8, Xerox PARC, Palo Alto,

CA,

September 1975. (a)

Wegbreit, B. Mechanical program analysis. CACM, 1975, 9(18), 528-539. (b)

760 Automatic Programming

Ei

t:

4

)

' I,

Wilber, 8.. M. A QLISP Reference Manual, Al Center Tech. Report 118, SRI International,
Inc., Menlo Park,

CA,

March 1976.

Winograd, T. Five Lectures on Artificial Intelligence,Stanford AIM-246, C5459, Computer
Science Dept, Stanford University, September 1974.

Winograd, T. Breaking the complexitybarrier again. SIGPLAN Notices, 1975, 10(1), 13-30.

Winston, P. H. Learning structural descriptions from examples. In P. Winston (Ed.), The
Psychologyof Computer Vision. New York:

McGraw-Hill,

1975.

Wirth, N. The programming languagePASCAL. Acta Informatica, 1971, 1, 35-63.

Zilles, S. Abstract Specificationfor Data Types. IBM Research Laboratory, San Jose, CA,
1975.

Zimmerman, LL. On-line program debugging: A graphic approach. Computers and
Automation, 1967, 16(1 1), 30-34.

