
ContentsContents

 Introduction
 What's new
 What's new
 What's new
 Get started

 Create a web app
 Create a Web API

 Tutorials
 Create a Razor Pages web app

 Get started with Razor Pages
 Add a model
 Scaffolded Razor Pages
 SQL Server LocalDB
 Update the pages
 Add search
 Add a new field
 Add validation
 Upload files

 Create an MVC web app
 Get started
 Add a controller
 Add a view
 Add a model
 Work with SQL Server LocalDB
 Controller methods and views
 Add search
 Add a new field
 Add validation
 Examine the Details and Delete methods

 Build Web APIs
 Create a Web API in Visual Studio Code
 Create a Web API in Visual Studio for Mac
 Create a Web API in Visual Studio for Windows
 Create backend services for native mobile apps
 Help pages using Swagger

 Get started with NSwag
 Get started with Swashbuckle

 Data access - with EF Core
 Data access - with Razor Pages and EF Core

 Get started
 Create, Read, Update, and Delete operations
 Sort, filter, page, and group
 Migrations
 Create a complex data model
 Read related data
 Update related data
 Handle concurrency conflicts

 Data access - MVC with EF Core
 Get started
 Create, Read, Update, and Delete operations
 Sort, filter, page, and group
 Migrations
 Create a complex data model
 Read related data
 Update related data
 Handle concurrency conflicts
 Inheritance
 Advanced topics

 Cross platform tutorials
 Razor Pages web app on macOS

 Get started with Razor Pages

 Add a model
 Scaffolded Razor Pages
 Work with SQLite
 Update the pages
 Add search

 Razor Pages web app with VS Code
 Get started with Razor Pages
 Add a model
 Scaffolded Razor Pages
 Work with SQLite
 Update the pages
 Add search

 MVC web app with Visual Studio for Mac
 Get started
 Add a controller
 Add a view
 Add a model
 Work with SQLite
 Controller methods and views
 Add search
 Add a new field
 Add validation
 Examine the Details and Delete methods

 MVC web app with Visual Studio Code on macOS or Linux
 Get started
 Add a controller
 Add a view
 Add a model
 Work with SQLite
 Controller methods and views
 Add search
 Add a new field

 Add validation
 Examine the Details and Delete methods

 Web API with Visual Studio for Mac
 Web API with Visual Studio Code

 Develop apps using a file watcher
 Create backend services for mobile apps

 Fundamentals
 Application startup
 Dependency injection (services)
 Middleware

 Middleware
 Factory-based middleware
 Factory-based middleware with third-party container

 Static files
 Routing
 URL rewriting middleware
 Use multiple environments
 Configuration and options

 Configuration
 Options
 Enhance an app from an external assembly

 Logging
 Logging with LoggerMessage

 Handle errors
 File providers
 Host

 Web Host
 Generic Host
 Background tasks with hosted services

 Session and app state
 Servers

 Kestrel

 ASP.NET Core Module
 HTTP.sys

 Globalization and localization
 Configure Portable Object localization with Orchard Core

 Initiate HTTP requests
 Request features
 Primitives

 Change tokens
 Open Web Interface for .NET (OWIN)
 WebSockets
 Microsoft.AspNetCore.App metapackage
 Microsoft.AspNetCore.All metapackage
 Choose between .NET Core and .NET Framework
 Choose between ASP.NET Core and ASP.NET

 Razor Pages
 Filter methods for Razor Pages
 Create a Razor Class Library
 Route and app conventions
 Razor SDK

 MVC
 Model binding

 Model validation
 Views

 Razor syntax
 View compilation
 Layout
 Tag Helpers

 Create Tag Helpers
 Use Tag Helpers in forms
 Built-in Tag Helpers

 Anchor Tag Helper
 Cache Tag Helper

https://docs.microsoft.com/dotnet/articles/standard/choosing-core-framework-server

 Distributed Cache Tag Helper
 Environment Tag Helper
 Form Tag Helper
 Image Tag Helper
 Input Tag Helper
 Label Tag Helper
 Partial Tag Helper
 Select Tag Helper
 Textarea Tag Helper
 Validation Message Tag Helper
 Validation Summary Tag Helper

 Partial views
 Dependency injection into views
 View components

 Controllers
 Route to controller actions
 File uploads
 Dependency injection into controllers
 Test controllers

 Advanced
 Work with the app model
 Filters
 Areas
 Application parts
 Custom model binding

 Web API
 Controller action return types
 Advanced

 Custom formatters
 Format response data

 Test, debug, and troubleshoot
 Unit testing

https://docs.microsoft.com/dotnet/articles/core/testing/unit-testing-with-dotnet-test

 Integration tests
 Razor Pages unit tests
 Test controllers
 Remote debugging
 Snapshot debugging
 Snapshot debugging in Visual Studio
 Troubleshoot

 Data access with EF Core and Azure
 Get started with Razor Pages and EF Core using Visual Studio
 Get started with ASP.NET Core and EF Core using Visual Studio
 ASP.NET Core with EF Core - new database
 ASP.NET Core with EF Core - existing database
 Get started with ASP.NET Core and Entity Framework 6
 Azure Storage

 Add Azure Storage by using Visual Studio Connected Services
 Get started with Blob storage and Visual Studio Connected Services
 Get Started with Queue Storage and Visual Studio Connected Services
 Get Started with Table Storage and Visual Studio Connected Services

 Client-side development
 Use Gulp
 Use Grunt
 Manage client-side packages with Bower
 Build responsive sites with Bootstrap
 Style apps with LESS, Sass, and Font Awesome
 Bundle and minify
 Use Browser Link
 Use JavaScriptServices for SPAs
 Use the SPA project templates

 Angular project template
 React project template
 React with Redux project template

 SignalR
 Introduction

https://docs.microsoft.com/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/azure/application-insights/app-insights-snapshot-debugger
https://docs.microsoft.com/visualstudio/debugger/debug-live-azure-applications
https://docs.microsoft.com/ef/core/get-started/aspnetcore/new-db
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db
https://azure.microsoft.com/documentation/articles/vs-azure-tools-connected-services-storage/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-blobs/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-queues/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-tables/

 Introduction
 Get started
 Hubs
 JavaScript client
 .NET client
 HubContext
 Users and Groups
 MessagePack Hub Protocol
 Publish to Azure
 Streaming
 Supported platforms

 Mobile
 Create backend services for native mobile apps

 Host and deploy
 Host on Azure App Service

 Publish to Azure with Visual Studio
 Publish to Azure with CLI tools
 Continuous deployment to Azure with Visual Studio and Git
 Continuous deployment to Azure with VSTS
 Troubleshoot ASP.NET Core on Azure App Service

 Host on Windows with IIS
 Troubleshoot ASP.NET Core on IIS
 ASP.NET Core Module configuration reference
 Development-time IIS support in Visual Studio for ASP.NET Core
 IIS Modules with ASP.NET Core

 Host in a Windows service
 Host on Linux with Nginx
 Host on Linux with Apache
 Host in Docker

 Build Docker images
 Visual Studio Tools for Docker
 Publish to a Docker image

 Proxy and load balancer configuration

https://www.visualstudio.com/docs/build/aspnet/core/quick-to-azure
https://docs.microsoft.com/dotnet/articles/core/docker/building-net-docker-images
https://azure.microsoft.com/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/

 Visual Studio publish profiles
 Directory structure
 Common errors reference for Azure App Service and IIS

 Security
 Authentication

 Introduction to Identity
 Scaffold Identity
 Add custom user data to Identity
 Community OSS authentication options
 Configure Identity
 Configure Windows Authentication
 Configure primary key type for Identity
 Custom storage providers for Identity
 Enable authentication using Facebook, Google, and other external providers

 Facebook authentication
 Twitter authentication
 Google authentication
 Microsoft authentication
 Other authentication providers

 WS-Federation authentication
 Account confirmation and password recovery
 Enable QR code generation in Identity
 Two-factor authentication with SMS
 Use Cookie Authentication without Identity
 Azure Active Directory

 Integrate Azure AD Into an ASP.NET Core web app
 Integrate Azure AD B2C into a customer-facing ASP.NET Core web app
 Integrate Azure AD B2C into an ASP.NET Core web API
 Call a ASP.NET Core Web API from a WPF app using Azure AD
 Call a Web API in an ASP.NET Core web app using Azure AD

 Secure ASP.NET Core apps with IdentityServer4
 Secure ASP.NET Core apps with Azure App Service authentication (Easy Auth)

https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-native-aspnetcore/
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-webapi-openidconnect-aspnetcore/
https://identityserver4.readthedocs.io/
https://docs.microsoft.com/azure/app-service/app-service-authentication-overview

 Individual user accounts
 Authorization

 Introduction
 Create an app with user data protected by authorization
 Razor Pages authorization
 Simple authorization
 Role-based authorization
 Claims-based authorization
 Policy-based authorization
 Dependency injection in requirement handlers
 Resource-based authorization
 View-based authorization
 Limit identity by scheme

 Data protection
 Introduction to data protection
 Get started with the Data Protection APIs
 Consumer APIs

 Consumer APIs overview
 Purpose strings
 Purpose hierarchy and multi-tenancy
 Hash passwords
 Limit the lifetime of protected payloads
 Unprotect payloads whose keys have been revoked

 Configuration
 Configure data protection
 Default settings
 Machine-wide policy
 Non-DI aware scenarios

 Extensibility APIs
 Core cryptography extensibility
 Key management extensibility
 Miscellaneous APIs

 Implementation
 Authenticated encryption details
 Subkey derivation and authenticated encryption
 Context headers
 Key management
 Key storage providers
 Key encryption at rest
 Key immutability and settings
 Key storage format
 Ephemeral data protection providers

 Compatibility
 Replace <machineKey> in ASP.NET

 Enforce HTTPS
 EU General Data Protection Regulation (GDPR) support
 Safe storage of app secrets in development
 Azure Key Vault configuration provider
 Anti-request forgery
 Prevent open redirect attacks
 Prevent Cross-Site Scripting
 Enable Cross-Origin Requests (CORS)
 Share cookies among apps

 Performance
 Cache responses

 Cache in-memory
 Work with a distributed cache
 Response caching
 Response caching middleware

 Response compression middleware
 Migration

 ASP.NET Core 2.0 to 2.1
 ASP.NET to ASP.NET Core

 MVC

 Web API
 Configuration
 Authentication and Identity
 ClaimsPrincipal.Current
 Membership to Identity
 HTTP modules to middleware

 ASP.NET Core 1.x to 2.0
 Authentication and Identity

 API reference
 Contribute

https://docs.microsoft.com/dotnet/api/
https://github.com/aspnet/Docs/blob/master/CONTRIBUTING.md

Introduction to ASP.NET Core
5/30/2018 • 2 minutes to read • Edit Online

Why use ASP.NET Core?

Build web APIs and web UI using ASP.NET Core MVC

By Daniel Roth, Rick Anderson, and Shaun Luttin

ASP.NET Core is a cross-platform, high-performance, open-source framework for building modern, cloud-based,
Internet-connected applications. With ASP.NET Core, you can:

Build web apps and services, IoT apps, and mobile backends.
Use your favorite development tools on Windows, macOS, and Linux.
Deploy to the cloud or on-premises.
Run on .NET Core or .NET Framework.

Millions of developers have used (and continue to use) ASP.NET 4.x to create web apps. ASP.NET Core is a
redesign of ASP.NET 4.x, with architectural changes that result in a leaner, more modular framework.

ASP.NET Core provides the following benefits:

A unified story for building web UI and web APIs.
Integration of modern, client-side frameworks and development workflows.
A cloud-ready, environment-based configuration system.
Built-in dependency injection.
A lightweight, high-performance, and modular HTTP request pipeline.
Ability to host on IIS, Nginx, Apache, Docker, or self-host in your own process.
Side-by-side app versioning when targeting .NET Core.
Tooling that simplifies modern web development.
Ability to build and run on Windows, macOS, and Linux.
Open-source and community-focused.

ASP.NET Core ships entirely as NuGet packages. Using NuGet packages allows you to optimize your app to
include only the necessary dependencies. In fact, ASP.NET Core 2.x apps targeting .NET Core only require a single
NuGet package. The benefits of a smaller app surface area include tighter security, reduced servicing, and
improved performance.

ASP.NET Core MVC provides features to build web APIs and web apps:

The Model-View-Controller (MVC) pattern helps make your web APIs and web apps testable.
Razor Pages (new in ASP.NET Core 2.0) is a page-based programming model that makes building web UI
easier and more productive.
Razor markup provides a productive syntax for Razor Pages and MVC views.
Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files.
Built-in support for multiple data formats and content negotiation lets your web APIs reach a broad range of
clients, including browsers and mobile devices.
Model binding automatically maps data from HTTP requests to action method parameters.
Model validation automatically performs client- and server-side validation.

https://github.com/aspnet/Docs/blob/master/aspnetcore/index.md
https://github.com/danroth27
https://twitter.com/RickAndMSFT
https://twitter.com/dicshaunary
https://github.com/aspnet/home
https://www.microsoft.com/internet-of-things/
https://docs.microsoft.com/dotnet/articles/standard/choosing-core-framework-server
https://docs.microsoft.com/aspnet/overview
https://github.com/aspnet/benchmarks
https://docs.microsoft.com/dotnet/articles/standard/choosing-core-framework-server
https://live.asp.net/
https://www.nuget.org/

Client-side development

ASP.NET Core targeting .NET Framework

Next steps

ASP.NET Core integrates seamlessly with popular client-side frameworks and libraries, including Angular, React,
and Bootstrap. For more information, see Client-side development.

ASP.NET Core can target .NET Core or .NET Framework. ASP.NET Core apps targeting .NET Framework aren't
cross-platform—they run on Windows only. There are no plans to remove support for targeting .NET Framework
in ASP.NET Core. Generally, ASP.NET Core is made up of .NET Standard libraries. Apps written with .NET
Standard 2.0 run anywhere that .NET Standard 2.0 is supported.

There are several advantages to targeting .NET Core, and these advantages increase with each release. Some
advantages of .NET Core over .NET Framework include:

Cross-platform. Runs on macOS, Linux, and Windows.
Improved performance
Side-by-side versioning
New APIs
Open source

We're working hard to close the API gap from .NET Framework to .NET Core. The Windows Compatibility Pack
made thousands of Windows-only APIs available in .NET Core. These APIs weren't available in .NET Core 1.x.

For more information, see the following resources:

Get started with Razor Pages
ASP.NET Core tutorials
ASP.NET Core fundamentals
The weekly ASP.NET community standup covers the team's progress and plans. It features new blogs and
third-party software.

https://docs.microsoft.com/dotnet/standard/net-standard
https://docs.microsoft.com/dotnet/core/porting/windows-compat-pack
https://live.asp.net/

What's new in ASP.NET Core 2.1
5/31/2018 • 6 minutes to read • Edit Online

SignalR

Razor class libraries

Identity UI library & scaffolding

HTTPS

This article highlights the most significant changes in ASP.NET Core 2.1, with links to relevant documentation.

SignalR has been rewritten for ASP.NET Core 2.1. ASP.NET Core SignalR includes a number of improvements:

A simplified scale-out model.
A new JavaScript client with no jQuery dependency.
A new compact binary protocol based on MessagePack.
Support for custom protocols.
A new streaming response model.
Support for clients based on bare WebSockets.

For more information, see ASP.NET Core SignalR.

ASP.NET Core 2.1 makes it easier to build and include Razor-based UI in a library and share it across multiple
projects. The new Razor SDK enables building Razor files into a class library project that can be packaged into a
NuGet package. Views and pages in libraries are automatically discovered and can be overridden by the app. By
integrating Razor compilation into the build:

The app startup time is significantly faster.
Fast updates to Razor views and pages at runtime are still available as part of an iterative development
workflow.

For more information, see Create reusable UI using the Razor Class Library project.

ASP.NET Core 2.1 provides ASP.NET Core Identity as a Razor Class Library. Apps that include Identity can apply
the new Identity scaffolder to selectively add the source code contained in the Identity Razor Class Library (RCL).
You might want to generate source code so you can modify the code and change the behavior. For example, you
could instruct the scaffolder to generate the code used in registration. Generated code takes precedence over the
same code in the Identity RCL.

Apps that do not include authentication can apply the Identity scaffolder to add the RCL Identity package. You
have the option of selecting Identity code to be generated.

For more information, see Scaffold Identity in ASP.NET Core projects.

With the increased focus on security and privacy, enabling HTTPS for web apps is important. HTTPS enforcement
is becoming increasingly strict on the web. Sites that don’t use HTTPS are considered insecure. Browsers
(Chromium, Mozilla) are starting to enforce that web features must be used from a secure context. GDPR requires
the use of HTTPS to protect user privacy. While using HTTPS in production is critical, using HTTPS in development
can help prevent issues in deployment (for example, insecure links). ASP.NET Core 2.1 includes a number of

https://github.com/aspnet/Docs/blob/master/aspnetcore/aspnetcore-2.1.md

On by defaultOn by default

HTTPS redirection and enforcementHTTPS redirection and enforcement

Configuration for productionConfiguration for production

GDPR

Integration tests

improvements that make it easier to use HTTPS in development and to configure HTTPS in production. For more
information, see Enforce HTTPS.

To facilitate secure website development, HTTPS is now enabled by default. Starting in 2.1, Kestrel listens on
https://localhost:5001 when a local development certificate is present. A development certificate is created:

As part of the .NET Core SDK first-run experience, when you use the SDK for the first time.
Manually using the new dev-certs tool.

Run dotnet dev-certs https --trust to trust the certificate.

Web apps typically need to listen on both HTTP and HTTPS, but then redirect all HTTP traffic to HTTPS. In 2.1,
specialized HTTPS redirection middleware that intelligently redirects based on the presence of configuration or
bound server ports has been introduced.

Use of HTTPS can be further enforced using HTTP Strict Transport Security Protocol (HSTS). HSTS instructs
browsers to always access the site via HTTPS. ASP.NET Core 2.1 adds HSTS middleware that supports options for
max age, subdomains, and the HSTS preload list.

In production, HTTPS must be explicitly configured. In 2.1, default configuration schema for configuring HTTPS for
Kestrel has been added. Apps can be configured to use:

Multiple endpoints including the URLs. For more information, see Kestrel web server implementation: Endpoint
configuration.
The certificate to use for HTTPS either from a file on disk or from a certificate store.

ASP.NET Core provides APIs and templates to help meet some of the EU General Data Protection Regulation
(GDPR) requirements. For more information, see GDPR support in ASP.NET Core. A sample app shows how to
use and lets you test most of the GDPR extension points and APIs added to the ASP.NET Core 2.1 templates.

A new package is introduced that streamlines test creation and execution. The Microsoft.AspNetCore.Mvc.Testing
package handles the following tasks:

Copies the dependency file (*.deps) from the tested app into the test project's bin folder.
Sets the content root to the tested app's project root so that static files and pages/views are found when the
tests are executed.
Provides the WebApplicationFactory class to streamline bootstrapping the tested app with TestServer.

The following test uses xUnit to check that the Index page loads with a success status code and with the correct
Content-Type header :

https://www.eugdpr.org/
https://github.com/aspnet/Docs/tree/live/aspnetcore/security/gdpr/sample
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://xunit.github.io/

public class BasicTests
 : IClassFixture<WebApplicationFactory<RazorPagesProject.Startup>>
{
 private readonly HttpClient _client;

 public BasicTests(WebApplicationFactory<RazorPagesProject.Startup> factory)
 {
 _client = factory.CreateClient();
 }

 [Fact]
 public async Task GetHomePage()
 {
 // Act
 var response = await _client.GetAsync("/");

 // Assert
 response.EnsureSuccessStatusCode(); // Status Code 200-299
 Assert.Equal("text/html; charset=utf-8",
 response.Content.Headers.ContentType.ToString());
 }
}

[ApiController], ActionResult

IHttpClientFactory

Kestrel transport configuration

Generic host builder

Updated SPA templates

For more information, see the Integration tests topic.

ASP.NET Core 2.1 adds new programming conventions that make it easier to build clean and descriptive web APIs.
ActionResult<T> is a new type added to allow an app to return either a response type or any other action result

(similar to IActionResult), while still indicating the response type. The [ApiController] attribute has also been
added as the way to opt in to Web API-specific conventions and behaviors.

For more information, see Build Web APIs with ASP.NET Core.

ASP.NET Core 2.1 includes a new IHttpClientFactory service that makes it easier to configure and consume
instances of HttpClient in apps. HttpClient already has the concept of delegating handlers that could be linked
together for outgoing HTTP requests. The factory:

Makes registering of instances of HttpClient per named client more intuitive.
Implements a Polly handler that allows Polly policies to be used for Retry, CircuitBreakers, etc.

For more information, see Initiate HTTP Requests.

With the release of ASP.NET Core 2.1, Kestrel's default transport is no longer based on Libuv but instead based on
managed sockets. For more information, see Kestrel web server implementation: Transport configuration.

The Generic Host Builder (HostBuilder) has been introduced. This builder can be used for apps that don't process
HTTP requests (Messaging, background tasks, etc.).

For more information, see .NET Generic Host.

Razor Pages search for Razor assets

Razor Pages in an area

Migrate from 2.0 to 2.1

Additional information

The Single Page Application templates for Angular, React, and React with Redux are updated to use the standard
project structures and build systems for each framework.

The Angular template is based on the Angular CLI, and the React templates are based on create-react-app. For
more information, see Use the Single Page Application templates with ASP.NET Core.

In 2.1, Razor Pages search for Razor assets (such as layouts and partials) in the following directories in the listed
order :

1. Current Pages folder.
2. /Pages/Shared/

3. /Views/Shared/

Razor Pages now support areas. To see an example of areas, create a new Razor Pages web app with individual
user accounts. A Razor Pages web app with individual user accounts includes /Areas/Identity/Pages.

See Migrate from ASP.NET Core 2.0 to 2.1.

For the complete list of changes, see the ASP.NET Core 2.1 Release Notes.

https://github.com/aspnet/Home/releases/tag/2.1.0

What's new in ASP.NET Core 2.0
5/30/2018 • 5 minutes to read • Edit Online

Razor Pages

ASP.NET Core metapackage

Runtime Store

.NET Standard 2.0

Configuration update

Logging update

This article highlights the most significant changes in ASP.NET Core 2.0, with links to relevant documentation.

Razor Pages is a new feature of ASP.NET Core MVC that makes coding page-focused scenarios easier and more
productive.

For more information, see the introduction and tutorial:

Introduction to Razor Pages
Get started with Razor Pages

A new ASP.NET Core metapackage includes all of the packages made and supported by the ASP.NET Core and
Entity Framework Core teams, along with their internal and 3rd-party dependencies. You no longer need to choose
individual ASP.NET Core features by package. All features are included in the Microsoft.AspNetCore.All package.
The default templates use this package.

For more information, see Microsoft.AspNetCore.All metapackage for ASP.NET Core 2.0.

Applications that use the Microsoft.AspNetCore.All metapackage automatically take advantage of the new .NET
Core Runtime Store. The Store contains all the runtime assets needed to run ASP.NET Core 2.0 applications. When
you use the Microsoft.AspNetCore.All metapackage, no assets from the referenced ASP.NET Core NuGet packages
are deployed with the application because they already reside on the target system. The assets in the Runtime
Store are also precompiled to improve application startup time.

For more information, see Runtime store

The ASP.NET Core 2.0 packages target .NET Standard 2.0. The packages can be referenced by other .NET Standard
2.0 libraries, and they can run on .NET Standard 2.0-compliant implementations of .NET, including .NET Core 2.0
and .NET Framework 4.6.1.

The Microsoft.AspNetCore.All metapackage targets .NET Core 2.0 only, because it's intended to be used with the
.NET Core 2.0 Runtime Store.

An IConfiguration instance is added to the services container by default in ASP.NET Core 2.0. IConfiguration in
the services container makes it easier for applications to retrieve configuration values from the container.

For information about the status of planned documentation, see the GitHub issue.

https://github.com/aspnet/Docs/blob/master/aspnetcore/aspnetcore-2.0.md
https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://docs.microsoft.com/dotnet/core/deploying/runtime-store
https://github.com/aspnet/Docs/issues/3387

Authentication update

Identity update

SPA templates

Kestrel improvements

WebListener renamed to HTTP.sys

Enhanced HTTP header support

In ASP.NET Core 2.0, logging is incorporated into the dependency injection (DI) system by default. You add
providers and configure filtering in the Program.cs file instead of in the Startup.cs file. And the default
ILoggerFactory supports filtering in a way that lets you use one flexible approach for both cross-provider filtering

and specific-provider filtering.

For more information, see Introduction to Logging.

A new authentication model makes it easier to configure authentication for an application using DI.

New templates are available for configuring authentication for web apps and web APIs using [Azure AD B2C]
(https://azure.microsoft.com/services/active-directory-b2c/).

For information about the status of planned documentation, see the GitHub issue.

We've made it easier to build secure web APIs using Identity in ASP.NET Core 2.0. You can acquire access tokens
for accessing your web APIs using the Microsoft Authentication Library (MSAL).

For more information on authentication changes in 2.0, see the following resources:

Account confirmation and password recovery in ASP.NET Core
Enable QR Code generation for authenticator apps in ASP.NET Core
Migrate Authentication and Identity to ASP.NET Core 2.0

Single Page Application (SPA) project templates for Angular, Aurelia, Knockout.js, React.js, and React.js with Redux
are available. The Angular template has been updated to Angular 4. The Angular and React templates are available
by default; for information about how to get the other templates, see Create a new SPA project. For information
about how to build a SPA in ASP.NET Core, see Use JavaScriptServices for Creating Single Page Applications.

The Kestrel web server has new features that make it more suitable as an Internet-facing server. A number of
server constraint configuration options are added in the KestrelServerOptions class's new Limits property. Add
limits for the following:

Maximum client connections
Maximum request body size
Minimum request body data rate

For more information, see Kestrel web server implementation in ASP.NET Core.

The packages Microsoft.AspNetCore.Server.WebListener and Microsoft.Net.Http.Server have been merged into a
new package Microsoft.AspNetCore.Server.HttpSys . The namespaces have been updated to match.

For more information, see HTTP.sys web server implementation in ASP.NET Core.

When using MVC to transmit a FileStreamResult or a FileContentResult , you now have the option to set an

https://azure.microsoft.com/services/active-directory-b2c/
https://github.com/aspnet/Docs/issues/3054
https://www.nuget.org/packages/Microsoft.Identity.Client

var data = Encoding.UTF8.GetBytes("This is a sample text from a binary array");
var entityTag = new EntityTagHeaderValue("\"MyCalculatedEtagValue\"");
return File(data, "text/plain", "downloadName.txt", lastModified: DateTime.UtcNow.AddSeconds(-5), entityTag:
entityTag);

Hosting startup and Application Insights

Automatic use of anti-forgery tokens

Automatic precompilation

Razor support for C# 7.1

<LangVersion>latest</LangVersion>

ETag or a LastModified date on the content you transmit. You can set these values on the returned content with
code similar to the following:

The file returned to your visitors will be decorated with the appropriate HTTP headers for the ETag and
LastModified values.

If an application visitor requests content with a Range Request header, ASP.NET will recognize that and handle that
header. If the requested content can be partially delivered, ASP.NET will appropriately skip and return just the
requested set of bytes. You don't need to write any special handlers into your methods to adapt or handle this
feature; it's automatically handled for you.

Hosting environments can now inject extra package dependencies and execute code during application startup,
without the application needing to explicitly take a dependency or call any methods. This feature can be used to
enable certain environments to "light-up" features unique to that environment without the application needing to
know ahead of time.

In ASP.NET Core 2.0, this feature is used to automatically enable Application Insights diagnostics when debugging
in Visual Studio and (after opting in) when running in Azure App Services. As a result, the project templates no
longer add Application Insights packages and code by default.

For information about the status of planned documentation, see the GitHub issue.

ASP.NET Core has always helped HTML-encode content by default, but with the new version an extra step is taken
to help prevent cross-site request forgery (XSRF) attacks. ASP.NET Core will now emit anti-forgery tokens by
default and validate them on form POST actions and pages without extra configuration.

For more information, see Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks.

Razor view pre-compilation is enabled during publish by default, reducing the publish output size and application
startup time.

For more information, see Razor view compilation and precompilation in ASP.NET Core.

The Razor view engine has been updated to work with the new Roslyn compiler. That includes support for C# 7.1
features like Default Expressions, Inferred Tuple Names, and Pattern-Matching with Generics. To use C# 7.1 in your
project, add the following property in your project file and then reload the solution:

For information about the status of C# 7.1 features, see the Roslyn GitHub repository.

https://github.com/aspnet/Docs/issues/3389
https://github.com/dotnet/roslyn/blob/master/docs/Language Feature Status.md

Other documentation updates for 2.0

Migration guidance

Additional Information

Visual Studio publish profiles for ASP.NET Core app deployment
Key Management
Configure Facebook authentication
Configure Twitter authentication
Configure Google authentication
Configure Microsoft Account authentication

For guidance on how to migrate ASP.NET Core 1.x applications to ASP.NET Core 2.0, see the following resources:

Migrate from ASP.NET Core 1.x to ASP.NET Core 2.0
Migrate Authentication and Identity to ASP.NET Core 2.0

For the complete list of changes, see the ASP.NET Core 2.0 Release Notes.

To connect with the ASP.NET Core development team's progress and plans, tune in to the ASP.NET Community
Standup.

https://github.com/aspnet/Home/releases/tag/2.0.0
https://live.asp.net/

What's new in ASP.NET Core 1.1
5/30/2018 • 2 minutes to read • Edit Online

Choosing between versions 1.0 and 1.1 of ASP.NET Core

Additional Information

ASP.NET Core 1.1 includes the following new features:

URL Rewriting Middleware
Response Caching Middleware
View Components as Tag Helpers
Middleware as MVC filters
Cookie-based TempData provider
Azure App Service logging provider
Azure Key Vault configuration provider
Azure and Redis Storage Data Protection Key Repositories
WebListener Server for Windows
WebSockets support

ASP.NET Core 1.1 has more features than 1.0. In general, we recommend you use the latest version.

ASP.NET Core 1.1.0 Release Notes
To connect with the ASP.NET Core development team's progress and plans, tune in to the ASP.NET Community
Standup.

https://github.com/aspnet/Docs/blob/master/aspnetcore/aspnetcore-1.1.md
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener
https://github.com/aspnet/Home/releases/tag/1.1.0
https://live.asp.net/

Get started with ASP.NET Core
6/10/2018 • 2 minutes to read • Edit Online

dotnet new webapp -o aspnetcoreapp

NOTENOTE

dotnet dev-certs https --trust

1. Install the .NET Core 2.1 SDK or later.

2. Create an ASP.NET Core project. Open a command shell and enter the following command:

In ASP.NET Core 2.1 or later, webapp is an alias of the razor argument. If the dotnet new webapp <OPTIONS> command
loads the dotnet new command help instead of creating a new Razor Pages app, install the .NET Core 2.1 SDK.

3. Trust the HTTPS development certificate:

Windows
macOS
Linux

The preceding command displays the following dialog:

Select Yes if you agree to trust the development certificate.

1. Install the .NET Core SDK 2.0 or later.

2. Create a new ASP.NET Core project.

Open a command shell. Enter the following command:

https://github.com/aspnet/Docs/blob/master/aspnetcore/getting-started.md
https://www.microsoft.com/net/download/all
https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300
https://www.microsoft.com/net/download

dotnet new razor -o aspnetcoreapp

cd aspnetcoreapp
dotnet run

@page
@model AboutModel
@{
 ViewData["Title"] = "About";
}
<h2>@ViewData["Title"]</h2>
<h3>@Model.Message</h3>

<p>Hello, world! The time on the server is @DateTime.Now</p>

Next stepsNext steps

mkdir aspnetcoreapp
cd aspnetcoreapp

{
"sdk": { "version": "1.0.4" }
}

dotnet new web

3. Run the app with the following commands:

4. Browse to http://localhost:5000.

5. Open Pages/About.cshtml and modify the page to display the message "Hello, world! The time on the
server is @DateTime.Now":

6. Browse to http://localhost:5000/About and verify the changes.

An ASP.NET Core app can use the .NET Core or .NET Framework Base Class Library and runtime. For more
information, see Choosing between .NET Core and .NET Framework.
Getting started tutorials
Introduction to ASP.NET Core
ASP.NET Core architecture and fundamentals.

1. Install the .NET Core SDK Installer for SDK 1.0.4 from the .NET Core All Downloads page.

2. Create a folder for a new ASP.NET Core project.

Open a command shell. Enter the following commands:

3. If you have installed a later SDK version on your machine, create a global.json file to select the 1.0.4 SDK.

4. Create a new ASP.NET Core project.

5. Restore the packages.

http://localhost:5000
http://localhost:5000/About
https://docs.microsoft.com/dotnet/articles/standard/choosing-core-framework-server
https://www.microsoft.com/net/download/all

dotnet restore

dotnet run

Next stepsNext steps

6. Run the app.

The dotnet run command builds the app first, if needed.

7. Browse to http://localhost:5000 .

An ASP.NET Core app can use the .NET Core or .NET Framework Base Class Library and runtime. For more
information, see Choosing between .NET Core and .NET Framework.
Getting started tutorials
Introduction to ASP.NET Core
ASP.NET Core architecture and fundamentals.

https://docs.microsoft.com/dotnet/core/tools/dotnet-run
https://docs.microsoft.com/dotnet/articles/standard/choosing-core-framework-server

Introduction to Razor Pages in ASP.NET Core
6/10/2018 • 19 minutes to read • Edit Online

Prerequisites

Creating a Razor Pages project

Razor Pages

By Rick Anderson and Ryan Nowak

Razor Pages is a new aspect of ASP.NET Core MVC that makes coding page-focused scenarios easier and more
productive.

If you're looking for a tutorial that uses the Model-View-Controller approach, see Get started with ASP.NET Core
MVC.

This document provides an introduction to Razor Pages. It's not a step by step tutorial. If you find some of the
sections too advanced, see Get started with Razor Pages. For an overview of ASP.NET Core, see the Introduction to
ASP.NET Core.

Install one of the following:

CLI tooling: Windows, Linux, or macOS: .NET Core SDK 2.0 or later
IDE/editor tooling

Windows: Visual Studio for Windows

Linux: Visual Studio Code
macOS: Visual Studio for Mac

ASP.NET and web development workload
.NET Core cross-platform development workload

Visual Studio
Visual Studio for Mac
Visual Studio Code
.NET Core CLI

See Get started with Razor Pages for detailed instructions on how to create a Razor Pages project using Visual
Studio.

Razor Pages is enabled in Startup.cs:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/razor-pages/index.md
https://twitter.com/RickAndMSFT
https://github.com/rynowak
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/linux
https://www.microsoft.com/net/download/macos

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 // Includes support for Razor Pages and controllers.
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
}

@page

<h1>Hello, world!</h1>
<h2>The time on the server is @DateTime.Now</h2>

@page
@using RazorPagesIntro.Pages
@model IndexModel2

<h2>Separate page model</h2>
<p>
 @Model.Message
</p>

using Microsoft.AspNetCore.Mvc.RazorPages;
using System;

namespace RazorPagesIntro.Pages
{
 public class IndexModel2 : PageModel
 {
 public string Message { get; private set; } = "PageModel in C#";

 public void OnGet()
 {
 Message += $" Server time is { DateTime.Now }";
 }
 }
}

 Consider a basic page:

The preceding code looks a lot like a Razor view file. What makes it different is the @page directive. @page makes
the file into an MVC action - which means that it handles requests directly, without going through a controller.
@page must be the first Razor directive on a page. @page affects the behavior of other Razor constructs.

A similar page, using a PageModel class, is shown in the following two files. The Pages/Index2.cshtml file:

The Pages/Index2.cshtml.cs page model:

By convention, the PageModel class file has the same name as the Razor Page file with .cs appended. For example,
the previous Razor Page is Pages/Index2.cshtml. The file containing the PageModel class is named
Pages/Index2.cshtml.cs.

The associations of URL paths to pages are determined by the page's location in the file system. The following table

FILE NAME AND PATH MATCHING URL

/Pages/Index.cshtml / or /Index

/Pages/Contact.cshtml /Contact

/Pages/Store/Contact.cshtml /Store/Contact

/Pages/Store/Index.cshtml /Store or /Store/Index

Writing a basic form

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using RazorPagesContacts.Data;

namespace RazorPagesContacts
{
 public class Startup
 {
 public IHostingEnvironment HostingEnvironment { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<AppDbContext>(options =>
 options.UseInMemoryDatabase("name"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

shows a Razor Page path and the matching URL:

Notes:

The runtime looks for Razor Pages files in the Pages folder by default.
Index is the default page when a URL doesn't include a page.

Razor Pages is designed to make common patterns used with web browsers easy to implement when building an
app. Model binding, Tag Helpers, and HTML helpers all just work with the properties defined in a Razor Page class.
Consider a page that implements a basic "contact us" form for the Contact model:

For the samples in this document, the DbContext is initialized in the Startup.cs file.

The data model:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/razor-pages/index/sample/RazorPagesContacts/Startup.cs#L15-L16

using System.ComponentModel.DataAnnotations;

namespace RazorPagesContacts.Data
{
 public class Customer
 {
 public int Id { get; set; }

 [Required, StringLength(100)]
 public string Name { get; set; }
 }
}

using Microsoft.EntityFrameworkCore;

namespace RazorPagesContacts.Data
{
 public class AppDbContext : DbContext
 {
 public AppDbContext(DbContextOptions options)
 : base(options)
 {
 }

 public DbSet<Customer> Customers { get; set; }
 }
}

@page
@model RazorPagesContacts.Pages.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

The db context:

The Pages/Create.cshtml view file:

The Pages/Create.cshtml.cs page model:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages
{
 public class CreateModel : PageModel
 {
 private readonly AppDbContext _db;

 public CreateModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }
 }
}

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
}

By convention, the PageModel class is called <PageName>Model and is in the same namespace as the page.

The PageModel class allows separation of the logic of a page from its presentation. It defines page handlers for
requests sent to the page and the data used to render the page. This separation allows you to manage page
dependencies through dependency injection and to unit test the pages.

The page has an OnPostAsync handler method, which runs on POST requests (when a user posts the form). You can
add handler methods for any HTTP verb. The most common handlers are:

OnGet to initialize state needed for the page. OnGet sample.
OnPost to handle form submissions.

The Async naming suffix is optional but is often used by convention for asynchronous functions. The OnPostAsync

code in the preceding example looks similar to what you would normally write in a controller. The preceding code is
typical for Razor Pages. Most of the MVC primitives like model binding, validation, and action results are shared.

The previous OnPostAsync method:

public class CreateModel : PageModel
{
 private readonly AppDbContext _db;

 public CreateModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }
}

NOTENOTE

The basic flow of OnPostAsync :

Check for validation errors.

If there are no errors, save the data and redirect.
If there are errors, show the page again with validation messages. Client-side validation is identical to traditional
ASP.NET Core MVC applications. In many cases, validation errors would be detected on the client, and never
submitted to the server.

When the data is entered successfully, the OnPostAsync handler method calls the RedirectToPage helper method to
return an instance of RedirectToPageResult . RedirectToPage is a new action result, similar to RedirectToAction or
RedirectToRoute , but customized for pages. In the preceding sample, it redirects to the root Index page (/Index).
RedirectToPage is detailed in the URL generation for Pages section.

When the submitted form has validation errors (that are passed to the server), the OnPostAsync handler method
calls the Page helper method. Page returns an instance of PageResult . Returning Page is similar to how actions
in controllers return View . PageResult is the default return type for a handler method. A handler method that
returns void renders the page.

The Customer property uses [BindProperty] attribute to opt in to model binding.

Razor Pages, by default, bind properties only with non-GET verbs. Binding to properties can reduce the amount of
code you have to write. Binding reduces code by using the same property to render form fields (
<input asp-for="Customer.Name" />) and accept the input.

For security reasons, you must opt in to binding GET request data to page model properties. Verify user input before
mapping it to properties. Opting in to this behavior is useful when addressing scenarios which rely on query string or route
values.

To bind a property on GET requests, set the [BindProperty] attribute's SupportsGet property to true :
[BindProperty(SupportsGet = true)]

@page
@model RazorPagesContacts.Pages.IndexModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<h1>Contacts</h1>
<form method="post">
 <table class="table">
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var contact in Model.Customers)
 {
 <tr>
 <td>@contact.Id</td>
 <td>@contact.Name</td>
 <td>
 <a asp-page="./Edit" asp-route-id="@contact.Id">edit
 <button type="submit" asp-page-handler="delete"
 asp-route-id="@contact.Id">delete</button>
 </td>
 </tr>
 }
 </tbody>
 </table>

 <a asp-page="./Create">Create
</form>

The home page (Index.cshtml):

The code behind Index.cshtml.cs file:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;
using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesContacts.Pages
{
 public class IndexModel : PageModel
 {
 private readonly AppDbContext _db;

 public IndexModel(AppDbContext db)
 {
 _db = db;
 }

 public IList<Customer> Customers { get; private set; }

 public async Task OnGetAsync()
 {
 Customers = await _db.Customers.AsNoTracking().ToListAsync();
 }

 public async Task<IActionResult> OnPostDeleteAsync(int id)
 {
 var contact = await _db.Customers.FindAsync(id);

 if (contact != null)
 {
 _db.Customers.Remove(contact);
 await _db.SaveChangesAsync();
 }

 return RedirectToPage();
 }
 }
}

<a asp-page="./Edit" asp-route-id="@contact.Id">edit

The Index.cshtml file contains the following markup to create an edit link for each contact:

The Anchor Tag Helper used the asp-route-{value} attribute to generate a link to the Edit page. The link contains
route data with the contact ID. For example, http://localhost:5000/Edit/1 .

The Pages/Edit.cshtml file:

@page "{id:int}"
@model RazorPagesContacts.Pages.EditModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@{
 ViewData["Title"] = "Edit Customer";
}

<h1>Edit Customer - @Model.Customer.Id</h1>
<form method="post">
 <div asp-validation-summary="All"></div>
 <input asp-for="Customer.Id" type="hidden" />
 <div>
 <label asp-for="Customer.Name"></label>
 <div>
 <input asp-for="Customer.Name" />

 </div>
 </div>

 <div>
 <button type="submit">Save</button>
 </div>
</form>

@page "{id:int?}"

The first line contains the @page "{id:int}" directive. The routing constraint "{id:int}" tells the page to accept
requests to the page that contain int route data. If a request to the page doesn't contain route data that can be
converted to an int , the runtime returns an HTTP 404 (not found) error. To make the ID optional, append ? to
the route constraint:

The Pages/Edit.cshtml.cs file:

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages
{
 public class EditModel : PageModel
 {
 private readonly AppDbContext _db;

 public EditModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Customer = await _db.Customers.FindAsync(id);

 if (Customer == null)
 {
 return RedirectToPage("/Index");
 }

 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Attach(Customer).State = EntityState.Modified;

 try
 {
 await _db.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 throw new Exception($"Customer {Customer.Id} not found!");
 }

 return RedirectToPage("/Index");
 }
 }
}

<button type="submit" asp-page-handler="delete"
 asp-route-id="@contact.Id">delete</button>

The Index.cshtml file also contains markup to create a delete button for each customer contact:

When the delete button is rendered in HTML, its formaction includes parameters for :

The customer contact ID specified by the asp-route-id attribute.

<button type="submit" formaction="/?id=1&handler=delete">delete</button>

public async Task<IActionResult> OnPostDeleteAsync(int id)
{
 var contact = await _db.Customers.FindAsync(id);

 if (contact != null)
 {
 _db.Customers.Remove(contact);
 await _db.SaveChangesAsync();
 }

 return RedirectToPage();
}

Mark page properties required

The handler specified by the asp-page-handler attribute.

Here is an example of a rendered delete button with a customer contact ID of 1 :

When the button is selected, a form POST request is sent to the server. By convention, the name of the handler
method is selected based the value of the handler parameter according to the scheme OnPost[handler]Async .

Because the handler is delete in this example, the OnPostDeleteAsync handler method is used to process the
POST request. If the asp-page-handler is set to a different value, such as remove , a page handler method with the

name OnPostRemoveAsync is selected.

The OnPostDeleteAsync method:

Accepts the id from the query string.
Queries the database for the customer contact with FindAsync .
If the customer contact is found, they're removed from the list of customer contacts. The database is updated.
Calls RedirectToPage to redirect to the root Index page (/Index).

Properties on a PageModel can be decorated with the Required attribute:

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.requiredattribute

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 [Required(ErrorMessage = "Color is required")]
 public string Color { get; set; }

 public IActionResult OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 // Process color.

 return RedirectToPage("./Index");
 }
 }
}

Manage HEAD requests with the OnGet handler

public void OnHead()
{
HttpContext.Response.Headers.Add("HandledBy", "Handled by OnHead!");
}

services.AddMvc()
.SetCompatibilityVersion(Microsoft.AspNetCore.Mvc.CompatibilityVersion.Version_2_1);

services.AddMvc()
.AddRazorPagesOptions(options =>
{
options.AllowMappingHeadRequestsToGetHandler = true;
});

See Model validation for more information.

Ordinarily, a HEAD handler is created and called for HEAD requests:

If no HEAD handler (OnHead) is defined, Razor Pages falls back to calling the GET page handler (OnGet) in
ASP.NET Core 2.1 or later. Opt in to this behavior with the SetCompatibilityVersion method in Startup.Configure

for ASP.NET Core 2.1 to 2.x:

SetCompatibilityVersion effectively sets the Razor Pages option AllowMappingHeadRequestsToGetHandler to true .

Rather than opting into all 2.1 behaviors with SetCompatibilityVersion , you can explicitly opt-in to specific
behaviors. The following code opts into the mapping HEAD requests to the GET handler.

XSRF/CSRF and Razor Pages

Using Layouts, partials, templates, and Tag Helpers with Razor Pages

<!DOCTYPE html>
<html>
<head>
 <title>Razor Pages Sample</title>
</head>
<body>
 <a asp-page="/Index">Home
 @RenderBody()
 <a asp-page="/Customers/Create">Create

</body>
</html>

@{
 Layout = "_Layout";
}

@namespace RazorPagesContacts.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

You don't have to write any code for antiforgery validation. Antiforgery token generation and validation are
automatically included in Razor Pages.

Pages work with all the capabilities of the Razor view engine. Layouts, partials, templates, Tag Helpers,
_ViewStart.cshtml, _ViewImports.cshtml work in the same way they do for conventional Razor views.

Let's declutter this page by taking advantage of some of those capabilities.

Add a layout page to Pages/_Layout.cshtml:

The Layout:

Controls the layout of each page (unless the page opts out of layout).
Imports HTML structures such as JavaScript and stylesheets.

See layout page for more information.

The Layout property is set in Pages/_ViewStart.cshtml:

The layout is in the Pages folder. Pages look for other views (layouts, templates, partials) hierarchically, starting in
the same folder as the current page. A layout in the Pages folder can be used from any Razor page under the Pages
folder.

We recommend you not put the layout file in the Views/Shared folder. Views/Shared is an MVC views pattern.
Razor Pages are meant to rely on folder hierarchy, not path conventions.

View search from a Razor Page includes the Pages folder. The layouts, templates, and partials you're using with
MVC controllers and conventional Razor views just work.

Add a Pages/_ViewImports.cshtml file:

@namespace is explained later in the tutorial. The @addTagHelper directive brings in the built-in Tag Helpers to all the
pages in the Pages folder.

 When the @namespace directive is used explicitly on a page:

@page
@namespace RazorPagesIntro.Pages.Customers

@model NameSpaceModel

<h2>Name space</h2>
<p>
 @Model.Message
</p>

namespace RazorPagesContacts.Pages
{
 public class EditModel : PageModel
 {
 private readonly AppDbContext _db;

 public EditModel(AppDbContext db)
 {
 _db = db;
 }

 // Code removed for brevity.

@namespace RazorPagesContacts.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The directive sets the namespace for the page. The @model directive doesn't need to include the namespace.

When the @namespace directive is contained in _ViewImports.cshtml, the specified namespace supplies the prefix for
the generated namespace in the Page that imports the @namespace directive. The rest of the generated namespace
(the suffix portion) is the dot-separated relative path between the folder containing _ViewImports.cshtml and the
folder containing the page.

For example, the code behind file Pages/Customers/Edit.cshtml.cs explicitly sets the namespace:

The Pages/_ViewImports.cshtml file sets the following namespace:

The generated namespace for the Pages/Customers/Edit.cshtml Razor Page is the same as the code behind file. The
@namespace directive was designed so the C# classes added to a project and pages-generated code just work

without having to add an @using directive for the code behind file.

@namespace also works with conventional Razor views.

The original Pages/Create.cshtml view file:

@page
@model RazorPagesContacts.Pages.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

@page
@model CreateModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

URL generation for Pages

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
}

The updated Pages/Create.cshtml view file:

The Razor Pages starter project contains the Pages/_ValidationScriptsPartial.cshtml, which hooks up client-side
validation.

The Create page, shown previously, uses RedirectToPage :

The app has the following file/folder structure:

/Pages

Index.cshtml

/Customers

REDIRECTTOPAGE(X) PAGE

RedirectToPage("/Index") Pages/Index

RedirectToPage("./Index"); Pages/Customers/Index

RedirectToPage("../Index") Pages/Index

RedirectToPage("Index") Pages/Customers/Index

ViewData attribute

public class AboutModel : PageModel
{
[ViewData]
public string Title { get; } = "About";

public void OnGet()
{
}
}

Create.cshtml

Edit.cshtml

Index.cshtml

The Pages/Customers/Create.cshtml and Pages/Customers/Edit.cshtml pages redirect to Pages/Index.cshtml after
success. The string /Index is part of the URI to access the preceding page. The string /Index can be used to
generate URIs to the Pages/Index.cshtml page. For example:

Url.Page("/Index", ...)

<a asp-page="/Index">My Index Page

RedirectToPage("/Index")

The page name is the path to the page from the root /Pages folder including a leading / (for example, /Index).
The preceding URL generation samples offer enhanced options and functional capabilities over hardcoding a URL.
URL generation uses routing and can generate and encode parameters according to how the route is defined in the
destination path.

URL generation for pages supports relative names. The following table shows which Index page is selected with
different RedirectToPage parameters from Pages/Customers/Create.cshtml:

RedirectToPage("Index") , RedirectToPage("./Index") , and RedirectToPage("../Index") are relative names. The
RedirectToPage parameter is combined with the path of the current page to compute the name of the destination

page.

Relative name linking is useful when building sites with a complex structure. If you use relative names to link
between pages in a folder, you can rename that folder. All the links still work (because they didn't include the folder
name).

Data can be passed to a page with ViewDataAttribute. Properties on controllers or Razor Page models decorated
with [ViewData] have their values stored and loaded from the ViewDataDictionary.

In the following example, the AboutModel contains a Title property decorated with [ViewData] . The Title

property is set to the title of the About page:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewdataattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary

<h1>@Model.Title</h1>

<!DOCTYPE html>
<html lang="en">
<head>
<title>@ViewData["Title"] - WebApplication</title>
...

TempData

public class CreateDotModel : PageModel
{
 private readonly AppDbContext _db;

 public CreateDotModel(AppDbContext db)
 {
 _db = db;
 }

 [TempData]
 public string Message { get; set; }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 Message = $"Customer {Customer.Name} added";
 return RedirectToPage("./Index");
 }
}

<h3>Msg: @Model.Message</h3>

In the About page, access the Title property as a model property:

In the layout, the title is read from the ViewData dictionary:

ASP.NET Core exposes the TempData property on a controller. This property stores data until it's read. The Keep

and Peek methods can be used to examine the data without deletion. TempData is useful for redirection, when data
is needed for more than a single request.

The [TempData] attribute is new in ASP.NET Core 2.0 and is supported on controllers and pages.

The following code sets the value of Message using TempData :

The following markup in the Pages/Customers/Index.cshtml file displays the value of Message using TempData .

The Pages/Customers/Index.cshtml.cs page model applies the [TempData] attribute to the Message property.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controller.tempdata?view=aspnetcore-2.0#Microsoft_AspNetCore_Mvc_Controller_TempData
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controller

[TempData]
public string Message { get; set; }

Multiple handlers per page

@page
@model CreateFATHModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" asp-page-handler="JoinList" value="Join" />
 <input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />
 </form>
</body>
</html>

See TempData for more information.

The following page generates markup for two page handlers using the asp-page-handler Tag Helper :

The form in the preceding example has two submit buttons, each using the FormActionTagHelper to submit to a
different URL. The asp-page-handler attribute is a companion to asp-page . asp-page-handler generates URLs that
submit to each of the handler methods defined by a page. asp-page isn't specified because the sample is linking to
the current page.

The page model:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages.Customers
{
 public class CreateFATHModel : PageModel
 {
 private readonly AppDbContext _db;

 public CreateFATHModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostJoinListAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }

 public async Task<IActionResult> OnPostJoinListUCAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }
 Customer.Name = Customer.Name?.ToUpper();
 return await OnPostJoinListAsync();
 }
 }
}

<input type="submit" asp-page-handler="JoinList" value="Join" />
<input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />

Customizing Routing

The preceding code uses named handler methods. Named handler methods are created by taking the text in the
name after On<HTTP Verb> and before Async (if present). In the preceding example, the page methods are
OnPostJoinListAsync and OnPostJoinListUCAsync. With OnPost and Async removed, the handler names are
JoinList and JoinListUC .

Using the preceding code, the URL path that submits to OnPostJoinListAsync is
http://localhost:5000/Customers/CreateFATH?handler=JoinList . The URL path that submits to
OnPostJoinListUCAsync is http://localhost:5000/Customers/CreateFATH?handler=JoinListUC .

You can change the query string ?handler=JoinList in the URL to a route segment /JoinList by specifying the
route template @page "{handler?}" .

If you don't like the query string ?handler=JoinList in the URL, you can change the route to put the handler name

@page "{handler?}"
@model CreateRouteModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" asp-page-handler="JoinList" value="Join" />
 <input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />
 </form>
</body>
</html>

Configuration and settings

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.RootDirectory = "/MyPages";
 options.Conventions.AuthorizeFolder("/MyPages/Admin");
 });
}

Specify that Razor Pages are at the content rootSpecify that Razor Pages are at the content root

in the path portion of the URL. You can customize the route by adding a route template enclosed in double quotes
after the @page directive.

Using the preceding code, the URL path that submits to OnPostJoinListAsync is
http://localhost:5000/Customers/CreateFATH/JoinList . The URL path that submits to OnPostJoinListUCAsync is
http://localhost:5000/Customers/CreateFATH/JoinListUC .

The ? following handler means the route parameter is optional.

You can use @page to append segments and parameters to a page's default route. Using an absolute or virtual path
to change the page's route (like "~/Some/Other/Path") isn't supported.

To configure advanced options, use the extension method AddRazorPagesOptions on the MVC builder :

Currently you can use the RazorPagesOptions to set the root directory for pages, or add application model
conventions for pages. We'll enable more extensibility this way in the future.

To precompile views, see Razor view compilation .

Download or view sample code.

See Get started with Razor Pages, which builds on this introduction.

By default, Razor Pages are rooted in the /Pages directory. Add WithRazorPagesAtContentRoot to AddMvc to
specify that your Razor Pages are at the content root (ContentRootPath) of the app:

https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/razor-pages/index/sample
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.withrazorpagesatcontentroot
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc#Microsoft_Extensions_DependencyInjection_MvcServiceCollectionExtensions_AddMvc_Microsoft_Extensions_DependencyInjection_IServiceCollection_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.contentrootpath

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 ...
 })
 .WithRazorPagesAtContentRoot();

Specify that Razor Pages are at a custom root directorySpecify that Razor Pages are at a custom root directory

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 ...
 })
 .WithRazorPagesRoot("/path/to/razor/pages");

See also

Add WithRazorPagesRoot to AddMvc to specify that your Razor Pages are at a custom root directory in the app
(provide a relative path):

Introduction to ASP.NET Core
Razor syntax
Get started with Razor Pages
Razor Pages authorization conventions
Razor Pages custom route and page model providers
Razor Pages unit tests

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvccorebuilderextensions.withrazorpagesroot
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc#Microsoft_Extensions_DependencyInjection_MvcServiceCollectionExtensions_AddMvc_Microsoft_Extensions_DependencyInjection_IServiceCollection_

Create a Web API with ASP.NET Core and Visual
Studio for Windows
5/18/2018 • 15 minutes to read • Edit Online

Overview

API DESCRIPTION REQUEST BODY RESPONSE BODY

GET /api/todo Get all to-do items None Array of to-do items

GET /api/todo/{id} Get an item by ID None To-do item

POST /api/todo Add a new item To-do item To-do item

PUT /api/todo/{id} Update an existing item To-do item None

DELETE /api/todo/{id} Delete an item None None

By Rick Anderson and Mike Wasson

This tutorial builds a web API for managing a list of "to-do" items. A user interface (UI) isn't created.

There are three versions of this tutorial:

Windows: Web API with Visual Studio for Windows (This tutorial)
macOS: Web API with Visual Studio for Mac
macOS, Linux, Windows: Web API with Visual Studio Code

This tutorial creates the following API:

The following diagram shows the basic design of the app.

The client is whatever consumes the web API (mobile app, browser, etc.). This tutorial doesn't create a client.
Postman or curl is used as the client to test the app.

A model is an object that represents the data in the app. In this case, the only model is a to-do item. Models
are represented as C# classes, also known as Plain Old CLR Object (POCOs).

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-web-api.md
https://twitter.com/RickAndMSFT
https://github.com/mikewasson
https://www.getpostman.com/
https://curl.haxx.se/docs/manpage.html

Prerequisites

Create the project

Launch the appLaunch the app

["value1","value2"]

Add a model classAdd a model class

NOTENOTE

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

A controller is an object that handles HTTP requests and creates the HTTP response. This app has a single
controller.

To keep the tutorial simple, the app doesn't use a persistent database. The sample app stores to-do items in
an in-memory database.

Visual Studio for Windows.
Select the ASP.NET and web development workload.

.Net Core 2.1 SDK

Follow these steps in Visual Studio:

From the File menu, select New > Project.
Select the ASP.NET Core Web Application template. Name the project TodoApi and click OK.
In the New ASP.NET Core Web Application - TodoApi dialog, choose the ASP.NET Core version. Select the
API template and click OK. Do not select Enable Docker Support.

In Visual Studio, press CTRL+F5 to launch the app. Visual Studio launches a browser and navigates to
http://localhost:<port>/api/values , where <port> is a randomly chosen port number. Chrome, Microsoft Edge,

and Firefox display the following output:

If using Internet Explorer, you'll be prompted to save a values.json file.

A model is an object representing the data in the app. In this case, the only model is a to-do item.

In Solution Explorer, right-click the project. Select Add > New Folder. Name the folder Models.

The model classes can go anywhere in the project. The Models folder is used by convention for model classes.

In Solution Explorer, right-click the Models folder and select Add > Class. Name the class TodoItem and click Add.

Update the TodoItem class with the following code:

The database generates the Id when a TodoItem is created.

https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

Create the database contextCreate the database context

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

Register the database context

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

The database context is the main class that coordinates Entity Framework functionality for a given data model. This
class is created by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

In Solution Explorer, right-click the Models folder and select Add > Class. Name the class TodoContext and click
Add.

Replace the class with the following code:

In this step, the database context is registered with the dependency injection container. Services (such as the DB
context) that are registered with the dependency injection (DI) container are available to the controllers.

Register the DB context with the service container using the built-in support for dependency injection. Replace the
contents of the Startup.cs file with the following code:

using Microsoft.AspNetCore.Builder;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

Add a controllerAdd a controller

The preceding code:

Removes the unused code.
Specifies an in-memory database is injected into the service container.

In Solution Explorer, right-click the Controllers folder. Select Add > New Item. In the Add New Item dialog, select
the API Controller Class template. Name the class TodoController, and click Add.

Replace the class with the following code:

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API.

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API. The class is annotated with an [ApiController] attribute to enable some convenient features.
For information on features enabled by the attribute, see Annotate class with ApiControllerAttribute.

The controller's constructor uses Dependency Injection to inject the database context (TodoContext) into the
controller. The database context is used in each of the CRUD methods in the controller. The constructor adds an
item to the in-memory database if one doesn't exist.

https://wikipedia.org/wiki/Create,_read,_update_and_delete

Get to-do items

[HttpGet]
public List<TodoItem> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet]
public ActionResult<List<TodoItem>> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Routing and URL pathsRouting and URL paths

To get to-do items, add the following methods to the TodoController class:

These methods implement the two GET methods:

GET /api/todo

GET /api/todo/{id}

Here's a sample HTTP response for the GetAll method:

Later in the tutorial, I'll show how the HTTP response can be viewed with Postman or curl.

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each method
is constructed as follows:

Take the template string in the controller's Route attribute:

https://www.getpostman.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/curl.1.html

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

Return valuesReturn values

Replace [controller] with the name of the controller, which is the controller class name minus the "Controller"
suffix. For this sample, the controller class name is TodoController and the root name is "todo". ASP.NET Core
routing is case insensitive.
If the [HttpGet] attribute has a route template (such as [HttpGet("/products")] , append that to the path. This
sample doesn't use a template. For more information, see Attribute routing with Http[Verb] attributes.

In the following GetById method, "{id}" is a placeholder variable for the unique identifier of the to-do item.
When GetById is invoked, it assigns the value of "{id}" in the URL to the method's id parameter.

Name = "GetTodo" creates a named route. Named routes:

Enable the app to create an HTTP link using the route name.
Are explained later in the tutorial.

The GetAll method returns a collection of TodoItem objects. MVC automatically serializes the object to JSON and
writes the JSON into the body of the response message. The response code for this method is 200, assuming there
are no unhandled exceptions. Unhandled exceptions are translated into 5xx errors.

In contrast, the GetById method returns the more general IActionResult type, which represents a wide range of

https://www.json.org/

Launch the appLaunch the app

Implement the other CRUD operations

CreateCreate

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[HttpPost]
public IActionResult Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

return types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP 404
response.
Otherwise, the method returns 200 with a JSON response body. Returning Ok results in an HTTP 200 response.

In contrast, the GetById method returns the ActionResult<T> type, which represents a wide range of return types.
GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP 404
response.
Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200
response.

In Visual Studio, press CTRL+F5 to launch the app. Visual Studio launches a browser and navigates to
http://localhost:<port>/api/values , where <port> is a randomly chosen port number. Navigate to the Todo

controller at http://localhost:<port>/api/todo .

In the following sections, Create , Update , and Delete methods are added to the controller.

Add the following Create method:

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. The [FromBody] attribute
tells MVC to get the value of the to-do item from the body of the HTTP request.

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. MVC gets the value of the
to-do item from the body of the HTTP request.

The CreatedAtRoute method:

Returns a 201 response. HTTP 201 is the standard response for an HTTP POST method that creates a new

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

Use Postman to send a Create requestUse Postman to send a Create request

resource on the server.
Adds a Location header to the response. The Location header specifies the URI of the newly created to-do item.
See 10.2.2 201 Created.
Uses the "GetTodo" named route to create the URL. The "GetTodo" named route is defined in GetById :

Start the app.
Open Postman.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

{
 "name":"walk dog",
 "isComplete":true
}

TIPTIP

Update the port number in the localhost URL.
Set the HTTP method to POST.
Click the Body tab.
Select the raw radio button.
Set the type to JSON (application/json).
Enter a request body with a to-do item resembling the following JSON:

Click the Send button.

If no response displays after clicking Send, disable the SSL certification verification option. This is found under File >
Settings. Click the Send button again after disabling the setting.

Click the Headers tab in the Response pane and copy the Location header value:

UpdateUpdate

[HttpPut("{id}")]
public IActionResult Update(long id, [FromBody] TodoItem item)
{
 if (item == null || item.Id != id)
 {
 return BadRequest();
 }

 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

The Location header URI can be used to access the new item.

Add the following Update method:

[HttpPut("{id}")]
public IActionResult Update(long id, TodoItem item)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

DeleteDelete

Update is similar to Create , except it uses HTTP PUT. The response is 204 (No Content). According to the HTTP
specification, a PUT request requires the client to send the entire updated entity, not just the deltas. To support
partial updates, use HTTP PATCH.

Use Postman to update the to-do item's name to "walk cat":

Add the following Delete method:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

[HttpDelete("{id}")]
public IActionResult Delete(long id)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todo);
 _context.SaveChanges();
 return NoContent();
}

Call the Web API with jQuery

The Delete response is 204 (No Content).

Use Postman to delete the to-do item:

In this section, an HTML page is added that uses jQuery to call the Web API. jQuery initiates the request and
updates the page with the details from the API's response.

Configure the project to serve static files and to enable default file mapping. This is accomplished by invoking the
UseStaticFiles and UseDefaultFiles extension methods in Startup.Configure. For more information, see Static files.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#Microsoft_AspNetCore_Builder_StaticFileExtensions_UseStaticFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#Microsoft_AspNetCore_Builder_DefaultFilesExtensions_UseDefaultFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_

public void Configure(IApplicationBuilder app)
{
 app.UseDefaultFiles();
 app.UseStaticFiles();
 app.UseMvc();
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>To-do CRUD</title>
 <style>
 input[type='submit'], button, [aria-label] {
 cursor: pointer;
 }

 #spoiler {
 display: none;
 }

 table {
 font-family: Arial, sans-serif;
 border: 1px solid;
 border-collapse: collapse;
 }

 th {
 background-color: #0066CC;
 color: white;
 }

 td {
 border: 1px solid;
 padding: 5px;
 }
 </style>
</head>
<body>
 <h1>To-do CRUD</h1>
 <h3>Add</h3>
 <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
 <input type="text" id="add-name" placeholder="New to-do">
 <input type="submit" value="Add">
 </form>

 <div id="spoiler">
 <h3>Edit</h3>
 <form class="my-form">
 <input type="hidden" id="edit-id">
 <input type="checkbox" id="edit-isComplete">
 <input type="text" id="edit-name">
 <input type="submit" value="Edit">
 ✖
 </form>
 </div>

 <p id="counter"></p>

 <table>
 <tr>
 <th>Is Complete</th>
 <th>Name</th>

Add an HTML file, named index.html, to the project's wwwroot directory. Replace its contents with the following
markup:

 <th>Name</th>
 <th></th>
 <th></th>
 </tr>
 <tbody id="todos"></tbody>
 </table>

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
 crossorigin="anonymous"></script>
 <script src="site.js"></script>
</body>
</html>

const uri = 'api/todo';
let todos = null;
function getCount(data) {
 const el = $('#counter');
 let name = 'to-do';
 if (data) {
 if (data > 1) {
 name = 'to-dos';
 }
 el.text(data + ' ' + name);
 } else {
 el.html('No ' + name);
 }
}

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',

Add a JavaScript file, named site.js, to the project's wwwroot directory. Replace its contents with the following code:

 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

function deleteItem(id) {
 $.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
 });
}

function editItem(id) {
 $.each(todos, function (key, item) {
 if (item.id === id) {
 $('#edit-name').val(item.name);
 $('#edit-id').val(item.id);
 $('#edit-isComplete').val(item.isComplete);
 }
 });
 $('#spoiler').css({ 'display': 'block' });
}

$('.my-form').on('submit', function () {
 const item = {
 'name': $('#edit-name').val(),
 'isComplete': $('#edit-isComplete').is(':checked'),
 'id': $('#edit-id').val()
 };

 $.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
 });

 closeInput();
 return false;
});

function closeInput() {
 $('#spoiler').css({ 'display': 'none' });
}

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally. Open
launchSettings.json in the Properties directory of the project. Remove the launchUrl property to force the app to
open at index.html—the project's default file.

There are several ways to get jQuery. In the preceding snippet, the library is loaded from a CDN. This sample is a
complete CRUD example of calling the API with jQuery. There are additional features in this sample to make the
experience richer. Below are explanations around the calls to the API.

Get a list of to-do itemsGet a list of to-do items

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

Add a to-do itemAdd a to-do item

To get a list of to-do items, send an HTTP GET request to /api/todo.

The jQuery ajax function sends an AJAX request to the API, which returns JSON representing an object or array.
This function can handle all forms of HTTP interaction, sending an HTTP request to the specified url . GET is used
as the type . The success callback function is invoked if the request succeeds. In the callback, the DOM is updated
with the to-do information.

To add a to-do item, send an HTTP POST request to /api/todo/. The request body should contain a to-do object.
The ajax function is using POST to call the API. For POST and PUT requests, the request body represents the data
sent to the API. The API is expecting a JSON request body. The accepts and contentType options are set to
application/json to classify the media type being received and sent, respectively. The data is converted to a JSON

object using JSON.stringify . When the API returns a successful status code, the getData function is invoked to
update the HTML table.

https://api.jquery.com/jquery.ajax/
https://api.jquery.com/jquery.ajax/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

Update a to-do itemUpdate a to-do item

$.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
});

Delete a to-do itemDelete a to-do item

$.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
});

Next steps

Updating a to-do item is very similar to adding one, since both rely on a request body. The only real difference
between the two in this case is that the url changes to add the unique identifier of the item, and the type is PUT .

Deleting a to-do item is accomplished by setting the type on the AJAX call to DELETE and specifing the item's
unique identifier in the URL.

For information on using a persistent database, see:

Create a Razor Pages web app with ASP.NET Core
Work with data in ASP.NET Core

ASP.NET Core Web API help pages using Swagger

Routing to controller actions

Build web APIs with ASP.NET Core

Controller action return types

For information about deploying an API, including to Azure App Service, see Host and deploy.

View or download sample code. See how to download.

https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/first-web-api/samples

ASP.NET Core tutorials
5/31/2018 • 2 minutes to read • Edit Online

Build web apps

Build Web APIs

Data access and storage

Authentication and authorization

The following step-by-step guides for developing ASP.NET Core applications are available:

Razor Pages is the recommended approach to create a new Web UI app with ASP.NET Core 2.0.

Introduction to Razor Pages in ASP.NET Core

Create a Razor Pages web app with ASP.NET Core

Razor Pages on Windows
Razor Pages on macOS
Razor Pages with VS Code

Create an ASP.NET Core MVC web app

Web app with Visual Studio for Windows
Web app with Visual Studio for Mac
Web app with Visual Studio Code on macOS or Linux

Get started with ASP.NET Core and Entity Framework Core using Visual Studio

Create Tag Helpers

Create a simple view component

Develop apps using a file watcher

Create a Web API with ASP.NET Core

Web API with Visual Studio for Windows
Web API with Visual Studio for Mac
Web API with Visual Studio Code

ASP.NET Core Web API help pages using Swagger

Get started with NSwag
Get started with Swashbuckle

Create backend web services for native mobile apps

Get started with Razor Pages and EF Core using Visual Studio
Get started with ASP.NET Core MVC and EF Core using Visual Studio
ASP.NET Core MVC with EF Core - new database
ASP.NET Core MVC with EF Core - existing database

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/index.md
https://docs.microsoft.com/ef/core/get-started/aspnetcore/new-db
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db

Client-side development

Test

Host and deploy

How to download a sample

Enable authentication using Facebook, Google, and other external providers
Account confirmation and password recovery
Two-factor authentication with SMS

Use Gulp
Use Grunt
Manage client-side packages with Bower
Build responsive sites with Bootstrap

Unit testing in .NET Core using dotnet test

Deploy an ASP.NET Core web app to Azure using Visual Studio
Deploy an ASP.NET Core web app to Azure using the command line
Publish to an Azure Web App with continuous deployment
Deploy an ASP.NET container to a remote Docker host
ASP.NET Core and Azure Service Fabric

1. Download the ASP.NET repository zip file.
2. Unzip the Docs-master.zip file.
3. Use the URL in the sample link to help you navigate to the sample directory.

https://docs.microsoft.com/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/azure/vs-azure-tools-docker-hosting-web-apps-in-docker
https://docs.microsoft.com/azure/service-fabric/service-fabric-add-a-web-frontend
https://codeload.github.com/aspnet/Docs/zip/master

Create a Razor Pages web app with ASP.NET Core
4/11/2018 • 2 minutes to read • Edit Online

This series explains the basics of building a Razor Pages web app with ASP.NET Core using Visual Studio. Other
versions of this series include a macOS version and a Visual Studio Code version.

1. Get started with Razor Pages
2. Add a model to a Razor Pages app
3. Scaffolded Razor Pages
4. Work with SQL Server LocalDB
5. Updating the pages
6. Add search
7. Add a new field
8. Add validation
9. Upload files

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/index.md

Get started with Razor Pages in ASP.NET Core
5/30/2018 • 6 minutes to read • Edit Online

Prerequisites

Create a Razor web app

By Rick Anderson

We recommend you follow the ASP.NET Core 2.1 version of this tutorial. It's much easier to follow and covers
more features. Select ASP.NET Core 2.1 in the version selector.

This tutorial teaches the basics of building an ASP.NET Core Razor Pages web app. Razor Pages is the
recommended way to build UI for web apps in ASP.NET Core.

There are three versions of this tutorial:

Windows: This tutorial
MacOS: Get started with Razor Pages with Visual Studio for Mac
macOS, Linux, and Windows: Get started with ASP.NET Core Razor Pages in Visual Studio Code

View or download sample code (how to download)

Visual Studio for Windows.
Select the ASP.NET and web development workload.

.Net Core 2.1 SDK

From the Visual Studio File menu, select New > Project.
Create a new ASP.NET Core Web Application. Name the project RazorPagesMovie. It's important to
name the project RazorPagesMovie so the namespaces will match when you copy/paste code.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start.md
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

Select ASP.NET Core 2.1 in the dropdown, and then select Web Application.

The Visual Studio template creates a starter project:

Press F5 to run the app in debug mode or Ctrl-F5 to run without attaching the debugger. Select Accept to
consent to tracking. This app doesn't track personal information. The template generated code includes assets
to help meet General Data Protection Regulation (GDPR).

The following image shows the app after accepting tracking:

Visual Studio starts IIS Express and runs the app. The address bar shows localhost:port# and not
something like example.com . That's because localhost is the standard hostname for your local computer.
Localhost only serves web requests from the local computer. When Visual Studio creates a web project, a
random port is used for the web server. In the preceding image, the port number is 5000. When you run
the app, you'll see a different port number.
Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file, refresh
the browser, and see the code changes. Many developers prefer to use non-debug mode to quickly launch
the app and view changes.

The default template creates RazorPagesMovie, Home, About and Contact links and pages. Depending on
the size of your browser window, you might need to click the navigation icon to show the links.

https://docs.microsoft.com/iis/extensions/introduction-to-iis-express/iis-express-overview

Project files and folders

FILE OR FOLDER PURPOSE

wwwroot Contains static assets. See Static files.

Pages Folder for Razor Pages.

appsettings.json Configuration

Program.cs Configures the host of the ASP.NET Core app.

Startup.cs Configures services and the request pipeline. See Startup.

The Pages/Shared folderThe Pages/Shared folder

Test the links. The RazorPagesMovie and Home links go to the Index page. The About and Contact links go
to the About and Contact pages, respectively.

The following table lists the files and folders in the project. For this tutorial, the Startup.cs file is the most
important to understand. You don't need to review each link provided below. The links are provided as a
reference when you need more information on a file or folder in the project.

The _Layout.cshtml file contains common HTML elements (script and stylesheet links) and sets the layout for
the app. For example when you select RazorPagesMovie, Home, About or Contact, a common set of
elements appears in the webpage. The common elements include the navigation menu at the top and the
header at the bottom of the window. For more information, see Layout.

The _ValidationScriptsPartial.cshtml file provides a reference to jQuery validation scripts. When the Create

https://jquery.com/

The Pages folderThe Pages folder

Prerequisites

Create a Razor web app

NOTENOTE

and Edit pages are added later in the tutorial, the _ValidationScriptsPartial.cshtml file is used.

The _CookieConsentPartial.cshtml file provides a navigation bar and content to summarize the privacy and
cookie use policy. For more information on the GDPR assets included in the project, see EU General Data
Protection Regulation (GDPR) support in ASP.NET Core).

The _ViewStart.cshtml sets the Razor Pages Layout property to use the _Layout.cshtml file. See Layout for
more information.

The _ViewImports.cshtml file contains Razor directives that are imported into each Razor Page. See Importing
Shared Directives for more information.

The About , Contact and Index pages are basic pages you can use to start an app. The Error page is used to
display error information.

Visual Studio for Windows.
Select the ASP.NET and web development workload.

.Net Core 2.1 SDK

From the Visual Studio File menu, select New > Project.
Create a new ASP.NET Core Web Application. Name the project RazorPagesMovie. It's important to
name the project RazorPagesMovie so the namespaces will match when you copy/paste code.

Select ASP.NET Core 2.0 in the dropdown, and then select Web Application.

To use ASP.NET Core with .NET Framework, you must first select .NET Framework from the leftmost drop-down in the
dialog, then you can select the desired ASP.NET Core version.

https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

The Visual Studio template creates a starter project:

Press F5 to run the app in debug mode or Ctrl-F5 to run without attaching the debugger

Visual Studio starts IIS Express and runs your app. The address bar shows localhost:port# and not
something like example.com . That's because localhost is the standard hostname for your local computer.
Localhost only serves web requests from the local computer. When Visual Studio creates a web project, a
random port is used for the web server. In the preceding image, the port number is 5000. When you run
the app, you'll see a different port number.
Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file, refresh
the browser, and see the code changes. Many developers prefer to use non-debug mode to quickly launch
the app and view changes.

The default template creates RazorPagesMovie, Home, About and Contact links and pages. Depending on
the size of your browser window, you might need to click the navigation icon to show the links.

https://docs.microsoft.com/iis/extensions/introduction-to-iis-express/iis-express-overview

Project files and folders

FILE OR FOLDER PURPOSE

wwwroot Contains static assets. See Static files.

Pages Folder for Razor Pages.

appsettings.json Configuration

Program.cs Configures the host of the ASP.NET Core app.

Startup.cs Configures services and the request pipeline. See Startup.

The Pages/Shared folderThe Pages/Shared folder

Test the links. The RazorPagesMovie and Home links go to the Index page. The About and Contact links go
to the About and Contact pages, respectively.

The following table lists the files and folders in the project. For this tutorial, the Startup.cs file is the most
important to understand. You don't need to review each link provided below. The links are provided as a
reference when you need more information on a file or folder in the project.

The _Layout.cshtml file contains common HTML elements (script and stylesheet links) and sets the layout for
the app. For example when you select RazorPagesMovie, Home, About or Contact, a common set of
elements appears in the webpage. The common elements include the navigation menu at the top and the
header at the bottom of the window. For more information, see Layout.

The _ValidationScriptsPartial.cshtml file provides a reference to jQuery validation scripts. When the Create

https://jquery.com/

The Pages folderThe Pages folder

and Edit pages are added later in the tutorial, the _ValidationScriptsPartial.cshtml file is used.

The _CookieConsentPartial.cshtml file provides a navigation bar and content to summarize the privacy and
cookie use policy. For more information on the GDPR assets included in the project, see EU General Data
Protection Regulation (GDPR) support in ASP.NET Core).

The _ViewStart.cshtml sets the Razor Pages Layout property to use the _Layout.cshtml file. See Layout for
more information.

The _ViewImports.cshtml file contains Razor directives that are imported into each Razor Page. See Importing
Shared Directives for more information.

The About , Contact and Index pages are basic pages you can use to start an app. The Error page is used to
display error information.

N E X T: A D D IN G A

M O D E L

Add a model to a Razor Pages app in ASP.NET Core
5/30/2018 • 7 minutes to read • Edit Online

Add a data model

using System;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Scaffold the movie model

By Rick Anderson

In this section, you add classes for managing movies in a database. You use these classes with Entity Framework
Core (EF Core) to work with a database. EF Core is an object-relational mapping (ORM) framework that simplifies
the data access code that you have to write.

The model classes you create are known as POCO classes (from "plain-old CLR objects") because they don't have
any dependency on EF Core. They define the properties of the data that are stored in the database.

In this tutorial, you write the model classes first, and EF Core creates the database. An alternate approach not
covered here is to generate model classes from an existing database.

View or download sample.

In Solution Explorer, right-click the RazorPagesMovie project > Add > New Folder. Name the folder Models.

Right click the Models folder. Select Add > Class. Name the class Movie and add the following properties:

Replace the contents of the Movie class with the following code:

In this section, the movie model is scaffolded. That is, the scaffolding tool produces pages for Create, Read,
Update, and Delete (CRUD) operations for the movie model.

Create a Pages/Movies folder :

In Solution Explorer, right click on the Pages folder > Add > New Folder.
Name the folder Movies

In Solution Explorer, right click on the Pages/Movies folder > Add > New Scaffolded Item.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/model.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/ef/core
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie

In the Add Scaffold dialog, select Razor Pages using Entity Framework (CRUD) > ADD .

Complete the Add Razor Pages using Entity Framework (CRUD) dialog:

In the Model class drop down, select Movie (RazorPagesMovie.Models).
In the Data context class row, select the + (plus) sign and accept the generated name

Perform initial migration

Add-Migration Initial
Update-Database

RazorPagesMovie.Models.RazorPagesMovieContext.
In the Data context class drop down, select RazorPagesMovie.Models.RazorPagesMovieContext
Select Add.

In this section, you use the Package Manager Console (PMC) to:

Add an initial migration.
Update the database with the initial migration.

From the Tools menu, select NuGet Package Manager > Package Manager Console.

In the PMC, enter the following commands:

Alternatively, the following .NET Core CLI commands can be used:

dotnet ef migrations add Initial
dotnet ef database update

Add a data model

Ignore the following warning message, you fix that in the next tutorial:

Microsoft.EntityFrameworkCore.Model.Validation[30000]

No type was specified for the decimal column 'Price' on entity type 'Movie'. This will cause values to be silently
truncated if they do not fit in the default precision and scale. Explicitly specify the SQL server column type that can
accommodate all the values using 'ForHasColumnType()'.

The Add-Migration command generates code to create the initial database schema. The schema is based on the
model specified in the DbContext (In the Models/MovieContext.cs file). The Initial argument is used to name the
migrations. You can use any name, but by convention you choose a name that describes the migration. See
Introduction to migrations for more information.

The Update-Database command runs the Up method in the Migrations/{time-stamp}_InitialCreate.cs file, which
creates the database.

If you get the error :

SqlException: Cannot open database "RazorPagesMovieContext-GUID" requested by the login. The login failed.
Login failed for user 'User-name'.

You missed the migrations step.

By Rick Anderson

In this section, you add classes for managing movies in a database. You use these classes with Entity Framework
Core (EF Core) to work with a database. EF Core is an object-relational mapping (ORM) framework that simplifies
the data access code that you have to write.

The model classes you create are known as POCO classes (from "plain-old CLR objects") because they don't have
any dependency on EF Core. They define the properties of the data that are stored in the database.

In this tutorial, you write the model classes first, and EF Core creates the database. An alternate approach not
covered here is to generate model classes from an existing database.

View or download sample.

In Solution Explorer, right-click the RazorPagesMovie project > Add > New Folder. Name the folder Models.

Right click the Models folder. Select Add > Class. Name the class Movie and add the following properties:

Add the following properties to the Movie class:

https://twitter.com/RickAndMSFT
https://docs.microsoft.com/ef/core
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie

using System;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Add a database context classAdd a database context class

using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie.Models
{
 public class MovieContext : DbContext
 {
 public MovieContext(DbContextOptions<MovieContext> options)
 : base(options)
 {
 }

 public DbSet<Movie> Movie { get; set; }
 }
}

Add a database connection stringAdd a database connection string

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "ConnectionStrings": {
 "MovieContext": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

Register the database contextRegister the database context

The ID field is required by the database for the primary key.

Add the following MovieContext.cs class to the Models folder :

The preceding code creates a DbSet property for the entity set. In Entity Framework terminology, an entity set
typically corresponds to a database table, and an entity corresponds to a row in the table.

Add a connection string to the appsettings.json file.

Register the database context with the dependency injection container in the ConfigureServices method of the
Startup class (Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 // requires
 // using RazorPagesMovie.Models;
 // using Microsoft.EntityFrameworkCore;

 services.AddDbContext<MovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MovieContext")));
 services.AddMvc();
}

Add scaffold tooling and perform initial migration

Install-Package Microsoft.VisualStudio.Web.CodeGeneration.Design -Version 2.0.3
Add-Migration Initial
Update-Database

dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.Design
dotnet ef migrations add Initial
dotnet ef database update

Build the project to verify you don't have any errors.

In this section, you use the Package Manager Console (PMC) to:

Add the Visual Studio web code generation package. This package is required to run the scaffolding engine.
Add an initial migration.
Update the database with the initial migration.

From the Tools menu, select NuGet Package Manager > Package Manager Console.

In the PMC, enter the following commands:

Alternatively, the following .NET Core CLI commands can be used:

Ignore the following message:

Microsoft.EntityFrameworkCore.Model.Validation[30000]

Scaffold the Movie modelScaffold the Movie model

No executable found matching command "dotnet-aspnet-codegenerator"

The process cannot access the file
'RazorPagesMovie/bin/Debug/netcoreapp2.0/RazorPagesMovie.dll'
because it is being used by another process.

PARAMETER DESCRIPTION

-m The name of the model.

-dc The data context.

-udl Use the default layout.

-outDir The relative output folder path to create the views.

--referenceScriptLibraries Adds _ValidationScriptsPartial to Edit and Create pages

No type was specified for the decimal column 'Price' on entity type 'Movie'. This will cause values to be silently
truncated if they do not fit in the default precision and scale. Explicitly specify the SQL server column type that can
accommodate all the values using 'ForHasColumnType()'

You fix that in the next tutorial.

The Install-Package command installs the tooling required to run the scaffolding engine.

The Add-Migration command generates code to create the initial database schema. The schema is based on the
model specified in the DbContext (In the Models/MovieContext.cs file). The Initial argument is used to name the
migrations. You can use any name, but by convention you choose a name that describes the migration. See
Introduction to migrations for more information.

The Update-Database command runs the Up method in the Migrations/{time-stamp}_InitialCreate.cs file, which
creates the database.

dotnet restore
dotnet aspnet-codegenerator razorpage -m Movie -dc MovieContext -udl -outDir Pages\Movies --
referenceScriptLibraries

Run the following from the command line (in the project directory that contains the Program.cs, Startup.cs,
and .csproj files):

If you get the error :

The preceeding error happens when you are in the wrong directory. Open a command shell to the project
directory (The directory that contains the Program.cs, Startup.cs, and .csproj files), and then run the preceeding
command.

If you get the error :

Exit Visual Studio and run the command again.

 The following table details the ASP.NET Core code generators` parameters:

dotnet aspnet-codegenerator razorpage -h

Test the appTest the app

Use the h switch to get help on the aspnet-codegenerator razorpage command:

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

Test the Create link.

 Test the Edit, Details, and Delete links.

If you get a SQL exception, verify you have run migrations and updated the database.

The next tutorial explains the files created by scaffolding.

 P R E V IO U S : G E T

S TA R TE D

N E X T: S C A F F O L D E D R A Z O R

P A G E S

Scaffolded Razor Pages in ASP.NET Core
6/2/2018 • 8 minutes to read • Edit Online

The Create, Delete, Details, and Edit pages.

using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;
using RazorPagesMovie.Models;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public IndexModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get;set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

By Rick Anderson

This tutorial examines the Razor Pages created by scaffolding in the previous tutorial.

View or download sample.

Examine the Pages/Movies/Index.cshtml.cs Page Model:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/page.md
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie

using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

Razor Pages are derived from PageModel . By convention, the PageModel -derived class is called <PageName>Model .
The constructor uses dependency injection to add the MovieContext to the page. All the scaffolded pages follow
this pattern. See Asynchronous code for more information on asynchronous programing with Entity Framework.

When a request is made for the page, the OnGetAsync method returns a list of movies to the Razor Page.
OnGetAsync or OnGet is called on a Razor Page to initialize the state for the page. In this case, OnGetAsync gets a

list of movies and displays them.

When OnGet returns void or OnGetAsync returns Task , no return method is used. When the return type is
IActionResult or Task<IActionResult> , a return statement must be provided. For example, the

Pages/Movies/Create.cshtml.cs OnPostAsync method:

Examine the Pages/Movies/Index.cshtml Razor Page:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Razor can transition from HTML into C# or into Razor-specific markup. When an @ symbol is followed by a
Razor reserved keyword, it transitions into Razor-specific markup, otherwise it transitions into C#.

The @page Razor directive makes the file into an MVC action — which means that it can handle requests. @page

must be the first Razor directive on a page. @page is an example of transitioning into Razor-specific markup. See
Razor syntax for more information.

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movie[0].Title))

The @model directiveThe @model directive

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

ViewData and layoutViewData and layout

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - RazorPagesMovie</title>

 @*Markup removed for brevity.*@

The DisplayNameFor HTML Helper inspects the Title property referenced in the lambda expression to determine
the display name. The lambda expression is inspected rather than evaluated. That means there is no access
violation when model , model.Movie , or model.Movie[0] are null or empty. When the lambda expression is
evaluated (for example, with @Html.DisplayFor(modelItem => item.Title)), the model's property values are
evaluated.

The @model directive specifies the type of the model passed to the Razor Page. In the preceding example, the
@model line makes the PageModel -derived class available to the Razor Page. The model is used in the
@Html.DisplayNameFor and @Html.DisplayName HTML Helpers on the page.

Consider the following code:

The preceding highlighted code is an example of Razor transitioning into C#. The { and } characters enclose a
block of C# code.

The PageModel base class has a ViewData dictionary property that can be used to add data that you want to pass
to a View. You add objects into the ViewData dictionary using a key/value pattern. In the preceding sample, the
"Title" property is added to the ViewData dictionary.

The "Title" property is used in the Pages/_Layout.cshtml file. The following markup shows the first few lines of the
Pages/_Layout.cshtml file.

The "Title" property is used in the Pages/Shared/_Layout.cshtml file. The following markup shows the first few
lines of the _Layout.cshtml file.

The line @*Markup removed for brevity.*@ is a Razor comment. Unlike HTML comments (<!-- -->), Razor
comments are not sent to the client.

Run the app and test the links in the project (Home, About, Contact, Create, Edit, and Delete). Each page sets
the title, which you can see in the browser tab. When you bookmark a page, the title is used for the bookmark.
Pages/Index.cshtml and Pages/Movies/Index.cshtml currently have the same title, but you can modify them to

https://docs.microsoft.com/aspnet/mvc/overview/older-versions-1/views/creating-custom-html-helpers-cs#understanding-html-helpers

NOTENOTE

@{
 Layout = "_Layout";
}

Update the layoutUpdate the layout

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie</title>

<a asp-page="/Index" class="navbar-brand">RazorPagesMovie

<a asp-page="/Movies/Index" class="navbar-brand">RpMovie

The Create page modelThe Create page model

have different values.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales that
use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. This
GitHub issue 4076 for instructions on adding decimal comma.

The Layout property is set in the Pages/_ViewStart.cshtml file:

The preceding markup sets the layout file to Pages/_Layout.cshtml for all Razor files under the Pages folder. See
Layout for more information.

Change the <title> element in the Pages/_Layout.cshtml file to use a shorter string.

Find the following anchor element in the Pages/_Layout.cshtml file.

Replace the preceding element with the following markup.

The preceding anchor element is a Tag Helper. In this case, it's the Anchor Tag Helper. The
asp-page="/Movies/Index" Tag Helper attribute and value creates a link to the /Movies/Index Razor Page.

Save your changes, and test the app by clicking on the RpMovie link. See the _Layout.cshtml file in GitHub.

Examine the Pages/Movies/Create.cshtml.cs page model:

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076#issuecomment-326590420
https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie/Pages/_Layout.cshtml

// Unused usings removed.
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public CreateModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

// Unused usings removed.
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public CreateModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

The OnGet method initializes any state needed for the page. The Create page doesn't have any state to initialize, so
Page is returned. Later in the tutorial you see OnGet method initialize state. The Page method creates a
PageResult object that renders the Create.cshtml page.

The Movie property uses the [BindProperty] attribute to opt-in to model binding. When the Create form posts
the form values, the ASP.NET Core runtime binds the posted values to the Movie model.

The OnPostAsync method is run when the page posts form data:

If there are any model errors, the form is redisplayed, along with any form data posted. Most model errors can be

The Create Razor PageThe Create Razor Page

@page
@model RazorPagesMovie.Pages.Movies.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.ReleaseDate" class="control-label"></label>
 <input asp-for="Movie.ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Genre" class="control-label"></label>
 <input asp-for="Movie.Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Price" class="control-label"></label>
 <input asp-for="Movie.Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

caught on the client-side before the form is posted. An example of a model error is posting a value for the date
field that cannot be converted to a date. We'll talk more about client-side validation and model validation later in
the tutorial.

If there are no model errors, the data is saved, and the browser is redirected to the Index page.

Examine the Pages/Movies/Create.cshtml Razor Page file:

Visual Studio displays the <form method="post"> tag in a distinctive font used for Tag Helpers:

<div asp-validation-summary="ModelOnly" class="text-danger"></div>
<div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

</div>

The <form method="post"> element is a Form Tag Helper. The Form Tag Helper automatically includes an
antiforgery token.

The scaffolding engine creates Razor markup for each field in the model (except the ID) similar to the following:

The Validation Tag Helpers (<div asp-validation-summary and <span asp-validation-for) display validation errors.
Validation is covered in more detail later in this series.

The Label Tag Helper (<label asp-for="Movie.Title" class="control-label"></label>) generates the label caption
and for attribute for the Title property.

The Input Tag Helper (<input asp-for="Movie.Title" class="form-control" />) uses the DataAnnotations attributes
and produces HTML attributes needed for jQuery Validation on the client-side.

The next tutorial explains SQL Server LocalDB and seeding the database.

 P R E V IO U S : A D D IN G A

M O D E L

N E X T: S Q L S E R V E R

L O C A L D B

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

Work with SQL Server LocalDB and ASP.NET Core
5/30/2018 • 4 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 // requires
 // using RazorPagesMovie.Models;
 // using Microsoft.EntityFrameworkCore;

 services.AddDbContext<MovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MovieContext")));
 services.AddMvc();
}

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("RazorPagesMovieContext")));
}

"ConnectionStrings": {
 "MovieContext": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true"
}

SQL Server Express LocalDB

By Rick Anderson and Joe Audette

The MovieContext object handles the task of connecting to the database and mapping Movie objects to database
records. The database context is registered with the Dependency Injection container in the ConfigureServices

method in the Startup.cs file:

For more information on the methods used in ConfigureServices , see:

EU General Data Protection Regulation (GDPR) support in ASP.NET Core for CookiePolicyOptions .
SetCompatibilityVersion

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the
connection string from the appsettings.json file. The name value for the database (Database={Database name}) will
be different for your generated code. The name value is arbitrary.

When you deploy the app to a test or production server, you can use an environment variable or another approach
to set the connection string to a real SQL Server. See Configuration for more information.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/sql.md
https://twitter.com/RickAndMSFT
https://twitter.com/joeaudette

LocalDB is a lightweight version of the SQL Server Express Database Engine that's targeted for program
development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,
LocalDB database creates "*.mdf" files in the C:/Users/<user> directory.

 From the View menu, open SQL Server Object Explorer (SSOX).

Right click on the Movie table and select View Designer:

Seed the database

Note the key icon next to ID . By default, EF creates a property named ID for the primary key.

Right click on the Movie table and select View Data:

Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace RazorPagesMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MovieContext(
 serviceProvider.GetRequiredService<DbContextOptions<MovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace RazorPagesMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new RazorPagesMovieContext(
 serviceProvider.GetRequiredService<DbContextOptions<RazorPagesMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

// Unused usings removed.
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using RazorPagesMovie.Models;
using System;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<MovieContext>();
 // requires using Microsoft.EntityFrameworkCore;
 context.Database.Migrate();
 // Requires using RazorPagesMovie.Models;
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

In Program.cs, modify the Main method to do the following:

Get a DB context instance from the dependency injection container.
Call the seed method, passing to it the context.
Dispose the context when the seed method completes.

The following code shows the updated Program.cs file.

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using RazorPagesMovie.Models;
using System;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<RazorPagesMovieContext>();
 context.Database.Migrate();
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

Test the appTest the app

A production app would not call Database.Migrate . It's added to the preceeding code to prevent the following
exception when Update-Database has not been run:

SqlException: Cannot open database "RazorPagesMovieContext-21" requested by the login. The login failed. Login
failed for user 'user name'.

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force
initialization, IIS Express must be stopped and restarted. You can do this with any of the following
approaches:

Right click the IIS Express system tray icon in the notification area and tap Exit or Stop Site:

If you were running VS in non-debug mode, press F5 to run in debug mode.
If you were running VS in debug mode, stop the debugger and press F5.

The app shows the seeded data:

The next tutorial will clean up the presentation of the data.

 P R E V IO U S : S C A F F O L D E D R A Z O R

P A G E S

N E X T: U P D A TIN G TH E

P A G E S

Update the generated pages in an ASP.NET Core app
5/31/2018 • 5 minutes to read • Edit Online

Update the generated code

using System;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

By Rick Anderson

We have a good start to the movie app, but the presentation isn't ideal. We don't want to see the time (12:00:00
AM in the image below) and ReleaseDate should be Release Date (two words).

Open the Models/Movie.cs file and add the highlighted lines shown in the following code:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/da1.md
https://twitter.com/RickAndMSFT

using System;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

Right click on a red squiggly line > Quick Actions and Refactorings.

Select using System.ComponentModel.DataAnnotations;

Visual studio adds using System.ComponentModel.DataAnnotations; .

Right click on a red squiggly line > Quick Actions and Refactorings on the [Column] atribute and select
using System.ComponentModel.DataAnnotations.Schema;

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly
map Price to currency in the database. For more information, see Data Types.

The completed model:

We'll cover DataAnnotations in the next tutorial. The Display attribute specifies what to display for the name of a
field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data
(Date), so the time information stored in the field isn't displayed.

Browse to Pages/Movies and hover over an Edit link to see the target URL.

The Edit, Details, and Delete links are generated by the Anchor Tag Helper in the Pages/Movies/Index.cshtml file.

https://docs.microsoft.com/ef/core/modeling/relational/data-types
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter

@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

<td>
 Edit |
 Details |
 Delete
</td>

<td>
 Edit |
 Details |
 Delete
</td>

@page "{id:int?}"

Update concurrency exception handlingUpdate concurrency exception handling

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the
preceding code, the AnchorTagHelper dynamically generates the HTML href attribute value from the Razor Page
(the route is relative), the asp-page , and the route id (asp-route-id). See URL generation for Pages for more
information.

Use View Source from your favorite browser to examine the generated markup. A portion of the generated
HTML is shown below:

The dynamically-generated links pass the movie ID with a query string (for example,
http://localhost:5000/Movies/Details?id=2).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive for
each of these pages from @page to @page "{id:int}" . Run the app and then view source. The generated HTML
adds the ID to the path portion of the URL:

A request to the page with the "{id:int}" route template that does not include the integer will return an HTTP 404
(not found) error. For example, http://localhost:5000/Movies/Details will return a 404 error. To make the ID
optional, append ? to the route constraint:

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
}

Posting and binding reviewPosting and binding review

Update the OnPostAsync method in the Pages/Movies/Edit.cshtml.cs file. The following highlighted code shows the
changes:

The previous code only detects concurrency exceptions when the first concurrent client deletes the movie, and the
second concurrent client posts changes to the movie.

To test the catch block:

Set a breakpoint on catch (DbUpdateConcurrencyException)

Edit a movie.
In another browser window, select the Delete link for the same movie, and then delete the movie.
In the previous browser window, post changes to the movie.

Production code would generally detect concurrency conflicts when two or more clients concurrently updated a
record. See Handle concurrency conflicts for more information.

Examine the Pages/Movies/Edit.cshtml.cs file:

public class EditModel : PageModel
{
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public EditModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }
}

public class EditModel : PageModel
{
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public EditModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }
}

When an HTTP GET request is made to the Movies/Edit page (for example, http://localhost:5000/Movies/Edit/2):

The OnGetAsync method fetches the movie from the database and returns the Page method.
The Page method renders the Pages/Movies/Edit.cshtml Razor Page. The Pages/Movies/Edit.cshtml file
contains the model directive (@model RazorPagesMovie.Pages.Movies.EditModel), which makes the movie model
available on the page.
The Edit form is displayed with the values from the movie.

When the Movies/Edit page is posted:

[BindProperty]
public Movie Movie { get; set; }

The form values on the page are bound to the Movie property. The [BindProperty] attribute enables
Model binding.

If there are errors in the model state (for example, ReleaseDate cannot be converted to a date), the form is
posted again with the submitted values.

If there are no model errors, the movie is saved.

The HTTP GET methods in the Index, Create, and Delete Razor pages follow a similar pattern. The HTTP POST
OnPostAsync method in the Create Razor Page follows a similar pattern to the OnPostAsync method in the Edit

Razor Page.

Search is added in the next tutorial.

 P R E V IO U S : W O R K IN G W ITH S Q L S E R V E R

L O C A L D B

A D D

S E A R C H

Add search to ASP.NET Core Razor Pages
5/30/2018 • 3 minutes to read • Edit Online

public async Task OnGetAsync(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 Movie = await movies.ToListAsync();
}

var movies = from m in _context.Movie
 select m;

if (!String.IsNullOrEmpty(searchString))
{
 movies = movies.Where(s => s.Title.Contains(searchString));
}

By Rick Anderson

In this document, search capability is added to the Index page that enables searching movies by genre or name.

Update the Index page's OnGetAsync method with the following code:

The first line of the OnGetAsync method creates a L INQ query to select the movies:

The query is only defined at this point, it has not been run against the database.

If the searchString parameter contains a string, the movies query is modified to filter on the search string:

The s => s.Title.Contains() code is a Lambda Expression. Lambdas are used in method-based LINQ queries as
arguments to standard query operator methods such as the Where method or Contains (used in the preceding
code). L INQ queries are not executed when they're defined or when they're modified by calling a method (such as
Where , Contains or OrderBy). Rather, query execution is deferred. That means the evaluation of an expression is

delayed until its realized value is iterated over or the ToListAsync method is called. See Query Execution for more
information.

Note: The Contains method is run on the database, not in the C# code. The case sensitivity on the query depends
on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case insensitive. In
SQLite, with the default collation, it's case sensitive.

Navigate to the Movies page and append a query string such as ?searchString=Ghost to the URL (for example,
http://localhost:5000/Movies?searchString=Ghost). The filtered movies are displayed.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/search.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq
https://docs.microsoft.com/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/sql/t-sql/language-elements/like-transact-sql

@page "{searchString?}"

If the following route template is added to the Index page, the search string can be passed as a URL segment (for
example, http://localhost:5000/Movies/Ghost).

The preceding route constraint allows searching the title as route data (a URL segment) instead of as a query
string value. The ? in "{searchString?}" means this is an optional route parameter.

However, you can't expect users to modify the URL to search for a movie. In this step, UI is added to filter movies.
If you added the route constraint "{searchString?}" , remove it.

Open the Pages/Movies/Index.cshtml file, and add the <form> markup highlighted in the following code:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
@*Markup removed for brevity.*@

Search by genre

The HTML <form> tag uses the Form Tag Helper. When the form is submitted, the filter string is sent to the
Pages/Movies/Index page. Save the changes and test the filter.

Add the following highlighted properties to Pages/Movies/Index.cshtml.cs:

public class IndexModel : PageModel
{
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public IndexModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }
 public SelectList Genres { get; set; }
 public string MovieGenre { get; set; }

public class IndexModel : PageModel
{
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }
 public SelectList Genres { get; set; }
 public string MovieGenre { get; set; }

// Requires using Microsoft.AspNetCore.Mvc.Rendering;
public async Task OnGetAsync(string movieGenre, string searchString)
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 if (!String.IsNullOrEmpty(movieGenre))
 {
 movies = movies.Where(x => x.Genre == movieGenre);
 }
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 Movie = await movies.ToListAsync();
}

The SelectList Genres contains the list of genres. This allows the user to select a genre from the list.

The MovieGenre property contains the specific genre the user selects (for example, "Western").

Update the OnGetAsync method with the following code:

The following code is a L INQ query that retrieves all the genres from the database.

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Genres = new SelectList(await genreQuery.Distinct().ToListAsync());

Adding search by genreAdding search by genre

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>

The SelectList of genres is created by projecting the distinct genres.

Update Index.cshtml as follows:

Test the app by searching by genre, by movie title, and by both.

 P R E V IO U S : U P D A TIN G TH E

P A G E S

N E X T: A D D IN G A N E W

F IE L D

Add a new field to a Razor Page in ASP.NET Core
5/30/2018 • 4 minutes to read • Edit Online

Adding a Rating Property to the Movie Model

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{

By Rick Anderson

In this section you use Entity Framework Code First Migrations to add a new field to the model and migrate that
change to the database.

When using EF Code First to automatically create a database, Code First:

Adds a table to the database to track whether the schema of the database is in sync with the model classes it
was generated from.
If the model classes aren't in sync with the DB, EF throws an exception.

Automatic verification of schema/model in sync makes it easier to find inconsistent database/code issues.

Open the Models/Movie.cs file and add a Rating property:

Build the app (Ctrl+Shift+B).

Edit Pages/Movies/Index.cshtml, and add a Rating field:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/new-field.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/ef/core/get-started/aspnetcore/new-db

 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Rating)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Add the Rating field to the Delete and Details pages.

Update Create.cshtml with a Rating field. You can copy/paste the previous <div> element and let intelliSense
help you update the fields. IntelliSense works with Tag Helpers.

The following code shows Create.cshtml with a Rating field:

@page
@model RazorPagesMovie.Pages.Movies.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.ReleaseDate" class="control-label"></label>
 <input asp-for="Movie.ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Genre" class="control-label"></label>
 <input asp-for="Movie.Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Price" class="control-label"></label>
 <input asp-for="Movie.Price" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Rating" class="control-label"></label>
 <input asp-for="Movie.Rating" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

SqlException: Invalid column name 'Rating'.

Add the Rating field to the Edit Page.

The app won't work until the DB is updated to include the new field. If run now, the app throws a SqlException :

This error is caused by the updated Movie model class being different than the schema of the Movie table of the
database. (There's no Rating column in the database table.)

context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M,
 Rating = "R"
 },

Add-Migration Rating
Update-Database

There are a few approaches to resolving the error :

1. Have the Entity Framework automatically drop and re-create the database using the new model class
schema. This approach is convenient early in the development cycle; it allows you to quickly evolve the
model and database schema together. The downside is that you lose existing data in the database. You don't
want to use this approach on a production database! Dropping the DB on schema changes and using an
initializer to automatically seed the database with test data is often a productive way to develop an app.

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage
of this approach is that you keep your data. You can make this change either manually or by creating a
database change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, use Code First Migrations.

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but
you'll want to make this change for each new Movie block.

See the completed SeedData.cs file.

See the completed SeedData.cs file.

Build the solution.

 From the Tools menu, select NuGet Package Manager > Package Manager Console. In the PMC, enter the
following commands:

The Add-Migration command tells the framework to:

Compare the Movie model with the Movie DB schema.
Create code to migrate the DB schema to the new model.

The name "Rating" is arbitrary and is used to name the migration file. It's helpful to use a meaningful name for
the migration file.

 If you delete all the records in the DB, the initializer will seed the DB and include the Rating field. You can do this
with the delete links in the browser or from Sql Server Object Explorer (SSOX). To delete the database from
SSOX:

Select the database in SSOX.

Right click on the database, and select Delete.

Check Close existing connections.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie/Models/SeedDataRating.cs
https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie21/Models/SeedDataRating.cs

Update-Database

Select OK.

In the PMC, update the database:

Run the app and verify you can create/edit/display movies with a Rating field. If the database isn't seeded, stop
IIS Express, and then run the app.

 P R E V IO U S : A D D IN G

S E A R C H

N E X T: A D D IN G

V A L ID A TIO N

Add validation to an ASP.NET Core Razor Page
5/30/2018 • 8 minutes to read • Edit Online

Validation

Adding validation rules to the movie modelAdding validation rules to the movie model

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

By Rick Anderson

In this section, validation logic is added to the Movie model. The validation rules are enforced any time a user
creates or edits a movie.

A key tenet of software development is called DRY ("Don't Repeat Yourself"). Razor Pages encourages
development where functionality is specified once, and it's reflected throughout the app. DRY can help reduce the
amount of code in an app. DRY makes the code less error prone, and easier to test and maintain.

The validation support provided by Razor Pages and Entity Framework is a good example of the DRY principle.
Validation rules are declaratively specified in one place (in the model class), and the rules are enforced everywhere
in the app.

Open the Movie.cs file. DataAnnotations provides a built-in set of validation attributes that are applied
declaratively to a class or property. DataAnnotations also contains formatting attributes like DataType that help
with formatting and don't provide validation.

Update the Movie class to take advantage of the Required , StringLength , RegularExpression , and Range

validation attributes.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/validation.md
https://twitter.com/RickAndMSFT
https://wikipedia.org/wiki/Don%27t_repeat_yourself
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

//#define MovieDateRatingDA
#if MovieDateRatingDA
using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 #region snippet1
 public class Movie
 {
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 #region snippet2
 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 #endregion

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
 }
 #endregion
}
#endif

Validation Error UI in Razor PagesValidation Error UI in Razor Pages

Validation attributes specify behavior that's enforced on model properties:

The Required and MinimumLength attributes indicate that a property must have a value. However, nothing
prevents a user from entering whitespace to satisfy the validation constraint for a nullable type. Non-nullable
value types (such as decimal , int , float , and DateTime) are inherently required and don't need the
Required attribute.

The RegularExpression attribute limits the characters that the user can enter. In the preceding code, Genre and
Rating must use only letters (whitespace, numbers, and special characters aren't allowed).

The Range attribute constrains a value to a specified range.
The StringLength attribute sets the maximum length of a string, and optionally the minimum length.

Having validation rules automatically enforced by ASP.NET Core helps make an app more robust. Automatic
validation on models helps protect the app because you don't have to remember to apply them when new code is
added.

Run the app and navigate to Pages/Movies.

Select the Create New link. Complete the form with some invalid values. When jQuery client-side validation
detects the error, it displays an error message.

https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/value-types

NOTENOTE
You may not be able to enter decimal points or commas in the Price field. To support jQuery validation in non-English
locales that use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your
app. See Additional resources for more information. For now, just enter whole numbers like 10.

Notice how the form has automatically rendered a validation error message in each field containing an invalid
value. The errors are enforced both client-side (using JavaScript and jQuery) and server-side (when a user has
JavaScript disabled).

A significant benefit is that no code changes were necessary in the Create or Edit pages. Once DataAnnotations
were applied to the model, the validation UI was enabled. The Razor Pages created in this tutorial automatically
picked up the validation rules (using validation attributes on the properties of the Movie model class). Test
validation using the Edit page, the same validation is applied.

The form data isn't posted to the server until there are no client-side validation errors. Verify form data isn't posted

https://jqueryvalidation.org/

Server-side validationServer-side validation

<form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>

Using DataType Attributes

by one or more of the following approaches:

Put a break point in the OnPostAsync method. Submit the form (select Create or Save). The break point is
never hit.
Use the Fiddler tool.
Use the browser developer tools to monitor network traffic.

When JavaScript is disabled in the browser, submitting the form with errors will post to the server.

Optional, test server-side validation:

if (!ModelState.IsValid)
{
 return Page();
}

Disable JavaScript in the browser. If you can't disable JavaScript in the browser, try another browser.

Set a break point in the OnPostAsync method of the Create or Edit page.

Submit a form with validation errors.

Verify the model state is invalid:

The following code shows a portion of the Create.cshtml page that you scaffolded earlier in the tutorial. It's used
by the Create and Edit pages to display the initial form and to redisplay the form in the event of an error.

The Input Tag Helper uses the DataAnnotations attributes and produces HTML attributes needed for jQuery
Validation on the client-side. The Validation Tag Helper displays validation errors. See Validation for more
information.

The Create and Edit pages have no validation rules in them. The validation rules and the error strings are specified
only in the Movie class. These validation rules are automatically applied to Razor Pages that edit the Movie

model.

When validation logic needs to change, it's done only in the model. Validation is applied consistently throughout
the application (validation logic is defined in one place). Validation in one place helps keep the code clean, and
makes it easier to maintain and update.

Examine the Movie class. The System.ComponentModel.DataAnnotations namespace provides formatting attributes
in addition to the built-in set of validation attributes. The DataType attribute is applied to the ReleaseDate and
Price properties.

http://www.telerik.com/fiddler
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

[Display(Name = "Release Date")]
[DataType(DataType.Date)]
public DateTime ReleaseDate { get; set; }

[Range(1, 100)]
[DataType(DataType.Currency)]
public decimal Price { get; set; }

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
public DateTime ReleaseDate { get; set; }

[Range(typeof(DateTime), "1/1/1966", "1/1/2020")]

The DataType attributes only provide hints for the view engine to format the data (and supplies attributes such as
<a> for URL's and for email). Use the RegularExpression attribute to

validate the format of the data. The DataType attribute is used to specify a data type that's more specific than the
database intrinsic type. DataType attributes are not validation attributes. In the sample application, only the date is
displayed, without time.

The DataType Enumeration provides for many data types, such as Date, Time, PhoneNumber, Currency,
EmailAddress, and more. The DataType attribute can also enable the application to automatically provide type-
specific features. For example, a mailto: link can be created for DataType.EmailAddress . A date selector can be
provided for DataType.Date in browsers that support HTML5. The DataType attributes emits HTML 5 data-

(pronounced data dash) attributes that HTML 5 browsers consume. The DataType attributes do not provide any
validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed
according to the default formats based on the server's CultureInfo .

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly
map Price to currency in the database. For more information, see Data Types.

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should be applied when the value is displayed for
editing. You might not want that behavior for some fields. For example, in currency values, you probably don't
want the currency symbol in the edit UI.

The DisplayFormat attribute can be used by itself, but it's generally a good idea to use the DataType attribute. The
DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and provides the

following benefits that you don't get with DisplayFormat:

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate
currency symbol, email links, etc.)
By default, the browser will render data using the correct format based on your locale.
The DataType attribute can enable the ASP.NET Core framework to choose the right field template to render
the data. The DisplayFormat if used by itself uses the string template.

Note: jQuery validation doesn't work with the Range attribute and DateTime . For example, the following code will
always display a client-side validation error, even when the date is in the specified range:

It's generally not a good practice to compile hard dates in your models, so using the Range attribute and
DateTime is discouraged.

https://docs.microsoft.com/ef/core/modeling/relational/data-types

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

Publish to AzurePublish to Azure

Additional resources

The following code shows combining attributes on one line:

Get started with Razor Pages and EF Core shows advanced EF Core operations with Razor Pages.

See Publish an ASP.NET Core web app to Azure App Service using Visual Studio for instructions on how to
publish this app to Azure.

Working with Forms
Globalization and localization
Introduction to Tag Helpers
Author Tag Helpers

 P R E V IO U S : A D D IN G A N E W

F IE L D

N E X T: U P L O A D IN G

F IL E S

Upload files to a Razor Page in ASP.NET Core
4/24/2018 • 13 minutes to read • Edit Online

Security considerations

WARNINGWARNING

Add a FileUpload class

By Luke Latham

In this section, uploading files with a Razor Page is demonstrated.

The Razor Pages Movie sample app in this tutorial uses simple model binding to upload files, which works well for
uploading small files. For information on streaming large files, see Uploading large files with streaming.

In the following steps, a movie schedule file upload feature is added to the sample app. A movie schedule is
represented by a Schedule class. The class includes two versions of the schedule. One version is provided to
customers, PublicSchedule . The other version is used for company employees, PrivateSchedule . Each version is
uploaded as a separate file. The tutorial demonstrates how to perform two file uploads from a page with a single
POST to the server.

Caution must be taken when providing users with the ability to upload files to a server. Attackers may execute
denial of service and other attacks on a system. Some security steps that reduce the likelihood of a successful
attack are:

Upload files to a dedicated file upload area on the system, which makes it easier to impose security measures
on uploaded content. When permitting file uploads, make sure that execute permissions are disabled on the
upload location.
Use a safe file name determined by the app, not from user input or the file name of the uploaded file.
Only allow a specific set of approved file extensions.
Verify client-side checks are performed on the server. Client-side checks are easy to circumvent.
Check the size of the upload and prevent larger uploads than expected.
Run a virus/malware scanner on uploaded content.

Uploading malicious code to a system is frequently the first step to executing code that can:

Completely takeover a system.
Overload a system with the result that the system completely fails.
Compromise user or system data.
Apply graffiti to a public interface.

Create a Razor Page to handle a pair of file uploads. Add a FileUpload class, which is bound to the page to obtain
the schedule data. Right click the Models folder. Select Add > Class. Name the class FileUpload and add the
following properties:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/uploading-files.md
https://github.com/guardrex
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie
https://docs.microsoft.com/windows-hardware/drivers/ifs/denial-of-service

using Microsoft.AspNetCore.Http;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Models
{
 public class FileUpload
 {
 [Required]
 [Display(Name="Title")]
 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Required]
 [Display(Name="Public Schedule")]
 public IFormFile UploadPublicSchedule { get; set; }

 [Required]
 [Display(Name="Private Schedule")]
 public IFormFile UploadPrivateSchedule { get; set; }
 }
}

Add a helper method to upload files

using System;
using System.ComponentModel.DataAnnotations;
using System.IO;
using System.Net;
using System.Reflection;
using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using RazorPagesMovie.Models;

namespace RazorPagesMovie.Utilities
{
 public class FileHelpers
 {
 public static async Task<string> ProcessFormFile(IFormFile formFile, ModelStateDictionary modelState)
 {
 var fieldDisplayName = string.Empty;

 // Use reflection to obtain the display name for the model
 // property associated with this IFormFile. If a display
 // name isn't found, error messages simply won't show
 // a display name.
 MemberInfo property =
 typeof(FileUpload).GetProperty(formFile.Name.Substring(formFile.Name.IndexOf(".") + 1));

 if (property != null)
 {
 var displayAttribute =
 property.GetCustomAttribute(typeof(DisplayAttribute)) as DisplayAttribute;

 if (displayAttribute != null)

The class has a property for the schedule's title and a property for each of the two versions of the schedule. All
three properties are required, and the title must be 3-60 characters long.

To avoid code duplication for processing uploaded schedule files, add a static helper method first. Create a Utilities
folder in the app and add a FileHelpers.cs file with the following content. The helper method, ProcessFormFile ,
takes an IFormFile and ModelStateDictionary and returns a string containing the file's size and content. The
content type and length are checked. If the file doesn't pass a validation check, an error is added to the ModelState .

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary

 if (displayAttribute != null)
 {
 fieldDisplayName = $"{displayAttribute.Name} ";
 }
 }

 // Use Path.GetFileName to obtain the file name, which will
 // strip any path information passed as part of the
 // FileName property. HtmlEncode the result in case it must
 // be returned in an error message.
 var fileName = WebUtility.HtmlEncode(Path.GetFileName(formFile.FileName));

 if (formFile.ContentType.ToLower() != "text/plain")
 {
 modelState.AddModelError(formFile.Name,
 $"The {fieldDisplayName}file ({fileName}) must be a text file.");
 }

 // Check the file length and don't bother attempting to
 // read it if the file contains no content. This check
 // doesn't catch files that only have a BOM as their
 // content, so a content length check is made later after
 // reading the file's content to catch a file that only
 // contains a BOM.
 if (formFile.Length == 0)
 {
 modelState.AddModelError(formFile.Name, $"The {fieldDisplayName}file ({fileName}) is empty.");
 }
 else if (formFile.Length > 1048576)
 {
 modelState.AddModelError(formFile.Name, $"The {fieldDisplayName}file ({fileName}) exceeds 1
MB.");
 }
 else
 {
 try
 {
 string fileContents;

 // The StreamReader is created to read files that are UTF-8 encoded.
 // If uploads require some other encoding, provide the encoding in the
 // using statement. To change to 32-bit encoding, change
 // new UTF8Encoding(...) to new UTF32Encoding().
 using (
 var reader =
 new StreamReader(
 formFile.OpenReadStream(),
 new UTF8Encoding(encoderShouldEmitUTF8Identifier: false, throwOnInvalidBytes:
true),
 detectEncodingFromByteOrderMarks: true))
 {
 fileContents = await reader.ReadToEndAsync();

 // Check the content length in case the file's only
 // content was a BOM and the content is actually
 // empty after removing the BOM.
 if (fileContents.Length > 0)
 {
 return fileContents;
 }
 else
 {
 modelState.AddModelError(formFile.Name,
 $"The {fieldDisplayName}file ({fileName}) is empty.");
 }
 }
 }
 catch (Exception ex)
 {
 modelState.AddModelError(formFile.Name,

 modelState.AddModelError(formFile.Name,
 $"The {fieldDisplayName}file ({fileName}) upload failed. " +
 $"Please contact the Help Desk for support. Error:
{ex.Message}");
 // Log the exception
 }
 }

 return string.Empty;
 }
 }
}

Save the file to diskSave the file to disk

public async Task<IActionResult> OnPostAsync()
{
 // Perform an initial check to catch FileUpload class attribute violations.
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var filePath = "<PATH-AND-FILE-NAME>";

 using (var fileStream = new FileStream(filePath, FileMode.Create))
 {
 await FileUpload.UploadPublicSchedule.CopyToAsync(fileStream);
 }

 return RedirectToPage("./Index");
}

NOTENOTE

WARNINGWARNING

Save the file to Azure Blob StorageSave the file to Azure Blob Storage

Add the Schedule class

The sample app saves uploaded files into database fields. To save a file to disk, use a FileStream. The following
example copies a file held by FileUpload.UploadPublicSchedule to a FileStream in an OnPostAsync method. The
FileStream writes the file to disk at the <PATH-AND-FILE-NAME> provided:

The worker process must have write permissions to the location specified by filePath .

The filePath must include the file name. If the file name isn't provided, an UnauthorizedAccessException is thrown at
runtime.

Never persist uploaded files in the same directory tree as the app.

The code sample provides no server-side protection against malicious file uploads. For information on reducing the attack
surface area when accepting files from users, see the following resources:

Unrestricted File Upload
Azure Security: Ensure appropriate controls are in place when accepting files from users

To upload file content to Azure Blob Storage, see Get started with Azure Blob Storage using .NET. The topic
demonstrates how to use UploadFromStream to save a FileStream to blob storage.

https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.unauthorizedaccessexception
https://www.owasp.org/index.php/Unrestricted_File_Upload
https://docs.microsoft.com/azure/security/azure-security-threat-modeling-tool-input-validation#controls-users
https://docs.microsoft.com/azure/storage/blobs/storage-dotnet-how-to-use-blobs
https://docs.microsoft.com/dotnet/api/microsoft.windowsazure.storage.file.cloudfile.uploadfromstreamasync
https://docs.microsoft.com/dotnet/api/system.io.filestream

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Schedule
 {
 public int ID { get; set; }
 public string Title { get; set; }

 public string PublicSchedule { get; set; }

 [Display(Name = "Public Schedule Size (bytes)")]
 [DisplayFormat(DataFormatString = "{0:N1}")]
 public long PublicScheduleSize { get; set; }

 public string PrivateSchedule { get; set; }

 [Display(Name = "Private Schedule Size (bytes)")]
 [DisplayFormat(DataFormatString = "{0:N1}")]
 public long PrivateScheduleSize { get; set; }

 [Display(Name = "Uploaded (UTC)")]
 [DisplayFormat(DataFormatString = "{0:F}")]
 public DateTime UploadDT { get; set; }
 }
}

Update the MovieContext

using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie.Models
{
 public class MovieContext : DbContext
 {
 public MovieContext(DbContextOptions<MovieContext> options)
 : base(options)
 {
 }

 public DbSet<Movie> Movie { get; set; }
 public DbSet<Schedule> Schedule { get; set; }
 }
}

Add the Schedule table to the database

Right click the Models folder. Select Add > Class. Name the class Schedule and add the following properties:

The class uses Display and DisplayFormat attributes, which produce friendly titles and formatting when the
schedule data is rendered.

Specify a DbSet in the MovieContext (Models/MovieContext.cs) for the schedules:

Open the Package Manger Console (PMC): Tools > NuGet Package Manager > Package Manager Console.

Add-Migration AddScheduleTable
Update-Database

Add a file upload Razor Page

@page
@model RazorPagesMovie.Pages.Schedules.IndexModel

@{
 ViewData["Title"] = "Schedules";
}

<h2>Schedules</h2>
<hr />

<h3>Upload Schedules</h3>
<div class="row">
 <div class="col-md-4">
 <form method="post" enctype="multipart/form-data">
 <div class="form-group">
 <label asp-for="FileUpload.Title" class="control-label"></label>
 <input asp-for="FileUpload.Title" type="text" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="FileUpload.UploadPublicSchedule" class="control-label"></label>
 <input asp-for="FileUpload.UploadPublicSchedule" type="file" class="form-control"
style="height:auto" />

 </div>
 <div class="form-group">
 <label asp-for="FileUpload.UploadPrivateSchedule" class="control-label"></label>
 <input asp-for="FileUpload.UploadPrivateSchedule" type="file" class="form-control"
style="height:auto" />

 </div>
 <input type="submit" value="Upload" class="btn btn-default" />
 </form>

In the PMC, execute the following commands. These commands add a Schedule table to the database:

In the Pages folder, create a Schedules folder. In the Schedules folder, create a page named Index.cshtml for
uploading a schedule with the following content:

 </form>
 </div>
</div>

<h3>Loaded Schedules</h3>
<table class="table">
 <thead>
 <tr>
 <th></th>
 <th>
 @Html.DisplayNameFor(model => model.Schedule[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Schedule[0].UploadDT)
 </th>
 <th class="text-center">
 @Html.DisplayNameFor(model => model.Schedule[0].PublicScheduleSize)
 </th>
 <th class="text-center">
 @Html.DisplayNameFor(model => model.Schedule[0].PrivateScheduleSize)
 </th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Schedule) {
 <tr>
 <td>
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.UploadDT)
 </td>
 <td class="text-center">
 @Html.DisplayFor(modelItem => item.PublicScheduleSize)
 </td>
 <td class="text-center">
 @Html.DisplayFor(modelItem => item.PrivateScheduleSize)
 </td>
 </tr>
 }
 </tbody>
</table>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Add the page model

Each form group includes a <label> that displays the name of each class property. The Display attributes in the
FileUpload model provide the display values for the labels. For example, the UploadPublicSchedule property's

display name is set with [Display(Name="Public Schedule")] and thus displays "Public Schedule" in the label when
the form renders.

Each form group includes a validation . If the user's input fails to meet the property attributes set in the
FileUpload class or if any of the ProcessFormFile method file validation checks fail, the model fails to validate.

When model validation fails, a helpful validation message is rendered to the user. For example, the Title

property is annotated with [Required] and [StringLength(60, MinimumLength = 3)] . If the user fails to supply a
title, they receive a message indicating that a value is required. If the user enters a value less than three characters
or more than sixty characters, they receive a message indicating that the value has an incorrect length. If a file is
provided that has no content, a message appears indicating that the file is empty.

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;
using RazorPagesMovie.Utilities;

namespace RazorPagesMovie.Pages.Schedules
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public IndexModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public FileUpload FileUpload { get; set; }

 public IList<Schedule> Schedule { get; private set; }

 public async Task OnGetAsync()
 {
 Schedule = await _context.Schedule.AsNoTracking().ToListAsync();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 // Perform an initial check to catch FileUpload class
 // attribute violations.
 if (!ModelState.IsValid)
 {
 Schedule = await _context.Schedule.AsNoTracking().ToListAsync();
 return Page();
 }

 var publicScheduleData =
 await FileHelpers.ProcessFormFile(FileUpload.UploadPublicSchedule, ModelState);

 var privateScheduleData =
 await FileHelpers.ProcessFormFile(FileUpload.UploadPrivateSchedule, ModelState);

 // Perform a second check to catch ProcessFormFile method
 // violations.
 if (!ModelState.IsValid)
 {
 Schedule = await _context.Schedule.AsNoTracking().ToListAsync();
 return Page();
 }

 var schedule = new Schedule()
 {
 PublicSchedule = publicScheduleData,
 PublicScheduleSize = FileUpload.UploadPublicSchedule.Length,
 PrivateSchedule = privateScheduleData,
 PrivateScheduleSize = FileUpload.UploadPrivateSchedule.Length,
 Title = FileUpload.Title,
 UploadDT = DateTime.UtcNow
 };

 _context.Schedule.Add(schedule);
 await _context.SaveChangesAsync();

Add the page model (Index.cshtml.cs) to the Schedules folder :

 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

[BindProperty]
public FileUpload FileUpload { get; set; }

public IList<Schedule> Schedule { get; private set; }

public async Task OnGetAsync()
{
 Schedule = await _context.Schedule.AsNoTracking().ToListAsync();
}

The page model (IndexModel in Index.cshtml.cs) binds the FileUpload class:

The model also uses a list of the schedules (IList<Schedule>) to display the schedules stored in the database on
the page:

When the page loads with OnGetAsync , Schedules is populated from the database and used to generate an HTML
table of loaded schedules:

When the form is posted to the server, the ModelState is checked. If invalid, Schedule is rebuilt, and the page
renders with one or more validation messages stating why page validation failed. If valid, the FileUpload

properties are used in OnPostAsync to complete the file upload for the two versions of the schedule and to create
a new Schedule object to store the data. The schedule is then saved to the database:

public async Task<IActionResult> OnPostAsync()
{
 // Perform an initial check to catch FileUpload class
 // attribute violations.
 if (!ModelState.IsValid)
 {
 Schedule = await _context.Schedule.AsNoTracking().ToListAsync();
 return Page();
 }

 var publicScheduleData =
 await FileHelpers.ProcessSchedule(FileUpload.UploadPublicSchedule, ModelState);

 var privateScheduleData =
 await FileHelpers.ProcessSchedule(FileUpload.UploadPrivateSchedule, ModelState);

 // Perform a second check to catch ProcessSchedule method
 // violations.
 if (!ModelState.IsValid)
 {
 Schedule = await _context.Schedule.AsNoTracking().ToListAsync();
 return Page();
 }

 var schedule = new Schedule()
 {
 PublicSchedule = publicScheduleData,
 PublicScheduleSize = FileUpload.UploadPublicSchedule.Length,
 PrivateSchedule = privateScheduleData,
 PrivateScheduleSize = FileUpload.UploadPrivateSchedule.Length,
 Title = FileUpload.Title,
 UploadDT = DateTime.UtcNow
 };

 _context.Schedule.Add(schedule);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

Link the file upload Razor Page

<div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-page="/Index">Home
 <a asp-page="/Schedules/Index">Schedules
 <a asp-page="/About">About
 <a asp-page="/Contact">Contact

</div>

Add a page to confirm schedule deletion

Open _Layout.cshtml and add a link to the navigation bar to reach the file upload page:

When the user clicks to delete a schedule, a chance to cancel the operation is provided. Add a delete confirmation
page (Delete.cshtml) to the Schedules folder :

@page "{id:int}"
@model RazorPagesMovie.Pages.Schedules.DeleteModel

@{
 ViewData["Title"] = "Delete Schedule";
}

<h2>Delete Schedule</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Schedule</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Schedule.Title)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Schedule.Title)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Schedule.PublicScheduleSize)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Schedule.PublicScheduleSize)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Schedule.PrivateScheduleSize)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Schedule.PrivateScheduleSize)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Schedule.UploadDT)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Schedule.UploadDT)
 </dd>
 </dl>

 <form method="post">
 <input type="hidden" asp-for="Schedule.ID" />
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-page="./Index">Back to List
 </form>
</div>

The page model (Delete.cshtml.cs) loads a single schedule identified by id in the request's route data. Add the
Delete.cshtml.cs file to the Schedules folder :

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;

namespace RazorPagesMovie.Pages.Schedules
{
 public class DeleteModel : PageModel
 {
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public DeleteModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Schedule Schedule { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Schedule = await _context.Schedule.SingleOrDefaultAsync(m => m.ID == id);

 if (Schedule == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Schedule = await _context.Schedule.FindAsync(id);

 if (Schedule != null)
 {
 _context.Schedule.Remove(Schedule);
 await _context.SaveChangesAsync();
 }

 return RedirectToPage("./Index");
 }
 }
}

The OnPostAsync method handles deleting the schedule by its id :

public async Task<IActionResult> OnPostAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 Schedule = await _context.Schedule.FindAsync(id);

 if (Schedule != null)
 {
 _context.Schedule.Remove(Schedule);
 await _context.SaveChangesAsync();
 }

 return RedirectToPage("./Index");
}

The working Schedules Razor Page

After successfully deleting the schedule, the RedirectToPage sends the user back to the schedules Index.cshtml

page.

When the page loads, labels and inputs for schedule title, public schedule, and private schedule are rendered with a
submit button:

Selecting the Upload button without populating any of the fields violates the [Required] attributes on the model.
The ModelState is invalid. The validation error messages are displayed to the user :

Troubleshooting

Additional resources

Type two letters into the Title field. The validation message changes to indicate that the title must be between 3-
60 characters:

When one or more schedules are uploaded, the Loaded Schedules section renders the loaded schedules:

The user can click the Delete link from there to reach the delete confirmation view, where they have an
opportunity to confirm or cancel the delete operation.

For troubleshooting information with IFormFile uploading, see the File uploads in ASP.NET Core:
Troubleshooting.

Thanks for completing this introduction to Razor Pages. We appreciate feedback. Get started with MVC and EF
Core is an excellent follow up to this tutorial.

File uploads in ASP.NET Core

IFormFile

P R E V IO U S :

V A L ID A TIO N

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformfile

Create a web app with ASP.NET Core MVC on
Windows with Visual Studio
5/31/2018 • 2 minutes to read • Edit Online

This tutorial teaches ASP.NET Core MVC web development with controllers and views. Razor Pages is a new
alternative in ASP.NET Core 2.0 and later, a page-based programming model that makes building web UI easier
and more productive. We recommend you try the Razor Pages tutorial before the MVC version. The Razor Pages
tutorial:

Is the preferred approach for new application development.
Is easier to follow.
Covers more features.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

There are 3 versions of this tutorial:

Windows: This series
macOS: Create an ASP.NET Core MVC app with Visual Studio for Mac
macOS, Linux, and Windows: Create an ASP.NET Core MVC app with Visual Studio Code

The tutorial series includes the following:

1. Get started
2. Add a controller
3. Add a view
4. Add a model
5. Work with SQL Server LocalDB
6. Controller methods and views
7. Add search
8. Add a new field
9. Add validation

10. Examine the Details and Delete methods

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/index.md
https://github.com/aspnet/Docs/issues/6146

Get started with ASP.NET Core MVC and Visual
Studio
5/31/2018 • 5 minutes to read • Edit Online

Install Visual Studio and .NET Core

Create a web app

By Rick Anderson

This tutorial teaches ASP.NET Core MVC web development with controllers and views. Razor Pages is a new
alternative in ASP.NET Core 2.0 and later, a page-based programming model that makes building web UI easier
and more productive. We recommend you try the Razor Pages tutorial before the MVC version. The Razor Pages
tutorial:

Is the preferred approach for new application development.
Is easier to follow.
Covers more features.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

There are 3 versions of this tutorial:

macOS: Create an ASP.NET Core MVC app with Visual Studio for Mac
Windows: Create an ASP.NET Core MVC app with Visual Studio
macOS, Linux, and Windows: Create an ASP.NET Core MVC app with Visual Studio Code

Visual Studio for Windows.
Select the ASP.NET and web development workload.

.Net Core 2.1 SDK

From Visual Studio, select File > New > Project.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/start-mvc.md
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/issues/6146
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

Complete the New Project dialog:

In the left pane, tap .NET Core
In the center pane, tap ASP.NET Core Web Application (.NET Core)
Name the project "MvcMovie" (It's important to name the project "MvcMovie" so when you copy code, the
namespace will match.)
Tap OK

Complete the New ASP.NET Core Web Application (.NET Core) - MvcMovie dialog:

In the version selector drop-down box select ASP.NET Core 2.1
Select Web Application(Model-View-Controller)
Tap OK.

Visual Studio used a default template for the MVC project you just created. You have a working app right now by
entering a project name and selecting a few options. This is a basic starter project, and it's a good place to start,

Tap F5 to run the app in debug mode or Ctrl-F5 in non-debug mode.

Visual Studio starts IIS Express and runs your app. Notice that the address bar shows localhost:port# and
not something like example.com . That's because localhost is the standard hostname for your local computer.

https://docs.microsoft.com/iis/extensions/introduction-to-iis-express/iis-express-overview

When Visual Studio creates a web project, a random port is used for the web server. In the image above, the
port number is 5000. The URL in the browser shows localhost:5000 . When you run the app, you'll see a
different port number.
Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file, refresh
the browser, and see the code changes. Many developers prefer to use non-debug mode to quickly launch the
app and view changes.
You can launch the app in debug or non-debug mode from the Debug menu item:

You can debug the app by tapping the IIS Express button

The default template gives you working Home, About and Contact links. The browser image above doesn't
show these links. Depending on the size of your browser, you might need to click the navigation icon to show
them.

Create a web app

If you were running in debug mode, tap Shift-F5 to stop debugging.

In the next part of this tutorial, we'll learn about MVC and start writing some code.

ASP.NET Core 2.x
ASP.NET Core 1.x

Install one of the following:

CLI tooling: Windows, Linux, or macOS: .NET Core SDK 2.0 or later
IDE/editor tooling

Windows: Visual Studio for Windows

Linux: Visual Studio Code
macOS: Visual Studio for Mac

ASP.NET and web development workload
.NET Core cross-platform development workload

From Visual Studio, select File > New > Project.

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/linux
https://www.microsoft.com/net/download/macos

Complete the New Project dialog:

In the left pane, tap .NET Core
In the center pane, tap ASP.NET Core Web Application (.NET Core)
Name the project "MvcMovie" (It's important to name the project "MvcMovie" so when you copy code, the
namespace will match.)
Tap OK

ASP.NET Core 2.x
ASP.NET Core 1.x

Complete the New ASP.NET Core Web Application (.NET Core) - MvcMovie dialog:

In the version selector drop-down box select ASP.NET Core 2.-
Select Web Application(Model-View-Controller)
Tap OK.

Visual Studio used a default template for the MVC project you just created. You have a working app right now by
entering a project name and selecting a few options. This is a basic starter project, and it's a good place to start,

Tap F5 to run the app in debug mode or Ctrl-F5 in non-debug mode.

Visual Studio starts IIS Express and runs your app. Notice that the address bar shows localhost:port# and
not something like example.com . That's because localhost is the standard hostname for your local computer.
When Visual Studio creates a web project, a random port is used for the web server. In the image above, the

https://docs.microsoft.com/iis/extensions/introduction-to-iis-express/iis-express-overview

port number is 5000. The URL in the browser shows localhost:5000 . When you run the app, you'll see a
different port number.
Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file, refresh
the browser, and see the code changes. Many developers prefer to use non-debug mode to quickly launch the
app and view changes.
You can launch the app in debug or non-debug mode from the Debug menu item:

You can debug the app by tapping the IIS Express button

The default template gives you working Home, About and Contact links. The browser image above doesn't
show these links. Depending on the size of your browser, you might need to click the navigation icon to show
them.

If you were running in debug mode, tap Shift-F5 to stop debugging.

In the next part of this tutorial, we'll learn about MVC and start writing some code.

N E X T

Add a controller to an ASP.NET Core MVC app
5/31/2018 • 5 minutes to read • Edit Online

By Rick Anderson

The Model-View-Controller (MVC) architectural pattern separates an app into three main components: Model,
V iew, and Controller. The MVC pattern helps you create apps that are more testable and easier to update than
traditional monolithic apps. MVC-based apps contain:

Models: Classes that represent the data of the app. The model classes use validation logic to enforce
business rules for that data. Typically, model objects retrieve and store model state in a database. In this
tutorial, a Movie model retrieves movie data from a database, provides it to the view or updates it. Updated
data is written to a database.

V iews: Views are the components that display the app's user interface (UI). Generally, this UI displays the
model data.

Controllers: Classes that handle browser requests. They retrieve model data and call view templates that
return a response. In an MVC app, the view only displays information; the controller handles and responds
to user input and interaction. For example, the controller handles route data and query-string values, and
passes these values to the model. The model might use these values to query the database. For example,
http://localhost:1234/Home/About has route data of Home (the controller) and About (the action method to

call on the home controller). http://localhost:1234/Movies/Edit/5 is a request to edit the movie with ID=5
using the movie controller. We'll talk about route data later in the tutorial.

The MVC pattern helps you create apps that separate the different aspects of the app (input logic, business logic,
and UI logic), while providing a loose coupling between these elements. The pattern specifies where each kind of
logic should be located in the app. The UI logic belongs in the view. Input logic belongs in the controller. Business
logic belongs in the model. This separation helps you manage complexity when you build an app, because it
enables you to work on one aspect of the implementation at a time without impacting the code of another. For
example, you can work on the view code without depending on the business logic code.

We cover these concepts in this tutorial series and show you how to use them to build a movie app. The MVC
project contains folders for the Controllers and Views.

In Solution Explorer, right-click Controllers > Add > New Item

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-controller.md
https://twitter.com/RickAndMSFT

Select Controller Class
In the Add New Item dialog, enter HelloWorldController.

Replace the contents of Controllers/HelloWorldController.cs with the following:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Every public method in a controller is callable as an HTTP endpoint. In the sample above, both methods return a
string. Note the comments preceding each method.

An HTTP endpoint is a targetable URL in the web application, such as http://localhost:1234/HelloWorld , and
combines the protocol used: HTTP , the network location of the web server (including the TCP port):
localhost:1234 and the target URI HelloWorld .

The first comment states this is an HTTP GET method that's invoked by appending "/HelloWorld/" to the base
URL. The second comment specifies an HTTP GET method that's invoked by appending "/HelloWorld/Welcome/"
to the URL. Later on in the tutorial you'll use the scaffolding engine to generate HTTP POST methods.

Run the app in non-debug mode and append "HelloWorld" to the path in the address bar. The Index method
returns a string.

MVC invokes controller classes (and the action methods within them) depending on the incoming URL. The
default URL routing logic used by MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

You set the format for routing in the Configure method in Startup.cs file.

https://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

// GET: /HelloWorld/Welcome/
// Requires using System.Text.Encodings.Web;
public string Welcome(string name, int numTimes = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, NumTimes is: {numTimes}");
}

When you run the app and don't supply any URL segments, it defaults to the "Home" controller and the "Index"
method specified in the template line highlighted above.

The first URL segment determines the controller class to run. So localhost:xxxx/HelloWorld maps to the
HelloWorldController class. The second part of the URL segment determines the action method on the class. So
localhost:xxxx/HelloWorld/Index would cause the Index method of the HelloWorldController class to run. Notice

that you only had to browse to localhost:xxxx/HelloWorld and the Index method was called by default. This is
because Index is the default method that will be called on a controller if a method name isn't explicitly specified.
The third part of the URL segment (id) is for route data. You'll see route data later on in this tutorial.

Browse to http://localhost:xxxx/HelloWorld/Welcome . The Welcome method runs and returns the string "This is the
Welcome action method...". For this URL, the controller is HelloWorld and Welcome is the action method. You
haven't used the [Parameters] part of the URL yet.

Modify the code to pass some parameter information from the URL to the controller. For example,
/HelloWorld/Welcome?name=Rick&numtimes=4 . Change the Welcome method to include two parameters as shown in

the following code.

The preceding code:

Uses the C# optional-parameter feature to indicate that the numTimes parameter defaults to 1 if no value is
passed for that parameter.
Uses HtmlEncoder.Default.Encode to protect the app from malicious input (namely JavaScript).
Uses Interpolated Strings.

Run your app and browse to:

https://docs.microsoft.com/dotnet/articles/csharp/language-reference/keywords/interpolated-strings

public string Welcome(string name, int ID = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, ID: {ID}");
}

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

http://localhost:xxxx/HelloWorld/Welcome?name=Rick&numtimes=4

(Replace xxxx with your port number.) You can try different values for name and numtimes in the URL. The MVC
model binding system automatically maps the named parameters from the query string in the address bar to
parameters in your method. See Model Binding for more information.

In the image above, the URL segment (Parameters) isn't used, the name and numTimes parameters are passed as
query strings. The ? (question mark) in the above URL is a separator, and the query strings follow. The &

character separates query strings.

Replace the Welcome method with the following code:

Run the app and enter the following URL: http://localhost:xxx/HelloWorld/Welcome/3?name=Rick

This time the third URL segment matched the route parameter id . The Welcome method contains a parameter
id that matched the URL template in the MapRoute method. The trailing ? (in id?) indicates the id parameter

is optional.

In these examples the controller has been doing the "VC" portion of MVC - that is, the view and controller work.
The controller is returning HTML directly. Generally you don't want controllers returning HTML directly, since that
becomes very cumbersome to code and maintain. Instead you typically use a separate Razor view template file to

https://wikipedia.org/wiki/Query_string

help generate the HTML response. You do that in the next tutorial.

In Visual Studio, in non-debug mode (Ctrl+F5), you don't need to build the app after changing code. Just save the
file, refresh your browser and you can see the changes.

 P R E V IO U S N E X T

Adding a view to an ASP.NET Core MVC app
4/17/2018 • 8 minutes to read • Edit Online

public IActionResult Index()
{
 return View();
}

By Rick Anderson

In this section you modify the HelloWorldController class to use Razor view template files to cleanly encapsulate
the process of generating HTML responses to a client.

You create a view template file using Razor. Razor-based view templates have a .cshtml file extension. They provide
an elegant way to create HTML output using C#.

Currently the Index method returns a string with a message that's hard-coded in the controller class. In the
HelloWorldController class, replace the Index method with the following code:

The preceding code returns a View object. It uses a view template to generate an HTML response to the browser.
Controller methods (also known as action methods) such as the Index method above, generally return an
IActionResult (or a class derived from ActionResult), not a type like string.

Right click on the Views folder, and then Add > New Folder and name the folder HelloWorld.

Right click on the Views/HelloWorld folder, and then Add > New Item.

In the Add New Item - MvcMovie dialog

In the search box in the upper-right, enter view

Tap Razor View

In the Name box, change the name if necessary to Index.cshtml.

Tap Add

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-view.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.iactionresult

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p>

Replace the contents of the Views/HelloWorld/Index.cshtml Razor view file with the following:

Navigate to http://localhost:xxxx/HelloWorld . The Index method in the HelloWorldController didn't do much; it
ran the statement return View(); , which specified that the method should use a view template file to render a
response to the browser. Because you didn't explicitly specify the name of the view template file, MVC defaulted to
using the Index.cshtml view file in the /Views/HelloWorld folder. The image below shows the string "Hello from
our View Template!" hard-coded in the view.

If your browser window is small (for example on a mobile device), you might need to toggle (tap) the Bootstrap
navigation button in the upper right to see the Home, About, and Contact links.

http://getbootstrap.com/components/#navbar

Changing views and layout pages

Change the title and menu link in the layout file

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
 @Html.Raw(JavaScriptSnippet.FullScript)
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">

Tap the menu links (MvcMovie, Home, About). Each page shows the same menu layout. The menu layout is
implemented in the Views/Shared/_Layout.cshtml file. Open the Views/Shared/_Layout.cshtml file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across
multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the view-specific
pages you create show up, wrapped in the layout page. For example, if you select the About link, the
Views/Home/About.cshtml view is rendered inside the RenderBody method.

In the title element, change MvcMovie to Movie App . Change the anchor text in the layout template from MvcMovie

to Movie App and the controller from Home to Movies as highlighted below:

collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Movies" asp-action="Index" class="navbar-brand">Movie App
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - MvcMovie</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />

 </environment>
 @Html.Raw(JavaScriptSnippet.FullScript)
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Movies" asp-action="Index" class="navbar-brand">Movie App
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - MvcMovie</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

WARNINGWARNING
We haven't implemented the Movies controller yet, so if you click on that link, you'll get a 404 (Not found) error.

Save your changes and tap the About link. Notice how the title on the browser tab now displays About - Movie
App instead of About - Mvc Movie:

@{
 Layout = "_Layout";
}

@{
 ViewData["Title"] = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

Tap the Contact link and notice that the title and anchor text also display Movie App. We were able to make the
change once in the layout template and have all pages on the site reflect the new link text and new title.

Examine the Views/_ViewStart.cshtml file:

The Views/_ViewStart.cshtml file brings in the Views/Shared/_Layout.cshtml file to each view. You can use the
Layout property to set a different layout view, or set it to null so no layout file will be used.

Change the title of the Index view.

Open Views/HelloWorld/Index.cshtml. There are two places to make a change:

The text that appears in the title of the browser.
The secondary header (<h2> element).

You'll make them slightly different so you can see which bit of code changes which part of the app.

ViewData["Title"] = "Movie List"; in the code above sets the Title property of the ViewData dictionary to
"Movie List". The Title property is used in the <title> HTML element in the layout page:

<title>@ViewData["Title"] - Movie App</title>

Passing Data from the Controller to the View

Save your change and navigate to http://localhost:xxxx/HelloWorld . Notice that the browser title, the primary
heading, and the secondary headings have changed. (If you don't see changes in the browser, you might be
viewing cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The
browser title is created with ViewData["Title"] we set in the Index.cshtml view template and the additional "-
Movie App" added in the layout file.

Also notice how the content in the Index.cshtml view template was merged with the Views/Shared/_Layout.cshtml
view template and a single HTML response was sent to the browser. Layout templates make it really easy to make
changes that apply across all of the pages in your application. To learn more see Layout.

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. The MVC
application has a "V" (view) and you've got a "C" (controller), but no "M" (model) yet.

Controller actions are invoked in response to an incoming URL request. A controller class is where you write the
code that handles the incoming browser requests. The controller retrieves data from a data source and decides
what type of response to send back to the browser. View templates can be used from a controller to generate and
format an HTML response to the browser.

Controllers are responsible for providing the data required in order for a view template to render a response. A
best practice: View templates should not perform business logic or interact with a database directly. Rather, a view
template should work only with the data that's provided to it by the controller. Maintaining this "separation of
concerns" helps keep your code clean, testable, and maintainable.

Currently, the Welcome method in the HelloWorldController class takes a name and a ID parameter and then
outputs the values directly to the browser. Rather than have the controller render this response as a string, change
the controller to use a view template instead. The view template generates a dynamic response, which means that
appropriate bits of data must be passed from the controller to the view in order to generate the response. Do this
by having the controller put the dynamic data (parameters) that the view template needs in a ViewData dictionary
that the view template can then access.

Return to the HelloWorldController.cs file and change the Welcome method to add a Message and NumTimes value
to the ViewData dictionary. The ViewData dictionary is a dynamic object, which means you can put whatever you
want in to it; the ViewData object has no defined properties until you put something inside it. The MVC model
binding system automatically maps the named parameters (name and numTimes) from the query string in the
address bar to parameters in your method. The complete HelloWorldController.cs file looks like this:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Welcome(string name, int numTimes = 1)
 {
 ViewData["Message"] = "Hello " + name;
 ViewData["NumTimes"] = numTimes;

 return View();
 }
 }
}

@{
 ViewData["Title"] = "Welcome";
}

<h2>Welcome</h2>

 @for (int i = 0; i < (int)ViewData["NumTimes"]; i++)
 {
 @ViewData["Message"]
 }

The ViewData dictionary object contains data that will be passed to the view.

Create a Welcome view template named Views/HelloWorld/Welcome.cshtml.

You'll create a loop in the Welcome.cshtml view template that displays "Hello" NumTimes . Replace the contents of
Views/HelloWorld/Welcome.cshtml with the following:

Save your changes and browse to the following URL:

http://localhost:xxxx/HelloWorld/Welcome?name=Rick&numtimes=4

Data is taken from the URL and passed to the controller using the MVC model binder . The controller packages
the data into a ViewData dictionary and passes that object to the view. The view then renders the data as HTML to
the browser.

In the sample above, we used the ViewData dictionary to pass data from the controller to a view. Later in the
tutorial, we will use a view model to pass data from a controller to a view. The view model approach to passing
data is generally much preferred over the ViewData dictionary approach. See ViewModel vs ViewData vs
ViewBag vs TempData vs Session in MVC for more information.

Well, that was a kind of an "M" for model, but not the database kind. Let's take what we've learned and create a
database of movies.

 P R E V IO U S N E X T

http://www.mytecbits.com/microsoft/dot-net/viewmodel-viewdata-viewbag-tempdata-mvc

Add a model to an ASP.NET Core MVC app
5/31/2018 • 10 minutes to read • Edit Online

Adding a model to an ASP.NET Core MVC app

Add a data model class

using System;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Scaffolding a controller

By Rick Anderson and Tom Dykstra

In this section, you'll add some classes for managing movies in a database. These classes will be the "Model" part
of the MVC app.

You use these classes with Entity Framework Core (EF Core) to work with a database. EF Core is an object-
relational mapping (ORM) framework that simplifies the data access code that you have to write. EF Core
supports many database engines.

The model classes you'll create are known as POCO classes (from "plain-old CLR objects") because they don't
have any dependency on EF Core. They just define the properties of the data that will be stored in the database.

In this tutorial you'll write the model classes first, and EF Core will create the database. An alternate approach not
covered here is to generate model classes from an already-existing database. For information about that approach,
see ASP.NET Core - Existing Database.

Right-click the Models folder > Add > Class. Name the class Movie and add the following properties:

The ID field is required by the database for the primary key.

Build the project to verify you don't have any errors. You now have a Model in your MVC app.

In Solution Explorer, right-click the Controllers folder > Add > New Scaffolded Item.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-model.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://docs.microsoft.com/ef/core
https://docs.microsoft.com/ef/core/providers/
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db

In the Add Scaffold dialog, tap MVC Controller with views, using Entity Framework > Add.

In Solution Explorer, right-click the Controllers folder > Add > Controller.

If the Add MVC Dependencies dialog appears:

Update Visual Studio to the latest version. Visual Studio versions prior to 15.5 show this dialog.
If you can't update, select ADD , and then follow the add controller steps again.

In the Add Scaffold dialog, tap MVC Controller with views, using Entity Framework > Add.

Complete the Add Controller dialog:

Model class: Movie (MvcMovie.Models)

Data context class: Select the + icon and add the default MvcMovie.Models.MvcMovieContext

https://www.visualstudio.com/downloads/

An unhandled exception occurred while processing the request.

SqlException: Cannot open database "MvcMovieContext-<GUID removed>" requested by the login. The login failed.
Login failed for user 'Rick'.

System.Data.SqlClient.SqlInternalConnectionTds..ctor(DbConnectionPoolIdentity identity, SqlConnectionString

Views: Keep the default of each option checked
Controller name: Keep the default MoviesController

Tap Add

Visual Studio creates:

An Entity Framework Core database context class (Data/MvcMovieContext.cs)
A movies controller (Controllers/MoviesController.cs)
Razor view files for Create, Delete, Details, Edit, and Index pages (Views/Movies/*.cshtml)

The automatic creation of the database context and CRUD (create, read, update, and delete) action methods and
views is known as scaffolding. You'll soon have a fully functional web application that lets you manage a movie
database.

If you run the app and click on the Mvc Movie link, you get an error similar to the following:

You need to create the database, and you'll use the EF Core Migrations feature to do that. Migrations lets you

https://wikipedia.org/wiki/Create,_read,_update_and_delete

Add EF tooling and perform initial migration

Add-Migration Initial
Update-Database

Install-Package Microsoft.EntityFrameworkCore.Tools
Add-Migration Initial
Update-Database

create a database that matches your data model and update the database schema when your data model changes.

In this section you'll use the Package Manager Console (PMC) to:

Add the Entity Framework Core Tools package. This package is required to add migrations and update the
database.
Add an initial migration.
Update the database with the initial migration.

From the Tools menu, select NuGet Package Manager > Package Manager Console.

In the PMC, enter the following commands:

Ignore the following error message, we fix it in the next tutorial:

Microsoft.EntityFrameworkCore.Model.Validation[30000]

No type was specified for the decimal column 'Price' on entity type 'Movie'. This will cause values to be silently
truncated if they do not fit in the default precision and scale. Explicitly specify the SQL server column type that can
accommodate all the values using 'ForHasColumnType()'.

Note: If you receive an error with the Install-Package command, open NuGet Package Manager and search for
the Microsoft.EntityFrameworkCore.Tools package. This allows you to install the package or check if it's already
installed. Alternatively, see the CLI approach if you have problems with the PMC.

The Add-Migration command creates code to create the initial database schema. The schema is based on the
model specified in the DbContext (In the Data/MvcMovieContext.cs file). The Initial argument is used to name
the migrations. You can use any name, but by convention you choose a name that describes the migration. See
Introduction to migrations for more information.

Test the app

The Update-Database command runs the Up method in the Migrations/<time-stamp>_Initial.cs file, which creates
the database.

 You can perform the preceeding steps using the command-line interface (CLI) rather than the PMC:

dotnet ef migrations add Initial
dotnet ef database update

SqlException: Cannot open database "Movie" requested by the login.
The login failed.
Login failed for user 'user name'.

Add EF Core tooling to the .csproj file.

Run the following commands from the console (in the project directory):

If you run the app and get the error :

You probably have not run dotnet ef database update .

Run the app and tap the Mvc Movie link.

Tap the Create New link and create a movie.

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

You may not be able to enter decimal points or commas in the Price field. To support jQuery validation for
non-English locales that use a comma (",") for a decimal point, and non US-English date formats, you must
take steps to globalize your app. See https://github.com/aspnet/Docs/issues/4076 and Additional resources
for more information. For now, just enter whole numbers like 10.

 In some locales you need to specify the date format. See the highlighted code below.

We'll talk about DataAnnotations later in the tutorial.

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies is needed for a given
request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

Tapping Create causes the form to be posted to the server, where the movie information is saved in a database.
The app redirects to the /Movies URL, where the newly created movie information is displayed.

Create a couple more movie entries. Try the Edit, Details, and Delete links, which are all functional.

The highlighted code above shows the movie database context being added to the Dependency Injection container
(In the Startup.cs file). services.AddDbContext<MvcMovieContext>(options => specifies the database to use and the
connection string. => is a lambda operator.

Open the Controllers/MoviesController.cs file and examine the constructor :

https://docs.microsoft.com/dotnet/articles/csharp/language-reference/operators/lambda-operator

public class MoviesController : Controller
{
 private readonly MvcMovieContext _context;

 public MoviesController(MvcMovieContext context)
 {
 _context = context;
 }

Strongly typed models and the @model keyword

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

The constructor uses Dependency Injection to inject the database context (MvcMovieContext) into the controller.
The database context is used in each of the CRUD methods in the controller.

Earlier in this tutorial, you saw how a controller can pass data or objects to a view using the ViewData dictionary.
The ViewData dictionary is a dynamic object that provides a convenient late-bound way to pass information to a
view.

MVC also provides the ability to pass strongly typed model objects to a view. This strongly typed approach
enables better compile-time checking of your code. The scaffolding mechanism used this approach (that is,
passing a strongly typed model) with the MoviesController class and views when it created the methods and
views.

Examine the generated Details method in the Controllers/MoviesController.cs file:

https://wikipedia.org/wiki/Create,_read,_update_and_delete

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

var movie = await _context.Movie
.FirstOrDefaultAsync(m => m.ID == id);

var movie = await _context.Movie
.SingleOrDefaultAsync(m => m.ID == id);

return View(movie);

The id parameter is generally passed as route data. For example http://localhost:5000/movies/details/1 sets:

The controller to the movies controller (the first URL segment).
The action to details (the second URL segment).
The id to 1 (the last URL segment).

You can also pass in the id with a query string as follows:

http://localhost:1234/movies/details?id=1

The id parameter is defined as a nullable type (int?) in case an ID value isn't provided.

A lambda expression is passed in to FirstOrDefaultAsync to select movie entities that match the route data or
query string value.

A lambda expression is passed in to SingleOrDefaultAsync to select movie entities that match the route data or
query string value.

If a movie is found, an instance of the Movie model is passed to the Details view:

Examine the contents of the Views/Movies/Details.cshtml file:

https://docs.microsoft.com/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/dotnet/articles/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/dotnet/articles/csharp/programming-guide/statements-expressions-operators/lambda-expressions

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
 <h4>Movie</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Title)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Title)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.ReleaseDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Genre)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Genre)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Price)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Price)
 </dd>
 </dl>
</div>
<div>
 <a asp-action="Edit" asp-route-id="@Model.ID">Edit |
 <a asp-action="Index">Back to List
</div>

@model MvcMovie.Models.Movie

By including a @model statement at the top of the view file, you can specify the type of object that the view expects.
When you created the movie controller, Visual Studio automatically included the following @model statement at
the top of the Details.cshtml file:

This @model directive allows you to access the movie that the controller passed to the view by using a Model

object that's strongly typed. For example, in the Details.cshtml view, the code passes each movie field to the
DisplayNameFor and DisplayFor HTML Helpers with the strongly typed Model object. The Create and Edit

methods and views also pass a Movie model object.

Examine the Index.cshtml view and the Index method in the Movies controller. Notice how the code creates a
List object when it calls the View method. The code passes this Movies list from the Index action method to

the view:

// GET: Movies
public async Task<IActionResult> Index()
{
 return View(await _context.Movie.ToListAsync());
}

@model IEnumerable<MvcMovie.Models.Movie>

When you created the movies controller, scaffolding automatically included the following @model statement at the
top of the Index.cshtml file:

The @model directive allows you to access the list of movies that the controller passed to the view by using a
Model object that's strongly typed. For example, in the Index.cshtml view, the code loops through the movies with

a foreach statement over the strongly typed Model object:

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Because the Model object is strongly typed (as an IEnumerable<Movie> object), each item in the loop is typed as
Movie . Among other benefits, this means that you get compile-time checking of the code:

 Additional resources
Tag Helpers
Globalization and localization

 P R E V IO U S A D D IN G A

V IE W

N E X T W O R K IN G W ITH

S Q L

Work with SQL Server LocalDB in ASP.NET Core
5/31/2018 • 3 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies is needed for a given
request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

"ConnectionStrings": {
 "MvcMovieContext": "Server=(localdb)\\mssqllocaldb;Database=MvcMovieContext-
2;Trusted_Connection=True;MultipleActiveResultSets=true"
}

SQL Server Express LocalDB

By Rick Anderson

The MvcMovieContext object handles the task of connecting to the database and mapping Movie objects to
database records. The database context is registered with the Dependency Injection container in the
ConfigureServices method in the Startup.cs file:

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the
connection string from the appsettings.json file:

When you deploy the app to a test or production server, you can use an environment variable or another approach
to set the connection string to a real SQL Server. See Configuration for more information.

LocalDB is a lightweight version of the SQL Server Express Database Engine that's targeted for program
development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,
LocalDB database creates "*.mdf" files in the C:/Users/<user> directory.

From the View menu, open SQL Server Object Explorer (SSOX).

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/working-with-sql.md
https://twitter.com/RickAndMSFT

Right click on the Movie table > View Designer

Note the key icon next to ID . By default, EF will make a property named ID the primary key.

Right click on the Movie table > View Data

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace MvcMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MvcMovieContext(
 serviceProvider.GetRequiredService<DbContextOptions<MvcMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using System;
using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;
using MvcMovie;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<MvcMovieContext>();
 context.Database.Migrate();
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

ASP.NET Core 2.x
ASP.NET Core 1.x

Add the seed initializer to the Main method in the Program.cs file:

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using MvcMovie.Models;
using System;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 // Requires using MvcMovie.Models;
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Test the app

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX.

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force
initialization, IIS Express must be stopped and restarted. You can do this with any of the following
approaches:

Right click the IIS Express system tray icon in the notification area and tap Exit or Stop Site

If you were running VS in non-debug mode, press F5 to run in debug mode
If you were running VS in debug mode, stop the debugger and press F5

The app shows the seeded data.

 P R E V IO U S N E X T

Controller methods and views in ASP.NET Core
5/31/2018 • 10 minutes to read • Edit Online

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

By Rick Anderson

We have a good start to the movie app, but the presentation isn't ideal. We don't want to see the time (12:00:00
AM in the image below) and ReleaseDate should be two words.

Open the Models/Movie.cs file and add the highlighted lines shown below:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/controller-methods-views.md
https://twitter.com/RickAndMSFT

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

We cover DataAnnotations in the next tutorial. The Display attribute specifies what to display for the name of a
field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data
(Date), so the time information stored in the field isn't displayed.

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly
map Price to currency in the database. For more information, see Data Types.

Browse to the Movies controller and hold the mouse pointer over an Edit link to see the target URL.

The Edit, Details, and Delete links are generated by the Core MVC Anchor Tag Helper in the
Views/Movies/Index.cshtml file.

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter
https://docs.microsoft.com/ef/core/modeling/relational/data-types

 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
</tr>

 <td>
 Edit |
 Details |
 Delete
</td>

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the
code above, the AnchorTagHelper dynamically generates the HTML href attribute value from the controller action
method and route id. You use View Source from your favorite browser or use the developer tools to examine the
generated markup. A portion of the generated HTML is shown below:

Recall the format for routing set in the Startup.cs file:

ASP.NET Core translates http://localhost:1234/Movies/Edit/4 into a request to the Edit action method of the
Movies controller with the parameter Id of 4. (Controller methods are also known as action methods.)

Tag Helpers are one of the most popular new features in ASP.NET Core. See Additional resources for more
information.

Open the Movies controller and examine the two Edit action methods. The following code shows the
HTTP GET Edit method, which fetches the movie and populates the edit form generated by the Edit.cshtml Razor

file.

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [Bind] attribute is one way to protect against over-posting. You should only include properties in the [Bind]

attribute that you want to change. See Protect your controller from over-posting for more information.
ViewModels provide an alternative approach to prevent over-posting.

Notice the second Edit action method is preceded by the [HttpPost] attribute.

https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application#overpost
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application
http://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

<form asp-action="Edit">

The HttpPost attribute specifies that this Edit method can be invoked only for POST requests. You could apply
the [HttpGet] attribute to the first edit method, but that's not necessary because [HttpGet] is the default.

The ValidateAntiForgeryToken attribute is used to prevent forgery of a request and is paired up with an anti-
forgery token generated in the edit view file (Views/Movies/Edit.cshtml). The edit view file generates the anti-
forgery token with the Form Tag Helper.

The Form Tag Helper generates a hidden anti-forgery token that must match the [ValidateAntiForgeryToken]

generated anti-forgery token in the Edit method of the Movies controller. For more information, see Anti-
Request Forgery.

The HttpGet Edit method takes the movie ID parameter, looks up the movie using the Entity Framework
SingleOrDefaultAsync method, and returns the selected movie to the Edit view. If a movie cannot be found,
NotFound (HTTP 404) is returned.

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

When the scaffolding system created the Edit view, it examined the Movie class and created code to render
<label> and <input> elements for each property of the class. The following example shows the Edit view that

was generated by the Visual Studio scaffolding system:

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<form asp-action="Edit">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="ID" />
 <div class="form-group">
 <label asp-for="Title" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Title" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="ReleaseDate" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="ReleaseDate" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Genre" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Genre" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Price" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Price" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
</form>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Notice how the view template has a @model MvcMovie.Models.Movie statement at the top of the file.
@model MvcMovie.Models.Movie specifies that the view expects the model for the view template to be of type Movie .

The scaffolded code uses several Tag Helper methods to streamline the HTML markup. The - Label Tag Helper
displays the name of the field ("Title", "ReleaseDate", "Genre", or "Price"). The Input Tag Helper renders an HTML
<input> element. The Validation Tag Helper displays any validation messages associated with that property.

<form action="/Movies/Edit/7" method="post">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />
 <div class="text-danger" />
 <input type="hidden" data-val="true" data-val-required="The ID field is required." id="ID" name="ID"
value="7" />
 <div class="form-group">
 <label class="control-label col-md-2" for="Genre" />
 <div class="col-md-10">
 <input class="form-control" type="text" id="Genre" name="Genre" value="Western" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Genre" data-valmsg-
replace="true">
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-2" for="Price" />
 <div class="col-md-10">
 <input class="form-control" type="text" data-val="true" data-val-number="The field Price must
be a number." data-val-required="The Price field is required." id="Price" name="Price" value="3.99" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Price" data-valmsg-
replace="true">
 </div>
 </div>
 <!-- Markup removed for brevity -->
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
 <input name="__RequestVerificationToken" type="hidden"
value="CfDJ8Inyxgp63fRFqUePGvuI5jGZsloJu1L7X9le1gy7NCIlSduCRx9jDQClrV9pOTTmqUyXnJBXhmrjcUVDJyDUMm7-
MF_9rK8aAZdRdlOri7FmKVkRe_2v5LIHGKFcTjPrWPYnc9AdSbomkiOSaTEg7RU" />
</form>

Processing the POST Request

Run the application and navigate to the /Movies URL. Click an Edit link. In the browser, view the source for the
page. The generated HTML for the <form> element is shown below.

The <input> elements are in an HTML <form> element whose action attribute is set to post to the
/Movies/Edit/id URL. The form data will be posted to the server when the Save button is clicked. The last line

before the closing </form> element shows the hidden XSRF token generated by the Form Tag Helper.

The following listing shows the [HttpPost] version of the Edit action method.

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [ValidateAntiForgeryToken] attribute validates the hidden XSRF token generated by the anti-forgery token
generator in the Form Tag Helper

The model binding system takes the posted form values and creates a Movie object that's passed as the movie

parameter. The ModelState.IsValid method verifies that the data submitted in the form can be used to modify
(edit or update) a Movie object. If the data is valid it's saved. The updated (edited) movie data is saved to the
database by calling the SaveChangesAsync method of database context. After saving the data, the code redirects the
user to the Index action method of the MoviesController class, which displays the movie collection, including the
changes just made.

Before the form is posted to the server, client side validation checks any validation rules on the fields. If there are
any validation errors, an error message is displayed and the form isn't posted. If JavaScript is disabled, you won't
have client side validation but the server will detect the posted values that are not valid, and the form values will
be redisplayed with error messages. Later in the tutorial we examine Model Validation in more detail. The
Validation Tag Helper in the Views/Movies/Edit.cshtml view template takes care of displaying appropriate error
messages.

 Additional resources

All the HttpGet methods in the movie controller follow a similar pattern. They get a movie object (or list of
objects, in the case of Index), and pass the object (model) to the view. The Create method passes an empty
movie object to the Create view. All the methods that create, edit, delete, or otherwise modify data do so in the
[HttpPost] overload of the method. Modifying data in an HTTP GET method is a security risk. Modifying data in

an HTTP GET method also violates HTTP best practices and the architectural REST pattern, which specifies that
GET requests shouldn't change the state of your application. In other words, performing a GET operation should
be a safe operation that has no side effects and doesn't modify your persisted data.

Globalization and localization
Introduction to Tag Helpers
Author Tag Helpers
Anti-Request Forgery
Protect your controller from over-posting
ViewModels
Form Tag Helper
Input Tag Helper
Label Tag Helper
Select Tag Helper

http://rest.elkstein.org/
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application
http://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

Validation Tag Helper

 P R E V IO U S N E X T

Adding Search to an ASP.NET Core MVC app
5/31/2018 • 7 minutes to read • Edit Online

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

var movies = from m in _context.Movie
 select m;

if (!String.IsNullOrEmpty(searchString))
{
 movies = movies.Where(s => s.Title.Contains(searchString));
}

By Rick Anderson

In this section you add search capability to the Index action method that lets you search movies by genre or
name.

Update the Index method with the following code:

The first line of the Index action method creates a L INQ query to select the movies:

The query is only defined at this point, it has not been run against the database.

If the searchString parameter contains a string, the movies query is modified to filter on the value of the search
string:

The s => s.Title.Contains() code above is a Lambda Expression. Lambdas are used in method-based LINQ
queries as arguments to standard query operator methods such as the Where method or Contains (used in the
code above). L INQ queries are not executed when they're defined or when they're modified by calling a method
such as Where , Contains or OrderBy . Rather, query execution is deferred. That means that the evaluation of an
expression is delayed until its realized value is actually iterated over or the ToListAsync method is called. For more
information about deferred query execution, see Query Execution.

Note: The Contains method is run on the database, not in the c# code shown above. The case sensitivity on the
query depends on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case
insensitive. In SQLlite, with the default collation, it's case sensitive.

Navigate to /Movies/Index . Append a query string such as ?searchString=Ghost to the URL. The filtered movies
are displayed.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/search.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/standard/using-linq
https://docs.microsoft.com/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/dotnet/standard/using-linq
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.where
https://docs.microsoft.com/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/sql/t-sql/language-elements/like-transact-sql

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

If you change the signature of the Index method to have a parameter named id , the id parameter will match
the optional {id} placeholder for the default routes set in Startup.cs.

You can quickly rename the searchString parameter to id with the rename command. Right click on
searchString > Rename.

The rename targets are highlighted.

Change the parameter to id and all occurrences of searchString change to id .

The previous Index method:

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

public async Task<IActionResult> Index(string id)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(id))
 {
 movies = movies.Where(s => s.Title.Contains(id));
 }

 return View(await movies.ToListAsync());
}

The updated Index method with id parameter :

You can now pass the search title as route data (a URL segment) instead of as a query string value.

However, you can't expect users to modify the URL every time they want to search for a movie. So now you'll add
UI elements to help them filter movies. If you changed the signature of the Index method to test how to pass the
route-bound ID parameter, change it back so that it takes a parameter named searchString :

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-controller="Movies" asp-action="Index">
 <p>
 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>

Open the Views/Movies/Index.cshtml file, and add the <form> markup highlighted below:

The HTML <form> tag uses the Form Tag Helper, so when you submit the form, the filter string is posted to the
Index action of the movies controller. Save your changes and then test the filter.

[HttpPost]
public string Index(string searchString, bool notUsed)
{
 return "From [HttpPost]Index: filter on " + searchString;
}

There's no [HttpPost] overload of the Index method as you might expect. You don't need it, because the method
isn't changing the state of the app, just filtering data.

You could add the following [HttpPost] Index method.

The notUsed parameter is used to create an overload for the Index method. We'll talk about that later in the
tutorial.

If you add this method, the action invoker would match the [HttpPost] Index method, and the [HttpPost] Index

method would run as shown in the image below.

However, even if you add this [HttpPost] version of the Index method, there's a limitation in how this has all
been implemented. Imagine that you want to bookmark a particular search or you want to send a link to friends
that they can click in order to see the same filtered list of movies. Notice that the URL for the HTTP POST request
is the same as the URL for the GET request (localhost:xxxxx/Movies/Index) -- there's no search information in the
URL. The search string information is sent to the server as a form field value. You can verify that with the browser
Developer tools or the excellent Fiddler tool. The image below shows the Chrome browser Developer tools:

https://developer.mozilla.org/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
http://www.telerik.com/fiddler

You can see the search parameter and XSRF token in the request body. Note, as mentioned in the previous
tutorial, the Form Tag Helper generates an XSRF anti-forgery token. We're not modifying data, so we don't need
to validate the token in the controller method.

Because the search parameter is in the request body and not the URL, you can't capture that search information to
bookmark or share with others. We'll fix this by specifying the request should be HTTP GET .

Notice how intelliSense helps us update the markup.

<form asp-controller="Movies" asp-action="Index" method="get">

Adding Search by genre

Notice the distinctive font in the <form> tag. That distinctive font indicates the tag is supported by Tag Helpers.

Now when you submit a search, the URL contains the search query string. Searching will also go to the
HttpGet Index action method, even if you have a HttpPost Index method.

The following markup shows the change to the form tag:

Add the following MovieGenreViewModel class to the Models folder :

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace MvcMovie.Models
{
 public class MovieGenreViewModel
 {
 public List<Movie> movies;
 public SelectList genres;
 public string movieGenre { get; set; }
 }
}

// Requires using Microsoft.AspNetCore.Mvc.Rendering;
public async Task<IActionResult> Index(string movieGenre, string searchString)
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 if (!String.IsNullOrEmpty(movieGenre))
 {
 movies = movies.Where(x => x.Genre == movieGenre);
 }

 var movieGenreVM = new MovieGenreViewModel();
 movieGenreVM.genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 movieGenreVM.movies = await movies.ToListAsync();

 return View(movieGenreVM);
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

The movie-genre view model will contain:

A list of movies.
A SelectList containing the list of genres. This will allow the user to select a genre from the list.
movieGenre , which contains the selected genre.

Replace the Index method in MoviesController.cs with the following code:

The following code is a LINQ query that retrieves all the genres from the database.

The SelectList of genres is created by projecting the distinct genres (we don't want our select list to have
duplicate genres).

movieGenreVM.genres = new SelectList(await genreQuery.Distinct().ToListAsync())

Adding search by genre to the Index view
Update Index.cshtml as follows:

@model MvcMovie.Models.MovieGenreViewModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-controller="Movies" asp-action="Index" method="get">
 <p>
 <select asp-for="movieGenre" asp-items="Model.genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.movies[0].Title)

In the preceding code, the DisplayNameFor HTML Helper inspects the Title property referenced in the lambda
expression to determine the display name. Since the lambda expression is inspected rather than evaluated, you
don't receive an access violation when model , model.movies , or model.movies[0] are null or empty. When the
lambda expression is evaluated (for example, @Html.DisplayFor(modelItem => item.Title)), the model's property
values are evaluated.

Test the app by searching by genre, by movie title, and by both.

 P R E V IO U S N E X T

Add a new field to an ASP.NET Core app
5/31/2018 • 4 minutes to read • Edit Online

Adding a Rating Property to the Movie Model

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

[Bind("ID,Title,ReleaseDate,Genre,Price,Rating")]

By Rick Anderson

In this section you'll use Entity Framework Code First Migrations to add a new field to the model and migrate that
change to the database.

When you use EF Code First to automatically create a database, Code First adds a table to the database to help
track whether the schema of the database is in sync with the model classes it was generated from. If they aren't in
sync, EF throws an exception. This makes it easier to find inconsistent database/code issues.

Open the Models/Movie.cs file and add a Rating property:

Build the app (Ctrl+Shift+B).

Because you've added a new field to the Movie class, you also need to update the binding white list so this new
property will be included. In MoviesController.cs, update the [Bind] attribute for both the Create and Edit

action methods to include the Rating property:

You also need to update the view templates in order to display, create and edit the new Rating property in the
browser view.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/new-field.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/ef/core/get-started/aspnetcore/new-db

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Rating)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>

Edit the /Views/Movies/Index.cshtml file and add a Rating field:

Update the /Views/Movies/Create.cshtml with a Rating field. You can copy/paste the previous "form group" and
let intelliSense help you update the fields. IntelliSense works with Tag Helpers. Note: In the RTM verison of Visual
Studio 2017 you need to install the Razor Language Services for Razor intelliSense. This will be fixed in the next
release.

https://marketplace.visualstudio.com/items?itemName=ms-madsk.RazorLanguageServices

new Movie
{
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Rating = "R",
 Price = 7.99M
},

The app won't work until we update the DB to include the new field. If you run it now, you'll get the following
SqlException :

SqlException: Invalid column name 'Rating'.

You're seeing this error because the updated Movie model class is different than the schema of the Movie table of
the existing database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Have the Entity Framework automatically drop and re-create the database based on the new model class
schema. This approach is very convenient early in the development cycle when you are doing active
development on a test database; it allows you to quickly evolve the model and database schema together.
The downside, though, is that you lose existing data in the database — so you don't want to use this
approach on a production database! Using an initializer to automatically seed a database with test data is
often a productive way to develop an application.

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage of
this approach is that you keep your data. You can make this change either manually or by creating a
database change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, we'll use Code First Migrations.

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but
you'll want to make this change for each new Movie .

Build the solution.

From the Tools menu, select NuGet Package Manager > Package Manager Console.

Add-Migration Rating
Update-Database

In the PMC, enter the following commands:

The Add-Migration command tells the migration framework to examine the current Movie model with the current
Movie DB schema and create the necessary code to migrate the DB to the new model. The name "Rating" is

arbitrary and is used to name the migration file. It's helpful to use a meaningful name for the migration file.

If you delete all the records in the DB, the initialize will seed the DB and include the Rating field. You can do this
with the delete links in the browser or from SSOX.

Run the app and verify you can create/edit/display movies with a Rating field. You should also add the Rating

field to the Edit , Details , and Delete view templates.

 P R E V IO U S N E X T

Adding validation
5/31/2018 • 10 minutes to read • Edit Online

Keeping things DRY

Adding validation rules to the movie model

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

By Rick Anderson

In this section you'll add validation logic to the Movie model, and you'll ensure that the validation rules are
enforced any time a user creates or edits a movie.

One of the design tenets of MVC is DRY ("Don't Repeat Yourself"). ASP.NET MVC encourages you to specify
functionality or behavior only once, and then have it be reflected everywhere in an app. This reduces the amount
of code you need to write and makes the code you do write less error prone, easier to test, and easier to maintain.

The validation support provided by MVC and Entity Framework Core Code First is a good example of the DRY
principle in action. You can declaratively specify validation rules in one place (in the model class) and the rules are
enforced everywhere in the app.

Open the Movie.cs file. DataAnnotations provides a built-in set of validation attributes that you apply declaratively
to any class or property. (It also contains formatting attributes like DataType that help with formatting and don't
provide any validation.)

Update the Movie class to take advantage of the built-in Required , StringLength , RegularExpression , and Range

validation attributes.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/validation.md
https://twitter.com/RickAndMSFT
https://wikipedia.org/wiki/Don%27t_repeat_yourself

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

Validation Error UI in MVC

The validation attributes specify behavior that you want to enforce on the model properties they're applied to. The
Required and MinimumLength attributes indicates that a property must have a value; but nothing prevents a user

from entering white space to satisfy this validation. The RegularExpression attribute is used to limit what
characters can be input. In the code above, Genre and Rating must use only letters (First letter uppercase, white
space, numbers and special characters are not allowed). The Range attribute constrains a value to within a
specified range. The StringLength attribute lets you set the maximum length of a string property, and optionally
its minimum length. Value types (such as decimal , int , float , DateTime) are inherently required and don't
need the [Required] attribute.

Having validation rules automatically enforced by ASP.NET helps make your app more robust. It also ensures that
you can't forget to validate something and inadvertently let bad data into the database.

Run the app and navigate to the Movies controller.

Tap the Create New link to add a new movie. Fill out the form with some invalid values. As soon as jQuery client
side validation detects the error, it displays an error message.

NOTENOTE

How validation works

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales that
use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. This
GitHub issue 4076 for instructions on adding decimal comma.

Notice how the form has automatically rendered an appropriate validation error message in each field containing
an invalid value. The errors are enforced both client-side (using JavaScript and jQuery) and server-side (in case a
user has JavaScript disabled).

A significant benefit is that you didn't need to change a single line of code in the MoviesController class or in the
Create.cshtml view in order to enable this validation UI. The controller and views you created earlier in this tutorial
automatically picked up the validation rules that you specified by using validation attributes on the properties of
the Movie model class. Test validation using the Edit action method, and the same validation is applied.

The form data isn't sent to the server until there are no client side validation errors. You can verify this by putting a
break point in the HTTP Post method, by using the Fiddler tool , or the F12 Developer tools.

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076#issuecomment-326590420
http://www.telerik.com/fiddler
https://developer.microsoft.com/microsoft-edge/platform/documentation/f12-devtools-guide/

// GET: Movies/Create
public IActionResult Create()
{
 return View();
}

// POST: Movies/Create
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("ID,Title,ReleaseDate,Genre,Price, Rating")] Movie movie)
{
 if (ModelState.IsValid)
 {
 _context.Add(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 return View(movie);
}

You might wonder how the validation UI was generated without any updates to the code in the controller or views.
The following code shows the two Create methods.

The first (HTTP GET) Create action method displays the initial Create form. The second ([HttpPost]) version
handles the form post. The second Create method (The [HttpPost] version) calls ModelState.IsValid to check
whether the movie has any validation errors. Calling this method evaluates any validation attributes that have
been applied to the object. If the object has validation errors, the Create method re-displays the form. If there are
no errors, the method saves the new movie in the database. In our movie example, the form isn't posted to the
server when there are validation errors detected on the client side; the second Create method is never called
when there are client side validation errors. If you disable JavaScript in your browser, client validation is disabled
and you can test the HTTP POST Create method ModelState.IsValid detecting any validation errors.

You can set a break point in the [HttpPost] Create method and verify the method is never called, client side
validation won't submit the form data when validation errors are detected. If you disable JavaScript in your
browser, then submit the form with errors, the break point will be hit. You still get full validation without
JavaScript.

The following image shows how to disable JavaScript in the FireFox browser.

The following image shows how to disable JavaScript in the Chrome browser.

After you disable JavaScript, post invalid data and step through the debugger.

<form asp-action="Create">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />

 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Title" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Title" class="form-control" />

 </div>
 </div>

 @*Markup removed for brevity.*@
 </div>
</form>

Using DataType Attributes

Below is portion of the Create.cshtml view template that you scaffolded earlier in the tutorial. It's used by the
action methods shown above both to display the initial form and to redisplay it in the event of an error.

The Input Tag Helper uses the DataAnnotations attributes and produces HTML attributes needed for jQuery
Validation on the client side. The Validation Tag Helper displays validation errors. See Validation for more
information.

What's really nice about this approach is that neither the controller nor the Create view template knows anything
about the actual validation rules being enforced or about the specific error messages displayed. The validation
rules and the error strings are specified only in the Movie class. These same validation rules are automatically
applied to the Edit view and any other views templates you might create that edit your model.

When you need to change validation logic, you can do so in exactly one place by adding validation attributes to the
model (in this example, the Movie class). You won't have to worry about different parts of the application being
inconsistent with how the rules are enforced — all validation logic will be defined in one place and used
everywhere. This keeps the code very clean, and makes it easy to maintain and evolve. And it means that you'll be
fully honoring the DRY principle.

Open the Movie.cs file and examine the Movie class. The System.ComponentModel.DataAnnotations namespace
provides formatting attributes in addition to the built-in set of validation attributes. We've already applied a
DataType enumeration value to the release date and to the price fields. The following code shows the
ReleaseDate and Price properties with the appropriate DataType attribute.

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

[Display(Name = "Release Date")]
[DataType(DataType.Date)]
public DateTime ReleaseDate { get; set; }

[Range(1, 100)]
[DataType(DataType.Currency)]
public decimal Price { get; set; }

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
public DateTime ReleaseDate { get; set; }

NOTENOTE

[Range(typeof(DateTime), "1/1/1966", "1/1/2020")]

The DataType attributes only provide hints for the view engine to format the data (and supplies
elements/attributes such as <a> for URL's and for email. You can use the
RegularExpression attribute to validate the format of the data. The DataType attribute is used to specify a data

type that's more specific than the database intrinsic type, they're not validation attributes. In this case we only want
to keep track of the date, not the time. The DataType Enumeration provides for many data types, such as Date,
Time, PhoneNumber, Currency, EmailAddress and more. The DataType attribute can also enable the application to
automatically provide type-specific features. For example, a mailto: link can be created for
DataType.EmailAddress , and a date selector can be provided for DataType.Date in browsers that support HTML5.

The DataType attributes emits HTML 5 data- (pronounced data dash) attributes that HTML 5 browsers can
understand. The DataType attributes do not provide any validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed
according to the default formats based on the server's CultureInfo .

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied when the value is displayed
in a text box for editing. (You might not want that for some fields — for example, for currency values, you probably
don't want the currency symbol in the text box for editing.)

You can use the DisplayFormat attribute by itself, but it's generally a good idea to use the DataType attribute. The
DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and provides the

following benefits that you don't get with DisplayFormat:

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate
currency symbol, email links, etc.)

By default, the browser will render data using the correct format based on your locale.

The DataType attribute can enable MVC to choose the right field template to render the data (the
DisplayFormat if used by itself uses the string template).

jQuery validation doesn't work with the Range attribute and DateTime . For example, the following code will always display
a client side validation error, even when the date is in the specified range:

You will need to disable jQuery date validation to use the Range attribute with DateTime . It's generally not a good
practice to compile hard dates in your models, so using the Range attribute and DateTime is discouraged.

The following code shows combining attributes on one line:

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3), Required]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), Required, StringLength(5)]
 public string Rating { get; set; }
}

Additional resources

In the next part of the series, we'll review the application and make some improvements to the automatically
generated Details and Delete methods.

Working with Forms
Globalization and localization
Introduction to Tag Helpers
Author Tag Helpers

 P R E V IO U S N E X T

Examine the Details and Delete methods of an
ASP.NET Core app
5/31/2018 • 3 minutes to read • Edit Online

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

By Rick Anderson

Open the Movie controller and examine the Details method:

The MVC scaffolding engine that created this action method adds a comment showing an HTTP request that
invokes the method. In this case it's a GET request with three URL segments, the Movies controller, the Details

method and an id value. Recall these segments are defined in Startup.cs.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/details.md
https://twitter.com/RickAndMSFT

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var movie = await _context.Movie.FindAsync(id);
 _context.Movie.Remove(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
}

EF makes it easy to search for data using the SingleOrDefaultAsync method. An important security feature built
into the method is that the code verifies that the search method has found a movie before it tries to do anything
with it. For example, a hacker could introduce errors into the site by changing the URL created by the links from
http://localhost:xxxx/Movies/Details/1 to something like http://localhost:xxxx/Movies/Details/12345 (or some

other value that doesn't represent an actual movie). If you didn't check for a null movie, the app would throw an
exception.

Examine the Delete and DeleteConfirmed methods.

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 _context.Movie.Remove(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
}

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{

Note that the HTTP GET Delete method doesn't delete the specified movie, it returns a view of the movie where you
can submit (HttpPost) the deletion. Performing a delete operation in response to a GET request (or for that matter,
performing an edit operation, create operation, or any other operation that changes data) opens up a security hole.

The [HttpPost] method that deletes the data is named DeleteConfirmed to give the HTTP POST method a unique
signature or name. The two method signatures are shown below:

The common language runtime (CLR) requires overloaded methods to have a unique parameter signature (same
method name but different list of parameters). However, here you need two Delete methods -- one for GET and
one for POST -- that both have the same parameter signature. (They both need to accept a single integer as a
parameter.)

There are two approaches to this problem, one is to give the methods different names. That's what the scaffolding
mechanism did in the preceding example. However, this introduces a small problem: ASP.NET maps segments of a
URL to action methods by name, and if you rename a method, routing normally wouldn't be able to find that
method. The solution is what you see in the example, which is to add the ActionName("Delete") attribute to the
DeleteConfirmed method. That attribute performs mapping for the routing system so that a URL that includes

/Delete/ for a POST request will find the DeleteConfirmed method.

Another common work around for methods that have identical names and signatures is to artificially change the

// POST: Movies/Delete/6
[ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(int id, bool notUsed)

Publish to AzurePublish to Azure

signature of the POST method to include an extra (unused) parameter. That's what we did in a previous post when
we added the notUsed parameter. You could do the same thing here for the [HttpPost] Delete method:

See Publish an ASP.NET Core web app to Azure App Service using Visual Studio for instructions on how to publish
this app to Azure using Visual Studio. The app can also be published from the command line.

P R E V IO U S

Build web APIs with ASP.NET Core
5/9/2018 • 4 minutes to read • Edit Online

Derive class from ControllerBase

[Produces("application/json")]
[Route("api/[controller]")]
public class PetsController : ControllerBase
{
 private readonly PetsRepository _repository;

 public PetsController(PetsRepository repository)
 {
 _repository = repository;
 }

 [HttpGet]
 public ActionResult<List<Pet>> Get()
 {
 return _repository.GetPets();
 }

 [HttpGet("{id}")]
 [ProducesResponseType(404)]
 public ActionResult<Pet> GetById(int id)
 {
 if (!_repository.TryGetPet(id, out var pet))
 {
 return NotFound();
 }

 return pet;
 }

 [HttpPost]
 [ProducesResponseType(400)]
 public async Task<ActionResult<Pet>> CreateAsync(Pet pet)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 await _repository.AddPetAsync(pet);

 return CreatedAtAction(nameof(GetById),
 new { id = pet.Id }, pet);
 }
}

By Scott Addie

View or download sample code (how to download)

This document explains how to build a web API in ASP.NET Core and when it's most appropriate to use each
feature.

Inherit from the ControllerBase class in a controller that's intended to serve as a web API. For example:

https://github.com/aspnet/Docs/blob/master/aspnetcore/web-api/index.md
https://github.com/scottaddie
https://github.com/aspnet/Docs/tree/master/aspnetcore/web-api/define-controller/samples
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase

[Produces("application/json")]
[Route("api/[controller]")]
public class PetsController : ControllerBase
{
 private readonly PetsRepository _repository;

 public PetsController(PetsRepository repository)
 {
 _repository = repository;
 }

 [HttpGet]
 [ProducesResponseType(typeof(IEnumerable<Pet>), 200)]
 public IActionResult Get()
 {
 return Ok(_repository.GetPets());
 }

 [HttpGet("{id}")]
 [ProducesResponseType(typeof(Pet), 200)]
 [ProducesResponseType(404)]
 public IActionResult GetById(int id)
 {
 if (!_repository.TryGetPet(id, out var pet))
 {
 return NotFound();
 }

 return Ok(pet);
 }

 [HttpPost]
 [ProducesResponseType(typeof(Pet), 201)]
 [ProducesResponseType(400)]
 public async Task<IActionResult> CreateAsync([FromBody] Pet pet)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 await _repository.AddPetAsync(pet);

 return CreatedAtAction(nameof(GetById),
 new { id = pet.Id }, pet);
 }
}

Annotate class with ApiControllerAttribute

[Route("api/[controller]")]
[ApiController]
public class ProductsController : ControllerBase

The ControllerBase class provides access to numerous properties and methods. In the preceding example, some
such methods include BadRequest and CreatedAtAction. These methods are invoked within action methods to
return HTTP 400 and 201 status codes, respectively. The ModelState property, also provided by ControllerBase , is
accessed to perform request model validation.

ASP.NET Core 2.1 introduces the [ApiController] attribute to denote a web API controller class. For example:

This attribute is commonly coupled with ControllerBase to gain access to useful methods and properties.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.modelstate
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute

[ApiController]
public class MyBaseController
{
}

Automatic HTTP 400 responsesAutomatic HTTP 400 responses

if (!ModelState.IsValid)
{
 return BadRequest(ModelState);
}

services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressConsumesConstraintForFormFileParameters = true;
 options.SuppressInferBindingSourcesForParameters = true;
 options.SuppressModelStateInvalidFilter = true;
});

Binding source parameter inferenceBinding source parameter inference

ATTRIBUTE BINDING SOURCE

[FromBody] Request body

[FromForm] Form data in the request body

[FromHeader] Request header

[FromQuery] Request query string parameter

[FromRoute] Route data from the current request

[FromServices] The request service injected as an action parameter

NOTENOTE

ControllerBase provides access to methods such as NotFound and File.

Another approach is to create a custom base controller class annotated with the [ApiController] attribute:

The following sections describe convenience features added by the attribute.

Validation errors automatically trigger an HTTP 400 response. The following code becomes unnecessary in your
actions:

This default behavior is disabled with the following code in Startup.ConfigureServices:

A binding source attribute defines the location at which an action parameter's value is found. The following binding
source attributes exist:

Do not use [FromRoute] when values might contain %2f (that is /) because %2f won't be unescaped to / . Use
[FromQuery] if the value might contain %2f .

Without the [ApiController] attribute, binding source attributes are explicitly defined. In the following example,

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.file
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromformattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromheaderattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromqueryattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromrouteattribute

[HttpGet]
public ActionResult<List<Product>> Get([FromQuery] bool discontinuedOnly = false)
{
 List<Product> products = null;

 if (discontinuedOnly)
 {
 products = _repository.GetDiscontinuedProducts();
 }
 else
 {
 products = _repository.GetProducts();
 }

 return products;
}

// Don't do this. All of the following actions result in an exception.
[HttpPost]
public IActionResult Action1(Product product,
 Order order) => null;

[HttpPost]
public IActionResult Action2(Product product,
 [FromBody] Order order) => null;

[HttpPost]
public IActionResult Action3([FromBody] Product product,
 [FromBody] Order order) => null;

services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressConsumesConstraintForFormFileParameters = true;
 options.SuppressInferBindingSourcesForParameters = true;
 options.SuppressModelStateInvalidFilter = true;
});

Multipart/form-data request inferenceMultipart/form-data request inference

the [FromQuery] attribute indicates that the discontinuedOnly parameter value is provided in the request URL's
query string:

Inference rules are applied for the default data sources of action parameters. These rules configure the binding
sources you're otherwise likely to manually apply to the action parameters. The binding source attributes behave as
follows:

[FromBody] is inferred for complex type parameters. An exception to this rule is any complex, built-in type with
a special meaning, such as IFormCollection and CancellationToken. The binding source inference code ignores
those special types. When an action has more than one parameter explicitly specified (via [FromBody]) or
inferred as bound from the request body, an exception is thrown. For example, the following action signatures
cause an exception:

[FromForm] is inferred for action parameters of type IFormFile and IFormFileCollection. It's not inferred for
any simple or user-defined types.
[FromRoute] is inferred for any action parameter name matching a parameter in the route template. When
multiple routes match an action parameter, any route value is considered [FromRoute] .
[FromQuery] is inferred for any other action parameters.

The default inference rules are disabled with the following code in Startup.ConfigureServices:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformcollection
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtoken
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformfilecollection

services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressConsumesConstraintForFormFileParameters = true;
 options.SuppressInferBindingSourcesForParameters = true;
 options.SuppressModelStateInvalidFilter = true;
});

Attribute routing requirementAttribute routing requirement

[Route("api/[controller]")]
[ApiController]
public class ProductsController : ControllerBase

Additional resources

When an action parameter is annotated with the [FromForm] attribute, the multipart/form-data request content
type is inferred.

The default behavior is disabled with the following code in Startup.ConfigureServices:

Attribute routing becomes a requirement. For example:

Actions are inaccessible via conventional routes defined in UseMvc or by UseMvcWithDefaultRoute in
Startup.Configure.

Controller action return types
Custom formatters
Format response data
Help pages using Swagger
Routing to controller actions

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromformattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvc#Microsoft_AspNetCore_Builder_MvcApplicationBuilderExtensions_UseMvc_Microsoft_AspNetCore_Builder_IApplicationBuilder_System_Action_Microsoft_AspNetCore_Routing_IRouteBuilder__
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvcwithdefaultroute#Microsoft_AspNetCore_Builder_MvcApplicationBuilderExtensions_UseMvcWithDefaultRoute_Microsoft_AspNetCore_Builder_IApplicationBuilder_

Create a Web API with ASP.NET Core and Visual
Studio Code
5/8/2018 • 15 minutes to read • Edit Online

Overview

API DESCRIPTION REQUEST BODY RESPONSE BODY

GET /api/todo Get all to-do items None Array of to-do items

GET /api/todo/{id} Get an item by ID None To-do item

POST /api/todo Add a new item To-do item To-do item

PUT /api/todo/{id} Update an existing item To-do item None

DELETE /api/todo/{id} Delete an item None None

By Rick Anderson and Mike Wasson

In this tutorial, build a web API for managing a list of "to-do" items. A UI isn't constructed.

There are three versions of this tutorial:

macOS, Linux, Windows: Web API with Visual Studio Code (This tutorial)
macOS: Web API with Visual Studio for Mac
Windows: Web API with Visual Studio for Windows

This tutorial creates the following API:

The following diagram shows the basic design of the app.

The client is whatever consumes the web API (mobile app, browser, etc.). This tutorial doesn't create a client.
Postman or curl is used as the client to test the app.

A model is an object that represents the data in the app. In this case, the only model is a to-do item. Models
are represented as C# classes, also known as Plain Old CLR Object (POCOs).

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/web-api-vsc.md
https://twitter.com/RickAndMSFT
https://github.com/mikewasson
https://www.getpostman.com/
https://curl.haxx.se/docs/manpage.html

Prerequisites

Create the project

dotnet new webapi -o TodoApi
code TodoApi

A controller is an object that handles HTTP requests and creates the HTTP response. This app has a single
controller.

To keep the tutorial simple, the app doesn't use a persistent database. The sample app stores to-do items in
an in-memory database.

Install the following:

Visual Studio Code
C# for Visual Studio Code

.NET Core SDK 2.0 or later

Visual Studio Code
C# for Visual Studio Code

.NET Core 2.1 SDK or later

From a console, run the following commands:

The TodoApi folder opens in Visual Studio Code (VS Code). Select the Startup.cs file.

Select Yes to the Warn message "Required assets to build and debug are missing from 'TodoApi'. Add them?"
Select Restore to the Info message "There are unresolved dependencies".

Press Debug (F5) to build and run the program. In a browser, navigate to http://localhost:5000/api/values. The

https://www.microsoft.com/net/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://www.microsoft.com/net/download/all
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
http://localhost:5000/api/values

["value1","value2"]

Add support for Entity Framework Core

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.3" />
</ItemGroup>

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" />
</ItemGroup>

Add a model class

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

Create the database context

following output is displayed:

See Visual Studio Code help for tips on using VS Code.

Creating a new project in ASP.NET Core 2.0 adds the Microsoft.AspNetCore.All package reference to the
TodoApi.csproj file:

Creating a new project in ASP.NET Core 2.1 or later adds the Microsoft.AspNetCore.App package reference to the
TodoApi.csproj file:

There's no need to install the Entity Framework Core InMemory database provider separately. This database
provider allows Entity Framework Core to be used with an in-memory database.

A model is an object representing the data in your app. In this case, the only model is a to-do item.

Add a folder named Models. You can put model classes anywhere in your project, but the Models folder is used by
convention.

Add a TodoItem class with the following code:

The database generates the Id when a TodoItem is created.

The database context is the main class that coordinates Entity Framework functionality for a given data model. You
create this class by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

Add a TodoContext class in the Models folder :

https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://www.nuget.org/packages/Microsoft.AspNetCore.App
https://docs.microsoft.com/ef/core/providers/in-memory/

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

Register the database context

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

In this step, the database context is registered with the dependency injection container. Services (such as the DB
context) that are registered with the dependency injection (DI) container are available to the controllers.

Register the DB context with the service container using the built-in support for dependency injection. Replace the
contents of the Startup.cs file with the following code:

using Microsoft.AspNetCore.Builder;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

Add a controller

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

The preceding code:

Removes the unused code.
Specifies an in-memory database is injected into the service container.

In the Controllers folder, create a class named TodoController . Replace its contents with the following code:

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API.

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

Get to-do items

[HttpGet]
public List<TodoItem> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API. The class is annotated with an [ApiController] attribute to enable some convenient features.
For information on features enabled by the attribute, see Annotate class with ApiControllerAttribute.

The controller's constructor uses Dependency Injection to inject the database context (TodoContext) into the
controller. The database context is used in each of the CRUD methods in the controller. The constructor adds an
item to the in-memory database if one doesn't exist.

To get to-do items, add the following methods to the TodoController class:

https://wikipedia.org/wiki/Create,_read,_update_and_delete

[HttpGet]
public ActionResult<List<TodoItem>> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Routing and URL pathsRouting and URL paths

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

These methods implement the two GET methods:

GET /api/todo

GET /api/todo/{id}

Here's a sample HTTP response for the GetAll method:

Later in the tutorial, I'll show how the HTTP response can be viewed with Postman or curl.

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each method
is constructed as follows:

Take the template string in the controller's Route attribute:

Replace [controller] with the name of the controller, which is the controller class name minus the "Controller"
suffix. For this sample, the controller class name is TodoController and the root name is "todo". ASP.NET Core
routing is case insensitive.

https://www.getpostman.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/curl.1.html

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

Return valuesReturn values

Launch the appLaunch the app

If the [HttpGet] attribute has a route template (such as [HttpGet("/products")] , append that to the path. This
sample doesn't use a template. For more information, see Attribute routing with Http[Verb] attributes.

In the following GetById method, "{id}" is a placeholder variable for the unique identifier of the to-do item.
When GetById is invoked, it assigns the value of "{id}" in the URL to the method's id parameter.

Name = "GetTodo" creates a named route. Named routes:

Enable the app to create an HTTP link using the route name.
Are explained later in the tutorial.

The GetAll method returns a collection of TodoItem objects. MVC automatically serializes the object to JSON and
writes the JSON into the body of the response message. The response code for this method is 200, assuming there
are no unhandled exceptions. Unhandled exceptions are translated into 5xx errors.

In contrast, the GetById method returns the more general IActionResult type, which represents a wide range of
return types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP 404
response.
Otherwise, the method returns 200 with a JSON response body. Returning Ok results in an HTTP 200 response.

In contrast, the GetById method returns the ActionResult<T> type, which represents a wide range of return types.
GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP 404
response.
Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200
response.

In VS Code, press F5 to launch the app. Navigate to http://localhost:5000/api/todo (the Todo controller we
created).

https://www.json.org/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
http://localhost:5000/api/todo

Call the Web API with jQuery

public void Configure(IApplicationBuilder app)
{
 app.UseDefaultFiles();
 app.UseStaticFiles();
 app.UseMvc();
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>To-do CRUD</title>
 <style>
 input[type='submit'], button, [aria-label] {
 cursor: pointer;
 }

 #spoiler {
 display: none;
 }

 table {
 font-family: Arial, sans-serif;
 border: 1px solid;
 border-collapse: collapse;
 }

 th {
 background-color: #0066CC;
 color: white;
 }

 td {
 border: 1px solid;
 padding: 5px;
 }
 </style>
</head>
<body>
 <h1>To-do CRUD</h1>
 <h3>Add</h3>
 <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
 <input type="text" id="add-name" placeholder="New to-do">
 <input type="submit" value="Add">
 </form>

 <div id="spoiler">
 <h3>Edit</h3>
 <form class="my-form">
 <input type="hidden" id="edit-id">
 <input type="checkbox" id="edit-isComplete">
 <input type="text" id="edit-name">
 <input type="submit" value="Edit">
 ✖

In this section, an HTML page is added that uses jQuery to call the Web API. jQuery initiates the request and
updates the page with the details from the API's response.

Configure the project to serve static files and to enable default file mapping. This is accomplished by invoking the
UseStaticFiles and UseDefaultFiles extension methods in Startup.Configure. For more information, see Static files.

Add an HTML file, named index.html, to the project's wwwroot directory. Replace its contents with the following
markup:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#Microsoft_AspNetCore_Builder_StaticFileExtensions_UseStaticFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#Microsoft_AspNetCore_Builder_DefaultFilesExtensions_UseDefaultFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_

 ✖
 </form>
 </div>

 <p id="counter"></p>

 <table>
 <tr>
 <th>Is Complete</th>
 <th>Name</th>
 <th></th>
 <th></th>
 </tr>
 <tbody id="todos"></tbody>
 </table>

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
 crossorigin="anonymous"></script>
 <script src="site.js"></script>
</body>
</html>

const uri = 'api/todo';
let todos = null;
function getCount(data) {
 const el = $('#counter');
 let name = 'to-do';
 if (data) {
 if (data > 1) {
 name = 'to-dos';
 }
 el.text(data + ' ' + name);
 } else {
 el.html('No ' + name);
 }
}

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

function addItem() {
 const item = {

Add a JavaScript file, named site.js, to the project's wwwroot directory. Replace its contents with the following code:

 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

function deleteItem(id) {
 $.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
 });
}

function editItem(id) {
 $.each(todos, function (key, item) {
 if (item.id === id) {
 $('#edit-name').val(item.name);
 $('#edit-id').val(item.id);
 $('#edit-isComplete').val(item.isComplete);
 }
 });
 $('#spoiler').css({ 'display': 'block' });
}

$('.my-form').on('submit', function () {
 const item = {
 'name': $('#edit-name').val(),
 'isComplete': $('#edit-isComplete').is(':checked'),
 'id': $('#edit-id').val()
 };

 $.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
 });

 closeInput();
 return false;
});

function closeInput() {
 $('#spoiler').css({ 'display': 'none' });
}

Get a list of to-do itemsGet a list of to-do items

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

Add a to-do itemAdd a to-do item

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally. Open
launchSettings.json in the Properties directory of the project. Remove the launchUrl property to force the app to
open at index.html—the project's default file.

There are several ways to get jQuery. In the preceding snippet, the library is loaded from a CDN. This sample is a
complete CRUD example of calling the API with jQuery. There are additional features in this sample to make the
experience richer. Below are explanations around the calls to the API.

To get a list of to-do items, send an HTTP GET request to /api/todo.

The jQuery ajax function sends an AJAX request to the API, which returns JSON representing an object or array.
This function can handle all forms of HTTP interaction, sending an HTTP request to the specified url . GET is used
as the type . The success callback function is invoked if the request succeeds. In the callback, the DOM is updated
with the to-do information.

To add a to-do item, send an HTTP POST request to /api/todo/. The request body should contain a to-do object.
The ajax function is using POST to call the API. For POST and PUT requests, the request body represents the data
sent to the API. The API is expecting a JSON request body. The accepts and contentType options are set to
application/json to classify the media type being received and sent, respectively. The data is converted to a JSON

object using JSON.stringify . When the API returns a successful status code, the getData function is invoked to
update the HTML table.

https://api.jquery.com/jquery.ajax/
https://api.jquery.com/jquery.ajax/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

Update a to-do itemUpdate a to-do item

$.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
});

Delete a to-do itemDelete a to-do item

$.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
});

Implement the other CRUD operations

CreateCreate

Updating a to-do item is very similar to adding one, since both rely on a request body. The only real difference
between the two in this case is that the url changes to add the unique identifier of the item, and the type is PUT .

Deleting a to-do item is accomplished by setting the type on the AJAX call to DELETE and specifing the item's
unique identifier in the URL.

In the following sections, Create , Update , and Delete methods are added to the controller.

Add the following Create method:

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[HttpPost]
public IActionResult Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. The [FromBody] attribute
tells MVC to get the value of the to-do item from the body of the HTTP request.

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. MVC gets the value of the
to-do item from the body of the HTTP request.

The CreatedAtRoute method:

Returns a 201 response. HTTP 201 is the standard response for an HTTP POST method that creates a new
resource on the server.
Adds a Location header to the response. The Location header specifies the URI of the newly created to-do item.
See 10.2.2 201 Created.
Uses the "GetTodo" named route to create the URL. The "GetTodo" named route is defined in GetById :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Use Postman to send a Create requestUse Postman to send a Create request

{
 "name":"walk dog",
 "isComplete":true
}

TIPTIP

Start the app.
Open Postman.

Update the port number in the localhost URL.
Set the HTTP method to POST.
Click the Body tab.
Select the raw radio button.
Set the type to JSON (application/json).
Enter a request body with a to-do item resembling the following JSON:

Click the Send button.

If no response displays after clicking Send, disable the SSL certification verification option. This is found under File >
Settings. Click the Send button again after disabling the setting.

Click the Headers tab in the Response pane and copy the Location header value:

UpdateUpdate

[HttpPut("{id}")]
public IActionResult Update(long id, [FromBody] TodoItem item)
{
 if (item == null || item.Id != id)
 {
 return BadRequest();
 }

 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

The Location header URI can be used to access the new item.

Add the following Update method:

[HttpPut("{id}")]
public IActionResult Update(long id, TodoItem item)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

DeleteDelete

Update is similar to Create , except it uses HTTP PUT. The response is 204 (No Content). According to the HTTP
specification, a PUT request requires the client to send the entire updated entity, not just the deltas. To support
partial updates, use HTTP PATCH.

Use Postman to update the to-do item's name to "walk cat":

Add the following Delete method:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

[HttpDelete("{id}")]
public IActionResult Delete(long id)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todo);
 _context.SaveChanges();
 return NoContent();
}

Visual Studio Code help

The Delete response is 204 (No Content).

Use Postman to delete the to-do item:

Getting started

Debugging

Integrated terminal

Keyboard shortcuts

macOS keyboard shortcuts

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/integrated-terminal
https://code.visualstudio.com/docs/getstarted/keybindings#_keyboard-shortcuts-reference
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf

Next steps

Linux keyboard shortcuts
Windows keyboard shortcuts

For information on using a persistent database, see:

Create a Razor Pages web app with ASP.NET Core
Work with data in ASP.NET Core

ASP.NET Core Web API help pages using Swagger

Routing to controller actions

Build web APIs with ASP.NET Core

Controller action return types

For information about deploying an API, including to Azure App Service, see Host and deploy.

View or download sample code. See how to download.

https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/first-web-api/samples

Create a Web API with ASP.NET Core and Visual
Studio for Mac
5/8/2018 • 15 minutes to read • Edit Online

Overview

API DESCRIPTION REQUEST BODY RESPONSE BODY

GET /api/todo Get all to-do items None Array of to-do items

GET /api/todo/{id} Get an item by ID None To-do item

POST /api/todo Add a new item To-do item To-do item

PUT /api/todo/{id} Update an existing item To-do item None

DELETE /api/todo/{id} Delete an item None None

By Rick Anderson and Mike Wasson

In this tutorial, build a web API for managing a list of "to-do" items. The UI isn't constructed.

There are three versions of this tutorial:

macOS: Web API with Visual Studio for Mac (This tutorial)
Windows: Web API with Visual Studio for Windows
macOS, Linux, Windows: Web API with Visual Studio Code

This tutorial creates the following API:

The following diagram shows the basic design of the app.

The client is whatever consumes the web API (mobile app, browser, etc.). This tutorial doesn't create a client.
Postman or curl is used as the client to test the app.

A model is an object that represents the data in the app. In this case, the only model is a to-do item. Models
are represented as C# classes, also known as Plain Old CLR Object (POCOs).

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-web-api-mac.md
https://twitter.com/RickAndMSFT
https://github.com/mikewasson
https://www.getpostman.com/
https://curl.haxx.se/docs/manpage.html

Prerequisites

Create the project

A controller is an object that handles HTTP requests and creates the HTTP response. This app has a single
controller.

To keep the tutorial simple, the app doesn't use a persistent database. The sample app stores to-do items in
an in-memory database.

See Introduction to ASP.NET Core MVC on macOS or Linux for an example that uses a persistent database.

Visual Studio for Mac

From Visual Studio, select File > New Solution.

Select .NET Core App > ASP.NET Core Web API > Next.

https://www.microsoft.com/net/download/macos

Launch the appLaunch the app

Enter TodoApi for the Project Name, and then click Create.

In Visual Studio, select Run > Start With Debugging to launch the app. Visual Studio launches a browser and
navigates to http://localhost:5000 . You get an HTTP 404 (Not Found) error. Change the URL to
http://localhost:<port>/api/values . The ValuesController data is displayed:

["value1","value2"]

Add support for Entity Framework CoreAdd support for Entity Framework Core

Add a model classAdd a model class

NOTENOTE

Install the Entity Framework Core InMemory database provider. This database provider allows Entity Framework
Core to be used with an in-memory database.

From the Project menu, select Add NuGet Packages.

Alternatively, you can right-click Dependencies, and then select Add Packages.
Enter EntityFrameworkCore.InMemory in the search box.

Select Microsoft.EntityFrameworkCore.InMemory , and then select Add Package.

A model is an object representing the data in your app. In this case, the only model is a to-do item.

In Solution Explorer, right-click the project. Select Add > New Folder. Name the folder Models.

You can put model classes anywhere in your project, but the Models folder is used by convention.

Right-click the Models folder, and select Add > New File > General > Empty Class. Name the class TodoItem,

https://docs.microsoft.com/ef/core/providers/in-memory/

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

Create the database contextCreate the database context

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

Register the database context

and then click New.

Replace the generated code with:

The database generates the Id when a TodoItem is created.

The database context is the main class that coordinates Entity Framework functionality for a given data model. You
create this class by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

Add a TodoContext class to the Models folder.

In this step, the database context is registered with the dependency injection container. Services (such as the DB
context) that are registered with the dependency injection (DI) container are available to the controllers.

Register the DB context with the service container using the built-in support for dependency injection. Replace the
contents of the Startup.cs file with the following code:

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

using Microsoft.AspNetCore.Builder;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

Add a controller

The preceding code:

Removes the unused code.
Specifies an in-memory database is injected into the service container.

In Solution Explorer, in the Controllers folder, add the class TodoController .

Replace the generated code with the following:

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API.

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API. The class is annotated with an [ApiController] attribute to enable some convenient features.
For information on features enabled by the attribute, see Annotate class with ApiControllerAttribute.

The controller's constructor uses Dependency Injection to inject the database context (TodoContext) into the
controller. The database context is used in each of the CRUD methods in the controller. The constructor adds an
item to the in-memory database if one doesn't exist.

https://wikipedia.org/wiki/Create,_read,_update_and_delete

Get to-do items

[HttpGet]
public List<TodoItem> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet]
public ActionResult<List<TodoItem>> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Routing and URL pathsRouting and URL paths

To get to-do items, add the following methods to the TodoController class:

These methods implement the two GET methods:

GET /api/todo

GET /api/todo/{id}

Here's a sample HTTP response for the GetAll method:

Later in the tutorial, I'll show how the HTTP response can be viewed with Postman or curl.

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each method
is constructed as follows:

Take the template string in the controller's Route attribute:

https://www.getpostman.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/curl.1.html

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

Return valuesReturn values

Replace [controller] with the name of the controller, which is the controller class name minus the "Controller"
suffix. For this sample, the controller class name is TodoController and the root name is "todo". ASP.NET Core
routing is case insensitive.
If the [HttpGet] attribute has a route template (such as [HttpGet("/products")] , append that to the path. This
sample doesn't use a template. For more information, see Attribute routing with Http[Verb] attributes.

In the following GetById method, "{id}" is a placeholder variable for the unique identifier of the to-do item.
When GetById is invoked, it assigns the value of "{id}" in the URL to the method's id parameter.

Name = "GetTodo" creates a named route. Named routes:

Enable the app to create an HTTP link using the route name.
Are explained later in the tutorial.

The GetAll method returns a collection of TodoItem objects. MVC automatically serializes the object to JSON and
writes the JSON into the body of the response message. The response code for this method is 200, assuming there
are no unhandled exceptions. Unhandled exceptions are translated into 5xx errors.

In contrast, the GetById method returns the more general IActionResult type, which represents a wide range of

https://www.json.org/

Launch the appLaunch the app

["value1","value2"]

[{"key":1,"name":"Item1","isComplete":false}]

Implement the other CRUD operations

CreateCreate

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

return types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP 404
response.
Otherwise, the method returns 200 with a JSON response body. Returning Ok results in an HTTP 200 response.

In contrast, the GetById method returns the ActionResult<T> type, which represents a wide range of return types.
GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP 404
response.
Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200
response.

In Visual Studio, select Run > Start With Debugging to launch the app. Visual Studio launches a browser and
navigates to http://localhost:<port> , where <port> is a randomly chosen port number. You get an HTTP 404
(Not Found) error. Change the URL to http://localhost:<port>/api/values . The ValuesController data is
displayed:

Navigate to the Todo controller at http://localhost:<port>/api/todo . The following JSON is returned:

We'll add Create , Update , and Delete methods to the controller. These methods are variations on a theme, so I'll
just show the code and highlight the main differences. Build the project after adding or changing code.

The preceding method responds to an HTTP POST, as indicated by the [HttpPost] attribute. The [FromBody]
attribute tells MVC to get the value of the to-do item from the body of the HTTP request.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute

[HttpPost]
public IActionResult Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

Use Postman to send a Create requestUse Postman to send a Create request

The preceding method responds to an HTTP POST, as indicated by the [HttpPost] attribute. MVC gets the value of
the to-do item from the body of the HTTP request.

The CreatedAtRoute method returns a 201 response. It's the standard response for an HTTP POST method that
creates a new resource on the server. CreatedAtRoute also adds a Location header to the response. The Location
header specifies the URI of the newly created to-do item. See 10.2.2 201 Created.

Start the app (Run > Start With Debugging).
Open Postman.

Update the port number in the localhost URL.
Set the HTTP method to POST.
Click the Body tab.
Select the raw radio button.
Set the type to JSON (application/json).
Enter a request body with a to-do item resembling the following JSON:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

{
 "name":"walk dog",
 "isComplete":true
}

TIPTIP

[HttpGet("{id}", Name = "GetTodo")]

UpdateUpdate

Click the Send button.

If no response displays after clicking Send, disable the SSL certification verification option. This is found under File >
Settings. Click the Send button again after disabling the setting.

Click the Headers tab in the Response pane and copy the Location header value:

You can use the Location header URI to access the resource you created. The Create method returns
CreatedAtRoute. The first parameter passed to CreatedAtRoute represents the named route to use for generating
the URL. Recall that the GetById method created the "GetTodo" named route:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdatroute#Microsoft_AspNetCore_Mvc_ControllerBase_CreatedAtRoute_System_String_System_Object_System_Object_

[HttpPut("{id}")]
public IActionResult Update(long id, [FromBody] TodoItem item)
{
 if (item == null || item.Id != id)
 {
 return BadRequest();
 }

 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

[HttpPut("{id}")]
public IActionResult Update(long id, TodoItem item)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

{
 "key": 1,
 "name": "walk dog",
 "isComplete": true
}

Update is similar to Create , but uses HTTP PUT. The response is 204 (No Content). According to the HTTP spec, a
PUT request requires the client to send the entire updated entity, not just the deltas. To support partial updates, use
HTTP PATCH.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

DeleteDelete

[HttpDelete("{id}")]
public IActionResult Delete(long id)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todo);
 _context.SaveChanges();
 return NoContent();
}

The response is 204 (No Content).

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Call the Web API with jQuery

public void Configure(IApplicationBuilder app)
{
 app.UseDefaultFiles();
 app.UseStaticFiles();
 app.UseMvc();
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>To-do CRUD</title>
 <style>
 input[type='submit'], button, [aria-label] {
 cursor: pointer;
 }

In this section, an HTML page is added that uses jQuery to call the Web API. jQuery initiates the request and
updates the page with the details from the API's response.

Configure the project to serve static files and to enable default file mapping. This is accomplished by invoking the
UseStaticFiles and UseDefaultFiles extension methods in Startup.Configure. For more information, see Static files.

Add an HTML file, named index.html, to the project's wwwroot directory. Replace its contents with the following
markup:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#Microsoft_AspNetCore_Builder_StaticFileExtensions_UseStaticFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#Microsoft_AspNetCore_Builder_DefaultFilesExtensions_UseDefaultFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_

 #spoiler {
 display: none;
 }

 table {
 font-family: Arial, sans-serif;
 border: 1px solid;
 border-collapse: collapse;
 }

 th {
 background-color: #0066CC;
 color: white;
 }

 td {
 border: 1px solid;
 padding: 5px;
 }
 </style>
</head>
<body>
 <h1>To-do CRUD</h1>
 <h3>Add</h3>
 <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
 <input type="text" id="add-name" placeholder="New to-do">
 <input type="submit" value="Add">
 </form>

 <div id="spoiler">
 <h3>Edit</h3>
 <form class="my-form">
 <input type="hidden" id="edit-id">
 <input type="checkbox" id="edit-isComplete">
 <input type="text" id="edit-name">
 <input type="submit" value="Edit">
 ✖
 </form>
 </div>

 <p id="counter"></p>

 <table>
 <tr>
 <th>Is Complete</th>
 <th>Name</th>
 <th></th>
 <th></th>
 </tr>
 <tbody id="todos"></tbody>
 </table>

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
 crossorigin="anonymous"></script>
 <script src="site.js"></script>
</body>
</html>

const uri = 'api/todo';
let todos = null;
function getCount(data) {
 const el = $('#counter');
 let name = 'to-do';
 if (data) {
 if (data > 1) {

Add a JavaScript file, named site.js, to the project's wwwroot directory. Replace its contents with the following code:

 if (data > 1) {
 name = 'to-dos';
 }
 el.text(data + ' ' + name);
 } else {
 el.html('No ' + name);
 }
}

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

function deleteItem(id) {
 $.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
 });
}

function editItem(id) {
 $.each(todos, function (key, item) {

 if (item.id === id) {
 $('#edit-name').val(item.name);
 $('#edit-id').val(item.id);
 $('#edit-isComplete').val(item.isComplete);
 }
 });
 $('#spoiler').css({ 'display': 'block' });
}

$('.my-form').on('submit', function () {
 const item = {
 'name': $('#edit-name').val(),
 'isComplete': $('#edit-isComplete').is(':checked'),
 'id': $('#edit-id').val()
 };

 $.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
 });

 closeInput();
 return false;
});

function closeInput() {
 $('#spoiler').css({ 'display': 'none' });
}

Get a list of to-do itemsGet a list of to-do items

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally. Open
launchSettings.json in the Properties directory of the project. Remove the launchUrl property to force the app to
open at index.html—the project's default file.

There are several ways to get jQuery. In the preceding snippet, the library is loaded from a CDN. This sample is a
complete CRUD example of calling the API with jQuery. There are additional features in this sample to make the
experience richer. Below are explanations around the calls to the API.

To get a list of to-do items, send an HTTP GET request to /api/todo.

The jQuery ajax function sends an AJAX request to the API, which returns JSON representing an object or array.
This function can handle all forms of HTTP interaction, sending an HTTP request to the specified url . GET is used
as the type . The success callback function is invoked if the request succeeds. In the callback, the DOM is updated
with the to-do information.

https://api.jquery.com/jquery.ajax/

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

Add a to-do itemAdd a to-do item

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

Update a to-do itemUpdate a to-do item

To add a to-do item, send an HTTP POST request to /api/todo/. The request body should contain a to-do object.
The ajax function is using POST to call the API. For POST and PUT requests, the request body represents the data
sent to the API. The API is expecting a JSON request body. The accepts and contentType options are set to
application/json to classify the media type being received and sent, respectively. The data is converted to a JSON

object using JSON.stringify . When the API returns a successful status code, the getData function is invoked to
update the HTML table.

Updating a to-do item is very similar to adding one, since both rely on a request body. The only real difference
between the two in this case is that the url changes to add the unique identifier of the item, and the type is PUT .

https://api.jquery.com/jquery.ajax/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

$.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
});

Delete a to-do itemDelete a to-do item

$.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
});

Next steps

Deleting a to-do item is accomplished by setting the type on the AJAX call to DELETE and specifing the item's
unique identifier in the URL.

For information on using a persistent database, see:

Create a Razor Pages web app with ASP.NET Core
Work with data in ASP.NET Core

ASP.NET Core Web API help pages using Swagger

Routing to controller actions

Build web APIs with ASP.NET Core

Controller action return types

For information about deploying an API, including to Azure App Service, see Host and deploy.

View or download sample code. See how to download.

https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/first-web-api/samples

Create a Web API with ASP.NET Core and Visual
Studio for Windows
5/18/2018 • 15 minutes to read • Edit Online

Overview

API DESCRIPTION REQUEST BODY RESPONSE BODY

GET /api/todo Get all to-do items None Array of to-do items

GET /api/todo/{id} Get an item by ID None To-do item

POST /api/todo Add a new item To-do item To-do item

PUT /api/todo/{id} Update an existing item To-do item None

DELETE /api/todo/{id} Delete an item None None

By Rick Anderson and Mike Wasson

This tutorial builds a web API for managing a list of "to-do" items. A user interface (UI) isn't created.

There are three versions of this tutorial:

Windows: Web API with Visual Studio for Windows (This tutorial)
macOS: Web API with Visual Studio for Mac
macOS, Linux, Windows: Web API with Visual Studio Code

This tutorial creates the following API:

The following diagram shows the basic design of the app.

The client is whatever consumes the web API (mobile app, browser, etc.). This tutorial doesn't create a
client. Postman or curl is used as the client to test the app.

A model is an object that represents the data in the app. In this case, the only model is a to-do item.
Models are represented as C# classes, also known as Plain Old CLR Object (POCOs).

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-web-api.md
https://twitter.com/RickAndMSFT
https://github.com/mikewasson
https://www.getpostman.com/
https://curl.haxx.se/docs/manpage.html

Prerequisites

Create the project

Launch the appLaunch the app

["value1","value2"]

Add a model classAdd a model class

NOTENOTE

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

A controller is an object that handles HTTP requests and creates the HTTP response. This app has a single
controller.

To keep the tutorial simple, the app doesn't use a persistent database. The sample app stores to-do items
in an in-memory database.

Visual Studio for Windows.
Select the ASP.NET and web development workload.

.Net Core 2.1 SDK

Follow these steps in Visual Studio:

From the File menu, select New > Project.
Select the ASP.NET Core Web Application template. Name the project TodoApi and click OK.
In the New ASP.NET Core Web Application - TodoApi dialog, choose the ASP.NET Core version. Select
the API template and click OK. Do not select Enable Docker Support.

In Visual Studio, press CTRL+F5 to launch the app. Visual Studio launches a browser and navigates to
http://localhost:<port>/api/values , where <port> is a randomly chosen port number. Chrome, Microsoft Edge,

and Firefox display the following output:

If using Internet Explorer, you'll be prompted to save a values.json file.

A model is an object representing the data in the app. In this case, the only model is a to-do item.

In Solution Explorer, right-click the project. Select Add > New Folder. Name the folder Models.

The model classes can go anywhere in the project. The Models folder is used by convention for model classes.

In Solution Explorer, right-click the Models folder and select Add > Class. Name the class TodoItem and click
Add.

Update the TodoItem class with the following code:

The database generates the Id when a TodoItem is created.

https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

Create the database contextCreate the database context

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

Register the database context

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

The database context is the main class that coordinates Entity Framework functionality for a given data model.
This class is created by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

In Solution Explorer, right-click the Models folder and select Add > Class. Name the class TodoContext and click
Add.

Replace the class with the following code:

In this step, the database context is registered with the dependency injection container. Services (such as the DB
context) that are registered with the dependency injection (DI) container are available to the controllers.

Register the DB context with the service container using the built-in support for dependency injection. Replace
the contents of the Startup.cs file with the following code:

using Microsoft.AspNetCore.Builder;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

Add a controllerAdd a controller

The preceding code:

Removes the unused code.
Specifies an in-memory database is injected into the service container.

In Solution Explorer, right-click the Controllers folder. Select Add > New Item. In the Add New Item dialog,
select the API Controller Class template. Name the class TodoController, and click Add.

Replace the class with the following code:

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API.

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API. The class is annotated with an [ApiController] attribute to enable some convenient features.
For information on features enabled by the attribute, see Annotate class with ApiControllerAttribute.

The controller's constructor uses Dependency Injection to inject the database context (TodoContext) into the
controller. The database context is used in each of the CRUD methods in the controller. The constructor adds an
item to the in-memory database if one doesn't exist.

https://wikipedia.org/wiki/Create,_read,_update_and_delete

Get to-do items

[HttpGet]
public List<TodoItem> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet]
public ActionResult<List<TodoItem>> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Routing and URL pathsRouting and URL paths

To get to-do items, add the following methods to the TodoController class:

These methods implement the two GET methods:

GET /api/todo

GET /api/todo/{id}

Here's a sample HTTP response for the GetAll method:

Later in the tutorial, I'll show how the HTTP response can be viewed with Postman or curl.

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each
method is constructed as follows:

Take the template string in the controller's Route attribute:

https://www.getpostman.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/curl.1.html

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

Return valuesReturn values

Replace [controller] with the name of the controller, which is the controller class name minus the
"Controller" suffix. For this sample, the controller class name is TodoController and the root name is "todo".
ASP.NET Core routing is case insensitive.
If the [HttpGet] attribute has a route template (such as [HttpGet("/products")] , append that to the path. This
sample doesn't use a template. For more information, see Attribute routing with Http[Verb] attributes.

In the following GetById method, "{id}" is a placeholder variable for the unique identifier of the to-do item.
When GetById is invoked, it assigns the value of "{id}" in the URL to the method's id parameter.

Name = "GetTodo" creates a named route. Named routes:

Enable the app to create an HTTP link using the route name.
Are explained later in the tutorial.

The GetAll method returns a collection of TodoItem objects. MVC automatically serializes the object to JSON
and writes the JSON into the body of the response message. The response code for this method is 200,
assuming there are no unhandled exceptions. Unhandled exceptions are translated into 5xx errors.

In contrast, the GetById method returns the more general IActionResult type, which represents a wide range of

https://www.json.org/

Launch the appLaunch the app

Implement the other CRUD operations

CreateCreate

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[HttpPost]
public IActionResult Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

return types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP
404 response.
Otherwise, the method returns 200 with a JSON response body. Returning Ok results in an HTTP 200
response.

In contrast, the GetById method returns the ActionResult<T> type, which represents a wide range of return
types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP
404 response.
Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200
response.

In Visual Studio, press CTRL+F5 to launch the app. Visual Studio launches a browser and navigates to
http://localhost:<port>/api/values , where <port> is a randomly chosen port number. Navigate to the Todo

controller at http://localhost:<port>/api/todo .

In the following sections, Create , Update , and Delete methods are added to the controller.

Add the following Create method:

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. The [FromBody] attribute
tells MVC to get the value of the to-do item from the body of the HTTP request.

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. MVC gets the value of the
to-do item from the body of the HTTP request.

The CreatedAtRoute method:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

Use Postman to send a Create requestUse Postman to send a Create request

Returns a 201 response. HTTP 201 is the standard response for an HTTP POST method that creates a new
resource on the server.
Adds a Location header to the response. The Location header specifies the URI of the newly created to-do
item. See 10.2.2 201 Created.
Uses the "GetTodo" named route to create the URL. The "GetTodo" named route is defined in GetById :

Start the app.
Open Postman.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

{
 "name":"walk dog",
 "isComplete":true
}

TIPTIP

Update the port number in the localhost URL.
Set the HTTP method to POST.
Click the Body tab.
Select the raw radio button.
Set the type to JSON (application/json).
Enter a request body with a to-do item resembling the following JSON:

Click the Send button.

If no response displays after clicking Send, disable the SSL certification verification option. This is found under File >
Settings. Click the Send button again after disabling the setting.

Click the Headers tab in the Response pane and copy the Location header value:

UpdateUpdate

[HttpPut("{id}")]
public IActionResult Update(long id, [FromBody] TodoItem item)
{
 if (item == null || item.Id != id)
 {
 return BadRequest();
 }

 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

The Location header URI can be used to access the new item.

Add the following Update method:

[HttpPut("{id}")]
public IActionResult Update(long id, TodoItem item)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

DeleteDelete

Update is similar to Create , except it uses HTTP PUT. The response is 204 (No Content). According to the HTTP
specification, a PUT request requires the client to send the entire updated entity, not just the deltas. To support
partial updates, use HTTP PATCH.

Use Postman to update the to-do item's name to "walk cat":

Add the following Delete method:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

[HttpDelete("{id}")]
public IActionResult Delete(long id)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todo);
 _context.SaveChanges();
 return NoContent();
}

Call the Web API with jQuery

The Delete response is 204 (No Content).

Use Postman to delete the to-do item:

In this section, an HTML page is added that uses jQuery to call the Web API. jQuery initiates the request and
updates the page with the details from the API's response.

Configure the project to serve static files and to enable default file mapping. This is accomplished by invoking the
UseStaticFiles and UseDefaultFiles extension methods in Startup.Configure. For more information, see Static
files.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#Microsoft_AspNetCore_Builder_StaticFileExtensions_UseStaticFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#Microsoft_AspNetCore_Builder_DefaultFilesExtensions_UseDefaultFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_

public void Configure(IApplicationBuilder app)
{
 app.UseDefaultFiles();
 app.UseStaticFiles();
 app.UseMvc();
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>To-do CRUD</title>
 <style>
 input[type='submit'], button, [aria-label] {
 cursor: pointer;
 }

 #spoiler {
 display: none;
 }

 table {
 font-family: Arial, sans-serif;
 border: 1px solid;
 border-collapse: collapse;
 }

 th {
 background-color: #0066CC;
 color: white;
 }

 td {
 border: 1px solid;
 padding: 5px;
 }
 </style>
</head>
<body>
 <h1>To-do CRUD</h1>
 <h3>Add</h3>
 <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
 <input type="text" id="add-name" placeholder="New to-do">
 <input type="submit" value="Add">
 </form>

 <div id="spoiler">
 <h3>Edit</h3>
 <form class="my-form">
 <input type="hidden" id="edit-id">
 <input type="checkbox" id="edit-isComplete">
 <input type="text" id="edit-name">
 <input type="submit" value="Edit">
 ✖
 </form>
 </div>

 <p id="counter"></p>

 <table>
 <tr>
 <th>Is Complete</th>
 <th>Name</th>

Add an HTML file, named index.html, to the project's wwwroot directory. Replace its contents with the following
markup:

 <th>Name</th>
 <th></th>
 <th></th>
 </tr>
 <tbody id="todos"></tbody>
 </table>

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
 crossorigin="anonymous"></script>
 <script src="site.js"></script>
</body>
</html>

const uri = 'api/todo';
let todos = null;
function getCount(data) {
 const el = $('#counter');
 let name = 'to-do';
 if (data) {
 if (data > 1) {
 name = 'to-dos';
 }
 el.text(data + ' ' + name);
 } else {
 el.html('No ' + name);
 }
}

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,

Add a JavaScript file, named site.js, to the project's wwwroot directory. Replace its contents with the following
code:

 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

function deleteItem(id) {
 $.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
 });
}

function editItem(id) {
 $.each(todos, function (key, item) {
 if (item.id === id) {
 $('#edit-name').val(item.name);
 $('#edit-id').val(item.id);
 $('#edit-isComplete').val(item.isComplete);
 }
 });
 $('#spoiler').css({ 'display': 'block' });
}

$('.my-form').on('submit', function () {
 const item = {
 'name': $('#edit-name').val(),
 'isComplete': $('#edit-isComplete').is(':checked'),
 'id': $('#edit-id').val()
 };

 $.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
 });

 closeInput();
 return false;
});

function closeInput() {
 $('#spoiler').css({ 'display': 'none' });
}

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally. Open
launchSettings.json in the Properties directory of the project. Remove the launchUrl property to force the app to
open at index.html—the project's default file.

There are several ways to get jQuery. In the preceding snippet, the library is loaded from a CDN. This sample is a
complete CRUD example of calling the API with jQuery. There are additional features in this sample to make the
experience richer. Below are explanations around the calls to the API.

Get a list of to-do itemsGet a list of to-do items

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

Add a to-do itemAdd a to-do item

To get a list of to-do items, send an HTTP GET request to /api/todo.

The jQuery ajax function sends an AJAX request to the API, which returns JSON representing an object or array.
This function can handle all forms of HTTP interaction, sending an HTTP request to the specified url . GET is
used as the type . The success callback function is invoked if the request succeeds. In the callback, the DOM is
updated with the to-do information.

To add a to-do item, send an HTTP POST request to /api/todo/. The request body should contain a to-do object.
The ajax function is using POST to call the API. For POST and PUT requests, the request body represents the
data sent to the API. The API is expecting a JSON request body. The accepts and contentType options are set to
application/json to classify the media type being received and sent, respectively. The data is converted to a

JSON object using JSON.stringify . When the API returns a successful status code, the getData function is
invoked to update the HTML table.

https://api.jquery.com/jquery.ajax/
https://api.jquery.com/jquery.ajax/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

Update a to-do itemUpdate a to-do item

$.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
});

Delete a to-do itemDelete a to-do item

$.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
});

Next steps

Updating a to-do item is very similar to adding one, since both rely on a request body. The only real difference
between the two in this case is that the url changes to add the unique identifier of the item, and the type is
PUT .

Deleting a to-do item is accomplished by setting the type on the AJAX call to DELETE and specifing the item's
unique identifier in the URL.

For information on using a persistent database, see:

Create a Razor Pages web app with ASP.NET Core
Work with data in ASP.NET Core

ASP.NET Core Web API help pages using Swagger

Routing to controller actions

Build web APIs with ASP.NET Core

Controller action return types

For information about deploying an API, including to Azure App Service, see Host and deploy.

View or download sample code. See how to download.

https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/first-web-api/samples

Create backend services for native mobile apps with
ASP.NET Core
3/22/2018 • 7 minutes to read • Edit Online

The Sample Native Mobile App

FeaturesFeatures

By Steve Smith

Mobile apps can easily communicate with ASP.NET Core backend services.

View or download sample backend services code

This tutorial demonstrates how to create backend services using ASP.NET Core MVC to support native mobile
apps. It uses the Xamarin Forms ToDoRest app as its native client, which includes separate native clients for
Android, iOS, Windows Universal, and Window Phone devices. You can follow the linked tutorial to create the
native app (and install the necessary free Xamarin tools), as well as download the Xamarin sample solution. The
Xamarin sample includes an ASP.NET Web API 2 services project, which this article's ASP.NET Core app replaces
(with no changes required by the client).

https://github.com/aspnet/Docs/blob/master/aspnetcore/mobile/native-mobile-backend.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mobile/native-mobile-backend/sample
https://docs.microsoft.com/xamarin/xamarin-forms/data-cloud/consuming/rest

The ToDoRest app supports listing, adding, deleting, and updating To-Do items. Each item has an ID, a Name,
Notes, and a property indicating whether it's been Done yet.

The main view of the items, as shown above, lists each item's name and indicates if it's done with a checkmark.

Tapping the + icon opens an add item dialog:

Tapping an item on the main list screen opens up an edit dialog where the item's Name, Notes, and Done settings
can be modified, or the item can be deleted:

// URL of REST service (Xamarin ReadOnly Service)
//public static string RestUrl = "http://developer.xamarin.com:8081/api/todoitems{0}";

// use your machine's IP address
public static string RestUrl = "http://192.168.1.207:5000/api/todoitems/{0}";

Creating the ASP.NET Core Project

This sample is configured by default to use backend services hosted at developer.xamarin.com, which allow read-
only operations. To test it out yourself against the ASP.NET Core app created in the next section running on your
computer, you'll need to update the app's RestUrl constant. Navigate to the ToDoREST project and open the
Constants.cs file. Replace the RestUrl with a URL that includes your machine's IP address (not localhost or
127.0.0.1, since this address is used from the device emulator, not from your machine). Include the port number as
well (5000). In order to test that your services work with a device, ensure you don't have an active firewall blocking
access to this port.

Create a new ASP.NET Core Web Application in Visual Studio. Choose the Web API template and No
Authentication. Name the project ToDoApi.

var host = new WebHostBuilder()
 .UseKestrel()
 .UseUrls("http://*:5000")
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

NOTENOTE

The application should respond to all requests made to port 5000. Update Program.cs to include
.UseUrls("http://*:5000") to achieve this:

Make sure you run the application directly, rather than behind IIS Express, which ignores non-local requests by default. Run
dotnet run from a command prompt, or choose the application name profile from the Debug Target dropdown in the Visual
Studio toolbar.

Add a model class to represent To-Do items. Mark required fields using the [Required] attribute:

https://docs.microsoft.com/dotnet/core/tools/dotnet-run

using System.ComponentModel.DataAnnotations;

namespace ToDoApi.Models
{
 public class ToDoItem
 {
 [Required]
 public string ID { get; set; }

 [Required]
 public string Name { get; set; }

 [Required]
 public string Notes { get; set; }

 public bool Done { get; set; }
 }
}

using System.Collections.Generic;
using ToDoApi.Models;

namespace ToDoApi.Interfaces
{
 public interface IToDoRepository
 {
 bool DoesItemExist(string id);
 IEnumerable<ToDoItem> All { get; }
 ToDoItem Find(string id);
 void Insert(ToDoItem item);
 void Update(ToDoItem item);
 void Delete(string id);
 }
}

using System.Collections.Generic;
using System.Linq;
using ToDoApi.Interfaces;
using ToDoApi.Models;

namespace ToDoApi.Services
{
 public class ToDoRepository : IToDoRepository
 {
 private List<ToDoItem> _toDoList;

 public ToDoRepository()
 {
 InitializeData();
 }

 public IEnumerable<ToDoItem> All
 {
 get { return _toDoList; }
 }

 public bool DoesItemExist(string id)
 {
 return _toDoList.Any(item => item.ID == id);

The API methods require some way to work with data. Use the same IToDoRepository interface the original
Xamarin sample uses:

For this sample, the implementation just uses a private collection of items:

 return _toDoList.Any(item => item.ID == id);
 }

 public ToDoItem Find(string id)
 {
 return _toDoList.FirstOrDefault(item => item.ID == id);
 }

 public void Insert(ToDoItem item)
 {
 _toDoList.Add(item);
 }

 public void Update(ToDoItem item)
 {
 var todoItem = this.Find(item.ID);
 var index = _toDoList.IndexOf(todoItem);
 _toDoList.RemoveAt(index);
 _toDoList.Insert(index, item);
 }

 public void Delete(string id)
 {
 _toDoList.Remove(this.Find(id));
 }

 private void InitializeData()
 {
 _toDoList = new List<ToDoItem>();

 var todoItem1 = new ToDoItem
 {
 ID = "6bb8a868-dba1-4f1a-93b7-24ebce87e243",
 Name = "Learn app development",
 Notes = "Attend Xamarin University",
 Done = true
 };

 var todoItem2 = new ToDoItem
 {
 ID = "b94afb54-a1cb-4313-8af3-b7511551b33b",
 Name = "Develop apps",
 Notes = "Use Xamarin Studio/Visual Studio",
 Done = false
 };

 var todoItem3 = new ToDoItem
 {
 ID = "ecfa6f80-3671-4911-aabe-63cc442c1ecf",
 Name = "Publish apps",
 Notes = "All app stores",
 Done = false,
 };

 _toDoList.Add(todoItem1);
 _toDoList.Add(todoItem2);
 _toDoList.Add(todoItem3);
 }
 }
}

Configure the implementation in Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddSingleton<IToDoRepository,ToDoRepository>();
}

TIPTIP

Creating the Controller

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using ToDoApi.Interfaces;
using ToDoApi.Models;

namespace ToDoApi.Controllers
{
 [Route("api/[controller]")]
 public class ToDoItemsController : Controller
 {
 private readonly IToDoRepository _toDoRepository;

 public ToDoItemsController(IToDoRepository toDoRepository)
 {
 _toDoRepository = toDoRepository;
 }

Reading ItemsReading Items

At this point, you're ready to create the ToDoItemsController.

Learn more about creating web APIs in Build your first Web API with ASP.NET Core MVC and Visual Studio.

Add a new controller to the project, ToDoItemsController. It should inherit from
Microsoft.AspNetCore.Mvc.Controller. Add a Route attribute to indicate that the controller will handle requests
made to paths starting with api/todoitems . The [controller] token in the route is replaced by the name of the
controller (omitting the Controller suffix), and is especially helpful for global routes. Learn more about routing.

The controller requires an IToDoRepository to function; request an instance of this type through the controller's
constructor. At runtime, this instance will be provided using the framework's support for dependency injection.

This API supports four different HTTP verbs to perform CRUD (Create, Read, Update, Delete) operations on the
data source. The simplest of these is the Read operation, which corresponds to an HTTP GET request.

Requesting a list of items is done with a GET request to the List method. The [HttpGet] attribute on the List

method indicates that this action should only handle GET requests. The route for this action is the route specified
on the controller. You don't necessarily need to use the action name as part of the route. You just need to ensure
each action has a unique and unambiguous route. Routing attributes can be applied at both the controller and
method levels to build up specific routes.

[HttpGet]
public IActionResult List()
{
 return Ok(_toDoRepository.All);
}

Creating ItemsCreating Items

The List method returns a 200 OK response code and all of the ToDo items, serialized as JSON.

You can test your new API method using a variety of tools, such as Postman, shown here:

By convention, creating new data items is mapped to the HTTP POST verb. The Create method has an
[HttpPost] attribute applied to it, and accepts a ToDoItem instance. Since the item argument will be passed in the

body of the POST, this parameter is decorated with the [FromBody] attribute.

Inside the method, the item is checked for validity and prior existence in the data store, and if no issues occur, it's
added using the repository. Checking ModelState.IsValid performs model validation, and should be done in every
API method that accepts user input.

https://www.getpostman.com/docs/

[HttpPost]
public IActionResult Create([FromBody] ToDoItem item)
{
 try
 {
 if (item == null || !ModelState.IsValid)
 {
 return BadRequest(ErrorCode.TodoItemNameAndNotesRequired.ToString());
 }
 bool itemExists = _toDoRepository.DoesItemExist(item.ID);
 if (itemExists)
 {
 return StatusCode(StatusCodes.Status409Conflict, ErrorCode.TodoItemIDInUse.ToString());
 }
 _toDoRepository.Insert(item);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotCreateItem.ToString());
 }
 return Ok(item);
}

public enum ErrorCode
{
 TodoItemNameAndNotesRequired,
 TodoItemIDInUse,
 RecordNotFound,
 CouldNotCreateItem,
 CouldNotUpdateItem,
 CouldNotDeleteItem
}

The sample uses an enum containing error codes that are passed to the mobile client:

Test adding new items using Postman by choosing the POST verb providing the new object in JSON format in the
Body of the request. You should also add a request header specifying a Content-Type of application/json .

Updating ItemsUpdating Items

[HttpPut]
public IActionResult Edit([FromBody] ToDoItem item)
{
 try
 {
 if (item == null || !ModelState.IsValid)
 {
 return BadRequest(ErrorCode.TodoItemNameAndNotesRequired.ToString());
 }
 var existingItem = _toDoRepository.Find(item.ID);
 if (existingItem == null)
 {
 return NotFound(ErrorCode.RecordNotFound.ToString());
 }
 _toDoRepository.Update(item);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotUpdateItem.ToString());
 }
 return NoContent();
}

The method returns the newly created item in the response.

Modifying records is done using HTTP PUT requests. Other than this change, the Edit method is almost identical
to Create . Note that if the record isn't found, the Edit action will return a NotFound (404) response.

Deleting ItemsDeleting Items

[HttpDelete("{id}")]
public IActionResult Delete(string id)
{
 try
 {
 var item = _toDoRepository.Find(id);
 if (item == null)
 {
 return NotFound(ErrorCode.RecordNotFound.ToString());
 }
 _toDoRepository.Delete(id);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotDeleteItem.ToString());
 }
 return NoContent();
}

To test with Postman, change the verb to PUT. Specify the updated object data in the Body of the request.

This method returns a NoContent (204) response when successful, for consistency with the pre-existing API.

Deleting records is accomplished by making DELETE requests to the service, and passing the ID of the item to be
deleted. As with updates, requests for items that don't exist will receive NotFound responses. Otherwise, a
successful request will get a NoContent (204) response.

Common Web API Conventions

Note that when testing the delete functionality, nothing is required in the Body of the request.

As you develop the backend services for your app, you will want to come up with a consistent set of conventions or
policies for handling cross-cutting concerns. For example, in the service shown above, requests for specific records
that weren't found received a NotFound response, rather than a BadRequest response. Similarly, commands made
to this service that passed in model bound types always checked ModelState.IsValid and returned a BadRequest

for invalid model types.

Once you've identified a common policy for your APIs, you can usually encapsulate it in a filter. Learn more about
how to encapsulate common API policies in ASP.NET Core MVC applications.

https://msdn.microsoft.com/magazine/mt767699.aspx

ASP.NET Core Web API help pages with Swagger /
Open API
3/22/2018 • 2 minutes to read • Edit Online

What is Swagger / Open API?

Swagger specification (swagger.json)

By Christoph Nienaber and Rico Suter

When consuming a Web API, understanding its various methods can be challenging for a developer. Swagger,
also known as Open API, solves the problem of generating useful documentation and help pages for Web APIs.
It provides benefits such as interactive documentation, client SDK generation, and API discoverability.

In this article, the Swashbuckle.AspNetCore and NSwag .NET Swagger implementations are showcased:

Swashbuckle.AspNetCore is an open source project for generating Swagger documents for ASP.NET
Core Web APIs.

NSwag is another open source project for integrating Swagger UI or ReDoc into ASP.NET Core Web
APIs. It offers approaches to generate C# and TypeScript client code for your API.

Swagger is a language-agnostic specification for describing REST APIs. The Swagger project was donated to the
OpenAPI Initiative, where it's now referred to as Open API. Both names are used interchangeably; however,
Open API is preferred. It allows both computers and humans to understand the capabilities of a service without
any direct access to the implementation (source code, network access, documentation). One goal is to minimize
the amount of work needed to connect disassociated services. Another goal is to reduce the amount of time
needed to accurately document a service.

The core to the Swagger flow is the Swagger specification—by default, a document named swagger.json. It's
generated by the Swagger tool chain (or third-party implementations of it) based on your service. It describes
the capabilities of your API and how to access it with HTTP. It drives the Swagger UI and is used by the tool
chain to enable discovery and client code generation. Here's an example of a Swagger specification, reduced for
brevity:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/web-api-help-pages-using-swagger.md
https://twitter.com/zuckerthoben
http://rsuter.com
https://swagger.io/
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/RSuter/NSwag
https://swagger.io/swagger-ui/
https://github.com/Rebilly/ReDoc
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.openapis.org/

{
 "swagger": "2.0",
 "info": {
 "version": "v1",
 "title": "API V1"
 },
 "basePath": "/",
 "paths": {
 "/api/Todo": {
 "get": {
 "tags": [
 "Todo"
],
 "operationId": "ApiTodoGet",
 "consumes": [],
 "produces": [
 "text/plain",
 "application/json",
 "text/json"
],
 "responses": {
 "200": {
 "description": "Success",
 "schema": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/TodoItem"
 }
 }
 }
 }
 },
 "post": {
 ...
 }
 },
 "/api/Todo/{id}": {
 "get": {
 ...
 },
 "put": {
 ...
 },
 "delete": {
 ...
 },
 "definitions": {
 "TodoItem": {
 "type": "object",
 "properties": {
 "id": {
 "format": "int64",
 "type": "integer"
 },
 "name": {
 "type": "string"
 },
 "isComplete": {
 "default": false,
 "type": "boolean"
 }
 }
 }
 },
 "securityDefinitions": {}
}

Swagger UI
Swagger UI offers a web-based UI that provides information about the service, using the generated Swagger
specification. Both Swashbuckle and NSwag include an embedded version of Swagger UI, so that it can be
hosted in your ASP.NET Core app using a middleware registration call. The web UI looks like this:

Each public action method in your controllers can be tested from the UI. Click a method name to expand the
section. Add any necessary parameters, and click Try it out!.

https://swagger.io/swagger-ui/

NOTENOTE

Next steps

The Swagger UI version used for the screenshots is version 2. For a version 3 example, see Petstore example.

Get started with Swashbuckle
Get started with NSwag

http://petstore.swagger.io/

Get started with NSwag and ASP.NET Core
5/12/2018 • 6 minutes to read • Edit Online

Features

Package installation

By Christoph Nienaber and Rico Suter

View or download sample code (how to download)

View or download sample code (how to download)

Using NSwag with ASP.NET Core middleware requires the NSwag.AspNetCore NuGet package. The package
consists of a Swagger generator, Swagger UI (v2 and v3), and ReDoc UI.

It's highly recommended to make use of NSwag's code generation capabilities. Choose one of the following
options for code generation:

Use NSwagStudio, a Windows desktop app for generating client code in C# and TypeScript for your API.
Use the NSwag.CodeGeneration.CSharp or NSwag.CodeGeneration.TypeScript NuGet packages to do code
generation inside your project.
Use NSwag from the command line.
Use the NSwag.MSBuild NuGet package.

The main reason to use NSwag is the ability to not only introduce the Swagger UI and Swagger generator, but to
make use of the flexible code generation capabilities. You don't need an existing API—you can use third-party APIs
that incorporate Swagger and let NSwag generate a client implementation. Either way, the development cycle is
expedited and you can more easily adapt to API changes.

The NSwag NuGet package can be added with the following approaches:

Visual Studio
Visual Studio for Mac
Visual Studio Code
.NET Core CLI

From the Package Manager Console window:

Install-Package NSwag.AspNetCore

Go to View > Other Windows > Package Manager Console

Navigate to the directory in which the TodoApi.csproj file exists

Execute the following command:

From the Manage NuGet Packages dialog:

Right-click the project in Solution Explorer > Manage NuGet Packages
Set the Package source to "nuget.org"
Enter "NSwag.AspNetCore" in the search box

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/getting-started-with-NSwag.md
https://twitter.com/zuckerthoben
https://rsuter.com
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/web-api-help-pages-using-swagger/samples/2.0/TodoApi.NSwag
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/web-api-help-pages-using-swagger/samples/2.1/TodoApi.NSwag
https://github.com/RSuter/NSwag
https://www.nuget.org/packages/NSwag.AspNetCore/
https://github.com/Rebilly/ReDoc
https://github.com/NSwag/NSwag/wiki/NSwagStudio
https://www.nuget.org/packages/NSwag.CodeGeneration.CSharp/
https://www.nuget.org/packages/NSwag.CodeGeneration.TypeScript/
https://github.com/NSwag/NSwag/wiki/CommandLine
https://github.com/NSwag/NSwag/wiki/MSBuild

Add and configure Swagger middleware

using NJsonSchema;
using NSwag.AspNetCore;
using System.Reflection;

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles();

 // Enable the Swagger UI middleware and the Swagger generator
 app.UseSwaggerUi(typeof(Startup).GetTypeInfo().Assembly, settings =>
 {
 settings.GeneratorSettings.DefaultPropertyNameHandling =
 PropertyNameHandling.CamelCase;
 });

 app.UseMvc();
}

Code generation
Via NSwagStudioVia NSwagStudio

Select the "NSwag.AspNetCore" package from the Browse tab and click Install

Import the following namespaces in the Startup class:

In the Startup.Configure method, enable the middleware for serving the generated Swagger specification and the
Swagger UI:

Launch the app. Navigate to http://localhost:<port>/swagger to view the Swagger UI. Navigate to
http://localhost:<port>/swagger/v1/swagger.json to view the Swagger specification.

Install NSwagStudio from the official GitHub repository.
Launch NSwagStudio. Enter the swagger.json file URL in the Swagger Specification URL textbox, and click
the Create local Copy button.
Select the CSharp Client client output type. Other options include TypeScript Client and CSharp Web API
Controller. Using a Web API Controller is basically a reverse generation. It uses a specification of a service to
rebuild the service.
Click the Generate Outputs button. A complete C# client implementation of the TodoApi.NSwag project is
produced. Click the CSharp Client tab of the Outputs section to see the generated client code:

https://github.com/RSuter/NSwag/wiki/NSwagStudio

//----------------------
// <auto-generated>
// Generated using the NSwag toolchain v11.17.3.0 (NJsonSchema v9.10.46.0 (Newtonsoft.Json v9.0.0.0))
(http://NSwag.org)
// </auto-generated>
//----------------------

namespace MyNamespace
{
 #pragma warning disable // Disable all warnings

 [System.CodeDom.Compiler.GeneratedCode("NSwag",
 "11.17.3.0 (NJsonSchema v9.10.46.0 (Newtonsoft.Json v9.0.0.0))")]
 public partial class TodoClient
 {
 private string _baseUrl = "http://localhost:50499";
 private System.Lazy<Newtonsoft.Json.JsonSerializerSettings> _settings;

 public TodoClient()
 {
 _settings = new System.Lazy
 <Newtonsoft.Json.JsonSerializerSettings>(() =>
 {
 var settings = new Newtonsoft.Json.JsonSerializerSettings();
 UpdateJsonSerializerSettings(settings);
 return settings;
 });
 }

 public string BaseUrl
 {
 get { return _baseUrl; }
 set { _baseUrl = value; }
 }

 // code omitted for brevity

TIPTIP

var todoClient = new TodoClient();

// Gets all to-dos from the API
var allTodos = await todoClient.GetAllAsync();

// Create a new TodoItem, and save it in the API
var createdTodo = await todoClient.CreateAsync(new TodoItem());

// Get a single to-do by ID
var foundTodo = await todoClient.GetByIdAsync(1);

NOTENOTE

The C# client code is generated based on settings defined in the Settings tab of the CSharp Client tab. Modify the settings
to perform tasks such as default namespace renaming and synchronous method generation.

Copy the generated C# code into a file in a client project (for example, a Xamarin.Forms app).
Start consuming the web API:

You can inject a base URL and/or a HTTP client into the API client. The best practice is to always reuse the HttpClient.

https://docs.microsoft.com/xamarin/xamarin-forms/
https://aspnetmonsters.com/2016/08/2016-08-27-httpclientwrong/

Other ways to generate client codeOther ways to generate client code

Customize

API info and descriptionAPI info and description

// Register the Swagger generator
app.UseSwagger(typeof(Startup).Assembly, settings =>
{
 settings.PostProcess = document =>
 {
 document.Info.Version = "v1";
 document.Info.Title = "ToDo API";
 document.Info.Description = "A simple ASP.NET Core web API";
 document.Info.TermsOfService = "None";
 document.Info.Contact = new NSwag.SwaggerContact
 {
 Name = "Shayne Boyer",
 Email = string.Empty,
 Url = "https://twitter.com/spboyer"
 };
 document.Info.License = new NSwag.SwaggerLicense
 {
 Name = "Use under LICX",
 Url = "https://example.com/license"
 };
 };
});

XML commentsXML comments

You can generate the client code in other ways, more suited to your workflow:

MSBuild

In code

T4 templates

Swagger provides options for documenting the object model to ease consumption of the web API.

In the Startup.Configure method, a configuration action passed to the UseSwagger method adds information such
as the author, license, and description:

The Swagger UI displays the version's information:

XML comments are enabled with the following approaches:

https://www.nuget.org/packages/NSwag.MSBuild/
https://github.com/NSwag/NSwag/wiki/SwaggerToCSharpClientGenerator
https://github.com/NSwag/NSwag/wiki/T4

Data annotationsData annotations

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[ProducesResponseType(typeof(TodoItem), 201)] // Created
[ProducesResponseType(400)] // BadRequest

[HttpPost]
public ActionResult<TodoItem> Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[ProducesResponseType(201)] // Created
[ProducesResponseType(400)] // BadRequest

Visual Studio
Visual Studio for Mac
Visual Studio Code

Right-click the project in Solution Explorer and select Properties
Check the XML documentation file box under the Output section of the Build tab

NSwag uses Reflection, and the recommended return type for web API actions is IActionResult. Consequently,
NSwag can't infer what your action is doing and what it returns. Consider the following example:

The preceding action returns IActionResult , but inside the action it's returning either CreatedAtRoute or
BadRequest. Data annotations are used to tell clients which HTTP status codes this action is known to return.
Decorate the action with the following attributes:

NSwag uses Reflection, and the recommended return type for web API actions is ActionResult<T>. Consequently,
NSwag can only infer the return type defined by T . Other possible return types in the action cannot be inferred.
Consider the following example:

The preceding action returns ActionResult<T> , but inside the action it's returning either CreatedAtRoute. Since the
controller is decorated with the [ApiController] attribute, a BadRequest response is possible too. See Automatic
HTTP 400 responses for more info. Data annotations are used to tell clients which HTTP status codes this action is
known to return. Decorate the action with the following attributes:

The Swagger generator can now accurately describe this action, and generated clients know what they receive
when calling the endpoint. Decorating all actions with these attributes is highly recommended. For guidelines on

https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/dotnet/api/system.web.http.apicontroller.createdatroute
https://docs.microsoft.com/dotnet/api/system.web.http.apicontroller.badrequest
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1
https://docs.microsoft.com/dotnet/api/system.web.http.apicontroller.createdatroute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/dotnet/api/system.web.http.apicontroller.badrequest

what HTTP responses your API actions should return, see the RFC 7231 specification.

https://tools.ietf.org/html/rfc7231#section-4.3

Get started with Swashbuckle and ASP.NET Core
6/2/2018 • 10 minutes to read • Edit Online

Package installation

Add and configure Swagger middleware

By Shayne Boyer and Scott Addie

View or download sample code (how to download)

There are three main components to Swashbuckle:

Swashbuckle.AspNetCore.Swagger: a Swagger object model and middleware to expose SwaggerDocument

objects as JSON endpoints.

Swashbuckle.AspNetCore.SwaggerGen: a Swagger generator that builds SwaggerDocument objects directly
from your routes, controllers, and models. It's typically combined with the Swagger endpoint middleware to
automatically expose Swagger JSON.

Swashbuckle.AspNetCore.SwaggerUI: an embedded version of the Swagger UI tool. It interprets Swagger
JSON to build a rich, customizable experience for describing the Web API functionality. It includes built-in
test harnesses for the public methods.

Swashbuckle can be added with the following approaches:

Visual Studio
Visual Studio for Mac
Visual Studio Code
.NET Core CLI

From the Package Manager Console window:

Install-Package Swashbuckle.AspNetCore

Go to View > Other Windows > Package Manager Console

Navigate to the directory in which the TodoApi.csproj file exists

Execute the following command:

From the Manage NuGet Packages dialog:

Right-click the project in Solution Explorer > Manage NuGet Packages
Set the Package source to "nuget.org"
Enter "Swashbuckle.AspNetCore" in the search box
Select the "Swashbuckle.AspNetCore" package from the Browse tab and click Install

Add the Swagger generator to the services collection in the Startup.ConfigureServices method:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/getting-started-with-swashbuckle.md
https://twitter.com/spboyer
https://twitter.com/Scott_Addie
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/web-api-help-pages-using-swagger/samples/
https://www.nuget.org/packages/Swashbuckle.AspNetCore.Swagger/
https://www.nuget.org/packages/Swashbuckle.AspNetCore.SwaggerGen/
https://www.nuget.org/packages/Swashbuckle.AspNetCore.SwaggerUI/

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();

 // Register the Swagger generator, defining 1 or more Swagger documents
 services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new Info { Title = "My API", Version = "v1" });
 });
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 // Register the Swagger generator, defining 1 or more Swagger documents
 services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new Info { Title = "My API", Version = "v1" });
 });
}

using Swashbuckle.AspNetCore.Swagger;

public void Configure(IApplicationBuilder app)
{
 // Enable middleware to serve generated Swagger as a JSON endpoint.
 app.UseSwagger();

 // Enable middleware to serve swagger-ui (HTML, JS, CSS, etc.),
 // specifying the Swagger JSON endpoint.
 app.UseSwaggerUI(c =>
 {
 c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
 });

 app.UseMvc();
}

Import the following namespace to use the Info class:

In the Startup.Configure method, enable the middleware for serving the generated JSON document and the
Swagger UI:

Launch the app, and navigate to http://localhost:<port>/swagger/v1/swagger.json . The generated document
describing the endpoints appears as shown in Swagger specification (swagger.json).

The Swagger UI can be found at http://localhost:<port>/swagger . Explore the API via Swagger UI and
incorporate it in other programs.

TIPTIP

app.UseSwaggerUI(c =>
{
 c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
 c.RoutePrefix = string.Empty;
});

Customize and extend

API info and descriptionAPI info and description

// Register the Swagger generator, defining 1 or more Swagger documents
services.AddSwaggerGen(c =>
{
 c.SwaggerDoc("v1", new Info
 {
 Version = "v1",
 Title = "ToDo API",
 Description = "A simple example ASP.NET Core Web API",
 TermsOfService = "None",
 Contact = new Contact
 {
 Name = "Shayne Boyer",
 Email = string.Empty,
 Url = "https://twitter.com/spboyer"
 },
 License = new License
 {
 Name = "Use under LICX",
 Url = "https://example.com/license"
 }
 });
});

To serve the Swagger UI at the app's root (http://localhost:<port>/), set the RoutePrefix property to an empty
string:

Swagger provides options for documenting the object model and customizing the UI to match your theme.

The configuration action passed to the AddSwaggerGen method adds information such as the author, license, and
description:

The Swagger UI displays the version's information:

XML commentsXML comments

warning CS1591: Missing XML comment for publicly visible type or member 'TodoController.GetAll()'

<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'">
 <DocumentationFile>bin\Debug\$(TargetFramework)\$(MSBuildProjectName).xml</DocumentationFile>
 <NoWarn>1701;1702;1705;1591</NoWarn>
</PropertyGroup>

XML comments can be enabled with the following approaches:

Visual Studio
Visual Studio for Mac
Visual Studio Code

Right-click the project in Solution Explorer and select Properties
Check the XML documentation file box under the Output section of the Build tab

Enabling XML comments provides debug information for undocumented public types and members.
Undocumented types and members are indicated by the warning message. For example, the following message
indicates a violation of warning code 1591:

Suppress warnings by defining a semicolon-delimited list of warning codes to ignore in the .csproj file:

Configure Swagger to use the generated XML file. For Linux or non-Windows operating systems, file names and
paths can be case-sensitive. For example, a TodoApi.XML file is valid on Windows but not CentOS.

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();

 // Register the Swagger generator, defining 1 or more Swagger documents
 services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new Info
 {
 Version = "v1",
 Title = "ToDo API",
 Description = "A simple example ASP.NET Core Web API",
 TermsOfService = "None",
 Contact = new Contact
 {
 Name = "Shayne Boyer",
 Email = string.Empty,
 Url = "https://twitter.com/spboyer"
 },
 License = new License
 {
 Name = "Use under LICX",
 Url = "https://example.com/license"
 }
 });

 // Set the comments path for the Swagger JSON and UI.
 var xmlFile = $"{Assembly.GetEntryAssembly().GetName().Name}.xml";
 var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
 c.IncludeXmlComments(xmlPath);
 });
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();

 // Register the Swagger generator, defining 1 or more Swagger documents
 services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new Info
 {
 Version = "v1",
 Title = "ToDo API",
 Description = "A simple example ASP.NET Core Web API",
 TermsOfService = "None",
 Contact = new Contact
 {
 Name = "Shayne Boyer",
 Email = string.Empty,
 Url = "https://twitter.com/spboyer"
 },
 License = new License
 {
 Name = "Use under LICX",
 Url = "https://example.com/license"
 }
 });

 // Set the comments path for the Swagger JSON and UI.
 var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
 var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
 c.IncludeXmlComments(xmlPath);
 });
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 // Register the Swagger generator, defining 1 or more Swagger documents
 services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new Info
 {
 Version = "v1",
 Title = "ToDo API",
 Description = "A simple example ASP.NET Core Web API",
 TermsOfService = "None",
 Contact = new Contact
 {
 Name = "Shayne Boyer",
 Email = string.Empty,
 Url = "https://twitter.com/spboyer"
 },
 License = new License
 {
 Name = "Use under LICX",
 Url = "https://example.com/license"
 }
 });

 // Set the comments path for the Swagger JSON and UI.
 var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
 var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
 c.IncludeXmlComments(xmlPath);
 });
}

/// <summary>
/// Deletes a specific TodoItem.
/// </summary>
/// <param name="id"></param>
[HttpDelete("{id}")]
public IActionResult Delete(long id)
{
 var todo = _context.TodoItems.Find(id);

 if (todo == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todo);
 _context.SaveChanges();

 return NoContent();
}

In the preceding code, Reflection is used to build an XML file name matching that of the Web API project. This
approach ensures that the generated XML file name matches the project name. The AppContext.BaseDirectory
property is used to construct a path to the XML file.

Adding triple-slash comments to an action enhances the Swagger UI by adding the description to the section
header. Add a <summary> element above the Delete action:

https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/dotnet/api/system.appcontext.basedirectory#System_AppContext_BaseDirectory
https://docs.microsoft.com/dotnet/csharp/programming-guide/xmldoc/summary

"delete": {
 "tags": [
 "Todo"
],
 "summary": "Deletes a specific TodoItem.",
 "operationId": "ApiTodoByIdDelete",
 "consumes": [],
 "produces": [],
 "parameters": [
 {
 "name": "id",
 "in": "path",
 "description": "",
 "required": true,
 "type": "integer",
 "format": "int64"
 }
],
 "responses": {
 "200": {
 "description": "Success"
 }
 }
}

The Swagger UI displays the inner text of the preceding code's <summary> element:

The UI is driven by the generated JSON schema:

Add a <remarks> element to the Create action method documentation. It supplements information specified in
the <summary> element and provides a more robust Swagger UI. The <remarks> element content can consist of
text, JSON, or XML.

https://docs.microsoft.com/dotnet/csharp/programming-guide/xmldoc/remarks

/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
/// POST /Todo
/// {
/// "id": 1,
/// "name": "Item1",
/// "isComplete": true
/// }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>
[HttpPost]
[ProducesResponseType(typeof(TodoItem), 201)]
[ProducesResponseType(400)]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
/// POST /Todo
/// {
/// "id": 1,
/// "name": "Item1",
/// "isComplete": true
/// }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>
[HttpPost]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
public ActionResult<TodoItem> Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

Notice the UI enhancements with these additional comments:

Data annotationsData annotations

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }

 [Required]
 public string Name { get; set; }

 [DefaultValue(false)]
 public bool IsComplete { get; set; }
 }
}

"definitions": {
 "TodoItem": {
 "required": [
 "name"
],
 "type": "object",
 "properties": {
 "id": {
 "format": "int64",
 "type": "integer"
 },
 "name": {
 "type": "string"
 },
 "isComplete": {
 "default": false,
 "type": "boolean"
 }
 }
 }
},

Decorate the model with attributes, found in the System.ComponentModel.DataAnnotations namespace, to help
drive the Swagger UI components.

Add the [Required] attribute to the Name property of the TodoItem class:

The presence of this attribute changes the UI behavior and alters the underlying JSON schema:

Add the [Produces("application/json")] attribute to the API controller. Its purpose is to declare that the
controller's actions support a response content type of application/json:

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations

[Produces("application/json")]
[Route("api/[controller]")]
public class TodoController : ControllerBase
{
 private readonly TodoContext _context;

[Produces("application/json")]
[Route("api/[controller]")]
[ApiController]
public class TodoController : ControllerBase
{
 private readonly TodoContext _context;

Describe response typesDescribe response types

The Response Content Type drop-down selects this content type as the default for the controller's GET actions:

As the usage of data annotations in the Web API increases, the UI and API help pages become more descriptive
and useful.

Consuming developers are most concerned with what's returned—specifically response types and error codes (if
not standard). The response types and error codes are denoted in the XML comments and data annotations.

The Create action returns an HTTP 201 status code on success. An HTTP 400 status code is returned when the
posted request body is null. Without proper documentation in the Swagger UI, the consumer lacks knowledge of
these expected outcomes. Fix that problem by adding the highlighted lines in the following example:

/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
/// POST /Todo
/// {
/// "id": 1,
/// "name": "Item1",
/// "isComplete": true
/// }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>
[HttpPost]
[ProducesResponseType(typeof(TodoItem), 201)]
[ProducesResponseType(400)]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
/// POST /Todo
/// {
/// "id": 1,
/// "name": "Item1",
/// "isComplete": true
/// }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>
[HttpPost]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
public ActionResult<TodoItem> Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

The Swagger UI now clearly documents the expected HTTP response codes:

Customize the UICustomize the UI

<PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="2.0.0" />

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles();

 // Enable middleware to serve generated Swagger as a JSON endpoint.
 app.UseSwagger();

 // Enable middleware to serve swagger-ui (HTML, JS, CSS, etc.),
 // specifying the Swagger JSON endpoint.
 app.UseSwaggerUI(c =>
 {
 c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
 });

 app.UseMvc();
}

The stock UI is both functional and presentable. However, API documentation pages should represent your brand
or theme. Branding the Swashbuckle components requires adding the resources to serve static files and building
the folder structure to host those files.

If targeting .NET Framework or .NET Core 1.x, add the Microsoft.AspNetCore.StaticFiles NuGet package to the
project:

The preceding NuGet package is already installed if targeting .NET Core 2.x and using the metapackage.

Enable the static files middleware:

Acquire the contents of the dist folder from the Swagger UI GitHub repository. This folder contains the necessary
assets for the Swagger UI page.

Create a wwwroot/swagger/ui folder, and copy into it the contents of the dist folder.

Create a custom.css file, in wwwroot/swagger/ui, with the following CSS to customize the page header :

https://www.nuget.org/packages/Microsoft.AspNetCore.StaticFiles
https://github.com/swagger-api/swagger-ui/tree/master/dist

.swagger-ui .topbar {
 background-color: #000;
 border-bottom: 3px solid #547f00;
}

<link href="https://fonts.googleapis.com/css?
family=Open+Sans:400,700|Source+Code+Pro:300,600|Titillium+Web:400,600,700" rel="stylesheet">
<link rel="stylesheet" type="text/css" href="./swagger-ui.css">
<link rel="stylesheet" type="text/css" href="custom.css">

Reference custom.css in the index.html file, after any other CSS files:

Browse to the index.html page at http://localhost:<port>/swagger/ui/index.html . Enter
http://localhost:<port>/swagger/v1/swagger.json in the header's textbox, and click the Explore button. The

resulting page looks as follows:

There's much more you can do with the page. See the full capabilities for the UI resources at the Swagger UI
GitHub repository.

https://github.com/swagger-api/swagger-ui

Work with data in ASP.NET Core
4/10/2018 • 2 minutes to read • Edit Online

Get started with Razor Pages and Entity Framework Core using Visual Studio

Get started with Razor Pages and EF
Create, Read, Update, and Delete operations
Sort, filter, page, and group
Migrations
Create a complex data model
Read related data
Update related data
Handle concurrency conflicts

Get started with ASP.NET Core MVC and Entity Framework Core using Visual Studio

Get started
Create, Read, Update, and Delete operations
Sort, filter, page, and group
Migrations
Create a complex data model
Read related data
Update related data
Handle concurrency conflicts
Inheritance
Advanced topics

ASP.NET Core with EF Core - new database (Entity Framework Core documentation site)

ASP.NET Core with EF Core - existing database (Entity Framework Core documentation site)

Get started with ASP.NET Core and Entity Framework 6

Azure Storage

Add Azure Storage by using Visual Studio Connected Services
Get started with Azure Blob storage and Visual Studio Connected Services
Get started with Queue Storage and Visual Studio Connected Services
Get started with Azure Table Storage and Visual Studio Connected Services

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/index.md
https://docs.microsoft.com/ef/core/get-started/aspnetcore/new-db
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db
https://azure.microsoft.com/documentation/articles/vs-azure-tools-connected-services-storage/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-blobs/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-queues/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-tables/

ASP.NET Core Razor Pages with EF Core - tutorial
series
3/22/2018 • 2 minutes to read • Edit Online

This series of tutorials teaches you how to create ASP.NET Core Razor Pages web apps that use Entity Framework
(EF) Core for data access. The tutorials require Visual Studio 2017.

1. Get started
2. Create, Read, Update, and Delete operations
3. Sorting, filtering, paging, and grouping
4. Migrations
5. Create a complex data model
6. Reading related data
7. Updating related data
8. Handle concurrency conflicts

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/index.md

Razor Pages with Entity Framework Core in ASP.NET
Core - Tutorial 1 of 8
6/18/2018 • 17 minutes to read • Edit Online

Prerequisites

Troubleshooting

TIPTIP

The Contoso University web app

By Tom Dykstra and Rick Anderson

The Contoso University sample web app demonstrates how to create ASP.NET Core 2.0 MVC web applications
using Entity Framework (EF) Core 2.0 and Visual Studio 2017.

The sample app is a web site for a fictional Contoso University. It includes functionality such as student admission,
course creation, and instructor assignments. This page is the first in a series of tutorials that explain how to build
the Contoso University sample app.

Download or view the completed app. Download instructions.

Install one of the following:

CLI tooling: Windows, Linux, or macOS: .NET Core SDK 2.0 or later
IDE/editor tooling

Windows: Visual Studio for Windows

Linux: Visual Studio Code
macOS: Visual Studio for Mac

ASP.NET and web development workload
.NET Core cross-platform development workload

Familiarity with Razor Pages. New programmers should complete Get started with Razor Pages before starting this
series.

If you run into a problem you can't resolve, you can generally find the solution by comparing your code to the
completed stage. For a list of common errors and how to solve them, see the Troubleshooting section of the last
tutorial in the series. If you don't find what you need there, you can post a question to StackOverflow.com for
ASP.NET Core or EF Core.

This series of tutorials builds on what is done in earlier tutorials. Consider saving a copy of the project after each successful
tutorial completion. If you run into problems, you can start over from the previous tutorial instead of going back to the
beginning. Alternatively, you can download a completed stage and start over using the completed stage.

The app built in these tutorials is a basic university web site.

Users can view and update student, course, and instructor information. Here are a few of the screens created in the
tutorial.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/intro.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/linux
https://www.microsoft.com/net/download/macos
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots

The UI style of this site is close to what's generated by the built-in templates. The tutorial focus is on EF Core with

Create a Razor Pages web app

Razor Pages, not the UI.

From the Visual Studio File menu, select New > Project.
Create a new ASP.NET Core Web Application. Name the project ContosoUniversity. It's important to name
the project ContosoUniversity so the namespaces match when code is copy/pasted.

Select ASP.NET Core 2.0 in the dropdown, and then select Web Application.

Press F5 to run the app in debug mode or Ctrl-F5 to run without attaching the debugger

Set up the site style

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Contoso University</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-page="/Index" class="navbar-brand">Contoso University
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-page="/Index">Home
 <a asp-page="/About">About
 <a asp-page="/Students/Index">Students
 <a asp-page="/Courses/Index">Courses
 <a asp-page="/Instructors/Index">Instructors
 <a asp-page="/Departments/Index">Departments

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - Contoso University</p>
 </footer>
 </div>

A few changes set up the site menu, layout, and home page.

Open Pages/_Layout.cshtml and make the following changes:

Change each occurrence of "ContosoUniversity" to "Contoso University." There are three occurrences.

Add menu entries for Students, Courses, Instructors, and Departments, and delete the Contact menu
entry.

The changes are highlighted. (All the markup is not displayed.)

@page
@model IndexModel
@{
 ViewData["Title"] = "Home page";
}

<div class="jumbotron">
 <h1>Contoso University</h1>
</div>
<div class="row">
 <div class="col-md-4">
 <h2>Welcome to Contoso University</h2>
 <p>
 Contoso University is a sample application that
 demonstrates how to use Entity Framework Core in an
 ASP.NET Core Razor Pages web app.
 </p>
 </div>
 <div class="col-md-4">
 <h2>Build it from scratch</h2>
 <p>You can build the application by following the steps in a series of tutorials.</p>
 <p><a class="btn btn-default"
 href="https://docs.microsoft.com/aspnet/core/data/ef-rp/intro">
 See the tutorial »</p>
 </div>
 <div class="col-md-4">
 <h2>Download it</h2>
 <p>You can download the completed project from GitHub.</p>
 <p><a class="btn btn-default"
 href="https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu-final">
 See project source code »</p>
 </div>
</div>

In Pages/Index.cshtml, replace the contents of the file with the following code to replace the text about ASP.NET
and MVC with text about this app:

Press CTRL+F5 to run the project. The home page is displayed with tabs created in the following tutorials:

Create the data model
Create entity classes for the Contoso University app. Start with the following three entities:

There's a one-to-many relationship between Student and Enrollment entities. There's a one-to-many relationship
between Course and Enrollment entities. A student can enroll in any number of courses. A course can have any
number of students enrolled in it.

In the following sections, a class for each one of these entities is created.

The Student entityThe Student entity

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
public class Student
{
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
}
}

The Enrollment entityThe Enrollment entity

Create a Models folder. In the Models folder, create a class file named Student.cs with the following code:

The ID property becomes the primary key column of the database (DB) table that corresponds to this class. By
default, EF Core interprets a property that's named ID or classnameID as the primary key. In classnameID ,
classname is the name of the class, such as Student in the preceding example.

The Enrollments property is a navigation property. Navigation properties link to other entities that are related to
this entity. In this case, the Enrollments property of a Student entity holds all of the Enrollment entities that are
related to that Student . For example, if a Student row in the DB has two related Enrollment rows, the Enrollments

navigation property contains those two Enrollment entities. A related Enrollment row is a row that contains that
student's primary key value in the StudentID column. For example, suppose the student with ID=1 has two rows in
the Enrollment table. The Enrollment table has two rows with StudentID = 1. StudentID is a foreign key in the
Enrollment table that specifies the student in the Student table.

If a navigation property can hold multiple entities, the navigation property must be a list type, such as
ICollection<T> . ICollection<T> can be specified, or a type such as List<T> or HashSet<T> . When ICollection<T>

is used, EF Core creates a HashSet<T> collection by default. Navigation properties that hold multiple entities come
from many-to-many and one-to-many relationships.

In the Models folder, create Enrollment.cs with the following code:

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

The Course entityThe Course entity

The EnrollmentID property is the primary key. This entity uses the classnameID pattern instead of ID like the
Student entity. Typically developers choose one pattern and use it throughout the data model. In a later tutorial,

using ID without classname is shown to make it easier to implement inheritance in the data model.

The Grade property is an enum . The question mark after the Grade type declaration indicates that the Grade

property is nullable. A grade that's null is different from a zero grade -- null means a grade isn't known or hasn't
been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student . An Enrollment

entity is associated with one Student entity, so the property contains a single Student entity. The Student entity
differs from the Student.Enrollments navigation property, which contains multiple Enrollment entities.

The CourseID property is a foreign key, and the corresponding navigation property is Course . An Enrollment

entity is associated with one Course entity.

EF Core interprets a property as a foreign key if it's named <navigation property name><primary key property name> .
For example, StudentID for the Student navigation property, since the Student entity's primary key is ID .
Foreign key properties can also be named <primary key property name> . For example, CourseID since the Course

entity's primary key is CourseID .

In the Models folder, create Course.cs with the following code:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Create the SchoolContext DB context

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 }
}

The Enrollments property is a navigation property. A Course entity can be related to any number of Enrollment

entities.

The DatabaseGenerated attribute allows the app to specify the primary key rather than having the DB generate it.

The main class that coordinates EF Core functionality for a given data model is the DB context class. The data
context is derived from Microsoft.EntityFrameworkCore.DbContext . The data context specifies which entities are
included in the data model. In this project, the class is named SchoolContext .

In the project folder, create a folder named Data.

In the Data folder create SchoolContext.cs with the following code:

This code creates a DbSet property for each entity set. In EF Core terminology:

An entity set typically corresponds to a DB table.
An entity corresponds to a row in the table.

DbSet<Enrollment> and DbSet<Course> can be omitted. EF Core includes them implicitly because the Student

entity references the Enrollment entity, and the Enrollment entity references the Course entity. For this tutorial,
keep DbSet<Enrollment> and DbSet<Course> in the SchoolContext .

When the DB is created, EF Core creates tables that have names the same as the DbSet property names. Property
names for collections are typically plural (Students rather than Student). Developers disagree about whether table
names should be plural. For these tutorials, the default behavior is overridden by specifying singular table names in

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 }
 }
}

Register the context with dependency injection

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<SchoolContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddMvc();
}

using ContosoUniversity.Data;
using Microsoft.EntityFrameworkCore;

the DbContext. To specify singular table names, add the following highlighted code:

ASP.NET Core includes dependency injection. Services (such as the EF Core DB context) are registered with
dependency injection during application startup. Components that require these services (such as Razor Pages) are
provided these services via constructor parameters. The constructor code that gets a db context instance is shown
later in the tutorial.

To register SchoolContext as a service, open Startup.cs, and add the highlighted lines to the ConfigureServices

method.

The name of the connection string is passed in to the context by calling a method on a DbContextOptionsBuilder

object. For local development, the ASP.NET Core configuration system reads the connection string from the
appsettings.json file.

Add using statements for ContosoUniversity.Data and Microsoft.EntityFrameworkCore namespaces. Build the
project.

Open the appsettings.json file and add a connection string as shown in the following code:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity1;ConnectRetryCount=0;Trusted_Connection=True;MultipleActiveR
esultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

SQL Server Express LocalDBSQL Server Express LocalDB

Add code to initialize the DB with test data

using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2005-09-
01")},
 new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2003-09-01")},
 new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2001-09-01")},
 new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2003-09-01")},
 new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2005-09-01")}
 };
 foreach (Student s in students)
 {
 context.Students.Add(s);
 }
 context.SaveChanges();

The preceding connection string uses ConnectRetryCount=0 to prevent SQLClient from hanging.

The connection string specifies a SQL Server LocalDB DB. LocalDB is a lightweight version of the SQL Server
Express Database Engine and is intended for app development, not production use. LocalDB starts on demand and
runs in user mode, so there's no complex configuration. By default, LocalDB creates .mdf DB files in the
C:/Users/<user> directory.

EF Core creates an empty DB. In this section, a Seed method is written to populate it with test data.

In the Data folder, create a new class file named DbInitializer.cs and add the following code:

https://docs.microsoft.com/dotnet/framework/data/adonet/ef/sqlclient-for-the-entity-framework

 var courses = new Course[]
 {
 new Course{CourseID=1050,Title="Chemistry",Credits=3},
 new Course{CourseID=4022,Title="Microeconomics",Credits=3},
 new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
 new Course{CourseID=1045,Title="Calculus",Credits=4},
 new Course{CourseID=3141,Title="Trigonometry",Credits=4},
 new Course{CourseID=2021,Title="Composition",Credits=3},
 new Course{CourseID=2042,Title="Literature",Credits=4}
 };
 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
 new Enrollment{StudentID=3,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
 new Enrollment{StudentID=6,CourseID=1045},
 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
 };
 foreach (Enrollment e in enrollments)
 {
 context.Enrollments.Add(e);
 }
 context.SaveChanges();
 }
 }
}

The code checks if there are any students in the DB. If there are no students in the DB, the DB is seeded with test
data. It loads test data into arrays rather than List<T> collections to optimize performance.

The EnsureCreated method automatically creates the DB for the DB context. If the DB exists, EnsureCreated returns
without modifying the DB.

In Program.cs, modify the Main method to do the following:

Get a DB context instance from the dependency injection container.
Call the seed method, passing to it the context.
Dispose the context when the seed method completes.

The following code shows the updated Program.cs file.

// Unused usings removed
using System;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Data;

namespace ContosoUniversity
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 DbInitializer.Initialize(context);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred while seeding the database.");
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Add scaffold tooling

Install-Package Microsoft.VisualStudio.Web.CodeGeneration.Design
Install-Package Microsoft.VisualStudio.Web.CodeGeneration.Utils

The first time the app is run, the DB is created and seeded with test data. When the data model is updated:

Delete the DB.
Update the seed method.
Run the app and a new seeded DB is created.

In later tutorials, the DB is updated when the data model changes, without deleting and re-creating the DB.

In this section, the Package Manager Console (PMC) is used to add the Visual Studio web code generation package.
This package is required to run the scaffolding engine.

From the Tools menu, select NuGet Package Manager > Package Manager Console.

In the Package Manager Console (PMC), enter the following commands:

The previous command adds the NuGet packages to the *.csproj file:

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Utils" Version="2.0.0" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />
 </ItemGroup>
</Project>

Scaffold the model

dotnet restore
dotnet tool install --global dotnet-aspnet-codegenerator --version 2.1.0
dotnet aspnet-codegenerator razorpage -m Student -dc SchoolContext -udl -outDir Pages\Students --
referenceScriptLibraries

No executable found matching command "dotnet-aspnet-codegenerator"

PARAMETER DESCRIPTION

-m The name of the model.

-dc The data context.

-udl Use the default layout.

-outDir The relative output folder path to create the views.

--referenceScriptLibraries Adds _ValidationScriptsPartial to Edit and Create pages

Open a command window in the project directory (The directory that contains the Program.cs, Startup.cs, and
.csproj files).
Run the following commands:

If you get the error :

Open a command window in the project directory (The directory that contains the Program.cs, Startup.cs, and
.csproj files).

Build the project. The build generates errors like the following:

1>Pages\Students\Index.cshtml.cs(26,38,26,45): error CS1061: 'SchoolContext' does not contain a definition for
'Student'

Globally change _context.Student to _context.Students (that is, add an "s" to Student). 7 occurrences are found
and updated. We hope to fix this bug in the next release.

 The following table details the ASP.NET Core code generators` parameters:

Use the h switch to get help on the aspnet-codegenerator razorpage command:

https://github.com/aspnet/Scaffolding/issues/633

dotnet aspnet-codegenerator razorpage -h

Test the appTest the app

View the DB

Conventions

Run the app and select the Students link. Depending on the browser width, the Students link appears at the top of
the page. If the Students link isn't visible, click the navigation icon in the upper right corner.

Test the Create, Edit, and Details links.

When the app is started, DbInitializer.Initialize calls EnsureCreated . EnsureCreated detects if the DB exists, and
creates one if necessary. If there are no Students in the DB, the Initialize method adds students.

Open SQL Server Object Explorer (SSOX) from the View menu in Visual Studio. In SSOX, click
(localdb)\MSSQLLocalDB > Databases > ContosoUniversity1.

Expand the Tables node.

Right-click the Student table and click View Data to see the columns created and the rows inserted into the table.

The .mdf and .ldf DB files are in the C:\Users\ folder.

EnsureCreated is called on app start, which allows the following work flow:

Delete the DB.
Change the DB schema (for example, add an EmailAddress field).
Run the app.

EnsureCreated creates a DB with the EmailAddress column.

The amount of code written in order for EF Core to create a complete DB is minimal because of the use of
conventions, or assumptions that EF Core makes.

The names of DbSet properties are used as table names. For entities not referenced by a DbSet property,
entity class names are used as table names.

Entity property names are used for column names.

Entity properties that are named ID or classnameID are recognized as primary key properties.

Asynchronous code

public async Task OnGetAsync()
{
 Student = await _context.Students.ToListAsync();
}

A property is interpreted as a foreign key property if it's named (for example, StudentID for the Student

navigation property since the Student entity's primary key is ID). Foreign key properties can be named
(for example, EnrollmentID since the Enrollment entity's primary key is EnrollmentID).

Conventional behavior can be overridden. For example, the table names can be explicitly specified, as shown earlier
in this tutorial. The column names can be explicitly set. Primary keys and foreign keys can be explicitly set.

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available threads
might be in use. When that happens, the server can't process new requests until the threads are freed up. With
synchronous code, many threads may be tied up while they aren't actually doing any work because they're waiting
for I/O to complete. With asynchronous code, when a process is waiting for I/O to complete, its thread is freed up
for the server to use for processing other requests. As a result, asynchronous code enables server resources to be
used more efficiently, and the server is enabled to handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time. For low traffic situations, the
performance hit is negligible, while for high traffic situations, the potential performance improvement is substantial.

In the following code, the async keyword, Task<T> return value, await keyword, and ToListAsync method make
the code execute asynchronously.

The async keyword tells the compiler to:

Generate callbacks for parts of the method body.
Automatically create the Task object that's returned. For more information, see Task Return Type.

The implicit return type Task represents ongoing work.

The await keyword causes the compiler to split the method into two parts. The first part ends with the
operation that's started asynchronously. The second part is put into a callback method that's called when the
operation completes.

ToListAsync is the asynchronous version of the ToList extension method.

Some things to be aware of when writing asynchronous code that uses EF Core:

Only statements that cause queries or commands to be sent to the DB are executed asynchronously. That
includes, ToListAsync , SingleOrDefaultAsync , FirstOrDefaultAsync , and SaveChangesAsync . It doesn't include
statements that just change an IQueryable , such as
var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF Core context isn't thread safe: don't try to do multiple operations in parallel.

To take advantage of the performance benefits of async code, verify that library packages (such as for
paging) use async if they call EF Core methods that send queries to the DB.

For more information about asynchronous programming in .NET, see Async Overview.

In the next tutorial, basic CRUD (create, read, update, delete) operations are examined.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task?view=netframework-4.7
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/async/async-return-types#BKMK_TaskReturnType
https://docs.microsoft.com/dotnet/articles/standard/async

N E X T

Razor Pages with EF Core in ASP.NET Core - CRUD -
2 of 8
5/2/2018 • 11 minutes to read • Edit Online

Replace SingleOrDefaultAsync with FirstOrDefaultAsync

FindAsyncFindAsync

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual
Studio. For information about the tutorial series, see the first tutorial.

In this tutorial, the scaffolded CRUD (create, read, update, delete) code is reviewed and customized.

Note: To minimize complexity and keep these tutorials focused on EF Core, EF Core code is used in the Razor
Pages page models. Some developers use a service layer or repository pattern in to create an abstraction layer
between the UI (Razor Pages) and the data access layer.

In this tutorial, the Create, Edit, Delete, and Details Razor Pages in the Student folder are modified.

The scaffolded code uses the following pattern for Create, Edit, and Delete pages:

Get and display the requested data with the HTTP GET method OnGetAsync .
Save changes to the data with the HTTP POST method OnPostAsync .

The Index and Details pages get and display the requested data with the HTTP GET method OnGetAsync

The generated code uses SingleOrDefaultAsync to fetch the requested entity. FirstOrDefaultAsync is more
efficient at fetching one entity:

Unless the code needs to verify that there's not more than one entity returned from the query.
SingleOrDefaultAsync fetches more data and does unnecessary work.
SingleOrDefaultAsync throws an exception if there's more than one entity that fits the filter part.
FirstOrDefaultAsync doesn't throw if there's more than one entity that fits the filter part.

Globally replace SingleOrDefaultAsync with FirstOrDefaultAsync . SingleOrDefaultAsync is used in 5 places:

OnGetAsync in the Details page.
OnGetAsync and OnPostAsync in the Edit and Delete pages.

In much of the scaffolded code, FindAsync can be used in place of FirstOrDefaultAsync or SingleOrDefaultAsync .

FindAsync :

Finds an entity with the primary key (PK). If an entity with the PK is being tracked by the context, it's returned
without a request to the DB.
Is simple and concise.
Is optimized to look up a single entity.
Can have perf benefits in some situations, but they rarely come into play for normal web scenarios.
Implicitly uses FirstAsync instead of SingleAsync. But if you want to Include other entities, then Find is no
longer appropriate. This means that you may need to abandon Find and move to a query as your app
progresses.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/crud.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.singleordefaultasync?view=efcore-2.0#Microsoft_EntityFrameworkCore_EntityFrameworkQueryableExtensions_SingleOrDefaultAsync__1_System_Linq_IQueryable___0__System_Linq_Expressions_Expression_System_Func___0_System_Boolean___System_Threading_CancellationToken_
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.firstordefaultasync?view=efcore-2.0#Microsoft_EntityFrameworkCore_EntityFrameworkQueryableExtensions_FirstOrDefaultAsync__1_System_Linq_IQueryable___0__System_Threading_CancellationToken_
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontext.findasync?view=efcore-2.0#Microsoft_EntityFrameworkCore_DbContext_FindAsync_System_Type_System_Object___
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.firstasync?view=efcore-2.0#Microsoft_EntityFrameworkCore_EntityFrameworkQueryableExtensions_FirstAsync__1_System_Linq_IQueryable___0__System_Linq_Expressions_Expression_System_Func___0_System_Boolean___System_Threading_CancellationToken_
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.singleasync?view=efcore-2.0#Microsoft_EntityFrameworkCore_EntityFrameworkQueryableExtensions_SingleAsync__1_System_Linq_IQueryable___0__System_Linq_Expressions_Expression_System_Func___0_System_Boolean___System_Threading_CancellationToken_

Customize the Details page

<td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
</td>

@page "{id:int?}"

Add related dataAdd related data

public async Task<IActionResult> OnGetAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Students
 .Include(s => s.Enrollments)
 .ThenInclude(e => e.Course)
 .AsNoTracking()
 .FirstOrDefaultAsync (m => m.ID == id);

 if (Student == null)
 {
 return NotFound();
 }
 return Page();
}

Browse to Pages/Students page. The Edit, Details, and Delete links are generated by the Anchor Tag Helper in
the Pages/Students/Index.cshtml file.

Select a Details link. The URL is of the form http://localhost:5000/Students/Details?id=2 . The Student ID is
passed using a query string (?id=2).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive
for each of these pages from @page to @page "{id:int}" .

A request to the page with the "{id:int}" route template that does not include a integer route value returns an
HTTP 404 (not found) error. For example, http://localhost:5000/Students/Details returns a 404 error. To make
the ID optional, append ? to the route constraint:

Run the app, click on a Details link, and verify the URL is passing the ID as route data (
http://localhost:5000/Students/Details/2).

Don't globally change @page to @page "{id:int}" , doing so breaks the links to the Home and Create pages.

The scaffolded code for the Students Index page doesn't include the Enrollments property. In this section, the
contents of the Enrollments collection is displayed in the Details page.

The OnGetAsync method of Pages/Students/Details.cshtml.cs uses the FirstOrDefaultAsync method to retrieve a
single Student entity. Add the following highlighted code:

The Include and ThenInclude methods cause the context to load the Student.Enrollments navigation property,
and within each enrollment the Enrollment.Course navigation property. These methods are examined in detail in
the reading-related data tutorial.

Display related enrollments on the Details pageDisplay related enrollments on the Details page

The AsNoTracking method improves performance in scenarios when the entities returned are not updated in the
current context. AsNoTracking is discussed later in this tutorial.

Open Pages/Students/Details.cshtml. Add the following highlighted code to display a list of enrollments:

@page "{id:int}"
@model ContosoUniversity.Pages.Students.DetailsModel

@{
 ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
 <h4>Student</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Student.LastName)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Student.LastName)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Student.FirstMidName)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Student.FirstMidName)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Student.EnrollmentDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Student.EnrollmentDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Student.Enrollments)
 </dt>
 <dd>
 <table class="table">
 <tr>
 <th>Course Title</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Student.Enrollments)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Course.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
 </dd>
 </dl>
</div>
<div>
 <a asp-page="./Edit" asp-route-id="@Model.Student.ID">Edit |
 <a asp-page="./Index">Back to List
</div>

If code indentation is wrong after the code is pasted, press CTRL-K-D to correct it.

The preceding code loops through the entities in the Enrollments navigation property. For each enrollment, it
displays the course title and the grade. The course title is retrieved from the Course entity that's stored in the
Course navigation property of the Enrollments entity.

Update the Create page

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var emptyStudent = new Student();

 if (await TryUpdateModelAsync<Student>(
 emptyStudent,
 "student", // Prefix for form value.
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
 {
 _context.Students.Add(emptyStudent);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 return null;
}

TryUpdateModelAsyncTryUpdateModelAsync

var emptyStudent = new Student();

if (await TryUpdateModelAsync<Student>(
 emptyStudent,
 "student", // Prefix for form value.
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
{

OverpostingOverposting

Run the app, select the Students tab, and click the Details link for a student. The list of courses and grades for the
selected student is displayed.

Update the OnPostAsync method in Pages/Students/Create.cshtml.cs with the following code:

Examine the TryUpdateModelAsync code:

In the preceding code, TryUpdateModelAsync<Student> tries to update the emptyStudent object using the posted
form values from the PageContext property in the PageModel. TryUpdateModelAsync only updates the properties
listed (s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate).

In the preceding sample:

The second argument ("student", // Prefix) is the prefix uses to look up values. It's not case sensitive.
The posted form values are converted to the types in the Student model using model binding.

Using TryUpdateModel to update fields with posted values is a security best practice because it prevents
overposting. For example, suppose the Student entity includes a Secret property that this web page shouldn't
update or add:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync#Microsoft_AspNetCore_Mvc_ControllerBase_TryUpdateModelAsync_System_Object_System_Type_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.pagecontext?view=aspnetcore-2.0#Microsoft_AspNetCore_Mvc_RazorPages_PageModel_PageContext
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel?view=aspnetcore-2.0

public class Student
{
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }
 public string Secret { get; set; }
}

View modelView model

Even if the app doesn't have a Secret field on the create/update Razor Page, a hacker could set the Secret value
by overposting. A hacker could use a tool such as Fiddler, or write some JavaScript, to post a Secret form value.
The original code doesn't limit the fields that the model binder uses when it creates a Student instance.

Whatever value the hacker specified for the Secret form field is updated in the DB. The following image shows
the Fiddler tool adding the Secret field (with the value "OverPost") to the posted form values.

The value "OverPost" is successfully added to the Secret property of the inserted row. The app designer never
intended the Secret property to be set with the Create page.

A view model typically contains a subset of the properties included in the model used by the application. The
application model is often called the domain model. The domain model typically contains all the properties
required by the corresponding entity in the DB. The view model contains only the properties needed for the UI
layer (for example, the Create page). In addition to the view model, some apps use a binding model or input
model to pass data between the Razor Pages page model class and the browser. Consider the following Student

view model:

using System;

namespace ContosoUniversity.Models
{
 public class StudentVM
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }
 }
}

[BindProperty]
public StudentVM StudentVM { get; set; }

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var entry = _context.Add(new Student());
 entry.CurrentValues.SetValues(StudentVM);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
}

Update the Edit page

View models provide an alternative way to prevent overposting. The view model contains only the properties to
view (display) or update.

The following code uses the StudentVM view model to create a new student:

The SetValues method sets the values of this object by reading values from another PropertyValues object.
SetValues uses property name matching. The view model type doesn't need to be related to the model type, it

just needs to have properties that match.

Using StudentVM requires CreateVM.cshtml be updated to use StudentVM rather than Student .

In Razor Pages, the PageModel derived class is the view model.

Update the page model for the Edit page. The major changes are highlighted:

https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues.setvalues?view=efcore-2.0#Microsoft_EntityFrameworkCore_ChangeTracking_PropertyValues_SetValues_System_Object_
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu/Pages/Students/CreateVM.cshtml

public class EditModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Student Student { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Students.FindAsync(id);

 if (Student == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var studentToUpdate = await _context.Students.FindAsync(id);

 if (await TryUpdateModelAsync<Student>(
 studentToUpdate,
 "student",
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 return Page();
 }
}

Test the Edit and Create pagesTest the Edit and Create pages

Entity States

The code changes are similar to the Create page with a few exceptions:

OnPostAsync has an optional id parameter.
The current student is fetched from the DB, rather than creating an empty student.
FirstOrDefaultAsync has been replaced with FindAsync. FindAsync is a good choice when selecting an entity

from the primary key. See FindAsync for more information.

Create and edit a few student entities.

The DB context keeps track of whether entities in memory are in sync with their corresponding rows in the DB.

https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbset-1.findasync?view=efcore-2.0

Update the Delete page

public class DeleteModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Student Student { get; set; }
 public string ErrorMessage { get; set; }

The DB context sync information determines what happens when SaveChanges is called. For example, when a new
entity is passed to the Add method, that entity's state is set to Added . When SaveChanges is called, the DB context
issues a SQL INSERT command.

An entity may be in one of the following states:

Added : The entity doesn't yet exist in the DB. The SaveChanges method issues an INSERT statement.

Unchanged : No changes need to be saved with this entity. An entity has this status when it's read from the
DB.

Modified : Some or all of the entity's property values have been modified. The SaveChanges method issues
an UPDATE statement.

Deleted : The entity has been marked for deletion. The SaveChanges method issues a DELETE statement.

Detached : The entity isn't being tracked by the DB context.

In a desktop app, state changes are typically set automatically. An entity is read, changes are made, and the entity
state to automatically be changed to Modified . Calling SaveChanges generates a SQL UPDATE statement that
updates only the changed properties.

In a web app, the DbContext that reads an entity and displays the data is disposed after a page is rendered. When
a page's OnPostAsync method is called, a new web request is made and with a new instance of the DbContext . Re-
reading the entity in that new context simulates desktop processing.

In this section, code is added to implement a custom error message when the call to SaveChanges fails. Add a
string to contain possible error messages:

Replace the OnGetAsync method with the following code:

public async Task<IActionResult> OnGetAsync(int? id, bool? saveChangesError = false)
{
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Students
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Student == null)
 {
 return NotFound();
 }

 if (saveChangesError.GetValueOrDefault())
 {
 ErrorMessage = "Delete failed. Try again";
 }

 return Page();
}

The Delete pages OnPostAsync methodThe Delete pages OnPostAsync method

public async Task<IActionResult> OnPostAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var student = await _context.Students
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (student == null)
 {
 return NotFound();
 }

 try
 {
 _context.Students.Remove(student);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction("./Delete",
 new { id = id, saveChangesError = true });
 }
}

The preceding code contains the optional parameter saveChangesError . saveChangesError indicates whether the
method was called after a failure to delete the student object. The delete operation might fail because of transient
network problems. Transient network errors are more likely in the cloud. saveChangesError is false when the
Delete page OnGetAsync is called from the UI. When OnGetAsync is called by OnPostAsync (because the delete
operation failed), the saveChangesError parameter is true.

Replace the OnPostAsync with the following code:

Update the Delete Razor PageUpdate the Delete Razor Page

@page "{id:int}"
@model ContosoUniversity.Pages.Students.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@Model.ErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>

Common errors

@page "{id:int}"

The preceding code retrieves the selected entity, then calls the Remove method to set the entity's status to
Deleted . When SaveChanges is called, a SQL DELETE command is generated. If Remove fails:

The DB exception is caught.
The Delete pages OnGetAsync method is called with saveChangesError=true .

Add the following highlighted error message to the Delete Razor Page.

Test Delete.

Student/Home or other links don't work:

Verify the Razor Page contains the correct @page directive. For example, The Student/Home Razor Page should
not contain a route template:

Each Razor Page must include the @page directive.

 P R E V IO U S N E X T

Razor Pages with EF Core in ASP.NET Core - Sort,
Filter, Paging - 3 of 8
6/10/2018 • 15 minutes to read • Edit Online

Add sorting to the Index page

By Tom Dykstra, Rick Anderson, and Jon P Smith

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual
Studio. For information about the tutorial series, see the first tutorial.

In this tutorial, sorting, filtering, grouping, and paging, functionality is added.

The following illustration shows a completed page. The column headings are clickable links to sort the column.
Clicking a column heading repeatedly switches between ascending and descending sort order.

If you run into problems you can't solve, download the completed app for this stage.

Add strings to the Students/Index.cshtml.cs PageModel to contain the sorting paramaters:

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/sort-filter-page.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://twitter.com/thereformedprog
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part3-sorting

public class IndexModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public IndexModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public string NameSort { get; set; }
 public string DateSort { get; set; }
 public string CurrentFilter { get; set; }
 public string CurrentSort { get; set; }

public async Task OnGetAsync(string sortOrder)
{
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";

 IQueryable<Student> studentIQ = from s in _context.Students
 select s;

 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 Student = await studentIQ.AsNoTracking().ToListAsync();
}

Update the Students/Index.cshtml.cs OnGetAsync with the following code:

The preceding code receives a sortOrder parameter from the query string in the URL. The URL (including the
query string) is generated by the Anchor Tag Helper

The sortOrder parameter is either "Name" or "Date." The sortOrder parameter is optionally followed by "_desc"
to specify descending order. The default sort order is ascending.

When the Index page is requested from the Students link, there's no query string. The students are displayed in
ascending order by last name. Ascending order by last name is the default (fall-through case) in the switch

statement. When the user clicks a column heading link, the appropriate sortOrder value is provided in the query
string value.

NameSort and DateSort are used by the Razor Page to configure the column heading hyperlinks with the
appropriate query string values:

public async Task OnGetAsync(string sortOrder)
{
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";

 IQueryable<Student> studentIQ = from s in _context.Students
 select s;

 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 Student = await studentIQ.AsNoTracking().ToListAsync();
}

NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
DateSort = sortOrder == "Date" ? "date_desc" : "Date";

CURRENT SORT ORDER LAST NAME HYPERLINK DATE HYPERLINK

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

The following code contains the C# ?: operator:

The first line specifies that when sortOrder is null or empty, NameSort is set to "name_desc." If sortOrder is not
null or empty, NameSort is set to an empty string.

The ?: operator is also known as the ternary operator.

These two statements enable the page to set the column heading hyperlinks as follows:

The method uses L INQ to Entities to specify the column to sort by. The code initializes an IQueryable<Student>

before the switch statement, and modifies it in the switch statement:

https://docs.microsoft.com/dotnet/csharp/language-reference/operators/conditional-operator

public async Task OnGetAsync(string sortOrder)
{
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";

 IQueryable<Student> studentIQ = from s in _context.Students
 select s;

 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 Student = await studentIQ.AsNoTracking().ToListAsync();
}

Student = await studentIQ.AsNoTracking().ToListAsync();

Add column heading hyperlinks to the Student Index pageAdd column heading hyperlinks to the Student Index page

When an IQueryable is created or modified, no query is sent to the database. The query isn't executed until the
IQueryable object is converted into a collection. IQueryable are converted to a collection by calling a method

such as ToListAsync . Therefore, the IQueryable code results in a single query that's not executed until the
following statement:

OnGetAsync could get verbose with a large number of columns.

Replace the code in Students/Index.cshtml, with the following highlighted code:

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>
<p>
 <a asp-page="Create">Create New
</p>

<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort">
 @Html.DisplayNameFor(model => model.Student[0].LastName)

 </th>
 <th>
 @Html.DisplayNameFor(model => model.Student[0].FirstMidName)
 </th>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort">
 @Html.DisplayNameFor(model => model.Student[0].EnrollmentDate)

 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Student)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

The preceding code:

Adds hyperlinks to the LastName and EnrollmentDate column headings.
Uses the information in NameSort and DateSort to set up hyperlinks with the current sort order values.

To verify that sorting works:

Run the app and select the Students tab.
Click Last Name.
Click Enrollment Date.

Add a Search Box to the Students Index page

Add filtering functionality to the Index methodAdd filtering functionality to the Index method

public async Task OnGetAsync(string sortOrder, string searchString)
{
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";
 CurrentFilter = searchString;

 IQueryable<Student> studentIQ = from s in _context.Students
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 studentIQ = studentIQ.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }

 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 Student = await studentIQ.AsNoTracking().ToListAsync();
}

To get a better understanding of the code:

In Student/Index.cshtml.cs, set a breakpoint on switch (sortOrder) .
Add a watch for NameSort and DateSort .
In Student/Index.cshtml, set a breakpoint on @Html.DisplayNameFor(model => model.Student[0].LastName) .

Step through the debugger.

To add filtering to the Students Index page:

A text box and a submit button is added to the Razor Page. The text box supplies a search string on the first or
last name.
The page model is updated to use the text box value.

Update the Students/Index.cshtml.cs OnGetAsync with the following code:

The preceding code:

Adds the searchString parameter to the OnGetAsync method. The search string value is received from a text
box that's added in the next section.
Added to the LINQ statement a Where clause. The Where clause selects only students whose first name or last
name contains the search string. The LINQ statement is executed only if there's a value to search for.

Note: The preceding code calls the Where method on an IQueryable object, and the filter is processed on the
server. In some scenarios, the app might be calling the Where method as an extension method on an in-memory

Add a Search Box to the Student Index pageAdd a Search Box to the Student Index page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form asp-page="./Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name:
 <input type="text" name="SearchString" value="@Model.CurrentFilter" />
 <input type="submit" value="Search" class="btn btn-default" /> |
 <a asp-page="./Index">Back to full List
 </p>
 </div>
</form>

<table class="table">

collection. For example, suppose _context.Students changes from EF Core DbSet to a repository method that
returns an IEnumerable collection. The result would normally be the same but in some cases may be different.

For example, the .NET Framework implementation of Contains performs a case-sensitive comparison by default.
In SQL Server, Contains case-sensitivity is determined by the collation setting of the SQL Server instance. SQL
Server defaults to case-insensitive. ToUpper could be called to make the test explicitly case-insensitive:

Where(s => s.LastName.ToUpper().Contains(searchString.ToUpper())

The preceding code would ensure that results are case-insensitive if the code changes to use IEnumerable . When
Contains is called on an IEnumerable collection, the .NET Core implementation is used. When Contains is called

on an IQueryable object, the database implementation is used. Returning an IEnumerable from a repository can
have a significant performance penality:

1. All the rows are returned from the DB server.
2. The filter is applied to all the returned rows in the application.

There's a performance penalty for calling ToUpper . The ToUpper code adds a function in the WHERE clause of the
TSQL SELECT statement. The added function prevents the optimizer from using an index. Given that SQL is
installed as case-insensitive, it's best to avoid the ToUpper call when it's not needed.

In Pages/Students/Index.cshtml, add the following highlighted code to create a Search button and assorted
chrome.

The preceding code uses the <form> tag helper to add the search text box and button. By default, the <form> tag
helper submits form data with a POST. With POST, the parameters are passed in the HTTP message body and not
in the URL. When HTTP GET is used, the form data is passed in the URL as query strings. Passing the data with
query strings enables users to bookmark the URL. The W3C guidelines recommend that GET should be used
when the action doesn't result in an update.

Test the app:

Select the Students tab and enter a search string.

https://www.w3.org/2001/tag/doc/whenToUseGet.html

http://localhost:5000/Students?SearchString=an

Add paging functionality to the Students Index page

Select Search.

Notice that the URL contains the search string.

If the page is bookmarked, the bookmark contains the URL to the page and the SearchString query string. The
method="get" in the form tag is what caused the query string to be generated.

Currently, when a column heading sort link is selected, the filter value from the Search box is lost. The lost filter
value is fixed in the next section.

In this section, a PaginatedList class is created to support paging. The PaginatedList class uses Skip and Take

statements to filter data on the server instead of retrieving all rows of the table. The following illustration shows
the paging buttons.

In the project folder, create PaginatedList.cs with the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity
{
 public class PaginatedList<T> : List<T>
 {
 public int PageIndex { get; private set; }
 public int TotalPages { get; private set; }

 public PaginatedList(List<T> items, int count, int pageIndex, int pageSize)
 {
 PageIndex = pageIndex;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);

 this.AddRange(items);
 }

 public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 1);
 }
 }

 public bool HasNextPage
 {
 get
 {
 return (PageIndex < TotalPages);
 }
 }

 public static async Task<PaginatedList<T>> CreateAsync(
 IQueryable<T> source, int pageIndex, int pageSize)
 {
 var count = await source.CountAsync();
 var items = await source.Skip(
 (pageIndex - 1) * pageSize)
 .Take(pageSize).ToListAsync();
 return new PaginatedList<T>(items, count, pageIndex, pageSize);
 }
 }
}

Add paging functionality to the Index method

public PaginatedList<Student> Student { get; set; }

The CreateAsync method in the preceding code takes page size and page number and applies the appropriate
Skip and Take statements to the IQueryable . When ToListAsync is called on the IQueryable , it returns a List

containing only the requested page. The properties HasPreviousPage and HasNextPage are used to enable or
disable Previous and Next paging buttons.

The CreateAsync method is used to create the PaginatedList<T> . A constructor can't create the PaginatedList<T>

object, constructors can't run asynchronous code.

In Students/Index.cshtml.cs, update the type of Student from IList<Student> to PaginatedList<Student> :

public async Task OnGetAsync(string sortOrder,
 string currentFilter, string searchString, int? pageIndex)
{
 CurrentSort = sortOrder;
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";
 if (searchString != null)
 {
 pageIndex = 1;
 }
 else
 {
 searchString = currentFilter;
 }

 CurrentFilter = searchString;

 IQueryable<Student> studentIQ = from s in _context.Students
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 studentIQ = studentIQ.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }
 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 int pageSize = 3;
 Student = await PaginatedList<Student>.CreateAsync(
 studentIQ.AsNoTracking(), pageIndex ?? 1, pageSize);
}

public async Task OnGetAsync(string sortOrder,
 string currentFilter, string searchString, int? pageIndex)

Update the Students/Index.cshtml.cs OnGetAsync with the following code:

The preceding code adds the page index, the current sortOrder , and the currentFilter to the method signature.

All the parameters are null when:

The page is called from the Students link.
The user hasn't clicked a paging or sorting link.

When a paging link is clicked, the page index variable contains the page number to display.

CurrentSort provides the Razor Page with the current sort order. The current sort order must be included in the
paging links to keep the sort order while paging.

CurrentFilter provides the Razor Page with the current filter string. The CurrentFilter value:

if (searchString != null)
{
 pageIndex = 1;
}
else
{
 searchString = currentFilter;
}

Student = await PaginatedList<Student>.CreateAsync(
 studentIQ.AsNoTracking(), pageIndex ?? 1, pageSize);

Add paging links to the student Razor Page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form asp-page="./Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name: <input type="text" name="SearchString" value="@Model.CurrentFilter" />
 <input type="submit" value="Search" class="btn btn-default" /> |
 <a asp-page="./Index">Back to full List
 </p>
 </div>
</form>

<table class="table">
 <thead>
 <tr>
 <th>

Must be included in the paging links in order to maintain the filter settings during paging.
Must be restored to the text box when the page is redisplayed.

If the search string is changed while paging, the page is reset to 1. The page has to be reset to 1 because the new
filter can result in different data to display. When a search value is entered and Submit is selected:

The search string is changed.
The searchString parameter isn't null.

The PaginatedList.CreateAsync method converts the student query to a single page of students in a collection
type that supports paging. That single page of students is passed to the Razor Page.

The two question marks in PaginatedList.CreateAsync represent the [null-coalescing operator]
(https://docs.microsoft.com/ dotnet/csharp/language-reference/operators/null-conditional-operator). The null-
coalescing operator defines a default value for a nullable type. The expression (pageIndex ?? 1) means return the
value of pageIndex if it has a value. If pageIndex doesn't have a value, return 1.

Update the markup in Students/Index.cshtml. The changes are highlighted:

https://docs.microsoft.com/

 <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Student[0].LastName)

 </th>
 <th>
 @Html.DisplayNameFor(model => model.Student[0].FirstMidName)
 </th>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort"
 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Student[0].EnrollmentDate)

</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Student) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

@{
 var prevDisabled = !Model.Student.HasPreviousPage ? "disabled" : "";
 var nextDisabled = !Model.Student.HasNextPage ? "disabled" : "";
}

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Student.PageIndex - 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-default @prevDisabled">
 Previous

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Student.PageIndex + 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-default @nextDisabled">
 Next

The column header links use the query string to pass the current search string to the OnGetAsync method so that
the user can sort within filter results:

<a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Student[0].LastName)

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Student.PageIndex - 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-default @prevDisabled">
 Previous

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Student.PageIndex + 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-default @nextDisabled">
 Next

The paging buttons are displayed by tag helpers:

Run the app and navigate to the students page.

To make sure paging works, click the paging links in different sort orders.
To verify that paging works correctly with sorting and filtering, enter a search string and try paging.

To get a better understanding of the code:

In Student/Index.cshtml.cs, set a breakpoint on switch (sortOrder) .
Add a watch for NameSort , DateSort , CurrentSort , and Model.Student.PageIndex .
In Student/Index.cshtml, set a breakpoint on @Html.DisplayNameFor(model => model.Student[0].LastName) .

Step through the debugger.

Update the About page to show student statistics

Create the view modelCreate the view model

using System;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class EnrollmentDateGroup
 {
 [DataType(DataType.Date)]
 public DateTime? EnrollmentDate { get; set; }

 public int StudentCount { get; set; }
 }
}

Update the About page modelUpdate the About page model

In this step, Pages/About.cshtml is updated to display how many students have enrolled for each enrollment date.
The update uses grouping and includes the following steps:

Create a view model class for the data used by the About Page.
Modify the About Razor Page and page model.

Create a SchoolViewModels folder in the Models folder.

In the SchoolViewModels folder, add a EnrollmentDateGroup.cs with the following code:

Update the Pages/About.cshtml.cs file with the following code:

using ContosoUniversity.Data;
using ContosoUniversity.Models.SchoolViewModels;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages
{
 public class AboutModel : PageModel
 {
 private readonly SchoolContext _context;

 public AboutModel(SchoolContext context)
 {
 _context = context;
 }

 public IList<EnrollmentDateGroup> Student { get; set; }

 public async Task OnGetAsync()
 {
 IQueryable<EnrollmentDateGroup> data =
 from student in _context.Students
 group student by student.EnrollmentDate into dateGroup
 select new EnrollmentDateGroup()
 {
 EnrollmentDate = dateGroup.Key,
 StudentCount = dateGroup.Count()
 };

 Student = await data.AsNoTracking().ToListAsync();
 }
 }
}

Modify the About Razor PageModify the About Razor Page

The LINQ statement groups the student entities by enrollment date, calculates the number of entities in each
group, and stores the results in a collection of EnrollmentDateGroup view model objects.

Note: The LINQ group command isn't currently supported by EF Core. In the preceding code, all the student
records are returned from SQL Server. The group command is applied in the Razor Pages app, not on the SQL
Server. EF Core 2.1 will support this L INQ group operator, and the grouping occurs on the SQL Server. See
Relational: Support translating GroupBy() to SQL. EF Core 2.1 will be released with .NET Core 2.1. For more
information, see the .NET Core Roadmap.

Replace the code in the Pages/About.cshtml file with the following code:

https://github.com/aspnet/EntityFrameworkCore/issues/2341
https://github.com/aspnet/EntityFrameworkCore/wiki/roadmap
https://github.com/dotnet/core/blob/master/roadmap.md

@page
@model ContosoUniversity.Pages.AboutModel

@{
 ViewData["Title"] = "Student Body Statistics";
}

<h2>Student Body Statistics</h2>

<table>
 <tr>
 <th>
 Enrollment Date
 </th>
 <th>
 Students
 </th>
 </tr>

 @foreach (var item in Model.Student)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 @item.StudentCount
 </td>
 </tr>
 }
</table>

Additional resources

Run the app and navigate to the About page. The count of students for each enrollment date is displayed in a
table.

If you run into problems you can't solve, download the completed app for this stage.

Debugging ASP.NET Core 2.x source

In the next tutorial, the app uses migrations to update the data model.

 P R E V IO U S N E X T

https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part3-sorting
https://github.com/aspnet/Docs/issues/4155

Razor Pages with EF Core in ASP.NET Core -
Migrations - 4 of 8
5/2/2018 • 8 minutes to read • Edit Online

Entity Framework Core NuGet packages for migrations

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual
Studio. For information about the tutorial series, see the first tutorial.

In this tutorial, the EF Core migrations feature for managing data model changes is used.

If you run into problems you can't solve, download the completed app for this stage.

When a new app is developed, the data model changes frequently. Each time the model changes, the model gets
out of sync with the database. This tutorial started by configuring the Entity Framework to create the database if it
doesn't exist. Each time the data model changes:

The DB is dropped.
EF creates a new one that matches the model.
The app seeds the DB with test data.

This approach to keeping the DB in sync with the data model works well until you deploy the app to production.
When the app is running in production, it's usually storing data that needs to be maintained. The app can't start
with a test DB each time a change is made (such as adding a new column). The EF Core Migrations feature solves
this problem by enabling EF Core to update the DB schema instead of creating a new DB.

Rather than dropping and recreating the DB when the data model changes, migrations updates the schema and
retains existing data.

To work with migrations, use the Package Manager Console (PMC) or the command-line interface (CLI). These
tutorials show how to use CLI commands. Information about the PMC is at the end of this tutorial.

The EF Core tools for the command-line interface (CLI) are provided in
Microsoft.EntityFrameworkCore.Tools.DotNet. To install this package, add it to the DotNetCliToolReference

collection in the .csproj file, as shown. Note: This package must be installed by editing the .csproj file. The
install-package command or the package manager GUI cannot be used to install this package. Edit the .csproj

file by right-clicking the project name in Solution Explorer and selecting Edit ContosoUniversity.csproj.

The following markup shows the updated .csproj file with the EF Core CLI tools highlighted:

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/migrations.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part4-migrations
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools.DotNet

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Utils" Version="2.0.0" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.0" />
 </ItemGroup>
</Project>

Change the connection string

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity2;ConnectRetryCount=0;Trusted_Connection=True;MultipleActive
ResultSets=true"
 },

dotnet ef database drop

Create an initial migration

dotnet ef migrations add InitialCreate

 The version numbers in the preceding example were current when the tutorial was written. Use the same version
for the EF Core CLI tools found in the other packages.

In the appsettings.json file, change the name of the DB in the connection string to ContosoUniversity2.

Changing the DB name in the connection string causes the first migration to create a new DB. A new DB is
created because one with that name doesn't exist. Changing the connection string isn't required for getting started
with migrations.

An alternative to changing the DB name is deleting the DB. Use SQL Server Object Explorer (SSOX) or the
database drop CLI command:

The following section explains how to run CLI commands.

Build the project.

Open a command window and navigate to the project folder. The project folder contains the Startup.cs file.

Enter the following in the command window:

The command window displays information similar to the following:

info: Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[0]
 User profile is available. Using 'C:\Users\username\AppData\Local\ASP.NET\DataProtection-Keys' as key
repository and Windows DPAPI to encrypt keys at rest.
info: Microsoft.EntityFrameworkCore.Infrastructure[100403]
 Entity Framework Core 2.0.0-rtm-26452 initialized 'SchoolContext' using provider
'Microsoft.EntityFrameworkCore.SqlServer' with options: None
Done. To undo this action, use 'ef migrations remove'

Examine the Up and Down methodsExamine the Up and Down methods

 public partial class InitialCreate : Migration
 {
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "Course",
 columns: table => new
 {
 CourseID = table.Column<int>(type: "int", nullable: false),
 Credits = table.Column<int>(type: "int", nullable: false),
 Title = table.Column<string>(type: "nvarchar(max)", nullable: true)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Course", x => x.CourseID);
 });

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(
 name: "Enrollment");

 migrationBuilder.DropTable(
 name: "Course");

 migrationBuilder.DropTable(
 name: "Student");
 }
 }
}

If the migration fails with the message "cannot access the file ... ContosoUniversity.dll because it is being used by
another process." is displayed:

Stop IIS Express.

Exit and restart Visual Studio, or
Find the IIS Express icon in the Windows System Tray.
Right-click the IIS Express icon, and then click ContosoUniversity > Stop Site.

If the error message "Build failed." is displayed, run the command again. If you get this error, leave a note at the
bottom of this tutorial.

The EF Core command migrations add generated code to create the DB from. This migrations code is in the
Migrations<timestamp>_InitialCreate.cs file. The Up method of the InitialCreate class creates the DB tables
that correspond to the data model entity sets. The Down method deletes them, as shown in the following example:

Migrations calls the Up method to implement the data model changes for a migration. When you enter a
command to roll back the update, migrations calls the Down method.

The preceding code is for the initial migration. That code was created when the migrations add InitialCreate

The data model snapshotThe data model snapshot

Remove EnsureCreated

context.Database.EnsureCreated();

Apply the migration to the DB in development

dotnet ef database update

command was run. The migration name parameter ("InitialCreate" in the example) is used for the file name. The
migration name can be any valid file name. It's best to choose a word or phrase that summarizes what is being
done in the migration. For example, a migration that added a department table might be called
"AddDepartmentTable."

If the initial migration is created and the DB exists:

The DB creation code is generated.
The DB creation code doesn't need to run because the DB already matches the data model. If the DB creation
code is run, it doesn't make any changes because the DB already matches the data model.

When the app is deployed to a new environment, the DB creation code must be run to create the DB.

Previously the connection string was changed to use a new name for the DB. The specified DB doesn't exist, so
migrations creates the DB.

Migrations creates a snapshot of the current database schema in Migrations/SchoolContextModelSnapshot.cs.
When you add a migration, EF determines what changed by comparing the data model to the snapshot file.

When deleting a migration, use the dotnet ef migrations remove command. dotnet ef migrations remove deletes
the migration and ensures the snapshot is correctly reset.

See EF Core Migrations in Team Environments for more information about how the snapshot file is used.

For early development, the EnsureCreated command was used. In this tutorial, migrations is used. EnsureCreated

has the following limitations:

Bypasses migrations and creates the DB and schema.
Doesn't create a migrations table.
Can not be used with migrations.
Is designed for testing or rapid prototyping where the DB is dropped and re-created frequently.

Remove the following line from DbInitializer :

In the command window, enter the following to create the DB and tables.

Note: If the update command returns the error "Build failed.":

Run the command again.
If it fails again, exit Visual Studio and then run the update command.
Leave a message at the bottom of the page.

The output from the command is similar to the migrations add command output. In the preceding command,
logs for the SQL commands that set up the DB are displayed. Most of the logs are omitted in the following
sample output:

https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet#dotnet-ef-migrations-remove
https://docs.microsoft.com/ef/core/managing-schemas/migrations/teams

info: Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[0]
 User profile is available. Using 'C:\Users\username\AppData\Local\ASP.NET\DataProtection-Keys' as key
repository and Windows DPAPI to encrypt keys at rest.
info: Microsoft.EntityFrameworkCore.Infrastructure[100403]
 Entity Framework Core 2.0.0-rtm-26452 initialized 'SchoolContext' using provider
'Microsoft.EntityFrameworkCore.SqlServer' with options: None
info: Microsoft.EntityFrameworkCore.Database.Command[200101]
 Executed DbCommand (467ms) [Parameters=[], CommandType='Text', CommandTimeout='60']
 CREATE DATABASE [ContosoUniversity2];
info: Microsoft.EntityFrameworkCore.Database.Command[200101]
 Executed DbCommand (20ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
 CREATE TABLE [__EFMigrationsHistory] (
 [MigrationId] nvarchar(150) NOT NULL,
 [ProductVersion] nvarchar(32) NOT NULL,
 CONSTRAINT [PK___EFMigrationsHistory] PRIMARY KEY ([MigrationId])
);

<logs omitted for brevity>

info: Microsoft.EntityFrameworkCore.Database.Command[200101]
 Executed DbCommand (3ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
 INSERT INTO [__EFMigrationsHistory] ([MigrationId], [ProductVersion])
 VALUES (N'20170816151242_InitialCreate', N'2.0.0-rtm-26452');
Done.

Applying migrations in production

Command-line interface (CLI) vs. Package Manager Console (PMC)

To reduce the level of detail in log messages, change the log levels in the appsettings.Development.json file. For
more information, see Introduction to logging.

Use SQL Server Object Explorer to inspect the DB. Notice the addition of an __EFMigrationsHistory table. The
__EFMigrationsHistory table keeps track of which migrations have been applied to the DB. View the data in the
__EFMigrationsHistory table, it shows one row for the first migration. The last log in the preceding CLI output

example shows the INSERT statement that creates this row.

Run the app and verify that everything works.

We recommend production apps should not call Database.Migrate at application startup. Migrate shouldn't be
called from an app in server farm. For example, if the app has been cloud deployed with scale-out (multiple
instances of the app are running).

Database migration should be done as part of deployment, and in a controlled way. Production database
migration approaches include:

Using migrations to create SQL scripts and using the SQL scripts in deployment.
Running dotnet ef database update from a controlled environment.

EF Core uses the __MigrationsHistory table to see if any migrations need to run. If the DB is up to date, no
migration is run.

The EF Core tooling for managing migrations is available from:

.NET Core CLI commands.
The PowerShell cmdlets in the Visual Studio Package Manager Console (PMC) window.

This tutorial shows how to use the CLI, some developers prefer using the PMC.

The EF Core commands for the PMC are in the Microsoft.EntityFrameworkCore.Tools package. This package is

https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.relationaldatabasefacadeextensions.migrate?view=efcore-2.0#Microsoft_EntityFrameworkCore_RelationalDatabaseFacadeExtensions_Migrate_Microsoft_EntityFrameworkCore_Infrastructure_DatabaseFacade_
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools

Troubleshooting

SqlException: Cannot open database "ContosoUniversity" requested by the login.
The login failed.
Login failed for user 'user name'.

included in the Microsoft.AspNetCore.All metapackage, so you don't have to install it.

Important: This isn't the same package as the one you install for the CLI by editing the .csproj file. The name of
this one ends in Tools , unlike the CLI package name which ends in Tools.DotNet .

For more information about the CLI commands, see .NET Core CLI.

For more information about the PMC commands, see Package Manager Console (Visual Studio).

Download the completed app for this stage.

The app generates the following exception:

Solution: Run dotnet ef database update

If the update command returns the error "Build failed.":

Run the command again.
Leave a message at the bottom of the page.

 P R E V IO U S N E X T

https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/ef/core/miscellaneous/cli/powershell
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part4-migrations

Razor Pages with EF Core in ASP.NET Core - Data
Model - 5 of 8
5/2/2018 • 28 minutes to read • Edit Online

By Tom Dykstra and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual
Studio. For information about the tutorial series, see the first tutorial.

The previous tutorials worked with a basic data model that was composed of three entities. In this tutorial:

More entities and relationships are added.
The data model is customized by specifying formatting, validation, and database mapping rules.

The entity classes for the completed data model is shown in the following illustration:

If you run into problems you can't solve, download the completed app for this stage.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/complex-data-model.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part5-complex

Customize the data model with attributes

The DataType attributeThe DataType attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]

In this section, the data model is customized using attributes.

The student pages currently displays the time of the enrollment date. Typically, date fields show only the date and
not the time.

Update Models/Student.cs with the following highlighted code:

The DataType attribute specifies a data type that's more specific than the database intrinsic type. In this case only
the date should be displayed, not the date and time. The DataType Enumeration provides for many data types,
such as Date, Time, PhoneNumber, Currency, EmailAddress, etc. The DataType attribute can also enable the app
to automatically provide type-specific features. For example:

The mailto: link is automatically created for DataType.EmailAddress .
The date selector is provided for DataType.Date in most browsers.

The DataType attribute emits HTML 5 data- (pronounced data dash) attributes that HTML 5 browsers consume.
The DataType attributes don't provide validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the date field is displayed
according to the default formats based on the server's CultureInfo.

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied to the edit UI. Some fields
shouldn't use ApplyFormatInEditMode . For example, the currency symbol should generally not be displayed in an
edit text box.

The DisplayFormat attribute can be used by itself. It's generally a good idea to use the DataType attribute with the
DisplayFormat attribute. The DataType attribute conveys the semantics of the data as opposed to how to render it

on a screen. The DataType attribute provides the following benefits that are not available in DisplayFormat :

The browser can enable HTML5 features. For example, show a calendar control, the locale-appropriate
currency symbol, email links, client-side input validation, etc.
By default, the browser renders data using the correct format based on the locale.

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.datatypeattribute?view=netframework-4.7.1
https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.datatype?view=netframework-4.7.1

The StringLength attributeThe StringLength attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [StringLength(50)]
 public string LastName { get; set; }
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

For more information, see the <input> Tag Helper documentation.

Run the app. Navigate to the Students Index page. Times are no longer displayed. Every view that uses the
Student model displays the date without time.

Data validation rules and validation error messages can be specified with attributes. The StringLength attribute
specifies the minimum and maximum length of characters that are allowed in a data field. The StringLength

attribute also provides client-side and server-side validation. The minimum value has no impact on the database
schema.

Update the Student model with the following code:

The preceding code limits names to no more than 50 characters. The StringLength attribute doesn't prevent a
user from entering white space for a name. The RegularExpression attribute is used to apply restrictions to the

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute?view=netframework-4.7.1
https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.regularexpressionattribute?view=netframework-4.7.1

[RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]

input. For example, the following code requires the first character to be upper case and the remaining characters
to be alphabetical:

Run the app:

Navigate to the Students page.
Select Create New, and enter a name longer than 50 characters.
Select Create, client-side validation shows an error message.

In SQL Server Object Explorer (SSOX), open the Student table designer by double-clicking the Student table.

The Column attributeThe Column attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [StringLength(50)]
 public string LastName { get; set; }
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

SqlException: Invalid column name 'FirstName'.

The preceding image shows the schema for the Student table. The name fields have type nvarchar(MAX) because
migrations has not been run on the DB. When migrations are run later in this tutorial, the name fields become
nvarchar(50) .

Attributes can control how classes and properties are mapped to the database. In this section, the Column

attribute is used to map the name of the FirstMidName property to "FirstName" in the DB.

When the DB is created, property names on the model are used for column names (except when the Column

attribute is used).

The Student model uses FirstMidName for the first-name field because the field might also contain a middle
name.

Update the Student.cs file with the following highlighted code:

With the preceding change, Student.FirstMidName in the app maps to the FirstName column of the Student table.

The addition of the Column attribute changes the model backing the SchoolContext . The model backing the
SchoolContext no longer matches the database. If the app is run before applying migrations, the following

exception is generated:

To update the DB:

 dotnet ef migrations add ColumnFirstName
 dotnet ef database update

Build the project.

Open a command window in the project folder. Enter the following commands to create a new migration
and update the DB:

The dotnet ef migrations add ColumnFirstName command generates the following warning message:

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.

NOTENOTE

Student entity update

The warning is generated because the name fields are now limited to 50 characters. If a name in the DB had more
than 50 characters, the 51 to last character would be lost.

Test the app.

Open the Student table in SSOX:

Before migration was applied, the name columns were of type nvarchar(MAX). The name columns are now
nvarchar(50) . The column name has changed from FirstMidName to FirstName .

In the following section, building the app at some stages generates compiler errors. The instructions specify when to build
the app.

Update Models/Student.cs with the following code:

https://docs.microsoft.com/sql/t-sql/data-types/nchar-and-nvarchar-transact-sql

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [Required]
 [StringLength(50)]
 [Display(Name = "Last Name")]
 public string LastName { get; set; }
 [Required]
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Enrollment Date")]
 public DateTime EnrollmentDate { get; set; }
 [Display(Name = "Full Name")]
 public string FullName
 {
 get
 {
 return LastName + ", " + FirstMidName;
 }
 }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

The Required attributeThe Required attribute

[Display(Name = "Last Name")]
[StringLength(50, MinimumLength=1)]
public string LastName { get; set; }

The Display attributeThe Display attribute

The FullName calculated propertyThe FullName calculated property

Create the Instructor Entity

The Required attribute makes the name properties required fields. The Required attribute isn't needed for non-
nullable types such as value types (DateTime , int , double , etc.). Types that can't be null are automatically treated
as required fields.

The Required attribute could be replaced with a minimum length parameter in the StringLength attribute:

The Display attribute specifies that the caption for the text boxes should be "First Name", "Last Name", "Full
Name", and "Enrollment Date." The default captions had no space dividing the words, for example "Lastname."

FullName is a calculated property that returns a value that's created by concatenating two other properties.
FullName cannot be set, it has only a get accessor. No FullName column is created in the database.

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Instructor
 {
 public int ID { get; set; }

 [Required]
 [Display(Name = "Last Name")]
 [StringLength(50)]
 public string LastName { get; set; }

 [Required]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 [StringLength(50)]
 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }

 [Display(Name = "Full Name")]
 public string FullName
 {
 get { return LastName + ", " + FirstMidName; }
 }

 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 public OfficeAssignment OfficeAssignment { get; set; }
 }
}

[DataType(DataType.Date),Display(Name = "Hire Date"),DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",
ApplyFormatInEditMode = true)]

The CourseAssignments and OfficeAssignment navigation propertiesThe CourseAssignments and OfficeAssignment navigation properties

Create Models/Instructor.cs with the following code:

Notice that several properties are the same in the Student and Instructor entities. In the Implementing
Inheritance tutorial later in this series, this code is refactored to eliminate the redundancy.

Multiple attributes can be on one line. The HireDate attributes could be written as follows:

The CourseAssignments and OfficeAssignment properties are navigation properties.

public ICollection<CourseAssignment> CourseAssignments { get; set; }

public OfficeAssignment OfficeAssignment { get; set; }

Create the OfficeAssignment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class OfficeAssignment
 {
 [Key]
 public int InstructorID { get; set; }
 [StringLength(50)]
 [Display(Name = "Office Location")]
 public string Location { get; set; }

 public Instructor Instructor { get; set; }
 }
}

The Key attributeThe Key attribute

An instructor can teach any number of courses, so CourseAssignments is defined as a collection.

If a navigation property holds multiple entities:

It must be a list type where the entries can be added, deleted, and updated.

Navigation property types include:

ICollection<T>

List<T>

HashSet<T>

If ICollection<T> is specified, EF Core creates a HashSet<T> collection by default.

The CourseAssignment entity is explained in the section on many-to-many relationships.

Contoso University business rules state that an instructor can have at most one office. The OfficeAssignment

property holds a single OfficeAssignment entity. OfficeAssignment is null if no office is assigned.

Create Models/OfficeAssignment.cs with the following code:

The [Key] attribute is used to identify a property as the primary key (PK) when the property name is something
other than classnameID or ID.

There's a one-to-zero-or-one relationship between the Instructor and OfficeAssignment entities. An office

[Key]
public int InstructorID { get; set; }

The Instructor navigation propertyThe Instructor navigation property

[Required]
public Instructor Instructor { get; set; }

Modify the Course Entity

assignment only exists in relation to the instructor it's assigned to. The OfficeAssignment PK is also its foreign key
(FK) to the Instructor entity. EF Core can't automatically recognize InstructorID as the PK of OfficeAssignment

because:

InstructorID doesn't follow the ID or classnameID naming convention.

Therefore, the Key attribute is used to identify InstructorID as the PK:

By default, EF Core treats the key as non-database-generated because the column is for an identifying
relationship.

The OfficeAssignment navigation property for the Instructor entity is nullable because:

Reference types (such as classes are nullable).
An instructor might not have an office assignment.

The OfficeAssignment entity has a non-nullable Instructor navigation property because:

InstructorID is non-nullable.
An office assignment can't exist without an instructor.

When an Instructor entity has a related OfficeAssignment entity, each entity has a reference to the other one in
its navigation property.

The [Required] attribute could be applied to the Instructor navigation property:

The preceding code specifies that there must be a related instructor. The preceding code is unnecessary because
the InstructorID foreign key (which is also the PK) is non-nullable.

Update Models/Course.cs with the following code:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 [Display(Name = "Number")]
 public int CourseID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Title { get; set; }

 [Range(0, 5)]
 public int Credits { get; set; }

 public int DepartmentID { get; set; }

 public Department Department { get; set; }
 public ICollection<Enrollment> Enrollments { get; set; }
 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 }
}

The DatabaseGenerated attributeThe DatabaseGenerated attribute

[DatabaseGenerated(DatabaseGeneratedOption.None)]
[Display(Name = "Number")]
public int CourseID { get; set; }

The Course entity has a foreign key (FK) property DepartmentID . DepartmentID points to the related Department

entity. The Course entity has a Department navigation property.

EF Core doesn't require a FK property for a data model when the model has a navigation property for a related
entity.

EF Core automatically creates FKs in the database wherever they're needed. EF Core creates shadow properties
for automatically created FKs. Having the FK in the data model can make updates simpler and more efficient. For
example, consider a model where the FK property DepartmentID is not included. When a course entity is fetched
to edit:

The Department entity is null if it's not explicitly loaded.
To update the course entity, the Department entity must first be fetched.

When the FK property DepartmentID is included in the data model, there's no need to fetch the Department entity
before an update.

The [DatabaseGenerated(DatabaseGeneratedOption.None)] attribute specifies that the PK is provided by the
application rather than generated by the database.

By default, EF Core assumes that PK values are generated by the DB. DB generated PK values is generally the best
approach. For Course entities, the user specifies the PK. For example, a course number such as a 1000 series for
the math department, a 2000 series for the English department.

The DatabaseGenerated attribute can also be used to generate default values. For example, the DB can
automatically generate a date field to record the date a row was created or updated. For more information, see
Generated Properties.

https://docs.microsoft.com/ef/core/modeling/shadow-properties
https://docs.microsoft.com/ef/core/modeling/generated-properties

Foreign key and navigation propertiesForeign key and navigation properties

public int DepartmentID { get; set; }
public Department Department { get; set; }

public ICollection<Enrollment> Enrollments { get; set; }

public ICollection<CourseAssignment> CourseAssignments { get; set; }

Create the Department entity

The foreign key (FK) properties and navigation properties in the Course entity reflect the following relationships:

A course is assigned to one department, so there's a DepartmentID FK and a Department navigation property.

A course can have any number of students enrolled in it, so the Enrollments navigation property is a collection:

A course may be taught by multiple instructors, so the CourseAssignments navigation property is a collection:

CourseAssignment is explained later.

Create Models/Department.cs with the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

The Column attributeThe Column attribute

[Column(TypeName="money")]
public decimal Budget { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int? InstructorID { get; set; }
public Instructor Administrator { get; set; }

Previously the Column attribute was used to change column name mapping. In the code for the Department entity,
the Column attribute is used to change SQL data type mapping. The Budget column is defined using the SQL
Server money type in the DB:

Column mapping is generally not required. EF Core generally chooses the appropriate SQL Server data type
based on the CLR type for the property. The CLR decimal type maps to a SQL Server decimal type. Budget is
for currency, and the money data type is more appropriate for currency.

The FK and navigation properties reflect the following relationships:

A department may or may not have an administrator.
An administrator is always an instructor. Therefore the InstructorID property is included as the FK to the
Instructor entity.

The navigation property is named Administrator but holds an Instructor entity:

The question mark (?) in the preceding code specifies the property is nullable.

A department may have many courses, so there's a Courses navigation property:

public ICollection<Course> Courses { get; set; }

modelBuilder.Entity<Department>()
 .HasOne(d => d.Administrator)
 .WithMany()
 .OnDelete(DeleteBehavior.Restrict)

Update the Enrollment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 [DisplayFormat(NullDisplayText = "No grade")]
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

Note: By convention, EF Core enables cascade delete for non-nullable FKs and for many-to-many relationships.
Cascading delete can result in circular cascade delete rules. Circular cascade delete rules causes an exception when
a migration is added.

For example, if the Department.InstructorID property wasn't defined as nullable:

EF Core configures a cascade delete rule to delete the instructor when the department is deleted.
Deleting the instructor when the department is deleted isn't the intended behavior.

If business rules required the InstructorID property be non-nullable, use the following fluent API statement:

The preceding code disables cascade delete on the department-instructor relationship.

An enrollment record is for a one course taken by one student.

Update Models/Enrollment.cs with the following code:

Foreign key and navigation propertiesForeign key and navigation properties

public int CourseID { get; set; }
public Course Course { get; set; }

public int StudentID { get; set; }
public Student Student { get; set; }

Many-to-Many Relationships

The FK properties and navigation properties reflect the following relationships:

An enrollment record is for one course, so there's a CourseID FK property and a Course navigation property:

An enrollment record is for one student, so there's a StudentID FK property and a Student navigation property:

There's a many-to-many relationship between the Student and Course entities. The Enrollment entity functions
as a many-to-many join table with payload in the database. "With payload" means that the Enrollment table
contains additional data besides FKs for the joined tables (in this case, the PK and Grade).

The following illustration shows what these relationships look like in an entity diagram. (This diagram was
generated using EF Power Tools for EF 6.x. Creating the diagram isn't part of the tutorial.)

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-many relationship.

If the Enrollment table didn't include grade information, it would only need to contain the two FKs (CourseID and
StudentID). A many-to-many join table without payload is sometimes called a pure join table (PJT).

The Instructor and Course entities have a many-to-many relationship using a pure join table.

Note: EF 6.x supports implicit join tables for many-to-many relationships, but EF Core doesn't. For more
information, see Many-to-many relationships in EF Core 2.0.

https://blog.oneunicorn.com/2017/09/25/many-to-many-relationships-in-ef-core-2-0-part-1-the-basics/

The CourseAssignment entity

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class CourseAssignment
 {
 public int InstructorID { get; set; }
 public int CourseID { get; set; }
 public Instructor Instructor { get; set; }
 public Course Course { get; set; }
 }
}

Instructor-to-CoursesInstructor-to-Courses

Create Models/CourseAssignment.cs with the following code:

The Instructor-to-Courses many-to-many relationship:

Requires a join table that must be represented by an entity set.

Composite keyComposite key

Update the DB context

Is a pure join table (table without payload).

It's common to name a join entity EntityName1EntityName2 . For example, the Instructor-to-Courses join table using
this pattern is CourseInstructor . However, we recommend using a name that describes the relationship.

Data models start out simple and grow. No-payload joins (PJTs) frequently evolve to include payload. By starting
with a descriptive entity name, the name doesn't need to change when the join table changes. Ideally, the join
entity would have its own natural (possibly single word) name in the business domain. For example, Books and
Customers could be linked with a join entity called Ratings. For the Instructor-to-Courses many-to-many
relationship, CourseAssignment is preferred over CourseInstructor .

FKs are not nullable. The two FKs in CourseAssignment (InstructorID and CourseID) together uniquely identify
each row of the CourseAssignment table. CourseAssignment doesn't require a dedicated PK. The InstructorID and
CourseID properties function as a composite PK. The only way to specify composite PKs to EF Core is with the

fluent API. The next section shows how to configure the composite PK.

The composite key ensures:

Multiple rows are allowed for one course.
Multiple rows are allowed for one instructor.
Multiple rows for the same instructor and course isn't allowed.

The Enrollment join entity defines its own PK, so duplicates of this sort are possible. To prevent such duplicates:

Add a unique index on the FK fields, or
Configure Enrollment with a primary composite key similar to CourseAssignment . For more information, see
Indexes.

Add the following highlighted code to Data/SchoolContext.cs:

https://docs.microsoft.com/ef/core/modeling/indexes

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 public DbSet<Department> Departments { get; set; }
 public DbSet<Instructor> Instructors { get; set; }
 public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
 public DbSet<CourseAssignment> CourseAssignments { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 modelBuilder.Entity<Department>().ToTable("Department");
 modelBuilder.Entity<Instructor>().ToTable("Instructor");
 modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
 modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");

 modelBuilder.Entity<CourseAssignment>()
 .HasKey(c => new { c.CourseID, c.InstructorID });
 }
 }
}

Fluent API alternative to attributes

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Blog>()
 .Property(b => b.Url)
 .IsRequired();
}

The preceding code adds the new entities and configures the CourseAssignment entity's composite PK.

The OnModelCreating method in the preceding code uses the fluent API to configure EF Core behavior. The API is
called "fluent" because it's often used by stringing a series of method calls together into a single statement. The
following code is an example of the fluent API:

In this tutorial, the fluent API is used only for DB mapping that can't be done with attributes. However, the fluent
API can specify most of the formatting, validation, and mapping rules that can be done with attributes.

Some attributes such as MinimumLength can't be applied with the fluent API. MinimumLength doesn't change the
schema, it only applies a minimum length validation rule.

Some developers prefer to use the fluent API exclusively so that they can keep their entity classes "clean."
Attributes and the fluent API can be mixed. There are some configurations that can only be done with the fluent
API (specifying a composite PK). There are some configurations that can only be done with attributes (
MinimumLength). The recommended practice for using fluent API or attributes:

https://docs.microsoft.com/ef/core/modeling/#methods-of-configuration

Entity Diagram Showing Relationships

Choose one of these two approaches.
Use the chosen approach consistently as much as possible.

Some of the attributes used in the this tutorial are used for :

Validation only (for example, MinimumLength).
EF Core configuration only (for example, HasKey).
Validation and EF Core configuration (for example, [StringLength(50)]).

For more information about attributes vs. fluent API, see Methods of configuration.

The following illustration shows the diagram that EF Power Tools create for the completed School model.

The preceding diagram shows:

Several one-to-many relationship lines (1 to *).
The one-to-zero-or-one relationship line (1 to 0..1) between the Instructor and OfficeAssignment entities.
The zero-or-one-to-many relationship line (0..1 to *) between the Instructor and Department entities.

https://docs.microsoft.com/ef/core/modeling/#methods-of-configuration

Seed the DB with Test Data

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 //context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student { FirstMidName = "Carson", LastName = "Alexander",
 EnrollmentDate = DateTime.Parse("2010-09-01") },
 new Student { FirstMidName = "Meredith", LastName = "Alonso",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Arturo", LastName = "Anand",
 EnrollmentDate = DateTime.Parse("2013-09-01") },
 new Student { FirstMidName = "Gytis", LastName = "Barzdukas",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Yan", LastName = "Li",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Peggy", LastName = "Justice",
 EnrollmentDate = DateTime.Parse("2011-09-01") },
 new Student { FirstMidName = "Laura", LastName = "Norman",
 EnrollmentDate = DateTime.Parse("2013-09-01") },
 new Student { FirstMidName = "Nino", LastName = "Olivetto",
 EnrollmentDate = DateTime.Parse("2005-09-01") }
 };

 foreach (Student s in students)
 {
 context.Students.Add(s);
 }
 context.SaveChanges();

 var instructors = new Instructor[]
 {
 new Instructor { FirstMidName = "Kim", LastName = "Abercrombie",
 HireDate = DateTime.Parse("1995-03-11") },
 new Instructor { FirstMidName = "Fadi", LastName = "Fakhouri",
 HireDate = DateTime.Parse("2002-07-06") },
 new Instructor { FirstMidName = "Roger", LastName = "Harui",
 HireDate = DateTime.Parse("1998-07-01") },
 new Instructor { FirstMidName = "Candace", LastName = "Kapoor",
 HireDate = DateTime.Parse("2001-01-15") },
 new Instructor { FirstMidName = "Roger", LastName = "Zheng",
 HireDate = DateTime.Parse("2004-02-12") }
 };

 foreach (Instructor i in instructors)
 {
 context.Instructors.Add(i);
 }

Update the code in Data/DbInitializer.cs:

 }
 context.SaveChanges();

 var departments = new Department[]
 {
 new Department { Name = "English", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID },
 new Department { Name = "Mathematics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID },
 new Department { Name = "Engineering", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID },
 new Department { Name = "Economics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID }
 };

 foreach (Department d in departments)
 {
 context.Departments.Add(d);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course {CourseID = 1050, Title = "Chemistry", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Engineering").DepartmentID
 },
 new Course {CourseID = 4022, Title = "Microeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 4041, Title = "Macroeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 1045, Title = "Calculus", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 3141, Title = "Trigonometry", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 2021, Title = "Composition", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 new Course {CourseID = 2042, Title = "Literature", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 };

 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var officeAssignments = new OfficeAssignment[]
 {
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID,
 Location = "Smith 17" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID,
 Location = "Gowan 27" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID,
 Location = "Thompson 304" },
 };

 foreach (OfficeAssignment o in officeAssignments)

 foreach (OfficeAssignment o in officeAssignments)
 {
 context.OfficeAssignments.Add(o);
 }
 context.SaveChanges();

 var courseInstructors = new CourseAssignment[]
 {
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 };

 foreach (CourseAssignment ci in courseInstructors)
 {
 context.CourseAssignments.Add(ci);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.A
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.C
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 Grade = Grade.B

 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Barzdukas").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Li").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Justice").ID,
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 Grade = Grade.B
 }
 };

 foreach (Enrollment e in enrollments)
 {
 var enrollmentInDataBase = context.Enrollments.Where(
 s =>
 s.Student.ID == e.StudentID &&
 s.Course.CourseID == e.CourseID).SingleOrDefault();
 if (enrollmentInDataBase == null)
 {
 context.Enrollments.Add(e);
 }
 }
 context.SaveChanges();
 }
 }
}

Add a migration

The preceding code provides seed data for the new entities. Most of this code creates new entity objects and loads
sample data. The sample data is used for testing. The preceding code creates the following many-to-many
relationships:

Enrollments

CourseAssignment

Note: EF Core 2.1 will support data seeding.

Build the project. Open a command window in the project folder and enter the following command:

https://github.com/aspnet/EntityFrameworkCore/wiki/Roadmap
https://github.com/aspnet/EntityFrameworkCore/issues/629

dotnet ef migrations add ComplexDataModel

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.
Done. To undo this action, use 'ef migrations remove'

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint
"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in
database "ContosoUniversity", table "dbo.Department", column 'DepartmentID'.

Change the connection string and update the DB

dotnet ef database update

The preceding command displays a warning about possible data loss.

If the database update command is run, the following error is produced:

When migrations are run with existing data, there may be FK constraints that are not satisfied with the exiting
data. For this tutorial, a new DB is created, so there are no FK constraint violations. See Fixing foreign key
constraints with legacy data for instructions on how to fix the FK violations on the current DB.

The code in the updated DbInitializer adds seed data for the new entities. To force EF Core to create a new
empty DB:

 {
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity3;Trusted_Connection=True;MultipleActiveResultSets=tr
ue"
 },

Change the DB connection string name in appsettings.json to ContosoUniversity3. The new name must be
a name that hasn't been used on the computer.

Alternatively, delete the DB using:

dotnet ef database drop

SQL Server Object Explorer (SSOX).

The database drop CLI command:

Run database update in the command window:

The preceding command runs all the migrations.

Run the app. Running the app runs the DbInitializer.Initialize method. The DbInitializer.Initialize

populates the new DB.

Open the DB in SSOX:

Expand the Tables node. The created tables are displayed.
If SSOX was opened previously, click the Refresh button.

Fixing foreign key constraints with legacy data

migrationBuilder.AddColumn<int>(
 name: "DepartmentID",
 table: "Course",
 type: "int",
 nullable: false,
 defaultValue: 0);

Examine the CourseAssignment table:

Right-click the CourseAssignment table and select View Data.
Verify the CourseAssignment table contains data.

This section is optional.

When migrations are run with existing data, there may be FK constraints that are not satisfied with the exiting
data. With production data, steps must be taken to migrate the existing data. This section provides an example of
fixing FK constraint violations. Don't make these code changes without a backup. Don't make these code changes
if you completed the previous section and updated the database.

The {timestamp}_ComplexDataModel.cs file contains the following code:

The preceding code adds a non-nullable DepartmentID FK to the Course table. The DB from the previous tutorial
contains rows in Course , so that table cannot be updated by migrations.

Fix the foreign key constraintsFix the foreign key constraints

migrationBuilder.AlterColumn<string>(
 name: "Title",
 table: "Course",
 maxLength: 50,
 nullable: true,
 oldClrType: typeof(string),
 oldNullable: true);

//migrationBuilder.AddColumn<int>(
// name: "DepartmentID",
// table: "Course",
// nullable: false,
// defaultValue: 0);

migrationBuilder.CreateTable(
 name: "Department",
 columns: table => new
 {
 DepartmentID = table.Column<int>(type: "int", nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy", SqlServerValueGenerationStrategy.IdentityColumn),
 Budget = table.Column<decimal>(type: "money", nullable: false),
 InstructorID = table.Column<int>(type: "int", nullable: true),
 Name = table.Column<string>(type: "nvarchar(50)", maxLength: 50, nullable: true),
 StartDate = table.Column<DateTime>(type: "datetime2", nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Department", x => x.DepartmentID);
 table.ForeignKey(
 name: "FK_Department_Instructor_InstructorID",
 column: x => x.InstructorID,
 principalTable: "Instructor",
 principalColumn: "ID",
 onDelete: ReferentialAction.Restrict);
 });

 migrationBuilder.Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp', 0.00,
GETDATE())");
// Default value for FK points to department created above, with
// defaultValue changed to 1 in following AddColumn statement.

migrationBuilder.AddColumn<int>(
 name: "DepartmentID",
 table: "Course",
 nullable: false,
 defaultValue: 1);

To make the ComplexDataModel migration work with existing data:

Change the code to give the new column (DepartmentID) a default value.
Create a fake department named "Temp" to act as the default department.

Update the ComplexDataModel classes Up method:

Open the {timestamp}_ComplexDataModel.cs file.
Comment out the line of code that adds the DepartmentID column to the Course table.

Add the following highlighted code. The new code goes after the .CreateTable(name: "Department" block:

With the preceding changes, existing Course rows will be related to the "Temp" department after the
ComplexDataModel Up method runs.

A production app would:

Include code or scripts to add Department rows and related Course rows to the new Department rows.
Not use the "Temp" department or the default value for Course.DepartmentID .

The next tutorial covers related data.

 P R E V IO U S N E X T

Razor Pages with EF Core in ASP.NET Core - Read
Related Data - 6 of 8
5/16/2018 • 15 minutes to read • Edit Online

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual
Studio. For information about the tutorial series, see the first tutorial.

In this tutorial, related data is read and displayed. Related data is data that EF Core loads into navigation
properties.

If you run into problems you can't solve, download the completed app for this stage.

The following illustrations show the completed pages for this tutorial:

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/read-related-data.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part6-related

Eager, explicit, and lazy Loading of related data
There are several ways that EF Core can load related data into the navigation properties of an entity:

Eager loading. Eager loading is when a query for one type of entity also loads related entities. When the
entity is read, its related data is retrieved. This typically results in a single join query that retrieves all of the
data that's needed. EF Core will issue multiple queries for some types of eager loading. Issuing multiple
queries can be more efficient than was the case for some queries in EF6 where there was a single query.

https://docs.microsoft.com/ef/core/querying/related-data#eager-loading

Create a Courses page that displays department name

Eager loading is specified with the Include and ThenInclude methods.

Eager loading sends multiple queries when a collection navigation is included:

One query for the main query
One query for each collection "edge" in the load tree.

Separate queries with Load : The data can be retrieved in separate queries, and EF Core "fixes up" the
navigation properties. "fixes up" means that EF Core automatically populates the navigation properties.
Separate queries with Load is more like explict loading than eager loading.

Note: EF Core automatically fixes up navigation properties to any other entities that were previously loaded
into the context instance. Even if the data for a navigation property is not explicitly included, the property
may still be populated if some or all of the related entities were previously loaded.

Explicit loading. When the entity is first read, related data isn't retrieved. Code must be written to retrieve
the related data when it's needed. Explicit loading with separate queries results in multiple queries sent to
the DB. With explicit loading, the code specifies the navigation properties to be loaded. Use the Load

method to do explicit loading. For example:

Lazy loading. EF Core doesn't currently support lazy loading. When the entity is first read, related data isn't
retrieved. The first time a navigation property is accessed, the data required for that navigation property is
automatically retrieved. A query is sent to the DB each time a navigation property is accessed for the first
time.

The Select operator loads only the related data needed.

The Course entity includes a navigation property that contains the Department entity. The Department entity
contains the department that the course is assigned to.

To display the name of the assigned department in a list of courses:

Get the Name property from the Department entity.
The Department entity comes from the Course.Department navigation property.

https://docs.microsoft.com/ef/core/querying/related-data#explicit-loading
https://docs.microsoft.com/ef/core/querying/related-data#lazy-loading
https://github.com/aspnet/EntityFrameworkCore/issues/3797

Scaffold the Course modelScaffold the Course model

dotnet aspnet-codegenerator razorpage -m Course -dc SchoolContext -udl -outDir Pages\Courses --
referenceScriptLibraries

Exit Visual Studio.

Open a command window in the project directory (The directory that contains the Program.cs, Startup.cs,
and .csproj files).

Run the following command:

The preceding command scaffolds the Course model. Open the project in Visual Studio.

Build the project. The build generates errors like the following:

1>Pages/Courses/Index.cshtml.cs(26,37,26,43): error CS1061: 'SchoolContext' does not contain a definition for
'Course' and no extension method 'Course' accepting a first argument of type 'SchoolContext' could be found
(are you missing a using directive or an assembly reference?)

Globally change _context.Course to _context.Courses (that is, add an "s" to Course). 7 occurrences are found
and updated.

Open Pages/Courses/Index.cshtml.cs and examine the OnGetAsync method. The scaffolding engine specified eager
loading for the Department navigation property. The Include method specifies eager loading.

Run the app and select the Courses link. The department column displays the DepartmentID , which isn't useful.

Update the OnGetAsync method with the following code:

public async Task OnGetAsync()
{
 Course = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .ToListAsync();
}

The preceding code adds AsNoTracking . AsNoTracking improves performance because the entities returned are
not tracked. The entities are not tracked because they're not updated in the current context.

Update Pages/Courses/Index.cshtml with the following highlighted markup:

@page
@model ContosoUniversity.Pages.Courses.IndexModel
@{
 ViewData["Title"] = "Courses";
}

<h2>Courses</h2>

<p>
 <a asp-page="TestCreate">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Course[0].CourseID)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Course[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Course[0].Credits)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Course[0].Department)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Course)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.CourseID)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Credits)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Department.Name)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.CourseID">Edit |
 <a asp-page="./Details" asp-route-id="@item.CourseID">Details |
 <a asp-page="./Delete" asp-route-id="@item.CourseID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

The following changes have been made to the scaffolded code:

Changed the heading from Index to Courses.

Added a Number column that shows the CourseID property value. By default, primary keys aren't
scaffolded because normally they're meaningless to end users. However, in this case the primary key is
meaningful.

Changed the Department column to display the department name. The code displays the Name property
of the Department entity that's loaded into the Department navigation property:

Loading related data with SelectLoading related data with Select

public async Task OnGetAsync()
{
 Course = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .ToListAsync();
}

public IList<CourseViewModel> CourseVM { get; set; }

public async Task OnGetAsync()
{
 CourseVM = await _context.Courses
 .Select(p => new CourseViewModel
 {
 CourseID = p.CourseID,
 Title = p.Title,
 Credits = p.Credits,
 DepartmentName = p.Department.Name
 }).ToListAsync();
}

@Html.DisplayFor(modelItem => item.Department.Name)

Run the app and select the Courses tab to see the list with department names.

The OnGetAsync method loads related data with the Include method:

The Select operator loads only the related data needed. For single items, like the Department.Name it uses a SQL
INNER JOIN. For collections, it uses another database access, but so does the Include operator on collections.

The following code loads related data with the Select method:

The CourseViewModel :

public class CourseViewModel
{
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }
 public string DepartmentName { get; set; }
}

Create an Instructors page that shows Courses and Enrollments

See IndexSelect.cshtml and IndexSelect.cshtml.cs for a complete example.

In this section, the Instructors page is created.

https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu/Pages/Courses/IndexSelect.cshtml
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu/Pages/Courses/IndexSelect.cshtml.cs

This page reads and displays related data in the following ways:

The list of instructors displays related data from the OfficeAssignment entity (Office in the preceding image).
The Instructor and OfficeAssignment entities are in a one-to-zero-or-one relationship. Eager loading is used
for the OfficeAssignment entities. Eager loading is typically more efficient when the related data needs to be
displayed. In this case, office assignments for the instructors are displayed.
When the user selects an instructor (Harui in the preceding image), related Course entities are displayed. The

Create a view model for the Instructor Index viewCreate a view model for the Instructor Index view

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class InstructorIndexData
 {
 public IEnumerable<Instructor> Instructors { get; set; }
 public IEnumerable<Course> Courses { get; set; }
 public IEnumerable<Enrollment> Enrollments { get; set; }
 }
}

Scaffold the Instructor modelScaffold the Instructor model

Instructor and Course entities are in a many-to-many relationship. Eager loading is used for the Course

entities and their related Department entities. In this case, separate queries might be more efficient because
only courses for the selected instructor are needed. This example shows how to use eager loading for
navigation properties in entities that are in navigation properties.
When the user selects a course (Chemistry in the preceding image), related data from the Enrollments entity is
displayed. In the preceding image, student name and grade are displayed. The Course and Enrollment entities
are in a one-to-many relationship.

The instructors page shows data from three different tables. A view model is created that includes the three
entities representing the three tables.

In the SchoolViewModels folder, create InstructorIndexData.cs with the following code:

dotnet aspnet-codegenerator razorpage -m Instructor -dc SchoolContext -udl -outDir Pages\Instructors --
referenceScriptLibraries

Exit Visual Studio.

Open a command window in the project directory (The directory that contains the Program.cs, Startup.cs,
and .csproj files).

Run the following command:

The preceding command scaffolds the Instructor model. Open the project in Visual Studio.

Build the project. The build generates errors.

Globally change _context.Instructor to _context.Instructors (that is, add an "s" to Instructor). 7 occurrences
are found and updated.

Run the app and navigate to the instructors page.

Replace Pages/Instructors/Index.cshtml.cs with the following code:

using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels; // Add VM
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class IndexModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public IndexModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public InstructorIndexData Instructor { get; set; }
 public int InstructorID { get; set; }

 public async Task OnGetAsync(int? id)
 {
 Instructor = new InstructorIndexData();
 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 }
 }
 }
}

Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

Update the instructors Index pageUpdate the instructors Index page

The OnGetAsync method accepts optional route data for the ID of the selected instructor.

Examine the query on the Pages/Instructors/Index.cshtml page:

The query has two includes:

OfficeAssignment : Displayed in the instructors view.
CourseAssignments : Which brings in the courses taught.

Update Pages/Instructors/Index.cshtml with the following markup:

@page "{id:int?}"
@model ContosoUniversity.Pages.Instructors.IndexModel

@{
 ViewData["Title"] = "Instructors";
}

<h2>Instructors</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>Last Name</th>
 <th>First Name</th>
 <th>Hire Date</th>
 <th>Office</th>
 <th>Courses</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Instructor.Instructors)
 {
 string selectedRow = "";
 if (item.ID == Model.InstructorID)
 {
 selectedRow = "success";
 }
 <tr class="@selectedRow">
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.HireDate)
 </td>
 <td>
 @if (item.OfficeAssignment != null)
 {
 @item.OfficeAssignment.Location
 }
 </td>
 <td>
 @{
 foreach (var course in item.CourseAssignments)
 {
 @course.Course.CourseID @: @course.Course.Title

 }
 }
 </td>
 <td>
 <a asp-page="./Index" asp-route-id="@item.ID">Select |
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

The preceding markup makes the following changes:

@if (item.OfficeAssignment != null)
{
 @item.OfficeAssignment.Location
}

string selectedRow = "";
if (item.CourseID == Model.CourseID)
{
 selectedRow = "success";
}
<tr class="@selectedRow">

<a asp-action="Index" asp-route-id="@item.ID">Select |

Updates the page directive from @page to @page "{id:int?}" . "{id:int?}" is a route template. The route
template changes integer query strings in the URL to route data. For example, clicking on the Select link
for an instructor with only the @page directive produces a URL like the following:

http://localhost:1234/Instructors?id=2

When the page directive is @page "{id:int?}" , the previous URL is:

http://localhost:1234/Instructors/2

Page title is Instructors.

Added an Office column that displays item.OfficeAssignment.Location only if item.OfficeAssignment isn't
null. Because this is a one-to-zero-or-one relationship, there might not be a related OfficeAssignment
entity.

Added a Courses column that displays courses taught by each instructor. See Explicit Line Transition with
@: for more about this razor syntax.

Added code that dynamically adds class="success" to the tr element of the selected instructor. This sets
a background color for the selected row using a Bootstrap class.

Added a new hyperlink labeled Select. This link sends the selected instructor's ID to the Index method
and sets a background color.

Run the app and select the Instructors tab. The page displays the Location (office) from the related
OfficeAssignment entity. If OfficeAssignment` is null, an empty table cell is displayed.

Add courses taught by selected instructorAdd courses taught by selected instructor

public async Task OnGetAsync(int? id, int? courseID)
{
 Instructor = new InstructorIndexData();
 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Where(
 i => i.ID == id.Value).Single();
 Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 Instructor.Enrollments = Instructor.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
 }
}

Click on the Select link. The row style changes.

Update the OnGetAsync method in Pages/Instructors/Index.cshtml.cs with the following code:

Add public int CourseID { get; set; }

public class IndexModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public IndexModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public InstructorIndexData Instructor { get; set; }
 public int InstructorID { get; set; }
 public int CourseID { get; set; }

 public async Task OnGetAsync(int? id, int? courseID)
 {
 Instructor = new InstructorIndexData();
 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Where(
 i => i.ID == id.Value).Single();
 Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 Instructor.Enrollments = Instructor.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
 }
 }

Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

Examine the updated query:

The preceding query adds the Department entities.

The following code executes when an instructor is selected (id != null). The selected instructor is retrieved from
the list of instructors in the view model. The view model's Courses property is loaded with the Course entities
from that instructor's CourseAssignments navigation property.

if (id != null)
{
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Where(
 i => i.ID == id.Value).Single();
 Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
}

if (courseID != null)
{
 CourseID = courseID.Value;
 Instructor.Enrollments = Instructor.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
}

The Where method returns a collection. In the preceding Where method, only a single Instructor entity is
returned. The Single method converts the collection into a single Instructor entity. The Instructor entity
provides access to the CourseAssignments property. CourseAssignments provides access to the related Course

entities.

The Single method is used on a collection when the collection has only one item. The Single method throws an
exception if the collection is empty or if there's more than one item. An alternative is SingleOrDefault , which
returns a default value (null in this case) if the collection is empty. Using SingleOrDefault on an empty collection:

Results in an exception (from trying to find a Courses property on a null reference).
The exception message would less clearly indicate the cause of the problem.

The following code populates the view model's Enrollments property when a course is selected:

Add the following markup to the end of the Pages/Courses/Index.cshtml Razor Page:

 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

@if (Model.Instructor.Courses != null)
{
 <h3>Courses Taught by Selected Instructor</h3>
 <table class="table">
 <tr>
 <th></th>
 <th>Number</th>
 <th>Title</th>
 <th>Department</th>
 </tr>

 @foreach (var item in Model.Instructor.Courses)
 {
 string selectedRow = "";
 if (item.CourseID == Model.CourseID)
 {
 selectedRow = "success";
 }
 <tr class="@selectedRow">
 <td>
 @Html.ActionLink("Select", "OnGetAsync",
 new { courseID = item.CourseID })
 </td>
 <td>
 @item.CourseID
 </td>
 <td>
 @item.Title
 </td> <td>
 @item.Department.Name
 </td>
 </tr>
 }

 </table>
}

The preceding markup displays a list of courses related to an instructor when an instructor is selected.

Test the app. Click on a Select link on the instructors page.

Show student dataShow student data

Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

In this section, the app is updated to show the student data for a selected course.

Update the query in the OnGetAsync method in Pages/Instructors/Index.cshtml.cs with the following code:

Update Pages/Instructors/Index.cshtml. Add the following markup to the end of the file:

@if (Model.Instructor.Enrollments != null)
{
 <h3>
 Students Enrolled in Selected Course
 </h3>
 <table class="table">
 <tr>
 <th>Name</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Instructor.Enrollments)
 {
 <tr>
 <td>
 @item.Student.FullName
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
}

The preceding markup displays a list of the students who are enrolled in the selected course.

Refresh the page and select an instructor. Select a course to see the list of enrolled students and their grades.

Using Single
The Single method can pass in the Where condition instead of calling the Where method separately:

public async Task OnGetAsync(int? id, int? courseID)
{
 Instructor = new InstructorIndexData();

 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Single(
 i => i.ID == id.Value);
 Instructor.Courses = instructor.CourseAssignments.Select(
 s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 Instructor.Enrollments = Instructor.Courses.Single(
 x => x.CourseID == courseID).Enrollments;
 }
}

Explicit loading

Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

The preceding Single approach provides no benefits over using Where . Some developers prefer the Single

approach style.

The current code specifies eager loading for Enrollments and Students :

Suppose users rarely want to see enrollments in a course. In that case, an optimization would be to only load the
enrollment data if it's requested. In this section, the OnGetAsync is updated to use explicit loading of Enrollments

and Students .

Update the OnGetAsync with the following code:

public async Task OnGetAsync(int? id, int? courseID)
{
 Instructor = new InstructorIndexData();
 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 //.Include(i => i.CourseAssignments)
 // .ThenInclude(i => i.Course)
 // .ThenInclude(i => i.Enrollments)
 // .ThenInclude(i => i.Student)
 // .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Where(
 i => i.ID == id.Value).Single();
 Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 var selectedCourse = Instructor.Courses.Where(x => x.CourseID == courseID).Single();
 await _context.Entry(selectedCourse).Collection(x => x.Enrollments).LoadAsync();
 foreach (Enrollment enrollment in selectedCourse.Enrollments)
 {
 await _context.Entry(enrollment).Reference(x => x.Student).LoadAsync();
 }
 Instructor.Enrollments = selectedCourse.Enrollments;
 }
}

The preceding code drops the ThenInclude method calls for enrollment and student data. If a course is selected,
the highlighted code retrieves:

The Enrollment entities for the selected course.
The Student entities for each Enrollment .

Notice the preceding code comments out .AsNoTracking() . Navigation properties can only be explicitly loaded for
tracked entities.

Test the app. From a users perspective, the app behaves identically to the previous version.

The next tutorial shows how to update related data.

 P R E V IO U S N E X T

Razor Pages with EF Core in ASP.NET Core - Update
Related Data - 7 of 8
5/2/2018 • 16 minutes to read • Edit Online

By Tom Dykstra, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual
Studio. For information about the tutorial series, see the first tutorial.

This tutorial demonstrates updating related data. If you run into problems you can't solve, download the
completed app for this stage.

The following illustrations shows some of the completed pages.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/update-related-data.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part7

Create a base class to share common code

Examine and test the Create and Edit course pages. Create a new course. The department is selected by its
primary key (an integer), not its name. Edit the new course. When you have finished testing, delete the new
course.

The Courses/Create and Courses/Edit pages each need a list of department names. Create the
Pages/Courses/DepartmentNamePageModel.cshtml.cs base class for the Create and Edit pages:

using ContosoUniversity.Data;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace ContosoUniversity.Pages.Courses
{
 public class DepartmentNamePageModel : PageModel
 {
 public SelectList DepartmentNameSL { get; set; }

 public void PopulateDepartmentsDropDownList(SchoolContext _context,
 object selectedDepartment = null)
 {
 var departmentsQuery = from d in _context.Departments
 orderby d.Name // Sort by name.
 select d;

 DepartmentNameSL = new SelectList(departmentsQuery.AsNoTracking(),
 "DepartmentID", "Name", selectedDepartment);
 }
 }
}

Customize the Courses Pages

The preceding code creates a SelectList to contain the list of department names. If selectedDepartment is
specified, that department is selected in the SelectList .

The Create and Edit page model classes will derive from DepartmentNamePageModel .

When a new course entity is created, it must have a relationship to an existing department. To add a department
while creating a course, the base class for Create and Edit contains a drop-down list for selecting the department.
The drop-down list sets the Course.DepartmentID foreign key (FK) property. EF Core uses the Course.DepartmentID

FK to load the Department navigation property.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.rendering.selectlist?view=aspnetcore-2.0

Update the Create page model with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class CreateModel : DepartmentNamePageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public CreateModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 PopulateDepartmentsDropDownList(_context);
 return Page();
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var emptyCourse = new Course();

 if (await TryUpdateModelAsync<Course>(
 emptyCourse,
 "course", // Prefix for form value.
 s => s.CourseID, s => s.DepartmentID, s => s.Title, s => s.Credits))
 {
 _context.Courses.Add(emptyCourse);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 // Select DepartmentID if TryUpdateModelAsync fails.
 PopulateDepartmentsDropDownList(_context, emptyCourse.DepartmentID);
 return Page();
 }
 }
}

Update the Courses Create pageUpdate the Courses Create page

The preceding code:

Derives from DepartmentNamePageModel .
Uses TryUpdateModelAsync to prevent overposting.
Replaces ViewData["DepartmentID"] with DepartmentNameSL (from the base class).

ViewData["DepartmentID"] is replaced with the strongly typed DepartmentNameSL . Strongly typed models are
preferred over weakly typed. For more information, see Weakly typed data (ViewData and ViewBag).

Update Pages/Courses/Create.cshtml with the following markup:

@page
@model ContosoUniversity.Pages.Courses.CreateModel
@{
 ViewData["Title"] = "Create Course";
}
<h2>Create</h2>
<h4>Course</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Course.CourseID" class="control-label"></label>
 <input asp-for="Course.CourseID" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Title" class="control-label"></label>
 <input asp-for="Course.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Credits" class="control-label"></label>
 <input asp-for="Course.Credits" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL">
 <option value="">-- Select Department --</option>
 </select>

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>
<div>
 <a asp-page="Index">Back to List
</div>
@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

The preceding markup makes the following changes:

Changes the caption from DepartmentID to Department.
Replaces "ViewBag.DepartmentID" with DepartmentNameSL (from the base class).
Adds the "Select Department" option. This change renders "Select Department" rather than the first
department.
Adds a validation message when the department isn't selected.

The Razor Page uses the Select Tag Helper:

<div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL">
 <option value="">-- Select Department --</option>
 </select>

</div>

Update the Courses Edit page.Update the Courses Edit page.

Test the Create page. The Create page displays the department name rather than the department ID.

Update the edit page model with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class EditModel : DepartmentNamePageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .Include(c => c.Department).FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }

 // Select current DepartmentID.
 PopulateDepartmentsDropDownList(_context,Course.DepartmentID);
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var courseToUpdate = await _context.Courses.FindAsync(id);

 if (await TryUpdateModelAsync<Course>(
 courseToUpdate,
 "course", // Prefix for form value.
 c => c.Credits, c => c.DepartmentID, c => c.Title))
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 // Select DepartmentID if TryUpdateModelAsync fails.
 PopulateDepartmentsDropDownList(_context, courseToUpdate.DepartmentID);
 return Page();
 }
 }
}

The changes are similar to those made in the Create page model. In the preceding code,
PopulateDepartmentsDropDownList passes in the department ID, which select the department specified in the drop-

@page
@model ContosoUniversity.Pages.Courses.EditModel

@{
 ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<h4>Course</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Course.CourseID" />
 <div class="form-group">
 <label asp-for="Course.CourseID" class="control-label"></label>
 <div>@Html.DisplayFor(model => model.Course.CourseID)</div>
 </div>
 <div class="form-group">
 <label asp-for="Course.Title" class="control-label"></label>
 <input asp-for="Course.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Credits" class="control-label"></label>
 <input asp-for="Course.Credits" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL"></select>

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="./Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

down list.

Update Pages/Courses/Edit.cshtml with the following markup:

The preceding markup makes the following changes:

Displays the course ID. Generally the Primary Key (PK) of an entity isn't displayed. PKs are usually meaningless
to users. In this case, the PK is the course number.
Changes the caption from DepartmentID to Department.
Replaces "ViewBag.DepartmentID" with DepartmentNameSL (from the base class).
Adds the "Select Department" option. This change renders "Select Department" rather than the first
department.
Adds a validation message when the department isn't selected.

Add AsNoTracking to the Details and Delete page models

public class DeleteModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .AsNoTracking()
 .Include(c => c.Department)
 .FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course != null)
 {
 _context.Courses.Remove(Course);
 await _context.SaveChangesAsync();
 }

 return RedirectToPage("./Index");
 }
}

The page contains a hidden field (<input type="hidden">) for the course number. Adding a <label> tag helper
with asp-for="Course.CourseID" doesn't eliminate the need for the hidden field. <input type="hidden"> is required
for the course number to be included in the posted data when the user clicks Save.

Test the updated code. Create, edit, and delete a course.

AsNoTracking can improve performance when tracking isn't required. Add AsNoTracking to the Delete and Details
page model. The following code shows the updated Delete page model:

Update the OnGetAsync method in the Pages/Courses/Details.cshtml.cs file:

https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking?view=efcore-2.0#Microsoft_EntityFrameworkCore_EntityFrameworkQueryableExtensions_AsNoTracking__1_System_Linq_IQueryable___0__

public async Task<IActionResult> OnGetAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .AsNoTracking()
 .Include(c => c.Department)
 .FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }
 return Page();
}

Modify the Delete and Details pagesModify the Delete and Details pages
Update the Delete Razor page with the following markup:

@page
@model ContosoUniversity.Pages.Courses.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Course</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Course.CourseID)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Course.CourseID)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Course.Title)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Course.Title)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Course.Credits)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Course.Credits)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Course.Department)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Course.Department.DepartmentID)
 </dd>
 </dl>

 <form method="post">
 <input type="hidden" asp-for="Course.CourseID" />
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-page="./Index">Back to List
 </form>
</div>

Test the Course pagesTest the Course pages

Update the instructor pages

Add office locationAdd office location

Make the same changes to the Details page.

Test create, edit, details, and delete.

The following sections update the instructor pages.

When editing an instructor record, you may want to update the instructor's office assignment. The Instructor

entity has a one-to-zero-or-one relationship with the OfficeAssignment entity. The instructor code must handle:

If the user clears the office assignment, delete the OfficeAssignment entity.
If the user enters an office assignment and it was empty, create a new OfficeAssignment entity.

public class EditModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Instructor == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .FirstOrDefaultAsync(s => s.ID == id);

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "Instructor",
 i => i.FirstMidName, i => i.LastName,
 i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(
 instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 await _context.SaveChangesAsync();
 }
 return RedirectToPage("./Index");

 }
}

If the user changes the office assignment, update the OfficeAssignment entity.

Update the instructors Edit page model with the following code:

The preceding code:

Update the instructor Edit pageUpdate the instructor Edit page

@page
@model ContosoUniversity.Pages.Instructors.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Instructor</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Instructor.ID" />
 <div class="form-group">
 <label asp-for="Instructor.LastName" class="control-label"></label>
 <input asp-for="Instructor.LastName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.FirstMidName" class="control-label"></label>
 <input asp-for="Instructor.FirstMidName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.HireDate" class="control-label"></label>
 <input asp-for="Instructor.HireDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="./Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Add Course assignments to the instructor Edit page

Gets the current Instructor entity from the database using eager loading for the OfficeAssignment navigation
property.
Updates the retrieved Instructor entity with values from the model binder. TryUpdateModel prevents
overposting.
If the office location is blank, sets Instructor.OfficeAssignment to null. When Instructor.OfficeAssignment is
null, the related row in the OfficeAssignment table is deleted.

Update Pages/Instructors/Edit.cshtml with the office location:

Verify you can change an instructors office location.

Instructors may teach any number of courses. In this section, you add the ability to change course assignments.

Add classes to support Create and Edit instructor pagesAdd classes to support Create and Edit instructor pages

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class AssignedCourseData
 {
 public int CourseID { get; set; }
 public string Title { get; set; }
 public bool Assigned { get; set; }
 }
}

The following image shows the updated instructor Edit page:

Course and Instructor has a many-to-many relationship. To add and remove relationships, you add and remove
entities from the CourseAssignments join entity set.

Check boxes enable changes to courses an instructor is assigned to. A check box is displayed for every course in
the database. Courses that the instructor is assigned to are checked. The user can select or clear check boxes to
change course assignments. If the number of courses were much greater :

You'd probably use a different user interface to display the courses.
The method of manipulating a join entity to create or delete relationships wouldn't change.

Create SchoolViewModels/AssignedCourseData.cs with the following code:

The AssignedCourseData class contains data to create the check boxes for assigned courses by an instructor.

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels;
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;
using System.Linq;

namespace ContosoUniversity.Pages.Instructors
{
 public class InstructorCoursesPageModel : PageModel
 {

 public List<AssignedCourseData> AssignedCourseDataList;

 public void PopulateAssignedCourseData(SchoolContext context,
 Instructor instructor)
 {
 var allCourses = context.Courses;
 var instructorCourses = new HashSet<int>(
 instructor.CourseAssignments.Select(c => c.CourseID));
 AssignedCourseDataList = new List<AssignedCourseData>();
 foreach (var course in allCourses)
 {
 AssignedCourseDataList.Add(new AssignedCourseData
 {
 CourseID = course.CourseID,
 Title = course.Title,
 Assigned = instructorCourses.Contains(course.CourseID)
 });
 }
 }

 public void UpdateInstructorCourses(SchoolContext context,
 string[] selectedCourses, Instructor instructorToUpdate)
 {
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(
 new CourseAssignment
 {
 InstructorID = instructorToUpdate.ID,
 CourseID = course.CourseID
 });
 }
 }
 else
 {
 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove
 = instructorToUpdate
 .CourseAssignments
 .SingleOrDefault(i => i.CourseID == course.CourseID);

Create the Pages/Instructors/InstructorCoursesPageModel.cshtml.cs base class:

 .SingleOrDefault(i => i.CourseID == course.CourseID);
 context.Remove(courseToRemove);
 }
 }
 }
 }
 }
}

Instructors Edit page modelInstructors Edit page model

The InstructorCoursesPageModel is the base class you will use for the Edit and Create page models.
PopulateAssignedCourseData reads all Course entities to populate AssignedCourseDataList . For each course, the

code sets the CourseID , title, and whether or not the instructor is assigned to the course. A HashSet is used to
create efficient lookups.

Update the instructor Edit page model with the following code:

https://docs.microsoft.com/dotnet/api/system.collections.generic.hashset-1

public class EditModel : InstructorCoursesPageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments).ThenInclude(i => i.Course)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Instructor == null)
 {
 return NotFound();
 }
 PopulateAssignedCourseData(_context, Instructor);
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id, string[] selectedCourses)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .FirstOrDefaultAsync(s => s.ID == id);

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "Instructor",
 i => i.FirstMidName, i => i.LastName,
 i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(
 instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
 PopulateAssignedCourseData(_context, instructorToUpdate);
 return Page();
 }
}

@page
@model ContosoUniversity.Pages.Instructors.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Instructor</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Instructor.ID" />
 <div class="form-group">
 <label asp-for="Instructor.LastName" class="control-label"></label>
 <input asp-for="Instructor.LastName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.FirstMidName" class="control-label"></label>
 <input asp-for="Instructor.FirstMidName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.HireDate" class="control-label"></label>
 <input asp-for="Instructor.HireDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />

 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <table>
 <tr>
 @{
 int cnt = 0;

 foreach (var course in Model.AssignedCourseDataList)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>

The preceding code handles office assignment changes.

Update the instructor Razor View:

 </div>
</div>

<div>
 <a asp-page="./Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

NOTENOTE

Update the instructors Create pageUpdate the instructors Create page

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class CreateModel : InstructorCoursesPageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public CreateModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 var instructor = new Instructor();
 instructor.CourseAssignments = new List<CourseAssignment>();

 // Provides an empty collection for the foreach loop
 // foreach (var course in Model.AssignedCourseDataList)
 // in the Create Razor page.
 PopulateAssignedCourseData(_context, instructor);

When you paste the code in Visual Studio, line breaks are changed in a way that breaks the code. Press Ctrl+Z one time to
undo the automatic formatting. Ctrl+Z fixes the line breaks so that they look like what you see here. The indentation doesn't
have to be perfect, but the @</tr><tr> , @:<td> , @:</td> , and @:</tr> lines must each be on a single line as shown.
With the block of new code selected, press Tab three times to line up the new code with the existing code. Vote on or review
the status of this bug with this link.

The preceding code creates an HTML table that has three columns. Each column has a check box and a caption
containing the course number and title. The check boxes all have the same name ("selectedCourses"). Using the
same name informs the model binder to treat them as a group. The value attribute of each check box is set to
CourseID . When the page is posted, the model binder passes an array that consists of the CourseID values for

only the check boxes that are selected.

When the check boxes are initially rendered, courses assigned to the instructor have checked attributes.

Run the app and test the updated instructors Edit page. Change some course assignments. The changes are
reflected on the Index page.

Note: The approach taken here to edit instructor course data works well when there's a limited number of courses.
For collections that are much larger, a different UI and a different updating method would be more useable and
efficient.

Update the instructor Create page model with the following code:

https://developercommunity.visualstudio.com/content/problem/147795/razor-editor-malforms-pasted-markup-and-creates-in.html

 PopulateAssignedCourseData(_context, instructor);
 return Page();
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnPostAsync(string[] selectedCourses)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var newInstructor = new Instructor();
 if (selectedCourses != null)
 {
 newInstructor.CourseAssignments = new List<CourseAssignment>();
 foreach (var course in selectedCourses)
 {
 var courseToAdd = new CourseAssignment
 {
 CourseID = int.Parse(course)
 };
 newInstructor.CourseAssignments.Add(courseToAdd);
 }
 }

 if (await TryUpdateModelAsync<Instructor>(
 newInstructor,
 "Instructor",
 i => i.FirstMidName, i => i.LastName,
 i => i.HireDate, i => i.OfficeAssignment))
 {
 _context.Instructors.Add(newInstructor);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 PopulateAssignedCourseData(_context, newInstructor);
 return Page();
 }
 }
}

@page
@model ContosoUniversity.Pages.Instructors.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Instructor</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Instructor.LastName" class="control-label"></label>
 <input asp-for="Instructor.LastName" class="form-control" />

 </div>

The preceding code is similar to the Pages/Instructors/Edit.cshtml.cs code.

Update the instructor Create Razor page with the following markup:

 </div>
 <div class="form-group">
 <label asp-for="Instructor.FirstMidName" class="control-label"></label>
 <input asp-for="Instructor.FirstMidName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.HireDate" class="control-label"></label>
 <input asp-for="Instructor.HireDate" class="form-control" />

 </div>

 <div class="form-group">
 <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />

 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <table>
 <tr>
 @{
 int cnt = 0;

 foreach (var course in Model.AssignedCourseDataList)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Update the Delete page

Test the instructor Create page.

Update the Delete page model with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class DeleteModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor = await _context.Instructors.SingleAsync(m => m.ID == id);

 if (Instructor == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 Instructor instructor = await _context.Instructors
 .Include(i => i.CourseAssignments)
 .SingleAsync(i => i.ID == id);

 var departments = await _context.Departments
 .Where(d => d.InstructorID == id)
 .ToListAsync();
 departments.ForEach(d => d.InstructorID = null);

 _context.Instructors.Remove(instructor);

 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 }
}

The preceding code makes the following changes:

Uses eager loading for the CourseAssignments navigation property. CourseAssignments must be included or
they aren't deleted when the instructor is deleted. To avoid needing to read them, configure cascade delete
in the database.

If the instructor to be deleted is assigned as administrator of any departments, removes the instructor
assignment from those departments.

 P R E V IO U S N E X T

5/2/2018 • 17 minutes to read • Edit Online

Razor Pages with EF Core in ASP.NET Core - Concurrency -
8 of 8

Concurrency conflicts

Optimistic concurrencyOptimistic concurrency

en-us/

By Rick Anderson, Tom Dykstra, and Jon P Smith

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual
Studio. For information about the tutorial series, see the first tutorial.

This tutorial shows how to handle conflicts when multiple users update an entity concurrently (at the same time).
If you run into problems you can't solve, download the completed app for this stage.

A concurrency conflict occurs when:

A user navigates to the edit page for an entity.
Another user updates the same entity before the first user's change is written to the DB.

If concurrency detection isn't enabled, when concurrent updates occur :

The last update wins. That is, the last update values are saved to the DB.
The first of the current updates are lost.

Optimistic concurrency allows concurrency conflicts to happen, and then reacts appropriately when they do. For
example, Jane visits the Department edit page and changes the budget for the English department from
$350,000.00 to $0.00.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/concurrency.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part8

Before Jane clicks Save, John visits the same page and changes the Start Date field from 9/1/2007 to 9/1/2013.

Handling concurrency

Detecting concurrency conflicts on a propertyDetecting concurrency conflicts on a property

Jane clicks Save first and sees her change when the browser displays the Index page.

John clicks Save on an Edit page that still shows a budget of $350,000.00. What happens next is determined by
how you handle concurrency conflicts.

Optimistic concurrency includes the following options:

You can keep track of which property a user has modified and update only the corresponding columns in
the DB.

In the scenario, no data would be lost. Different properties were updated by the two users. The next time
someone browses the English department, they will see both Jane's and John's changes. This method of
updating can reduce the number of conflicts that could result in data loss. This approach: * Can't avoid data
loss if competing changes are made to the same property. * Is generally not practical in a web app. It
requires maintaining significant state in order to keep track of all fetched values and new values.
Maintaining large amounts of state can affect app performance. * Can increase app complexity compared
to concurrency detection on an entity.

You can let John's change overwrite Jane's change.

The next time someone browses the English department, they will see 9/1/2013 and the fetched
$350,000.00 value. This approach is called a Client Wins or Last in Wins scenario. (All values from the
client take precedence over what's in the data store.) If you don't do any coding for concurrency handling,
Client Wins happens automatically.

You can prevent John's change from being updated in the DB. Typically, the app would: * Display an error
message. * Show the current state of the data. * Allow the user to reapply the changes.

This is called a Store Wins scenario. (The data-store values take precedence over the values submitted by
the client.) You implement the Store Wins scenario in this tutorial. This method ensures that no changes
are overwritten without a user being alerted.

When a property is configured as a concurrency token:

EF Core verifies that property has not been modified after it was fetched. The check occurs when
SaveChanges or SaveChangesAsync is called.
If the property has been changed after it was fetched, a DbUpdateConcurrencyException is thrown.

The DB and data model must be configured to support throwing DbUpdateConcurrencyException .

https://docs.microsoft.com/ef/core/modeling/concurrency
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechanges?view=efcore-2.0#Microsoft_EntityFrameworkCore_DbContext_SaveChanges
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechangesasync?view=efcore-2.0#Microsoft_EntityFrameworkCore_DbContext_SaveChangesAsync_System_Threading_CancellationToken_
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbupdateconcurrencyexception?view=efcore-2.0

Detecting concurrency conflicts on a rowDetecting concurrency conflicts on a row

Add a tracking property to the Department entityAdd a tracking property to the Department entity

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 [Timestamp]
 public byte[] RowVersion { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

Concurrency conflicts can be detected at the property level with the ConcurrencyCheck attribute. The attribute
can be applied to multiple properties on the model. For more information, see Data Annotations-
ConcurrencyCheck.

The [ConcurrencyCheck] attribute isn't used in this tutorial.

To detect concurrency conflicts, a rowversion tracking column is added to the model. rowversion :

Is SQL Server specific. Other databases may not provide a similar feature.
Is used to determine that an entity has not been changed since it was fetched from the DB.

The DB generates a sequential rowversion number that's incremented each time the row is updated. In an
Update or Delete command, the Where clause includes the fetched value of rowversion . If the row being

updated has changed:

rowversion doesn't match the fetched value.
The Update or Delete commands don't find a row because the Where clause includes the fetched
rowversion .

A DbUpdateConcurrencyException is thrown.

In EF Core, when no rows have been updated by an Update or Delete command, a concurrency exception is
thrown.

In Models/Department.cs, add a tracking property named RowVersion:

The Timestamp attribute specifies that this column is included in the Where clause of Update and Delete

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.concurrencycheckattribute?view=netcore-2.0
https://docs.microsoft.com/ef/core/modeling/concurrency#data-annotations
https://docs.microsoft.com/sql/t-sql/data-types/rowversion-transact-sql
https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.timestampattribute

modelBuilder.Entity<Department>()
 .Property<byte[]>("RowVersion")
 .IsRowVersion();

SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

Update the DBUpdate the DB

dotnet ef migrations add RowVersion
dotnet ef database update

commands. The attribute is called Timestamp because previous versions of SQL Server used a SQL timestamp

data type before the SQL rowversion type replaced it.

The fluent API can also specify the tracking property:

The following code shows a portion of the T-SQL generated by EF Core when the Department name is updated:

The preceding highlighted code shows the WHERE clause containing RowVersion . If the DB RowVersion doesn't
equal the RowVersion parameter (@p2), no rows are updated.

The following highlighted code shows the T-SQL that verifies exactly one row was updated:

@@ROWCOUNT returns the number of rows affected by the last statement. In no rows are updated, EF Core
throws a DbUpdateConcurrencyException .

You can see the T-SQL EF Core generates in the output window of Visual Studio.

Adding the RowVersion property changes the DB model, which requires a migration.

Build the project. Enter the following in a command window:

The preceding commands:

Adds the Migrations/{time stamp}_RowVersion.cs migration file.
Updates the Migrations/SchoolContextModelSnapshot.cs file. The update adds the following highlighted code
to the BuildModel method:

https://docs.microsoft.com/sql/t-sql/functions/rowcount-transact-sql

modelBuilder.Entity("ContosoUniversity.Models.Department", b =>
 {
 b.Property<int>("DepartmentID")
 .ValueGeneratedOnAdd();

 b.Property<decimal>("Budget")
 .HasColumnType("money");

 b.Property<int?>("InstructorID");

 b.Property<string>("Name")
 .HasMaxLength(50);

 b.Property<byte[]>("RowVersion")
 .IsConcurrencyToken()
 .ValueGeneratedOnAddOrUpdate();

 b.Property<DateTime>("StartDate");

 b.HasKey("DepartmentID");

 b.HasIndex("InstructorID");

 b.ToTable("Department");
 });

Scaffold the Departments model

Update the Departments Index pageUpdate the Departments Index page

Runs migrations to update the DB.

dotnet aspnet-codegenerator razorpage -m Department -dc SchoolContext -udl -outDir Pages\Departments --
referenceScriptLibraries

Exit Visual Studio.

Open a command window in the project directory (The directory that contains the Program.cs, Startup.cs,
and .csproj files).

Run the following command:

The preceding command scaffolds the Department model. Open the project in Visual Studio.

Build the project. The build generates errors like the following:

1>Pages/Departments/Index.cshtml.cs(26,37,26,43): error CS1061: 'SchoolContext' does not contain a definition
for 'Department' and no extension method 'Department' accepting a first argument of type 'SchoolContext' could
be found (are you missing a using directive or an assembly reference?)

Globally change _context.Department to _context.Departments (that is, add an "s" to Department). 7 occurrences
are found and updated.

The scaffolding engine created a RowVersion column for the Index page, but that field shouldn't be displayed. In
this tutorial, the last byte of the RowVersion is displayed to help understand concurrency. The last byte isn't
guaranteed to be unique. A real app wouldn't display RowVersion or the last byte of RowVersion .

Update the Index page:

Replace Index with Departments.
Replace the markup containing RowVersion with the last byte of RowVersion .

@page
@model ContosoUniversity.Pages.Departments.IndexModel

@{
 ViewData["Title"] = "Departments";
}

<h2>Departments</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Name)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Budget)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].StartDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Administrator)
 </th>
 <th>
 RowVersion
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Department) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Budget)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.StartDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Administrator.FullName)
 </td>
 <td>
 @item.RowVersion[7]
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.DepartmentID">Edit |
 <a asp-page="./Details" asp-route-id="@item.DepartmentID">Details |
 <a asp-page="./Delete" asp-route-id="@item.DepartmentID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Update the Edit page modelUpdate the Edit page model

Replace FirstMidName with FullName.

The following markup shows the updated page:

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
 public class EditModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Department Department { get; set; }
 // Replace ViewData["InstructorID"]
 public SelectList InstructorNameSL { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Department = await _context.Departments
 .Include(d => d.Administrator) // eager loading
 .AsNoTracking() // tracking not required
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 if (Department == null)
 {
 return NotFound();
 }

 // Use strongly typed data rather than ViewData.
 InstructorNameSL = new SelectList(_context.Instructors,
 "ID", "FirstMidName");

 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var departmentToUpdate = await _context.Departments
 .Include(i => i.Administrator)
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 // null means Department was deleted by another user.
 if (departmentToUpdate == null)
 {
 return await HandleDeletedDepartment();
 }

 // Update the RowVersion to the value when this entity was
 // fetched. If the entity has been updated after it was
 // fetched, RowVersion won't match the DB RowVersion and
 // a DbUpdateConcurrencyException is thrown.
 // A second postback will make them match, unless a new

Update pages\departments\edit.cshtml.cs with the following code:

 // A second postback will make them match, unless a new
 // concurrency issue happens.
 _context.Entry(departmentToUpdate)
 .Property("RowVersion").OriginalValue = Department.RowVersion;

 if (await TryUpdateModelAsync<Department>(
 departmentToUpdate,
 "Department",
 s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
 {
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Must clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
 }
 }

 InstructorNameSL = new SelectList(_context.Instructors,
 "ID", "FullName", departmentToUpdate.InstructorID);

 return Page();
 }

 private async Task<IActionResult> HandleDeletedDepartment()
 {
 Department deletedDepartment = new Department();
 // ModelState contains the posted data because of the deletion error and will overide the
Department instance values when displaying Page().
 ModelState.AddModelError(string.Empty,
 "Unable to save. The department was deleted by another user.");
 InstructorNameSL = new SelectList(_context.Instructors, "ID", "FullName",
Department.InstructorID);
 return Page();
 }

 private async Task setDbErrorMessage(Department dbValues,
 Department clientValues, SchoolContext context)
 {

 if (dbValues.Name != clientValues.Name)
 {
 ModelState.AddModelError("Department.Name",
 $"Current value: {dbValues.Name}");
 }
 if (dbValues.Budget != clientValues.Budget)
 {
 ModelState.AddModelError("Department.Budget",
 $"Current value: {dbValues.Budget:c}");
 }

 }
 if (dbValues.StartDate != clientValues.StartDate)
 {
 ModelState.AddModelError("Department.StartDate",
 $"Current value: {dbValues.StartDate:d}");
 }
 if (dbValues.InstructorID != clientValues.InstructorID)
 {
 Instructor dbInstructor = await _context.Instructors
 .FindAsync(dbValues.InstructorID);
 ModelState.AddModelError("Department.InstructorID",
 $"Current value: {dbInstructor?.FullName}");
 }

 ModelState.AddModelError(string.Empty,
 "The record you attempted to edit "
 + "was modified by another user after you. The "
 + "edit operation was canceled and the current values in the database "
 + "have been displayed. If you still want to edit this record, click "
 + "the Save button again.");
 }
 }
}

public async Task<IActionResult> OnPostAsync(int id)
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var departmentToUpdate = await _context.Departments
 .Include(i => i.Administrator)
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 // null means Department was deleted by another user.
 if (departmentToUpdate == null)
 {
 return await HandleDeletedDepartment();
 }

 // Update the RowVersion to the value when this entity was
 // fetched. If the entity has been updated after it was
 // fetched, RowVersion won't match the DB RowVersion and
 // a DbUpdateConcurrencyException is thrown.
 // A second postback will make them match, unless a new
 // concurrency issue happens.
 _context.Entry(departmentToUpdate)
 .Property("RowVersion").OriginalValue = Department.RowVersion;

To detect a concurrency issue, the OriginalValue is updated with the rowVersion value from the entity it was
fetched. EF Core generates a SQL UPDATE command with a WHERE clause containing the original RowVersion

value. If no rows are affected by the UPDATE command (no rows have the original RowVersion value), a
DbUpdateConcurrencyException exception is thrown.

In the preceding code, Department.RowVersion is the value when the entity was fetched. OriginalValue is the value
in the DB when FirstOrDefaultAsync was called in this method.

The following code gets the client values (the values posted to this method) and the DB values:

https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyentry.originalvalue?view=efcore-2.0#Microsoft_EntityFrameworkCore_ChangeTracking_PropertyEntry_OriginalValue

try
{
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
}
catch (DbUpdateConcurrencyException ex)
{
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Must clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
}

private async Task setDbErrorMessage(Department dbValues,
 Department clientValues, SchoolContext context)
{

 if (dbValues.Name != clientValues.Name)
 {
 ModelState.AddModelError("Department.Name",
 $"Current value: {dbValues.Name}");
 }
 if (dbValues.Budget != clientValues.Budget)
 {
 ModelState.AddModelError("Department.Budget",
 $"Current value: {dbValues.Budget:c}");
 }
 if (dbValues.StartDate != clientValues.StartDate)
 {
 ModelState.AddModelError("Department.StartDate",
 $"Current value: {dbValues.StartDate:d}");
 }
 if (dbValues.InstructorID != clientValues.InstructorID)
 {
 Instructor dbInstructor = await _context.Instructors
 .FindAsync(dbValues.InstructorID);
 ModelState.AddModelError("Department.InstructorID",
 $"Current value: {dbInstructor?.FullName}");
 }

 ModelState.AddModelError(string.Empty,
 "The record you attempted to edit "
 + "was modified by another user after you. The "
 + "edit operation was canceled and the current values in the database "
 + "have been displayed. If you still want to edit this record, click "
 + "the Save button again.");
}

The follwing code adds a custom error message for each column that has DB values different from what was
posted to OnPostAsync :

try
{
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
}
catch (DbUpdateConcurrencyException ex)
{
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Must clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
}

Update the Edit page

The following highlighted code sets the RowVersion value to the new value retrieved from the DB. The next time
the user clicks Save, only concurrency errors that happen since the last display of the Edit page will be caught.

The ModelState.Remove statement is required because ModelState has the old RowVersion value. In the Razor
Page, the ModelState value for a field takes precedence over the model property values when both are present.

Update Pages/Departments/Edit.cshtml with the following markup:

@page "{id:int}"
@model ContosoUniversity.Pages.Departments.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Department</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Department.DepartmentID" />
 <input type="hidden" asp-for="Department.RowVersion" />
 <div class="form-group">
 <label>RowVersion</label>
 @Model.Department.RowVersion[7]
 </div>
 <div class="form-group">
 <label asp-for="Department.Name" class="control-label"></label>
 <input asp-for="Department.Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Department.Budget" class="control-label"></label>
 <input asp-for="Department.Budget" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Department.StartDate" class="control-label"></label>
 <input asp-for="Department.StartDate" class="form-control" />

 </div>
 <div class="form-group">
 <label class="control-label">Instructor</label>
 <select asp-for="Department.InstructorID" class="form-control"
 asp-items="@Model.InstructorNameSL"></select>

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>
<div>
 <a asp-page="./Index">Back to List
</div>
@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Test concurrency conflicts with the Edit page

The preceding markup:

Updates the page directive from @page to @page "{id:int}" .
Adds a hidden row version. RowVersion must be added so post back binds the value.
Displays the last byte of RowVersion for debugging purposes.
Replaces ViewData with the strongly-typed InstructorNameSL .

Open two browsers instances of Edit on the English department:

Run the app and select Departments.
Right-click the Edit hyperlink for the English department and select Open in new tab.
In the first tab, click the Edit hyperlink for the English department.

The two browser tabs display the same information.

Change the name in the first browser tab and click Save.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated
rowVersion indicator, it's displayed on the second postback in the other tab.

Change a different field in the second browser tab.

Click Save. You see error messages for all fields that don't match the DB values:

This browser window didn't intend to change the Name field. Copy and paste the current value (Languages) into
the Name field. Tab out. Client-side validation removes the error message.

Update the Delete page

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
 public class DeleteModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

Click Save again. The value you entered in the second browser tab is saved. You see the saved values in the Index
page.

Update the Delete page model with the following code:

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Department Department { get; set; }
 public string ConcurrencyErrorMessage { get; set; }

 public async Task<IActionResult> OnGetAsync(int id, bool? concurrencyError)
 {
 Department = await _context.Departments
 .Include(d => d.Administrator)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 if (Department == null)
 {
 return NotFound();
 }

 if (concurrencyError.GetValueOrDefault())
 {
 ConcurrencyErrorMessage = "The record you attempted to delete "
 + "was modified by another user after you selected delete. "
 + "The delete operation was canceled and the current values in the "
 + "database have been displayed. If you still want to delete this "
 + "record, click the Delete button again.";
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 try
 {
 if (await _context.Departments.AnyAsync(
 m => m.DepartmentID == id))
 {
 // Department.rowVersion value is from when the entity
 // was fetched. If it doesn't match the DB, a
 // DbUpdateConcurrencyException exception is thrown.
 _context.Departments.Remove(Department);
 await _context.SaveChangesAsync();
 }
 return RedirectToPage("./Index");
 }
 catch (DbUpdateConcurrencyException)
 {
 return RedirectToPage("./Delete",
 new { concurrencyError = true, id = id });
 }
 }
 }
}

The Delete page detects concurrency conflicts when the entity has changed after it was fetched.
Department.RowVersion is the row version when the entity was fetched. When EF Core creates the SQL DELETE

command, it includes a WHERE clause with RowVersion . If the SQL DELETE command results in zero rows
affected:

The RowVersion in the SQL DELETE command doesn't match RowVersion in the DB.
A DbUpdateConcurrencyException exception is thrown.
OnGetAsync is called with the concurrencyError .

Update the Delete pageUpdate the Delete page

@page "{id:int}"
@model ContosoUniversity.Pages.Departments.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@Model.ConcurrencyErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Department</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Department.Name)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Name)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.Budget)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Budget)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.StartDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.StartDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.RowVersion)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.RowVersion[7])
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.Administrator)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Administrator.FullName)
 </dd>
 </dl>

 <form method="post">
 <input type="hidden" asp-for="Department.DepartmentID" />
 <input type="hidden" asp-for="Department.RowVersion" />
 <div class="form-actions no-color">
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-page="./Index">Back to List
 </div>
</form>
</div>

Update Pages/Departments/Delete.cshtml with the following code:

The preceding markup makes the following changes:

Updates the page directive from @page to @page "{id:int}" .
Adds an error message.

Test concurrency conflicts with the Delete pageTest concurrency conflicts with the Delete page

Additional resourcesAdditional resources

Replaces FirstMidName with FullName in the Administrator field.
Changes RowVersion to display the last byte.
Adds a hidden row version. RowVersion must be added so post back binds the value.

Create a test department.

Open two browsers instances of Delete on the test department:

Run the app and select Departments.
Right-click the Delete hyperlink for the test department and select Open in new tab.
Click the Edit hyperlink for the test department.

The two browser tabs display the same information.

Change the budget in the first browser tab and click Save.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated
rowVersion indicator, it's displayed on the second postback in the other tab.

Delete the test department from the second tab. A concurrency error is display with the current values from the
DB. Clicking Delete deletes the entity, unless RowVersion has been updated.department has been deleted.

See Inheritance on how to inherit a data model.

Concurrency Tokens in EF Core
Handle concurrency in EF Core

P R E V IO U S

https://docs.microsoft.com/ef/core/modeling/concurrency
https://docs.microsoft.com/ef/core/saving/concurrency

ASP.NET Core MVC with EF Core - tutorial series
5/14/2018 • 2 minutes to read • Edit Online

This tutorial teaches ASP.NET Core MVC and Entity Framework Core with controllers and views. Razor Pages is a
new alternative in ASP.NET Core 2.0, a page-based programming model that makes building web UI easier and
more productive. We recommend the Razor Pages tutorial over the MVC version. The Razor Pages tutorial:

Is easier to follow.
Provides more EF Core best practices.
Uses more efficient queries.
Is more current with the latest API.
Covers more features.
Is the preferred approach for new application development.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

1. Get started
2. Create, Read, Update, and Delete operations
3. Sorting, filtering, paging, and grouping
4. Migrations
5. Create a complex data model
6. Reading related data
7. Updating related data
8. Handle concurrency conflicts
9. Inheritance

10. Advanced topics

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/index.md
https://github.com/aspnet/Docs/issues/6146

ASP.NET Core MVC with Entity Framework Core -
Tutorial 1 of 10
5/14/2018 • 21 minutes to read • Edit Online

NOTENOTE

Prerequisites

By Tom Dykstra and Rick Anderson

This tutorial teaches ASP.NET Core MVC and Entity Framework Core with controllers and views. Razor Pages is
a new alternative in ASP.NET Core 2.0, a page-based programming model that makes building web UI easier
and more productive. We recommend the Razor Pages tutorial over the MVC version. The Razor Pages tutorial:

Is easier to follow.
Provides more EF Core best practices.
Uses more efficient queries.
Is more current with the latest API.
Covers more features.
Is the preferred approach for new application development.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

The Contoso University sample web application demonstrates how to create ASP.NET Core 2.0 MVC web
applications using Entity Framework (EF) Core 2.0 and Visual Studio 2017.

The sample application is a web site for a fictional Contoso University. It includes functionality such as student
admission, course creation, and instructor assignments. This is the first in a series of tutorials that explain how to
build the Contoso University sample application from scratch.

Download or view the completed application.

EF Core 2.0 is the latest version of EF but doesn't yet have all the features of EF 6.x. For information about how
to choose between EF 6.x and EF Core, see EF Core vs. EF6.x. If you choose EF 6.x, see the previous version of
this tutorial series.

For the ASP.NET Core 1.1 version of this tutorial, see the VS 2017 Update 2 version of this tutorial in PDF format.
For the Visual Studio 2015 version of this tutorial, see the VS 2015 version of ASP.NET Core documentation in PDF
format.

Install one of the following:

CLI tooling: Windows, Linux, or macOS: .NET Core SDK 2.0 or later
IDE/editor tooling

Windows: Visual Studio for Windows

Linux: Visual Studio Code
macOS: Visual Studio for Mac

ASP.NET and web development workload
.NET Core cross-platform development workload

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/intro.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/issues/6146
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final
https://docs.microsoft.com/ef/efcore-and-ef6/
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/intro/_static/efmvc1.1.pdf
https://github.com/aspnet/Docs/blob/master/aspnetcore/common/_static/aspnet-core-project-json.pdf
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/linux
https://www.microsoft.com/net/download/macos

Troubleshooting

TIPTIP

The Contoso University web application

If you run into a problem you can't resolve, you can generally find the solution by comparing your code to the
completed project. For a list of common errors and how to solve them, see the Troubleshooting section of the
last tutorial in the series. If you don't find what you need there, you can post a question to StackOverflow.com for
ASP.NET Core or EF Core.

This is a series of 10 tutorials, each of which builds on what is done in earlier tutorials. Consider saving a copy of the
project after each successful tutorial completion. Then if you run into problems, you can start over from the previous
tutorial instead of going back to the beginning of the whole series.

The application you'll be building in these tutorials is a simple university web site.

Users can view and update student, course, and instructor information. Here are a few of the screens you'll
create.

https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core

Create an ASP.NET Core MVC web application

The UI style of this site has been kept close to what's generated by the built-in templates, so that the tutorial can
focus mainly on how to use the Entity Framework.

Open Visual Studio and create a new ASP.NET Core C# web project named "ContosoUniversity".

From the File menu, select New > Project.

From the left pane, select Installed > Visual C# > Web.

Select the ASP.NET Core Web Application project template.

Enter ContosoUniversity as the name and click OK.

Set up the site style

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Contoso University</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />

Wait for the New ASP.NET Core Web Application (.NET Core) dialog to appear

Select ASP.NET Core 2.0 and the Web Application (Model-View-Controller) template.

Note: This tutorial requires ASP.NET Core 2.0 and EF Core 2.0 or later -- make sure that ASP.NET Core
1.1 isn't selected.

Make sure Authentication is set to No Authentication.

Click OK

A few simple changes will set up the site menu, layout, and home page.

Open Views/Shared/_Layout.cshtml and make the following changes:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three occurrences.

Add menu entries for Students, Courses, Instructors, and Departments, and delete the Contact menu
entry.

The changes are highlighted.

value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>

</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Home" asp-action="Index" class="navbar-brand">Contoso
University
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Students" asp-action="Index">Students
 <a asp-area="" asp-controller="Courses" asp-action="Index">Courses
 <a asp-area="" asp-controller="Instructors" asp-action="Index">Instructors
 <a asp-area="" asp-controller="Departments" asp-action="Index">Departments

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - Contoso University</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

In Views/Home/Index.cshtml, replace the contents of the file with the following code to replace the text about
ASP.NET and MVC with text about this application:

@{
 ViewData["Title"] = "Home Page";
}

<div class="jumbotron">
 <h1>Contoso University</h1>
</div>
<div class="row">
 <div class="col-md-4">
 <h2>Welcome to Contoso University</h2>
 <p>
 Contoso University is a sample application that
 demonstrates how to use Entity Framework Core in an
 ASP.NET Core MVC web application.
 </p>
 </div>
 <div class="col-md-4">
 <h2>Build it from scratch</h2>
 <p>You can build the application by following the steps in a series of tutorials.</p>
 <p>See the
tutorial »</p>
 </div>
 <div class="col-md-4">
 <h2>Download it</h2>
 <p>You can download the completed project from GitHub.</p>
 <p><a class="btn btn-default" href="https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-
mvc/intro/samples/cu-final">See project source code »</p>
 </div>
</div>

Press CTRL+F5 to run the project or choose Debug > Start Without Debugging from the menu. You see the
home page with tabs for the pages you'll create in these tutorials.

Entity Framework Core NuGet packages

Create the data model

To add EF Core support to a project, install the database provider that you want to target. This tutorial uses SQL
Server, and the provider package is Microsoft.EntityFrameworkCore.SqlServer. This package is included in the
Microsoft.AspNetCore.All metapackage, so you don't have to install it.

This package and its dependencies (Microsoft.EntityFrameworkCore and
Microsoft.EntityFrameworkCore.Relational) provide runtime support for EF. You'll add a tooling package later, in

the Migrations tutorial.

For information about other database providers that are available for Entity Framework Core, see Database
providers.

Next you'll create entity classes for the Contoso University application. You'll start with the following three
entities.

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SqlServer/
https://docs.microsoft.com/ef/core/providers/

The Student entityThe Student entity

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

There's a one-to-many relationship between Student and Enrollment entities, and there's a one-to-many
relationship between Course and Enrollment entities. In other words, a student can be enrolled in any number
of courses, and a course can have any number of students enrolled in it.

In the following sections you'll create a class for each one of these entities.

In the Models folder, create a class file named Student.cs and replace the template code with the following code.

The ID property will become the primary key column of the database table that corresponds to this class. By
default, the Entity Framework interprets a property that's named ID or classnameID as the primary key.

The Enrollments property is a navigation property. Navigation properties hold other entities that are related to
this entity. In this case, the Enrollments property of a Student entity will hold all of the Enrollment entities
that are related to that Student entity. In other words, if a given Student row in the database has two related
Enrollment rows (rows that contain that student's primary key value in their StudentID foreign key column), that
Student entity's Enrollments navigation property will contain those two Enrollment entities.

If a navigation property can hold multiple entities (as in many-to-many or one-to-many relationships), its type
must be a list in which entries can be added, deleted, and updated, such as ICollection<T> . You can specify
ICollection<T> or a type such as List<T> or HashSet<T> . If you specify ICollection<T> , EF creates a
HashSet<T> collection by default.

The Enrollment entityThe Enrollment entity

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

The Course entityThe Course entity

In the Models folder, create Enrollment.cs and replace the existing code with the following code:

The EnrollmentID property will be the primary key; this entity uses the classnameID pattern instead of ID by
itself as you saw in the Student entity. Ordinarily you would choose one pattern and use it throughout your data
model. Here, the variation illustrates that you can use either pattern. In a later tutorial, you'll see how using ID
without classname makes it easier to implement inheritance in the data model.

The Grade property is an enum . The question mark after the Grade type declaration indicates that the Grade

property is nullable. A grade that's null is different from a zero grade -- null means a grade isn't known or hasn't
been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student . An Enrollment

entity is associated with one Student entity, so the property can only hold a single Student entity (unlike the
Student.Enrollments navigation property you saw earlier, which can hold multiple Enrollment entities).

The CourseID property is a foreign key, and the corresponding navigation property is Course . An Enrollment

entity is associated with one Course entity.

Entity Framework interprets a property as a foreign key property if it's named
<navigation property name><primary key property name> (for example, StudentID for the Student navigation

property since the Student entity's primary key is ID). Foreign key properties can also be named simply
<primary key property name> (for example, CourseID since the Course entity's primary key is CourseID).

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Create the Database Context

In the Models folder, create Course.cs and replace the existing code with the following code:

The Enrollments property is a navigation property. A Course entity can be related to any number of
Enrollment entities.

We'll say more about the DatabaseGenerated attribute in a later tutorial in this series. Basically, this attribute lets
you enter the primary key for the course rather than having the database generate it.

The main class that coordinates Entity Framework functionality for a given data model is the database context
class. You create this class by deriving from the Microsoft.EntityFrameworkCore.DbContext class. In your code you
specify which entities are included in the data model. You can also customize certain Entity Framework behavior.
In this project, the class is named SchoolContext .

In the project folder, create a folder named Data.

In the Data folder create a new class file named SchoolContext.cs, and replace the template code with the
following code:

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 }
}

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 }
 }
}

Register the context with dependency injection

This code creates a DbSet property for each entity set. In Entity Framework terminology, an entity set typically
corresponds to a database table, and an entity corresponds to a row in the table.

You could've omitted the DbSet<Enrollment> and DbSet<Course> statements and it would work the same. The
Entity Framework would include them implicitly because the Student entity references the Enrollment entity
and the Enrollment entity references the Course entity.

When the database is created, EF creates tables that have names the same as the DbSet property names.
Property names for collections are typically plural (Students rather than Student), but developers disagree about
whether table names should be pluralized or not. For these tutorials you'll override the default behavior by
specifying singular table names in the DbContext. To do that, add the following highlighted code after the last
DbSet property.

ASP.NET Core implements dependency injection by default. Services (such as the EF database context) are
registered with dependency injection during application startup. Components that require these services (such
as MVC controllers) are provided these services via constructor parameters. You'll see the controller constructor
code that gets a context instance later in this tutorial.

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<SchoolContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddMvc();
}

using ContosoUniversity.Data;
using Microsoft.EntityFrameworkCore;

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity1;Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

SQL Server Express LocalDBSQL Server Express LocalDB

Add code to initialize the database with test data

using ContosoUniversity.Models;
using System;
using System.Linq;

To register SchoolContext as a service, open Startup.cs, and add the highlighted lines to the ConfigureServices

method.

The name of the connection string is passed in to the context by calling a method on a DbContextOptionsBuilder

object. For local development, the ASP.NET Core configuration system reads the connection string from the
appsettings.json file.

Add using statements for ContosoUniversity.Data and Microsoft.EntityFrameworkCore namespaces, and then
build the project.

Open the appsettings.json file and add a connection string as shown in the following example.

The connection string specifies a SQL Server LocalDB database. LocalDB is a lightweight version of the SQL
Server Express Database Engine and is intended for application development, not production use. LocalDB
starts on demand and runs in user mode, so there's no complex configuration. By default, LocalDB creates .mdf
database files in the C:/Users/<user> directory.

The Entity Framework will create an empty database for you. In this section, you write a method that's called
after the database is created in order to populate it with test data.

Here you'll use the EnsureCreated method to automatically create the database. In a later tutorial you'll see how
to handle model changes by using Code First Migrations to change the database schema instead of dropping
and re-creating the database.

In the Data folder, create a new class file named DbInitializer.cs and replace the template code with the following
code, which causes a database to be created when needed and loads test data into the new database.

using System.Linq;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2005-09-
01")},
 new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2002-09-
01")},
 new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2003-09-01")},
 new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2002-09-
01")},
 new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2001-09-
01")},
 new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2003-09-01")},
 new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2005-09-01")}
 };
 foreach (Student s in students)
 {
 context.Students.Add(s);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course{CourseID=1050,Title="Chemistry",Credits=3},
 new Course{CourseID=4022,Title="Microeconomics",Credits=3},
 new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
 new Course{CourseID=1045,Title="Calculus",Credits=4},
 new Course{CourseID=3141,Title="Trigonometry",Credits=4},
 new Course{CourseID=2021,Title="Composition",Credits=3},
 new Course{CourseID=2042,Title="Literature",Credits=4}
 };
 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
 new Enrollment{StudentID=3,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
 new Enrollment{StudentID=6,CourseID=1045},
 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
 };
 foreach (Enrollment e in enrollments)
 {

 {
 context.Enrollments.Add(e);
 }
 context.SaveChanges();
 }
 }
}

public static void Main(string[] args)
{
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 DbInitializer.Initialize(context);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred while seeding the database.");
 }
 }

 host.Run();
}

using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Data;

Create a controller and views

The code checks if there are any students in the database, and if not, it assumes the database is new and needs to
be seeded with test data. It loads test data into arrays rather than List<T> collections to optimize performance.

In Program.cs, modify the Main method to do the following on application startup:

Get a database context instance from the dependency injection container.
Call the seed method, passing to it the context.
Dispose the context when the seed method is done.

Add using statements:

In older tutorials, you may see similar code in the Configure method in Startup.cs. We recommend that you use
the Configure method only to set up the request pipeline. Application startup code belongs in the Main

method.

Now the first time you run the application, the database will be created and seeded with test data. Whenever you
change your data model, you can delete the database, update your seed method, and start afresh with a new
database the same way. In later tutorials, you'll see how to modify the database when the data model changes,
without deleting and re-creating it.

Next, you'll use the scaffolding engine in Visual Studio to add an MVC controller and views that will use EF to
query and save data.

The automatic creation of CRUD action methods and views is known as scaffolding. Scaffolding differs from

code generation in that the scaffolded code is a starting point that you can modify to suit your own
requirements, whereas you typically don't modify generated code. When you need to customize generated code,
you use partial classes or you regenerate the code when things change.

Right-click the Controllers folder in Solution Explorer and select Add > New Scaffolded Item.

If the Add MVC Dependencies dialog appears:

Update Visual Studio to the latest version. Visual Studio versions prior to 15.5 show this dialog.

If you can't update, select ADD , and then follow the add controller steps again.

In the Add Scaffold dialog box:

Select MVC controller with views, using Entity Framework.

Click Add.

In the Add Controller dialog box:

In Model class select Student.

In Data context class select SchoolContext.

Accept the default StudentsController as the name.

Click Add.

When you click Add, the Visual Studio scaffolding engine creates a StudentsController.cs file and a set of
views (.cshtml files) that work with the controller.

(The scaffolding engine can also create the database context for you if you don't create it manually first as you
did earlier for this tutorial. You can specify a new context class in the Add Controller box by clicking the plus
sign to the right of Data context class. Visual Studio will then create your DbContext class as well as the
controller and views.)

You'll notice that the controller takes a SchoolContext as a constructor parameter.

https://www.visualstudio.com/downloads/

namespace ContosoUniversity.Controllers
{
 public class StudentsController : Controller
 {
 private readonly SchoolContext _context;

 public StudentsController(SchoolContext context)
 {
 _context = context;
 }

public async Task<IActionResult> Index()
{
 return View(await _context.Students.ToListAsync());
}

ASP.NET dependency injection will take care of passing an instance of SchoolContext into the controller. You
configured that in the Startup.cs file earlier.

The controller contains an Index action method, which displays all students in the database. The method gets a
list of students from the Students entity set by reading the Students property of the database context instance:

You'll learn about the asynchronous programming elements in this code later in the tutorial.

The Views/Students/Index.cshtml view displays this list in a table:

@model IEnumerable<ContosoUniversity.Models.Student>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.LastName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.FirstMidName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.EnrollmentDate)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Press CTRL+F5 to run the project or choose Debug > Start Without Debugging from the menu.

Click the Students tab to see the test data that the DbInitializer.Initialize method inserted. Depending on
how narrow your browser window is, you'll see the Student tab link at the top of the page or you'll have to click
the navigation icon in the upper right corner to see the link.

View the Database
When you started the application, the DbInitializer.Initialize method calls EnsureCreated . EF saw that there
was no database and so it created one, then the remainder of the Initialize method code populated the
database with data. You can use SQL Server Object Explorer (SSOX) to view the database in Visual Studio.

Close the browser.

If the SSOX window isn't already open, select it from the View menu in Visual Studio.

In SSOX, click (localdb)\MSSQLLocalDB > Databases, and then click the entry for the database name that's
in the connection string in your appsettings.json file.

Expand the Tables node to see the tables in your database.

Conventions

Asynchronous code

Right-click the Student table and click View Data to see the columns that were created and the rows that were
inserted into the table.

The .mdf and .ldf database files are in the C:\Users\ folder.

Because you're calling EnsureCreated in the initializer method that runs on app start, you could now make a
change to the Student class, delete the database, run the application again, and the database would
automatically be re-created to match your change. For example, if you add an EmailAddress property to the
Student class, you'll see a new EmailAddress column in the re-created table.

The amount of code you had to write in order for the Entity Framework to be able to create a complete database
for you is minimal because of the use of conventions, or assumptions that the Entity Framework makes.

The names of DbSet properties are used as table names. For entities not referenced by a DbSet property,
entity class names are used as table names.

Entity property names are used for column names.

Entity properties that are named ID or classnameID are recognized as primary key properties.

A property is interpreted as a foreign key property if it's named (for example, StudentID for the Student

navigation property since the Student entity's primary key is ID). Foreign key properties can also be
named simply (for example, EnrollmentID since the Enrollment entity's primary key is EnrollmentID).

Conventional behavior can be overridden. For example, you can explicitly specify table names, as you saw earlier
in this tutorial. And you can set column names and set any property as primary key or foreign key, as you'll see
in a later tutorial in this series.

public async Task<IActionResult> Index()
{
 return View(await _context.Students.ToListAsync());
}

Summary

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available threads
might be in use. When that happens, the server can't process new requests until the threads are freed up. With
synchronous code, many threads may be tied up while they aren't actually doing any work because they're
waiting for I/O to complete. With asynchronous code, when a process is waiting for I/O to complete, its thread is
freed up for the server to use for processing other requests. As a result, asynchronous code enables server
resources to be used more efficiently, and the server is enabled to handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time, but for low traffic situations the
performance hit is negligible, while for high traffic situations, the potential performance improvement is
substantial.

In the following code, the async keyword, Task<T> return value, await keyword, and ToListAsync method
make the code execute asynchronously.

The async keyword tells the compiler to generate callbacks for parts of the method body and to
automatically create the Task<IActionResult> object that's returned.

The return type Task<IActionResult> represents ongoing work with a result of type IActionResult .

The await keyword causes the compiler to split the method into two parts. The first part ends with the
operation that's started asynchronously. The second part is put into a callback method that's called when
the operation completes.

ToListAsync is the asynchronous version of the ToList extension method.

Some things to be aware of when you are writing asynchronous code that uses the Entity Framework:

Only statements that cause queries or commands to be sent to the database are executed asynchronously.
That includes, for example, ToListAsync , SingleOrDefaultAsync , and SaveChangesAsync . It doesn't include,
for example, statements that just change an IQueryable , such as
var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF context isn't thread safe: don't try to do multiple operations in parallel. When you call any async EF
method, always use the await keyword.

If you want to take advantage of the performance benefits of async code, make sure that any library
packages that you're using (such as for paging), also use async if they call any Entity Framework methods
that cause queries to be sent to the database.

For more information about asynchronous programming in .NET, see Async Overview.

You've now created a simple application that uses the Entity Framework Core and SQL Server Express LocalDB
to store and display data. In the following tutorial, you'll learn how to perform basic CRUD (create, read, update,
delete) operations.

N E X T

https://docs.microsoft.com/dotnet/articles/standard/async

ASP.NET Core MVC with EF Core - CRUD - 2 of 10
5/14/2018 • 19 minutes to read • Edit Online

NOTENOTE

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the
first tutorial in the series.

In the previous tutorial, you created an MVC application that stores and displays data using the Entity Framework
and SQL Server LocalDB. In this tutorial, you'll review and customize the CRUD (create, read, update, delete)
code that the MVC scaffolding automatically creates for you in controllers and views.

It's a common practice to implement the repository pattern in order to create an abstraction layer between your controller
and the data access layer. To keep these tutorials simple and focused on teaching how to use the Entity Framework itself,
they don't use repositories. For information about repositories with EF, see the last tutorial in this series.

In this tutorial, you'll work with the following web pages:

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/crud.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT

Customize the Details page

public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var student = await _context.Students
 .Include(s => s.Enrollments)
 .ThenInclude(e => e.Course)
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.ID == id);

 if (student == null)
 {
 return NotFound();
 }

 return View(student);
}

The scaffolded code for the Students Index page left out the Enrollments property, because that property holds a
collection. In the Details page, you'll display the contents of the collection in an HTML table.

In Controllers/StudentsController.cs, the action method for the Details view uses the SingleOrDefaultAsync

method to retrieve a single Student entity. Add code that calls Include . ThenInclude , and AsNoTracking

methods, as shown in the following highlighted code.

The Include and ThenInclude methods cause the context to load the Student.Enrollments navigation property,
and within each enrollment the Enrollment.Course navigation property. You'll learn more about these methods in
the read related data tutorial.

Route dataRoute data

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

http://localhost:1230/Instructor/Index/1?courseID=2021

http://localhost:1230/Instructor/Index?id=1&CourseID=2021

<a asp-action="Edit" asp-route-id="@item.ID">Edit

Edit

<a asp-action="Edit" asp-route-studentID="@item.ID">Edit

Edit

Add enrollments to the Details viewAdd enrollments to the Details view

The AsNoTracking method improves performance in scenarios where the entities returned won't be updated in
the current context's lifetime. You'll learn more about AsNoTracking at the end of this tutorial.

The key value that's passed to the Details method comes from route data. Route data is data that the model
binder found in a segment of the URL. For example, the default route specifies controller, action, and id segments:

In the following URL, the default route maps Instructor as the controller, Index as the action, and 1 as the id; these
are route data values.

The last part of the URL ("?courseID=2021") is a query string value. The model binder will also pass the ID value
to the Details method id parameter if you pass it as a query string value:

In the Index page, hyperlink URLs are created by tag helper statements in the Razor view. In the following Razor
code, the id parameter matches the default route, so id is added to the route data.

This generates the following HTML when item.ID is 6:

In the following Razor code, studentID doesn't match a parameter in the default route, so it's added as a query
string.

This generates the following HTML when item.ID is 6:

For more information about tag helpers, see Tag helpers in ASP.NET Core.

Open Views/Students/Details.cshtml. Each field is displayed using DisplayNameFor and DisplayFor helpers, as
shown in the following example:

<dt>
 @Html.DisplayNameFor(model => model.LastName)
</dt>
<dd>
 @Html.DisplayFor(model => model.LastName)
</dd>

<dt>
 @Html.DisplayNameFor(model => model.Enrollments)
</dt>
<dd>
 <table class="table">
 <tr>
 <th>Course Title</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Enrollments)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Course.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
</dd>

After the last field and immediately before the closing </dl> tag, add the following code to display a list of
enrollments:

If code indentation is wrong after you paste the code, press CTRL-K-D to correct it.

This code loops through the entities in the Enrollments navigation property. For each enrollment, it displays the
course title and the grade. The course title is retrieved from the Course entity that's stored in the Course

navigation property of the Enrollments entity.

Run the app, select the Students tab, and click the Details link for a student. You see the list of courses and
grades for the selected student:

Update the Create page

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("EnrollmentDate,FirstMidName,LastName")] Student student)
{
 try
 {
 if (ModelState.IsValid)
 {
 _context.Add(student);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists " +
 "see your system administrator.");
 }
 return View(student);
}

In StudentsController.cs, modify the HttpPost Create method by adding a try-catch block and removing ID from
the Bind attribute.

This code adds the Student entity created by the ASP.NET MVC model binder to the Students entity set and then
saves the changes to the database. (Model binder refers to the ASP.NET MVC functionality that makes it easier
for you to work with data submitted by a form; a model binder converts posted form values to CLR types and
passes them to the action method in parameters. In this case, the model binder instantiates a Student entity for
you using property values from the Form collection.)

You removed ID from the Bind attribute because ID is the primary key value which SQL Server will set

Security note about overpostingSecurity note about overposting

public class Student
{
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }
 public string Secret { get; set; }
}

automatically when the row is inserted. Input from the user doesn't set the ID value.

Other than the Bind attribute, the try-catch block is the only change you've made to the scaffolded code. If an
exception that derives from DbUpdateException is caught while the changes are being saved, a generic error
message is displayed. DbUpdateException exceptions are sometimes caused by something external to the
application rather than a programming error, so the user is advised to try again. Although not implemented in this
sample, a production quality application would log the exception. For more information, see the Log for insight
section in Monitoring and Telemetry (Building Real-World Cloud Apps with Azure).

The ValidateAntiForgeryToken attribute helps prevent cross-site request forgery (CSRF) attacks. The token is
automatically injected into the view by the FormTagHelper and is included when the form is submitted by the
user. The token is validated by the ValidateAntiForgeryToken attribute. For more information about CSRF, see
Anti-Request Forgery.

The Bind attribute that the scaffolded code includes on the Create method is one way to protect against
overposting in create scenarios. For example, suppose the Student entity includes a Secret property that you
don't want this web page to set.

Even if you don't have a Secret field on the web page, a hacker could use a tool such as Fiddler, or write some
JavaScript, to post a Secret form value. Without the Bind attribute limiting the fields that the model binder uses
when it creates a Student instance, the model binder would pick up that Secret form value and use it to create
the Student entity instance. Then whatever value the hacker specified for the Secret form field would be updated
in your database. The following image shows the Fiddler tool adding the Secret field (with the value "OverPost")
to the posted form values.

The value "OverPost" would then be successfully added to the Secret property of the inserted row, although you

https://docs.microsoft.com/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry

Test the Create pageTest the Create page

never intended that the web page be able to set that property.

You can prevent overposting in edit scenarios by reading the entity from the database first and then calling
TryUpdateModel , passing in an explicit allowed properties list. That's the method used in these tutorials.

An alternative way to prevent overposting that's preferred by many developers is to use view models rather than
entity classes with model binding. Include only the properties you want to update in the view model. Once the
MVC model binder has finished, copy the view model properties to the entity instance, optionally using a tool
such as AutoMapper. Use _context.Entry on the entity instance to set its state to Unchanged , and then set
Property("PropertyName").IsModified to true on each entity property that's included in the view model. This

method works in both edit and create scenarios.

The code in Views/Students/Create.cshtml uses label , input , and span (for validation messages) tag helpers
for each field.

Run the app, select the Students tab, and click Create New.

Enter names and a date. Try entering an invalid date if your browser lets you do that. (Some browsers force you
to use a date picker.) Then click Create to see the error message.

This is server-side validation that you get by default; in a later tutorial you'll see how to add attributes that will
generate code for client-side validation also. The following highlighted code shows the model validation check in
the Create method.

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("EnrollmentDate,FirstMidName,LastName")] Student student)
{
 try
 {
 if (ModelState.IsValid)
 {
 _context.Add(student);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists " +
 "see your system administrator.");
 }
 return View(student);
}

Update the Edit page

Recommended HttpPost Edit code: Read and updateRecommended HttpPost Edit code: Read and update

Change the date to a valid value and click Create to see the new student appear in the Index page.

In StudentController.cs, the HttpGet Edit method (the one without the HttpPost attribute) uses the
SingleOrDefaultAsync method to retrieve the selected Student entity, as you saw in the Details method. You

don't need to change this method.

Replace the HttpPost Edit action method with the following code.

[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
 if (id == null)
 {
 return NotFound();
 }
 var studentToUpdate = await _context.Students.SingleOrDefaultAsync(s => s.ID == id);
 if (await TryUpdateModelAsync<Student>(
 studentToUpdate,
 "",
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
 {
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 }
 return View(studentToUpdate);
}

Alternative HttpPost Edit code: Create and attachAlternative HttpPost Edit code: Create and attach

These changes implement a security best practice to prevent overposting. The scaffolder generated a Bind

attribute and added the entity created by the model binder to the entity set with a Modified flag. That code isn't
recommended for many scenarios because the Bind attribute clears out any pre-existing data in fields not listed
in the Include parameter.

The new code reads the existing entity and calls TryUpdateModel to update fields in the retrieved entity based on
user input in the posted form data. The Entity Framework's automatic change tracking sets the Modified flag on
the fields that are changed by form input. When the SaveChanges method is called, the Entity Framework creates
SQL statements to update the database row. Concurrency conflicts are ignored, and only the table columns that
were updated by the user are updated in the database. (A later tutorial shows how to handle concurrency
conflicts.)

As a best practice to prevent overposting, the fields that you want to be updateable by the Edit page are
whitelisted in the TryUpdateModel parameters. (The empty string preceding the list of fields in the parameter list is
for a prefix to use with the form fields names.) Currently there are no extra fields that you're protecting, but listing
the fields that you want the model binder to bind ensures that if you add fields to the data model in the future,
they're automatically protected until you explicitly add them here.

As a result of these changes, the method signature of the HttpPost Edit method is the same as the HttpGet
Edit method; therefore you've renamed the method EditPost .

The recommended HttpPost edit code ensures that only changed columns get updated and preserves data in
properties that you don't want included for model binding. However, the read-first approach requires an extra
database read, and can result in more complex code for handling concurrency conflicts. An alternative is to attach
an entity created by the model binder to the EF context and mark it as modified. (Don't update your project with
this code, it's only shown to illustrate an optional approach.)

public async Task<IActionResult> Edit(int id, [Bind("ID,EnrollmentDate,FirstMidName,LastName")] Student
student)
{
 if (id != student.ID)
 {
 return NotFound();
 }
 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(student);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 }
 return View(student);
}

Entity StatesEntity States

You can use this approach when the web page UI includes all of the fields in the entity and can update any of
them.

The scaffolded code uses the create-and-attach approach but only catches DbUpdateConcurrencyException

exceptions and returns 404 error codes. The example shown catches any database update exception and displays
an error message.

The database context keeps track of whether entities in memory are in sync with their corresponding rows in the
database, and this information determines what happens when you call the SaveChanges method. For example,
when you pass a new entity to the Add method, that entity's state is set to Added . Then when you call the
SaveChanges method, the database context issues a SQL INSERT command.

An entity may be in one of the following states:

Added . The entity doesn't yet exist in the database. The SaveChanges method issues an INSERT statement.

Unchanged . Nothing needs to be done with this entity by the SaveChanges method. When you read an
entity from the database, the entity starts out with this status.

Modified . Some or all of the entity's property values have been modified. The SaveChanges method issues
an UPDATE statement.

Deleted . The entity has been marked for deletion. The SaveChanges method issues a DELETE statement.

Detached . The entity isn't being tracked by the database context.

In a desktop application, state changes are typically set automatically. You read an entity and make changes to
some of its property values. This causes its entity state to automatically be changed to Modified . Then when you
call SaveChanges , the Entity Framework generates a SQL UPDATE statement that updates only the actual
properties that you changed.

In a web app, the DbContext that initially reads an entity and displays its data to be edited is disposed after a page
is rendered. When the HttpPost Edit action method is called, a new web request is made and you have a new

Test the Edit pageTest the Edit page

Update the Delete page

instance of the DbContext . If you re-read the entity in that new context, you simulate desktop processing.

But if you don't want to do the extra read operation, you have to use the entity object created by the model binder.
The simplest way to do this is to set the entity state to Modified as is done in the alternative HttpPost Edit code
shown earlier. Then when you call SaveChanges , the Entity Framework updates all columns of the database row,
because the context has no way to know which properties you changed.

If you want to avoid the read-first approach, but you also want the SQL UPDATE statement to update only the
fields that the user actually changed, the code is more complex. You have to save the original values in some way
(such as by using hidden fields) so that they're available when the HttpPost Edit method is called. Then you can
create a Student entity using the original values, call the Attach method with that original version of the entity,
update the entity's values to the new values, and then call SaveChanges .

Run the app, select the Students tab, then click an Edit hyperlink.

Change some of the data and click Save. The Index page opens and you see the changed data.

In StudentController.cs, the template code for the HttpGet Delete method uses the SingleOrDefaultAsync

method to retrieve the selected Student entity, as you saw in the Details and Edit methods. However, to implement
a custom error message when the call to SaveChanges fails, you'll add some functionality to this method and its
corresponding view.

As you saw for update and create operations, delete operations require two action methods. The method that's
called in response to a GET request displays a view that gives the user a chance to approve or cancel the delete
operation. If the user approves it, a POST request is created. When that happens, the HttpPost Delete method is
called and then that method actually performs the delete operation.

You'll add a try-catch block to the HttpPost Delete method to handle any errors that might occur when the
database is updated. If an error occurs, the HttpPost Delete method calls the HttpGet Delete method, passing it a

public async Task<IActionResult> Delete(int? id, bool? saveChangesError = false)
{
 if (id == null)
 {
 return NotFound();
 }

 var student = await _context.Students
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.ID == id);
 if (student == null)
 {
 return NotFound();
 }

 if (saveChangesError.GetValueOrDefault())
 {
 ViewData["ErrorMessage"] =
 "Delete failed. Try again, and if the problem persists " +
 "see your system administrator.";
 }

 return View(student);
}

The read-first approach to HttpPost DeleteThe read-first approach to HttpPost Delete

parameter that indicates that an error has occurred. The HttpGet Delete method then redisplays the confirmation
page along with the error message, giving the user an opportunity to cancel or try again.

Replace the HttpGet Delete action method with the following code, which manages error reporting.

This code accepts an optional parameter that indicates whether the method was called after a failure to save
changes. This parameter is false when the HttpGet Delete method is called without a previous failure. When it's
called by the HttpPost Delete method in response to a database update error, the parameter is true and an error
message is passed to the view.

Replace the HttpPost Delete action method (named DeleteConfirmed) with the following code, which performs
the actual delete operation and catches any database update errors.

[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var student = await _context.Students
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.ID == id);
 if (student == null)
 {
 return RedirectToAction(nameof(Index));
 }

 try
 {
 _context.Students.Remove(student);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction(nameof(Delete), new { id = id, saveChangesError = true });
 }
}

The create-and-attach approach to HttpPost DeleteThe create-and-attach approach to HttpPost Delete

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 try
 {
 Student studentToDelete = new Student() { ID = id };
 _context.Entry(studentToDelete).State = EntityState.Deleted;
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction(nameof(Delete), new { id = id, saveChangesError = true });
 }
}

Update the Delete viewUpdate the Delete view

This code retrieves the selected entity, then calls the Remove method to set the entity's status to Deleted . When
SaveChanges is called, a SQL DELETE command is generated.

If improving performance in a high-volume application is a priority, you could avoid an unnecessary SQL query
by instantiating a Student entity using only the primary key value and then setting the entity state to Deleted .
That's all that the Entity Framework needs in order to delete the entity. (Don't put this code in your project; it's
here just to illustrate an alternative.)

If the entity has related data that should also be deleted, make sure that cascade delete is configured in the
database. With this approach to entity deletion, EF might not realize there are related entities to be deleted.

In Views/Student/Delete.cshtml, add an error message between the h2 heading and the h3 heading, as shown in
the following example:

<h2>Delete</h2>
<p class="text-danger">@ViewData["ErrorMessage"]</p>
<h3>Are you sure you want to delete this?</h3>

Closing database connections

Handling Transactions

No-tracking queries

Run the app, select the Students tab, and click a Delete hyperlink:

Click Delete. The Index page is displayed without the deleted student. (You'll see an example of the error
handling code in action in the concurrency tutorial.)

To free up the resources that a database connection holds, the context instance must be disposed as soon as
possible when you are done with it. The ASP.NET Core built-in dependency injection takes care of that task for
you.

In Startup.cs, you call the AddDbContext extension method to provision the DbContext class in the ASP.NET DI
container. That method sets the service lifetime to Scoped by default. Scoped means the context object lifetime
coincides with the web request life time, and the Dispose method will be called automatically at the end of the
web request.

By default the Entity Framework implicitly implements transactions. In scenarios where you make changes to
multiple rows or tables and then call SaveChanges , the Entity Framework automatically makes sure that either all
of your changes succeed or they all fail. If some changes are done first and then an error happens, those changes
are automatically rolled back. For scenarios where you need more control -- for example, if you want to include
operations done outside of Entity Framework in a transaction -- see Transactions.

When a database context retrieves table rows and creates entity objects that represent them, by default it keeps

https://github.com/aspnet/EntityFrameworkCore/blob/03bcb5122e3f577a84498545fcf130ba79a3d987/src/Microsoft.EntityFrameworkCore/EntityFrameworkServiceCollectionExtensions.cs
https://docs.microsoft.com/ef/core/saving/transactions

Summary

track of whether the entities in memory are in sync with what's in the database. The data in memory acts as a
cache and is used when you update an entity. This caching is often unnecessary in a web application because
context instances are typically short-lived (a new one is created and disposed for each request) and the context
that reads an entity is typically disposed before that entity is used again.

You can disable tracking of entity objects in memory by calling the AsNoTracking method. Typical scenarios in
which you might want to do that include the following:

During the context lifetime you don't need to update any entities, and you don't need EF to automatically
load navigation properties with entities retrieved by separate queries. Frequently these conditions are met
in a controller's HttpGet action methods.

You are running a query that retrieves a large volume of data, and only a small portion of the returned data
will be updated. It may be more efficient to turn off tracking for the large query, and run a query later for
the few entities that need to be updated.

You want to attach an entity in order to update it, but earlier you retrieved the same entity for a different
purpose. Because the entity is already being tracked by the database context, you can't attach the entity that
you want to change. One way to handle this situation is to call AsNoTracking on the earlier query.

For more information, see Tracking vs. No-Tracking.

You now have a complete set of pages that perform simple CRUD operations for Student entities. In the next
tutorial you'll expand the functionality of the Index page by adding sorting, filtering, and paging.

 P R E V IO U S N E X T

https://docs.microsoft.com/ef/core/querying/tracking

ASP.NET Core MVC with EF Core - Sort, Filter,
Paging - 3 of 10
5/14/2018 • 14 minutes to read • Edit Online

Add Column Sort Links to the Students Index Page

Add sorting Functionality to the Index methodAdd sorting Functionality to the Index method

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the
first tutorial in the series.

In the previous tutorial, you implemented a set of web pages for basic CRUD operations for Student entities. In
this tutorial you'll add sorting, filtering, and paging functionality to the Students Index page. You'll also create a
page that does simple grouping.

The following illustration shows what the page will look like when you're done. The column headings are links
that the user can click to sort by that column. Clicking a column heading repeatedly toggles between ascending
and descending sort order.

To add sorting to the Student Index page, you'll change the Index method of the Students controller and add
code to the Student Index view.

In StudentsController.cs, replace the Index method with the following code:

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/sort-filter-page.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT

public async Task<IActionResult> Index(string sortOrder)
{
 ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
 var students = from s in _context.Students
 select s;
 switch (sortOrder)
 {
 case "name_desc":
 students = students.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 students = students.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 students = students.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 students = students.OrderBy(s => s.LastName);
 break;
 }
 return View(await students.AsNoTracking().ToListAsync());
}

public async Task<IActionResult> Index(string sortOrder)
{
 ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
 var students = from s in _context.Students
 select s;
 switch (sortOrder)
 {
 case "name_desc":
 students = students.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 students = students.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 students = students.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 students = students.OrderBy(s => s.LastName);
 break;
 }
 return View(await students.AsNoTracking().ToListAsync());
}

This code receives a sortOrder parameter from the query string in the URL. The query string value is provided
by ASP.NET Core MVC as a parameter to the action method. The parameter will be a string that's either "Name"
or "Date", optionally followed by an underscore and the string "desc" to specify descending order. The default sort
order is ascending.

The first time the Index page is requested, there's no query string. The students are displayed in ascending order
by last name, which is the default as established by the fall-through case in the switch statement. When the user
clicks a column heading hyperlink, the appropriate sortOrder value is provided in the query string.

The two ViewData elements (NameSortParm and DateSortParm) are used by the view to configure the column
heading hyperlinks with the appropriate query string values.

These are ternary statements. The first one specifies that if the sortOrder parameter is null or empty,
NameSortParm should be set to "name_desc"; otherwise, it should be set to an empty string. These two

CURRENT SORT ORDER LAST NAME HYPERLINK DATE HYPERLINK

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

Add column heading hyperlinks to the Student Index viewAdd column heading hyperlinks to the Student Index view

statements enable the view to set the column heading hyperlinks as follows:

The method uses L INQ to Entities to specify the column to sort by. The code creates an IQueryable variable
before the switch statement, modifies it in the switch statement, and calls the ToListAsync method after the
switch statement. When you create and modify IQueryable variables, no query is sent to the database. The

query isn't executed until you convert the IQueryable object into a collection by calling a method such as
ToListAsync . Therefore, this code results in a single query that's not executed until the return View statement.

This code could get verbose with a large number of columns. The last tutorial in this series shows how to write
code that lets you pass the name of the OrderBy column in a string variable.

Replace the code in Views/Students/Index.cshtml, with the following code to add column heading hyperlinks. The
changed lines are highlighted.

@model IEnumerable<ContosoUniversity.Models.Student>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-action="Index" asp-route-
sortOrder="@ViewData["NameSortParm"]">@Html.DisplayNameFor(model => model.LastName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.FirstMidName)
 </th>
 <th>
 <a asp-action="Index" asp-route-
sortOrder="@ViewData["DateSortParm"]">@Html.DisplayNameFor(model => model.EnrollmentDate)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

This code uses the information in ViewData properties to set up hyperlinks with the appropriate query string
values.

Run the app, select the Students tab, and click the Last Name and Enrollment Date column headings to verify
that sorting works.

Add a Search Box to the Students Index page

Add filtering functionality to the Index methodAdd filtering functionality to the Index method

public async Task<IActionResult> Index(string sortOrder, string searchString)
{
 ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
 ViewData["CurrentFilter"] = searchString;

 var students = from s in _context.Students
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 students = students.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }
 switch (sortOrder)
 {
 case "name_desc":
 students = students.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 students = students.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 students = students.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 students = students.OrderBy(s => s.LastName);
 break;
 }
 return View(await students.AsNoTracking().ToListAsync());
}

To add filtering to the Students Index page, you'll add a text box and a submit button to the view and make
corresponding changes in the Index method. The text box will let you enter a string to search for in the first name
and last name fields.

In StudentsController.cs, replace the Index method with the following code (the changes are highlighted).

NOTENOTE

Add a Search Box to the Student Index ViewAdd a Search Box to the Student Index View

<p>
 <a asp-action="Create">Create New
</p>

<form asp-action="Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name: <input type="text" name="SearchString" value="@ViewData["currentFilter"]" />
 <input type="submit" value="Search" class="btn btn-default" /> |
 <a asp-action="Index">Back to Full List
 </p>
 </div>
</form>

<table class="table">

You've added a searchString parameter to the Index method. The search string value is received from a text box
that you'll add to the Index view. You've also added to the LINQ statement a where clause that selects only
students whose first name or last name contains the search string. The statement that adds the where clause is
executed only if there's a value to search for.

Here you are calling the Where method on an IQueryable object, and the filter will be processed on the server. In some
scenarios you might be calling the Where method as an extension method on an in-memory collection. (For example,
suppose you change the reference to _context.Students so that instead of an EF DbSet it references a repository
method that returns an IEnumerable collection.) The result would normally be the same but in some cases may be
different.

For example, the .NET Framework implementation of the Contains method performs a case-sensitive comparison by
default, but in SQL Server this is determined by the collation setting of the SQL Server instance. That setting defaults to
case-insensitive. You could call the ToUpper method to make the test explicitly case-insensitive: Where(s =>

s.LastName.ToUpper().Contains(searchString.ToUpper()). That would ensure that results stay the same if you change the
code later to use a repository which returns an IEnumerable collection instead of an IQueryable object. (When you call
the Contains method on an IEnumerable collection, you get the .NET Framework implementation; when you call it on
an IQueryable object, you get the database provider implementation.) However, there's a performance penalty for this
solution. The ToUpper code would put a function in the WHERE clause of the TSQL SELECT statement. That would prevent
the optimizer from using an index. Given that SQL is mostly installed as case-insensitive, it's best to avoid the ToUpper

code until you migrate to a case-sensitive data store.

In Views/Student/Index.cshtml, add the highlighted code immediately before the opening table tag in order to
create a caption, a text box, and a Search button.

This code uses the <form> tag helper to add the search text box and button. By default, the <form> tag helper
submits form data with a POST, which means that parameters are passed in the HTTP message body and not in
the URL as query strings. When you specify HTTP GET, the form data is passed in the URL as query strings,
which enables users to bookmark the URL. The W3C guidelines recommend that you should use GET when the
action doesn't result in an update.

Run the app, select the Students tab, enter a search string, and click Search to verify that filtering is working.

http://localhost:5813/Students?SearchString=an

Add paging functionality to the Students Index page

Notice that the URL contains the search string.

If you bookmark this page, you'll get the filtered list when you use the bookmark. Adding method="get" to the
form tag is what caused the query string to be generated.

At this stage, if you click a column heading sort link you'll lose the filter value that you entered in the Search box.
You'll fix that in the next section.

To add paging to the Students Index page, you'll create a PaginatedList class that uses Skip and Take

statements to filter data on the server instead of always retrieving all rows of the table. Then you'll make
additional changes in the Index method and add paging buttons to the Index view. The following illustration
shows the paging buttons.

In the project folder, create PaginatedList.cs , and then replace the template code with the following code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity
{
 public class PaginatedList<T> : List<T>
 {
 public int PageIndex { get; private set; }
 public int TotalPages { get; private set; }

 public PaginatedList(List<T> items, int count, int pageIndex, int pageSize)
 {
 PageIndex = pageIndex;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);

 this.AddRange(items);
 }

 public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 1);
 }
 }

 public bool HasNextPage
 {
 get
 {
 return (PageIndex < TotalPages);
 }
 }

 public static async Task<PaginatedList<T>> CreateAsync(IQueryable<T> source, int pageIndex, int
pageSize)
 {
 var count = await source.CountAsync();
 var items = await source.Skip((pageIndex - 1) * pageSize).Take(pageSize).ToListAsync();
 return new PaginatedList<T>(items, count, pageIndex, pageSize);
 }
 }
}

Add paging functionality to the Index method

The CreateAsync method in this code takes page size and page number and applies the appropriate Skip and
Take statements to the IQueryable . When ToListAsync is called on the IQueryable , it will return a List

containing only the requested page. The properties HasPreviousPage and HasNextPage can be used to enable or
disable Previous and Next paging buttons.

A CreateAsync method is used instead of a constructor to create the PaginatedList<T> object because
constructors can't run asynchronous code.

In StudentsController.cs, replace the Index method with the following code.

public async Task<IActionResult> Index(
 string sortOrder,
 string currentFilter,
 string searchString,
 int? page)
{
 ViewData["CurrentSort"] = sortOrder;
 ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";

 if (searchString != null)
 {
 page = 1;
 }
 else
 {
 searchString = currentFilter;
 }

 ViewData["CurrentFilter"] = searchString;

 var students = from s in _context.Students
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 students = students.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }
 switch (sortOrder)
 {
 case "name_desc":
 students = students.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 students = students.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 students = students.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 students = students.OrderBy(s => s.LastName);
 break;
 }

 int pageSize = 3;
 return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(), page ?? 1, pageSize));
}

public async Task<IActionResult> Index(
 string sortOrder,
 string currentFilter,
 string searchString,
 int? page)

This code adds a page number parameter, a current sort order parameter, and a current filter parameter to the
method signature.

The first time the page is displayed, or if the user hasn't clicked a paging or sorting link, all the parameters will be
null. If a paging link is clicked, the page variable will contain the page number to display.

The ViewData element named CurrentSort provides the view with the current sort order, because this must be
included in the paging links in order to keep the sort order the same while paging.

if (searchString != null)
{
 page = 1;
}
else
{
 searchString = currentFilter;
}

return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(), page ?? 1, pageSize));

Add paging links to the Student Index view

@model PaginatedList<ContosoUniversity.Models.Student>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-action="Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name: <input type="text" name="SearchString" value="@ViewData["currentFilter"]" />
 <input type="submit" value="Search" class="btn btn-default" /> |
 <a asp-action="Index">Back to Full List
 </p>
 </div>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-action="Index" asp-route-sortOrder="@ViewData["NameSortParm"]" asp-route-
currentFilter="@ViewData["CurrentFilter"]">Last Name
 </th>
 <th>
 First Name

The ViewData element named CurrentFilter provides the view with the current filter string. This value must be
included in the paging links in order to maintain the filter settings during paging, and it must be restored to the
text box when the page is redisplayed.

If the search string is changed during paging, the page has to be reset to 1, because the new filter can result in
different data to display. The search string is changed when a value is entered in the text box and the Submit
button is pressed. In that case, the searchString parameter isn't null.

At the end of the Index method, the PaginatedList.CreateAsync method converts the student query to a single
page of students in a collection type that supports paging. That single page of students is then passed to the view.

The PaginatedList.CreateAsync method takes a page number. The two question marks represent the null-
coalescing operator. The null-coalescing operator defines a default value for a nullable type; the expression
(page ?? 1) means return the value of page if it has a value, or return 1 if page is null.

In Views/Students/Index.cshtml, replace the existing code with the following code. The changes are highlighted.

 First Name
 </th>
 <th>
 <a asp-action="Index" asp-route-sortOrder="@ViewData["DateSortParm"]" asp-route-
currentFilter="@ViewData["CurrentFilter"]">Enrollment Date
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

@{
 var prevDisabled = !Model.HasPreviousPage ? "disabled" : "";
 var nextDisabled = !Model.HasNextPage ? "disabled" : "";
}

<a asp-action="Index"
 asp-route-sortOrder="@ViewData["CurrentSort"]"
 asp-route-page="@(Model.PageIndex - 1)"
 asp-route-currentFilter="@ViewData["CurrentFilter"]"
 class="btn btn-default @prevDisabled">
 Previous

<a asp-action="Index"
 asp-route-sortOrder="@ViewData["CurrentSort"]"
 asp-route-page="@(Model.PageIndex + 1)"
 asp-route-currentFilter="@ViewData["CurrentFilter"]"
 class="btn btn-default @nextDisabled">
 Next

<a asp-action="Index" asp-route-sortOrder="@ViewData["DateSortParm"]" asp-route-currentFilter
="@ViewData["CurrentFilter"]">Enrollment Date

The @model statement at the top of the page specifies that the view now gets a PaginatedList<T> object instead
of a List<T> object.

The column header links use the query string to pass the current search string to the controller so that the user
can sort within filter results:

The paging buttons are displayed by tag helpers:

<a asp-action="Index"
 asp-route-sortOrder="@ViewData["CurrentSort"]"
 asp-route-page="@(Model.PageIndex - 1)"
 asp-route-currentFilter="@ViewData["CurrentFilter"]"
 class="btn btn-default @prevDisabled">
 Previous

Create an About page that shows Student statistics

Create the view modelCreate the view model

Run the app and go to the Students page.

Click the paging links in different sort orders to make sure paging works. Then enter a search string and try
paging again to verify that paging also works correctly with sorting and filtering.

For the Contoso University website's About page, you'll display how many students have enrolled for each
enrollment date. This requires grouping and simple calculations on the groups. To accomplish this, you'll do the
following:

Create a view model class for the data that you need to pass to the view.

Modify the About method in the Home controller.

Modify the About view.

Create a SchoolViewModels folder in the Models folder.

In the new folder, add a class file EnrollmentDateGroup.cs and replace the template code with the following code:

using System;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class EnrollmentDateGroup
 {
 [DataType(DataType.Date)]
 public DateTime? EnrollmentDate { get; set; }

 public int StudentCount { get; set; }
 }
}

Modify the Home ControllerModify the Home Controller

using Microsoft.EntityFrameworkCore;
using ContosoUniversity.Data;
using ContosoUniversity.Models.SchoolViewModels;

public class HomeController : Controller
{
 private readonly SchoolContext _context;

 public HomeController(SchoolContext context)
 {
 _context = context;
 }

public async Task<ActionResult> About()
{
 IQueryable<EnrollmentDateGroup> data =
 from student in _context.Students
 group student by student.EnrollmentDate into dateGroup
 select new EnrollmentDateGroup()
 {
 EnrollmentDate = dateGroup.Key,
 StudentCount = dateGroup.Count()
 };
 return View(await data.AsNoTracking().ToListAsync());
}

NOTENOTE

In HomeController.cs, add the following using statements at the top of the file:

Add a class variable for the database context immediately after the opening curly brace for the class, and get an
instance of the context from ASP.NET Core DI:

Replace the About method with the following code:

The LINQ statement groups the student entities by enrollment date, calculates the number of entities in each
group, and stores the results in a collection of EnrollmentDateGroup view model objects.

In the 1.0 version of Entity Framework Core, the entire result set is returned to the client, and grouping is done on the
client. In some scenarios this could create performance problems. Be sure to test performance with production volumes of
data, and if necessary use raw SQL to do the grouping on the server. For information about how to use raw SQL, see the
last tutorial in this series.

Modify the About ViewModify the About View

@model IEnumerable<ContosoUniversity.Models.SchoolViewModels.EnrollmentDateGroup>

@{
 ViewData["Title"] = "Student Body Statistics";
}

<h2>Student Body Statistics</h2>

<table>
 <tr>
 <th>
 Enrollment Date
 </th>
 <th>
 Students
 </th>
 </tr>

 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 @item.StudentCount
 </td>
 </tr>
 }
</table>

Summary

Replace the code in the Views/Home/About.cshtml file with the following code:

Run the app and go to the About page. The count of students for each enrollment date is displayed in a table.

In this tutorial, you've seen how to perform sorting, filtering, paging, and grouping. In the next tutorial, you'll learn
how to handle data model changes by using migrations.

 P R E V IO U S N E X T

ASP.NET Core MVC with EF Core - Migrations - 4 of
10
5/14/2018 • 7 minutes to read • Edit Online

Introduction to migrations

Entity Framework Core NuGet packages for migrations

<ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />
</ItemGroup>

Change the connection string

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the
first tutorial in the series.

In this tutorial, you start using the EF Core migrations feature for managing data model changes. In later
tutorials, you'll add more migrations as you change the data model.

When you develop a new application, your data model changes frequently, and each time the model changes, it
gets out of sync with the database. You started these tutorials by configuring the Entity Framework to create the
database if it doesn't exist. Then each time you change the data model -- add, remove, or change entity classes or
change your DbContext class -- you can delete the database and EF creates a new one that matches the model,
and seeds it with test data.

This method of keeping the database in sync with the data model works well until you deploy the application to
production. When the application is running in production it's usually storing data that you want to keep, and you
don't want to lose everything each time you make a change such as adding a new column. The EF Core
Migrations feature solves this problem by enabling EF to update the database schema instead of creating a new
database.

To work with migrations, you can use the Package Manager Console (PMC) or the command-line interface
(CLI). These tutorials show how to use CLI commands. Information about the PMC is at the end of this tutorial.

The EF tools for the command-line interface (CLI) are provided in Microsoft.EntityFrameworkCore.Tools.DotNet.
To install this package, add it to the DotNetCliToolReference collection in the .csproj file, as shown. Note: You
have to install this package by editing the .csproj file; you can't use the install-package command or the package
manager GUI. You can edit the .csproj file by right-clicking the project name in Solution Explorer and selecting
Edit ContosoUniversity.csproj.

 (The version numbers in this example were current when the tutorial was written.)

In the appsettings.json file, change the name of the database in the connection string to ContosoUniversity2 or
some other name that you haven't used on the computer you're using.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/migrations.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools.DotNet

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity2;Trusted_Connection=True;MultipleActiveResultSets=true"
 },

NOTENOTE

dotnet ef database drop

Create an initial migration

This change sets up the project so that the first migration will create a new database. This isn't required to get
started with migrations, but you'll see later why it's a good idea.

As an alternative to changing the database name, you can delete the database. Use SQL Server Object Explorer (SSOX)
or the database drop CLI command:

The following section explains how to run CLI commands.

Save your changes and build the project. Then open a command window and navigate to the project folder.
Here's a quick way to do that:

In Solution Explorer, right-click the project and choose Open in File Explorer from the context menu.

Enter "cmd" in the address bar and press Enter.

dotnet ef migrations add InitialCreate

info: Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[0]
 User profile is available. Using 'C:\Users\username\AppData\Local\ASP.NET\DataProtection-Keys' as key
repository and Windows DPAPI to encrypt keys at rest.
info: Microsoft.EntityFrameworkCore.Infrastructure[100403]
 Entity Framework Core 2.0.0-rtm-26452 initialized 'SchoolContext' using provider
'Microsoft.EntityFrameworkCore.SqlServer' with options: None
Done. To undo this action, use 'ef migrations remove'

NOTENOTE

Examine the Up and Down methods

Enter the following command in the command window:

You see output like the following in the command window:

If you see an error message No executable found matching command "dotnet-ef", see this blog post for help
troubleshooting.

If you see an error message "cannot access the file ... ContosoUniversity.dll because it is being used by another
process.", find the IIS Express icon in the Windows System Tray, and right-click it, then click ContosoUniversity
> Stop Site.

When you executed the migrations add command, EF generated the code that will create the database from
scratch. This code is in the Migrations folder, in the file named <timestamp>_InitialCreate.cs. The Up method of
the InitialCreate class creates the database tables that correspond to the data model entity sets, and the Down

method deletes them, as shown in the following example.

http://thedatafarm.com/data-access/no-executable-found-matching-command-dotnet-ef/

public partial class InitialCreate : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "Course",
 columns: table => new
 {
 CourseID = table.Column<int>(nullable: false),
 Credits = table.Column<int>(nullable: false),
 Title = table.Column<string>(nullable: true)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Course", x => x.CourseID);
 });

 // Additional code not shown
 }

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(
 name: "Enrollment");
 // Additional code not shown
 }
}

The data model snapshot

Apply the migration to the database

dotnet ef database update

Migrations calls the Up method to implement the data model changes for a migration. When you enter a
command to roll back the update, Migrations calls the Down method.

This code is for the initial migration that was created when you entered the migrations add InitialCreate

command. The migration name parameter ("InitialCreate" in the example) is used for the file name and can be
whatever you want. It's best to choose a word or phrase that summarizes what is being done in the migration.
For example, you might name a later migration "AddDepartmentTable".

If you created the initial migration when the database already exists, the database creation code is generated but
it doesn't have to run because the database already matches the data model. When you deploy the app to
another environment where the database doesn't exist yet, this code will run to create your database, so it's a
good idea to test it first. That's why you changed the name of the database in the connection string earlier -- so
that migrations can create a new one from scratch.

Migrations creates a snapshot of the current database schema in Migrations/SchoolContextModelSnapshot.cs.
When you add a migration, EF determines what changed by comparing the data model to the snapshot file.

When deleting a migration, use the dotnet ef migrations remove command. dotnet ef migrations remove deletes
the migration and ensures the snapshot is correctly reset.

See EF Core Migrations in Team Environments for more information about how the snapshot file is used.

In the command window, enter the following command to create the database and tables in it.

The output from the command is similar to the migrations add command, except that you see logs for the SQL

https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet#dotnet-ef-migrations-remove
https://docs.microsoft.com/ef/core/managing-schemas/migrations/teams

info: Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[0]
 User profile is available. Using 'C:\Users\username\AppData\Local\ASP.NET\DataProtection-Keys' as key
repository and Windows DPAPI to encrypt keys at rest.
info: Microsoft.EntityFrameworkCore.Infrastructure[100403]
 Entity Framework Core 2.0.0-rtm-26452 initialized 'SchoolContext' using provider
'Microsoft.EntityFrameworkCore.SqlServer' with options: None
info: Microsoft.EntityFrameworkCore.Database.Command[200101]
 Executed DbCommand (467ms) [Parameters=[], CommandType='Text', CommandTimeout='60']
 CREATE DATABASE [ContosoUniversity2];
info: Microsoft.EntityFrameworkCore.Database.Command[200101]
 Executed DbCommand (20ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
 CREATE TABLE [__EFMigrationsHistory] (
 [MigrationId] nvarchar(150) NOT NULL,
 [ProductVersion] nvarchar(32) NOT NULL,
 CONSTRAINT [PK___EFMigrationsHistory] PRIMARY KEY ([MigrationId])
);

<logs omitted for brevity>

info: Microsoft.EntityFrameworkCore.Database.Command[200101]
 Executed DbCommand (3ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
 INSERT INTO [__EFMigrationsHistory] ([MigrationId], [ProductVersion])
 VALUES (N'20170816151242_InitialCreate', N'2.0.0-rtm-26452');
Done.

commands that set up the database. Most of the logs are omitted in the following sample output. If you prefer
not to see this level of detail in log messages, you can change the log level in the appsettings.Development.json
file. For more information, see Introduction to logging.

Use SQL Server Object Explorer to inspect the database as you did in the first tutorial. You'll notice the
addition of an __EFMigrationsHistory table that keeps track of which migrations have been applied to the
database. View the data in that table and you'll see one row for the first migration. (The last log in the preceding
CLI output example shows the INSERT statement that creates this row.)

Run the application to verify that everything still works the same as before.

Command-line interface (CLI) vs. Package Manager Console (PMC)

Summary

The EF tooling for managing migrations is available from .NET Core CLI commands or from PowerShell cmdlets
in the Visual Studio Package Manager Console (PMC) window. This tutorial shows how to use the CLI, but
you can use the PMC if you prefer.

The EF commands for the PMC commands are in the Microsoft.EntityFrameworkCore.Tools package. This
package is already included in the Microsoft.AspNetCore.All metapackage, so you don't have to install it.

Important: This isn't the same package as the one you install for the CLI by editing the .csproj file. The name of
this one ends in Tools , unlike the CLI package name which ends in Tools.DotNet .

For more information about the CLI commands, see .NET Core CLI.

For more information about the PMC commands, see Package Manager Console (Visual Studio).

In this tutorial, you've seen how to create and apply your first migration. In the next tutorial, you'll begin looking
at more advanced topics by expanding the data model. Along the way you'll create and apply additional
migrations.

 P R E V IO U S N E X T

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools
https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/ef/core/miscellaneous/cli/powershell

ASP.NET Core MVC with EF Core - Data Model - 5
of 10
5/14/2018 • 30 minutes to read • Edit Online

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the
first tutorial in the series.

In the previous tutorials, you worked with a simple data model that was composed of three entities. In this
tutorial, you'll add more entities and relationships and you'll customize the data model by specifying formatting,
validation, and database mapping rules.

When you're finished, the entity classes will make up the completed data model that's shown in the following
illustration:

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/complex-data-model.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT

Customize the Data Model by Using Attributes

The DataType attributeThe DataType attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]

In this section you'll see how to customize the data model by using attributes that specify formatting, validation,
and database mapping rules. Then in several of the following sections you'll create the complete School data
model by adding attributes to the classes you already created and creating new classes for the remaining entity
types in the model.

For student enrollment dates, all of the web pages currently display the time along with the date, although all you
care about for this field is the date. By using data annotation attributes, you can make one code change that will
fix the display format in every view that shows the data. To see an example of how to do that, you'll add an
attribute to the EnrollmentDate property in the Student class.

In Models/Student.cs, add a using statement for the System.ComponentModel.DataAnnotations namespace and add
DataType and DisplayFormat attributes to the EnrollmentDate property, as shown in the following example:

The DataType attribute is used to specify a data type that's more specific than the database intrinsic type. In this
case we only want to keep track of the date, not the date and time. The DataType Enumeration provides for many
data types, such as Date, Time, PhoneNumber, Currency, EmailAddress, and more. The DataType attribute can
also enable the application to automatically provide type-specific features. For example, a mailto: link can be
created for DataType.EmailAddress , and a date selector can be provided for DataType.Date in browsers that
support HTML5. The DataType attribute emits HTML 5 data- (pronounced data dash) attributes that HTML 5
browsers can understand. The DataType attributes don't provide any validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed
according to the default formats based on the server's CultureInfo.

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied when the value is
displayed in a text box for editing. (You might not want that for some fields -- for example, for currency values,
you might not want the currency symbol in the text box for editing.)

You can use the DisplayFormat attribute by itself, but it's generally a good idea to use the DataType attribute also.
The DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and
provides the following benefits that you don't get with DisplayFormat :

The StringLength attributeThe StringLength attribute

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate
currency symbol, email links, some client-side input validation, etc.).

By default, the browser will render data using the correct format based on your locale.

For more information, see the <input> tag helper documentation.

Run the app, go to the Students Index page and notice that times are no longer displayed for the enrollment
dates. The same will be true for any view that uses the Student model.

You can also specify data validation rules and validation error messages using attributes. The StringLength

attribute sets the maximum length in the database and provides client side and server side validation for
ASP.NET MVC. You can also specify the minimum string length in this attribute, but the minimum value has no
impact on the database schema.

Suppose you want to ensure that users don't enter more than 50 characters for a name. To add this limitation,
add StringLength attributes to the LastName and FirstMidName properties, as shown in the following example:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [StringLength(50)]
 public string LastName { get; set; }
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

[RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]

dotnet ef migrations add MaxLengthOnNames

dotnet ef database update

The StringLength attribute won't prevent a user from entering white space for a name. You can use the
RegularExpression attribute to apply restrictions to the input. For example, the following code requires the first

character to be upper case and the remaining characters to be alphabetical:

The MaxLength attribute provides functionality similar to the StringLength attribute but doesn't provide client
side validation.

The database model has now changed in a way that requires a change in the database schema. You'll use
migrations to update the schema without losing any data that you may have added to the database by using the
application UI.

Save your changes and build the project. Then open the command window in the project folder and enter the
following commands:

The migrations add command warns that data loss may occur, because the change makes the maximum length
shorter for two columns. Migrations creates a file named <timeStamp>_MaxLengthOnNames.cs. This file
contains code in the Up method that will update the database to match the current data model. The
database update command ran that code.

The timestamp prefixed to the migrations file name is used by Entity Framework to order the migrations. You can
create multiple migrations before running the update-database command, and then all of the migrations are
applied in the order in which they were created.

Run the app, select the Students tab, click Create New, and enter either name longer than 50 characters. When
you click Create, client side validation shows an error message.

The Column attributeThe Column attribute
You can also use attributes to control how your classes and properties are mapped to the database. Suppose you
had used the name FirstMidName for the first-name field because the field might also contain a middle name. But
you want the database column to be named FirstName , because users who will be writing ad-hoc queries against
the database are accustomed to that name. To make this mapping, you can use the Column attribute.

The Column attribute specifies that when the database is created, the column of the Student table that maps to
the FirstMidName property will be named FirstName . In other words, when your code refers to
Student.FirstMidName , the data will come from or be updated in the FirstName column of the Student table. If

you don't specify column names, they're given the same name as the property name.

In the Student.cs file, add a using statement for System.ComponentModel.DataAnnotations.Schema and add the
column name attribute to the FirstMidName property, as shown in the following highlighted code:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [StringLength(50)]
 public string LastName { get; set; }
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

dotnet ef migrations add ColumnFirstName

dotnet ef database update

The addition of the Column attribute changes the model backing the SchoolContext , so it won't match the
database.

Save your changes and build the project. Then open the command window in the project folder and enter the
following commands to create another migration:

In SQL Server Object Explorer, open the Student table designer by double-clicking the Student table.

Before you applied the first two migrations, the name columns were of type nvarchar(MAX). They're now
nvarchar(50) and the column name has changed from FirstMidName to FirstName.

NOTENOTE

Final changes to the Student entity

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [Required]
 [StringLength(50)]
 [Display(Name = "Last Name")]
 public string LastName { get; set; }
 [Required]
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Enrollment Date")]
 public DateTime EnrollmentDate { get; set; }
 [Display(Name = "Full Name")]
 public string FullName
 {
 get
 {
 return LastName + ", " + FirstMidName;
 }
 }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

The Required attributeThe Required attribute

If you try to compile before you finish creating all of the entity classes in the following sections, you might get compiler
errors.

In Models/Student.cs, replace the code you added earlier with the following code. The changes are highlighted.

The Required attribute makes the name properties required fields. The Required attribute isn't needed for non-
nullable types such as value types (DateTime, int, double, float, etc.). Types that can't be null are automatically
treated as required fields.

[Display(Name = "Last Name")]
[StringLength(50, MinimumLength=1)]
public string LastName { get; set; }

The Display attributeThe Display attribute

The FullName calculated propertyThe FullName calculated property

Create the Instructor Entity

You could remove the Required attribute and replace it with a minimum length parameter for the StringLength

attribute:

The Display attribute specifies that the caption for the text boxes should be "First Name", "Last Name", "Full
Name", and "Enrollment Date" instead of the property name in each instance (which has no space dividing the
words).

FullName is a calculated property that returns a value that's created by concatenating two other properties.
Therefore it has only a get accessor, and no FullName column will be generated in the database.

Create Models/Instructor.cs, replacing the template code with the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Instructor
 {
 public int ID { get; set; }

 [Required]
 [Display(Name = "Last Name")]
 [StringLength(50)]
 public string LastName { get; set; }

 [Required]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 [StringLength(50)]
 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }

 [Display(Name = "Full Name")]
 public string FullName
 {
 get { return LastName + ", " + FirstMidName; }
 }

 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 public OfficeAssignment OfficeAssignment { get; set; }
 }
}

[DataType(DataType.Date),Display(Name = "Hire Date"),DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",
ApplyFormatInEditMode = true)]

The CourseAssignments and OfficeAssignment navigation propertiesThe CourseAssignments and OfficeAssignment navigation properties

public ICollection<CourseAssignment> CourseAssignments { get; set; }

Notice that several properties are the same in the Student and Instructor entities. In the Implementing
Inheritance tutorial later in this series, you'll refactor this code to eliminate the redundancy.

You can put multiple attributes on one line, so you could also write the HireDate attributes as follows:

The CourseAssignments and OfficeAssignment properties are navigation properties.

An instructor can teach any number of courses, so CourseAssignments is defined as a collection.

If a navigation property can hold multiple entities, its type must be a list in which entries can be added, deleted,
and updated. You can specify ICollection<T> or a type such as List<T> or HashSet<T> . If you specify
ICollection<T> , EF creates a HashSet<T> collection by default.

The reason why these are CourseAssignment entities is explained below in the section about many-to-many
relationships.

public OfficeAssignment OfficeAssignment { get; set; }

Create the OfficeAssignment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class OfficeAssignment
 {
 [Key]
 public int InstructorID { get; set; }
 [StringLength(50)]
 [Display(Name = "Office Location")]
 public string Location { get; set; }

 public Instructor Instructor { get; set; }
 }
}

The Key attributeThe Key attribute

[Key]
public int InstructorID { get; set; }

The Instructor navigation propertyThe Instructor navigation property

Contoso University business rules state that an instructor can only have at most one office, so the
OfficeAssignment property holds a single OfficeAssignment entity (which may be null if no office is assigned).

Create Models/OfficeAssignment.cs with the following code:

There's a one-to-zero-or-one relationship between the Instructor and the OfficeAssignment entities. An office
assignment only exists in relation to the instructor it's assigned to, and therefore its primary key is also its foreign
key to the Instructor entity. But the Entity Framework can't automatically recognize InstructorID as the primary
key of this entity because its name doesn't follow the ID or classnameID naming convention. Therefore, the Key

attribute is used to identify it as the key:

You can also use the Key attribute if the entity does have its own primary key but you want to name the property
something other than classnameID or ID.

By default, EF treats the key as non-database-generated because the column is for an identifying relationship.

The Instructor entity has a nullable OfficeAssignment navigation property (because an instructor might not have
an office assignment), and the OfficeAssignment entity has a non-nullable Instructor navigation property
(because an office assignment can't exist without an instructor -- InstructorID is non-nullable). When an
Instructor entity has a related OfficeAssignment entity, each entity will have a reference to the other one in its
navigation property.

Modify the Course Entity

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 [Display(Name = "Number")]
 public int CourseID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Title { get; set; }

 [Range(0, 5)]
 public int Credits { get; set; }

 public int DepartmentID { get; set; }

 public Department Department { get; set; }
 public ICollection<Enrollment> Enrollments { get; set; }
 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 }
}

The DatabaseGenerated attributeThe DatabaseGenerated attribute

You could put a [Required] attribute on the Instructor navigation property to specify that there must be a related
instructor, but you don't have to do that because the InstructorID foreign key (which is also the key to this table)
is non-nullable.

In Models/Course.cs, replace the code you added earlier with the following code. The changes are highlighted.

The course entity has a foreign key property DepartmentID which points to the related Department entity and it
has a Department navigation property.

The Entity Framework doesn't require you to add a foreign key property to your data model when you have a
navigation property for a related entity. EF automatically creates foreign keys in the database wherever they're
needed and creates shadow properties for them. But having the foreign key in the data model can make updates
simpler and more efficient. For example, when you fetch a course entity to edit, the Department entity is null if
you don't load it, so when you update the course entity, you would have to first fetch the Department entity.
When the foreign key property DepartmentID is included in the data model, you don't need to fetch the
Department entity before you update.

The DatabaseGenerated attribute with the None parameter on the CourseID property specifies that primary key
values are provided by the user rather than generated by the database.

https://docs.microsoft.com/ef/core/modeling/shadow-properties

[DatabaseGenerated(DatabaseGeneratedOption.None)]
[Display(Name = "Number")]
public int CourseID { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int DepartmentID { get; set; }
public Department Department { get; set; }

public ICollection<Enrollment> Enrollments { get; set; }

public ICollection<CourseAssignment> CourseAssignments { get; set; }

Create the Department entity

By default, Entity Framework assumes that primary key values are generated by the database. That's what you
want in most scenarios. However, for Course entities, you'll use a user-specified course number such as a 1000
series for one department, a 2000 series for another department, and so on.

The DatabaseGenerated attribute can also be used to generate default values, as in the case of database columns
used to record the date a row was created or updated. For more information, see Generated Properties.

The foreign key properties and navigation properties in the Course entity reflect the following relationships:

A course is assigned to one department, so there's a DepartmentID foreign key and a Department navigation
property for the reasons mentioned above.

A course can have any number of students enrolled in it, so the Enrollments navigation property is a collection:

A course may be taught by multiple instructors, so the CourseAssignments navigation property is a collection (the
type CourseAssignment is explained later):

Create Models/Department.cs with the following code:

https://docs.microsoft.com/ef/core/modeling/generated-properties

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

The Column attributeThe Column attribute

[Column(TypeName="money")]
public decimal Budget { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int? InstructorID { get; set; }
public Instructor Administrator { get; set; }

public ICollection<Course> Courses { get; set; }

Earlier you used the Column attribute to change column name mapping. In the code for the Department entity,
the Column attribute is being used to change SQL data type mapping so that the column will be defined using
the SQL Server money type in the database:

Column mapping is generally not required, because the Entity Framework chooses the appropriate SQL Server
data type based on the CLR type that you define for the property. The CLR decimal type maps to a SQL Server
decimal type. But in this case you know that the column will be holding currency amounts, and the money data

type is more appropriate for that.

The foreign key and navigation properties reflect the following relationships:

A department may or may not have an administrator, and an administrator is always an instructor. Therefore the
InstructorID property is included as the foreign key to the Instructor entity, and a question mark is added after

the int type designation to mark the property as nullable. The navigation property is named Administrator but
holds an Instructor entity:

A department may have many courses, so there's a Courses navigation property:

NOTENOTE

modelBuilder.Entity<Department>()
 .HasOne(d => d.Administrator)
 .WithMany()
 .OnDelete(DeleteBehavior.Restrict)

Modify the Enrollment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 [DisplayFormat(NullDisplayText = "No grade")]
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

Foreign key and navigation propertiesForeign key and navigation properties

By convention, the Entity Framework enables cascade delete for non-nullable foreign keys and for many-to-many
relationships. This can result in circular cascade delete rules, which will cause an exception when you try to add a migration.
For example, if you didn't define the Department.InstructorID property as nullable, EF would configure a cascade delete rule
to delete the instructor when you delete the department, which isn't what you want to have happen. If your business rules
required the InstructorID property to be non-nullable, you would have to use the following fluent API statement to
disable cascade delete on the relationship:

In Models/Enrollment.cs, replace the code you added earlier with the following code:

The foreign key properties and navigation properties reflect the following relationships:

An enrollment record is for a single course, so there's a CourseID foreign key property and a Course navigation
property:

public int CourseID { get; set; }
public Course Course { get; set; }

public int StudentID { get; set; }
public Student Student { get; set; }

Many-to-Many Relationships

An enrollment record is for a single student, so there's a StudentID foreign key property and a Student

navigation property:

There's a many-to-many relationship between the Student and Course entities, and the Enrollment entity
functions as a many-to-many join table with payload in the database. "With payload" means that the Enrollment
table contains additional data besides foreign keys for the joined tables (in this case, a primary key and a Grade
property).

The following illustration shows what these relationships look like in an entity diagram. (This diagram was
generated using the Entity Framework Power Tools for EF 6.x; creating the diagram isn't part of the tutorial, it's
just being used here as an illustration.)

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-many relationship.

If the Enrollment table didn't include grade information, it would only need to contain the two foreign keys
CourseID and StudentID. In that case, it would be a many-to-many join table without payload (or a pure join
table) in the database. The Instructor and Course entities have that kind of many-to-many relationship, and your
next step is to create an entity class to function as a join table without payload.

(EF 6.x supports implicit join tables for many-to-many relationships, but EF Core doesn't. For more information,
see the discussion in the EF Core GitHub repository.)

https://github.com/aspnet/EntityFramework/issues/1368

The CourseAssignment entity

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class CourseAssignment
 {
 public int InstructorID { get; set; }
 public int CourseID { get; set; }
 public Instructor Instructor { get; set; }
 public Course Course { get; set; }
 }
}

Join entity namesJoin entity names

Composite keyComposite key

Update the database context

Create Models/CourseAssignment.cs with the following code:

A join table is required in the database for the Instructor-to-Courses many-to-many relationship, and it has to be
represented by an entity set. It's common to name a join entity EntityName1EntityName2 , which in this case would
be CourseInstructor . However, we recommend that you choose a name that describes the relationship. Data
models start out simple and grow, with no-payload joins frequently getting payloads later. If you start with a
descriptive entity name, you won't have to change the name later. Ideally, the join entity would have its own
natural (possibly single word) name in the business domain. For example, Books and Customers could be linked
through Ratings. For this relationship, CourseAssignment is a better choice than CourseInstructor .

Since the foreign keys are not nullable and together uniquely identify each row of the table, there's no need for a
separate primary key. The InstructorID and CourseID properties should function as a composite primary key. The
only way to identify composite primary keys to EF is by using the fluent API (it can't be done by using attributes).
You'll see how to configure the composite primary key in the next section.

The composite key ensures that while you can have multiple rows for one course, and multiple rows for one
instructor, you can't have multiple rows for the same instructor and course. The Enrollment join entity defines its
own primary key, so duplicates of this sort are possible. To prevent such duplicates, you could add a unique index
on the foreign key fields, or configure Enrollment with a primary composite key similar to CourseAssignment . For
more information, see Indexes.

Add the following highlighted code to the Data/SchoolContext.cs file:

https://docs.microsoft.com/ef/core/modeling/indexes

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 public DbSet<Department> Departments { get; set; }
 public DbSet<Instructor> Instructors { get; set; }
 public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
 public DbSet<CourseAssignment> CourseAssignments { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 modelBuilder.Entity<Department>().ToTable("Department");
 modelBuilder.Entity<Instructor>().ToTable("Instructor");
 modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
 modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");

 modelBuilder.Entity<CourseAssignment>()
 .HasKey(c => new { c.CourseID, c.InstructorID });
 }
 }
}

Fluent API alternative to attributes

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Blog>()
 .Property(b => b.Url)
 .IsRequired();
}

This code adds the new entities and configures the CourseAssignment entity's composite primary key.

The code in the OnModelCreating method of the DbContext class uses the fluent API to configure EF behavior.
The API is called "fluent" because it's often used by stringing a series of method calls together into a single
statement, as in this example from the EF Core documentation:

In this tutorial, you're using the fluent API only for database mapping that you can't do with attributes. However,
you can also use the fluent API to specify most of the formatting, validation, and mapping rules that you can do
by using attributes. Some attributes such as MinimumLength can't be applied with the fluent API. As mentioned
previously, MinimumLength doesn't change the schema, it only applies a client and server side validation rule.

Some developers prefer to use the fluent API exclusively so that they can keep their entity classes "clean." You can
mix attributes and fluent API if you want, and there are a few customizations that can only be done by using
fluent API, but in general the recommended practice is to choose one of these two approaches and use that
consistently as much as possible. If you do use both, note that wherever there's a conflict, Fluent API overrides
attributes.

https://docs.microsoft.com/ef/core/modeling/#methods-of-configuration

Entity Diagram Showing Relationships

Seed the Database with Test Data

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data

For more information about attributes vs. fluent API, see Methods of configuration.

The following illustration shows the diagram that the Entity Framework Power Tools create for the completed
School model.

Besides the one-to-many relationship lines (1 to *), you can see here the one-to-zero-or-one relationship line (1
to 0..1) between the Instructor and OfficeAssignment entities and the zero-or-one-to-many relationship line (0..1
to *) between the Instructor and Department entities.

Replace the code in the Data/DbInitializer.cs file with the following code in order to provide seed data for the new
entities you've created.

https://docs.microsoft.com/ef/core/modeling/#methods-of-configuration

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 //context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student { FirstMidName = "Carson", LastName = "Alexander",
 EnrollmentDate = DateTime.Parse("2010-09-01") },
 new Student { FirstMidName = "Meredith", LastName = "Alonso",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Arturo", LastName = "Anand",
 EnrollmentDate = DateTime.Parse("2013-09-01") },
 new Student { FirstMidName = "Gytis", LastName = "Barzdukas",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Yan", LastName = "Li",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Peggy", LastName = "Justice",
 EnrollmentDate = DateTime.Parse("2011-09-01") },
 new Student { FirstMidName = "Laura", LastName = "Norman",
 EnrollmentDate = DateTime.Parse("2013-09-01") },
 new Student { FirstMidName = "Nino", LastName = "Olivetto",
 EnrollmentDate = DateTime.Parse("2005-09-01") }
 };

 foreach (Student s in students)
 {
 context.Students.Add(s);
 }
 context.SaveChanges();

 var instructors = new Instructor[]
 {
 new Instructor { FirstMidName = "Kim", LastName = "Abercrombie",
 HireDate = DateTime.Parse("1995-03-11") },
 new Instructor { FirstMidName = "Fadi", LastName = "Fakhouri",
 HireDate = DateTime.Parse("2002-07-06") },
 new Instructor { FirstMidName = "Roger", LastName = "Harui",
 HireDate = DateTime.Parse("1998-07-01") },
 new Instructor { FirstMidName = "Candace", LastName = "Kapoor",
 HireDate = DateTime.Parse("2001-01-15") },
 new Instructor { FirstMidName = "Roger", LastName = "Zheng",
 HireDate = DateTime.Parse("2004-02-12") }
 };

 foreach (Instructor i in instructors)
 {
 context.Instructors.Add(i);
 }
 context.SaveChanges();

 var departments = new Department[]
 {
 new Department { Name = "English", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID },
 new Department { Name = "Mathematics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID },
 new Department { Name = "Engineering", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),

 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID },
 new Department { Name = "Economics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID }
 };

 foreach (Department d in departments)
 {
 context.Departments.Add(d);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course {CourseID = 1050, Title = "Chemistry", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Engineering").DepartmentID
 },
 new Course {CourseID = 4022, Title = "Microeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 4041, Title = "Macroeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 1045, Title = "Calculus", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 3141, Title = "Trigonometry", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 2021, Title = "Composition", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 new Course {CourseID = 2042, Title = "Literature", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 };

 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var officeAssignments = new OfficeAssignment[]
 {
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID,
 Location = "Smith 17" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID,
 Location = "Gowan 27" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID,
 Location = "Thompson 304" },
 };

 foreach (OfficeAssignment o in officeAssignments)
 {
 context.OfficeAssignments.Add(o);
 }
 context.SaveChanges();

 var courseInstructors = new CourseAssignment[]
 {
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID
 },
 new CourseAssignment {

 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 };

 foreach (CourseAssignment ci in courseInstructors)
 {
 context.CourseAssignments.Add(ci);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.A
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.C
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,

 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Barzdukas").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Li").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Justice").ID,
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 Grade = Grade.B
 }
 };

 foreach (Enrollment e in enrollments)
 {
 var enrollmentInDataBase = context.Enrollments.Where(
 s =>
 s.Student.ID == e.StudentID &&
 s.Course.CourseID == e.CourseID).SingleOrDefault();
 if (enrollmentInDataBase == null)
 {
 context.Enrollments.Add(e);
 }
 }
 context.SaveChanges();
 }
 }
}

Add a migration

dotnet ef migrations add ComplexDataModel

An operation was scaffolded that may result in the loss of data. Please review the migration for accuracy.
Done. To undo this action, use 'ef migrations remove'

As you saw in the first tutorial, most of this code simply creates new entity objects and loads sample data into
properties as required for testing. Notice how the many-to-many relationships are handled: the code creates
relationships by creating entities in the Enrollments and CourseAssignment join entity sets.

Save your changes and build the project. Then open the command window in the project folder and enter the
migrations add command (don't do the update-database command yet):

You get a warning about possible data loss.

If you tried to run the database update command at this point (don't do it yet), you would get the following error :

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint
"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in database "ContosoUniversity",

table "dbo.Department", column 'DepartmentID'.

Sometimes when you execute migrations with existing data, you need to insert stub data into the database to
satisfy foreign key constraints. The generated code in the Up method adds a non-nullable DepartmentID foreign
key to the Course table. If there are already rows in the Course table when the code runs, the AddColumn

operation fails because SQL Server doesn't know what value to put in the column that can't be null. For this
tutorial you'll run the migration on a new database, but in a production application you'd have to make the
migration handle existing data, so the following directions show an example of how to do that.

To make this migration work with existing data you have to change the code to give the new column a default
value, and create a stub department named "Temp" to act as the default department. As a result, existing Course
rows will all be related to the "Temp" department after the Up method runs.

migrationBuilder.AlterColumn<string>(
 name: "Title",
 table: "Course",
 maxLength: 50,
 nullable: true,
 oldClrType: typeof(string),
 oldNullable: true);

//migrationBuilder.AddColumn<int>(
// name: "DepartmentID",
// table: "Course",
// nullable: false,
// defaultValue: 0);

Open the {timestamp}_ComplexDataModel.cs file.

Comment out the line of code that adds the DepartmentID column to the Course table.

Add the following highlighted code after the code that creates the Department table:

Change the connection string and update the database

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity3;Trusted_Connection=True;MultipleActiveResultSets=true"
 },

migrationBuilder.CreateTable(
 name: "Department",
 columns: table => new
 {
 DepartmentID = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
SqlServerValueGenerationStrategy.IdentityColumn),
 Budget = table.Column<decimal>(type: "money", nullable: false),
 InstructorID = table.Column<int>(nullable: true),
 Name = table.Column<string>(maxLength: 50, nullable: true),
 StartDate = table.Column<DateTime>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Department", x => x.DepartmentID);
 table.ForeignKey(
 name: "FK_Department_Instructor_InstructorID",
 column: x => x.InstructorID,
 principalTable: "Instructor",
 principalColumn: "ID",
 onDelete: ReferentialAction.Restrict);
 });

migrationBuilder.Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp', 0.00,
GETDATE())");
// Default value for FK points to department created above, with
// defaultValue changed to 1 in following AddColumn statement.

migrationBuilder.AddColumn<int>(
 name: "DepartmentID",
 table: "Course",
 nullable: false,
 defaultValue: 1);

In a production application, you would write code or scripts to add Department rows and relate Course rows to
the new Department rows. You would then no longer need the "Temp" department or the default value on the
Course.DepartmentID column.

Save your changes and build the project.

You now have new code in the DbInitializer class that adds seed data for the new entities to an empty database.
To make EF create a new empty database, change the name of the database in the connection string in
appsettings.json to ContosoUniversity3 or some other name that you haven't used on the computer you're using.

Save your change to appsettings.json.

NOTENOTE

dotnet ef database drop

dotnet ef database update

Summary

As an alternative to changing the database name, you can delete the database. Use SQL Server Object Explorer (SSOX)
or the database drop CLI command:

After you have changed the database name or deleted the database, run the database update command in the
command window to execute the migrations.

Run the app to cause the DbInitializer.Initialize method to run and populate the new database.

Open the database in SSOX as you did earlier, and expand the Tables node to see that all of the tables have been
created. (If you still have SSOX open from the earlier time, click the Refresh button.)

Run the app to trigger the initializer code that seeds the database.

Right-click the CourseAssignment table and select View Data to verify that it has data in it.

You now have a more complex data model and corresponding database. In the following tutorial, you'll learn
more about how to access related data.

 P R E V IO U S N E X T

ASP.NET Core MVC with EF Core - Read Related
Data - 6 of 10
5/14/2018 • 14 minutes to read • Edit Online

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the
first tutorial in the series.

In the previous tutorial, you completed the School data model. In this tutorial, you'll read and display related data
-- that is, data that the Entity Framework loads into navigation properties.

The following illustrations show the pages that you'll work with.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/read-related-data.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT

Eager, explicit, and lazy Loading of related data
There are several ways that Object-Relational Mapping (ORM) software such as Entity Framework can load
related data into the navigation properties of an entity:

Eager loading. When the entity is read, related data is retrieved along with it. This typically results in a
single join query that retrieves all of the data that's needed. You specify eager loading in Entity Framework
Core by using the Include and ThenInclude methods.

You can retrieve some of the data in separate queries, and EF "fixes up" the navigation properties. That is,
EF automatically adds the separately retrieved entities where they belong in navigation properties of

Performance considerationsPerformance considerations

Create a Courses page that displays Department name

previously retrieved entities. For the query that retrieves related data, you can use the Load method
instead of a method that returns a list or object, such as ToList or Single .

Explicit loading. When the entity is first read, related data isn't retrieved. You write code that retrieves the
related data if it's needed. As in the case of eager loading with separate queries, explicit loading results in
multiple queries sent to the database. The difference is that with explicit loading, the code specifies the
navigation properties to be loaded. In Entity Framework Core 1.1 you can use the Load method to do
explicit loading. For example:

Lazy loading. When the entity is first read, related data isn't retrieved. However, the first time you attempt
to access a navigation property, the data required for that navigation property is automatically retrieved. A
query is sent to the database each time you try to get data from a navigation property for the first time.
Entity Framework Core 1.0 doesn't support lazy loading.

If you know you need related data for every entity retrieved, eager loading often offers the best performance,
because a single query sent to the database is typically more efficient than separate queries for each entity
retrieved. For example, suppose that each department has ten related courses. Eager loading of all related data
would result in just a single (join) query and a single round trip to the database. A separate query for courses for
each department would result in eleven round trips to the database. The extra round trips to the database are
especially detrimental to performance when latency is high.

On the other hand, in some scenarios separate queries is more efficient. Eager loading of all related data in one
query might cause a very complex join to be generated, which SQL Server can't process efficiently. Or if you
need to access an entity's navigation properties only for a subset of a set of the entities you're processing,
separate queries might perform better because eager loading of everything up front would retrieve more data
than you need. If performance is critical, it's best to test performance both ways in order to make the best choice.

The Course entity includes a navigation property that contains the Department entity of the department that the
course is assigned to. To display the name of the assigned department in a list of courses, you need to get the
Name property from the Department entity that's in the Course.Department navigation property.

Create a controller named CoursesController for the Course entity type, using the same options for the MVC
Controller with views, using Entity Framework scaffolder that you did earlier for the Students controller, as
shown in the following illustration:

public async Task<IActionResult> Index()
{
 var courses = _context.Courses
 .Include(c => c.Department)
 .AsNoTracking();
 return View(await courses.ToListAsync());
}

Open CoursesController.cs and examine the Index method. The automatic scaffolding has specified eager
loading for the Department navigation property by using the Include method.

Replace the Index method with the following code that uses a more appropriate name for the IQueryable that
returns Course entities (courses instead of schoolContext):

Open Views/Courses/Index.cshtml and replace the template code with the following code. The changes are
highlighted:

@model IEnumerable<ContosoUniversity.Models.Course>

@{
 ViewData["Title"] = "Courses";
}

<h2>Courses</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.CourseID)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Credits)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.CourseID)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Credits)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Department.Name)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.CourseID">Edit |
 <a asp-action="Details" asp-route-id="@item.CourseID">Details |
 <a asp-action="Delete" asp-route-id="@item.CourseID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

You've made the following changes to the scaffolded code:

Changed the heading from Index to Courses.

Added a Number column that shows the CourseID property value. By default, primary keys aren't
scaffolded because normally they're meaningless to end users. However, in this case the primary key is
meaningful and you want to show it.

Changed the Department column to display the department name. The code displays the Name property
of the Department entity that's loaded into the Department navigation property:

Create an Instructors page that shows Courses and Enrollments

@Html.DisplayFor(modelItem => item.Department.Name)

Run the app and select the Courses tab to see the list with department names.

In this section, you'll create a controller and view for the Instructor entity in order to display the Instructors page:

This page reads and displays related data in the following ways:

The list of instructors displays related data from the OfficeAssignment entity. The Instructor and
OfficeAssignment entities are in a one-to-zero-or-one relationship. You'll use eager loading for the
OfficeAssignment entities. As explained earlier, eager loading is typically more efficient when you need the
related data for all retrieved rows of the primary table. In this case, you want to display office assignments
for all displayed instructors.

When the user selects an instructor, related Course entities are displayed. The Instructor and Course
entities are in a many-to-many relationship. You'll use eager loading for the Course entities and their
related Department entities. In this case, separate queries might be more efficient because you need
courses only for the selected instructor. However, this example shows how to use eager loading for
navigation properties within entities that are themselves in navigation properties.

When the user selects a course, related data from the Enrollments entity set is displayed. The Course and
Enrollment entities are in a one-to-many relationship. You'll use separate queries for Enrollment entities
and their related Student entities.

Create a view model for the Instructor Index viewCreate a view model for the Instructor Index view

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class InstructorIndexData
 {
 public IEnumerable<Instructor> Instructors { get; set; }
 public IEnumerable<Course> Courses { get; set; }
 public IEnumerable<Enrollment> Enrollments { get; set; }
 }
}

Create the Instructor controller and viewsCreate the Instructor controller and views

using ContosoUniversity.Models.SchoolViewModels;

The Instructors page shows data from three different tables. Therefore, you'll create a view model that includes
three properties, each holding the data for one of the tables.

In the SchoolViewModels folder, create InstructorIndexData.cs and replace the existing code with the following
code:

Create an Instructors controller with EF read/write actions as shown in the following illustration:

Open InstructorsController.cs and add a using statement for the ViewModels namespace:

Replace the Index method with the following code to do eager loading of related data and put it in the view
model.

public async Task<IActionResult> Index(int? id, int? courseID)
{
 var viewModel = new InstructorIndexData();
 viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 ViewData["InstructorID"] = id.Value;
 Instructor instructor = viewModel.Instructors.Where(
 i => i.ID == id.Value).Single();
 viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 ViewData["CourseID"] = courseID.Value;
 viewModel.Enrollments = viewModel.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
 }

 return View(viewModel);
}

viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

The method accepts optional route data (id) and a query string parameter (courseID) that provide the ID
values of the selected instructor and selected course. The parameters are provided by the Select hyperlinks on
the page.

The code begins by creating an instance of the view model and putting in it the list of instructors. The code
specifies eager loading for the Instructor.OfficeAssignment and the Instructor.CourseAssignments navigation
properties. Within the CourseAssignments property, the Course property is loaded, and within that, the
Enrollments and Department properties are loaded, and within each Enrollment entity the Student property is

loaded.

Since the view always requires the OfficeAssignment entity, it's more efficient to fetch that in the same query.
Course entities are required when an instructor is selected in the web page, so a single query is better than
multiple queries only if the page is displayed more often with a course selected than without.

The code repeats CourseAssignments and Course because you need two properties from Course . The first string

viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

if (id != null)
{
 ViewData["InstructorID"] = id.Value;
 Instructor instructor = viewModel.Instructors.Where(
 i => i.ID == id.Value).Single();
 viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
}

of ThenInclude calls gets CourseAssignment.Course , Course.Enrollments , and Enrollment.Student .

At that point in the code, another ThenInclude would be for navigation properties of Student , which you don't
need. But calling Include starts over with Instructor properties, so you have to go through the chain again, this
time specifying Course.Department instead of Course.Enrollments .

The following code executes when an instructor was selected. The selected instructor is retrieved from the list of
instructors in the view model. The view model's Courses property is then loaded with the Course entities from
that instructor's CourseAssignments navigation property.

The Where method returns a collection, but in this case the criteria passed to that method result in only a single
Instructor entity being returned. The Single method converts the collection into a single Instructor entity, which
gives you access to that entity's CourseAssignments property. The CourseAssignments property contains
CourseAssignment entities, from which you want only the related Course entities.

You use the Single method on a collection when you know the collection will have only one item. The Single
method throws an exception if the collection passed to it's empty or if there's more than one item. An alternative
is SingleOrDefault , which returns a default value (null in this case) if the collection is empty. However, in this case
that would still result in an exception (from trying to find a Courses property on a null reference), and the
exception message would less clearly indicate the cause of the problem. When you call the Single method, you
can also pass in the Where condition instead of calling the Where method separately:

.Single(i => i.ID == id.Value)

.Where(I => i.ID == id.Value).Single()

if (courseID != null)
{
 ViewData["CourseID"] = courseID.Value;
 viewModel.Enrollments = viewModel.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
}

Modify the Instructor Index viewModify the Instructor Index view

Instead of:

Next, if a course was selected, the selected course is retrieved from the list of courses in the view model. Then the
view model's Enrollments property is loaded with the Enrollment entities from that course's Enrollments

navigation property.

In Views/Instructors/Index.cshtml, replace the template code with the following code. The changes are
highlighted.

@model ContosoUniversity.Models.SchoolViewModels.InstructorIndexData

@{
 ViewData["Title"] = "Instructors";
}

<h2>Instructors</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>Last Name</th>
 <th>First Name</th>
 <th>Hire Date</th>
 <th>Office</th>
 <th>Courses</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Instructors)
 {
 string selectedRow = "";
 if (item.ID == (int?)ViewData["InstructorID"])
 {
 selectedRow = "success";
 }
 <tr class="@selectedRow">
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.HireDate)
 </td>
 <td>
 @if (item.OfficeAssignment != null)
 {
 @item.OfficeAssignment.Location
 }
 </td>
 <td>
 @{
 foreach (var course in item.CourseAssignments)
 {
 @course.Course.CourseID @: @course.Course.Title

 }
 }
 </td>
 <td>
 <a asp-action="Index" asp-route-id="@item.ID">Select |
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

You've made the following changes to the existing code:

@if (item.OfficeAssignment != null)
{
 @item.OfficeAssignment.Location
}

string selectedRow = "";
if (item.ID == (int?)ViewData["InstructorID"])
{
 selectedRow = "success";
}
<tr class="@selectedRow">

<a asp-action="Index" asp-route-id="@item.ID">Select |

Changed the model class to InstructorIndexData .

Changed the page title from Index to Instructors.

Added an Office column that displays item.OfficeAssignment.Location only if item.OfficeAssignment isn't
null. (Because this is a one-to-zero-or-one relationship, there might not be a related OfficeAssignment
entity.)

Added a Courses column that displays courses taught by each instructor. See Explicit Line Transition with
@: for more about this razor syntax.

Added code that dynamically adds class="success" to the tr element of the selected instructor. This sets
a background color for the selected row using a Bootstrap class.

Added a new hyperlink labeled Select immediately before the other links in each row, which causes the
selected instructor's ID to be sent to the Index method.

Run the app and select the Instructors tab. The page displays the Location property of related OfficeAssignment
entities and an empty table cell when there's no related OfficeAssignment entity.

In the Views/Instructors/Index.cshtml file, after the closing table element (at the end of the file), add the following
code. This code displays a list of courses related to an instructor when an instructor is selected.

@if (Model.Courses != null)
{
 <h3>Courses Taught by Selected Instructor</h3>
 <table class="table">
 <tr>
 <th></th>
 <th>Number</th>
 <th>Title</th>
 <th>Department</th>
 </tr>

 @foreach (var item in Model.Courses)
 {
 string selectedRow = "";
 if (item.CourseID == (int?)ViewData["CourseID"])
 {
 selectedRow = "success";
 }
 <tr class="@selectedRow">
 <td>
 @Html.ActionLink("Select", "Index", new { courseID = item.CourseID })
 </td>
 <td>
 @item.CourseID
 </td>
 <td>
 @item.Title
 </td>
 <td>
 @item.Department.Name
 </td>
 </tr>
 }

 </table>
}

This code reads the Courses property of the view model to display a list of courses. It also provides a Select
hyperlink that sends the ID of the selected course to the Index action method.

Refresh the page and select an instructor. Now you see a grid that displays courses assigned to the selected
instructor, and for each course you see the name of the assigned department.

@if (Model.Enrollments != null)
{
 <h3>
 Students Enrolled in Selected Course
 </h3>
 <table class="table">
 <tr>
 <th>Name</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Enrollments)
 {
 <tr>
 <td>
 @item.Student.FullName
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
}

After the code block you just added, add the following code. This displays a list of the students who are enrolled
in a course when that course is selected.

This code reads the Enrollments property of the view model in order to display a list of students enrolled in the
course.

Refresh the page again and select an instructor. Then select a course to see the list of enrolled students and their

Explicit loading

grades.

When you retrieved the list of instructors in InstructorsController.cs, you specified eager loading for the
CourseAssignments navigation property.

Suppose you expected users to only rarely want to see enrollments in a selected instructor and course. In that
case, you might want to load the enrollment data only if it's requested. To see an example of how to do explicit
loading, replace the Index method with the following code, which removes eager loading for Enrollments and
loads that property explicitly. The code changes are highlighted.

public async Task<IActionResult> Index(int? id, int? courseID)
{
 var viewModel = new InstructorIndexData();
 viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 ViewData["InstructorID"] = id.Value;
 Instructor instructor = viewModel.Instructors.Where(
 i => i.ID == id.Value).Single();
 viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 ViewData["CourseID"] = courseID.Value;
 var selectedCourse = viewModel.Courses.Where(x => x.CourseID == courseID).Single();
 await _context.Entry(selectedCourse).Collection(x => x.Enrollments).LoadAsync();
 foreach (Enrollment enrollment in selectedCourse.Enrollments)
 {
 await _context.Entry(enrollment).Reference(x => x.Student).LoadAsync();
 }
 viewModel.Enrollments = selectedCourse.Enrollments;
 }

 return View(viewModel);
}

Summary

The new code drops the ThenInclude method calls for enrollment data from the code that retrieves instructor
entities. If an instructor and course are selected, the highlighted code retrieves Enrollment entities for the selected
course, and Student entities for each Enrollment.

Run the app, go to the Instructors Index page now and you'll see no difference in what's displayed on the page,
although you've changed how the data is retrieved.

You've now used eager loading with one query and with multiple queries to read related data into navigation
properties. In the next tutorial you'll learn how to update related data.

 P R E V IO U S N E X T

ASP.NET Core MVC with EF Core - Update Related
Data - 7 of 10
5/14/2018 • 18 minutes to read • Edit Online

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the first
tutorial in the series.

In the previous tutorial you displayed related data; in this tutorial you'll update related data by updating foreign
key fields and navigation properties.

The following illustrations show some of the pages that you'll work with.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/update-related-data.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT

Customize the Create and Edit Pages for Courses

public IActionResult Create()
{
 PopulateDepartmentsDropDownList();
 return View();
}

When a new course entity is created, it must have a relationship to an existing department. To facilitate this, the
scaffolded code includes controller methods and Create and Edit views that include a drop-down list for selecting
the department. The drop-down list sets the Course.DepartmentID foreign key property, and that's all the Entity
Framework needs in order to load the Department navigation property with the appropriate Department entity.
You'll use the scaffolded code, but change it slightly to add error handling and sort the drop-down list.

In CoursesController.cs, delete the four Create and Edit methods and replace them with the following code:

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create([Bind("CourseID,Credits,DepartmentID,Title")] Course course)
{
 if (ModelState.IsValid)
 {
 _context.Add(course);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 PopulateDepartmentsDropDownList(course.DepartmentID);
 return View(course);
}

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var course = await _context.Courses
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.CourseID == id);
 if (course == null)
 {
 return NotFound();
 }
 PopulateDepartmentsDropDownList(course.DepartmentID);
 return View(course);
}

[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var courseToUpdate = await _context.Courses
 .SingleOrDefaultAsync(c => c.CourseID == id);

 if (await TryUpdateModelAsync<Course>(courseToUpdate,
 "",
 c => c.Credits, c => c.DepartmentID, c => c.Title))
 {
 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 return RedirectToAction(nameof(Index));
 }
 PopulateDepartmentsDropDownList(courseToUpdate.DepartmentID);
 return View(courseToUpdate);
}

private void PopulateDepartmentsDropDownList(object selectedDepartment = null)
{
 var departmentsQuery = from d in _context.Departments
 orderby d.Name
 select d;
 ViewBag.DepartmentID = new SelectList(departmentsQuery.AsNoTracking(), "DepartmentID", "Name",
selectedDepartment);
}

public IActionResult Create()
{
 PopulateDepartmentsDropDownList();
 return View();
}

After the Edit HttpPost method, create a new method that loads department info for the drop-down list.

The PopulateDepartmentsDropDownList method gets a list of all departments sorted by name, creates a SelectList

collection for a drop-down list, and passes the collection to the view in ViewBag . The method accepts the optional
selectedDepartment parameter that allows the calling code to specify the item that will be selected when the drop-

down list is rendered. The view will pass the name "DepartmentID" to the <select> tag helper, and the helper
then knows to look in the ViewBag object for a SelectList named "DepartmentID".

The HttpGet Create method calls the PopulateDepartmentsDropDownList method without setting the selected item,
because for a new course the department isn't established yet:

The HttpGet Edit method sets the selected item, based on the ID of the department that's already assigned to

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var course = await _context.Courses
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.CourseID == id);
 if (course == null)
 {
 return NotFound();
 }
 PopulateDepartmentsDropDownList(course.DepartmentID);
 return View(course);
}

Add .AsNoTracking to Details and Delete methodsAdd .AsNoTracking to Details and Delete methods

public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var course = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.CourseID == id);
 if (course == null)
 {
 return NotFound();
 }

 return View(course);
}

the course being edited:

The HttpPost methods for both Create and Edit also include code that sets the selected item when they
redisplay the page after an error. This ensures that when the page is redisplayed to show the error message,
whatever department was selected stays selected.

To optimize performance of the Course Details and Delete pages, add AsNoTracking calls in the Details and
HttpGet Delete methods.

public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var course = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.CourseID == id);
 if (course == null)
 {
 return NotFound();
 }

 return View(course);
}

Modify the Course viewsModify the Course views

<div class="form-group">
 <label asp-for="Department" class="control-label"></label>
 <select asp-for="DepartmentID" class="form-control" asp-items="ViewBag.DepartmentID">
 <option value="">-- Select Department --</option>
 </select>

<div class="form-group">
 <label asp-for="CourseID" class="control-label"></label>
 <div>@Html.DisplayFor(model => model.CourseID)</div>
</div>

In Views/Courses/Create.cshtml, add a "Select Department" option to the Department drop-down list, change
the caption from DepartmentID to Department, and add a validation message.

In Views/Courses/Edit.cshtml, make the same change for the Department field that you just did in Create.cshtml.

Also in Views/Courses/Edit.cshtml, add a course number field before the Title field. Because the course number is
the primary key, it's displayed, but it can't be changed.

There's already a hidden field (<input type="hidden">) for the course number in the Edit view. Adding a <label>

tag helper doesn't eliminate the need for the hidden field because it doesn't cause the course number to be
included in the posted data when the user clicks Save on the Edit page.

In Views/Courses/Delete.cshtml, add a course number field at the top and change department ID to department
name.

@model ContosoUniversity.Models.Course

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Course</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.CourseID)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.CourseID)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Title)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Title)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Credits)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Credits)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Name)
 </dd>
 </dl>

 <form asp-action="Delete">
 <div class="form-actions no-color">
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-action="Index">Back to List
 </div>
 </form>
</div>

Test the Course pagesTest the Course pages

In Views/Courses/Details.cshtml, make the same change that you just did for Delete.cshtml.

Run the app, select the Courses tab, click Create New, and enter data for a new course:

Click Create. The Courses Index page is displayed with the new course added to the list. The department name in
the Index page list comes from the navigation property, showing that the relationship was established correctly.

Click Edit on a course in the Courses Index page.

Add an Edit Page for Instructors

Update the Instructors controllerUpdate the Instructors controller

Change data on the page and click Save. The Courses Index page is displayed with the updated course data.

When you edit an instructor record, you want to be able to update the instructor's office assignment. The
Instructor entity has a one-to-zero-or-one relationship with the OfficeAssignment entity, which means your code
has to handle the following situations:

If the user clears the office assignment and it originally had a value, delete the OfficeAssignment entity.

If the user enters an office assignment value and it originally was empty, create a new OfficeAssignment
entity.

If the user changes the value of an office assignment, change the value in an existing OfficeAssignment
entity.

In InstructorsController.cs, change the code in the HttpGet Edit method so that it loads the Instructor entity's
OfficeAssignment navigation property and calls AsNoTracking :

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.ID == id);
 if (instructor == null)
 {
 return NotFound();
 }
 return View(instructor);
}

[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .SingleOrDefaultAsync(s => s.ID == id);

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "",
 i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 return RedirectToAction(nameof(Index));
 }
 return View(instructorToUpdate);
}

Replace the HttpPost Edit method with the following code to handle office assignment updates:

The code does the following:

Changes the method name to EditPost because the signature is now the same as the HttpGet Edit

method (the ActionName attribute specifies that the /Edit/ URL is still used).

Gets the current Instructor entity from the database using eager loading for the OfficeAssignment

Update the Instructor Edit viewUpdate the Instructor Edit view

<div class="form-group">
 <label asp-for="OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="OfficeAssignment.Location" class="form-control" />

</div>

if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "",
 i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))

if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
{
 instructorToUpdate.OfficeAssignment = null;
}

navigation property. This is the same as what you did in the HttpGet Edit method.

Updates the retrieved Instructor entity with values from the model binder. The TryUpdateModel overload
enables you to whitelist the properties you want to include. This prevents over-posting, as explained in the
second tutorial.

If the office location is blank, sets the Instructor.OfficeAssignment property to null so that the related row
in the OfficeAssignment table will be deleted.

Saves the changes to the database.

In Views/Instructors/Edit.cshtml, add a new field for editing the office location, at the end before the Save button:

Run the app, select the Instructors tab, and then click Edit on an instructor. Change the Office Location and
click Save.

Add Course assignments to the Instructor Edit page
Instructors may teach any number of courses. Now you'll enhance the Instructor Edit page by adding the ability to
change course assignments using a group of check boxes, as shown in the following screen shot:

Update the Instructors controllerUpdate the Instructors controller

The relationship between the Course and Instructor entities is many-to-many. To add and remove relationships,
you add and remove entities to and from the CourseAssignments join entity set.

The UI that enables you to change which courses an instructor is assigned to is a group of check boxes. A check
box for every course in the database is displayed, and the ones that the instructor is currently assigned to are
selected. The user can select or clear check boxes to change course assignments. If the number of courses were
much greater, you would probably want to use a different method of presenting the data in the view, but you'd use
the same method of manipulating a join entity to create or delete relationships.

To provide data to the view for the list of check boxes, you'll use a view model class.

Create AssignedCourseData.cs in the SchoolViewModels folder and replace the existing code with the following
code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class AssignedCourseData
 {
 public int CourseID { get; set; }
 public string Title { get; set; }
 public bool Assigned { get; set; }
 }
}

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments).ThenInclude(i => i.Course)
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.ID == id);
 if (instructor == null)
 {
 return NotFound();
 }
 PopulateAssignedCourseData(instructor);
 return View(instructor);
}

private void PopulateAssignedCourseData(Instructor instructor)
{
 var allCourses = _context.Courses;
 var instructorCourses = new HashSet<int>(instructor.CourseAssignments.Select(c => c.CourseID));
 var viewModel = new List<AssignedCourseData>();
 foreach (var course in allCourses)
 {
 viewModel.Add(new AssignedCourseData
 {
 CourseID = course.CourseID,
 Title = course.Title,
 Assigned = instructorCourses.Contains(course.CourseID)
 });
 }
 ViewData["Courses"] = viewModel;
}

In InstructorsController.cs, replace the HttpGet Edit method with the following code. The changes are
highlighted.

The code adds eager loading for the Courses navigation property and calls the new PopulateAssignedCourseData

method to provide information for the check box array using the AssignedCourseData view model class.

The code in the PopulateAssignedCourseData method reads through all Course entities in order to load a list of
courses using the view model class. For each course, the code checks whether the course exists in the instructor's
Courses navigation property. To create efficient lookup when checking whether a course is assigned to the

instructor, the courses assigned to the instructor are put into a HashSet collection. The Assigned property is set to

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int? id, string[] selectedCourses)
{
 if (id == null)
 {
 return NotFound();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .SingleOrDefaultAsync(m => m.ID == id);

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "",
 i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 UpdateInstructorCourses(selectedCourses, instructorToUpdate);
 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 return RedirectToAction(nameof(Index));
 }
 UpdateInstructorCourses(selectedCourses, instructorToUpdate);
 PopulateAssignedCourseData(instructorToUpdate);
 return View(instructorToUpdate);
}

true for courses the instructor is assigned to. The view will use this property to determine which check boxes must
be displayed as selected. Finally, the list is passed to the view in ViewData .

Next, add the code that's executed when the user clicks Save. Replace the EditPost method with the following
code, and add a new method that updates the Courses navigation property of the Instructor entity.

private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in _context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID =
instructorToUpdate.ID, CourseID = course.CourseID });
 }
 }
 else
 {

 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.SingleOrDefault(i =>
i.CourseID == course.CourseID);
 _context.Remove(courseToRemove);
 }
 }
 }
}

The method signature is now different from the HttpGet Edit method, so the method name changes from
EditPost back to Edit .

Since the view doesn't have a collection of Course entities, the model binder can't automatically update the
CourseAssignments navigation property. Instead of using the model binder to update the CourseAssignments

navigation property, you do that in the new UpdateInstructorCourses method. Therefore you need to exclude the
CourseAssignments property from model binding. This doesn't require any change to the code that calls
TryUpdateModel because you're using the whitelisting overload and CourseAssignments isn't in the include list.

If no check boxes were selected, the code in UpdateInstructorCourses initializes the CourseAssignments navigation
property with an empty collection and returns:

private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in _context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID =
instructorToUpdate.ID, CourseID = course.CourseID });
 }
 }
 else
 {

 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.SingleOrDefault(i =>
i.CourseID == course.CourseID);
 _context.Remove(courseToRemove);
 }
 }
 }
}

The code then loops through all courses in the database and checks each course against the ones currently
assigned to the instructor versus the ones that were selected in the view. To facilitate efficient lookups, the latter
two collections are stored in HashSet objects.

If the check box for a course was selected but the course isn't in the Instructor.CourseAssignments navigation
property, the course is added to the collection in the navigation property.

private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in _context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID =
instructorToUpdate.ID, CourseID = course.CourseID });
 }
 }
 else
 {

 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.SingleOrDefault(i =>
i.CourseID == course.CourseID);
 _context.Remove(courseToRemove);
 }
 }
 }
}

If the check box for a course wasn't selected, but the course is in the Instructor.CourseAssignments navigation
property, the course is removed from the navigation property.

private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in _context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID =
instructorToUpdate.ID, CourseID = course.CourseID });
 }
 }
 else
 {

 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.SingleOrDefault(i =>
i.CourseID == course.CourseID);
 _context.Remove(courseToRemove);
 }
 }
 }
}

Update the Instructor viewsUpdate the Instructor views

NOTENOTE

In Views/Instructors/Edit.cshtml, add a Courses field with an array of check boxes by adding the following code
immediately after the div elements for the Office field and before the div element for the Save button.

When you paste the code in Visual Studio, line breaks will be changed in a way that breaks the code. Press Ctrl+Z one time
to undo the automatic formatting. This will fix the line breaks so that they look like what you see here. The indentation
doesn't have to be perfect, but the @</tr><tr> , @:<td> , @:</td> , and @:</tr> lines must each be on a single line as
shown or you'll get a runtime error. With the block of new code selected, press Tab three times to line up the new code with
the existing code. You can check the status of this problem here.

https://developercommunity.visualstudio.com/content/problem/147795/razor-editor-malforms-pasted-markup-and-creates-in.html

<div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <table>
 <tr>
 @{
 int cnt = 0;
 List<ContosoUniversity.Models.SchoolViewModels.AssignedCourseData> courses =
ViewBag.Courses;

 foreach (var course in courses)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
</div>

This code creates an HTML table that has three columns. In each column is a check box followed by a caption that
consists of the course number and title. The check boxes all have the same name ("selectedCourses"), which
informs the model binder that they're to be treated as a group. The value attribute of each check box is set to the
value of CourseID . When the page is posted, the model binder passes an array to the controller that consists of
the CourseID values for only the check boxes which are selected.

When the check boxes are initially rendered, those that are for courses assigned to the instructor have checked
attributes, which selects them (displays them checked).

Run the app, select the Instructors tab, and click Edit on an instructor to see the Edit page.

NOTENOTE

Update the Delete page

Change some course assignments and click Save. The changes you make are reflected on the Index page.

The approach taken here to edit instructor course data works well when there's a limited number of courses. For collections
that are much larger, a different UI and a different updating method would be required.

In InstructorsController.cs, delete the DeleteConfirmed method and insert the following code in its place.

[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 Instructor instructor = await _context.Instructors
 .Include(i => i.CourseAssignments)
 .SingleAsync(i => i.ID == id);

 var departments = await _context.Departments
 .Where(d => d.InstructorID == id)
 .ToListAsync();
 departments.ForEach(d => d.InstructorID = null);

 _context.Instructors.Remove(instructor);

 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
}

Add office location and courses to the Create page

This code makes the following changes:

Does eager loading for the CourseAssignments navigation property. You have to include this or EF won't
know about related CourseAssignment entities and won't delete them. To avoid needing to read them here
you could configure cascade delete in the database.

If the instructor to be deleted is assigned as administrator of any departments, removes the instructor
assignment from those departments.

In InstructorsController.cs, delete the HttpGet and HttpPost Create methods, and then add the following code in
their place:

public IActionResult Create()
{
 var instructor = new Instructor();
 instructor.CourseAssignments = new List<CourseAssignment>();
 PopulateAssignedCourseData(instructor);
 return View();
}

// POST: Instructors/Create
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create([Bind("FirstMidName,HireDate,LastName,OfficeAssignment")] Instructor
instructor, string[] selectedCourses)
{
 if (selectedCourses != null)
 {
 instructor.CourseAssignments = new List<CourseAssignment>();
 foreach (var course in selectedCourses)
 {
 var courseToAdd = new CourseAssignment { InstructorID = instructor.ID, CourseID =
int.Parse(course) };
 instructor.CourseAssignments.Add(courseToAdd);
 }
 }
 if (ModelState.IsValid)
 {
 _context.Add(instructor);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 PopulateAssignedCourseData(instructor);
 return View(instructor);
}

instructor.CourseAssignments = new List<CourseAssignment>();

This code is similar to what you saw for the Edit methods except that initially no courses are selected. The
HttpGet Create method calls the PopulateAssignedCourseData method not because there might be courses
selected but in order to provide an empty collection for the foreach loop in the view (otherwise the view code
would throw a null reference exception).

The HttpPost Create method adds each selected course to the CourseAssignments navigation property before it
checks for validation errors and adds the new instructor to the database. Courses are added even if there are
model errors so that when there are model errors (for an example, the user keyed an invalid date), and the page is
redisplayed with an error message, any course selections that were made are automatically restored.

Notice that in order to be able to add courses to the CourseAssignments navigation property you have to initialize
the property as an empty collection:

As an alternative to doing this in controller code, you could do it in the Instructor model by changing the property
getter to automatically create the collection if it doesn't exist, as shown in the following example:

private ICollection<CourseAssignment> _courseAssignments;
public ICollection<CourseAssignment> CourseAssignments
{
 get
 {
 return _courseAssignments ?? (_courseAssignments = new List<CourseAssignment>());
 }
 set
 {
 _courseAssignments = value;
 }
}

<div class="form-group">
 <label asp-for="OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="OfficeAssignment.Location" class="form-control" />

</div>

<div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <table>
 <tr>
 @{
 int cnt = 0;
 List<ContosoUniversity.Models.SchoolViewModels.AssignedCourseData> courses =
ViewBag.Courses;

 foreach (var course in courses)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
</div>

Handling Transactions

If you modify the CourseAssignments property in this way, you can remove the explicit property initialization code
in the controller.

In Views/Instructor/Create.cshtml, add an office location text box and check boxes for courses before the Submit
button. As in the case of the Edit page, fix the formatting if Visual Studio reformats the code when you paste it.

Test by running the app and creating an instructor.

As explained in the CRUD tutorial, the Entity Framework implicitly implements transactions. For scenarios where
you need more control -- for example, if you want to include operations done outside of Entity Framework in a
transaction -- see Transactions.

https://docs.microsoft.com/ef/core/saving/transactions

Summary
You have now completed the introduction to working with related data. In the next tutorial you'll see how to
handle concurrency conflicts.

 P R E V IO U S N E X T

ASP.NET Core MVC with EF Core - Concurrency - 8
of 10
5/14/2018 • 18 minutes to read • Edit Online

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the first
tutorial in the series.

In earlier tutorials, you learned how to update data. This tutorial shows how to handle conflicts when multiple
users update the same entity at the same time.

You'll create web pages that work with the Department entity and handle concurrency errors. The following
illustrations show the Edit and Delete pages, including some messages that are displayed if a concurrency conflict
occurs.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/concurrency.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT

Concurrency conflicts

Pessimistic concurrency (locking)Pessimistic concurrency (locking)

Optimistic ConcurrencyOptimistic Concurrency

A concurrency conflict occurs when one user displays an entity's data in order to edit it, and then another user
updates the same entity's data before the first user's change is written to the database. If you don't enable the
detection of such conflicts, whoever updates the database last overwrites the other user's changes. In many
applications, this risk is acceptable: if there are few users, or few updates, or if isn't really critical if some changes
are overwritten, the cost of programming for concurrency might outweigh the benefit. In that case, you don't have
to configure the application to handle concurrency conflicts.

If your application does need to prevent accidental data loss in concurrency scenarios, one way to do that is to use
database locks. This is called pessimistic concurrency. For example, before you read a row from a database, you
request a lock for read-only or for update access. If you lock a row for update access, no other users are allowed to
lock the row either for read-only or update access, because they would get a copy of data that's in the process of
being changed. If you lock a row for read-only access, others can also lock it for read-only access but not for
update.

Managing locks has disadvantages. It can be complex to program. It requires significant database management
resources, and it can cause performance problems as the number of users of an application increases. For these
reasons, not all database management systems support pessimistic concurrency. Entity Framework Core provides
no built-in support for it, and this tutorial doesn't show you how to implement it.

The alternative to pessimistic concurrency is optimistic concurrency. Optimistic concurrency means allowing
concurrency conflicts to happen, and then reacting appropriately if they do. For example, Jane visits the
Department Edit page and changes the Budget amount for the English department from $350,000.00 to $0.00.

Before Jane clicks Save, John visits the same page and changes the Start Date field from 9/1/2007 to 9/1/2013.

Detecting concurrency conflictsDetecting concurrency conflicts

Jane clicks Save first and sees her change when the browser returns to the Index page.

Then John clicks Save on an Edit page that still shows a budget of $350,000.00. What happens next is determined
by how you handle concurrency conflicts.

Some of the options include the following:

You can keep track of which property a user has modified and update only the corresponding columns in
the database.

In the example scenario, no data would be lost, because different properties were updated by the two users.
The next time someone browses the English department, they will see both Jane's and John's changes -- a
start date of 9/1/2013 and a budget of zero dollars. This method of updating can reduce the number of
conflicts that could result in data loss, but it can't avoid data loss if competing changes are made to the
same property of an entity. Whether the Entity Framework works this way depends on how you implement
your update code. It's often not practical in a web application, because it can require that you maintain large
amounts of state in order to keep track of all original property values for an entity as well as new values.
Maintaining large amounts of state can affect application performance because it either requires server
resources or must be included in the web page itself (for example, in hidden fields) or in a cookie.

You can let John's change overwrite Jane's change.

The next time someone browses the English department, they will see 9/1/2013 and the restored
$350,000.00 value. This is called a Client Wins or Last in Wins scenario. (All values from the client take
precedence over what's in the data store.) As noted in the introduction to this section, if you don't do any
coding for concurrency handling, this will happen automatically.

You can prevent John's change from being updated in the database.

Typically, you would display an error message, show him the current state of the data, and allow him to
reapply his changes if he still wants to make them. This is called a Store Wins scenario. (The data-store
values take precedence over the values submitted by the client.) You'll implement the Store Wins scenario
in this tutorial. This method ensures that no changes are overwritten without a user being alerted to what's
happening.

You can resolve conflicts by handling DbConcurrencyException exceptions that the Entity Framework throws. In
order to know when to throw these exceptions, the Entity Framework must be able to detect conflicts. Therefore,
you must configure the database and the data model appropriately. Some options for enabling conflict detection
include the following:

In the database table, include a tracking column that can be used to determine when a row has been

Add a tracking property to the Department entity

changed. You can then configure the Entity Framework to include that column in the Where clause of SQL
Update or Delete commands.

The data type of the tracking column is typically rowversion . The rowversion value is a sequential number
that's incremented each time the row is updated. In an Update or Delete command, the Where clause
includes the original value of the tracking column (the original row version) . If the row being updated has
been changed by another user, the value in the rowversion column is different than the original value, so
the Update or Delete statement can't find the row to update because of the Where clause. When the Entity
Framework finds that no rows have been updated by the Update or Delete command (that is, when the
number of affected rows is zero), it interprets that as a concurrency conflict.

Configure the Entity Framework to include the original values of every column in the table in the Where
clause of Update and Delete commands.

As in the first option, if anything in the row has changed since the row was first read, the Where clause
won't return a row to update, which the Entity Framework interprets as a concurrency conflict. For database
tables that have many columns, this approach can result in very large Where clauses, and can require that
you maintain large amounts of state. As noted earlier, maintaining large amounts of state can affect
application performance. Therefore this approach is generally not recommended, and it isn't the method
used in this tutorial.

If you do want to implement this approach to concurrency, you have to mark all non-primary-key
properties in the entity you want to track concurrency for by adding the ConcurrencyCheck attribute to
them. That change enables the Entity Framework to include all columns in the SQL Where clause of
Update and Delete statements.

In the remainder of this tutorial you'll add a rowversion tracking property to the Department entity, create a
controller and views, and test to verify that everything works correctly.

In Models/Department.cs, add a tracking property named RowVersion:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 [Timestamp]
 public byte[] RowVersion { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

modelBuilder.Entity<Department>()
 .Property(p => p.RowVersion).IsConcurrencyToken();

dotnet ef migrations add RowVersion

dotnet ef database update

Create a Departments controller and views

The Timestamp attribute specifies that this column will be included in the Where clause of Update and Delete
commands sent to the database. The attribute is called Timestamp because previous versions of SQL Server used
a SQL timestamp data type before the SQL rowversion replaced it. The .NET type for rowversion is a byte array.

If you prefer to use the fluent API, you can use the IsConcurrencyToken method (in Data/SchoolContext.cs) to
specify the tracking property, as shown in the following example:

By adding a property you changed the database model, so you need to do another migration.

Save your changes and build the project, and then enter the following commands in the command window:

Scaffold a Departments controller and views as you did earlier for Students, Courses, and Instructors.

ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName", department.InstructorID);

Update the Departments Index view

In the DepartmentsController.cs file, change all four occurrences of "FirstMidName" to "FullName" so that the
department administrator drop-down lists will contain the full name of the instructor rather than just the last
name.

The scaffolding engine created a RowVersion column in the Index view, but that field shouldn't be displayed.

Replace the code in Views/Departments/Index.cshtml with the following code.

@model IEnumerable<ContosoUniversity.Models.Department>

@{
 ViewData["Title"] = "Departments";
}

<h2>Departments</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Name)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Budget)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.StartDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Administrator)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Budget)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.StartDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Administrator.FullName)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.DepartmentID">Edit |
 <a asp-action="Details" asp-route-id="@item.DepartmentID">Details |
 <a asp-action="Delete" asp-route-id="@item.DepartmentID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Update the Edit methods in the Departments controller

This changes the heading to "Departments", deletes the RowVersion column, and shows full name instead of first
name for the administrator.

In both the HttpGet Edit method and the Details method, add AsNoTracking . In the HttpGet Edit method,
add eager loading for the Administrator.

var department = await _context.Departments
 .Include(i => i.Administrator)
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.DepartmentID == id);

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int? id, byte[] rowVersion)
{
 if (id == null)
 {
 return NotFound();
 }

 var departmentToUpdate = await _context.Departments.Include(i => i.Administrator).SingleOrDefaultAsync(m
=> m.DepartmentID == id);

 if (departmentToUpdate == null)
 {
 Department deletedDepartment = new Department();
 await TryUpdateModelAsync(deletedDepartment);
 ModelState.AddModelError(string.Empty,
 "Unable to save changes. The department was deleted by another user.");
 ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName",
deletedDepartment.InstructorID);
 return View(deletedDepartment);
 }

 _context.Entry(departmentToUpdate).Property("RowVersion").OriginalValue = rowVersion;

 if (await TryUpdateModelAsync<Department>(
 departmentToUpdate,
 "",
 s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
 {
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty,
 "Unable to save changes. The department was deleted by another user.");
 }
 else
 {
 var databaseValues = (Department)databaseEntry.ToObject();

 if (databaseValues.Name != clientValues.Name)
 {
 ModelState.AddModelError("Name", $"Current value: {databaseValues.Name}");
 }
 if (databaseValues.Budget != clientValues.Budget)
 {
 ModelState.AddModelError("Budget", $"Current value: {databaseValues.Budget:c}");
 }
 if (databaseValues.StartDate != clientValues.StartDate)
 {

Replace the existing code for the HttpPost Edit method with the following code:

 ModelState.AddModelError("StartDate", $"Current value: {databaseValues.StartDate:d}");
 }
 if (databaseValues.InstructorID != clientValues.InstructorID)
 {
 Instructor databaseInstructor = await _context.Instructors.SingleOrDefaultAsync(i => i.ID
== databaseValues.InstructorID);
 ModelState.AddModelError("InstructorID", $"Current value:
{databaseInstructor?.FullName}");
 }

 ModelState.AddModelError(string.Empty, "The record you attempted to edit "
 + "was modified by another user after you got the original value. The "
 + "edit operation was canceled and the current values in the database "
 + "have been displayed. If you still want to edit this record, click "
 + "the Save button again. Otherwise click the Back to List hyperlink.");
 departmentToUpdate.RowVersion = (byte[])databaseValues.RowVersion;
 ModelState.Remove("RowVersion");
 }
 }
 }
 ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName",
departmentToUpdate.InstructorID);
 return View(departmentToUpdate);
}

_context.Entry(departmentToUpdate).Property("RowVersion").OriginalValue = rowVersion;

var exceptionEntry = ex.Entries.Single();

var clientValues = (Department)exceptionEntry.Entity;
var databaseEntry = exceptionEntry.GetDatabaseValues();

The code begins by trying to read the department to be updated. If the SingleOrDefaultAsync method returns null,
the department was deleted by another user. In that case the code uses the posted form values to create a
department entity so that the Edit page can be redisplayed with an error message. As an alternative, you wouldn't
have to re-create the department entity if you display only an error message without redisplaying the department
fields.

The view stores the original RowVersion value in a hidden field, and this method receives that value in the
rowVersion parameter. Before you call SaveChanges , you have to put that original RowVersion property value in

the OriginalValues collection for the entity.

Then when the Entity Framework creates a SQL UPDATE command, that command will include a WHERE clause
that looks for a row that has the original RowVersion value. If no rows are affected by the UPDATE command (no
rows have the original RowVersion value), the Entity Framework throws a DbUpdateConcurrencyException

exception.

The code in the catch block for that exception gets the affected Department entity that has the updated values
from the Entries property on the exception object.

The Entries collection will have just one EntityEntry object. You can use that object to get the new values
entered by the user and the current database values.

The code adds a custom error message for each column that has database values different from what the user
entered on the Edit page (only one field is shown here for brevity).

var databaseValues = (Department)databaseEntry.ToObject();

if (databaseValues.Name != clientValues.Name)
{
 ModelState.AddModelError("Name", $"Current value: {databaseValues.Name}");

departmentToUpdate.RowVersion = (byte[])databaseValues.RowVersion;
ModelState.Remove("RowVersion");

Update the Department Edit view

Finally, the code sets the RowVersion value of the departmentToUpdate to the new value retrieved from the
database. This new RowVersion value will be stored in the hidden field when the Edit page is redisplayed, and the
next time the user clicks Save, only concurrency errors that happen since the redisplay of the Edit page will be
caught.

The ModelState.Remove statement is required because ModelState has the old RowVersion value. In the view, the
ModelState value for a field takes precedence over the model property values when both are present.

In Views/Departments/Edit.cshtml, make the following changes:

Add a hidden field to save the RowVersion property value, immediately following the hidden field for the
DepartmentID property.

Add a "Select Administrator" option to the drop-down list.

@model ContosoUniversity.Models.Department

@{
 ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<h4>Department</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Edit">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="DepartmentID" />
 <input type="hidden" asp-for="RowVersion" />
 <div class="form-group">
 <label asp-for="Name" class="control-label"></label>
 <input asp-for="Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Budget" class="control-label"></label>
 <input asp-for="Budget" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="StartDate" class="control-label"></label>
 <input asp-for="StartDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="InstructorID" class="control-label"></label>
 <select asp-for="InstructorID" class="form-control" asp-items="ViewBag.InstructorID">
 <option value="">-- Select Administrator --</option>
 </select>

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Test concurrency conflicts in the Edit page
Run the app and go to the Departments Index page. Right-click the Edit hyperlink for the English department and
select Open in new tab, then click the Edit hyperlink for the English department. The two browser tabs now
display the same information.

Change a field in the first browser tab and click Save.

The browser shows the Index page with the changed value.

Change a field in the second browser tab.

Click Save. You see an error message:

Update the Delete page

Update the Delete methods in the Departments controllerUpdate the Delete methods in the Departments controller

Click Save again. The value you entered in the second browser tab is saved. You see the saved values when the
Index page appears.

For the Delete page, the Entity Framework detects concurrency conflicts caused by someone else editing the
department in a similar manner. When the HttpGet Delete method displays the confirmation view, the view
includes the original RowVersion value in a hidden field. That value is then available to the HttpPost Delete

method that's called when the user confirms the deletion. When the Entity Framework creates the SQL DELETE
command, it includes a WHERE clause with the original RowVersion value. If the command results in zero rows
affected (meaning the row was changed after the Delete confirmation page was displayed), a concurrency
exception is thrown, and the HttpGet Delete method is called with an error flag set to true in order to redisplay
the confirmation page with an error message. It's also possible that zero rows were affected because the row was
deleted by another user, so in that case no error message is displayed.

In DepartmentsController.cs, replace the HttpGet Delete method with the following code:

public async Task<IActionResult> Delete(int? id, bool? concurrencyError)
{
 if (id == null)
 {
 return NotFound();
 }

 var department = await _context.Departments
 .Include(d => d.Administrator)
 .AsNoTracking()
 .SingleOrDefaultAsync(m => m.DepartmentID == id);
 if (department == null)
 {
 if (concurrencyError.GetValueOrDefault())
 {
 return RedirectToAction(nameof(Index));
 }
 return NotFound();
 }

 if (concurrencyError.GetValueOrDefault())
 {
 ViewData["ConcurrencyErrorMessage"] = "The record you attempted to delete "
 + "was modified by another user after you got the original values. "
 + "The delete operation was canceled and the current values in the "
 + "database have been displayed. If you still want to delete this "
 + "record, click the Delete button again. Otherwise "
 + "click the Back to List hyperlink.";
 }

 return View(department);
}

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(Department department)
{
 try
 {
 if (await _context.Departments.AnyAsync(m => m.DepartmentID == department.DepartmentID))
 {
 _context.Departments.Remove(department);
 await _context.SaveChangesAsync();
 }
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateConcurrencyException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction(nameof(Delete), new { concurrencyError = true, id = department.DepartmentID
});
 }
}

The method accepts an optional parameter that indicates whether the page is being redisplayed after a
concurrency error. If this flag is true and the department specified no longer exists, it was deleted by another user.
In that case, the code redirects to the Index page. If this flag is true and the Department does exist, it was changed
by another user. In that case, the code sends an error message to the view using ViewData .

Replace the code in the HttpPost Delete method (named DeleteConfirmed) with the following code:

In the scaffolded code that you just replaced, this method accepted only a record ID:

public async Task<IActionResult> DeleteConfirmed(int id)

public async Task<IActionResult> Delete(Department department)

Update the Delete viewUpdate the Delete view

You've changed this parameter to a Department entity instance created by the model binder. This gives EF access
to the RowVersion property value in addition to the record key.

You have also changed the action method name from DeleteConfirmed to Delete . The scaffolded code used the
name DeleteConfirmed to give the HttpPost method a unique signature. (The CLR requires overloaded methods
to have different method parameters.) Now that the signatures are unique, you can stick with the MVC
convention and use the same name for the HttpPost and HttpGet delete methods.

If the department is already deleted, the AnyAsync method returns false and the application just goes back to the
Index method.

If a concurrency error is caught, the code redisplays the Delete confirmation page and provides a flag that
indicates it should display a concurrency error message.

In Views/Departments/Delete.cshtml, replace the scaffolded code with the following code that adds an error
message field and hidden fields for the DepartmentID and RowVersion properties. The changes are highlighted.

@model ContosoUniversity.Models.Department

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@ViewData["ConcurrencyErrorMessage"]</p>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Department</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Name)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Name)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Budget)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Budget)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.StartDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.StartDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Administrator)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Administrator.FullName)
 </dd>
 </dl>

 <form asp-action="Delete">
 <input type="hidden" asp-for="DepartmentID" />
 <input type="hidden" asp-for="RowVersion" />
 <div class="form-actions no-color">
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-action="Index">Back to List
 </div>
 </form>
</div>

This makes the following changes:

Adds an error message between the h2 and h3 headings.

Replaces FirstMidName with FullName in the Administrator field.

Removes the RowVersion field.

Adds a hidden field for the RowVersion property.

Run the app and go to the Departments Index page. Right-click the Delete hyperlink for the English department
and select Open in new tab, then in the first tab click the Edit hyperlink for the English department.

In the first window, change one of the values, and click Save:

In the second tab, click Delete. You see the concurrency error message, and the Department values are refreshed
with what's currently in the database.

Update Details and Create views

If you click Delete again, you're redirected to the Index page, which shows that the department has been deleted.

You can optionally clean up scaffolded code in the Details and Create views.

Replace the code in Views/Departments/Details.cshtml to delete the RowVersion column and show the full name
of the Administrator.

@model ContosoUniversity.Models.Department

@{
 ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
 <h4>Department</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Name)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Name)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Budget)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Budget)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.StartDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.StartDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Administrator)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Administrator.FullName)
 </dd>
 </dl>
</div>
<div>
 <a asp-action="Edit" asp-route-id="@Model.DepartmentID">Edit |
 <a asp-action="Index">Back to List
</div>

Replace the code in Views/Departments/Create.cshtml to add a Select option to the drop-down list.

@model ContosoUniversity.Models.Department

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Department</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Create">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Name" class="control-label"></label>
 <input asp-for="Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Budget" class="control-label"></label>
 <input asp-for="Budget" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="StartDate" class="control-label"></label>
 <input asp-for="StartDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="InstructorID" class="control-label"></label>
 <select asp-for="InstructorID" class="form-control" asp-items="ViewBag.InstructorID">
 <option value="">-- Select Administrator --</option>
 </select>
 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Summary
This completes the introduction to handling concurrency conflicts. For more information about how to handle
concurrency in EF Core, see Concurrency conflicts. The next tutorial shows how to implement table-per-hierarchy
inheritance for the Instructor and Student entities.

 P R E V IO U S N E X T

https://docs.microsoft.com/ef/core/saving/concurrency

ASP.NET Core MVC with EF Core - Inheritance - 9 of
10
5/14/2018 • 7 minutes to read • Edit Online

Options for mapping inheritance to database tables

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the
first tutorial in the series.

In the previous tutorial, you handled concurrency exceptions. This tutorial will show you how to implement
inheritance in the data model.

In object-oriented programming, you can use inheritance to facilitate code reuse. In this tutorial, you'll change the
Instructor and Student classes so that they derive from a Person base class which contains properties such as
LastName that are common to both instructors and students. You won't add or change any web pages, but you'll

change some of the code and those changes will be automatically reflected in the database.

The Instructor and Student classes in the School data model have several properties that are identical:

Suppose you want to eliminate the redundant code for the properties that are shared by the Instructor and
Student entities. Or you want to write a service that can format names without caring whether the name came

from an instructor or a student. You could create a Person base class that contains only those shared properties,
then make the Instructor and Student classes inherit from that base class, as shown in the following
illustration:

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/inheritance.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT

There are several ways this inheritance structure could be represented in the database. You could have a Person
table that includes information about both students and instructors in a single table. Some of the columns could
apply only to instructors (HireDate), some only to students (EnrollmentDate), some to both (LastName,
FirstName). Typically, you'd have a discriminator column to indicate which type each row represents. For
example, the discriminator column might have "Instructor" for instructors and "Student" for students.

This pattern of generating an entity inheritance structure from a single database table is called table-per-
hierarchy (TPH) inheritance.

An alternative is to make the database look more like the inheritance structure. For example, you could have only
the name fields in the Person table and have separate Instructor and Student tables with the date fields.

This pattern of making a database table for each entity class is called table per type (TPT) inheritance.

Yet another option is to map all non-abstract types to individual tables. All properties of a class, including

TIPTIP

Create the Person class

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public abstract class Person
 {
 public int ID { get; set; }

 [Required]
 [StringLength(50)]
 [Display(Name = "Last Name")]
 public string LastName { get; set; }
 [Required]
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 public string FirstMidName { get; set; }

 [Display(Name = "Full Name")]
 public string FullName
 {
 get
 {
 return LastName + ", " + FirstMidName;
 }
 }
 }
}

Make Student and Instructor classes inherit from Person

inherited properties, map to columns of the corresponding table. This pattern is called Table-per-Concrete Class
(TPC) inheritance. If you implemented TPC inheritance for the Person, Student, and Instructor classes as shown
earlier, the Student and Instructor tables would look no different after implementing inheritance than they did
before.

TPC and TPH inheritance patterns generally deliver better performance than TPT inheritance patterns, because
TPT patterns can result in complex join queries.

This tutorial demonstrates how to implement TPH inheritance. TPH is the only inheritance pattern that the Entity
Framework Core supports. What you'll do is create a Person class, change the Instructor and Student classes
to derive from Person , add the new class to the DbContext , and create a migration.

Consider saving a copy of the project before making the following changes. Then if you run into problems and need to
start over, it will be easier to start from the saved project instead of reversing steps done for this tutorial or going back to
the beginning of the whole series.

In the Models folder, create Person.cs and replace the template code with the following code:

In Instructor.cs, derive the Instructor class from the Person class and remove the key and name fields. The code
will look like the following example:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Instructor : Person
 {
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }

 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 public OfficeAssignment OfficeAssignment { get; set; }
 }
}

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student : Person
 {
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Enrollment Date")]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Add the Person entity type to the data model

Make the same changes in Student.cs.

Add the Person entity type to SchoolContext.cs. The new lines are highlighted.

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 public DbSet<Department> Departments { get; set; }
 public DbSet<Instructor> Instructors { get; set; }
 public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
 public DbSet<CourseAssignment> CourseAssignments { get; set; }
 public DbSet<Person> People { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 modelBuilder.Entity<Department>().ToTable("Department");
 modelBuilder.Entity<Instructor>().ToTable("Instructor");
 modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
 modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");
 modelBuilder.Entity<Person>().ToTable("Person");

 modelBuilder.Entity<CourseAssignment>()
 .HasKey(c => new { c.CourseID, c.InstructorID });
 }
 }
}

Create and customize migration code

dotnet ef migrations add Inheritance

This is all that the Entity Framework needs in order to configure table-per-hierarchy inheritance. As you'll see,
when the database is updated, it will have a Person table in place of the Student and Instructor tables.

Save your changes and build the project. Then open the command window in the project folder and enter the
following command:

Don't run the database update command yet. That command will result in lost data because it will drop the
Instructor table and rename the Student table to Person. You need to provide custom code to preserve existing
data.

Open Migrations/<timestamp>_Inheritance.cs and replace the Up method with the following code:

protected override void Up(MigrationBuilder migrationBuilder)
{
 migrationBuilder.DropForeignKey(
 name: "FK_Enrollment_Student_StudentID",
 table: "Enrollment");

 migrationBuilder.DropIndex(name: "IX_Enrollment_StudentID", table: "Enrollment");

 migrationBuilder.RenameTable(name: "Instructor", newName: "Person");
 migrationBuilder.AddColumn<DateTime>(name: "EnrollmentDate", table: "Person", nullable: true);
 migrationBuilder.AddColumn<string>(name: "Discriminator", table: "Person", nullable: false, maxLength:
128, defaultValue: "Instructor");
 migrationBuilder.AlterColumn<DateTime>(name: "HireDate", table: "Person", nullable: true);
 migrationBuilder.AddColumn<int>(name: "OldId", table: "Person", nullable: true);

 // Copy existing Student data into new Person table.
 migrationBuilder.Sql("INSERT INTO dbo.Person (LastName, FirstName, HireDate, EnrollmentDate,
Discriminator, OldId) SELECT LastName, FirstName, null AS HireDate, EnrollmentDate, 'Student' AS
Discriminator, ID AS OldId FROM dbo.Student");
 // Fix up existing relationships to match new PK's.
 migrationBuilder.Sql("UPDATE dbo.Enrollment SET StudentId = (SELECT ID FROM dbo.Person WHERE OldId =
Enrollment.StudentId AND Discriminator = 'Student')");

 // Remove temporary key
 migrationBuilder.DropColumn(name: "OldID", table: "Person");

 migrationBuilder.DropTable(
 name: "Student");

 migrationBuilder.CreateIndex(
 name: "IX_Enrollment_StudentID",
 table: "Enrollment",
 column: "StudentID");

 migrationBuilder.AddForeignKey(
 name: "FK_Enrollment_Person_StudentID",
 table: "Enrollment",
 column: "StudentID",
 principalTable: "Person",
 principalColumn: "ID",
 onDelete: ReferentialAction.Cascade);
}

This code takes care of the following database update tasks:

Removes foreign key constraints and indexes that point to the Student table.

Renames the Instructor table as Person and makes changes needed for it to store Student data:

Adds nullable EnrollmentDate for students.

Adds Discriminator column to indicate whether a row is for a student or an instructor.

Makes HireDate nullable since student rows won't have hire dates.

Adds a temporary field that will be used to update foreign keys that point to students. When you copy
students into the Person table they will get new primary key values.

Copies data from the Student table into the Person table. This causes students to get assigned new
primary key values.

Fixes foreign key values that point to students.

Re-creates foreign key constraints and indexes, now pointing them to the Person table.

dotnet ef database update

NOTENOTE

Test with inheritance implemented

(If you had used GUID instead of integer as the primary key type, the student primary key values wouldn't have
to change, and several of these steps could have been omitted.)

Run the database update command:

(In a production system you would make corresponding changes to the Down method in case you ever had to
use that to go back to the previous database version. For this tutorial you won't be using the Down method.)

It's possible to get other errors when making schema changes in a database that has existing data. If you get migration
errors that you can't resolve, you can either change the database name in the connection string or delete the database.
With a new database, there's no data to migrate, and the update-database command is more likely to complete without
errors. To delete the database, use SSOX or run the database drop CLI command.

Run the app and try various pages. Everything works the same as it did before.

In SQL Server Object Explorer, expand Data Connections/SchoolContext and then Tables, and you see
that the Student and Instructor tables have been replaced by a Person table. Open the Person table designer and
you see that it has all of the columns that used to be in the Student and Instructor tables.

Right-click the Person table, and then click Show Table Data to see the discriminator column.

Summary
You've implemented table-per-hierarchy inheritance for the Person , Student , and Instructor classes. For more
information about inheritance in Entity Framework Core, see Inheritance. In the next tutorial you'll see how to
handle a variety of relatively advanced Entity Framework scenarios.

 P R E V IO U S N E X T

https://docs.microsoft.com/ef/core/modeling/inheritance

ASP.NET Core MVC with EF Core - Advanced - 10 of
10
5/30/2018 • 12 minutes to read • Edit Online

Raw SQL Queries

Call a query that returns entities

By Tom Dykstra and Rick Anderson

The Contoso University sample web application demonstrates how to create ASP.NET Core MVC web
applications using Entity Framework Core and Visual Studio. For information about the tutorial series, see the
first tutorial in the series.

In the previous tutorial, you implemented table-per-hierarchy inheritance. This tutorial introduces several topics
that are useful to be aware of when you go beyond the basics of developing ASP.NET Core web applications that
use Entity Framework Core.

One of the advantages of using the Entity Framework is that it avoids tying your code too closely to a particular
method of storing data. It does this by generating SQL queries and commands for you, which also frees you from
having to write them yourself. But there are exceptional scenarios when you need to run specific SQL queries that
you have manually created. For these scenarios, the Entity Framework Code First API includes methods that
enable you to pass SQL commands directly to the database. You have the following options in EF Core 1.0:

Use the DbSet.FromSql method for queries that return entity types. The returned objects must be of the
type expected by the DbSet object, and they're automatically tracked by the database context unless you
turn tracking off.

Use the Database.ExecuteSqlCommand for non-query commands.

If you need to run a query that returns types that aren't entities, you can use ADO.NET with the database
connection provided by EF. The returned data isn't tracked by the database context, even if you use this method to
retrieve entity types.

As is always true when you execute SQL commands in a web application, you must take precautions to protect
your site against SQL injection attacks. One way to do that is to use parameterized queries to make sure that
strings submitted by a web page can't be interpreted as SQL commands. In this tutorial you'll use parameterized
queries when integrating user input into a query.

The DbSet<TEntity> class provides a method that you can use to execute a query that returns an entity of type
TEntity . To see how this works you'll change the code in the Details method of the Department controller.

In DepartmentsController.cs, in the Details method, replace the code that retrieves a department with a
FromSql method call, as shown in the following highlighted code:

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/advanced.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT

public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 string query = "SELECT * FROM Department WHERE DepartmentID = {0}";
 var department = await _context.Departments
 .FromSql(query, id)
 .Include(d => d.Administrator)
 .AsNoTracking()
 .SingleOrDefaultAsync();

 if (department == null)
 {
 return NotFound();
 }

 return View(department);
}

Call a query that returns other types

To verify that the new code works correctly, select the Departments tab and then Details for one of the
departments.

Earlier you created a student statistics grid for the About page that showed the number of students for each
enrollment date. You got the data from the Students entity set (_context.Students) and used LINQ to project the
results into a list of EnrollmentDateGroup view model objects. Suppose you want to write the SQL itself rather
than using LINQ. To do that you need to run a SQL query that returns something other than entity objects. In EF
Core 1.0, one way to do that is write ADO.NET code and get the database connection from EF.

In HomeController.cs, replace the About method with the following code:

public async Task<ActionResult> About()
{
 List<EnrollmentDateGroup> groups = new List<EnrollmentDateGroup>();
 var conn = _context.Database.GetDbConnection();
 try
 {
 await conn.OpenAsync();
 using (var command = conn.CreateCommand())
 {
 string query = "SELECT EnrollmentDate, COUNT(*) AS StudentCount "
 + "FROM Person "
 + "WHERE Discriminator = 'Student' "
 + "GROUP BY EnrollmentDate";
 command.CommandText = query;
 DbDataReader reader = await command.ExecuteReaderAsync();

 if (reader.HasRows)
 {
 while (await reader.ReadAsync())
 {
 var row = new EnrollmentDateGroup { EnrollmentDate = reader.GetDateTime(0), StudentCount
= reader.GetInt32(1) };
 groups.Add(row);
 }
 }
 reader.Dispose();
 }
 }
 finally
 {
 conn.Close();
 }
 return View(groups);
}

using System.Data.Common;

Call an update query

Add a using statement:

Run the app and go to the About page. It displays the same data it did before.

Suppose Contoso University administrators want to perform global changes in the database, such as changing
the number of credits for every course. If the university has a large number of courses, it would be inefficient to
retrieve them all as entities and change them individually. In this section you'll implement a web page that
enables the user to specify a factor by which to change the number of credits for all courses, and you'll make the

public IActionResult UpdateCourseCredits()
{
 return View();
}

[HttpPost]
public async Task<IActionResult> UpdateCourseCredits(int? multiplier)
{
 if (multiplier != null)
 {
 ViewData["RowsAffected"] =
 await _context.Database.ExecuteSqlCommandAsync(
 "UPDATE Course SET Credits = Credits * {0}",
 parameters: multiplier);
 }
 return View();
}

change by executing a SQL UPDATE statement. The web page will look like the following illustration:

In CoursesContoller.cs, add UpdateCourseCredits methods for HttpGet and HttpPost:

When the controller processes an HttpGet request, nothing is returned in ViewData["RowsAffected"] , and the view
displays an empty text box and a submit button, as shown in the preceding illustration.

When the Update button is clicked, the HttpPost method is called, and multiplier has the value entered in the text
box. The code then executes the SQL that updates courses and returns the number of affected rows to the view in
ViewData . When the view gets a RowsAffected value, it displays the number of rows updated.

In Solution Explorer, right-click the Views/Courses folder, and then click Add > New Item.

In the Add New Item dialog, click ASP.NET under Installed in the left pane, click MVC View Page, and name
the new view UpdateCourseCredits.cshtml.

In Views/Courses/UpdateCourseCredits.cshtml, replace the template code with the following code:

@{
 ViewBag.Title = "UpdateCourseCredits";
}

<h2>Update Course Credits</h2>

@if (ViewData["RowsAffected"] == null)
{
 <form asp-action="UpdateCourseCredits">
 <div class="form-actions no-color">
 <p>
 Enter a number to multiply every course's credits by: @Html.TextBox("multiplier")
 </p>
 <p>
 <input type="submit" value="Update" class="btn btn-default" />
 </p>
 </div>
 </form>
}
@if (ViewData["RowsAffected"] != null)
{
 <p>
 Number of rows updated: @ViewData["RowsAffected"]
 </p>
}
<div>
 @Html.ActionLink("Back to List", "Index")
</div>

Run the UpdateCourseCredits method by selecting the Courses tab, then adding "/UpdateCourseCredits" to the
end of the URL in the browser's address bar (for example: http://localhost:5813/Courses/UpdateCourseCredits).
Enter a number in the text box:

Click Update. You see the number of rows affected:

Examine SQL sent to the database

Microsoft.EntityFrameworkCore.Database.Command:Information: Executed DbCommand (56ms) [Parameters=
[@__id_0='?'], CommandType='Text', CommandTimeout='30']
SELECT TOP(2) [s].[ID], [s].[Discriminator], [s].[FirstName], [s].[LastName], [s].[EnrollmentDate]
FROM [Person] AS [s]
WHERE ([s].[Discriminator] = N'Student') AND ([s].[ID] = @__id_0)
ORDER BY [s].[ID]
Microsoft.EntityFrameworkCore.Database.Command:Information: Executed DbCommand (122ms) [Parameters=
[@__id_0='?'], CommandType='Text', CommandTimeout='30']
SELECT [s.Enrollments].[EnrollmentID], [s.Enrollments].[CourseID], [s.Enrollments].[Grade], [s.Enrollments].
[StudentID], [e.Course].[CourseID], [e.Course].[Credits], [e.Course].[DepartmentID], [e.Course].[Title]
FROM [Enrollment] AS [s.Enrollments]
INNER JOIN [Course] AS [e.Course] ON [s.Enrollments].[CourseID] = [e.Course].[CourseID]
INNER JOIN (
 SELECT TOP(1) [s0].[ID]
 FROM [Person] AS [s0]
 WHERE ([s0].[Discriminator] = N'Student') AND ([s0].[ID] = @__id_0)
 ORDER BY [s0].[ID]
) AS [t] ON [s.Enrollments].[StudentID] = [t].[ID]
ORDER BY [t].[ID]

Repository and unit of work patterns

Click Back to List to see the list of courses with the revised number of credits.

Note that production code would ensure that updates always result in valid data. The simplified code shown here
could multiply the number of credits enough to result in numbers greater than 5. (The Credits property has a
[Range(0, 5)] attribute.) The update query would work but the invalid data could cause unexpected results in

other parts of the system that assume the number of credits is 5 or less.

For more information about raw SQL queries, see Raw SQL Queries.

Sometimes it's helpful to be able to see the actual SQL queries that are sent to the database. Built-in logging
functionality for ASP.NET Core is automatically used by EF Core to write logs that contain the SQL for queries
and updates. In this section you'll see some examples of SQL logging.

Open StudentsController.cs and in the Details method set a breakpoint on the if (student == null) statement.

Run the app in debug mode, and go to the Details page for a student.

Go to the Output window showing debug output, and you see the query:

You'll notice something here that might surprise you: the SQL selects up to 2 rows (TOP(2)) from the Person
table. The SingleOrDefaultAsync method doesn't resolve to 1 row on the server. Here's why:

If the query would return multiple rows, the method returns null.
To determine whether the query would return multiple rows, EF has to check if it returns at least 2.

Note that you don't have to use debug mode and stop at a breakpoint to get logging output in the Output
window. It's just a convenient way to stop the logging at the point you want to look at the output. If you don't do
that, logging continues and you have to scroll back to find the parts you're interested in.

Many developers write code to implement the repository and unit of work patterns as a wrapper around code
that works with the Entity Framework. These patterns are intended to create an abstraction layer between the
data access layer and the business logic layer of an application. Implementing these patterns can help insulate
your application from changes in the data store and can facilitate automated unit testing or test-driven
development (TDD). However, writing additional code to implement these patterns isn't always the best choice for
applications that use EF, for several reasons:

https://docs.microsoft.com/ef/core/querying/raw-sql

Automatic change detection

_context.ChangeTracker.AutoDetectChangesEnabled = false;

Entity Framework Core source code and development plans

Reverse engineer from existing database

Use dynamic LINQ to simplify sort selection code

The EF context class itself insulates your code from data-store-specific code.

The EF context class can act as a unit-of-work class for database updates that you do using EF.

EF includes features for implementing TDD without writing repository code.

For information about how to implement the repository and unit of work patterns, see the Entity Framework 5
version of this tutorial series.

Entity Framework Core implements an in-memory database provider that can be used for testing. For more
information, see Test with InMemory.

The Entity Framework determines how an entity has changed (and therefore which updates need to be sent to the
database) by comparing the current values of an entity with the original values. The original values are stored
when the entity is queried or attached. Some of the methods that cause automatic change detection are the
following:

DbContext.SaveChanges

DbContext.Entry

ChangeTracker.Entries

If you're tracking a large number of entities and you call one of these methods many times in a loop, you might
get significant performance improvements by temporarily turning off automatic change detection using the
ChangeTracker.AutoDetectChangesEnabled property. For example:

The Entity Framework Core source is at https://github.com/aspnet/EntityFrameworkCore. The EF Core
repository contains nightly builds, issue tracking, feature specs, design meeting notes, and the roadmap for future
development. You can file or find bugs, and contribute.

Although the source code is open, Entity Framework Core is fully supported as a Microsoft product. The
Microsoft Entity Framework team keeps control over which contributions are accepted and tests all code changes
to ensure the quality of each release.

To reverse engineer a data model including entity classes from an existing database, use the scaffold-dbcontext
command. See the getting-started tutorial.

The third tutorial in this series shows how to write L INQ code by hard-coding column names in a switch

statement. With two columns to choose from, this works fine, but if you have many columns the code could get
verbose. To solve that problem, you can use the EF.Property method to specify the name of the property as a
string. To try out this approach, replace the Index method in the StudentsController with the following code.

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://docs.microsoft.com/ef/core/miscellaneous/testing/in-memory
https://github.com/aspnet/EntityFrameworkCore
https://github.com/aspnet/EntityFrameworkCore/wiki/Roadmap
https://docs.microsoft.com/ef/core/miscellaneous/cli/powershell#scaffold-dbcontext
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db

 public async Task<IActionResult> Index(
 string sortOrder,
 string currentFilter,
 string searchString,
 int? page)
 {
 ViewData["CurrentSort"] = sortOrder;
 ViewData["NameSortParm"] =
 String.IsNullOrEmpty(sortOrder) ? "LastName_desc" : "";
 ViewData["DateSortParm"] =
 sortOrder == "EnrollmentDate" ? "EnrollmentDate_desc" : "EnrollmentDate";

 if (searchString != null)
 {
 page = 1;
 }
 else
 {
 searchString = currentFilter;
 }

 ViewData["CurrentFilter"] = searchString;

 var students = from s in _context.Students
 select s;

 if (!String.IsNullOrEmpty(searchString))
 {
 students = students.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }

 if (string.IsNullOrEmpty(sortOrder))
 {
 sortOrder = "LastName";
 }

 bool descending = false;
 if (sortOrder.EndsWith("_desc"))
 {
 sortOrder = sortOrder.Substring(0, sortOrder.Length - 5);
 descending = true;
 }

 if (descending)
 {
 students = students.OrderByDescending(e => EF.Property<object>(e, sortOrder));
 }
 else
 {
 students = students.OrderBy(e => EF.Property<object>(e, sortOrder));
 }

 int pageSize = 3;
 return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(),
 page ?? 1, pageSize));
 }

Next steps
This completes this series of tutorials on using the Entity Framework Core in an ASP.NET MVC application.

For more information about EF Core, see the Entity Framework Core documentation. A book is also available:
Entity Framework Core in Action.

https://docs.microsoft.com/ef/core
https://www.manning.com/books/entity-framework-core-in-action

Acknowledgments

Common errors
ContosoUniversity.dll used by another processContosoUniversity.dll used by another process

Migration scaffolded with no code in Up and Down methodsMigration scaffolded with no code in Up and Down methods

Errors while running database updateErrors while running database update

dotnet ef database drop

Error locating SQL Server instanceError locating SQL Server instance

For information on how to deploy a web app, see Host and deploy.

For information about other topics related to ASP.NET Core MVC, such as authentication and authorization, see
the ASP.NET Core documentation.

Tom Dykstra and Rick Anderson (twitter @RickAndMSFT) wrote this tutorial. Rowan Miller, Diego Vega, and
other members of the Entity Framework team assisted with code reviews and helped debug issues that arose
while we were writing code for the tutorials.

Error message:

Cannot open '...bin\Debug\netcoreapp1.0\ContosoUniversity.dll' for writing -- 'The process cannot access the
file '...\bin\Debug\netcoreapp1.0\ContosoUniversity.dll' because it is being used by another process.

Solution:

Stop the site in IIS Express. Go to the Windows System Tray, find IIS Express and right-click its icon, select the
Contoso University site, and then click Stop Site.

Possible cause:

The EF CLI commands don't automatically close and save code files. If you have unsaved changes when you run
the migrations add command, EF won't find your changes.

Solution:

Run the migrations remove command, save your code changes and rerun the migrations add command.

It's possible to get other errors when making schema changes in a database that has existing data. If you get
migration errors you can't resolve, you can either change the database name in the connection string or delete the
database. With a new database, there's no data to migrate, and the update-database command is much more
likely to complete without errors.

The simplest approach is to rename the database in appsettings.json. The next time you run database update , a
new database will be created.

To delete a database in SSOX, right-click the database, click Delete, and then in the Delete Database dialog box
select Close existing connections and click OK.

To delete a database by using the CLI, run the database drop CLI command:

Error Message:

A network-related or instance-specific error occurred while establishing a connection to SQL Server. The
server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is

configured to allow remote connections. (provider : SQL Network Interfaces, error : 26 - Error Locating
Server/Instance Specified)

Solution:

Check the connection string. If you have manually deleted the database file, change the name of the database in
the construction string to start over with a new database.

P R E V IO U S

ASP.NET Core tutorials
4/10/2018 • 2 minutes to read • Edit Online

Build web apps

Build Web APIs

The following step-by-step guides for developing ASP.NET Core applications are available:

Razor Pages is the recommended approach to create a new Web UI app with ASP.NET Core 2.0 and later.

Introduction to Razor Pages in ASP.NET Core

Create a Razor Pages web app with ASP.NET Core

Razor Pages on macOS
Razor Pages with VS Code

Create an ASP.NET Core MVC web app

Web app with Visual Studio for Mac
Web app with Visual Studio Code on macOS or Linux

Create a Web API with ASP.NET Core

Web API with Visual Studio for Mac
Web API with Visual Studio Code

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/xplat.md

Create a Razor Pages web app with ASP.NET Core
on macOS with Visual Studio for Mac
4/11/2018 • 2 minutes to read • Edit Online

This is a work in progress.

This series explains the basics of building a Razor Pages web app with ASP.NET Core on macOS.

1. Get started with Razor Pages on macOS
2. Add a model to a Razor Pages app
3. Scaffolded Razor Pages
4. Work with SQLite
5. Update the pages
6. Add search

Until the next section is complete, follow the Visual Studio for Windows version.

1. Add a new field
2. Add validation

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-mac/index.md

Get started with Razor Pages in ASP.NET Core on
macOS with Visual Studio for Mac
6/10/2018 • 2 minutes to read • Edit Online

Prerequisites

Create a Razor web app

dotnet new webapp -o RazorPagesMovie
cd RazorPagesMovie
dotnet run

NOTENOTE

dotnet new razor -o RazorPagesMovie
cd RazorPagesMovie
dotnet run

By Rick Anderson

This tutorial teaches the basics of building an ASP.NET Core Razor Pages web app. We recommend you review
Introduction to Razor Pages before starting this tutorial. Razor Pages is the recommended way to build UI for web
applications in ASP.NET Core.

Visual Studio for Mac

From a terminal, run the following commands:

In ASP.NET Core 2.1 or later, webapp is an alias of the razor argument. If the dotnet new webapp <OPTIONS> command
loads the dotnet new command help instead of creating a new Razor Pages app, install the .NET Core 2.1 SDK.

The preceding commands use the .NET Core CLI to create and run a Razor Pages project. Open a browser to
http://localhost:5000 to view the application.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-mac/razor-pages-start.md
https://twitter.com/RickAndMSFT
https://www.microsoft.com/net/download/macos
https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300
https://docs.microsoft.com/dotnet/core/tools/dotnet
http://localhost:5000

The default template creates RazorPagesMovie, Home, About and Contact links and pages. Depending on the
size of your browser window, you might need to click the navigation icon to show the links.

Test the links. The RazorPagesMovie and Home links go to the Index page. The About and Contact links go to

Project files and folders

FILE OR FOLDER PURPOSE

wwwroot Contains static files. See Static files.

Pages Folder for Razor Pages.

appsettings.json Configuration

Program.cs Hosts the ASP.NET Core app.

Startup.cs Configures services and the request pipeline. See Startup.

The Pages folderThe Pages folder

Open the project

Launch the appLaunch the app

the About and Contact pages, respectively.

The following table lists the files and folders in the project. For this tutorial, the Startup.cs file is the most
important to understand. You don't need to review each link provided below. The links are provided as a reference
when you need more information on a file or folder in the project.

The _Layout.cshtml file contains common HTML elements (scripts and stylesheets) and sets the layout for the
application. For example, when you click on RazorPagesMovie, Home, About or Contact, you see the same
elements. The common elements include the navigation menu on the top and the header on the bottom of the
window. See Layout for more information.

The _ViewStart.cshtml sets the Razor Pages Layout property to use the _Layout.cshtml file. See Layout for more
information.

The _ViewImports.cshtml file contains Razor directives that are imported into each Razor Page. See Importing
Shared Directives for more information.

The _ValidationScriptsPartial.cshtml file provides a reference to jQuery validation scripts. When we add Create

and Edit pages later in the tutorial, the _ValidationScriptsPartial.cshtml file will be used.

The About , Contact and Index pages are basic pages you can use to start an app. The Error page is used to
display error information.

Press Ctrl+C to shut down the application.

From Visual Studio, select File > Open, and then select the RazorPagesMovie.csproj file.

In Visual Studio, select Run > Start Without Debugging to launch the app. Visual Studio starts Kestrel, launches
a browser, and navigates to http://localhost:5000 .

In the next tutorial, we add a model to the project.

N E X T: A D D IN G A

M O D E L

https://jquery.com/

Add a model to an ASP.NET Core Razor Pages app
with Visual Studio for Mac
4/11/2018 • 4 minutes to read • Edit Online

Add a data model

using System;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Add a database context classAdd a database context class

By Rick Anderson

In this section, you add classes for managing movies in a database. You use these classes with Entity Framework
Core (EF Core) to work with a database. EF Core is an object-relational mapping (ORM) framework that simplifies
the data access code that you have to write.

The model classes you create are known as POCO classes (from "plain-old CLR objects") because they don't have
any dependency on EF Core. They define the properties of the data that are stored in the database.

In this tutorial, you write the model classes first, and EF Core creates the database. An alternate approach not
covered here is to generate model classes from an existing database.

View or download sample.

In Solution Explorer, right-click the RazorPagesMovie project, and then select Add > New Folder. Name
the folder Models.

Right-click the Models folder, and then select Add > New File.

In the New File dialog:

Select General in the left pane.
Select Empty Class in the center pain.
Name the class Movie and select New.

Add the following properties to the Movie class:

The ID field is required by the database for the primary key.

Add the following MovieContext.cs class to the Models folder :

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-mac/model.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/ef/core
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie

using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie.Models
{
 public class MovieContext : DbContext
 {
 public MovieContext(DbContextOptions<MovieContext> options)
 : base(options)
 {
 }

 public DbSet<Movie> Movie { get; set; }
 }
}

Add a database connection stringAdd a database connection string

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "ConnectionStrings": {
 "MovieContext": "Data Source=MvcMovie.db"
 }
}

Register the database contextRegister the database context

public void ConfigureServices(IServiceCollection services)
{
 // requires
 // using RazorPagesMovie.Models;
 // using Microsoft.EntityFrameworkCore;

 services.AddDbContext<MovieContext>(options =>
 options.UseSqlite(Configuration.GetConnectionString("MovieContext")));
 services.AddMvc();
}

The preceding code creates a DbSet property for the entity set. In Entity Framework terminology, an entity set
typically corresponds to a database table, and an entity corresponds to a row in the table.

Add a connection string to the appsettings.json file.

Register the database context with the dependency injection container in the Startup.cs file.

Right click on a red squiggly line, for example MovieContext in the line
services.AddDbContext<MovieContext>(options => . Select Quick Fix > using RazorPagesMovie.Models;. Visual

studio adds the using statement.

Build the project to verify you don't have any errors.

Entity Framework Core NuGet packages for migrationsEntity Framework Core NuGet packages for migrations
The EF tools for the command-line interface (CLI) are provided in Microsoft.EntityFrameworkCore.Tools.DotNet.
Click on the Microsoft.EntityFrameworkCore.Tools.DotNet link to get the version number to use. To install this
package, add it to the DotNetCliToolReference collection in the .csproj file. Note: You have to install this package
by editing the .csproj file; you can't use the install-package command or the package manager GUI.

To edit a .csproj file:

Select File > Open, and then select the .csproj file.
Select Options.
Change Open with to Source Code Editor.

Add the Microsoft.EntityFrameworkCore.Tools.DotNet tool reference to the second <ItemGroup>.:

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools.DotNet
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools.DotNet

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.3" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.2" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.1" />
 </ItemGroup>
</Project>

Add scaffold tooling and perform initial migration

dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.Design
dotnet restore
dotnet ef migrations add InitialCreate
dotnet ef database update

Scaffold the Movie modelScaffold the Movie model

No executable found matching command "dotnet-aspnet-codegenerator"

The process cannot access the file
'RazorPagesMovie/bin/Debug/netcoreapp2.0/RazorPagesMovie.dll'
because it is being used by another process.

The version numbers shown in the following code were correct at the time of writing.

From the command line, run the following .NET Core CLI commands:

The add package command installs the tooling required to run the scaffolding engine.

The ef migrations add InitialCreate command generates code to create the initial database schema. The schema
is based on the model specified in the DbContext (In the Models/MovieContext.cs file). The InitialCreate

argument is used to name the migrations. You can use any name, but by convention you choose a name that
describes the migration. See Introduction to migrations for more information.

The ef database update command runs the Up method in the Migrations/<time-stamp>_InitialCreate.cs file,
which creates the database.

dotnet aspnet-codegenerator razorpage -m Movie -dc MovieContext -udl -outDir Pages/Movies --
referenceScriptLibraries

Run the following from the command line (in the project directory that contains the Program.cs, Startup.cs,
and .csproj files):

If you get the error :

Open a command shell to the project directory (The directory that contains the Program.cs, Startup.cs, and .csproj
files).

If you get the error :

Exit Visual Studio and run the command again.

PARAMETER DESCRIPTION

-m The name of the model.

-dc The data context.

-udl Use the default layout.

-outDir The relative output folder path to create the views.

--referenceScriptLibraries Adds _ValidationScriptsPartial to Edit and Create pages

dotnet aspnet-codegenerator razorpage -h

Test the appTest the app

The following table details the ASP.NET Core code generators` parameters:

Use the h switch to get help on the aspnet-codegenerator razorpage command:

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

Test the Create link.

An unhandled exception occurred while processing the request.
'no such table: Movie'.

Add the Pages/Movies files to the projectAdd the Pages/Movies files to the project

 Test the Edit, Details, and Delete links.

If you get the error similar to the following, verify you have run migrations and updated the database:

In Visual Studio, Right-click the Pages folder and select Add > Add existing Folder.
Select the Movies folder.
In the Choose files to include in the project dialog, select Include All.

The next tutorial explains the files created by scaffolding.

 P R E V IO U S : G E T

S TA R TE D

N E X T: S C A F F O L D E D R A Z O R

P A G E S

Scaffolded Razor Pages in ASP.NET Core
4/11/2018 • 8 minutes to read • Edit Online

The Create, Delete, Details, and Edit pages.

using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;
using RazorPagesMovie.Models;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public IndexModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get;set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

By Rick Anderson

This tutorial examines the Razor Pages created by scaffolding in the previous tutorial.

View or download sample.

Examine the Pages/Movies/Index.cshtml.cs Page Model:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-mac/page.md
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie

using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

Razor Pages are derived from PageModel . By convention, the PageModel -derived class is called <PageName>Model .
The constructor uses dependency injection to add the MovieContext to the page. All the scaffolded pages follow
this pattern. See Asynchronous code for more information on asynchronous programing with Entity Framework.

When a request is made for the page, the OnGetAsync method returns a list of movies to the Razor Page.
OnGetAsync or OnGet is called on a Razor Page to initialize the state for the page. In this case, OnGetAsync gets a

list of movies and displays them.

When OnGet returns void or OnGetAsync returns Task , no return method is used. When the return type is
IActionResult or Task<IActionResult> , a return statement must be provided. For example, the

Pages/Movies/Create.cshtml.cs OnPostAsync method:

Examine the Pages/Movies/Index.cshtml Razor Page:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Razor can transition from HTML into C# or into Razor-specific markup. When an @ symbol is followed by a
Razor reserved keyword, it transitions into Razor-specific markup, otherwise it transitions into C#.

The @page Razor directive makes the file into an MVC action — which means that it can handle requests. @page

must be the first Razor directive on a page. @page is an example of transitioning into Razor-specific markup. See
Razor syntax for more information.

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movie[0].Title))

The @model directiveThe @model directive

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

ViewData and layoutViewData and layout

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - RazorPagesMovie</title>

 @*Markup removed for brevity.*@

The DisplayNameFor HTML Helper inspects the Title property referenced in the lambda expression to determine
the display name. The lambda expression is inspected rather than evaluated. That means there is no access
violation when model , model.Movie , or model.Movie[0] are null or empty. When the lambda expression is
evaluated (for example, with @Html.DisplayFor(modelItem => item.Title)), the model's property values are
evaluated.

The @model directive specifies the type of the model passed to the Razor Page. In the preceding example, the
@model line makes the PageModel -derived class available to the Razor Page. The model is used in the
@Html.DisplayNameFor and @Html.DisplayName HTML Helpers on the page.

Consider the following code:

The preceding highlighted code is an example of Razor transitioning into C#. The { and } characters enclose a
block of C# code.

The PageModel base class has a ViewData dictionary property that can be used to add data that you want to pass
to a View. You add objects into the ViewData dictionary using a key/value pattern. In the preceding sample, the
"Title" property is added to the ViewData dictionary.

The "Title" property is used in the Pages/_Layout.cshtml file. The following markup shows the first few lines of the
Pages/_Layout.cshtml file.

The "Title" property is used in the Pages/Shared/_Layout.cshtml file. The following markup shows the first few
lines of the _Layout.cshtml file.

The line @*Markup removed for brevity.*@ is a Razor comment. Unlike HTML comments (<!-- -->), Razor
comments are not sent to the client.

Run the app and test the links in the project (Home, About, Contact, Create, Edit, and Delete). Each page sets
the title, which you can see in the browser tab. When you bookmark a page, the title is used for the bookmark.
Pages/Index.cshtml and Pages/Movies/Index.cshtml currently have the same title, but you can modify them to have

https://docs.microsoft.com/aspnet/mvc/overview/older-versions-1/views/creating-custom-html-helpers-cs#understanding-html-helpers

NOTENOTE

@{
 Layout = "_Layout";
}

Update the layoutUpdate the layout

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie</title>

<a asp-page="/Index" class="navbar-brand">RazorPagesMovie

<a asp-page="/Movies/Index" class="navbar-brand">RpMovie

The Create page modelThe Create page model

different values.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales that
use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. This
GitHub issue 4076 for instructions on adding decimal comma.

The Layout property is set in the Pages/_ViewStart.cshtml file:

The preceding markup sets the layout file to Pages/_Layout.cshtml for all Razor files under the Pages folder. See
Layout for more information.

Change the <title> element in the Pages/_Layout.cshtml file to use a shorter string.

Find the following anchor element in the Pages/_Layout.cshtml file.

Replace the preceding element with the following markup.

The preceding anchor element is a Tag Helper. In this case, it's the Anchor Tag Helper. The
asp-page="/Movies/Index" Tag Helper attribute and value creates a link to the /Movies/Index Razor Page.

Save your changes, and test the app by clicking on the RpMovie link. See the _Layout.cshtml file in GitHub.

Examine the Pages/Movies/Create.cshtml.cs page model:

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076#issuecomment-326590420
https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie/Pages/_Layout.cshtml

// Unused usings removed.
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public CreateModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

// Unused usings removed.
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public CreateModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

The OnGet method initializes any state needed for the page. The Create page doesn't have any state to initialize, so
Page is returned. Later in the tutorial you see OnGet method initialize state. The Page method creates a
PageResult object that renders the Create.cshtml page.

The Movie property uses the [BindProperty] attribute to opt-in to model binding. When the Create form posts
the form values, the ASP.NET Core runtime binds the posted values to the Movie model.

The OnPostAsync method is run when the page posts form data:

If there are any model errors, the form is redisplayed, along with any form data posted. Most model errors can be

The Create Razor PageThe Create Razor Page

@page
@model RazorPagesMovie.Pages.Movies.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.ReleaseDate" class="control-label"></label>
 <input asp-for="Movie.ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Genre" class="control-label"></label>
 <input asp-for="Movie.Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Price" class="control-label"></label>
 <input asp-for="Movie.Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

caught on the client-side before the form is posted. An example of a model error is posting a value for the date
field that cannot be converted to a date. We'll talk more about client-side validation and model validation later in
the tutorial.

If there are no model errors, the data is saved, and the browser is redirected to the Index page.

Examine the Pages/Movies/Create.cshtml Razor Page file:

The <form method="post"> element is a Form Tag Helper. The Form Tag Helper automatically includes an
antiforgery token.

The scaffolding engine creates Razor markup for each field in the model (except the ID) similar to the following:

<div asp-validation-summary="ModelOnly" class="text-danger"></div>
<div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

</div>

The Validation Tag Helpers (<div asp-validation-summary and <span asp-validation-for) display validation errors.
Validation is covered in more detail later in this series.

The Label Tag Helper (<label asp-for="Movie.Title" class="control-label"></label>) generates the label caption
and for attribute for the Title property.

The Input Tag Helper (<input asp-for="Movie.Title" class="form-control" />) uses the DataAnnotations attributes
and produces HTML attributes needed for jQuery Validation on the client-side.

The next tutorial explains SQLite and seeding the database.

 P R E V IO U S : A D D IN G A

M O D E L

N E X T:

S Q L ITE

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

Working with SQLite in and Razor Pages
4/11/2018 • 2 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 // requires
 // using RazorPagesMovie.Models;
 // using Microsoft.EntityFrameworkCore;

 services.AddDbContext<MovieContext>(options =>
 options.UseSqlite(Configuration.GetConnectionString("MovieContext")));
 services.AddMvc();
}

SQLite

By Rick Anderson

The MovieContext object handles the task of connecting to the database and mapping Movie objects to database
records. The database context is registered with the Dependency Injection container in the ConfigureServices

method in the Startup.cs file:

The SQLite website states:

SQLite is a self-contained, high-reliability, embedded, full-featured, public-domain, SQL database engine.
SQLite is the most used database engine in the world.

There are many third party tools you can download to manage and view a SQLite database. The image below is
from DB Browser for SQLite. If you have a favorite SQLite tool, leave a comment on what you like about it.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-mac/sql.md
https://twitter.com/RickAndMSFT
https://www.sqlite.org/
http://sqlitebrowser.org/

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace RazorPagesMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MovieContext(
 serviceProvider.GetRequiredService<DbContextOptions<MovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

// Unused usings removed.
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using RazorPagesMovie.Models;
using System;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<MovieContext>();
 // requires using Microsoft.EntityFrameworkCore;
 context.Database.Migrate();
 // Requires using RazorPagesMovie.Models;
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Test the appTest the app

Add the seed initializer to the Main method in the Program.cs file:

Delete all the records in the DB (So the seed method will run). Stop and start the app to seed the database.

The app shows the seeded data.

 P R E V IO U S : A D D IN G A

M O D E L

N E X T: U P D A TE TH E

P A G E S

Update the generated pages
4/11/2018 • 5 minutes to read • Edit Online

Update the generated code

using System;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

By Rick Anderson

We have a good start to the movie app, but the presentation isn't ideal. We don't want to see the time (12:00:00
AM in the image below) and ReleaseDate should be Release Date (two words).

Open the Models/Movie.cs file and add the highlighted lines shown in the following code:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-mac/da1.md
https://twitter.com/RickAndMSFT

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

Right click on a red squiggly line > Quick Actions and Refactorings on the [Column] atribute and select
using System.ComponentModel.DataAnnotations.Schema;

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly
map Price to currency in the database. For more information, see Data Types.

The completed model:

We'll cover DataAnnotations in the next tutorial. The Display attribute specifies what to display for the name of a
field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data
(Date), so the time information stored in the field isn't displayed.

Browse to Pages/Movies and hover over an Edit link to see the target URL.

The Edit, Details, and Delete links are generated by the Anchor Tag Helper in the Pages/Movies/Index.cshtml file.

https://docs.microsoft.com/ef/core/modeling/relational/data-types
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter

@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

<td>
 Edit |
 Details |
 Delete
</td>

<td>
 Edit |
 Details |
 Delete
</td>

@page "{id:int?}"

Update concurrency exception handlingUpdate concurrency exception handling

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the
preceding code, the AnchorTagHelper dynamically generates the HTML href attribute value from the Razor Page
(the route is relative), the asp-page , and the route id (asp-route-id). See URL generation for Pages for more
information.

Use View Source from your favorite browser to examine the generated markup. A portion of the generated
HTML is shown below:

The dynamically-generated links pass the movie ID with a query string (for example,
http://localhost:5000/Movies/Details?id=2).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive for
each of these pages from @page to @page "{id:int}" . Run the app and then view source. The generated HTML
adds the ID to the path portion of the URL:

A request to the page with the "{id:int}" route template that does not include the integer will return an HTTP 404
(not found) error. For example, http://localhost:5000/Movies/Details will return a 404 error. To make the ID
optional, append ? to the route constraint:

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
}

Posting and binding reviewPosting and binding review

Update the OnPostAsync method in the Pages/Movies/Edit.cshtml.cs file. The following highlighted code shows the
changes:

The previous code only detects concurrency exceptions when the first concurrent client deletes the movie, and the
second concurrent client posts changes to the movie.

To test the catch block:

Set a breakpoint on catch (DbUpdateConcurrencyException)

Edit a movie.
In another browser window, select the Delete link for the same movie, and then delete the movie.
In the previous browser window, post changes to the movie.

Production code would generally detect concurrency conflicts when two or more clients concurrently updated a
record. See Handle concurrency conflicts for more information.

Examine the Pages/Movies/Edit.cshtml.cs file:

public class EditModel : PageModel
{
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public EditModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }
}

public class EditModel : PageModel
{
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public EditModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }
}

When an HTTP GET request is made to the Movies/Edit page (for example, http://localhost:5000/Movies/Edit/2):

The OnGetAsync method fetches the movie from the database and returns the Page method.
The Page method renders the Pages/Movies/Edit.cshtml Razor Page. The Pages/Movies/Edit.cshtml file
contains the model directive (@model RazorPagesMovie.Pages.Movies.EditModel), which makes the movie model
available on the page.
The Edit form is displayed with the values from the movie.

When the Movies/Edit page is posted:

[BindProperty]
public Movie Movie { get; set; }

The form values on the page are bound to the Movie property. The [BindProperty] attribute enables
Model binding.

If there are errors in the model state (for example, ReleaseDate cannot be converted to a date), the form is
posted again with the submitted values.

If there are no model errors, the movie is saved.

The HTTP GET methods in the Index, Create, and Delete Razor pages follow a similar pattern. The HTTP POST
OnPostAsync method in the Create Razor Page follows a similar pattern to the OnPostAsync method in the Edit

Razor Page.

Search is added in the next tutorial.

 P R E V IO U S : W O R K W ITH

S Q L L ITE

A D D

S E A R C H

Adding search to a Razor Pages app
4/11/2018 • 3 minutes to read • Edit Online

@{
 Layout = "_Layout";
}

public async Task OnGetAsync(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 Movie = await movies.ToListAsync();
}

var movies = from m in _context.Movie
 select m;

if (!String.IsNullOrEmpty(searchString))
{
 movies = movies.Where(s => s.Title.Contains(searchString));
}

By Rick Anderson

In this document, search capability is added to the Index page that enables searching movies by genre or name.

Update the Index page's OnGetAsync method with the following code:

The first line of the OnGetAsync method creates a L INQ query to select the movies:

The query is only defined at this point, it has not been run against the database.

If the searchString parameter contains a string, the movies query is modified to filter on the search string:

The s => s.Title.Contains() code is a Lambda Expression. Lambdas are used in method-based LINQ queries as
arguments to standard query operator methods such as the Where method or Contains (used in the preceding
code). L INQ queries are not executed when they're defined or when they're modified by calling a method (such as
Where , Contains or OrderBy). Rather, query execution is deferred. That means the evaluation of an expression is

delayed until its realized value is iterated over or the ToListAsync method is called. See Query Execution for more
information.

Note: The Contains method is run on the database, not in the C# code. The case sensitivity on the query depends
on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case insensitive. In
SQLite, with the default collation, it's case sensitive.

Navigate to the Movies page and append a query string such as ?searchString=Ghost to the URL (for example,

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-mac/search.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq
https://docs.microsoft.com/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/sql/t-sql/language-elements/like-transact-sql

@page "{searchString?}"

http://localhost:5000/Movies?searchString=Ghost). The filtered movies are displayed.

If the following route template is added to the Index page, the search string can be passed as a URL segment (for
example, http://localhost:5000/Movies/ghost).

The preceding route constraint allows searching the title as route data (a URL segment) instead of as a query
string value. The ? in "{searchString?}" means this is an optional route parameter.

However, you can't expect users to modify the URL to search for a movie. In this step, UI is added to filter movies.
If you added the route constraint "{searchString?}" , remove it.

Open the Pages/Movies/Index.cshtml file, and add the <form> markup highlighted in the following code:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
@*Markup removed for brevity.*@

Search by genre

The HTML <form> tag uses the Form Tag Helper. When the form is submitted, the filter string is sent to the
Pages/Movies/Index page. Save the changes and test the filter.

Add the following highlighted properties to Pages/Movies/Index.cshtml.cs:

public class IndexModel : PageModel
{
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public IndexModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }
 public SelectList Genres { get; set; }
 public string MovieGenre { get; set; }

// Requires using Microsoft.AspNetCore.Mvc.Rendering;
public async Task OnGetAsync(string movieGenre, string searchString)
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 if (!String.IsNullOrEmpty(movieGenre))
 {
 movies = movies.Where(x => x.Genre == movieGenre);
 }
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 Movie = await movies.ToListAsync();
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Genres = new SelectList(await genreQuery.Distinct().ToListAsync());

Adding search by genreAdding search by genre

The SelectList Genres contains the list of genres. This allows the user to select a genre from the list.

The MovieGenre property contains the specific genre the user selects (for example, "Western").

Update the OnGetAsync method with the following code:

The following code is a L INQ query that retrieves all the genres from the database.

The SelectList of genres is created by projecting the distinct genres.

Update Index.cshtml as follows:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>

Test the app by searching by genre, by movie title, and by both.

 P R E V IO U S : U P D A TIN G TH E

P A G E S

N E X T: A D D IN G A N E W

F IE L D

Create a Razor Pages web app with ASP.NET Core
and Visual Studio Code
4/12/2018 • 2 minutes to read • Edit Online

This is a work in progress.

This series explains the basics of building a Razor Pages web app with ASP.NET Core using Visual Studio Code.

1. Get started with Razor Pages with VS Code
2. Add a model to a Razor Pages app
3. Scaffolded Razor Pages
4. Work with SQLite
5. Update the pages
6. Add search

Until the next section is complete, follow the Visual Studio for Windows version.

1. Add a new field
2. Add validation

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-vsc/index.md

Get started with ASP.NET Core Razor Pages in Visual
Studio Code
6/10/2018 • 2 minutes to read • Edit Online

Prerequisites

Create a Razor web app

dotnet new webapp -o RazorPagesMovie
cd RazorPagesMovie
dotnet run

NOTENOTE

dotnet new razor -o RazorPagesMovie
cd RazorPagesMovie
dotnet run

By Rick Anderson

This tutorial teaches the basics of building an ASP.NET Core Razor Pages web app. We recommend you complete
Introduction to Razor Pages before starting this tutorial. Razor Pages is the recommended way to build UI for web
applications in ASP.NET Core.

Install the following:

Visual Studio Code
C# for Visual Studio Code

.NET Core SDK 2.0 or later

Visual Studio Code
C# for Visual Studio Code

.NET Core 2.1 SDK or later

From a terminal, run the following commands:

In ASP.NET Core 2.1 or later, webapp is an alias of the razor argument. If the dotnet new webapp <OPTIONS> command
loads the dotnet new command help instead of creating a new Razor Pages app, install the .NET Core 2.1 SDK.

The preceding commands use the .NET Core CLI to create and run a Razor Pages project. Open a browser to
http://localhost:5000 to view the application.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-vsc/razor-pages-start.md
https://twitter.com/RickAndMSFT
https://www.microsoft.com/net/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://www.microsoft.com/net/download/all
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300
https://docs.microsoft.com/dotnet/core/tools/dotnet
http://localhost:5000

The default template creates RazorPagesMovie, Home, About and Contact links and pages. Depending on the
size of your browser window, you might need to click the navigation icon to show the links.

Test the links. The RazorPagesMovie and Home links go to the Index page. The About and Contact links go to

Project files and folders

FILE OR FOLDER PURPOSE

wwwroot Contains static files. See Static files.

Pages Folder for Razor Pages.

appsettings.json Configuration

Program.cs Hosts the ASP.NET Core app.

Startup.cs Configures services and the request pipeline. See Startup.

The Pages folderThe Pages folder

Open the project

Launch the appLaunch the app

the About and Contact pages, respectively.

The following table lists the files and folders in the project. For this tutorial, the Startup.cs file is the most
important to understand. You don't need to review each link provided below. The links are provided as a reference
when you need more information on a file or folder in the project.

The _Layout.cshtml file contains common HTML elements (scripts and stylesheets) and sets the layout for the
application. For example, when you click on RazorPagesMovie, Home, About or Contact, you see the same
elements. The common elements include the navigation menu on the top and the header on the bottom of the
window. See Layout for more information.

The _ViewStart.cshtml sets the Razor Pages Layout property to use the _Layout.cshtml file. See Layout for more
information.

The _ViewImports.cshtml file contains Razor directives that are imported into each Razor Page. See Importing
Shared Directives for more information.

The _ValidationScriptsPartial.cshtml file provides a reference to jQuery validation scripts. When we add Create

and Edit pages later in the tutorial, the _ValidationScriptsPartial.cshtml file will be used.

The About , Contact and Index pages are basic pages you can use to start an app. The Error page is used to
display error information.

Press Ctrl+C to shut down the application.

From Visual Studio Code (VS Code), select File > Open Folder, and then select the RazorPagesMovie folder.

Select Yes to the Warn message "Required assets to build and debug are missing from 'RazorPagesMovie'.
Add them?"
Select Restore to the Info message "There are unresolved dependencies".

Press Ctrl+F5 to start the app without debugging. Alternatively, from the Debug menu, select Start Without
Debugging.

In the next tutorial, we add a model to the project.

https://jquery.com/

N E X T: A D D IN G A

M O D E L

Add a model to an ASP.NET Core Razor Pages app
with Visual Studio Code
4/27/2018 • 4 minutes to read • Edit Online

Add a data model

using System;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Add a database context classAdd a database context class

By Rick Anderson

In this section, you add classes for managing movies in a database. You use these classes with Entity Framework
Core (EF Core) to work with a database. EF Core is an object-relational mapping (ORM) framework that simplifies
the data access code that you have to write.

The model classes you create are known as POCO classes (from "plain-old CLR objects") because they don't have
any dependency on EF Core. They define the properties of the data that are stored in the database.

In this tutorial, you write the model classes first, and EF Core creates the database. An alternate approach not
covered here is to generate model classes from an existing database.

View or download sample.

Add a folder named Models.
Add a class to the Models folder named Movie.cs.
Add the following code to the Models/Movie.cs file:

Add the following properties to the Movie class:

The ID field is required by the database for the primary key.

Add the following MovieContext.cs class to the Models folder :

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-vsc/model.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/ef/core
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie

using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie.Models
{
 public class MovieContext : DbContext
 {
 public MovieContext(DbContextOptions<MovieContext> options)
 : base(options)
 {
 }

 public DbSet<Movie> Movie { get; set; }
 }
}

Add a database connection stringAdd a database connection string

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "ConnectionStrings": {
 "MovieContext": "Data Source=MvcMovie.db"
 }
}

Register the database contextRegister the database context

public void ConfigureServices(IServiceCollection services)
{
 // requires
 // using RazorPagesMovie.Models;
 // using Microsoft.EntityFrameworkCore;

 services.AddDbContext<MovieContext>(options =>
 options.UseSqlite(Configuration.GetConnectionString("MovieContext")));
 services.AddMvc();
}

Entity Framework Core NuGet packages for migrationsEntity Framework Core NuGet packages for migrations

The preceding code creates a DbSet property for the entity set. In Entity Framework terminology, an entity set
typically corresponds to a database table, and an entity corresponds to a row in the table.

Add a connection string to the appsettings.json file.

Register the database context with the dependency injection container in the Startup.cs file.

Build the project to verify you don't have any errors.

The EF tools for the command-line interface (CLI) are provided in Microsoft.EntityFrameworkCore.Tools.DotNet.
To install this package, add it to the DotNetCliToolReference collection in the .csproj file. Note: You have to install
this package by editing the .csproj file; you can't use the install-package command or the package manager GUI.

Edit the RazorPagesMovie.csproj file:

Select File > Open File, and then select the RazorPagesMovie.csproj file.
Add tool reference for Microsoft.EntityFrameworkCore.Tools.DotNet to the second <ItemGroup>:

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools.DotNet

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.3" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.2" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.1" />
 </ItemGroup>
</Project>

Add scaffold tooling and perform initial migration

dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.Design
dotnet restore
dotnet ef migrations add InitialCreate
dotnet ef database update

Scaffold the Movie modelScaffold the Movie model

dotnet aspnet-codegenerator razorpage -m Movie -dc MovieContext -udl -outDir Pages\Movies --
referenceScriptLibraries

The process cannot access the file
'RazorPagesMovie/bin/Debug/netcoreapp2.0/RazorPagesMovie.dll'
because it is being used by another process.

From the command line, run the following .NET Core CLI commands:

The add package command installs the tooling required to run the scaffolding engine.

The ef migrations add InitialCreate command generates code to create the initial database schema. The schema
is based on the model specified in the DbContext (In the Models/MovieContext.cs file). The InitialCreate

argument is used to name the migrations. You can use any name, but by convention you choose a name that
describes the migration. See Introduction to migrations for more information.

The ef database update command runs the Up method in the Migrations/<time-stamp>_InitialCreate.cs file,
which creates the database.

Open a command window in the project directory (The directory that contains the Program.cs, Startup.cs, and
.csproj files).
Run the following command:

Note: Run the following command on Windows. For MacOS and Linux, see the next command

dotnet aspnet-codegenerator razorpage -m Movie -dc MovieContext -udl -outDir Pages/Movies --
referenceScriptLibraries

On MacOS and Linux, run the following command:

If you get the error :

Exit Visual Studio and run the command again.

PARAMETER DESCRIPTION

-m The name of the model.

-dc The data context.

-udl Use the default layout.

-outDir The relative output folder path to create the views.

--referenceScriptLibraries Adds _ValidationScriptsPartial to Edit and Create pages

dotnet aspnet-codegenerator razorpage -h

Test the appTest the app

The following table details the ASP.NET Core code generators` parameters:

Use the h switch to get help on the aspnet-codegenerator razorpage command:

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

Test the Create link.

An unhandled exception occurred while processing the request.
'no such table: Movie'.

 Test the Edit, Details, and Delete links.

If you get the error similar to the following, verify you have run migrations and updated the database:

The next tutorial explains the files created by scaffolding.

 P R E V IO U S : G E T

S TA R TE D

N E X T: S C A F F O L D E D R A Z O R

P A G E S

Scaffolded Razor Pages in ASP.NET Core
4/11/2018 • 8 minutes to read • Edit Online

The Create, Delete, Details, and Edit pages.

using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;
using RazorPagesMovie.Models;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public IndexModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get;set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

By Rick Anderson

This tutorial examines the Razor Pages created by scaffolding in the previous tutorial.

View or download sample.

Examine the Pages/Movies/Index.cshtml.cs Page Model:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-vsc/page.md
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie

using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

Razor Pages are derived from PageModel . By convention, the PageModel -derived class is called <PageName>Model .
The constructor uses dependency injection to add the MovieContext to the page. All the scaffolded pages follow
this pattern. See Asynchronous code for more information on asynchronous programing with Entity Framework.

When a request is made for the page, the OnGetAsync method returns a list of movies to the Razor Page.
OnGetAsync or OnGet is called on a Razor Page to initialize the state for the page. In this case, OnGetAsync gets a

list of movies and displays them.

When OnGet returns void or OnGetAsync returns Task , no return method is used. When the return type is
IActionResult or Task<IActionResult> , a return statement must be provided. For example, the

Pages/Movies/Create.cshtml.cs OnPostAsync method:

Examine the Pages/Movies/Index.cshtml Razor Page:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Razor can transition from HTML into C# or into Razor-specific markup. When an @ symbol is followed by a
Razor reserved keyword, it transitions into Razor-specific markup, otherwise it transitions into C#.

The @page Razor directive makes the file into an MVC action — which means that it can handle requests. @page

must be the first Razor directive on a page. @page is an example of transitioning into Razor-specific markup. See
Razor syntax for more information.

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movie[0].Title))

The @model directiveThe @model directive

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

ViewData and layoutViewData and layout

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - RazorPagesMovie</title>

 @*Markup removed for brevity.*@

The DisplayNameFor HTML Helper inspects the Title property referenced in the lambda expression to determine
the display name. The lambda expression is inspected rather than evaluated. That means there is no access
violation when model , model.Movie , or model.Movie[0] are null or empty. When the lambda expression is
evaluated (for example, with @Html.DisplayFor(modelItem => item.Title)), the model's property values are
evaluated.

The @model directive specifies the type of the model passed to the Razor Page. In the preceding example, the
@model line makes the PageModel -derived class available to the Razor Page. The model is used in the
@Html.DisplayNameFor and @Html.DisplayName HTML Helpers on the page.

Consider the following code:

The preceding highlighted code is an example of Razor transitioning into C#. The { and } characters enclose a
block of C# code.

The PageModel base class has a ViewData dictionary property that can be used to add data that you want to pass
to a View. You add objects into the ViewData dictionary using a key/value pattern. In the preceding sample, the
"Title" property is added to the ViewData dictionary.

The "Title" property is used in the Pages/_Layout.cshtml file. The following markup shows the first few lines of the
Pages/_Layout.cshtml file.

The "Title" property is used in the Pages/Shared/_Layout.cshtml file. The following markup shows the first few
lines of the _Layout.cshtml file.

The line @*Markup removed for brevity.*@ is a Razor comment. Unlike HTML comments (<!-- -->), Razor
comments are not sent to the client.

Run the app and test the links in the project (Home, About, Contact, Create, Edit, and Delete). Each page sets
the title, which you can see in the browser tab. When you bookmark a page, the title is used for the bookmark.
Pages/Index.cshtml and Pages/Movies/Index.cshtml currently have the same title, but you can modify them to have

https://docs.microsoft.com/aspnet/mvc/overview/older-versions-1/views/creating-custom-html-helpers-cs#understanding-html-helpers

NOTENOTE

@{
 Layout = "_Layout";
}

Update the layoutUpdate the layout

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie</title>

<a asp-page="/Index" class="navbar-brand">RazorPagesMovie

<a asp-page="/Movies/Index" class="navbar-brand">RpMovie

The Create page modelThe Create page model

different values.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales that
use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. This
GitHub issue 4076 for instructions on adding decimal comma.

The Layout property is set in the Pages/_ViewStart.cshtml file:

The preceding markup sets the layout file to Pages/_Layout.cshtml for all Razor files under the Pages folder. See
Layout for more information.

Change the <title> element in the Pages/_Layout.cshtml file to use a shorter string.

Find the following anchor element in the Pages/_Layout.cshtml file.

Replace the preceding element with the following markup.

The preceding anchor element is a Tag Helper. In this case, it's the Anchor Tag Helper. The
asp-page="/Movies/Index" Tag Helper attribute and value creates a link to the /Movies/Index Razor Page.

Save your changes, and test the app by clicking on the RpMovie link. See the _Layout.cshtml file in GitHub.

Examine the Pages/Movies/Create.cshtml.cs page model:

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076#issuecomment-326590420
https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie/Pages/_Layout.cshtml

// Unused usings removed.
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public CreateModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

// Unused usings removed.
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public CreateModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

The OnGet method initializes any state needed for the page. The Create page doesn't have any state to initialize, so
Page is returned. Later in the tutorial you see OnGet method initialize state. The Page method creates a
PageResult object that renders the Create.cshtml page.

The Movie property uses the [BindProperty] attribute to opt-in to model binding. When the Create form posts
the form values, the ASP.NET Core runtime binds the posted values to the Movie model.

The OnPostAsync method is run when the page posts form data:

If there are any model errors, the form is redisplayed, along with any form data posted. Most model errors can be

The Create Razor PageThe Create Razor Page

@page
@model RazorPagesMovie.Pages.Movies.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.ReleaseDate" class="control-label"></label>
 <input asp-for="Movie.ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Genre" class="control-label"></label>
 <input asp-for="Movie.Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Price" class="control-label"></label>
 <input asp-for="Movie.Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

caught on the client-side before the form is posted. An example of a model error is posting a value for the date
field that cannot be converted to a date. We'll talk more about client-side validation and model validation later in
the tutorial.

If there are no model errors, the data is saved, and the browser is redirected to the Index page.

Examine the Pages/Movies/Create.cshtml Razor Page file:

The <form method="post"> element is a Form Tag Helper. The Form Tag Helper automatically includes an
antiforgery token.

The scaffolding engine creates Razor markup for each field in the model (except the ID) similar to the following:

<div asp-validation-summary="ModelOnly" class="text-danger"></div>
<div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

</div>

The Validation Tag Helpers (<div asp-validation-summary and <span asp-validation-for) display validation errors.
Validation is covered in more detail later in this series.

The Label Tag Helper (<label asp-for="Movie.Title" class="control-label"></label>) generates the label caption
and for attribute for the Title property.

The Input Tag Helper (<input asp-for="Movie.Title" class="form-control" />) uses the DataAnnotations attributes
and produces HTML attributes needed for jQuery Validation on the client-side.

The next tutorial explains SQLite and seeding the database.

 P R E V IO U S : A D D IN G A

M O D E L

N E X T:

S Q L ITE

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

Working with SQLite in and Razor Pages
4/11/2018 • 2 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 // requires
 // using RazorPagesMovie.Models;
 // using Microsoft.EntityFrameworkCore;

 services.AddDbContext<MovieContext>(options =>
 options.UseSqlite(Configuration.GetConnectionString("MovieContext")));
 services.AddMvc();
}

SQLite

By Rick Anderson

The MovieContext object handles the task of connecting to the database and mapping Movie objects to database
records. The database context is registered with the Dependency Injection container in the ConfigureServices

method in the Startup.cs file:

The SQLite website states:

SQLite is a self-contained, high-reliability, embedded, full-featured, public-domain, SQL database engine.
SQLite is the most used database engine in the world.

There are many third party tools you can download to manage and view a SQLite database. The image below is
from DB Browser for SQLite. If you have a favorite SQLite tool, leave a comment on what you like about it.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-vsc/sql.md
https://twitter.com/RickAndMSFT
https://www.sqlite.org/
http://sqlitebrowser.org/

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace RazorPagesMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MovieContext(
 serviceProvider.GetRequiredService<DbContextOptions<MovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

// Unused usings removed.
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using RazorPagesMovie.Models;
using System;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<MovieContext>();
 // requires using Microsoft.EntityFrameworkCore;
 context.Database.Migrate();
 // Requires using RazorPagesMovie.Models;
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Test the appTest the app

Add the seed initializer to the Main method in the Program.cs file:

Delete all the records in the DB (So the seed method will run). Stop and start the app to seed the database.

The app shows the seeded data.

 P R E V IO U S : A D D IN G A

M O D E L

N E X T: U P D A TE TH E

P A G E S

Update the generated pages
4/11/2018 • 5 minutes to read • Edit Online

Update the generated code

using System;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

By Rick Anderson

We have a good start to the movie app, but the presentation isn't ideal. We don't want to see the time (12:00:00
AM in the image below) and ReleaseDate should be Release Date (two words).

Open the Models/Movie.cs file and add the highlighted lines shown in the following code:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-vsc/da1.md
https://twitter.com/RickAndMSFT

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

Right click on a red squiggly line > Quick Actions and Refactorings on the [Column] atribute and select
using System.ComponentModel.DataAnnotations.Schema;

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly
map Price to currency in the database. For more information, see Data Types.

The completed model:

We'll cover DataAnnotations in the next tutorial. The Display attribute specifies what to display for the name of a
field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data
(Date), so the time information stored in the field isn't displayed.

Browse to Pages/Movies and hover over an Edit link to see the target URL.

The Edit, Details, and Delete links are generated by the Anchor Tag Helper in the Pages/Movies/Index.cshtml file.

https://docs.microsoft.com/ef/core/modeling/relational/data-types
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter

@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

<td>
 Edit |
 Details |
 Delete
</td>

<td>
 Edit |
 Details |
 Delete
</td>

@page "{id:int?}"

Update concurrency exception handlingUpdate concurrency exception handling

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the
preceding code, the AnchorTagHelper dynamically generates the HTML href attribute value from the Razor Page
(the route is relative), the asp-page , and the route id (asp-route-id). See URL generation for Pages for more
information.

Use View Source from your favorite browser to examine the generated markup. A portion of the generated
HTML is shown below:

The dynamically-generated links pass the movie ID with a query string (for example,
http://localhost:5000/Movies/Details?id=2).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive for
each of these pages from @page to @page "{id:int}" . Run the app and then view source. The generated HTML
adds the ID to the path portion of the URL:

A request to the page with the "{id:int}" route template that does not include the integer will return an HTTP 404
(not found) error. For example, http://localhost:5000/Movies/Details will return a 404 error. To make the ID
optional, append ? to the route constraint:

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
}

Posting and binding reviewPosting and binding review

Update the OnPostAsync method in the Pages/Movies/Edit.cshtml.cs file. The following highlighted code shows the
changes:

The previous code only detects concurrency exceptions when the first concurrent client deletes the movie, and the
second concurrent client posts changes to the movie.

To test the catch block:

Set a breakpoint on catch (DbUpdateConcurrencyException)

Edit a movie.
In another browser window, select the Delete link for the same movie, and then delete the movie.
In the previous browser window, post changes to the movie.

Production code would generally detect concurrency conflicts when two or more clients concurrently updated a
record. See Handle concurrency conflicts for more information.

Examine the Pages/Movies/Edit.cshtml.cs file:

public class EditModel : PageModel
{
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public EditModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }
}

public class EditModel : PageModel
{
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public EditModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }
}

When an HTTP GET request is made to the Movies/Edit page (for example, http://localhost:5000/Movies/Edit/2):

The OnGetAsync method fetches the movie from the database and returns the Page method.
The Page method renders the Pages/Movies/Edit.cshtml Razor Page. The Pages/Movies/Edit.cshtml file
contains the model directive (@model RazorPagesMovie.Pages.Movies.EditModel), which makes the movie model
available on the page.
The Edit form is displayed with the values from the movie.

When the Movies/Edit page is posted:

[BindProperty]
public Movie Movie { get; set; }

The form values on the page are bound to the Movie property. The [BindProperty] attribute enables
Model binding.

If there are errors in the model state (for example, ReleaseDate cannot be converted to a date), the form is
posted again with the submitted values.

If there are no model errors, the movie is saved.

The HTTP GET methods in the Index, Create, and Delete Razor pages follow a similar pattern. The HTTP POST
OnPostAsync method in the Create Razor Page follows a similar pattern to the OnPostAsync method in the Edit

Razor Page.

Search is added in the next tutorial.

 P R E V IO U S : W O R K IN G W ITH

S Q L L ITE

A D D

S E A R C H

Adding search to a Razor Pages app
4/11/2018 • 3 minutes to read • Edit Online

@{
 Layout = "_Layout";
}

public async Task OnGetAsync(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 Movie = await movies.ToListAsync();
}

var movies = from m in _context.Movie
 select m;

if (!String.IsNullOrEmpty(searchString))
{
 movies = movies.Where(s => s.Title.Contains(searchString));
}

By Rick Anderson

In this document, search capability is added to the Index page that enables searching movies by genre or name.

Update the Index page's OnGetAsync method with the following code:

The first line of the OnGetAsync method creates a L INQ query to select the movies:

The query is only defined at this point, it has not been run against the database.

If the searchString parameter contains a string, the movies query is modified to filter on the search string:

The s => s.Title.Contains() code is a Lambda Expression. Lambdas are used in method-based LINQ queries as
arguments to standard query operator methods such as the Where method or Contains (used in the preceding
code). L INQ queries are not executed when they're defined or when they're modified by calling a method (such as
Where , Contains or OrderBy). Rather, query execution is deferred. That means the evaluation of an expression is

delayed until its realized value is iterated over or the ToListAsync method is called. See Query Execution for more
information.

Note: The Contains method is run on the database, not in the C# code. The case sensitivity on the query depends
on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case insensitive. In
SQLite, with the default collation, it's case sensitive.

Navigate to the Movies page and append a query string such as ?searchString=Ghost to the URL (for example,

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/razor-pages-vsc/search.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq
https://docs.microsoft.com/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/sql/t-sql/language-elements/like-transact-sql

@page "{searchString?}"

http://localhost:5000/Movies?searchString=Ghost). The filtered movies are displayed.

If the following route template is added to the Index page, the search string can be passed as a URL segment (for
example, http://localhost:5000/Movies/ghost).

The preceding route constraint allows searching the title as route data (a URL segment) instead of as a query
string value. The ? in "{searchString?}" means this is an optional route parameter.

However, you can't expect users to modify the URL to search for a movie. In this step, UI is added to filter movies.
If you added the route constraint "{searchString?}" , remove it.

Open the Pages/Movies/Index.cshtml file, and add the <form> markup highlighted in the following code:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
@*Markup removed for brevity.*@

Search by genre

The HTML <form> tag uses the Form Tag Helper. When the form is submitted, the filter string is sent to the
Pages/Movies/Index page. Save the changes and test the filter.

Add the following highlighted properties to Pages/Movies/Index.cshtml.cs:

public class IndexModel : PageModel
{
 private readonly RazorPagesMovie.Models.MovieContext _context;

 public IndexModel(RazorPagesMovie.Models.MovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }
 public SelectList Genres { get; set; }
 public string MovieGenre { get; set; }

// Requires using Microsoft.AspNetCore.Mvc.Rendering;
public async Task OnGetAsync(string movieGenre, string searchString)
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 if (!String.IsNullOrEmpty(movieGenre))
 {
 movies = movies.Where(x => x.Genre == movieGenre);
 }
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 Movie = await movies.ToListAsync();
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Genres = new SelectList(await genreQuery.Distinct().ToListAsync());

Adding search by genreAdding search by genre

The SelectList Genres contains the list of genres. This allows the user to select a genre from the list.

The MovieGenre property contains the specific genre the user selects (for example, "Western").

Update the OnGetAsync method with the following code:

The following code is a L INQ query that retrieves all the genres from the database.

The SelectList of genres is created by projecting the distinct genres.

Update Index.cshtml as follows:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>

Test the app by searching by genre, by movie title, and by both.

 P R E V IO U S : U P D A TIN G TH E

P A G E S

N E X T: A D D IN G A N E W

F IE L D

Create a web app with ASP.NET Core MVC on
macOS with Visual Studio for Mac
4/10/2018 • 2 minutes to read • Edit Online

This series of tutorials teaches you the basics of building an ASP.NET Core MVC web app using Visual Studio for
Mac.

This tutorial teaches ASP.NET Core MVC web development with controllers and views. Razor Pages is a new
alternative in ASP.NET Core 2.0 and later, a page-based programming model that makes building web UI easier
and more productive. We recommend you try the Razor Pages tutorial before the MVC version. The Razor Pages
tutorial:

Is the preferred approach for new application development.
Is easier to follow.
Covers more features.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

1. Get started
2. Add a controller
3. Add a view
4. Add a model
5. SQLite
6. Controller methods and views
7. Add search
8. Add a new field
9. Add validation

10. Examine the Details and Delete methods

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/index.md
https://github.com/aspnet/Docs/issues/6146

Get started with ASP.NET Core MVC and Visual
Studio for Mac
4/10/2018 • 2 minutes to read • Edit Online

Prerequisites

Create a web app

By Rick Anderson

This tutorial teaches you the basics of building an ASP.NET Core MVC web app using Visual Studio for Mac.

This tutorial teaches ASP.NET Core MVC web development with controllers and views. Razor Pages is a new
alternative in ASP.NET Core 2.0 and later, a page-based programming model that makes building web UI easier
and more productive. We recommend you try the Razor Pages tutorial before the MVC version. The Razor Pages
tutorial:

Is the preferred approach for new application development.
Is easier to follow.
Covers more features.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

There are 3 versions of this tutorial:

macOS: Build an ASP.NET Core MVC app with Visual Studio for Mac
Windows: Build an ASP.NET Core MVC app with Visual Studio
Linux, macOS, and Windows: Build an ASP.NET Core MVC app with Visual Studio Code

Visual Studio for Mac

From Visual Studio, select File > New Solution.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/start-mvc.md
https://twitter.com/RickAndMSFT
https://www.visualstudio.com/vs/visual-studio-mac/
https://github.com/aspnet/Docs/issues/6146
https://www.microsoft.com/net/download/macos

Select .NET Core App > ASP.NET Core > Web App > Next.

Name the project MvcMovie, and then select Create.

Launch the appLaunch the app
In Visual Studio, select Run > Start Without Debugging to launch the app. Visual Studio starts Kestrel,
launches a browser, and navigates to http://localhost:port , where port is a randomly chosen port number.

The address bar shows localhost:port# and not something like example.com . That's because localhost is the

standard hostname for your local computer. When Visual Studio creates a web project, a random port is used
for the web server. When you run the app, you'll see a different port number.
You can launch the app in debug or non-debug mode from the Run menu.

The default template gives you Home, About and Contact links. The browser image above doesn't show these
links. Depending on the size of your browser, you might need to click the navigation icon to show them.

In the next part of this tutorial, you learn about MVC and start writing some code.

N E X T

Add a controller to an ASP.NET Core MVC app with
Visual Studio for Mac
4/10/2018 • 5 minutes to read • Edit Online

Add a controller

By Rick Anderson

The Model-View-Controller (MVC) architectural pattern separates an app into three main components: Model,
V iew, and Controller. The MVC pattern helps you create apps that are more testable and easier to update than
traditional monolithic apps. MVC-based apps contain:

Models: Classes that represent the data of the app. The model classes use validation logic to enforce
business rules for that data. Typically, model objects retrieve and store model state in a database. In this
tutorial, a Movie model retrieves movie data from a database, provides it to the view or updates it. Updated
data is written to a database.

V iews: Views are the components that display the app's user interface (UI). Generally, this UI displays the
model data.

Controllers: Classes that handle browser requests. They retrieve model data and call view templates that
return a response. In an MVC app, the view only displays information; the controller handles and responds
to user input and interaction. For example, the controller handles route data and query-string values, and
passes these values to the model. The model might use these values to query the database. For example,
http://localhost:1234/Home/About has route data of Home (the controller) and About (the action method to

call on the home controller). http://localhost:1234/Movies/Edit/5 is a request to edit the movie with ID=5
using the movie controller. We'll talk about route data later in the tutorial.

The MVC pattern helps you create apps that separate the different aspects of the app (input logic, business logic,
and UI logic), while providing a loose coupling between these elements. The pattern specifies where each kind of
logic should be located in the app. The UI logic belongs in the view. Input logic belongs in the controller. Business
logic belongs in the model. This separation helps you manage complexity when you build an app, because it
enables you to work on one aspect of the implementation at a time without impacting the code of another. For
example, you can work on the view code without depending on the business logic code.

We cover these concepts in this tutorial series and show you how to use them to build a movie app. The MVC
project contains folders for the Controllers and Views.

In Solution Explorer, right-click Controllers > Add > New File.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/adding-controller.md
https://twitter.com/RickAndMSFT

Select ASP.NET Core and MVC Controller Class.

Name the controller HelloWorldController.

Replace the contents of Controllers/HelloWorldController.cs with the following:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Every public method in a controller is callable as an HTTP endpoint. In the sample above, both methods return a
string. Note the comments preceding each method.

An HTTP endpoint is a targetable URL in the web application, such as http://localhost:1234/HelloWorld , and
combines the protocol used: HTTP , the network location of the web server (including the TCP port):
localhost:1234 and the target URI HelloWorld .

The first comment states this is an HTTP GET method that's invoked by appending "/HelloWorld/" to the base
URL. The second comment specifies an HTTP GET method that's invoked by appending "/HelloWorld/Welcome/"
to the URL. Later on in the tutorial you'll use the scaffolding engine to generate HTTP POST methods.

Run the app in non-debug mode and append "HelloWorld" to the path in the address bar. The Index method
returns a string.

MVC invokes controller classes (and the action methods within them) depending on the incoming URL. The
default URL routing logic used by MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

You set the format for routing in the Configure method in Startup.cs file.

https://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

// GET: /HelloWorld/Welcome/
// Requires using System.Text.Encodings.Web;
public string Welcome(string name, int numTimes = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, NumTimes is: {numTimes}");
}

When you run the app and don't supply any URL segments, it defaults to the "Home" controller and the "Index"
method specified in the template line highlighted above.

The first URL segment determines the controller class to run. So localhost:xxxx/HelloWorld maps to the
HelloWorldController class. The second part of the URL segment determines the action method on the class. So
localhost:xxxx/HelloWorld/Index would cause the Index method of the HelloWorldController class to run. Notice

that you only had to browse to localhost:xxxx/HelloWorld and the Index method was called by default. This is
because Index is the default method that will be called on a controller if a method name isn't explicitly specified.
The third part of the URL segment (id) is for route data. You'll see route data later on in this tutorial.

Browse to http://localhost:xxxx/HelloWorld/Welcome . The Welcome method runs and returns the string "This is the
Welcome action method...". For this URL, the controller is HelloWorld and Welcome is the action method. You
haven't used the [Parameters] part of the URL yet.

Modify the code to pass some parameter information from the URL to the controller. For example,
/HelloWorld/Welcome?name=Rick&numtimes=4 . Change the Welcome method to include two parameters as shown in

the following code.

The preceding code:

Uses the C# optional-parameter feature to indicate that the numTimes parameter defaults to 1 if no value is
passed for that parameter.
Uses HtmlEncoder.Default.Encode to protect the app from malicious input (namely JavaScript).
Uses Interpolated Strings.

Run your app and browse to:

https://docs.microsoft.com/dotnet/articles/csharp/language-reference/keywords/interpolated-strings

public string Welcome(string name, int ID = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, ID: {ID}");
}

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

http://localhost:xxxx/HelloWorld/Welcome?name=Rick&numtimes=4

(Replace xxxx with your port number.) You can try different values for name and numtimes in the URL. The MVC
model binding system automatically maps the named parameters from the query string in the address bar to
parameters in your method. See Model Binding for more information.

In the image above, the URL segment (Parameters) isn't used, the name and numTimes parameters are passed as
query strings. The ? (question mark) in the above URL is a separator, and the query strings follow. The &

character separates query strings.

Replace the Welcome method with the following code:

Run the app and enter the following URL: http://localhost:xxx/HelloWorld/Welcome/3?name=Rick

This time the third URL segment matched the route parameter id . The Welcome method contains a parameter
id that matched the URL template in the MapRoute method. The trailing ? (in id?) indicates the id parameter

is optional.

In these examples the controller has been doing the "VC" portion of MVC - that is, the view and controller work.
The controller is returning HTML directly. Generally you don't want controllers returning HTML directly, since that
becomes very cumbersome to code and maintain. Instead you typically use a separate Razor view template file to

https://wikipedia.org/wiki/Query_string

help generate the HTML response. You do that in the next tutorial.

 P R E V IO U S N E X T

Adding a view to an ASP.NET Core MVC app
4/10/2018 • 8 minutes to read • Edit Online

public IActionResult Index()
{
 return View();
}

Add a view

By Rick Anderson

In this section you modify the HelloWorldController class to use Razor view template files to cleanly encapsulate
the process of generating HTML responses to a client.

You create a view template file using Razor. Razor-based view templates have a .cshtml file extension. They provide
an elegant way to create HTML output using C#.

Currently the Index method returns a string with a message that's hard-coded in the controller class. In the
HelloWorldController class, replace the Index method with the following code:

The preceding code returns a View object. It uses a view template to generate an HTML response to the browser.
Controller methods (also known as action methods) such as the Index method above, generally return an
IActionResult (or a class derived from ActionResult), not a type like string.

Right click on the Views folder, and then Add > New Folder and name the folder HelloWorld.

Right click on the Views/HelloWorld folder, and then Add > New File.

In the New File dialog:

Select Web in the left pane.
Select Empty HTML file in the center pane.
Type Index.cshtml in the Name box.
Select New.

Replace the contents of the Views/HelloWorld/Index.cshtml Razor view file with the following:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/adding-view.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.iactionresult

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p>

Changing views and layout pages

Navigate to http://localhost:xxxx/HelloWorld . The Index method in the HelloWorldController didn't do much; it
ran the statement return View(); , which specified that the method should use a view template file to render a
response to the browser. Because you didn't explicitly specify the name of the view template file, MVC defaulted to
using the Index.cshtml view file in the /Views/HelloWorld folder. The image below shows the string "Hello from
our View Template!" hard-coded in the view.

If your browser window is small (for example on a mobile device), you might need to toggle (tap) the Bootstrap
navigation button in the upper right to see the Home, About, and Contact links.

Tap the menu links (MvcMovie, Home, About). Each page shows the same menu layout. The menu layout is
implemented in the Views/Shared/_Layout.cshtml file. Open the Views/Shared/_Layout.cshtml file.

http://getbootstrap.com/components/#navbar

Change the title and menu link in the layout file

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
 @Html.Raw(JavaScriptSnippet.FullScript)
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Movies" asp-action="Index" class="navbar-brand">Movie App
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - MvcMovie</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across
multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the view-specific
pages you create show up, wrapped in the layout page. For example, if you select the About link, the
Views/Home/About.cshtml view is rendered inside the RenderBody method.

In the title element, change MvcMovie to Movie App . Change the anchor text in the layout template from MvcMovie

to Movie App and the controller from Home to Movies as highlighted below:

 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
 @Html.Raw(JavaScriptSnippet.FullScript)
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Movies" asp-action="Index" class="navbar-brand">Movie App
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>

 <footer>
 <p>© 2017 - MvcMovie</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

WARNINGWARNING
We haven't implemented the Movies controller yet, so if you click on that link, you'll get a 404 (Not found) error.

Save your changes and tap the About link. Notice how the title on the browser tab now displays About - Movie
App instead of About - Mvc Movie:

@{
 Layout = "_Layout";
}

@{
 ViewData["Title"] = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

Tap the Contact link and notice that the title and anchor text also display Movie App. We were able to make the
change once in the layout template and have all pages on the site reflect the new link text and new title.

Examine the Views/_ViewStart.cshtml file:

The Views/_ViewStart.cshtml file brings in the Views/Shared/_Layout.cshtml file to each view. You can use the
Layout property to set a different layout view, or set it to null so no layout file will be used.

Change the title of the Index view.

Open Views/HelloWorld/Index.cshtml. There are two places to make a change:

The text that appears in the title of the browser.
The secondary header (<h2> element).

You'll make them slightly different so you can see which bit of code changes which part of the app.

ViewData["Title"] = "Movie List"; in the code above sets the Title property of the ViewData dictionary to
"Movie List". The Title property is used in the <title> HTML element in the layout page:

<title>@ViewData["Title"] - Movie App</title>

Passing Data from the Controller to the View

Save your change and navigate to http://localhost:xxxx/HelloWorld . Notice that the browser title, the primary
heading, and the secondary headings have changed. (If you don't see changes in the browser, you might be
viewing cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The
browser title is created with ViewData["Title"] we set in the Index.cshtml view template and the additional "-
Movie App" added in the layout file.

Also notice how the content in the Index.cshtml view template was merged with the Views/Shared/_Layout.cshtml
view template and a single HTML response was sent to the browser. Layout templates make it really easy to make
changes that apply across all of the pages in your application. To learn more see Layout.

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. The MVC
application has a "V" (view) and you've got a "C" (controller), but no "M" (model) yet.

Controller actions are invoked in response to an incoming URL request. A controller class is where you write the
code that handles the incoming browser requests. The controller retrieves data from a data source and decides
what type of response to send back to the browser. View templates can be used from a controller to generate and
format an HTML response to the browser.

Controllers are responsible for providing the data required in order for a view template to render a response. A
best practice: View templates should not perform business logic or interact with a database directly. Rather, a view
template should work only with the data that's provided to it by the controller. Maintaining this "separation of
concerns" helps keep your code clean, testable, and maintainable.

Currently, the Welcome method in the HelloWorldController class takes a name and a ID parameter and then
outputs the values directly to the browser. Rather than have the controller render this response as a string, change
the controller to use a view template instead. The view template generates a dynamic response, which means that
appropriate bits of data must be passed from the controller to the view in order to generate the response. Do this
by having the controller put the dynamic data (parameters) that the view template needs in a ViewData dictionary
that the view template can then access.

Return to the HelloWorldController.cs file and change the Welcome method to add a Message and NumTimes value
to the ViewData dictionary. The ViewData dictionary is a dynamic object, which means you can put whatever you
want in to it; the ViewData object has no defined properties until you put something inside it. The MVC model
binding system automatically maps the named parameters (name and numTimes) from the query string in the
address bar to parameters in your method. The complete HelloWorldController.cs file looks like this:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Welcome(string name, int numTimes = 1)
 {
 ViewData["Message"] = "Hello " + name;
 ViewData["NumTimes"] = numTimes;

 return View();
 }
 }
}

@{
 ViewData["Title"] = "Welcome";
}

<h2>Welcome</h2>

 @for (int i = 0; i < (int)ViewData["NumTimes"]; i++)
 {
 @ViewData["Message"]
 }

The ViewData dictionary object contains data that will be passed to the view.

Create a Welcome view template named Views/HelloWorld/Welcome.cshtml.

You'll create a loop in the Welcome.cshtml view template that displays "Hello" NumTimes . Replace the contents of
Views/HelloWorld/Welcome.cshtml with the following:

Save your changes and browse to the following URL:

http://localhost:xxxx/HelloWorld/Welcome?name=Rick&numtimes=4

Data is taken from the URL and passed to the controller using the MVC model binder . The controller packages
the data into a ViewData dictionary and passes that object to the view. The view then renders the data as HTML to
the browser.

In the sample above, we used the ViewData dictionary to pass data from the controller to a view. Later in the
tutorial, we will use a view model to pass data from a controller to a view. The view model approach to passing
data is generally much preferred over the ViewData dictionary approach. See ViewModel vs ViewData vs
ViewBag vs TempData vs Session in MVC for more information.

Well, that was a kind of an "M" for model, but not the database kind. Let's take what we've learned and create a
database of movies.

 P R E V IO U S N E X T

http://www.mytecbits.com/microsoft/dot-net/viewmodel-viewdata-viewbag-tempdata-mvc

Add a model to an ASP.NET Core MVC app with
Visual Studio for Mac
4/10/2018 • 5 minutes to read • Edit Online

Adding a model to an ASP.NET Core MVC app

Add a data model class

using System;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Prepare the project for scaffolding

By Rick Anderson and Tom Dykstra

In this section, you'll add some classes for managing movies in a database. These classes will be the "Model" part
of the MVC app.

You use these classes with Entity Framework Core (EF Core) to work with a database. EF Core is an object-
relational mapping (ORM) framework that simplifies the data access code that you have to write. EF Core
supports many database engines.

The model classes you'll create are known as POCO classes (from "plain-old CLR objects") because they don't
have any dependency on EF Core. They just define the properties of the data that will be stored in the database.

In this tutorial you'll write the model classes first, and EF Core will create the database. An alternate approach not
covered here is to generate model classes from an already-existing database. For information about that approach,
see ASP.NET Core - Existing Database.

Right-click the Models folder, and then select Add > New File.

In the New File dialog:

Select General in the left pane.
Select Empty Class in the center pain.
Name the class Movie and select New.

Add the following properties to the Movie class:

The ID field is required by the database for the primary key.

Build the project to verify you don't have any errors. You now have a Model in your MVC app.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/adding-model.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://docs.microsoft.com/ef/core
https://docs.microsoft.com/ef/core/providers/
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.0" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0"
/>
 </ItemGroup>
</Project>

Right click on the project file, and then select Tools > Edit File.

Add the following highlighted NuGet packages to the MvcMovie.csproj file:

Save the file.

Create a Models/MvcMovieContext.cs file and add the following MvcMovieContext class:

Scaffold the MovieController

dotnet restore
dotnet aspnet-codegenerator controller -name MoviesController -m Movie -dc MvcMovieContext --
relativeFolderPath Controllers --useDefaultLayout --referenceScriptLibraries

using Microsoft.EntityFrameworkCore;

namespace MvcMovie.Models
{
 public class MvcMovieContext : DbContext
 {
 public MvcMovieContext (DbContextOptions<MvcMovieContext> options)
 : base(options)
 {
 }

 public DbSet<MvcMovie.Models.Movie> Movie { get; set; }
 }
}

using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;

namespace MvcMovie
{
 public class Startup
 {

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlite("Data Source=MvcMovie.db"));

 }

Open the Startup.cs file and add two usings:

Add the database context to the Startup.cs file:

This tells Entity Framework which model classes are included in the data model. You're defining one entity
set of Movie objects, which will be represented in the database as a Movie table.

Build the project to verify there are no errors.

Open a terminal window in the project folder and run the following commands:

If you get the error No executable found matching command "dotnet-aspnet-codegenerator", verify :

You are in the project directory. The project directory has the Program.cs, Startup.cs and .csproj files.
Your dotnet version is 1.1 or higher. Run dotnet to get the version.
You have added the <DotNetCliToolReference> element to the MvcMovie.csproj file.

The scaffolding engine creates the following:

Add the files to Visual StudioAdd the files to Visual Studio

Perform initial migration

dotnet ef migrations add InitialCreate
dotnet ef database update

Test the app

A movies controller (Controllers/MoviesController.cs)
Razor view files for Create, Delete, Details, Edit and Index pages (Views/Movies/*.cshtml)

The automatic creation of CRUD (create, read, update, and delete) action methods and views is known as
scaffolding. You'll soon have a fully functional web application that lets you manage a movie database.

Add the MovieController.cs file to the Visual Studio project:

Right-click on the Controllers folder and select Add > Add Files.
Select the MovieController.cs file.

Add the Movies folder and views:

Right-click on the Views folder and select Add > Add Existing Folder.
Navigate to the Views folder, select Views\Movies, and then select Open.
In the Select files to add from Movies dialog, select Include All, and then OK.

From the command line, run the following .NET Core CLI commands:

The dotnet ef migrations add InitialCreate command generates code to create the initial database schema. The
schema is based on the model specified in the DbContext (In the Models/MvcMovieContext.cs file). The Initial

argument is used to name the migrations. You can use any name, but by convention you choose a name that
describes the migration. See Introduction to migrations for more information.

The dotnet ef database update command runs the Up method in the Migrations/<time-stamp>_InitialCreate.cs

file, which creates the database.

Run the app and tap the Mvc Movie link.

Tap the Create New link and create a movie.

https://wikipedia.org/wiki/Create,_read,_update_and_delete

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

You may not be able to enter decimal points or commas in the Price field. To support jQuery validation for
non-English locales that use a comma (",") for a decimal point, and non US-English date formats, you must
take steps to globalize your app. See https://github.com/aspnet/Docs/issues/4076 and Additional resources
for more information. For now, just enter whole numbers like 10.

 In some locales you need to specify the date format. See the highlighted code below.

We'll talk about DataAnnotations later in the tutorial.

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076

 Additional resources

Tapping Create causes the form to be posted to the server, where the movie information is saved in a database.
The app redirects to the /Movies URL, where the newly created movie information is displayed.

Create a couple more movie entries. Try the Edit, Details, and Delete links, which are all functional.

You now have a database and pages to display, edit, update and delete data. In the next tutorial, we'll work with the
database.

Tag Helpers
Globalization and localization

 P R E V IO U S A D D IN G A

V IE W

N E X T W O R K IN G W ITH

S Q L

Working with SQLite in an ASP.NET Core MVC
project
4/10/2018 • 2 minutes to read • Edit Online

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlite("Data Source=MvcMovie.db"));

 }

SQLite

By Rick Anderson

The MvcMovieContext object handles the task of connecting to the database and mapping Movie objects to
database records. The database context is registered with the Dependency Injection container in the
ConfigureServices method in the Startup.cs file:

The SQLite website states:

SQLite is a self-contained, high-reliability, embedded, full-featured, public-domain, SQL database engine.
SQLite is the most used database engine in the world.

There are many third party tools you can download to manage and view a SQLite database. The image below is
from DB Browser for SQLite. If you have a favorite SQLite tool, leave a comment on what you like about it.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/working-with-sql.md
https://twitter.com/RickAndMSFT
https://www.sqlite.org/
http://sqlitebrowser.org/

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace MvcMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MvcMovieContext(
 serviceProvider.GetRequiredService<DbContextOptions<MvcMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using System;
using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;
using MvcMovie;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<MvcMovieContext>();
 context.Database.Migrate();
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

Add the seed initializer to the Main method in the Program.cs file:

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using MvcMovie.Models;
using System;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 // Requires using MvcMovie.Models;
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Test the appTest the app
Delete all the records in the DB (So the seed method will run). Stop and start the app to seed the database.

The app shows the seeded data.

 P R E V IO U S - A D D A

M O D E L

N E X T - C O N TR O L L E R M E TH O D S A N D

V IE W S

Controller methods and views in an ASP.NET Core
MVC app
4/10/2018 • 10 minutes to read • Edit Online

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

By Rick Anderson

We have a good start to the movie app, but the presentation isn't ideal. We don't want to see the time (12:00:00
AM in the following image) and ReleaseDate should be two words.

Open the Models/Movie.cs file and add the highlighted lines shown below:

Build and run the app.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/controller-methods-views.md
https://twitter.com/RickAndMSFT

 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
</tr>

 <td>
 Edit |
 Details |
 Delete
</td>

We cover DataAnnotations in the next tutorial. The Display attribute specifies what to display for the name of a
field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data
(Date), so the time information stored in the field isn't displayed.

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly
map Price to currency in the database. For more information, see Data Types.

Browse to the Movies controller and hold the mouse pointer over an Edit link to see the target URL.

The Edit, Details, and Delete links are generated by the Core MVC Anchor Tag Helper in the
Views/Movies/Index.cshtml file.

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the
code above, the AnchorTagHelper dynamically generates the HTML href attribute value from the controller action
method and route id. You use View Source from your favorite browser or use the developer tools to examine the
generated markup. A portion of the generated HTML is shown below:

Recall the format for routing set in the Startup.cs file:

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter
https://docs.microsoft.com/ef/core/modeling/relational/data-types

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

ASP.NET Core translates http://localhost:1234/Movies/Edit/4 into a request to the Edit action method of the
Movies controller with the parameter Id of 4. (Controller methods are also known as action methods.)

Tag Helpers are one of the most popular new features in ASP.NET Core. See Additional resources for more
information.

Open the Movies controller and examine the two Edit action methods. The following code shows the
HTTP GET Edit method, which fetches the movie and populates the edit form generated by the Edit.cshtml Razor

file.

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [Bind] attribute is one way to protect against over-posting. You should only include properties in the [Bind]

attribute that you want to change. See Protect your controller from over-posting for more information.
ViewModels provide an alternative approach to prevent over-posting.

Notice the second Edit action method is preceded by the [HttpPost] attribute.

https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application#overpost
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application
http://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

<form asp-action="Edit">

The HttpPost attribute specifies that this Edit method can be invoked only for POST requests. You could apply
the [HttpGet] attribute to the first edit method, but that's not necessary because [HttpGet] is the default.

The ValidateAntiForgeryToken attribute is used to prevent forgery of a request and is paired up with an anti-
forgery token generated in the edit view file (Views/Movies/Edit.cshtml). The edit view file generates the anti-
forgery token with the Form Tag Helper.

The Form Tag Helper generates a hidden anti-forgery token that must match the [ValidateAntiForgeryToken]

generated anti-forgery token in the Edit method of the Movies controller. For more information, see Anti-
Request Forgery.

The HttpGet Edit method takes the movie ID parameter, looks up the movie using the Entity Framework
SingleOrDefaultAsync method, and returns the selected movie to the Edit view. If a movie cannot be found,
NotFound (HTTP 404) is returned.

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

When the scaffolding system created the Edit view, it examined the Movie class and created code to render
<label> and <input> elements for each property of the class. The following example shows the Edit view that

was generated by the Visual Studio scaffolding system:

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<form asp-action="Edit">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="ID" />
 <div class="form-group">
 <label asp-for="Title" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Title" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="ReleaseDate" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="ReleaseDate" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Genre" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Genre" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Price" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Price" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
</form>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Notice how the view template has a @model MvcMovie.Models.Movie statement at the top of the file.
@model MvcMovie.Models.Movie specifies that the view expects the model for the view template to be of type Movie .

The scaffolded code uses several Tag Helper methods to streamline the HTML markup. The - Label Tag Helper
displays the name of the field ("Title", "ReleaseDate", "Genre", or "Price"). The Input Tag Helper renders an HTML
<input> element. The Validation Tag Helper displays any validation messages associated with that property.

<form action="/Movies/Edit/7" method="post">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />
 <div class="text-danger" />
 <input type="hidden" data-val="true" data-val-required="The ID field is required." id="ID" name="ID"
value="7" />
 <div class="form-group">
 <label class="control-label col-md-2" for="Genre" />
 <div class="col-md-10">
 <input class="form-control" type="text" id="Genre" name="Genre" value="Western" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Genre" data-valmsg-
replace="true">
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-2" for="Price" />
 <div class="col-md-10">
 <input class="form-control" type="text" data-val="true" data-val-number="The field Price must
be a number." data-val-required="The Price field is required." id="Price" name="Price" value="3.99" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Price" data-valmsg-
replace="true">
 </div>
 </div>
 <!-- Markup removed for brevity -->
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
 <input name="__RequestVerificationToken" type="hidden"
value="CfDJ8Inyxgp63fRFqUePGvuI5jGZsloJu1L7X9le1gy7NCIlSduCRx9jDQClrV9pOTTmqUyXnJBXhmrjcUVDJyDUMm7-
MF_9rK8aAZdRdlOri7FmKVkRe_2v5LIHGKFcTjPrWPYnc9AdSbomkiOSaTEg7RU" />
</form>

Processing the POST Request

Run the application and navigate to the /Movies URL. Click an Edit link. In the browser, view the source for the
page. The generated HTML for the <form> element is shown below.

The <input> elements are in an HTML <form> element whose action attribute is set to post to the
/Movies/Edit/id URL. The form data will be posted to the server when the Save button is clicked. The last line

before the closing </form> element shows the hidden XSRF token generated by the Form Tag Helper.

The following listing shows the [HttpPost] version of the Edit action method.

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [ValidateAntiForgeryToken] attribute validates the hidden XSRF token generated by the anti-forgery token
generator in the Form Tag Helper

The model binding system takes the posted form values and creates a Movie object that's passed as the movie

parameter. The ModelState.IsValid method verifies that the data submitted in the form can be used to modify
(edit or update) a Movie object. If the data is valid it's saved. The updated (edited) movie data is saved to the
database by calling the SaveChangesAsync method of database context. After saving the data, the code redirects the
user to the Index action method of the MoviesController class, which displays the movie collection, including the
changes just made.

Before the form is posted to the server, client side validation checks any validation rules on the fields. If there are
any validation errors, an error message is displayed and the form isn't posted. If JavaScript is disabled, you won't
have client side validation but the server will detect the posted values that are not valid, and the form values will
be redisplayed with error messages. Later in the tutorial we examine Model Validation in more detail. The
Validation Tag Helper in the Views/Movies/Edit.cshtml view template takes care of displaying appropriate error
messages.

 Additional resources

All the HttpGet methods in the movie controller follow a similar pattern. They get a movie object (or list of
objects, in the case of Index), and pass the object (model) to the view. The Create method passes an empty
movie object to the Create view. All the methods that create, edit, delete, or otherwise modify data do so in the
[HttpPost] overload of the method. Modifying data in an HTTP GET method is a security risk. Modifying data in

an HTTP GET method also violates HTTP best practices and the architectural REST pattern, which specifies that
GET requests shouldn't change the state of your application. In other words, performing a GET operation should
be a safe operation that has no side effects and doesn't modify your persisted data.

Globalization and localization
Introduction to Tag Helpers
Author Tag Helpers
Anti-Request Forgery
Protect your controller from over-posting
ViewModels
Form Tag Helper
Input Tag Helper
Label Tag Helper
Select Tag Helper

http://rest.elkstein.org/
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application
http://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

Validation Tag Helper

 P R E V IO U S - W O R K IN G W ITH

S Q L ITE

N E X T - A D D

S E A R C H

Adding Search to an ASP.NET Core MVC app
4/10/2018 • 7 minutes to read • Edit Online

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

var movies = from m in _context.Movie
 select m;

if (!String.IsNullOrEmpty(searchString))
{
 movies = movies.Where(s => s.Title.Contains(searchString));
}

By Rick Anderson

In this section you add search capability to the Index action method that lets you search movies by genre or
name.

Update the Index method with the following code:

The first line of the Index action method creates a L INQ query to select the movies:

The query is only defined at this point, it has not been run against the database.

If the searchString parameter contains a string, the movies query is modified to filter on the value of the search
string:

The s => s.Title.Contains() code above is a Lambda Expression. Lambdas are used in method-based LINQ
queries as arguments to standard query operator methods such as the Where method or Contains (used in the
code above). L INQ queries are not executed when they're defined or when they're modified by calling a method
such as Where , Contains or OrderBy . Rather, query execution is deferred. That means that the evaluation of an
expression is delayed until its realized value is actually iterated over or the ToListAsync method is called. For more
information about deferred query execution, see Query Execution.

Note: The Contains method is run on the database, not in the c# code shown above. The case sensitivity on the
query depends on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case
insensitive. In SQLlite, with the default collation, it's case sensitive.

Navigate to /Movies/Index . Append a query string such as ?searchString=Ghost to the URL. The filtered movies
are displayed.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/search.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/standard/using-linq
https://docs.microsoft.com/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/dotnet/standard/using-linq
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.where
https://docs.microsoft.com/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/sql/t-sql/language-elements/like-transact-sql

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

public async Task<IActionResult> Index(string id)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(id))
 {
 movies = movies.Where(s => s.Title.Contains(id));
 }

 return View(await movies.ToListAsync());
}

If you change the signature of the Index method to have a parameter named id , the id parameter will match
the optional {id} placeholder for the default routes set in Startup.cs.

Note: SQLlite is case sensitive, so you'll need to search for "Ghost" and not "ghost".

The previous Index method:

The updated Index method with id parameter :

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-controller="Movies" asp-action="Index">
 <p>
 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>

You can now pass the search title as route data (a URL segment) instead of as a query string value.

However, you can't expect users to modify the URL every time they want to search for a movie. So now you'll add
UI elements to help them filter movies. If you changed the signature of the Index method to test how to pass the
route-bound ID parameter, change it back so that it takes a parameter named searchString :

Open the Views/Movies/Index.cshtml file, and add the <form> markup highlighted below:

[HttpPost]
public string Index(string searchString, bool notUsed)
{
 return "From [HttpPost]Index: filter on " + searchString;
}

The HTML <form> tag uses the Form Tag Helper, so when you submit the form, the filter string is posted to the
Index action of the movies controller. Save your changes and then test the filter.

There's no [HttpPost] overload of the Index method as you might expect. You don't need it, because the method
isn't changing the state of the app, just filtering data.

You could add the following [HttpPost] Index method.

The notUsed parameter is used to create an overload for the Index method. We'll talk about that later in the
tutorial.

If you add this method, the action invoker would match the [HttpPost] Index method, and the [HttpPost] Index

method would run as shown in the image below.

However, even if you add this [HttpPost] version of the Index method, there's a limitation in how this has all
been implemented. Imagine that you want to bookmark a particular search or you want to send a link to friends
that they can click in order to see the same filtered list of movies. Notice that the URL for the HTTP POST request
is the same as the URL for the GET request (localhost:xxxxx/Movies/Index) -- there's no search information in the

URL. The search string information is sent to the server as a form field value. You can verify that with the browser
Developer tools or the excellent Fiddler tool. The image below shows the Chrome browser Developer tools:

You can see the search parameter and XSRF token in the request body. Note, as mentioned in the previous
tutorial, the Form Tag Helper generates an XSRF anti-forgery token. We're not modifying data, so we don't need
to validate the token in the controller method.

Because the search parameter is in the request body and not the URL, you can't capture that search information to
bookmark or share with others. We'll fix this by specifying the request should be HTTP GET .

Change the <form> tag in the Views\movie\Index.cshtml Razor view to specify method="get" :

https://developer.mozilla.org/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
http://www.telerik.com/fiddler

<form asp-controller="Movies" asp-action="Index" method="get">

<form asp-controller="Movies" asp-action="Index" method="get">

Adding Search by genre

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace MvcMovie.Models
{
 public class MovieGenreViewModel
 {
 public List<Movie> movies;
 public SelectList genres;
 public string movieGenre { get; set; }
 }
}

Now when you submit a search, the URL contains the search query string. Searching will also go to the
HttpGet Index action method, even if you have a HttpPost Index method.

The following markup shows the change to the form tag:

Add the following MovieGenreViewModel class to the Models folder :

The movie-genre view model will contain:

A list of movies.
A SelectList containing the list of genres. This will allow the user to select a genre from the list.
movieGenre , which contains the selected genre.

Replace the Index method in MoviesController.cs with the following code:

// Requires using Microsoft.AspNetCore.Mvc.Rendering;
public async Task<IActionResult> Index(string movieGenre, string searchString)
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 if (!String.IsNullOrEmpty(movieGenre))
 {
 movies = movies.Where(x => x.Genre == movieGenre);
 }

 var movieGenreVM = new MovieGenreViewModel();
 movieGenreVM.genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 movieGenreVM.movies = await movies.ToListAsync();

 return View(movieGenreVM);
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

movieGenreVM.genres = new SelectList(await genreQuery.Distinct().ToListAsync())

Adding search by genre to the Index view

The following code is a LINQ query that retrieves all the genres from the database.

The SelectList of genres is created by projecting the distinct genres (we don't want our select list to have
duplicate genres).

Update Index.cshtml as follows:

@model MvcMovie.Models.MovieGenreViewModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-controller="Movies" asp-action="Index" method="get">
 <p>
 <select asp-for="movieGenre" asp-items="Model.genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.movies[0].Title)

In the preceding code, the DisplayNameFor HTML Helper inspects the Title property referenced in the lambda
expression to determine the display name. Since the lambda expression is inspected rather than evaluated, you
don't receive an access violation when model , model.movies , or model.movies[0] are null or empty. When the
lambda expression is evaluated (for example, @Html.DisplayFor(modelItem => item.Title)), the model's property
values are evaluated.

Test the app by searching by genre, by movie title, and by both.

 P R E V IO U S - C O N TR O L L E R M E TH O D S A N D

V IE W S

N E X T - A D D A

F IE L D

Adding a new field
4/10/2018 • 3 minutes to read • Edit Online

Adding a Rating Property to the Movie Model

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

[Bind("ID,Title,ReleaseDate,Genre,Price,Rating")]

By Rick Anderson

This tutorial will add a new field to the Movies table. We'll drop the database and create a new one when we
change the schema (add a new field). This workflow works well early in development when we don't have any
production data to perserve.

Once your app is deployed and you have data that you need to perserve, you can't drop your DB when you need
to change the schema. Entity Framework Code First Migrations allows you to update your schema and migrate
the database without losing data. Migrations is a popular feature when using SQL Server, but SQLlite doesn't
support many migration schema operations, so only very simply migrations are possible. See SQLite Limitations
for more information.

Open the Models/Movie.cs file and add a Rating property:

Because you've added a new field to the Movie class, you also need to update the binding whitelist so this new
property will be included. In MoviesController.cs, update the [Bind] attribute for both the Create and Edit

action methods to include the Rating property:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/new-field.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/ef/core/get-started/aspnetcore/new-db
https://docs.microsoft.com/ef/core/providers/sqlite/limitations

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Rating)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>

SqliteException: SQLite Error 1: 'no such column: m.Rating'.

You also need to update the view templates in order to display, create, and edit the new Rating property in the
browser view.

Edit the /Views/Movies/Index.cshtml file and add a Rating field:

Update the /Views/Movies/Create.cshtml with a Rating field.

The app won't work until we update the DB to include the new field. If you run it now, you'll get the following
SqliteException :

You're seeing this error because the updated Movie model class is different than the schema of the Movie table of
the existing database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Drop the database and have the Entity Framework automatically re-create the database based on the new
model class schema. With this approach, you lose existing data in the database — so you can't do this with a
production database! Using an initializer to automatically seed a database with test data is often a

new Movie
{
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Rating = "R",
 Price = 7.99M
},

productive way to develop an app.

2. Manually modify the schema of the existing database so that it matches the model classes. The advantage
of this approach is that you keep your data. You can make this change either manually or by creating a
database change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, we'll drop and re-create the database when the schema changes. Run the following command
from a terminal to drop the db:

dotnet ef database drop

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but
you'll want to make this change for each new Movie .

Add the Rating field to the Edit , Details , and Delete view.

Run the app and verify you can create/edit/display movies with a Rating field. templates.

 P R E V IO U S - A D D

S E A R C H

N E X T - A D D

V A L ID A TIO N

Adding validation
4/10/2018 • 10 minutes to read • Edit Online

Keeping things DRY

Adding validation rules to the movie model

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

By Rick Anderson

In this section you'll add validation logic to the Movie model, and you'll ensure that the validation rules are
enforced any time a user creates or edits a movie.

One of the design tenets of MVC is DRY ("Don't Repeat Yourself"). ASP.NET MVC encourages you to specify
functionality or behavior only once, and then have it be reflected everywhere in an app. This reduces the amount
of code you need to write and makes the code you do write less error prone, easier to test, and easier to maintain.

The validation support provided by MVC and Entity Framework Core Code First is a good example of the DRY
principle in action. You can declaratively specify validation rules in one place (in the model class) and the rules are
enforced everywhere in the app.

Open the Movie.cs file. DataAnnotations provides a built-in set of validation attributes that you apply declaratively
to any class or property. (It also contains formatting attributes like DataType that help with formatting and don't
provide any validation.)

Update the Movie class to take advantage of the built-in Required , StringLength , RegularExpression , and Range

validation attributes.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-mac/validation.md
https://twitter.com/RickAndMSFT
https://wikipedia.org/wiki/Don%27t_repeat_yourself

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

Validation Error UI in MVC

The validation attributes specify behavior that you want to enforce on the model properties they're applied to. The
Required and MinimumLength attributes indicates that a property must have a value; but nothing prevents a user

from entering white space to satisfy this validation. The RegularExpression attribute is used to limit what
characters can be input. In the code above, Genre and Rating must use only letters (First letter uppercase, white
space, numbers and special characters are not allowed). The Range attribute constrains a value to within a
specified range. The StringLength attribute lets you set the maximum length of a string property, and optionally
its minimum length. Value types (such as decimal , int , float , DateTime) are inherently required and don't need
the [Required] attribute.

Having validation rules automatically enforced by ASP.NET helps make your app more robust. It also ensures that
you can't forget to validate something and inadvertently let bad data into the database.

Run the app and navigate to the Movies controller.

Tap the Create New link to add a new movie. Fill out the form with some invalid values. As soon as jQuery client
side validation detects the error, it displays an error message.

NOTENOTE

How validation works

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales that
use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. This
GitHub issue 4076 for instructions on adding decimal comma.

Notice how the form has automatically rendered an appropriate validation error message in each field containing
an invalid value. The errors are enforced both client-side (using JavaScript and jQuery) and server-side (in case a
user has JavaScript disabled).

A significant benefit is that you didn't need to change a single line of code in the MoviesController class or in the
Create.cshtml view in order to enable this validation UI. The controller and views you created earlier in this tutorial
automatically picked up the validation rules that you specified by using validation attributes on the properties of
the Movie model class. Test validation using the Edit action method, and the same validation is applied.

The form data isn't sent to the server until there are no client side validation errors. You can verify this by putting a
break point in the HTTP Post method, by using the Fiddler tool , or the F12 Developer tools.

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076#issuecomment-326590420
http://www.telerik.com/fiddler
https://developer.microsoft.com/microsoft-edge/platform/documentation/f12-devtools-guide/

// GET: Movies/Create
public IActionResult Create()
{
 return View();
}

// POST: Movies/Create
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("ID,Title,ReleaseDate,Genre,Price, Rating")] Movie movie)
{
 if (ModelState.IsValid)
 {
 _context.Add(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 return View(movie);
}

You might wonder how the validation UI was generated without any updates to the code in the controller or views.
The following code shows the two Create methods.

The first (HTTP GET) Create action method displays the initial Create form. The second ([HttpPost]) version
handles the form post. The second Create method (The [HttpPost] version) calls ModelState.IsValid to check
whether the movie has any validation errors. Calling this method evaluates any validation attributes that have
been applied to the object. If the object has validation errors, the Create method re-displays the form. If there are
no errors, the method saves the new movie in the database. In our movie example, the form isn't posted to the
server when there are validation errors detected on the client side; the second Create method is never called
when there are client side validation errors. If you disable JavaScript in your browser, client validation is disabled
and you can test the HTTP POST Create method ModelState.IsValid detecting any validation errors.

You can set a break point in the [HttpPost] Create method and verify the method is never called, client side
validation won't submit the form data when validation errors are detected. If you disable JavaScript in your
browser, then submit the form with errors, the break point will be hit. You still get full validation without JavaScript.

The following image shows how to disable JavaScript in the FireFox browser.

The following image shows how to disable JavaScript in the Chrome browser.

After you disable JavaScript, post invalid data and step through the debugger.

<form asp-action="Create">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />

 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Title" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Title" class="form-control" />

 </div>
 </div>

 @*Markup removed for brevity.*@
 </div>
</form>

Using DataType Attributes

Below is portion of the Create.cshtml view template that you scaffolded earlier in the tutorial. It's used by the
action methods shown above both to display the initial form and to redisplay it in the event of an error.

The Input Tag Helper uses the DataAnnotations attributes and produces HTML attributes needed for jQuery
Validation on the client side. The Validation Tag Helper displays validation errors. See Validation for more
information.

What's really nice about this approach is that neither the controller nor the Create view template knows anything
about the actual validation rules being enforced or about the specific error messages displayed. The validation
rules and the error strings are specified only in the Movie class. These same validation rules are automatically
applied to the Edit view and any other views templates you might create that edit your model.

When you need to change validation logic, you can do so in exactly one place by adding validation attributes to the
model (in this example, the Movie class). You won't have to worry about different parts of the application being
inconsistent with how the rules are enforced — all validation logic will be defined in one place and used
everywhere. This keeps the code very clean, and makes it easy to maintain and evolve. And it means that you'll be
fully honoring the DRY principle.

Open the Movie.cs file and examine the Movie class. The System.ComponentModel.DataAnnotations namespace
provides formatting attributes in addition to the built-in set of validation attributes. We've already applied a
DataType enumeration value to the release date and to the price fields. The following code shows the ReleaseDate

and Price properties with the appropriate DataType attribute.

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

[Display(Name = "Release Date")]
[DataType(DataType.Date)]
public DateTime ReleaseDate { get; set; }

[Range(1, 100)]
[DataType(DataType.Currency)]
public decimal Price { get; set; }

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
public DateTime ReleaseDate { get; set; }

NOTENOTE

[Range(typeof(DateTime), "1/1/1966", "1/1/2020")]

The DataType attributes only provide hints for the view engine to format the data (and supplies
elements/attributes such as <a> for URL's and for email. You can use the
RegularExpression attribute to validate the format of the data. The DataType attribute is used to specify a data

type that's more specific than the database intrinsic type, they're not validation attributes. In this case we only want
to keep track of the date, not the time. The DataType Enumeration provides for many data types, such as Date,
Time, PhoneNumber, Currency, EmailAddress and more. The DataType attribute can also enable the application to
automatically provide type-specific features. For example, a mailto: link can be created for
DataType.EmailAddress , and a date selector can be provided for DataType.Date in browsers that support HTML5.

The DataType attributes emits HTML 5 data- (pronounced data dash) attributes that HTML 5 browsers can
understand. The DataType attributes do not provide any validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed
according to the default formats based on the server's CultureInfo .

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied when the value is displayed
in a text box for editing. (You might not want that for some fields — for example, for currency values, you probably
don't want the currency symbol in the text box for editing.)

You can use the DisplayFormat attribute by itself, but it's generally a good idea to use the DataType attribute. The
DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and provides the

following benefits that you don't get with DisplayFormat:

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate
currency symbol, email links, etc.)

By default, the browser will render data using the correct format based on your locale.

The DataType attribute can enable MVC to choose the right field template to render the data (the
DisplayFormat if used by itself uses the string template).

jQuery validation doesn't work with the Range attribute and DateTime . For example, the following code will always display
a client side validation error, even when the date is in the specified range:

You will need to disable jQuery date validation to use the Range attribute with DateTime . It's generally not a good
practice to compile hard dates in your models, so using the Range attribute and DateTime is discouraged.

The following code shows combining attributes on one line:

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3), Required]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), Required, StringLength(5)]
 public string Rating { get; set; }
}

Additional resources

In the next part of the series, we'll review the application and make some improvements to the automatically
generated Details and Delete methods.

Working with Forms
Globalization and localization
Introduction to Tag Helpers
Author Tag Helpers

 P R E V IO U S - A D D A

F IE L D

N E X T - E X A M IN E TH E D E TA IL S A N D D E L E TE

M E TH O D S

Examine the Details and Delete methods of an
ASP.NET Core app
5/31/2018 • 3 minutes to read • Edit Online

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

By Rick Anderson

Open the Movie controller and examine the Details method:

The MVC scaffolding engine that created this action method adds a comment showing an HTTP request that
invokes the method. In this case it's a GET request with three URL segments, the Movies controller, the Details

method and an id value. Recall these segments are defined in Startup.cs.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/details.md
https://twitter.com/RickAndMSFT

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var movie = await _context.Movie.FindAsync(id);
 _context.Movie.Remove(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
}

EF makes it easy to search for data using the SingleOrDefaultAsync method. An important security feature built
into the method is that the code verifies that the search method has found a movie before it tries to do anything
with it. For example, a hacker could introduce errors into the site by changing the URL created by the links from
http://localhost:xxxx/Movies/Details/1 to something like http://localhost:xxxx/Movies/Details/12345 (or some

other value that doesn't represent an actual movie). If you didn't check for a null movie, the app would throw an
exception.

Examine the Delete and DeleteConfirmed methods.

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 _context.Movie.Remove(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
}

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{

Note that the HTTP GET Delete method doesn't delete the specified movie, it returns a view of the movie where you
can submit (HttpPost) the deletion. Performing a delete operation in response to a GET request (or for that matter,
performing an edit operation, create operation, or any other operation that changes data) opens up a security hole.

The [HttpPost] method that deletes the data is named DeleteConfirmed to give the HTTP POST method a unique
signature or name. The two method signatures are shown below:

The common language runtime (CLR) requires overloaded methods to have a unique parameter signature (same
method name but different list of parameters). However, here you need two Delete methods -- one for GET and
one for POST -- that both have the same parameter signature. (They both need to accept a single integer as a
parameter.)

There are two approaches to this problem, one is to give the methods different names. That's what the scaffolding
mechanism did in the preceding example. However, this introduces a small problem: ASP.NET maps segments of a
URL to action methods by name, and if you rename a method, routing normally wouldn't be able to find that
method. The solution is what you see in the example, which is to add the ActionName("Delete") attribute to the
DeleteConfirmed method. That attribute performs mapping for the routing system so that a URL that includes

/Delete/ for a POST request will find the DeleteConfirmed method.

Another common work around for methods that have identical names and signatures is to artificially change the

// POST: Movies/Delete/6
[ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(int id, bool notUsed)

Publish to AzurePublish to Azure

signature of the POST method to include an extra (unused) parameter. That's what we did in a previous post when
we added the notUsed parameter. You could do the same thing here for the [HttpPost] Delete method:

See Publish an ASP.NET Core web app to Azure App Service using Visual Studio for instructions on how to publish
this app to Azure using Visual Studio. The app can also be published from the command line.

P R E V IO U S

Create an ASP.NET Core MVC app with Visual Studio
Code
4/10/2018 • 2 minutes to read • Edit Online

This series of tutorials teaches you the basics of building an ASP.NET Core MVC web app using Visual Studio
Code.

This tutorial teaches ASP.NET Core MVC web development with controllers and views. Razor Pages is a new
alternative in ASP.NET Core 2.0 and later, a page-based programming model that makes building web UI easier
and more productive. We recommend you try the Razor Pages tutorial before the MVC version. The Razor Pages
tutorial:

Is the preferred approach for new application development.
Is easier to follow.
Covers more features.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

1. Get started
2. Add a controller
3. Add a view
4. Add a model
5. Work with SQLite
6. Controller methods and views
7. Add search
8. Add a new field
9. Add validation

10. Examine the Details and Delete methods

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/index.md
https://github.com/aspnet/Docs/issues/6146

Introduction to ASP.NET Core MVC on macOS,
Linux, or Windows
4/10/2018 • 2 minutes to read • Edit Online

Prerequisites

Create a web app with dotnet

mkdir MvcMovie
cd MvcMovie
dotnet new mvc

By Rick Anderson

This tutorial will teach you the basics of building an ASP.NET Core MVC web app using Visual Studio Code (VS
Code). The tutorial assumes familarity with VS Code. See Getting started with VS Code and Visual Studio Code
help for more information.

This tutorial teaches ASP.NET Core MVC web development with controllers and views. Razor Pages is a new
alternative in ASP.NET Core 2.0 and later, a page-based programming model that makes building web UI easier
and more productive. We recommend you try the Razor Pages tutorial before the MVC version. The Razor Pages
tutorial:

Is the preferred approach for new application development.
Is easier to follow.
Covers more features.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

There are 3 versions of this tutorial:

macOS: Create an ASP.NET Core MVC app with Visual Studio for Mac
Windows: Create an ASP.NET Core MVC app with Visual Studio
macOS, Linux, and Windows: Create an ASP.NET Core MVC app with Visual Studio Code

Install the following:

Visual Studio Code
C# for Visual Studio Code

.NET Core SDK 2.0 or later

Visual Studio Code
C# for Visual Studio Code

.NET Core 2.1 SDK or later

From a terminal, run the following commands:

Open the MvcMovie folder in Visual Studio Code (VS Code) and select the Startup.cs file.

Select Yes to the Warn message "Required assets to build and debug are missing from 'MvcMovie'. Add

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/start-mvc.md
https://twitter.com/RickAndMSFT
https://code.visualstudio.com
https://code.visualstudio.com/docs
https://github.com/aspnet/Docs/issues/6146
https://www.microsoft.com/net/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://www.microsoft.com/net/download/all
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp

them?"
Select Restore to the Info message "There are unresolved dependencies".

Press Debug (F5) to build and run the program.

VS Code starts the Kestrel web server and runs your app. Notice that the address bar shows localhost:5000 and
not something like example.com . That's because localhost is the standard hostname for your local computer.

 Visual Studio Code help

The default template gives you working Home, About and Contact links. The browser image above doesn't
show these links. Depending on the size of your browser, you might need to click the navigation icon to show
them.

In the next part of this tutorial, we'll learn about MVC and start writing some code.

Getting started

Debugging

Integrated terminal

Keyboard shortcuts

macOS keyboard shortcuts
Linux keyboard shortcuts
Windows keyboard shortcuts

N E X T - A D D A

C O N TR O L L E R

https://code.visualstudio.com/docs
https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/integrated-terminal
https://code.visualstudio.com/docs/getstarted/keybindings#_keyboard-shortcuts-reference
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

Add a controller to an ASP.NET Core app
4/10/2018 • 5 minutes to read • Edit Online

By Rick Anderson

The Model-View-Controller (MVC) architectural pattern separates an app into three main components: Model,
V iew, and Controller. The MVC pattern helps you create apps that are more testable and easier to update than
traditional monolithic apps. MVC-based apps contain:

Models: Classes that represent the data of the app. The model classes use validation logic to enforce
business rules for that data. Typically, model objects retrieve and store model state in a database. In this
tutorial, a Movie model retrieves movie data from a database, provides it to the view or updates it. Updated
data is written to a database.

V iews: Views are the components that display the app's user interface (UI). Generally, this UI displays the
model data.

Controllers: Classes that handle browser requests. They retrieve model data and call view templates that
return a response. In an MVC app, the view only displays information; the controller handles and responds
to user input and interaction. For example, the controller handles route data and query-string values, and
passes these values to the model. The model might use these values to query the database. For example,
http://localhost:1234/Home/About has route data of Home (the controller) and About (the action method to

call on the home controller). http://localhost:1234/Movies/Edit/5 is a request to edit the movie with ID=5
using the movie controller. We'll talk about route data later in the tutorial.

The MVC pattern helps you create apps that separate the different aspects of the app (input logic, business logic,
and UI logic), while providing a loose coupling between these elements. The pattern specifies where each kind of
logic should be located in the app. The UI logic belongs in the view. Input logic belongs in the controller. Business
logic belongs in the model. This separation helps you manage complexity when you build an app, because it
enables you to work on one aspect of the implementation at a time without impacting the code of another. For
example, you can work on the view code without depending on the business logic code.

We cover these concepts in this tutorial series and show you how to use them to build a movie app. The MVC
project contains folders for the Controllers and Views.

In VS Code, select the EXPLORER icon and then control-click (right-click) Controllers > New File and
name the new file HelloWorldController.cs.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/adding-controller.md
https://twitter.com/RickAndMSFT

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Replace the contents of Controllers/HelloWorldController.cs with the following:

Every public method in a controller is callable as an HTTP endpoint. In the sample above, both methods return a
string. Note the comments preceding each method.

An HTTP endpoint is a targetable URL in the web application, such as http://localhost:1234/HelloWorld , and

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

combines the protocol used: HTTP , the network location of the web server (including the TCP port):
localhost:1234 and the target URI HelloWorld .

The first comment states this is an HTTP GET method that's invoked by appending "/HelloWorld/" to the base
URL. The second comment specifies an HTTP GET method that's invoked by appending "/HelloWorld/Welcome/"
to the URL. Later on in the tutorial you'll use the scaffolding engine to generate HTTP POST methods.

Run the app in non-debug mode and append "HelloWorld" to the path in the address bar. The Index method
returns a string.

MVC invokes controller classes (and the action methods within them) depending on the incoming URL. The
default URL routing logic used by MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

You set the format for routing in the Configure method in Startup.cs file.

When you run the app and don't supply any URL segments, it defaults to the "Home" controller and the "Index"
method specified in the template line highlighted above.

The first URL segment determines the controller class to run. So localhost:xxxx/HelloWorld maps to the
HelloWorldController class. The second part of the URL segment determines the action method on the class. So
localhost:xxxx/HelloWorld/Index would cause the Index method of the HelloWorldController class to run. Notice

that you only had to browse to localhost:xxxx/HelloWorld and the Index method was called by default. This is
because Index is the default method that will be called on a controller if a method name isn't explicitly specified.
The third part of the URL segment (id) is for route data. You'll see route data later on in this tutorial.

Browse to http://localhost:xxxx/HelloWorld/Welcome . The Welcome method runs and returns the string "This is the
Welcome action method...". For this URL, the controller is HelloWorld and Welcome is the action method. You
haven't used the [Parameters] part of the URL yet.

https://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

// GET: /HelloWorld/Welcome/
// Requires using System.Text.Encodings.Web;
public string Welcome(string name, int numTimes = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, NumTimes is: {numTimes}");
}

Modify the code to pass some parameter information from the URL to the controller. For example,
/HelloWorld/Welcome?name=Rick&numtimes=4 . Change the Welcome method to include two parameters as shown in

the following code.

The preceding code:

Uses the C# optional-parameter feature to indicate that the numTimes parameter defaults to 1 if no value is
passed for that parameter.
Uses HtmlEncoder.Default.Encode to protect the app from malicious input (namely JavaScript).
Uses Interpolated Strings.

Run your app and browse to:

http://localhost:xxxx/HelloWorld/Welcome?name=Rick&numtimes=4

(Replace xxxx with your port number.) You can try different values for name and numtimes in the URL. The MVC
model binding system automatically maps the named parameters from the query string in the address bar to
parameters in your method. See Model Binding for more information.

In the image above, the URL segment (Parameters) isn't used, the name and numTimes parameters are passed as
query strings. The ? (question mark) in the above URL is a separator, and the query strings follow. The &

character separates query strings.

https://docs.microsoft.com/dotnet/articles/csharp/language-reference/keywords/interpolated-strings
https://wikipedia.org/wiki/Query_string

public string Welcome(string name, int ID = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, ID: {ID}");
}

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

Replace the Welcome method with the following code:

Run the app and enter the following URL: http://localhost:xxx/HelloWorld/Welcome/3?name=Rick

This time the third URL segment matched the route parameter id . The Welcome method contains a parameter
id that matched the URL template in the MapRoute method. The trailing ? (in id?) indicates the id parameter

is optional.

In these examples the controller has been doing the "VC" portion of MVC - that is, the view and controller work.
The controller is returning HTML directly. Generally you don't want controllers returning HTML directly, since that
becomes very cumbersome to code and maintain. Instead you typically use a separate Razor view template file to
help generate the HTML response. You do that in the next tutorial.

 P R E V IO U S - A D D A

C O N TR O L L E R

N E X T - A D D A

V IE W

Adding a view to an ASP.NET Core MVC app
4/10/2018 • 8 minutes to read • Edit Online

public IActionResult Index()
{
 return View();
}

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p>

By Rick Anderson

In this section you modify the HelloWorldController class to use Razor view template files to cleanly encapsulate
the process of generating HTML responses to a client.

You create a view template file using Razor. Razor-based view templates have a .cshtml file extension. They provide
an elegant way to create HTML output using C#.

Currently the Index method returns a string with a message that's hard-coded in the controller class. In the
HelloWorldController class, replace the Index method with the following code:

The preceding code returns a View object. It uses a view template to generate an HTML response to the browser.
Controller methods (also known as action methods) such as the Index method above, generally return an
IActionResult (or a class derived from ActionResult), not a type like string.

Add an Index view for the HelloWorldController .

Add a new folder named Views/HelloWorld.
Add a new file to the Views/HelloWorld folder name Index.cshtml.

Replace the contents of the Views/HelloWorld/Index.cshtml Razor view file with the following:

Navigate to http://localhost:xxxx/HelloWorld . The Index method in the HelloWorldController didn't do much; it
ran the statement return View(); , which specified that the method should use a view template file to render a
response to the browser. Because you didn't explicitly specify the name of the view template file, MVC defaulted to
using the Index.cshtml view file in the /Views/HelloWorld folder. The image below shows the string "Hello from
our View Template!" hard-coded in the view.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/adding-view.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.iactionresult

Changing views and layout pages

Change the title and menu link in the layout file

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

If your browser window is small (for example on a mobile device), you might need to toggle (tap) the Bootstrap
navigation button in the upper right to see the Home, About, and Contact links.

Tap the menu links (MvcMovie, Home, About). Each page shows the same menu layout. The menu layout is
implemented in the Views/Shared/_Layout.cshtml file. Open the Views/Shared/_Layout.cshtml file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across
multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the view-specific
pages you create show up, wrapped in the layout page. For example, if you select the About link, the
Views/Home/About.cshtml view is rendered inside the RenderBody method.

In the title element, change MvcMovie to Movie App . Change the anchor text in the layout template from MvcMovie

to Movie App and the controller from Home to Movies as highlighted below:

http://getbootstrap.com/components/#navbar

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
 @Html.Raw(JavaScriptSnippet.FullScript)
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Movies" asp-action="Index" class="navbar-brand">Movie App
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - MvcMovie</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

</html>

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
 @Html.Raw(JavaScriptSnippet.FullScript)
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Movies" asp-action="Index" class="navbar-brand">Movie App
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - MvcMovie</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"

 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

WARNINGWARNING

@{
 Layout = "_Layout";
}

We haven't implemented the Movies controller yet, so if you click on that link, you'll get a 404 (Not found) error.

Save your changes and tap the About link. Notice how the title on the browser tab now displays About - Movie
App instead of About - Mvc Movie:

Tap the Contact link and notice that the title and anchor text also display Movie App. We were able to make the
change once in the layout template and have all pages on the site reflect the new link text and new title.

Examine the Views/_ViewStart.cshtml file:

The Views/_ViewStart.cshtml file brings in the Views/Shared/_Layout.cshtml file to each view. You can use the
Layout property to set a different layout view, or set it to null so no layout file will be used.

Change the title of the Index view.

Open Views/HelloWorld/Index.cshtml. There are two places to make a change:

@{
 ViewData["Title"] = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

<title>@ViewData["Title"] - Movie App</title>

Passing Data from the Controller to the View

The text that appears in the title of the browser.
The secondary header (<h2> element).

You'll make them slightly different so you can see which bit of code changes which part of the app.

ViewData["Title"] = "Movie List"; in the code above sets the Title property of the ViewData dictionary to
"Movie List". The Title property is used in the <title> HTML element in the layout page:

Save your change and navigate to http://localhost:xxxx/HelloWorld . Notice that the browser title, the primary
heading, and the secondary headings have changed. (If you don't see changes in the browser, you might be
viewing cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The
browser title is created with ViewData["Title"] we set in the Index.cshtml view template and the additional "-
Movie App" added in the layout file.

Also notice how the content in the Index.cshtml view template was merged with the Views/Shared/_Layout.cshtml
view template and a single HTML response was sent to the browser. Layout templates make it really easy to make
changes that apply across all of the pages in your application. To learn more see Layout.

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. The MVC
application has a "V" (view) and you've got a "C" (controller), but no "M" (model) yet.

Controller actions are invoked in response to an incoming URL request. A controller class is where you write the
code that handles the incoming browser requests. The controller retrieves data from a data source and decides
what type of response to send back to the browser. View templates can be used from a controller to generate and
format an HTML response to the browser.

Controllers are responsible for providing the data required in order for a view template to render a response. A

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Welcome(string name, int numTimes = 1)
 {
 ViewData["Message"] = "Hello " + name;
 ViewData["NumTimes"] = numTimes;

 return View();
 }
 }
}

@{
 ViewData["Title"] = "Welcome";
}

<h2>Welcome</h2>

 @for (int i = 0; i < (int)ViewData["NumTimes"]; i++)
 {
 @ViewData["Message"]
 }

best practice: View templates should not perform business logic or interact with a database directly. Rather, a view
template should work only with the data that's provided to it by the controller. Maintaining this "separation of
concerns" helps keep your code clean, testable, and maintainable.

Currently, the Welcome method in the HelloWorldController class takes a name and a ID parameter and then
outputs the values directly to the browser. Rather than have the controller render this response as a string, change
the controller to use a view template instead. The view template generates a dynamic response, which means that
appropriate bits of data must be passed from the controller to the view in order to generate the response. Do this
by having the controller put the dynamic data (parameters) that the view template needs in a ViewData dictionary
that the view template can then access.

Return to the HelloWorldController.cs file and change the Welcome method to add a Message and NumTimes value
to the ViewData dictionary. The ViewData dictionary is a dynamic object, which means you can put whatever you
want in to it; the ViewData object has no defined properties until you put something inside it. The MVC model
binding system automatically maps the named parameters (name and numTimes) from the query string in the
address bar to parameters in your method. The complete HelloWorldController.cs file looks like this:

The ViewData dictionary object contains data that will be passed to the view.

Create a Welcome view template named Views/HelloWorld/Welcome.cshtml.

You'll create a loop in the Welcome.cshtml view template that displays "Hello" NumTimes . Replace the contents of
Views/HelloWorld/Welcome.cshtml with the following:

Save your changes and browse to the following URL:

http://localhost:xxxx/HelloWorld/Welcome?name=Rick&numtimes=4

Data is taken from the URL and passed to the controller using the MVC model binder . The controller packages
the data into a ViewData dictionary and passes that object to the view. The view then renders the data as HTML to
the browser.

In the sample above, we used the ViewData dictionary to pass data from the controller to a view. Later in the
tutorial, we will use a view model to pass data from a controller to a view. The view model approach to passing
data is generally much preferred over the ViewData dictionary approach. See ViewModel vs ViewData vs
ViewBag vs TempData vs Session in MVC for more information.

Well, that was a kind of an "M" for model, but not the database kind. Let's take what we've learned and create a
database of movies.

 P R E V IO U S - A D D A

C O N TR O L L E R

N E X T - A D D A

M O D E L

http://www.mytecbits.com/microsoft/dot-net/viewmodel-viewdata-viewbag-tempdata-mvc

Add a model to an ASP.NET Core MVC app
4/10/2018 • 4 minutes to read • Edit Online

Adding a model to an ASP.NET Core MVC app

Add a data model class

using System;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Prepare the project for scaffolding

By Rick Anderson and Tom Dykstra

In this section, you'll add some classes for managing movies in a database. These classes will be the "Model" part
of the MVC app.

You use these classes with Entity Framework Core (EF Core) to work with a database. EF Core is an object-
relational mapping (ORM) framework that simplifies the data access code that you have to write. EF Core
supports many database engines.

The model classes you'll create are known as POCO classes (from "plain-old CLR objects") because they don't
have any dependency on EF Core. They just define the properties of the data that will be stored in the database.

In this tutorial you'll write the model classes first, and EF Core will create the database. An alternate approach not
covered here is to generate model classes from an already-existing database. For information about that approach,
see ASP.NET Core - Existing Database.

Add a class to the Models folder named Movie.cs.
Add the following code to the Models/Movie.cs file:

The ID field is required by the database for the primary key.

Build the app to verify you don't have any errors, and you've finally added a Model to your MVC app.

Add the following highlighted NuGet packages to the MvcMovie.csproj file:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/adding-model.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://docs.microsoft.com/ef/core
https://docs.microsoft.com/ef/core/providers/
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.0" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0"
/>
 </ItemGroup>
</Project>

using Microsoft.EntityFrameworkCore;

namespace MvcMovie.Models
{
 public class MvcMovieContext : DbContext
 {
 public MvcMovieContext (DbContextOptions<MvcMovieContext> options)
 : base(options)
 {
 }

 public DbSet<MvcMovie.Models.Movie> Movie { get; set; }
 }
}

using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;

namespace MvcMovie
{
 public class Startup
 {

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlite("Data Source=MvcMovie.db"));

 }

Save the file and select Restore to the Info message "There are unresolved dependencies".

Create a Models/MvcMovieContext.cs file and add the following MvcMovieContext class:

Open the Startup.cs file and add two usings:

Add the database context to the Startup.cs file:

This tells Entity Framework which model classes are included in the data model. You're defining one entity
set of Movie objects, which will be represented in the database as a Movie table.

Build the project to verify there are no errors.

 Scaffold the MovieController

dotnet restore
dotnet aspnet-codegenerator controller -name MoviesController -m Movie -dc MvcMovieContext --
relativeFolderPath Controllers --useDefaultLayout --referenceScriptLibraries

Perform initial migration

dotnet ef migrations add InitialCreate
dotnet ef database update

Test the app

Open a terminal window in the project folder and run the following commands:

The scaffolding engine creates the following:

A movies controller (Controllers/MoviesController.cs)
Razor view files for Create, Delete, Details, Edit and Index pages (Views/Movies/*.cshtml)

The automatic creation of CRUD (create, read, update, and delete) action methods and views is known as
scaffolding. You'll soon have a fully functional web application that lets you manage a movie database.

From the command line, run the following .NET Core CLI commands:

The dotnet ef migrations add InitialCreate command generates code to create the initial database schema. The
schema is based on the model specified in the DbContext (In the Models/MvcMovieContext.cs file). The Initial

argument is used to name the migrations. You can use any name, but by convention you choose a name that
describes the migration. See Introduction to migrations for more information.

The dotnet ef database update command runs the Up method in the Migrations/<time-stamp>_InitialCreate.cs

file, which creates the database.

Run the app and tap the Mvc Movie link.

Tap the Create New link and create a movie.

https://wikipedia.org/wiki/Create,_read,_update_and_delete

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

You may not be able to enter decimal points or commas in the Price field. To support jQuery validation for
non-English locales that use a comma (",") for a decimal point, and non US-English date formats, you must
take steps to globalize your app. See https://github.com/aspnet/Docs/issues/4076 and Additional resources
for more information. For now, just enter whole numbers like 10.

 In some locales you need to specify the date format. See the highlighted code below.

We'll talk about DataAnnotations later in the tutorial.

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076

 Additional resourcesAdditional resources

Tapping Create causes the form to be posted to the server, where the movie information is saved in a database.
The app redirects to the /Movies URL, where the newly created movie information is displayed.

Create a couple more movie entries. Try the Edit, Details, and Delete links, which are all functional.

You now have a database and pages to display, edit, update and delete data. In the next tutorial, we'll work with the
database.

Tag Helpers
Globalization and localization

 P R E V IO U S - A D D A

V IE W

N E X T - W O R K IN G W ITH

S Q L ITE

Working with SQLite in an ASP.NET Core MVC
project
4/10/2018 • 2 minutes to read • Edit Online

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlite("Data Source=MvcMovie.db"));

 }

SQLite

By Rick Anderson

The MvcMovieContext object handles the task of connecting to the database and mapping Movie objects to
database records. The database context is registered with the Dependency Injection container in the
ConfigureServices method in the Startup.cs file:

The SQLite website states:

SQLite is a self-contained, high-reliability, embedded, full-featured, public-domain, SQL database engine.
SQLite is the most used database engine in the world.

There are many third party tools you can download to manage and view a SQLite database. The image below is
from DB Browser for SQLite. If you have a favorite SQLite tool, leave a comment on what you like about it.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/working-with-sql.md
https://twitter.com/RickAndMSFT
https://www.sqlite.org/
http://sqlitebrowser.org/

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace MvcMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MvcMovieContext(
 serviceProvider.GetRequiredService<DbContextOptions<MvcMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using System;
using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;
using MvcMovie;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<MvcMovieContext>();
 context.Database.Migrate();
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

Add the seed initializer to the Main method in the Program.cs file:

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using MvcMovie.Models;
using System;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 // Requires using MvcMovie.Models;
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Test the appTest the app
Delete all the records in the DB (So the seed method will run). Stop and start the app to seed the database.

The app shows the seeded data.

 P R E V IO U S - A D D A

M O D E L

N E X T - C O N TR O L L E R M E TH O D S A N D

V IE W S

Controller methods and views in ASP.NET Core
4/10/2018 • 10 minutes to read • Edit Online

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

By Rick Anderson

We have a good start to the movie app, but the presentation isn't ideal. We don't want to see the time (12:00:00
AM in the image below) and ReleaseDate should be two words.

Open the Models/Movie.cs file and add the highlighted lines shown below:

Build and run the app.

We cover DataAnnotations in the next tutorial. The Display attribute specifies what to display for the name of a

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/controller-methods-views.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata

 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
</tr>

 <td>
 Edit |
 Details |
 Delete
</td>

field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data
(Date), so the time information stored in the field isn't displayed.

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly
map Price to currency in the database. For more information, see Data Types.

Browse to the Movies controller and hold the mouse pointer over an Edit link to see the target URL.

The Edit, Details, and Delete links are generated by the Core MVC Anchor Tag Helper in the
Views/Movies/Index.cshtml file.

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the
code above, the AnchorTagHelper dynamically generates the HTML href attribute value from the controller action
method and route id. You use View Source from your favorite browser or use the developer tools to examine the
generated markup. A portion of the generated HTML is shown below:

Recall the format for routing set in the Startup.cs file:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter
https://docs.microsoft.com/ef/core/modeling/relational/data-types

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

ASP.NET Core translates http://localhost:1234/Movies/Edit/4 into a request to the Edit action method of the
Movies controller with the parameter Id of 4. (Controller methods are also known as action methods.)

Tag Helpers are one of the most popular new features in ASP.NET Core. See Additional resources for more
information.

Open the Movies controller and examine the two Edit action methods. The following code shows the
HTTP GET Edit method, which fetches the movie and populates the edit form generated by the Edit.cshtml Razor

file.

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [Bind] attribute is one way to protect against over-posting. You should only include properties in the [Bind]

attribute that you want to change. See Protect your controller from over-posting for more information.
ViewModels provide an alternative approach to prevent over-posting.

Notice the second Edit action method is preceded by the [HttpPost] attribute.

https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application#overpost
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application
http://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

<form asp-action="Edit">

The HttpPost attribute specifies that this Edit method can be invoked only for POST requests. You could apply
the [HttpGet] attribute to the first edit method, but that's not necessary because [HttpGet] is the default.

The ValidateAntiForgeryToken attribute is used to prevent forgery of a request and is paired up with an anti-
forgery token generated in the edit view file (Views/Movies/Edit.cshtml). The edit view file generates the anti-
forgery token with the Form Tag Helper.

The Form Tag Helper generates a hidden anti-forgery token that must match the [ValidateAntiForgeryToken]

generated anti-forgery token in the Edit method of the Movies controller. For more information, see Anti-
Request Forgery.

The HttpGet Edit method takes the movie ID parameter, looks up the movie using the Entity Framework
SingleOrDefaultAsync method, and returns the selected movie to the Edit view. If a movie cannot be found,
NotFound (HTTP 404) is returned.

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

When the scaffolding system created the Edit view, it examined the Movie class and created code to render
<label> and <input> elements for each property of the class. The following example shows the Edit view that

was generated by the Visual Studio scaffolding system:

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<form asp-action="Edit">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="ID" />
 <div class="form-group">
 <label asp-for="Title" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Title" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="ReleaseDate" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="ReleaseDate" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Genre" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Genre" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <label asp-for="Price" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Price" class="form-control" />

 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
</form>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Notice how the view template has a @model MvcMovie.Models.Movie statement at the top of the file.
@model MvcMovie.Models.Movie specifies that the view expects the model for the view template to be of type Movie .

The scaffolded code uses several Tag Helper methods to streamline the HTML markup. The - Label Tag Helper
displays the name of the field ("Title", "ReleaseDate", "Genre", or "Price"). The Input Tag Helper renders an HTML
<input> element. The Validation Tag Helper displays any validation messages associated with that property.

<form action="/Movies/Edit/7" method="post">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />
 <div class="text-danger" />
 <input type="hidden" data-val="true" data-val-required="The ID field is required." id="ID" name="ID"
value="7" />
 <div class="form-group">
 <label class="control-label col-md-2" for="Genre" />
 <div class="col-md-10">
 <input class="form-control" type="text" id="Genre" name="Genre" value="Western" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Genre" data-valmsg-
replace="true">
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-2" for="Price" />
 <div class="col-md-10">
 <input class="form-control" type="text" data-val="true" data-val-number="The field Price must
be a number." data-val-required="The Price field is required." id="Price" name="Price" value="3.99" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Price" data-valmsg-
replace="true">
 </div>
 </div>
 <!-- Markup removed for brevity -->
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
 <input name="__RequestVerificationToken" type="hidden"
value="CfDJ8Inyxgp63fRFqUePGvuI5jGZsloJu1L7X9le1gy7NCIlSduCRx9jDQClrV9pOTTmqUyXnJBXhmrjcUVDJyDUMm7-
MF_9rK8aAZdRdlOri7FmKVkRe_2v5LIHGKFcTjPrWPYnc9AdSbomkiOSaTEg7RU" />
</form>

Processing the POST Request

Run the application and navigate to the /Movies URL. Click an Edit link. In the browser, view the source for the
page. The generated HTML for the <form> element is shown below.

The <input> elements are in an HTML <form> element whose action attribute is set to post to the
/Movies/Edit/id URL. The form data will be posted to the server when the Save button is clicked. The last line

before the closing </form> element shows the hidden XSRF token generated by the Form Tag Helper.

The following listing shows the [HttpPost] version of the Edit action method.

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [ValidateAntiForgeryToken] attribute validates the hidden XSRF token generated by the anti-forgery token
generator in the Form Tag Helper

The model binding system takes the posted form values and creates a Movie object that's passed as the movie

parameter. The ModelState.IsValid method verifies that the data submitted in the form can be used to modify
(edit or update) a Movie object. If the data is valid it's saved. The updated (edited) movie data is saved to the
database by calling the SaveChangesAsync method of database context. After saving the data, the code redirects the
user to the Index action method of the MoviesController class, which displays the movie collection, including the
changes just made.

Before the form is posted to the server, client side validation checks any validation rules on the fields. If there are
any validation errors, an error message is displayed and the form isn't posted. If JavaScript is disabled, you won't
have client side validation but the server will detect the posted values that are not valid, and the form values will
be redisplayed with error messages. Later in the tutorial we examine Model Validation in more detail. The
Validation Tag Helper in the Views/Movies/Edit.cshtml view template takes care of displaying appropriate error
messages.

 Additional resources

All the HttpGet methods in the movie controller follow a similar pattern. They get a movie object (or list of
objects, in the case of Index), and pass the object (model) to the view. The Create method passes an empty
movie object to the Create view. All the methods that create, edit, delete, or otherwise modify data do so in the
[HttpPost] overload of the method. Modifying data in an HTTP GET method is a security risk. Modifying data in

an HTTP GET method also violates HTTP best practices and the architectural REST pattern, which specifies that
GET requests shouldn't change the state of your application. In other words, performing a GET operation should
be a safe operation that has no side effects and doesn't modify your persisted data.

Globalization and localization
Introduction to Tag Helpers
Author Tag Helpers
Anti-Request Forgery
Protect your controller from over-posting
ViewModels
Form Tag Helper
Input Tag Helper
Label Tag Helper
Select Tag Helper

http://rest.elkstein.org/
https://docs.microsoft.com/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application
http://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

Validation Tag Helper

 P R E V IO U S - W O R K IN G W ITH

S Q L ITE

N E X T - A D D

S E A R C H

Adding Search to an ASP.NET Core MVC app
4/10/2018 • 7 minutes to read • Edit Online

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

var movies = from m in _context.Movie
 select m;

if (!String.IsNullOrEmpty(searchString))
{
 movies = movies.Where(s => s.Title.Contains(searchString));
}

By Rick Anderson

In this section you add search capability to the Index action method that lets you search movies by genre or
name.

Update the Index method with the following code:

The first line of the Index action method creates a L INQ query to select the movies:

The query is only defined at this point, it has not been run against the database.

If the searchString parameter contains a string, the movies query is modified to filter on the value of the search
string:

The s => s.Title.Contains() code above is a Lambda Expression. Lambdas are used in method-based LINQ
queries as arguments to standard query operator methods such as the Where method or Contains (used in the
code above). L INQ queries are not executed when they're defined or when they're modified by calling a method
such as Where , Contains or OrderBy . Rather, query execution is deferred. That means that the evaluation of an
expression is delayed until its realized value is actually iterated over or the ToListAsync method is called. For more
information about deferred query execution, see Query Execution.

Note: The Contains method is run on the database, not in the c# code shown above. The case sensitivity on the
query depends on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case
insensitive. In SQLlite, with the default collation, it's case sensitive.

Navigate to /Movies/Index . Append a query string such as ?searchString=Ghost to the URL. The filtered movies
are displayed.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/search.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/standard/using-linq
https://docs.microsoft.com/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/dotnet/standard/using-linq
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.where
https://docs.microsoft.com/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/sql/t-sql/language-elements/like-transact-sql

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

public async Task<IActionResult> Index(string id)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(id))
 {
 movies = movies.Where(s => s.Title.Contains(id));
 }

 return View(await movies.ToListAsync());
}

If you change the signature of the Index method to have a parameter named id , the id parameter will match
the optional {id} placeholder for the default routes set in Startup.cs.

Note: SQLlite is case sensitive, so you'll need to search for "Ghost" and not "ghost".

The previous Index method:

The updated Index method with id parameter :

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-controller="Movies" asp-action="Index">
 <p>
 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>

You can now pass the search title as route data (a URL segment) instead of as a query string value.

However, you can't expect users to modify the URL every time they want to search for a movie. So now you'll add
UI elements to help them filter movies. If you changed the signature of the Index method to test how to pass the
route-bound ID parameter, change it back so that it takes a parameter named searchString :

Open the Views/Movies/Index.cshtml file, and add the <form> markup highlighted below:

[HttpPost]
public string Index(string searchString, bool notUsed)
{
 return "From [HttpPost]Index: filter on " + searchString;
}

The HTML <form> tag uses the Form Tag Helper, so when you submit the form, the filter string is posted to the
Index action of the movies controller. Save your changes and then test the filter.

There's no [HttpPost] overload of the Index method as you might expect. You don't need it, because the method
isn't changing the state of the app, just filtering data.

You could add the following [HttpPost] Index method.

The notUsed parameter is used to create an overload for the Index method. We'll talk about that later in the
tutorial.

If you add this method, the action invoker would match the [HttpPost] Index method, and the [HttpPost] Index

method would run as shown in the image below.

However, even if you add this [HttpPost] version of the Index method, there's a limitation in how this has all
been implemented. Imagine that you want to bookmark a particular search or you want to send a link to friends
that they can click in order to see the same filtered list of movies. Notice that the URL for the HTTP POST request
is the same as the URL for the GET request (localhost:xxxxx/Movies/Index) -- there's no search information in the

URL. The search string information is sent to the server as a form field value. You can verify that with the browser
Developer tools or the excellent Fiddler tool. The image below shows the Chrome browser Developer tools:

You can see the search parameter and XSRF token in the request body. Note, as mentioned in the previous
tutorial, the Form Tag Helper generates an XSRF anti-forgery token. We're not modifying data, so we don't need
to validate the token in the controller method.

Because the search parameter is in the request body and not the URL, you can't capture that search information to
bookmark or share with others. We'll fix this by specifying the request should be HTTP GET .

Change the <form> tag in the Views\movie\Index.cshtml Razor view to specify method="get" :

https://developer.mozilla.org/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
http://www.telerik.com/fiddler

<form asp-controller="Movies" asp-action="Index" method="get">

<form asp-controller="Movies" asp-action="Index" method="get">

Adding Search by genre

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace MvcMovie.Models
{
 public class MovieGenreViewModel
 {
 public List<Movie> movies;
 public SelectList genres;
 public string movieGenre { get; set; }
 }
}

Now when you submit a search, the URL contains the search query string. Searching will also go to the
HttpGet Index action method, even if you have a HttpPost Index method.

The following markup shows the change to the form tag:

Add the following MovieGenreViewModel class to the Models folder :

The movie-genre view model will contain:

A list of movies.
A SelectList containing the list of genres. This will allow the user to select a genre from the list.
movieGenre , which contains the selected genre.

Replace the Index method in MoviesController.cs with the following code:

// Requires using Microsoft.AspNetCore.Mvc.Rendering;
public async Task<IActionResult> Index(string movieGenre, string searchString)
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 if (!String.IsNullOrEmpty(movieGenre))
 {
 movies = movies.Where(x => x.Genre == movieGenre);
 }

 var movieGenreVM = new MovieGenreViewModel();
 movieGenreVM.genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 movieGenreVM.movies = await movies.ToListAsync();

 return View(movieGenreVM);
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

movieGenreVM.genres = new SelectList(await genreQuery.Distinct().ToListAsync())

Adding search by genre to the Index view

The following code is a LINQ query that retrieves all the genres from the database.

The SelectList of genres is created by projecting the distinct genres (we don't want our select list to have
duplicate genres).

Update Index.cshtml as follows:

@model MvcMovie.Models.MovieGenreViewModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-controller="Movies" asp-action="Index" method="get">
 <p>
 <select asp-for="movieGenre" asp-items="Model.genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.movies[0].Title)

In the preceding code, the DisplayNameFor HTML Helper inspects the Title property referenced in the lambda
expression to determine the display name. Since the lambda expression is inspected rather than evaluated, you
don't receive an access violation when model , model.movies , or model.movies[0] are null or empty. When the
lambda expression is evaluated (for example, @Html.DisplayFor(modelItem => item.Title)), the model's property
values are evaluated.

Test the app by searching by genre, by movie title, and by both.

 P R E V IO U S - C O N TR O L L E R M E TH O D S A N D

V IE W S

N E X T - A D D A

F IE L D

Adding a new field
4/10/2018 • 3 minutes to read • Edit Online

Adding a Rating Property to the Movie Model

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

[Bind("ID,Title,ReleaseDate,Genre,Price,Rating")]

By Rick Anderson

This tutorial will add a new field to the Movies table. We'll drop the database and create a new one when we
change the schema (add a new field). This workflow works well early in development when we don't have any
production data to perserve.

Once your app is deployed and you have data that you need to perserve, you can't drop your DB when you need
to change the schema. Entity Framework Code First Migrations allows you to update your schema and migrate
the database without losing data. Migrations is a popular feature when using SQL Server, but SQLlite doesn't
support many migration schema operations, so only very simply migrations are possible. See SQLite Limitations
for more information.

Open the Models/Movie.cs file and add a Rating property:

Because you've added a new field to the Movie class, you also need to update the binding whitelist so this new
property will be included. In MoviesController.cs, update the [Bind] attribute for both the Create and Edit

action methods to include the Rating property:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/new-field.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/ef/core/get-started/aspnetcore/new-db
https://docs.microsoft.com/ef/core/providers/sqlite/limitations

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.movies[0].Rating)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>

SqliteException: SQLite Error 1: 'no such column: m.Rating'.

You also need to update the view templates in order to display, create, and edit the new Rating property in the
browser view.

Edit the /Views/Movies/Index.cshtml file and add a Rating field:

Update the /Views/Movies/Create.cshtml with a Rating field.

The app won't work until we update the DB to include the new field. If you run it now, you'll get the following
SqliteException :

You're seeing this error because the updated Movie model class is different than the schema of the Movie table of
the existing database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Drop the database and have the Entity Framework automatically re-create the database based on the new
model class schema. With this approach, you lose existing data in the database — so you can't do this with a
production database! Using an initializer to automatically seed a database with test data is often a

new Movie
{
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Rating = "R",
 Price = 7.99M
},

productive way to develop an app.

2. Manually modify the schema of the existing database so that it matches the model classes. The advantage
of this approach is that you keep your data. You can make this change either manually or by creating a
database change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, we'll drop and re-create the database when the schema changes. Run the following command
from a terminal to drop the db:

dotnet ef database drop

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but
you'll want to make this change for each new Movie .

Add the Rating field to the Edit , Details , and Delete view.

Run the app and verify you can create/edit/display movies with a Rating field. templates.

 P R E V IO U S - A D D

S E A R C H

N E X T - A D D

V A L ID A TIO N

Adding validation
4/10/2018 • 10 minutes to read • Edit Online

Keeping things DRY

Adding validation rules to the movie model

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

By Rick Anderson

In this section you'll add validation logic to the Movie model, and you'll ensure that the validation rules are
enforced any time a user creates or edits a movie.

One of the design tenets of MVC is DRY ("Don't Repeat Yourself"). ASP.NET MVC encourages you to specify
functionality or behavior only once, and then have it be reflected everywhere in an app. This reduces the amount
of code you need to write and makes the code you do write less error prone, easier to test, and easier to maintain.

The validation support provided by MVC and Entity Framework Core Code First is a good example of the DRY
principle in action. You can declaratively specify validation rules in one place (in the model class) and the rules are
enforced everywhere in the app.

Open the Movie.cs file. DataAnnotations provides a built-in set of validation attributes that you apply declaratively
to any class or property. (It also contains formatting attributes like DataType that help with formatting and don't
provide any validation.)

Update the Movie class to take advantage of the built-in Required , StringLength , RegularExpression , and Range

validation attributes.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app-xplat/validation.md
https://twitter.com/RickAndMSFT
https://wikipedia.org/wiki/Don%27t_repeat_yourself

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

Validation Error UI in MVC

The validation attributes specify behavior that you want to enforce on the model properties they're applied to. The
Required and MinimumLength attributes indicates that a property must have a value; but nothing prevents a user

from entering white space to satisfy this validation. The RegularExpression attribute is used to limit what
characters can be input. In the code above, Genre and Rating must use only letters (First letter uppercase, white
space, numbers and special characters are not allowed). The Range attribute constrains a value to within a
specified range. The StringLength attribute lets you set the maximum length of a string property, and optionally
its minimum length. Value types (such as decimal , int , float , DateTime) are inherently required and don't need
the [Required] attribute.

Having validation rules automatically enforced by ASP.NET helps make your app more robust. It also ensures that
you can't forget to validate something and inadvertently let bad data into the database.

Run the app and navigate to the Movies controller.

Tap the Create New link to add a new movie. Fill out the form with some invalid values. As soon as jQuery client
side validation detects the error, it displays an error message.

NOTENOTE

How validation works

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales that
use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. This
GitHub issue 4076 for instructions on adding decimal comma.

Notice how the form has automatically rendered an appropriate validation error message in each field containing
an invalid value. The errors are enforced both client-side (using JavaScript and jQuery) and server-side (in case a
user has JavaScript disabled).

A significant benefit is that you didn't need to change a single line of code in the MoviesController class or in the
Create.cshtml view in order to enable this validation UI. The controller and views you created earlier in this tutorial
automatically picked up the validation rules that you specified by using validation attributes on the properties of
the Movie model class. Test validation using the Edit action method, and the same validation is applied.

The form data isn't sent to the server until there are no client side validation errors. You can verify this by putting a
break point in the HTTP Post method, by using the Fiddler tool , or the F12 Developer tools.

https://jqueryvalidation.org/
https://github.com/aspnet/Docs/issues/4076#issuecomment-326590420
http://www.telerik.com/fiddler
https://developer.microsoft.com/microsoft-edge/platform/documentation/f12-devtools-guide/

// GET: Movies/Create
public IActionResult Create()
{
 return View();
}

// POST: Movies/Create
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("ID,Title,ReleaseDate,Genre,Price, Rating")] Movie movie)
{
 if (ModelState.IsValid)
 {
 _context.Add(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 return View(movie);
}

You might wonder how the validation UI was generated without any updates to the code in the controller or views.
The following code shows the two Create methods.

The first (HTTP GET) Create action method displays the initial Create form. The second ([HttpPost]) version
handles the form post. The second Create method (The [HttpPost] version) calls ModelState.IsValid to check
whether the movie has any validation errors. Calling this method evaluates any validation attributes that have
been applied to the object. If the object has validation errors, the Create method re-displays the form. If there are
no errors, the method saves the new movie in the database. In our movie example, the form isn't posted to the
server when there are validation errors detected on the client side; the second Create method is never called
when there are client side validation errors. If you disable JavaScript in your browser, client validation is disabled
and you can test the HTTP POST Create method ModelState.IsValid detecting any validation errors.

You can set a break point in the [HttpPost] Create method and verify the method is never called, client side
validation won't submit the form data when validation errors are detected. If you disable JavaScript in your
browser, then submit the form with errors, the break point will be hit. You still get full validation without JavaScript.

The following image shows how to disable JavaScript in the FireFox browser.

The following image shows how to disable JavaScript in the Chrome browser.

After you disable JavaScript, post invalid data and step through the debugger.

<form asp-action="Create">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />

 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Title" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Title" class="form-control" />

 </div>
 </div>

 @*Markup removed for brevity.*@
 </div>
</form>

Using DataType Attributes

Below is portion of the Create.cshtml view template that you scaffolded earlier in the tutorial. It's used by the
action methods shown above both to display the initial form and to redisplay it in the event of an error.

The Input Tag Helper uses the DataAnnotations attributes and produces HTML attributes needed for jQuery
Validation on the client side. The Validation Tag Helper displays validation errors. See Validation for more
information.

What's really nice about this approach is that neither the controller nor the Create view template knows anything
about the actual validation rules being enforced or about the specific error messages displayed. The validation
rules and the error strings are specified only in the Movie class. These same validation rules are automatically
applied to the Edit view and any other views templates you might create that edit your model.

When you need to change validation logic, you can do so in exactly one place by adding validation attributes to the
model (in this example, the Movie class). You won't have to worry about different parts of the application being
inconsistent with how the rules are enforced — all validation logic will be defined in one place and used
everywhere. This keeps the code very clean, and makes it easy to maintain and evolve. And it means that you'll be
fully honoring the DRY principle.

Open the Movie.cs file and examine the Movie class. The System.ComponentModel.DataAnnotations namespace
provides formatting attributes in addition to the built-in set of validation attributes. We've already applied a
DataType enumeration value to the release date and to the price fields. The following code shows the ReleaseDate

and Price properties with the appropriate DataType attribute.

https://docs.microsoft.com/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

[Display(Name = "Release Date")]
[DataType(DataType.Date)]
public DateTime ReleaseDate { get; set; }

[Range(1, 100)]
[DataType(DataType.Currency)]
public decimal Price { get; set; }

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
public DateTime ReleaseDate { get; set; }

NOTENOTE

[Range(typeof(DateTime), "1/1/1966", "1/1/2020")]

The DataType attributes only provide hints for the view engine to format the data (and supplies
elements/attributes such as <a> for URL's and for email. You can use the
RegularExpression attribute to validate the format of the data. The DataType attribute is used to specify a data

type that's more specific than the database intrinsic type, they're not validation attributes. In this case we only want
to keep track of the date, not the time. The DataType Enumeration provides for many data types, such as Date,
Time, PhoneNumber, Currency, EmailAddress and more. The DataType attribute can also enable the application to
automatically provide type-specific features. For example, a mailto: link can be created for
DataType.EmailAddress , and a date selector can be provided for DataType.Date in browsers that support HTML5.

The DataType attributes emits HTML 5 data- (pronounced data dash) attributes that HTML 5 browsers can
understand. The DataType attributes do not provide any validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed
according to the default formats based on the server's CultureInfo .

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied when the value is displayed
in a text box for editing. (You might not want that for some fields — for example, for currency values, you probably
don't want the currency symbol in the text box for editing.)

You can use the DisplayFormat attribute by itself, but it's generally a good idea to use the DataType attribute. The
DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and provides the

following benefits that you don't get with DisplayFormat:

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate
currency symbol, email links, etc.)

By default, the browser will render data using the correct format based on your locale.

The DataType attribute can enable MVC to choose the right field template to render the data (the
DisplayFormat if used by itself uses the string template).

jQuery validation doesn't work with the Range attribute and DateTime . For example, the following code will always display
a client side validation error, even when the date is in the specified range:

You will need to disable jQuery date validation to use the Range attribute with DateTime . It's generally not a good
practice to compile hard dates in your models, so using the Range attribute and DateTime is discouraged.

The following code shows combining attributes on one line:

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3), Required]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z""'\s-]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), Required, StringLength(5)]
 public string Rating { get; set; }
}

Additional resources

In the next part of the series, we'll review the application and make some improvements to the automatically
generated Details and Delete methods.

Working with Forms
Globalization and localization
Introduction to Tag Helpers
Author Tag Helpers

 P R E V IO U S - A D D A

F IE L D

N E X T - E X A M IN E TH E D E TA IL S A N D D E L E TE

M E TH O D S

Examine the Details and Delete methods of an
ASP.NET Core app
5/31/2018 • 3 minutes to read • Edit Online

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

By Rick Anderson

Open the Movie controller and examine the Details method:

The MVC scaffolding engine that created this action method adds a comment showing an HTTP request that
invokes the method. In this case it's a GET request with three URL segments, the Movies controller, the Details

method and an id value. Recall these segments are defined in Startup.cs.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-mvc-app/details.md
https://twitter.com/RickAndMSFT

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var movie = await _context.Movie.FindAsync(id);
 _context.Movie.Remove(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
}

EF makes it easy to search for data using the SingleOrDefaultAsync method. An important security feature built
into the method is that the code verifies that the search method has found a movie before it tries to do anything
with it. For example, a hacker could introduce errors into the site by changing the URL created by the links from
http://localhost:xxxx/Movies/Details/1 to something like http://localhost:xxxx/Movies/Details/12345 (or some

other value that doesn't represent an actual movie). If you didn't check for a null movie, the app would throw an
exception.

Examine the Delete and DeleteConfirmed methods.

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 _context.Movie.Remove(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
}

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{

Note that the HTTP GET Delete method doesn't delete the specified movie, it returns a view of the movie where
you can submit (HttpPost) the deletion. Performing a delete operation in response to a GET request (or for that
matter, performing an edit operation, create operation, or any other operation that changes data) opens up a
security hole.

The [HttpPost] method that deletes the data is named DeleteConfirmed to give the HTTP POST method a
unique signature or name. The two method signatures are shown below:

The common language runtime (CLR) requires overloaded methods to have a unique parameter signature (same
method name but different list of parameters). However, here you need two Delete methods -- one for GET and
one for POST -- that both have the same parameter signature. (They both need to accept a single integer as a
parameter.)

There are two approaches to this problem, one is to give the methods different names. That's what the
scaffolding mechanism did in the preceding example. However, this introduces a small problem: ASP.NET maps
segments of a URL to action methods by name, and if you rename a method, routing normally wouldn't be able
to find that method. The solution is what you see in the example, which is to add the ActionName("Delete")

attribute to the DeleteConfirmed method. That attribute performs mapping for the routing system so that a URL
that includes /Delete/ for a POST request will find the DeleteConfirmed method.

// POST: Movies/Delete/6
[ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(int id, bool notUsed)

Publish to AzurePublish to Azure

Another common work around for methods that have identical names and signatures is to artificially change the
signature of the POST method to include an extra (unused) parameter. That's what we did in a previous post
when we added the notUsed parameter. You could do the same thing here for the [HttpPost] Delete method:

See Publish an ASP.NET Core web app to Azure App Service using Visual Studio for instructions on how to
publish this app to Azure using Visual Studio. The app can also be published from the command line.

P R E V IO U S

Create a Web API with ASP.NET Core and Visual
Studio for Mac
5/8/2018 • 15 minutes to read • Edit Online

Overview

API DESCRIPTION REQUEST BODY RESPONSE BODY

GET /api/todo Get all to-do items None Array of to-do items

GET /api/todo/{id} Get an item by ID None To-do item

POST /api/todo Add a new item To-do item To-do item

PUT /api/todo/{id} Update an existing item To-do item None

DELETE /api/todo/{id} Delete an item None None

By Rick Anderson and Mike Wasson

In this tutorial, build a web API for managing a list of "to-do" items. The UI isn't constructed.

There are three versions of this tutorial:

macOS: Web API with Visual Studio for Mac (This tutorial)
Windows: Web API with Visual Studio for Windows
macOS, Linux, Windows: Web API with Visual Studio Code

This tutorial creates the following API:

The following diagram shows the basic design of the app.

The client is whatever consumes the web API (mobile app, browser, etc.). This tutorial doesn't create a
client. Postman or curl is used as the client to test the app.

A model is an object that represents the data in the app. In this case, the only model is a to-do item.
Models are represented as C# classes, also known as Plain Old CLR Object (POCOs).

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/first-web-api-mac.md
https://twitter.com/RickAndMSFT
https://github.com/mikewasson
https://www.getpostman.com/
https://curl.haxx.se/docs/manpage.html

Prerequisites

Create the project

A controller is an object that handles HTTP requests and creates the HTTP response. This app has a single
controller.

To keep the tutorial simple, the app doesn't use a persistent database. The sample app stores to-do items in
an in-memory database.

See Introduction to ASP.NET Core MVC on macOS or Linux for an example that uses a persistent database.

Visual Studio for Mac

From Visual Studio, select File > New Solution.

Select .NET Core App > ASP.NET Core Web API > Next.

https://www.microsoft.com/net/download/macos

Launch the appLaunch the app

Enter TodoApi for the Project Name, and then click Create.

In Visual Studio, select Run > Start With Debugging to launch the app. Visual Studio launches a browser and
navigates to http://localhost:5000 . You get an HTTP 404 (Not Found) error. Change the URL to
http://localhost:<port>/api/values . The ValuesController data is displayed:

["value1","value2"]

Add support for Entity Framework CoreAdd support for Entity Framework Core

Add a model classAdd a model class

NOTENOTE

Install the Entity Framework Core InMemory database provider. This database provider allows Entity Framework
Core to be used with an in-memory database.

From the Project menu, select Add NuGet Packages.

Alternatively, you can right-click Dependencies, and then select Add Packages.
Enter EntityFrameworkCore.InMemory in the search box.

Select Microsoft.EntityFrameworkCore.InMemory , and then select Add Package.

A model is an object representing the data in your app. In this case, the only model is a to-do item.

In Solution Explorer, right-click the project. Select Add > New Folder. Name the folder Models.

You can put model classes anywhere in your project, but the Models folder is used by convention.

Right-click the Models folder, and select Add > New File > General > Empty Class. Name the class TodoItem,

https://docs.microsoft.com/ef/core/providers/in-memory/

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

Create the database contextCreate the database context

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

Register the database context

and then click New.

Replace the generated code with:

The database generates the Id when a TodoItem is created.

The database context is the main class that coordinates Entity Framework functionality for a given data model.
You create this class by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

Add a TodoContext class to the Models folder.

In this step, the database context is registered with the dependency injection container. Services (such as the DB
context) that are registered with the dependency injection (DI) container are available to the controllers.

Register the DB context with the service container using the built-in support for dependency injection. Replace
the contents of the Startup.cs file with the following code:

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

using Microsoft.AspNetCore.Builder;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

Add a controller

The preceding code:

Removes the unused code.
Specifies an in-memory database is injected into the service container.

In Solution Explorer, in the Controllers folder, add the class TodoController .

Replace the generated code with the following:

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API.

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API. The class is annotated with an [ApiController] attribute to enable some convenient features.
For information on features enabled by the attribute, see Annotate class with ApiControllerAttribute.

The controller's constructor uses Dependency Injection to inject the database context (TodoContext) into the
controller. The database context is used in each of the CRUD methods in the controller. The constructor adds an
item to the in-memory database if one doesn't exist.

https://wikipedia.org/wiki/Create,_read,_update_and_delete

Get to-do items

[HttpGet]
public List<TodoItem> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet]
public ActionResult<List<TodoItem>> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Routing and URL pathsRouting and URL paths

To get to-do items, add the following methods to the TodoController class:

These methods implement the two GET methods:

GET /api/todo

GET /api/todo/{id}

Here's a sample HTTP response for the GetAll method:

Later in the tutorial, I'll show how the HTTP response can be viewed with Postman or curl.

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each
method is constructed as follows:

Take the template string in the controller's Route attribute:

https://www.getpostman.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/curl.1.html

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

Return valuesReturn values

Replace [controller] with the name of the controller, which is the controller class name minus the
"Controller" suffix. For this sample, the controller class name is TodoController and the root name is "todo".
ASP.NET Core routing is case insensitive.
If the [HttpGet] attribute has a route template (such as [HttpGet("/products")] , append that to the path. This
sample doesn't use a template. For more information, see Attribute routing with Http[Verb] attributes.

In the following GetById method, "{id}" is a placeholder variable for the unique identifier of the to-do item.
When GetById is invoked, it assigns the value of "{id}" in the URL to the method's id parameter.

Name = "GetTodo" creates a named route. Named routes:

Enable the app to create an HTTP link using the route name.
Are explained later in the tutorial.

The GetAll method returns a collection of TodoItem objects. MVC automatically serializes the object to JSON
and writes the JSON into the body of the response message. The response code for this method is 200, assuming
there are no unhandled exceptions. Unhandled exceptions are translated into 5xx errors.

In contrast, the GetById method returns the more general IActionResult type, which represents a wide range of

https://www.json.org/

Launch the appLaunch the app

["value1","value2"]

[{"key":1,"name":"Item1","isComplete":false}]

Implement the other CRUD operations

CreateCreate

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

return types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP
404 response.
Otherwise, the method returns 200 with a JSON response body. Returning Ok results in an HTTP 200
response.

In contrast, the GetById method returns the ActionResult<T> type, which represents a wide range of return
types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP
404 response.
Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200
response.

In Visual Studio, select Run > Start With Debugging to launch the app. Visual Studio launches a browser and
navigates to http://localhost:<port> , where <port> is a randomly chosen port number. You get an HTTP 404
(Not Found) error. Change the URL to http://localhost:<port>/api/values . The ValuesController data is
displayed:

Navigate to the Todo controller at http://localhost:<port>/api/todo . The following JSON is returned:

We'll add Create , Update , and Delete methods to the controller. These methods are variations on a theme, so
I'll just show the code and highlight the main differences. Build the project after adding or changing code.

The preceding method responds to an HTTP POST, as indicated by the [HttpPost] attribute. The [FromBody]
attribute tells MVC to get the value of the to-do item from the body of the HTTP request.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute

[HttpPost]
public IActionResult Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

Use Postman to send a Create requestUse Postman to send a Create request

The preceding method responds to an HTTP POST, as indicated by the [HttpPost] attribute. MVC gets the value
of the to-do item from the body of the HTTP request.

The CreatedAtRoute method returns a 201 response. It's the standard response for an HTTP POST method that
creates a new resource on the server. CreatedAtRoute also adds a Location header to the response. The Location
header specifies the URI of the newly created to-do item. See 10.2.2 201 Created.

Start the app (Run > Start With Debugging).
Open Postman.

Update the port number in the localhost URL.
Set the HTTP method to POST.
Click the Body tab.
Select the raw radio button.
Set the type to JSON (application/json).
Enter a request body with a to-do item resembling the following JSON:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

{
 "name":"walk dog",
 "isComplete":true
}

TIPTIP

[HttpGet("{id}", Name = "GetTodo")]

UpdateUpdate

Click the Send button.

If no response displays after clicking Send, disable the SSL certification verification option. This is found under File >
Settings. Click the Send button again after disabling the setting.

Click the Headers tab in the Response pane and copy the Location header value:

You can use the Location header URI to access the resource you created. The Create method returns
CreatedAtRoute. The first parameter passed to CreatedAtRoute represents the named route to use for generating
the URL. Recall that the GetById method created the "GetTodo" named route:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdatroute#Microsoft_AspNetCore_Mvc_ControllerBase_CreatedAtRoute_System_String_System_Object_System_Object_

[HttpPut("{id}")]
public IActionResult Update(long id, [FromBody] TodoItem item)
{
 if (item == null || item.Id != id)
 {
 return BadRequest();
 }

 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

[HttpPut("{id}")]
public IActionResult Update(long id, TodoItem item)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

{
 "key": 1,
 "name": "walk dog",
 "isComplete": true
}

Update is similar to Create , but uses HTTP PUT. The response is 204 (No Content). According to the HTTP spec,
a PUT request requires the client to send the entire updated entity, not just the deltas. To support partial updates,
use HTTP PATCH.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

DeleteDelete

[HttpDelete("{id}")]
public IActionResult Delete(long id)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todo);
 _context.SaveChanges();
 return NoContent();
}

The response is 204 (No Content).

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Call the Web API with jQuery

public void Configure(IApplicationBuilder app)
{
 app.UseDefaultFiles();
 app.UseStaticFiles();
 app.UseMvc();
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>To-do CRUD</title>
 <style>
 input[type='submit'], button, [aria-label] {
 cursor: pointer;
 }

In this section, an HTML page is added that uses jQuery to call the Web API. jQuery initiates the request and
updates the page with the details from the API's response.

Configure the project to serve static files and to enable default file mapping. This is accomplished by invoking the
UseStaticFiles and UseDefaultFiles extension methods in Startup.Configure. For more information, see Static
files.

Add an HTML file, named index.html, to the project's wwwroot directory. Replace its contents with the following
markup:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#Microsoft_AspNetCore_Builder_StaticFileExtensions_UseStaticFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#Microsoft_AspNetCore_Builder_DefaultFilesExtensions_UseDefaultFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_

 #spoiler {
 display: none;
 }

 table {
 font-family: Arial, sans-serif;
 border: 1px solid;
 border-collapse: collapse;
 }

 th {
 background-color: #0066CC;
 color: white;
 }

 td {
 border: 1px solid;
 padding: 5px;
 }
 </style>
</head>
<body>
 <h1>To-do CRUD</h1>
 <h3>Add</h3>
 <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
 <input type="text" id="add-name" placeholder="New to-do">
 <input type="submit" value="Add">
 </form>

 <div id="spoiler">
 <h3>Edit</h3>
 <form class="my-form">
 <input type="hidden" id="edit-id">
 <input type="checkbox" id="edit-isComplete">
 <input type="text" id="edit-name">
 <input type="submit" value="Edit">
 ✖
 </form>
 </div>

 <p id="counter"></p>

 <table>
 <tr>
 <th>Is Complete</th>
 <th>Name</th>
 <th></th>
 <th></th>
 </tr>
 <tbody id="todos"></tbody>
 </table>

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
 crossorigin="anonymous"></script>
 <script src="site.js"></script>
</body>
</html>

const uri = 'api/todo';
let todos = null;
function getCount(data) {
 const el = $('#counter');

Add a JavaScript file, named site.js, to the project's wwwroot directory. Replace its contents with the following
code:

 let name = 'to-do';
 if (data) {
 if (data > 1) {
 name = 'to-dos';
 }
 el.text(data + ' ' + name);
 } else {
 el.html('No ' + name);
 }
}

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

function deleteItem(id) {
 $.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
 });
}

function editItem(id) {
 $.each(todos, function (key, item) {
 if (item.id === id) {
 $('#edit-name').val(item.name);
 $('#edit-id').val(item.id);
 $('#edit-isComplete').val(item.isComplete);
 }
 });
 $('#spoiler').css({ 'display': 'block' });
}

$('.my-form').on('submit', function () {
 const item = {
 'name': $('#edit-name').val(),
 'isComplete': $('#edit-isComplete').is(':checked'),
 'id': $('#edit-id').val()
 };

 $.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
 });

 closeInput();
 return false;
});

function closeInput() {
 $('#spoiler').css({ 'display': 'none' });
}

Get a list of to-do itemsGet a list of to-do items

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally. Open
launchSettings.json in the Properties directory of the project. Remove the launchUrl property to force the app to
open at index.html—the project's default file.

There are several ways to get jQuery. In the preceding snippet, the library is loaded from a CDN. This sample is a
complete CRUD example of calling the API with jQuery. There are additional features in this sample to make the
experience richer. Below are explanations around the calls to the API.

To get a list of to-do items, send an HTTP GET request to /api/todo.

The jQuery ajax function sends an AJAX request to the API, which returns JSON representing an object or array.
This function can handle all forms of HTTP interaction, sending an HTTP request to the specified url . GET is
used as the type . The success callback function is invoked if the request succeeds. In the callback, the DOM is
updated with the to-do information.

https://api.jquery.com/jquery.ajax/

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

Add a to-do itemAdd a to-do item

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

Update a to-do itemUpdate a to-do item

To add a to-do item, send an HTTP POST request to /api/todo/. The request body should contain a to-do object.
The ajax function is using POST to call the API. For POST and PUT requests, the request body represents the
data sent to the API. The API is expecting a JSON request body. The accepts and contentType options are set to
application/json to classify the media type being received and sent, respectively. The data is converted to a

JSON object using JSON.stringify . When the API returns a successful status code, the getData function is
invoked to update the HTML table.

Updating a to-do item is very similar to adding one, since both rely on a request body. The only real difference
between the two in this case is that the url changes to add the unique identifier of the item, and the type is
PUT .

https://api.jquery.com/jquery.ajax/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

$.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
});

Delete a to-do itemDelete a to-do item

$.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
});

Next steps

Deleting a to-do item is accomplished by setting the type on the AJAX call to DELETE and specifing the item's
unique identifier in the URL.

For information on using a persistent database, see:

Create a Razor Pages web app with ASP.NET Core
Work with data in ASP.NET Core

ASP.NET Core Web API help pages using Swagger

Routing to controller actions

Build web APIs with ASP.NET Core

Controller action return types

For information about deploying an API, including to Azure App Service, see Host and deploy.

View or download sample code. See how to download.

https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/first-web-api/samples

Create a Web API with ASP.NET Core and Visual
Studio Code
5/8/2018 • 15 minutes to read • Edit Online

Overview

API DESCRIPTION REQUEST BODY RESPONSE BODY

GET /api/todo Get all to-do items None Array of to-do items

GET /api/todo/{id} Get an item by ID None To-do item

POST /api/todo Add a new item To-do item To-do item

PUT /api/todo/{id} Update an existing item To-do item None

DELETE /api/todo/{id} Delete an item None None

By Rick Anderson and Mike Wasson

In this tutorial, build a web API for managing a list of "to-do" items. A UI isn't constructed.

There are three versions of this tutorial:

macOS, Linux, Windows: Web API with Visual Studio Code (This tutorial)
macOS: Web API with Visual Studio for Mac
Windows: Web API with Visual Studio for Windows

This tutorial creates the following API:

The following diagram shows the basic design of the app.

The client is whatever consumes the web API (mobile app, browser, etc.). This tutorial doesn't create a
client. Postman or curl is used as the client to test the app.

A model is an object that represents the data in the app. In this case, the only model is a to-do item.
Models are represented as C# classes, also known as Plain Old CLR Object (POCOs).

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/web-api-vsc.md
https://twitter.com/RickAndMSFT
https://github.com/mikewasson
https://www.getpostman.com/
https://curl.haxx.se/docs/manpage.html

Prerequisites

Create the project

dotnet new webapi -o TodoApi
code TodoApi

A controller is an object that handles HTTP requests and creates the HTTP response. This app has a single
controller.

To keep the tutorial simple, the app doesn't use a persistent database. The sample app stores to-do items
in an in-memory database.

Install the following:

Visual Studio Code
C# for Visual Studio Code

.NET Core SDK 2.0 or later

Visual Studio Code
C# for Visual Studio Code

.NET Core 2.1 SDK or later

From a console, run the following commands:

The TodoApi folder opens in Visual Studio Code (VS Code). Select the Startup.cs file.

Select Yes to the Warn message "Required assets to build and debug are missing from 'TodoApi'. Add them?"
Select Restore to the Info message "There are unresolved dependencies".

Press Debug (F5) to build and run the program. In a browser, navigate to http://localhost:5000/api/values. The

https://www.microsoft.com/net/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://www.microsoft.com/net/download/all
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
http://localhost:5000/api/values

["value1","value2"]

Add support for Entity Framework Core

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.3" />
</ItemGroup>

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" />
</ItemGroup>

Add a model class

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

Create the database context

following output is displayed:

See Visual Studio Code help for tips on using VS Code.

Creating a new project in ASP.NET Core 2.0 adds the Microsoft.AspNetCore.All package reference to the
TodoApi.csproj file:

Creating a new project in ASP.NET Core 2.1 or later adds the Microsoft.AspNetCore.App package reference to
the TodoApi.csproj file:

There's no need to install the Entity Framework Core InMemory database provider separately. This database
provider allows Entity Framework Core to be used with an in-memory database.

A model is an object representing the data in your app. In this case, the only model is a to-do item.

Add a folder named Models. You can put model classes anywhere in your project, but the Models folder is used
by convention.

Add a TodoItem class with the following code:

The database generates the Id when a TodoItem is created.

The database context is the main class that coordinates Entity Framework functionality for a given data model.
You create this class by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

Add a TodoContext class in the Models folder :

https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://www.nuget.org/packages/Microsoft.AspNetCore.App
https://docs.microsoft.com/ef/core/providers/in-memory/

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

Register the database context

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

In this step, the database context is registered with the dependency injection container. Services (such as the DB
context) that are registered with the dependency injection (DI) container are available to the controllers.

Register the DB context with the service container using the built-in support for dependency injection. Replace
the contents of the Startup.cs file with the following code:

using Microsoft.AspNetCore.Builder;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

Add a controller

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

The preceding code:

Removes the unused code.
Specifies an in-memory database is injected into the service container.

In the Controllers folder, create a class named TodoController . Replace its contents with the following code:

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API.

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

Get to-do items

[HttpGet]
public List<TodoItem> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

The preceding code defines an API controller class without methods. In the next sections, methods are added to
implement the API. The class is annotated with an [ApiController] attribute to enable some convenient features.
For information on features enabled by the attribute, see Annotate class with ApiControllerAttribute.

The controller's constructor uses Dependency Injection to inject the database context (TodoContext) into the
controller. The database context is used in each of the CRUD methods in the controller. The constructor adds an
item to the in-memory database if one doesn't exist.

To get to-do items, add the following methods to the TodoController class:

https://wikipedia.org/wiki/Create,_read,_update_and_delete

[HttpGet]
public ActionResult<List<TodoItem>> GetAll()
{
 return _context.TodoItems.ToList();
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Routing and URL pathsRouting and URL paths

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

These methods implement the two GET methods:

GET /api/todo

GET /api/todo/{id}

Here's a sample HTTP response for the GetAll method:

Later in the tutorial, I'll show how the HTTP response can be viewed with Postman or curl.

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each
method is constructed as follows:

Take the template string in the controller's Route attribute:

Replace [controller] with the name of the controller, which is the controller class name minus the
"Controller" suffix. For this sample, the controller class name is TodoController and the root name is "todo".
ASP.NET Core routing is case insensitive.

https://www.getpostman.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/curl.1.html

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

Return valuesReturn values

Launch the appLaunch the app

If the [HttpGet] attribute has a route template (such as [HttpGet("/products")] , append that to the path. This
sample doesn't use a template. For more information, see Attribute routing with Http[Verb] attributes.

In the following GetById method, "{id}" is a placeholder variable for the unique identifier of the to-do item.
When GetById is invoked, it assigns the value of "{id}" in the URL to the method's id parameter.

Name = "GetTodo" creates a named route. Named routes:

Enable the app to create an HTTP link using the route name.
Are explained later in the tutorial.

The GetAll method returns a collection of TodoItem objects. MVC automatically serializes the object to JSON
and writes the JSON into the body of the response message. The response code for this method is 200,
assuming there are no unhandled exceptions. Unhandled exceptions are translated into 5xx errors.

In contrast, the GetById method returns the more general IActionResult type, which represents a wide range of
return types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP
404 response.
Otherwise, the method returns 200 with a JSON response body. Returning Ok results in an HTTP 200
response.

In contrast, the GetById method returns the ActionResult<T> type, which represents a wide range of return
types. GetById has two different return types:

If no item matches the requested ID, the method returns a 404 error. Returning NotFound returns an HTTP
404 response.
Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200
response.

In VS Code, press F5 to launch the app. Navigate to http://localhost:5000/api/todo (the Todo controller we
created).

https://www.json.org/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
http://localhost:5000/api/todo

Call the Web API with jQuery

public void Configure(IApplicationBuilder app)
{
 app.UseDefaultFiles();
 app.UseStaticFiles();
 app.UseMvc();
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>To-do CRUD</title>
 <style>
 input[type='submit'], button, [aria-label] {
 cursor: pointer;
 }

 #spoiler {
 display: none;
 }

 table {
 font-family: Arial, sans-serif;
 border: 1px solid;
 border-collapse: collapse;
 }

 th {
 background-color: #0066CC;
 color: white;
 }

 td {
 border: 1px solid;
 padding: 5px;
 }
 </style>
</head>
<body>
 <h1>To-do CRUD</h1>
 <h3>Add</h3>
 <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
 <input type="text" id="add-name" placeholder="New to-do">
 <input type="submit" value="Add">
 </form>

 <div id="spoiler">
 <h3>Edit</h3>
 <form class="my-form">
 <input type="hidden" id="edit-id">
 <input type="checkbox" id="edit-isComplete">
 <input type="text" id="edit-name">
 <input type="submit" value="Edit">

In this section, an HTML page is added that uses jQuery to call the Web API. jQuery initiates the request and
updates the page with the details from the API's response.

Configure the project to serve static files and to enable default file mapping. This is accomplished by invoking the
UseStaticFiles and UseDefaultFiles extension methods in Startup.Configure. For more information, see Static
files.

Add an HTML file, named index.html, to the project's wwwroot directory. Replace its contents with the following
markup:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#Microsoft_AspNetCore_Builder_StaticFileExtensions_UseStaticFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#Microsoft_AspNetCore_Builder_DefaultFilesExtensions_UseDefaultFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_

 <input type="submit" value="Edit">
 ✖
 </form>
 </div>

 <p id="counter"></p>

 <table>
 <tr>
 <th>Is Complete</th>
 <th>Name</th>
 <th></th>
 <th></th>
 </tr>
 <tbody id="todos"></tbody>
 </table>

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
 crossorigin="anonymous"></script>
 <script src="site.js"></script>
</body>
</html>

const uri = 'api/todo';
let todos = null;
function getCount(data) {
 const el = $('#counter');
 let name = 'to-do';
 if (data) {
 if (data > 1) {
 name = 'to-dos';
 }
 el.text(data + ' ' + name);
 } else {
 el.html('No ' + name);
 }
}

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

Add a JavaScript file, named site.js, to the project's wwwroot directory. Replace its contents with the following
code:

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

function deleteItem(id) {
 $.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
 });
}

function editItem(id) {
 $.each(todos, function (key, item) {
 if (item.id === id) {
 $('#edit-name').val(item.name);
 $('#edit-id').val(item.id);
 $('#edit-isComplete').val(item.isComplete);
 }
 });
 $('#spoiler').css({ 'display': 'block' });
}

$('.my-form').on('submit', function () {
 const item = {
 'name': $('#edit-name').val(),
 'isComplete': $('#edit-isComplete').is(':checked'),
 'id': $('#edit-id').val()
 };

 $.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
 });

 closeInput();
 return false;
});

function closeInput() {
 $('#spoiler').css({ 'display': 'none' });
}

}

Get a list of to-do itemsGet a list of to-do items

$(document).ready(function () {
 getData();
});

function getData() {
 $.ajax({
 type: 'GET',
 url: uri,
 success: function (data) {
 $('#todos').empty();
 getCount(data.length);
 $.each(data, function (key, item) {
 const checked = item.isComplete ? 'checked' : '';

 $('<tr><td><input disabled="true" type="checkbox" ' + checked + '></td>' +
 '<td>' + item.name + '</td>' +
 '<td><button onclick="editItem(' + item.id + ')">Edit</button></td>' +
 '<td><button onclick="deleteItem(' + item.id + ')">Delete</button></td>' +
 '</tr>').appendTo($('#todos'));
 });

 todos = data;
 }
 });
}

Add a to-do itemAdd a to-do item

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally. Open
launchSettings.json in the Properties directory of the project. Remove the launchUrl property to force the app to
open at index.html—the project's default file.

There are several ways to get jQuery. In the preceding snippet, the library is loaded from a CDN. This sample is a
complete CRUD example of calling the API with jQuery. There are additional features in this sample to make the
experience richer. Below are explanations around the calls to the API.

To get a list of to-do items, send an HTTP GET request to /api/todo.

The jQuery ajax function sends an AJAX request to the API, which returns JSON representing an object or array.
This function can handle all forms of HTTP interaction, sending an HTTP request to the specified url . GET is
used as the type . The success callback function is invoked if the request succeeds. In the callback, the DOM is
updated with the to-do information.

To add a to-do item, send an HTTP POST request to /api/todo/. The request body should contain a to-do object.
The ajax function is using POST to call the API. For POST and PUT requests, the request body represents the
data sent to the API. The API is expecting a JSON request body. The accepts and contentType options are set to
application/json to classify the media type being received and sent, respectively. The data is converted to a

JSON object using JSON.stringify . When the API returns a successful status code, the getData function is
invoked to update the HTML table.

https://api.jquery.com/jquery.ajax/
https://api.jquery.com/jquery.ajax/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

function addItem() {
 const item = {
 'name': $('#add-name').val(),
 'isComplete': false
 };

 $.ajax({
 type: 'POST',
 accepts: 'application/json',
 url: uri,
 contentType: 'application/json',
 data: JSON.stringify(item),
 error: function (jqXHR, textStatus, errorThrown) {
 alert('here');
 },
 success: function (result) {
 getData();
 $('#add-name').val('');
 }
 });
}

Update a to-do itemUpdate a to-do item

$.ajax({
 url: uri + '/' + $('#edit-id').val(),
 type: 'PUT',
 accepts: 'application/json',
 contentType: 'application/json',
 data: JSON.stringify(item),
 success: function (result) {
 getData();
 }
});

Delete a to-do itemDelete a to-do item

$.ajax({
 url: uri + '/' + id,
 type: 'DELETE',
 success: function (result) {
 getData();
 }
});

Implement the other CRUD operations

CreateCreate

Updating a to-do item is very similar to adding one, since both rely on a request body. The only real difference
between the two in this case is that the url changes to add the unique identifier of the item, and the type is
PUT .

Deleting a to-do item is accomplished by setting the type on the AJAX call to DELETE and specifing the item's
unique identifier in the URL.

In the following sections, Create , Update , and Delete methods are added to the controller.

Add the following Create method:

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }

 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[HttpPost]
public IActionResult Create(TodoItem item)
{
 _context.TodoItems.Add(item);
 _context.SaveChanges();

 return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return Ok(item);
}

[HttpGet("{id}", Name = "GetTodo")]
public ActionResult<TodoItem> GetById(long id)
{
 var item = _context.TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return item;
}

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. The [FromBody] attribute
tells MVC to get the value of the to-do item from the body of the HTTP request.

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. MVC gets the value of the
to-do item from the body of the HTTP request.

The CreatedAtRoute method:

Returns a 201 response. HTTP 201 is the standard response for an HTTP POST method that creates a new
resource on the server.
Adds a Location header to the response. The Location header specifies the URI of the newly created to-do
item. See 10.2.2 201 Created.
Uses the "GetTodo" named route to create the URL. The "GetTodo" named route is defined in GetById :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Use Postman to send a Create requestUse Postman to send a Create request

{
 "name":"walk dog",
 "isComplete":true
}

TIPTIP

Start the app.
Open Postman.

Update the port number in the localhost URL.
Set the HTTP method to POST.
Click the Body tab.
Select the raw radio button.
Set the type to JSON (application/json).
Enter a request body with a to-do item resembling the following JSON:

Click the Send button.

If no response displays after clicking Send, disable the SSL certification verification option. This is found under File >
Settings. Click the Send button again after disabling the setting.

Click the Headers tab in the Response pane and copy the Location header value:

UpdateUpdate

[HttpPut("{id}")]
public IActionResult Update(long id, [FromBody] TodoItem item)
{
 if (item == null || item.Id != id)
 {
 return BadRequest();
 }

 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

The Location header URI can be used to access the new item.

Add the following Update method:

[HttpPut("{id}")]
public IActionResult Update(long id, TodoItem item)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 todo.IsComplete = item.IsComplete;
 todo.Name = item.Name;

 _context.TodoItems.Update(todo);
 _context.SaveChanges();
 return NoContent();
}

DeleteDelete

Update is similar to Create , except it uses HTTP PUT. The response is 204 (No Content). According to the HTTP
specification, a PUT request requires the client to send the entire updated entity, not just the deltas. To support
partial updates, use HTTP PATCH.

Use Postman to update the to-do item's name to "walk cat":

Add the following Delete method:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

[HttpDelete("{id}")]
public IActionResult Delete(long id)
{
 var todo = _context.TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todo);
 _context.SaveChanges();
 return NoContent();
}

Visual Studio Code help

The Delete response is 204 (No Content).

Use Postman to delete the to-do item:

Getting started

Debugging

Integrated terminal

Keyboard shortcuts

macOS keyboard shortcuts

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/integrated-terminal
https://code.visualstudio.com/docs/getstarted/keybindings#_keyboard-shortcuts-reference
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf

Next steps

Linux keyboard shortcuts
Windows keyboard shortcuts

For information on using a persistent database, see:

Create a Razor Pages web app with ASP.NET Core
Work with data in ASP.NET Core

ASP.NET Core Web API help pages using Swagger

Routing to controller actions

Build web APIs with ASP.NET Core

Controller action return types

For information about deploying an API, including to Azure App Service, see Host and deploy.

View or download sample code. See how to download.

https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/first-web-api/samples

Develop ASP.NET Core apps using a file watcher
6/12/2018 • 3 minutes to read • Edit Online

dotnet run

$ dotnet run
Hosting environment: Development
Content root path: C:/Docs/aspnetcore/tutorials/dotnet-watch/sample/WebApp
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

Add dotnet watch to a project

<ItemGroup>
<DotNetCliToolReference Include="Microsoft.DotNet.Watcher.Tools" Version="2.0.0" />
</ItemGroup>

dotnet restore

Run .NET Core CLI commands using dotnet watch

By Rick Anderson and Victor Hurdugaci

dotnet watch is a tool that runs a .NET Core CLI command when source files change. For example, a file change
can trigger compilation, test execution, or deployment.

This tutorial uses an existing web API with two endpoints: one that returns a sum and one that returns a product.
The product method has a bug, which is fixed in this tutorial.

Download the sample app. It consists of two projects: WebApp (an ASP.NET Core web API) and WebAppTests
(unit tests for the web API).

In a command shell, navigate to the WebApp folder. Run the following command:

The console output shows messages similar to the following (indicating that the app is running and awaiting
requests):

In a web browser, navigate to http://localhost:<port number>/api/math/sum?a=4&b=5 . You should see the result of
9 .

Navigate to the product API (http://localhost:<port number>/api/math/product?a=4&b=5). It returns 9 , not 20 as
you'd expect. That problem is fixed later in the tutorial.

The dotnet watch file watcher tool is included with version 2.1.300 of the .NET Core SDK. The following steps are
required when using an earlier version of the .NET Core SDK.

1. Add a Microsoft.DotNet.Watcher.Tools package reference to the .csproj file:

1. Install the Microsoft.DotNet.Watcher.Tools package by running the following command:

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/dotnet-watch.md
https://twitter.com/RickAndMSFT
https://twitter.com/victorhurdugaci
https://docs.microsoft.com/dotnet/core/tools
https://github.com/aspnet/Docs/tree/master/aspnetcore/tutorials/dotnet-watch/sample

COMMAND COMMAND WITH WATCH

dotnet run dotnet watch run

dotnet run -f netcoreapp2.0 dotnet watch run -f netcoreapp2.0

dotnet run -f netcoreapp2.0 -- --arg1 dotnet watch run -f netcoreapp2.0 -- --arg1

dotnet test dotnet watch test

Make changes with dotnet watch

public static int Product(int a, int b)
{
 return a * b;
}

Run tests using dotnet watch

Customize files list to watch

Any .NET Core CLI command can be run with dotnet watch . For example:

Run dotnet watch run in the WebApp folder. The console output indicates watch has started.

Make sure dotnet watch is running.

Fix the bug in the Product method of MathController.cs so it returns the product and not the sum:

Save the file. The console output indicates that dotnet watch detected a file change and restarted the app.

Verify http://localhost:<port number>/api/math/product?a=4&b=5 returns the correct result.

Total tests: 2. Passed: 1. Failed: 1. Skipped: 0.
Test Run Failed.

1. Change the Product method of MathController.cs back to returning the sum. Save the file.

2. In a command shell, navigate to the WebAppTests folder.

3. Run dotnet restore.

4. Run dotnet watch test . Its output indicates that a test failed and that the watcher is awaiting file changes:

5. Fix the Product method code so it returns the product. Save the file.

dotnet watch detects the file change and reruns the tests. The console output indicates the tests passed.

By default, dotnet-watch tracks all files matching the following glob patterns:

**/*.cs

*.csproj

**/*.resx

More items can be added to the watch list by editing the .csproj file. Items can be specified individually or by using

https://docs.microsoft.com/dotnet/core/tools#cli-commands
https://docs.microsoft.com/dotnet/core/tools/dotnet-restore

<ItemGroup>
 <!-- extends watching group to include *.js files -->
 <Watch Include="***.js" Exclude="node_modules***;***.js.map;obj***;bin***" />
</ItemGroup>

Opt-out of files to be watched

<ItemGroup>
 <!-- exclude Generated.cs from dotnet-watch -->
 <Compile Include="Generated.cs" Watch="false" />

 <!-- exclude Strings.resx from dotnet-watch -->
 <EmbeddedResource Include="Strings.resx" Watch="false" />

 <!-- exclude changes in this referenced project -->
 <ProjectReference Include="..\ClassLibrary1\ClassLibrary1.csproj" Watch="false" />
</ItemGroup>

Custom watch projects

<Project>
 <ItemGroup>
 <TestProjects Include="***.csproj" />
 <Watch Include="***.cs" />
 </ItemGroup>

 <Target Name="Test">
 <MSBuild Targets="VSTest" Projects="@(TestProjects)" />
 </Target>

 <Import Project="$(MSBuildExtensionsPath)\Microsoft.Common.targets" />
</Project>

dotnet watch msbuild /t:Test

dotnet-watch in GitHub

glob patterns.

dotnet-watch can be configured to ignore its default settings. To ignore specific files, add the Watch="false"

attribute to an item's definition in the .csproj file:

dotnet-watch isn't restricted to C# projects. Custom watch projects can be created to handle different scenarios.
Consider the following project layout:

test/
UnitTests/UnitTests.csproj

IntegrationTests/IntegrationTests.csproj

If the goal is to watch both projects, create a custom project file configured to watch both projects:

To start file watching on both projects, change to the test folder. Execute the following command:

VSTest executes when any file changes in either test project.

dotnet-watch is part of the GitHub DotNetTools repository.

https://github.com/aspnet/DotNetTools/tree/dev/src/dotnet-watch

Create backend services for native mobile apps with
ASP.NET Core
3/22/2018 • 7 minutes to read • Edit Online

The Sample Native Mobile App

FeaturesFeatures

By Steve Smith

Mobile apps can easily communicate with ASP.NET Core backend services.

View or download sample backend services code

This tutorial demonstrates how to create backend services using ASP.NET Core MVC to support native mobile
apps. It uses the Xamarin Forms ToDoRest app as its native client, which includes separate native clients for
Android, iOS, Windows Universal, and Window Phone devices. You can follow the linked tutorial to create the
native app (and install the necessary free Xamarin tools), as well as download the Xamarin sample solution. The
Xamarin sample includes an ASP.NET Web API 2 services project, which this article's ASP.NET Core app replaces
(with no changes required by the client).

https://github.com/aspnet/Docs/blob/master/aspnetcore/mobile/native-mobile-backend.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mobile/native-mobile-backend/sample
https://docs.microsoft.com/xamarin/xamarin-forms/data-cloud/consuming/rest

The ToDoRest app supports listing, adding, deleting, and updating To-Do items. Each item has an ID, a Name,
Notes, and a property indicating whether it's been Done yet.

The main view of the items, as shown above, lists each item's name and indicates if it's done with a checkmark.

Tapping the + icon opens an add item dialog:

Tapping an item on the main list screen opens up an edit dialog where the item's Name, Notes, and Done settings
can be modified, or the item can be deleted:

// URL of REST service (Xamarin ReadOnly Service)
//public static string RestUrl = "http://developer.xamarin.com:8081/api/todoitems{0}";

// use your machine's IP address
public static string RestUrl = "http://192.168.1.207:5000/api/todoitems/{0}";

Creating the ASP.NET Core Project

This sample is configured by default to use backend services hosted at developer.xamarin.com, which allow read-
only operations. To test it out yourself against the ASP.NET Core app created in the next section running on your
computer, you'll need to update the app's RestUrl constant. Navigate to the ToDoREST project and open the
Constants.cs file. Replace the RestUrl with a URL that includes your machine's IP address (not localhost or
127.0.0.1, since this address is used from the device emulator, not from your machine). Include the port number as
well (5000). In order to test that your services work with a device, ensure you don't have an active firewall blocking
access to this port.

Create a new ASP.NET Core Web Application in Visual Studio. Choose the Web API template and No
Authentication. Name the project ToDoApi.

var host = new WebHostBuilder()
 .UseKestrel()
 .UseUrls("http://*:5000")
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

NOTENOTE

The application should respond to all requests made to port 5000. Update Program.cs to include
.UseUrls("http://*:5000") to achieve this:

Make sure you run the application directly, rather than behind IIS Express, which ignores non-local requests by default. Run
dotnet run from a command prompt, or choose the application name profile from the Debug Target dropdown in the Visual
Studio toolbar.

Add a model class to represent To-Do items. Mark required fields using the [Required] attribute:

https://docs.microsoft.com/dotnet/core/tools/dotnet-run

using System.ComponentModel.DataAnnotations;

namespace ToDoApi.Models
{
 public class ToDoItem
 {
 [Required]
 public string ID { get; set; }

 [Required]
 public string Name { get; set; }

 [Required]
 public string Notes { get; set; }

 public bool Done { get; set; }
 }
}

using System.Collections.Generic;
using ToDoApi.Models;

namespace ToDoApi.Interfaces
{
 public interface IToDoRepository
 {
 bool DoesItemExist(string id);
 IEnumerable<ToDoItem> All { get; }
 ToDoItem Find(string id);
 void Insert(ToDoItem item);
 void Update(ToDoItem item);
 void Delete(string id);
 }
}

using System.Collections.Generic;
using System.Linq;
using ToDoApi.Interfaces;
using ToDoApi.Models;

namespace ToDoApi.Services
{
 public class ToDoRepository : IToDoRepository
 {
 private List<ToDoItem> _toDoList;

 public ToDoRepository()
 {
 InitializeData();
 }

 public IEnumerable<ToDoItem> All
 {
 get { return _toDoList; }
 }

 public bool DoesItemExist(string id)
 {
 return _toDoList.Any(item => item.ID == id);

The API methods require some way to work with data. Use the same IToDoRepository interface the original
Xamarin sample uses:

For this sample, the implementation just uses a private collection of items:

 return _toDoList.Any(item => item.ID == id);
 }

 public ToDoItem Find(string id)
 {
 return _toDoList.FirstOrDefault(item => item.ID == id);
 }

 public void Insert(ToDoItem item)
 {
 _toDoList.Add(item);
 }

 public void Update(ToDoItem item)
 {
 var todoItem = this.Find(item.ID);
 var index = _toDoList.IndexOf(todoItem);
 _toDoList.RemoveAt(index);
 _toDoList.Insert(index, item);
 }

 public void Delete(string id)
 {
 _toDoList.Remove(this.Find(id));
 }

 private void InitializeData()
 {
 _toDoList = new List<ToDoItem>();

 var todoItem1 = new ToDoItem
 {
 ID = "6bb8a868-dba1-4f1a-93b7-24ebce87e243",
 Name = "Learn app development",
 Notes = "Attend Xamarin University",
 Done = true
 };

 var todoItem2 = new ToDoItem
 {
 ID = "b94afb54-a1cb-4313-8af3-b7511551b33b",
 Name = "Develop apps",
 Notes = "Use Xamarin Studio/Visual Studio",
 Done = false
 };

 var todoItem3 = new ToDoItem
 {
 ID = "ecfa6f80-3671-4911-aabe-63cc442c1ecf",
 Name = "Publish apps",
 Notes = "All app stores",
 Done = false,
 };

 _toDoList.Add(todoItem1);
 _toDoList.Add(todoItem2);
 _toDoList.Add(todoItem3);
 }
 }
}

Configure the implementation in Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddSingleton<IToDoRepository,ToDoRepository>();
}

TIPTIP

Creating the Controller

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using ToDoApi.Interfaces;
using ToDoApi.Models;

namespace ToDoApi.Controllers
{
 [Route("api/[controller]")]
 public class ToDoItemsController : Controller
 {
 private readonly IToDoRepository _toDoRepository;

 public ToDoItemsController(IToDoRepository toDoRepository)
 {
 _toDoRepository = toDoRepository;
 }

Reading ItemsReading Items

At this point, you're ready to create the ToDoItemsController.

Learn more about creating web APIs in Build your first Web API with ASP.NET Core MVC and Visual Studio.

Add a new controller to the project, ToDoItemsController. It should inherit from
Microsoft.AspNetCore.Mvc.Controller. Add a Route attribute to indicate that the controller will handle requests
made to paths starting with api/todoitems . The [controller] token in the route is replaced by the name of the
controller (omitting the Controller suffix), and is especially helpful for global routes. Learn more about routing.

The controller requires an IToDoRepository to function; request an instance of this type through the controller's
constructor. At runtime, this instance will be provided using the framework's support for dependency injection.

This API supports four different HTTP verbs to perform CRUD (Create, Read, Update, Delete) operations on the
data source. The simplest of these is the Read operation, which corresponds to an HTTP GET request.

Requesting a list of items is done with a GET request to the List method. The [HttpGet] attribute on the List

method indicates that this action should only handle GET requests. The route for this action is the route specified
on the controller. You don't necessarily need to use the action name as part of the route. You just need to ensure
each action has a unique and unambiguous route. Routing attributes can be applied at both the controller and
method levels to build up specific routes.

[HttpGet]
public IActionResult List()
{
 return Ok(_toDoRepository.All);
}

Creating ItemsCreating Items

The List method returns a 200 OK response code and all of the ToDo items, serialized as JSON.

You can test your new API method using a variety of tools, such as Postman, shown here:

By convention, creating new data items is mapped to the HTTP POST verb. The Create method has an
[HttpPost] attribute applied to it, and accepts a ToDoItem instance. Since the item argument will be passed in the

body of the POST, this parameter is decorated with the [FromBody] attribute.

Inside the method, the item is checked for validity and prior existence in the data store, and if no issues occur, it's
added using the repository. Checking ModelState.IsValid performs model validation, and should be done in every
API method that accepts user input.

https://www.getpostman.com/docs/

[HttpPost]
public IActionResult Create([FromBody] ToDoItem item)
{
 try
 {
 if (item == null || !ModelState.IsValid)
 {
 return BadRequest(ErrorCode.TodoItemNameAndNotesRequired.ToString());
 }
 bool itemExists = _toDoRepository.DoesItemExist(item.ID);
 if (itemExists)
 {
 return StatusCode(StatusCodes.Status409Conflict, ErrorCode.TodoItemIDInUse.ToString());
 }
 _toDoRepository.Insert(item);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotCreateItem.ToString());
 }
 return Ok(item);
}

public enum ErrorCode
{
 TodoItemNameAndNotesRequired,
 TodoItemIDInUse,
 RecordNotFound,
 CouldNotCreateItem,
 CouldNotUpdateItem,
 CouldNotDeleteItem
}

The sample uses an enum containing error codes that are passed to the mobile client:

Test adding new items using Postman by choosing the POST verb providing the new object in JSON format in the
Body of the request. You should also add a request header specifying a Content-Type of application/json .

Updating ItemsUpdating Items

[HttpPut]
public IActionResult Edit([FromBody] ToDoItem item)
{
 try
 {
 if (item == null || !ModelState.IsValid)
 {
 return BadRequest(ErrorCode.TodoItemNameAndNotesRequired.ToString());
 }
 var existingItem = _toDoRepository.Find(item.ID);
 if (existingItem == null)
 {
 return NotFound(ErrorCode.RecordNotFound.ToString());
 }
 _toDoRepository.Update(item);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotUpdateItem.ToString());
 }
 return NoContent();
}

The method returns the newly created item in the response.

Modifying records is done using HTTP PUT requests. Other than this change, the Edit method is almost identical
to Create . Note that if the record isn't found, the Edit action will return a NotFound (404) response.

Deleting ItemsDeleting Items

[HttpDelete("{id}")]
public IActionResult Delete(string id)
{
 try
 {
 var item = _toDoRepository.Find(id);
 if (item == null)
 {
 return NotFound(ErrorCode.RecordNotFound.ToString());
 }
 _toDoRepository.Delete(id);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotDeleteItem.ToString());
 }
 return NoContent();
}

To test with Postman, change the verb to PUT. Specify the updated object data in the Body of the request.

This method returns a NoContent (204) response when successful, for consistency with the pre-existing API.

Deleting records is accomplished by making DELETE requests to the service, and passing the ID of the item to be
deleted. As with updates, requests for items that don't exist will receive NotFound responses. Otherwise, a
successful request will get a NoContent (204) response.

Common Web API Conventions

Note that when testing the delete functionality, nothing is required in the Body of the request.

As you develop the backend services for your app, you will want to come up with a consistent set of conventions or
policies for handling cross-cutting concerns. For example, in the service shown above, requests for specific records
that weren't found received a NotFound response, rather than a BadRequest response. Similarly, commands made
to this service that passed in model bound types always checked ModelState.IsValid and returned a BadRequest

for invalid model types.

Once you've identified a common policy for your APIs, you can usually encapsulate it in a filter. Learn more about
how to encapsulate common API policies in ASP.NET Core MVC applications.

https://msdn.microsoft.com/magazine/mt767699.aspx

ASP.NET Core fundamentals
5/16/2018 • 7 minutes to read • Edit Online

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace aspnetcoreapp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Startup

An ASP.NET Core application is a console app that creates a web server in its Main method:

ASP.NET Core 2.x
ASP.NET Core 1.x

The Main method invokes WebHost.CreateDefaultBuilder , which follows the builder pattern to create a web
application host. The builder has methods that define the web server (for example, UseKestrel) and the startup
class (UseStartup). In the preceding example, the Kestrel web server is automatically allocated. ASP.NET Core's
web host attempts to run on IIS, if available. Other web servers, such as HTTP.sys, can be used by invoking the
appropriate extension method. UseStartup is explained further in the next section.

IWebHostBuilder , the return type of the WebHost.CreateDefaultBuilder invocation, provides many optional
methods. Some of these methods include UseHttpSys for hosting the app in HTTP.sys and UseContentRoot for
specifying the root content directory. The Build and Run methods build the IWebHost object that hosts the app
and begins listening for HTTP requests.

The UseStartup method on WebHostBuilder specifies the Startup class for your app:

ASP.NET Core 2.x
ASP.NET Core 1.x

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/index.md

public class Program
{
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
}

public class Startup
{
 // This method gets called by the runtime. Use this method
 // to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 }

 // This method gets called by the runtime. Use this method
 // to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app)
 {
 }
}

Content root

Web root

Dependency injection (services)

Middleware

The Startup class is where you define the request handling pipeline and where any services needed by the app
are configured. The Startup class must be public and contain the following methods:

ConfigureServices defines the Services used by your app (for example, ASP.NET Core MVC, Entity Framework
Core, Identity). Configure defines the middleware for the request pipeline.

For more information, see Application startup.

The content root is the base path to any content used by the app, such as views, Razor Pages, and static assets. By
default, the content root is the same as application base path for the executable hosting the app.

The web root of an app is the directory in the project containing public, static resources, such as CSS, JavaScript,
and image files.

A service is a component that's intended for common consumption in an app. Services are made available
through dependency injection (DI). ASP.NET Core includes a native Inversion of Control (IoC) container that
supports constructor injection by default. You can replace the default native container if you wish. In addition to its
loose coupling benefit, DI makes services available throughout your app (for example, logging).

For more information, see Dependency injection.

In ASP.NET Core, you compose your request pipeline using middleware. ASP.NET Core middleware performs

Initiate HTTP requests

Environments

Configuration

Logging

Error handling

Routing

asynchronous logic on an HttpContext and then either invokes the next middleware in the sequence or terminates
the request directly. A middleware component called "XYZ" is added by invoking an UseXYZ extension method in
the Configure method.

ASP.NET Core includes a rich set of built-in middleware:

Static files
Routing
Authentication
Response Compression Middleware
URL Rewriting Middleware

OWIN-based middleware is available for ASP.NET Core apps, and you can write your own custom middleware.

For more information, see Middleware and Open Web Interface for .NET (OWIN).

For information about using IHttpClientFactory to access HttpClient instances to make HTTP requests, see
Initiate HTTP requests.

Environments, such as "Development" and "Production", are a first-class notion in ASP.NET Core and can be set
using environment variables.

For more information, see Use multiple environments.

ASP.NET Core uses a configuration model based on name-value pairs. The configuration model isn't based on
System.Configuration or web.config. Configuration obtains settings from an ordered set of configuration

providers. The built-in configuration providers support a variety of file formats (XML, JSON, INI) and
environment variables to enable environment-based configuration. You can also write your own custom
configuration providers.

For more information, see Configuration.

ASP.NET Core supports a logging API that works with a variety of logging providers. Built-in providers support
sending logs to one or more destinations. Third-party logging frameworks can be used.

Logging

ASP.NET Core has built-in features for handling errors in apps, including a developer exception page, custom
error pages, static status code pages, and startup exception handling.

For more information, see how to handle errors.

ASP.NET Core offers features for routing of app requests to route handlers.

http://owin.org

File providers

Static files

Hosting

Session and application state

Servers

Globalization and localization

Request features

For more information, see Routing.

ASP.NET Core abstracts file system access through the use of File Providers, which offers a common interface for
working with files across platforms.

For more information, see File Providers.

Static files middleware serves static files, such as HTML, CSS, image, and JavaScript.

For more information, see Static files.

ASP.NET Core apps configure and launch a host, which is responsible for app startup and lifetime management.

For more information, see Host in ASP.NET Core.

Session state is a feature in ASP.NET Core that you can use to save and store user data while the user browses
your web app.

For more information, see Session and application state.

The ASP.NET Core hosting model doesn't directly listen for requests. The hosting model relies on an HTTP server
implementation to forward the request to the app. The forwarded request is wrapped as a set of feature objects
that can be accessed through interfaces. ASP.NET Core includes a managed, cross-platform web server, called
Kestrel. Kestrel is often run behind a production web server, such as IIS or Nginx. Kestrel can be run as an edge
server.

For more information, see Servers and the following topics:

Kestrel
ASP.NET Core Module
HTTP.sys (formerly called WebListener)

Creating a multilingual website with ASP.NET Core allows your site to reach a wider audience. ASP.NET Core
provides services and middleware for localizing into different languages and cultures.

For more information, see Globalization and localization.

Web server implementation details related to HTTP requests and responses are defined in interfaces. These
interfaces are used by server implementations and middleware to create and modify the app's hosting pipeline.

For more information, see Request Features.

https://www.iis.net/
http://nginx.org
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener

Background tasks

Open Web Interface for .NET (OWIN)

WebSockets

Microsoft.AspNetCore.All metapackage

.NET Core vs. .NET Framework runtime

Choose between ASP.NET Core and ASP.NET

Background tasks are implemented as hosted services. A hosted service is a class with background task logic that
implements the IHostedService interface.

For more information, see Background tasks with hosted services.

ASP.NET Core supports the Open Web Interface for .NET (OWIN). OWIN allows web apps to be decoupled from
web servers.

For more information, see Open Web Interface for .NET (OWIN).

WebSocket is a protocol that enables two-way persistent communication channels over TCP connections. It's used
for apps such as chat, stock tickers, games, and anywhere you desire real-time functionality in a web app. ASP.NET
Core supports web socket features.

For more information, see WebSockets.

The Microsoft.AspNetCore.All metapackage for ASP.NET Core includes:

All supported packages by the ASP.NET Core team.
All supported packages by the Entity Framework Core.
Internal and 3rd-party dependencies used by ASP.NET Core and Entity Framework Core.

For more information, see Microsoft.AspNetCore.All metapackage.

An ASP.NET Core app can target the .NET Core or .NET Framework runtime.

For more information, see Choosing between .NET Core and .NET Framework.

For more information on choosing between ASP.NET Core and ASP.NET, see Choose between ASP.NET Core and
ASP.NET.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://wikipedia.org/wiki/WebSocket
https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://docs.microsoft.com/dotnet/articles/standard/choosing-core-framework-server

Application startup in ASP.NET Core
5/16/2018 • 8 minutes to read • Edit Online

The Startup class

public class Startup
{
 // Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 ...
 }

 // Use this method to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app)
 {
 ...
 }
}

public class Program
{
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
}

By Steve Smith, Tom Dykstra, and Luke Latham

The Startup class configures services and the app's request pipeline.

ASP.NET Core apps use a Startup class, which is named Startup by convention. The Startup class:

Can optionally include a ConfigureServices method to configure the app's services.
Must include a Configure method to create the app's request processing pipeline.

ConfigureServices and Configure are called by the runtime when the app starts:

Specify the Startup class with the WebHostBuilderExtensions UseStartup<TStartup> method:

The Startup class constructor accepts dependencies defined by the host. A common use of dependency
injection into the Startup class is to inject:

IHostingEnvironment to configure services by environment.
IConfiguration to configure the app during startup.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/startup.md
https://ardalis.com
https://github.com/tdykstra
https://github.com/guardrex
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Hosting.WebHostBuilderExtensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.usestartup#Microsoft_AspNetCore_Hosting_WebHostBuilderExtensions_UseStartup__1_Microsoft_AspNetCore_Hosting_IWebHostBuilder_
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Hosting.IHostingEnvironment
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration

public class Startup
{
 public Startup(IHostingEnvironment env, IConfiguration config)
 {
 HostingEnvironment = env;
 Configuration = config;
 }

 public IHostingEnvironment HostingEnvironment { get; }
 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 if (HostingEnvironment.IsDevelopment())
 {
 // Development configuration
 }
 else
 {
 // Staging/Production configuration
 }

 // Configuration is available during startup. Examples:
 // Configuration["key"]
 // Configuration["subsection:suboption1"]
 }
}

The ConfigureServices method

An alternative to injecting IHostingEnvironment is to use a conventions-based approach. The app can define
separate Startup classes for different environments (for example, StartupDevelopment), and the appropriate
startup class is selected at runtime. The class whose name suffix matches the current environment is prioritized.
If the app is run in the Development environment and includes both a Startup class and a StartupDevelopment

class, the StartupDevelopment class is used. For more information, see Use multiple environments.

To learn more about WebHostBuilder , see the Hosting topic. For information on handling errors during startup,
see Startup exception handling.

The ConfigureServices method is:

Optional
Called by the web host before the Configure method to configure the app's services.
Where configuration options are set by convention.

Adding services to the service container makes them available within the app and in the Configure method.
The services are resolved via dependency injection or from IApplicationBuilder.ApplicationServices.

The web host may configure some services before Startup methods are called. Details are available in the
Host in ASP.NET Core topic.

For features that require substantial setup, there are Add[Service] extension methods on IServiceCollection. A
typical web app registers services for Entity Framework, Identity, and MVC:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.applicationservices
https://docs.microsoft.com/dotnet/api/Microsoft.Extensions.DependencyInjection.IServiceCollection

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
}

SetCompatibilityVersion for ASP.NET Core MVCSetCompatibilityVersion for ASP.NET Core MVC

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

The SetCompatibilityVersion method allows an app to opt-in or opt-out of potentially breaking behavior
changes introduced in ASP.NET MVC Core 2.1+. These potentially breaking behavior changes are generally in
how the MVC subsystem behaves and how your code is called by the runtime. By opting in, you get the latest
behavior, and the long-term behavior of ASP.NET Core.

The following code sets the compatibility mode to ASP.NET Core 2.1:

We recommend you test your application using the latest version (CompatibilityVersion.Version_2_1). We
anticipate that most applications will not have breaking behavior changes using the latest version.

Applications that call SetCompatibilityVersion(CompatibilityVersion.Version_2_0) are protected from
potentially breaking behavior changes introduced in the ASP.NET Core 2.1 MVC and later 2.x versions. This
protection:

Does not apply to all 2.1 and later changes, it's targeted to potentially breaking ASP.NET Core runtime
behavior changes in the MVC subsystem.
Does not extend to the next major version.

The default compatibility for ASP.NET Core 2.1 and later 2.x applications that do not call
SetCompatibilityVersion is 2.0 compatibility. That is, not calling SetCompatibilityVersion is the same as calling
SetCompatibilityVersion(CompatibilityVersion.Version_2_0) .

The following code sets the compatibility mode to ASP.NET Core 2.1, except for the following behaviors:

AllowCombiningAuthorizeFilters
InputFormatterExceptionPolicy

https://github.com/aspnet/Mvc/blob/dev/src/Microsoft.AspNetCore.Mvc.Core/MvcOptions.cs
https://github.com/aspnet/Mvc/blob/dev/src/Microsoft.AspNetCore.Mvc.Core/MvcOptions.cs

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 // Include the 2.1 behaviors
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1)
 // Except for the following.
 .AddMvcOptions(options =>
 {
 // Don't combine authorize filters (keep 2.0 behavior).
 options.AllowCombiningAuthorizeFilters = false;
 // All exceptions thrown by an IInputFormatter will be treated
 // as model state errors (keep 2.0 behavior).
 options.InputFormatterExceptionPolicy =
 InputFormatterExceptionPolicy.AllExceptions;
 });
}

Services available in Startup

The Configure method

For apps that encounter breaking behavior changes, using the appropriate compatibility switches:

Allows you to use the latest release and opt out of specific breaking behavior changes.
Gives you time to update your app so it works with the latest changes.

The MvcOptions class source comments have a good explanation of what changed and why the changes are an
improvement for most users.

At some future date, there will be an ASP.NET Core 3.0 version. Old behaviors supported by compatibility
switches will be removed in the 3.0 version. We feel these are positive changes benefitting nearly all users. By
introducing these changes now, most apps can benefit now, and the others will have time to update their
applications.

The web host provides some services that are available to the Startup class constructor. The app adds
additional services via ConfigureServices . Both the host and app services are then available in Configure and
throughout the application.

The Configure method is used to specify how the app responds to HTTP requests. The request pipeline is
configured by adding middleware components to an IApplicationBuilder instance. IApplicationBuilder is
available to the Configure method, but it isn't registered in the service container. Hosting creates an
IApplicationBuilder and passes it directly to Configure (reference source).

The ASP.NET Core templates configure the pipeline with support for a developer exception page, BrowserLink,
error pages, static files, and ASP.NET MVC:

https://github.com/aspnet/Mvc/blob/dev/src/Microsoft.AspNetCore.Mvc.Core/MvcOptions.cs
https://github.com/aspnet/Home/wiki/Roadmap
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder
https://github.com/aspnet/Hosting/blob/release/2.0.0/src/Microsoft.AspNetCore.Hosting/Internal/WebHost.cs#L179-L192
https://docs.microsoft.com/dotnet/core/tools/dotnet-new
http://vswebessentials.com/features/browserlink

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller}/{action=Index}/{id?}");
 });
}

Convenience methods

Each Use extension method adds a middleware component to the request pipeline. For instance, the UseMvc

extension method adds the Routing Middleware to the request pipeline and configures MVC as the default
handler.

Each middleware component in the request pipeline is responsible for invoking the next component in the
pipeline or short-circuiting the chain, if appropriate. If short-circuiting doesn't occur along the middleware
chain, each middleware has a second chance to process the request before it's sent to the client.

Additional services, such as IHostingEnvironment and ILoggerFactory , may also be specified in the method
signature. When specified, additional services are injected if they're available.

For more information on how to use IApplicationBuilder and the order of middleware processing, see
Middleware.

ConfigureServices and Configure convenience methods can be used instead of specifying a Startup class.
Multiple calls to ConfigureServices append to one another. Multiple calls to Configure use the last method
call.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder.configureservices
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.configure

public class Program
{
 public static IHostingEnvironment HostingEnvironment { get; set; }
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 HostingEnvironment = hostingContext.HostingEnvironment;
 Configuration = config.Build();
 })
 .ConfigureServices(services =>
 {
 services.AddMvc();
 })
 .Configure(app =>
 {
 if (HostingEnvironment.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 }

 // Configuration is available during startup. Examples:
 // Configuration["key"]
 // Configuration["subsection:suboption1"]

 app.UseMvcWithDefaultRoute();
 app.UseStaticFiles();
 })
 .Build();
}

Startup filters
Use IStartupFilter to configure middleware at the beginning or end of an app's Configure middleware pipeline.
IStartupFilter is useful to ensure that a middleware runs before or after middleware added by libraries at the

start or end of the app's request processing pipeline.

IStartupFilter implements a single method, Configure, which receives and returns an
Action<IApplicationBuilder> . An IApplicationBuilder defines a class to configure an app's request pipeline. For

more information, see Create a middleware pipeline with IApplicationBuilder.

Each IStartupFilter implements one or more middlewares in the request pipeline. The filters are invoked in
the order they were added to the service container. Filters may add middleware before or after passing control
to the next filter, thus they append to the beginning or end of the app pipeline.

The sample app (how to download) demonstrates how to register a middleware with IStartupFilter . The
sample app includes a middleware that sets an options value from a query string parameter :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter.configure
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/startup/sample/

public class RequestSetOptionsMiddleware
{
 private readonly RequestDelegate _next;
 private IOptions<AppOptions> _injectedOptions;

 public RequestSetOptionsMiddleware(
 RequestDelegate next, IOptions<AppOptions> injectedOptions)
 {
 _next = next;
 _injectedOptions = injectedOptions;
 }

 public async Task Invoke(HttpContext httpContext)
 {
 Console.WriteLine("RequestSetOptionsMiddleware.Invoke");

 var option = httpContext.Request.Query["option"];

 if (!string.IsNullOrWhiteSpace(option))
 {
 _injectedOptions.Value.Option = WebUtility.HtmlEncode(option);
 }

 await _next(httpContext);
 }
}

public class RequestSetOptionsStartupFilter : IStartupFilter
{
 public Action<IApplicationBuilder> Configure(Action<IApplicationBuilder> next)
 {
 return builder =>
 {
 builder.UseMiddleware<RequestSetOptionsMiddleware>();
 next(builder);
 };
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<IStartupFilter, RequestSetOptionsStartupFilter>();
 services.AddMvc();
}

The RequestSetOptionsMiddleware is configured in the RequestSetOptionsStartupFilter class:

The IStartupFilter is registered in the service container in ConfigureServices :

When a query string parameter for option is provided, the middleware processes the value assignment before
the MVC middleware renders the response:

Adding configuration at startup from an external assembly

Additional resources

Middleware execution order is set by the order of IStartupFilter registrations:

Multiple IStartupFilter implementations may interact with the same objects. If ordering is important,
order their IStartupFilter service registrations to match the order that their middlewares should run.
Libraries may add middleware with one or more IStartupFilter implementations that run before or after
other app middleware registered with IStartupFilter . To invoke an IStartupFilter middleware before a
middleware added by a library's IStartupFilter , position the service registration before the library is
added to the service container. To invoke it afterward, position the service registration after the library is
added.

An IHostingStartup implementation allows adding enhancements to an app at startup from an external
assembly outside of the app's Startup class. For more information, see Enhance an app from an external
assembly.

Hosting
Use multiple environments
Middleware
Logging
Configuration
StartupLoader class: FindStartupType method (reference source)

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup
https://github.com/aspnet/Hosting/blob/rel/2.0.0/src/Microsoft.AspNetCore.Hosting/Internal/StartupLoader.cs#L66-L116

Dependency injection in ASP.NET Core
5/30/2018 • 17 minutes to read • Edit Online

What is dependency injection?

 By Steve Smith and Scott Addie

ASP.NET Core is designed from the ground up to support and leverage dependency injection.
ASP.NET Core applications can leverage built-in framework services by having them injected into
methods in the Startup class, and application services can be configured for injection as well. The
default services container provided by ASP.NET Core provides a minimal feature set and isn't
intended to replace other containers.

View or download sample code (how to download)

Dependency injection (DI) is a technique for achieving loose coupling between objects and their
collaborators, or dependencies. Rather than directly instantiating collaborators, or using static
references, the objects a class needs in order to perform its actions are provided to the class in
some fashion. Most often, classes will declare their dependencies via their constructor, allowing
them to follow the Explicit Dependencies Principle. This approach is known as "constructor
injection".

When classes are designed with DI in mind, they're more loosely coupled because they don't have
direct, hard-coded dependencies on their collaborators. This follows the Dependency Inversion
Principle, which states that "high level modules shouldn't depend on low level modules; both
should depend on abstractions." Instead of referencing specific implementations, classes request
abstractions (typically interfaces) which are provided to them when the class is constructed.
Extracting dependencies into interfaces and providing implementations of these interfaces as
parameters is also an example of the Strategy design pattern.

When a system is designed to use DI, with many classes requesting their dependencies via their
constructor (or properties), it's helpful to have a class dedicated to creating these classes with their
associated dependencies. These classes are referred to as containers, or more specifically,
Inversion of Control (IoC) containers or Dependency Injection (DI) containers. A container is
essentially a factory that's responsible for providing instances of types that are requested from it.
If a given type has declared that it has dependencies, and the container has been configured to
provide the dependency types, it will create the dependencies as part of creating the requested
instance. In this way, complex dependency graphs can be provided to classes without the need for
any hard-coded object construction. In addition to creating objects with their dependencies,
containers typically manage object lifetimes within the application.

ASP.NET Core includes a simple built-in container (represented by the IServiceProvider interface)
that supports constructor injection by default, and ASP.NET makes certain services available
through DI. ASP.NET's container refers to the types it manages as services. Throughout the rest of
this article, services will refer to types that are managed by ASP.NET Core's IoC container. You
configure the built-in container's services in the ConfigureServices method in your application's
Startup class.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/dependency-injection.md
https://ardalis.com/
https://scottaddie.com
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/dependency-injection/sample
http://deviq.com/explicit-dependencies-principle/
http://deviq.com/dependency-inversion-principle/
http://deviq.com/strategy-design-pattern/
http://deviq.com/inversion-of-control/

NOTENOTE

NOTENOTE

Constructor injection behaviorConstructor injection behavior

// throws InvalidOperationException: Unable to resolve service for type 'System.String'...
public CharactersController(ICharacterRepository characterRepository, string title)
{
 _characterRepository = characterRepository;
 _title = title;
}

// runs without error
public CharactersController(ICharacterRepository characterRepository, string title =
"Characters")
{
 _characterRepository = characterRepository;
 _title = title;
}

Using framework-provided services

SERVICE TYPE LIFETIME

Microsoft.AspNetCore.Hosting.IHostingEnvironment Singleton

Martin Fowler has written an extensive article on Inversion of Control Containers and the Dependency
Injection Pattern. Microsoft Patterns and Practices also has a great description of Dependency Injection.

This article covers Dependency Injection as it applies to all ASP.NET applications. Dependency Injection
within MVC controllers is covered in Dependency Injection and Controllers.

Constructor injection requires that the constructor in question be public. Otherwise, your app will
throw an InvalidOperationException :

A suitable constructor for type 'YourType' couldn't be located. Ensure the type is concrete and
services are registered for all parameters of a public constructor.

Constructor injection requires that only one applicable constructor exist. Constructor overloads
are supported, but only one overload can exist whose arguments can all be fulfilled by
dependency injection. If more than one exists, your app will throw an InvalidOperationException :

Multiple constructors accepting all given argument types have been found in type 'YourType'.
There should only be one applicable constructor.

Constructors can accept arguments that are not provided by dependency injection, but these must
support default values. For example:

The ConfigureServices method in the Startup class is responsible for defining the services the
application will use, including platform features like Entity Framework Core and ASP.NET Core
MVC. Initially, the IServiceCollection provided to ConfigureServices has the following services
defined (depending on how the host was configured):

https://www.martinfowler.com/articles/injection.html
https://msdn.microsoft.com/library/hh323705.aspx
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment

Microsoft.Extensions.Logging.ILoggerFactory Singleton

Microsoft.Extensions.Logging.ILogger<T> Singleton

Microsoft.AspNetCore.Hosting.Builder.IApplicationBui
lderFactory

Transient

Microsoft.AspNetCore.Http.IHttpContextFactory Transient

Microsoft.Extensions.Options.IOptions<T> Singleton

System.Diagnostics.DiagnosticSource Singleton

System.Diagnostics.DiagnosticListener Singleton

Microsoft.AspNetCore.Hosting.IStartupFilter Transient

Microsoft.Extensions.ObjectPool.ObjectPoolProvider Singleton

Microsoft.Extensions.Options.IConfigureOptions<T> Transient

Microsoft.AspNetCore.Hosting.Server.IServer Singleton

Microsoft.AspNetCore.Hosting.IStartup Singleton

Microsoft.AspNetCore.Hosting.IApplicationLifetime Singleton

SERVICE TYPE LIFETIME

// This method gets called by the runtime. Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
}

Below is an example of how to add additional services to the container using a number of
extension methods like AddDbContext , AddIdentity , and AddMvc .

The features and middleware provided by ASP.NET, such as MVC, follow a convention of using a
single AddServiceName extension method to register all of the services required by that feature.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.iloggerfactory
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.ilogger
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.builder.iapplicationbuilderfactory
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.ihttpcontextfactory
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/dotnet/core/api/system.diagnostics.diagnosticsource
https://docs.microsoft.com/dotnet/core/api/system.diagnostics.diagnosticlistener
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter
https://docs.microsoft.com/dotnet/api/microsoft.extensions.objectpool.objectpoolprovider
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.server.iserver
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.istartup
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime

TIPTIP

Registering services

services.AddTransient<IEmailSender, AuthMessageSender>();
services.AddTransient<ISmsSender, AuthMessageSender>();

NOTENOTE

You can request certain framework-provided services within Startup methods through their parameter
lists - see Application Startup for more details.

You can register your own application services as follows. The first generic type represents the
type (typically an interface) that will be requested from the container. The second generic type
represents the concrete type that will be instantiated by the container and used to fulfill such
requests.

Each services.Add<ServiceName> extension method adds (and potentially configures) services. For
example, services.AddMvc() adds the services MVC requires. It's recommended that you follow this
convention, placing extension methods in the Microsoft.Extensions.DependencyInjection namespace,
to encapsulate groups of service registrations.

The AddTransient method is used to map abstract types to concrete services that are instantiated
separately for every object that requires it. This is known as the service's lifetime, and additional
lifetime options are described below. It's important to choose an appropriate lifetime for each of
the services you register. Should a new instance of the service be provided to each class that
requests it? Should one instance be used throughout a given web request? Or should a single
instance be used for the lifetime of the application?

In the sample for this article, there's a simple controller that displays character names, called
CharactersController . Its Index method displays the current list of characters that have been

stored in the application, and initializes the collection with a handful of characters if none exist.
Note that although this application uses Entity Framework Core and the ApplicationDbContext

class for its persistence, none of that's apparent in the controller. Instead, the specific data access
mechanism has been abstracted behind an interface, ICharacterRepository , which follows the
repository pattern. An instance of ICharacterRepository is requested via the constructor and
assigned to a private field, which is then used to access characters as necessary.

http://deviq.com/repository-pattern/

public class CharactersController : Controller
{
 private readonly ICharacterRepository _characterRepository;

 public CharactersController(ICharacterRepository characterRepository)
 {
 _characterRepository = characterRepository;
 }

 // GET: /characters/
 public IActionResult Index()
 {
 PopulateCharactersIfNoneExist();
 var characters = _characterRepository.ListAll();

 return View(characters);
 }

 private void PopulateCharactersIfNoneExist()
 {
 if (!_characterRepository.ListAll().Any())
 {
 _characterRepository.Add(new Character("Darth Maul"));
 _characterRepository.Add(new Character("Darth Vader"));
 _characterRepository.Add(new Character("Yoda"));
 _characterRepository.Add(new Character("Mace Windu"));
 }
 }
}

using System.Collections.Generic;
using DependencyInjectionSample.Models;

namespace DependencyInjectionSample.Interfaces
{
 public interface ICharacterRepository
 {
 IEnumerable<Character> ListAll();
 void Add(Character character);
 }
}

NOTENOTE

The ICharacterRepository defines the two methods the controller needs to work with Character

instances.

This interface is in turn implemented by a concrete type, CharacterRepository , that's used at
runtime.

The way DI is used with the CharacterRepository class is a general model you can follow for all of your
application services, not just in "repositories" or data access classes.

using System.Collections.Generic;
using System.Linq;
using DependencyInjectionSample.Interfaces;

namespace DependencyInjectionSample.Models
{
 public class CharacterRepository : ICharacterRepository
 {
 private readonly ApplicationDbContext _dbContext;

 public CharacterRepository(ApplicationDbContext dbContext)
 {
 _dbContext = dbContext;
 }

 public IEnumerable<Character> ListAll()
 {
 return _dbContext.Characters.AsEnumerable();
 }

 public void Add(Character character)
 {
 _dbContext.Characters.Add(character);
 _dbContext.SaveChanges();
 }
 }
}

NOTENOTE

Note that CharacterRepository requests an ApplicationDbContext in its constructor. It's not
unusual for dependency injection to be used in a chained fashion like this, with each requested
dependency in turn requesting its own dependencies. The container is responsible for resolving all
of the dependencies in the graph and returning the fully resolved service.

Creating the requested object, and all of the objects it requires, and all of the objects those require, is
sometimes referred to as an object graph. Likewise, the collective set of dependencies that must be
resolved is typically referred to as a dependency tree or dependency graph.

In this case, both ICharacterRepository and in turn ApplicationDbContext must be registered with
the services container in ConfigureServices in Startup . ApplicationDbContext is configured with
the call to the extension method AddDbContext<T> . The following code shows the registration of
the CharacterRepository type.

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseInMemoryDatabase()
);

 // Add framework services.
 services.AddMvc();

 // Register application services.
 services.AddScoped<ICharacterRepository, CharacterRepository>();
 services.AddTransient<IOperationTransient, Operation>();
 services.AddScoped<IOperationScoped, Operation>();
 services.AddSingleton<IOperationSingleton, Operation>();
 services.AddSingleton<IOperationSingletonInstance>(new Operation(Guid.Empty));
 services.AddTransient<OperationService, OperationService>();
}

WARNINGWARNING

Service lifetimes and registration options

WARNINGWARNING

Entity Framework contexts should be added to the services container using the Scoped lifetime.
This is taken care of automatically if you use the helper methods as shown above. Repositories
that will make use of Entity Framework should use the same lifetime.

The main danger to be wary of is resolving a Scoped service from a singleton. It's likely in such a case
that the service will have incorrect state when processing subsequent requests.

Services that have dependencies should register them in the container. If a service's constructor
requires a primitive, such as a string , this can be injected by using configuration and the options
pattern.

ASP.NET services can be configured with the following lifetimes:

Transient

Transient lifetime services are created each time they're requested. This lifetime works best for
lightweight, stateless services.

Scoped

Scoped lifetime services are created once per request.

If you're using a scoped service in a middleware, inject the service into the Invoke or InvokeAsync

method. Don't inject via constructor injection because it forces the service to behave like a singleton.

Singleton

Singleton lifetime services are created the first time they're requested (or when ConfigureServices

is run if you specify an instance there) and then every subsequent request will use the same
instance. If your application requires singleton behavior, allowing the services container to manage
the service's lifetime is recommended instead of implementing the singleton design pattern and
managing your object's lifetime in the class yourself.

using System;

namespace DependencyInjectionSample.Interfaces
{
 public interface IOperation
 {
 Guid OperationId { get; }
 }

 public interface IOperationTransient : IOperation
 {
 }
 public interface IOperationScoped : IOperation
 {
 }
 public interface IOperationSingleton : IOperation
 {
 }
 public interface IOperationSingletonInstance : IOperation
 {
 }
}

 services.AddScoped<ICharacterRepository, CharacterRepository>();
 services.AddTransient<IOperationTransient, Operation>();
 services.AddScoped<IOperationScoped, Operation>();
 services.AddSingleton<IOperationSingleton, Operation>();
 services.AddSingleton<IOperationSingletonInstance>(new Operation(Guid.Empty));
 services.AddTransient<OperationService, OperationService>();
}

Services can be registered with the container in several ways. We have already seen how to
register a service implementation with a given type by specifying the concrete type to use. In
addition, a factory can be specified, which will then be used to create the instance on demand. The
third approach is to directly specify the instance of the type to use, in which case the container will
never attempt to create an instance (nor will it dispose of the instance).

To demonstrate the difference between these lifetime and registration options, consider a simple
interface that represents one or more tasks as an operation with a unique identifier, OperationId .
Depending on how we configure the lifetime for this service, the container will provide either the
same or different instances of the service to the requesting class. To make it clear which lifetime is
being requested, we will create one type per lifetime option:

We implement these interfaces using a single class, Operation , that accepts a Guid in its
constructor, or uses a new Guid if none is provided.

Next, in ConfigureServices , each type is added to the container according to its named lifetime:

Note that the IOperationSingletonInstance service is using a specific instance with a known ID of
Guid.Empty so it will be clear when this type is in use (its Guid will be all zeroes). We have also

registered an OperationService that depends on each of the other Operation types, so that it will
be clear within a request whether this service is getting the same instance as the controller, or a
new one, for each operation type. All this service does is expose its dependencies as properties, so
they can be displayed in the view.

using DependencyInjectionSample.Interfaces;

namespace DependencyInjectionSample.Services
{
 public class OperationService
 {
 public IOperationTransient TransientOperation { get; }
 public IOperationScoped ScopedOperation { get; }
 public IOperationSingleton SingletonOperation { get; }
 public IOperationSingletonInstance SingletonInstanceOperation { get; }

 public OperationService(IOperationTransient transientOperation,
 IOperationScoped scopedOperation,
 IOperationSingleton singletonOperation,
 IOperationSingletonInstance instanceOperation)
 {
 TransientOperation = transientOperation;
 ScopedOperation = scopedOperation;
 SingletonOperation = singletonOperation;
 SingletonInstanceOperation = instanceOperation;
 }
 }
}

To demonstrate the object lifetimes within and between separate individual requests to the
application, the sample includes an OperationsController that requests each kind of IOperation

type as well as an OperationService . The Index action then displays all of the controller's and
service's OperationId values.

using DependencyInjectionSample.Interfaces;
using DependencyInjectionSample.Services;
using Microsoft.AspNetCore.Mvc;

namespace DependencyInjectionSample.Controllers
{
 public class OperationsController : Controller
 {
 private readonly OperationService _operationService;
 private readonly IOperationTransient _transientOperation;
 private readonly IOperationScoped _scopedOperation;
 private readonly IOperationSingleton _singletonOperation;
 private readonly IOperationSingletonInstance _singletonInstanceOperation;

 public OperationsController(OperationService operationService,
 IOperationTransient transientOperation,
 IOperationScoped scopedOperation,
 IOperationSingleton singletonOperation,
 IOperationSingletonInstance singletonInstanceOperation)
 {
 _operationService = operationService;
 _transientOperation = transientOperation;
 _scopedOperation = scopedOperation;
 _singletonOperation = singletonOperation;
 _singletonInstanceOperation = singletonInstanceOperation;
 }

 public IActionResult Index()
 {
 // viewbag contains controller-requested services
 ViewBag.Transient = _transientOperation;
 ViewBag.Scoped = _scopedOperation;
 ViewBag.Singleton = _singletonOperation;
 ViewBag.SingletonInstance = _singletonInstanceOperation;

 // operation service has its own requested services
 ViewBag.Service = _operationService;
 return View();
 }
 }
}

Now two separate requests are made to this controller action:

Resolve a scoped service within the application scope

public static void Main(string[] args)
{
 var host = BuildWebHost(args);

 using (var serviceScope = host.Services.CreateScope())
 {
 var services = serviceScope.ServiceProvider;

 try
 {
 var serviceContext = services.GetRequiredService<MyScopedService>();
 // Use the context here
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred.");
 }
 }

 host.Run();
}

Observe which of the OperationId values vary within a request, and between requests.

Transient objects are always different; a new instance is provided to every controller and
every service.

Scoped objects are the same within a request, but different across different requests

Singleton objects are the same for every object and every request (regardless of whether
an instance is provided in ConfigureServices)

Create an IServiceScope with IServiceScopeFactory.CreateScope to resolve a scoped service
within the app's scope. This approach is useful to access a scoped service at startup to run
initialization tasks. The following example shows how to obtain a context for the MyScopedService

in Program.Main :

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.iservicescope
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.iservicescopefactory.createscope

Scope validation

Request Services

NOTENOTE

Designing services for dependency injection

When the app is running in the Development environment on ASP.NET Core 2.0 or later, the
default service provider performs checks to verify that:

Scoped services aren't directly or indirectly resolved from the root service provider.
Scoped services aren't directly or indirectly injected into singletons.

The root service provider is created when BuildServiceProvider is called. The root service
provider's lifetime corresponds to the app/server's lifetime when the provider starts with the app
and is disposed when the app shuts down.

Scoped services are disposed by the container that created them. If a scoped service is created in
the root container, the service's lifetime is effectively promoted to singleton because it's only
disposed by the root container when app/server is shut down. Validating service scopes catches
these situations when BuildServiceProvider is called.

For more information, see Scope validation in the Web Host topic.

The services available within an ASP.NET request from HttpContext are exposed through the
RequestServices collection.

Request Services represent the services you configure and request as part of your application.
When your objects specify dependencies, these are satisfied by the types found in
RequestServices , not ApplicationServices .

Generally, you shouldn't use these properties directly, preferring instead to request the types your
classes you require via your class's constructor, and letting the framework inject these
dependencies. This yields classes that are easier to test (see Test and debug) and are more loosely
coupled.

Prefer requesting dependencies as constructor parameters to accessing the RequestServices collection.

You should design your services to use dependency injection to get their collaborators. This means
avoiding the use of stateful static method calls (which result in a code smell known as static cling)
and the direct instantiation of dependent classes within your services. It may help to remember
the phrase, New is Glue, when choosing whether to instantiate a type or to request it via
dependency injection. By following the SOLID Principles of Object Oriented Design, your classes
will naturally tend to be small, well-factored, and easily tested.

What if you find that your classes tend to have way too many dependencies being injected? This is
generally a sign that your class is trying to do too much, and is probably violating SRP - the Single

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectioncontainerbuilderextensions.buildserviceprovider
http://deviq.com/static-cling/
https://ardalis.com/new-is-glue
http://deviq.com/solid/
http://deviq.com/single-responsibility-principle/

Disposing of servicesDisposing of services

// Services implement IDisposable:
public class Service1 : IDisposable {}
public class Service2 : IDisposable {}
public class Service3 : IDisposable {}

public interface ISomeService {}
public class SomeServiceImplementation : ISomeService, IDisposable {}

public void ConfigureServices(IServiceCollection services)
{
 // container will create the instance(s) of these types and will dispose them
 services.AddScoped<Service1>();
 services.AddSingleton<Service2>();
 services.AddSingleton<ISomeService>(sp => new SomeServiceImplementation());

 // container didn't create instance so it will NOT dispose it
 services.AddSingleton<Service3>(new Service3());
 services.AddSingleton(new Service3());
}

NOTENOTE

Replacing the default services container

Responsibility Principle. See if you can refactor the class by moving some of its responsibilities
into a new class. Keep in mind that your Controller classes should be focused on UI concerns, so
business rules and data access implementation details should be kept in classes appropriate to
these separate concerns.

With regards to data access specifically, you can inject the DbContext into your controllers
(assuming you've added EF to the services container in ConfigureServices). Some developers
prefer to use a repository interface to the database rather than injecting the DbContext directly.
Using an interface to encapsulate the data access logic in one place can minimize how many
places you will have to change when your database changes.

The container will call Dispose for IDisposable types it creates. However, if you add an instance
to the container yourself, it will not be disposed.

Example:

In version 1.0, the container called dispose on all IDisposable objects, including those it didn't create.

The built-in services container is meant to serve the basic needs of the framework and most
consumer applications built on it. However, developers can replace the built-in container with their
preferred container. The ConfigureServices method typically returns void , but if its signature is
changed to return IServiceProvider , a different container can be configured and returned. There
are many IOC containers available for .NET. In this example, the Autofac package is used.

First, install the appropriate container package(s):

Autofac

Autofac.Extensions.DependencyInjection

Next, configure the container in ConfigureServices and return an IServiceProvider :

http://deviq.com/separation-of-concerns/
https://autofac.org/

public IServiceProvider ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 // Add other framework services

 // Add Autofac
 var containerBuilder = new ContainerBuilder();
 containerBuilder.RegisterModule<DefaultModule>();
 containerBuilder.Populate(services);
 var container = containerBuilder.Build();
 return new AutofacServiceProvider(container);
}

NOTENOTE

public class DefaultModule : Module
{
 protected override void Load(ContainerBuilder builder)
 {
 builder.RegisterType<CharacterRepository>().As<ICharacterRepository>();
 }
}

Thread safetyThread safety

Recommendations

When using a third-party DI container, you must change ConfigureServices so that it returns
IServiceProvider instead of void .

Finally, configure Autofac as normal in DefaultModule :

At runtime, Autofac will be used to resolve types and inject dependencies. Learn more about using
Autofac and ASP.NET Core.

Singleton services need to be thread safe. If a singleton service has a dependency on a transient
service, the transient service may also need to be thread safe depending how it's used by the
singleton.

When working with dependency injection, keep the following recommendations in mind:

DI is for objects that have complex dependencies. Controllers, services, adapters, and
repositories are all examples of objects that might be added to DI.

Avoid storing data and configuration directly in DI. For example, a user's shopping cart
shouldn't typically be added to the services container. Configuration should use the options
pattern. Similarly, avoid "data holder" objects that only exist to allow access to some other
object. It's better to request the actual item needed via DI, if possible.

Avoid static access to services.

Avoid service location in your application code.

Avoid static access to HttpContext .

Like all sets of recommendations, you may encounter situations where ignoring one is required.
We have found exceptions to be rare -- mostly very special cases within the framework itself.

Dependency injection is an alternative to static/global object access patterns. You may not be able

http://docs.autofac.org/en/latest/integration/aspnetcore.html

Additional resources

to realize the benefits of DI if you mix it with static object access.

Dependency injection into views
Dependency injection into controllers
Dependency injection in requirement handlers
Application Startup
Test and debug
Factory-based middleware activation
Writing Clean Code in ASP.NET Core with Dependency Injection (MSDN)
Container-Managed Application Design, Prelude: Where does the Container Belong?
Explicit Dependencies Principle
Inversion of Control Containers and the Dependency Injection Pattern (Fowler)

https://msdn.microsoft.com/magazine/mt703433.aspx
https://blogs.msdn.microsoft.com/nblumhardt/2008/12/26/container-managed-application-design-prelude-where-does-the-container-belong/
http://deviq.com/explicit-dependencies-principle/
https://www.martinfowler.com/articles/injection.html

ASP.NET Core Middleware
6/6/2018 • 9 minutes to read • Edit Online

What is middleware?

Creating a middleware pipeline with IApplicationBuilder

By Rick Anderson and Steve Smith

View or download sample code (how to download)

Middleware is software that's assembled into an application pipeline to handle requests and responses. Each
component:

Chooses whether to pass the request to the next component in the pipeline.
Can perform work before and after the next component in the pipeline is invoked.

Request delegates are used to build the request pipeline. The request delegates handle each HTTP request.

Request delegates are configured using Run, Map, and Use extension methods. An individual request delegate can
be specified in-line as an anonymous method (called in-line middleware), or it can be defined in a reusable class.
These reusable classes and in-line anonymous methods are middleware, or middleware components. Each
middleware component in the request pipeline is responsible for invoking the next component in the pipeline, or
short-circuiting the chain if appropriate.

Migrate HTTP Modules to Middleware explains the difference between request pipelines in ASP.NET Core and
ASP.NET 4.x and provides more middleware samples.

The ASP.NET Core request pipeline consists of a sequence of request delegates, called one after the other, as this
diagram shows (the thread of execution follows the black arrows):

Each delegate can perform operations before and after the next delegate. A delegate can also decide to not pass a
request to the next delegate, which is called short-circuiting the request pipeline. Short-circuiting is often desirable
because it avoids unnecessary work. For example, the static file middleware can return a request for a static file and
short-circuit the rest of the pipeline. Exception-handling delegates need to be called early in the pipeline, so they

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/middleware/index.md
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/middleware/index/sample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.runextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mapextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.useextensions

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello, World!");
 });
 }
}

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Use(async (context, next) =>
 {
 // Do work that doesn't write to the Response.
 await next.Invoke();
 // Do logging or other work that doesn't write to the Response.
 });

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from 2nd delegate.");
 });
 }
}

WARNINGWARNING

Ordering

can catch exceptions that occur in later stages of the pipeline.

The simplest possible ASP.NET Core app sets up a single request delegate that handles all requests. This case
doesn't include an actual request pipeline. Instead, a single anonymous function is called in response to every HTTP
request.

The first app.Run delegate terminates the pipeline.

You can chain multiple request delegates together with app.Use. The next parameter represents the next delegate
in the pipeline. (Remember that you can short-circuit the pipeline by not calling the next parameter.) You can
typically perform actions both before and after the next delegate, as this example demonstrates:

Don't call next.Invoke after the response has been sent to the client. Changes to HttpResponse after the response has
started will throw an exception. For example, changes such as setting headers, status code, etc, will throw an exception.
Writing to the response body after calling next :

May cause a protocol violation. For example, writing more than the stated content-length .
May corrupt the body format. For example, writing an HTML footer to a CSS file.

HttpResponse.HasStarted is a useful hint to indicate if headers have been sent and/or the body has been written to.

The order that middleware components are added in the Configure method defines the order in which they're

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.runextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.useextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.features.httpresponsefeature#Microsoft_AspNetCore_Http_Features_HttpResponseFeature_HasStarted

public void Configure(IApplicationBuilder app)
{
 app.UseExceptionHandler("/Home/Error"); // Call first to catch exceptions
 // thrown in the following middleware.

 app.UseStaticFiles(); // Return static files and end pipeline.

 app.UseAuthentication(); // Authenticate before you access
 // secure resources.

 app.UseMvcWithDefaultRoute(); // Add MVC to the request pipeline.
}

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // Static files not compressed
 // by middleware.
 app.UseResponseCompression();
 app.UseMvcWithDefaultRoute();
}

Use, Run, and MapUse, Run, and Map

invoked on requests, and the reverse order for the response. This ordering is critical for security, performance, and
functionality.

The Configure method (shown below) adds the following middleware components:

1. Exception/error handling
2. Static file server
3. Authentication
4. MVC

ASP.NET Core 2.x
ASP.NET Core 1.x

In the code above, UseExceptionHandler is the first middleware component added to the pipeline—therefore, it
catches any exceptions that occur in later calls.

The static file middleware is called early in the pipeline so it can handle requests and short-circuit without going
through the remaining components. The static file middleware provides no authorization checks. Any files served
by it, including those under wwwroot, are publicly available. See Static files for an approach to secure static files.

ASP.NET Core 2.x
ASP.NET Core 1.x

If the request isn't handled by the static file middleware, it's passed on to the Identity middleware (
app.UseAuthentication), which performs authentication. Identity doesn't short-circuit unauthenticated requests.

Although Identity authenticates requests, authorization (and rejection) occurs only after MVC selects a specific
Razor Page or controller and action.

The following example demonstrates a middleware ordering where requests for static files are handled by the static
file middleware before the response compression middleware. Static files are not compressed with this ordering of
the middleware. The MVC responses from UseMvcWithDefaultRoute can be compressed.

You configure the HTTP pipeline using Use , Run , and Map . The Use method can short-circuit the pipeline (that is,
if it doesn't call a next request delegate). Run is a convention, and some middleware components may expose
Run[Middleware] methods that run at the end of the pipeline.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions#Microsoft_AspNetCore_Builder_MvcApplicationBuilderExtensions_UseMvcWithDefaultRoute_Microsoft_AspNetCore_Builder_IApplicationBuilder_

public class Startup
{
 private static void HandleMapTest1(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test 1");
 });
 }

 private static void HandleMapTest2(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test 2");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Map("/map1", HandleMapTest1);

 app.Map("/map2", HandleMapTest2);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate. <p>");
 });
 }
}

REQUEST RESPONSE

localhost:1234 Hello from non-Map delegate.

localhost:1234/map1 Map Test 1

localhost:1234/map2 Map Test 2

localhost:1234/map3 Hello from non-Map delegate.

Map* extensions are used as a convention for branching the pipeline. Map branches the request pipeline based on
matches of the given request path. If the request path starts with the given path, the branch is executed.

The following table shows the requests and responses from http://localhost:1234 using the previous code:

When Map is used, the matched path segment(s) are removed from HttpRequest.Path and appended to
HttpRequest.PathBase for each request.

MapWhen branches the request pipeline based on the result of the given predicate. Any predicate of type
Func<HttpContext, bool> can be used to map requests to a new branch of the pipeline. In the following example, a

predicate is used to detect the presence of a query string variable branch :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mapextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mapwhenextensions

public class Startup
{
 private static void HandleBranch(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 var branchVer = context.Request.Query["branch"];
 await context.Response.WriteAsync($"Branch used = {branchVer}");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.MapWhen(context => context.Request.Query.ContainsKey("branch"),
 HandleBranch);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate. <p>");
 });
 }
}

REQUEST RESPONSE

localhost:1234 Hello from non-Map delegate.

localhost:1234/?branch=master Branch used = master

app.Map("/level1", level1App => {
 level1App.Map("/level2a", level2AApp => {
 // "/level1/level2a"
 //...
 });
 level1App.Map("/level2b", level2BApp => {
 // "/level1/level2b"
 //...
 });
 });

app.Map("/level1/level2", HandleMultiSeg);

Built-in middleware

MIDDLEWARE DESCRIPTION ORDER

Authentication Provides authentication support. Before HttpContext.User is needed.
Terminal for OAuth callbacks.

The following table shows the requests and responses from http://localhost:1234 using the previous code:

Map supports nesting, for example:

Map can also match multiple segments at once, for example:

ASP.NET Core ships with the following middleware components, as well as a description of the order in which they
should be added:

CORS Configures Cross-Origin Resource
Sharing.

Before components that use CORS.

Diagnostics Configures diagnostics. Before components that generate
errors.

Forwarded Headers Forwards proxied headers onto the
current request.

Before components that consume the
updated fields (examples: scheme, host,
client IP, method).

HTTP Method Override Allows an incoming POST request to
override the method.

Before components that consume the
updated method.

HTTPS Redirection Redirect all HTTP requests to HTTPS
(ASP.NET Core 2.1 or later).

Before components that consume the
URL.

HTTP Strict Transport Security (HSTS) Security enhancement middleware that
adds a special response header (ASP.NET
Core 2.1 or later).

Before responses are sent and after
components that modify requests (for
example, Forwarded Headers, URL
Rewriting).

Response Caching Provides support for caching responses. Before components that require
caching.

Response Compression Provides support for compressing
responses.

Before components that require
compression.

Request Localization Provides localization support. Before localization sensitive
components.

Routing Defines and constrains request routes. Terminal for matching routes.

Session Provides support for managing user
sessions.

Before components that require Session.

Static Files Provides support for serving static files
and directory browsing.

Terminal if a request matches files.

URL Rewriting Provides support for rewriting URLs and
redirecting requests.

Before components that consume the
URL.

WebSockets Enables the WebSockets protocol. Before components that are required to
accept WebSocket requests.

MIDDLEWARE DESCRIPTION ORDER

Writing middleware

Middleware is generally encapsulated in a class and exposed with an extension method. Consider the following
middleware, which sets the culture for the current request from the query string:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.httpmethodoverrideextensions

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Use((context, next) =>
 {
 var cultureQuery = context.Request.Query["culture"];
 if (!string.IsNullOrWhiteSpace(cultureQuery))
 {
 var culture = new CultureInfo(cultureQuery);

 CultureInfo.CurrentCulture = culture;
 CultureInfo.CurrentUICulture = culture;
 }

 // Call the next delegate/middleware in the pipeline
 return next();
 });

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(
 $"Hello {CultureInfo.CurrentCulture.DisplayName}");
 });

 }
}

Note: The sample code above is used to demonstrate creating a middleware component. See Globalization and
localization for ASP.NET Core's built-in localization support.

You can test the middleware by passing in the culture, for example http://localhost:7997/?culture=no .

The following code moves the middleware delegate to a class:

using Microsoft.AspNetCore.Http;
using System.Globalization;
using System.Threading.Tasks;

namespace Culture
{
 public class RequestCultureMiddleware
 {
 private readonly RequestDelegate _next;

 public RequestCultureMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public Task InvokeAsync(HttpContext context)
 {
 var cultureQuery = context.Request.Query["culture"];
 if (!string.IsNullOrWhiteSpace(cultureQuery))
 {
 var culture = new CultureInfo(cultureQuery);

 CultureInfo.CurrentCulture = culture;
 CultureInfo.CurrentUICulture = culture;

 }

 // Call the next delegate/middleware in the pipeline
 return this._next(context);
 }
 }
}

NOTENOTE

using Microsoft.AspNetCore.Builder;

namespace Culture
{
 public static class RequestCultureMiddlewareExtensions
 {
 public static IApplicationBuilder UseRequestCulture(
 this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<RequestCultureMiddleware>();
 }
 }
}

In ASP.NET Core 1.x, the middleware Task method's name must be Invoke . In ASP.NET Core 2.0 or later, the name can be
either Invoke or InvokeAsync .

The following extension method exposes the middleware through IApplicationBuilder:

The following code calls the middleware from Configure :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.UseRequestCulture();

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(
 $"Hello {CultureInfo.CurrentCulture.DisplayName}");
 });

 }
}

Per-request dependenciesPer-request dependencies

public class MyMiddleware
{
 private readonly RequestDelegate _next;

 public MyMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public async Task Invoke(HttpContext httpContext, IMyScopedService svc)
 {
 svc.MyProperty = 1000;
 await _next(httpContext);
 }
}

Additional resources

Middleware should follow the Explicit Dependencies Principle by exposing its dependencies in its constructor.
Middleware is constructed once per application lifetime. See Per-request dependencies below if you need to share
services with middleware within a request.

Middleware components can resolve their dependencies from dependency injection through constructor
parameters. UseMiddleware<T> can also accept additional parameters directly.

Because middleware is constructed at app startup, not per-request, scoped lifetime services used by middleware
constructors are not shared with other dependency-injected types during each request. If you must share a scoped
service between your middleware and other types, add these services to the Invoke method's signature. The
Invoke method can accept additional parameters that are populated by dependency injection. For example:

Migrate HTTP Modules to Middleware
Application Startup
Request Features
Factory-based middleware activation
Middleware activation with a third-party container

http://deviq.com/explicit-dependencies-principle/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.usemiddlewareextensions#methods_summary

ASP.NET Core Middleware
6/6/2018 • 9 minutes to read • Edit Online

What is middleware?

Creating a middleware pipeline with IApplicationBuilder

By Rick Anderson and Steve Smith

View or download sample code (how to download)

Middleware is software that's assembled into an application pipeline to handle requests and responses. Each
component:

Chooses whether to pass the request to the next component in the pipeline.
Can perform work before and after the next component in the pipeline is invoked.

Request delegates are used to build the request pipeline. The request delegates handle each HTTP request.

Request delegates are configured using Run, Map, and Use extension methods. An individual request
delegate can be specified in-line as an anonymous method (called in-line middleware), or it can be defined in
a reusable class. These reusable classes and in-line anonymous methods are middleware, or middleware
components. Each middleware component in the request pipeline is responsible for invoking the next
component in the pipeline, or short-circuiting the chain if appropriate.

Migrate HTTP Modules to Middleware explains the difference between request pipelines in ASP.NET Core
and ASP.NET 4.x and provides more middleware samples.

The ASP.NET Core request pipeline consists of a sequence of request delegates, called one after the other, as
this diagram shows (the thread of execution follows the black arrows):

Each delegate can perform operations before and after the next delegate. A delegate can also decide to not
pass a request to the next delegate, which is called short-circuiting the request pipeline. Short-circuiting is
often desirable because it avoids unnecessary work. For example, the static file middleware can return a
request for a static file and short-circuit the rest of the pipeline. Exception-handling delegates need to be

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/middleware/index.md
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/middleware/index/sample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.runextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mapextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.useextensions

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello, World!");
 });
 }
}

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Use(async (context, next) =>
 {
 // Do work that doesn't write to the Response.
 await next.Invoke();
 // Do logging or other work that doesn't write to the Response.
 });

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from 2nd delegate.");
 });
 }
}

WARNINGWARNING

Ordering

called early in the pipeline, so they can catch exceptions that occur in later stages of the pipeline.

The simplest possible ASP.NET Core app sets up a single request delegate that handles all requests. This case
doesn't include an actual request pipeline. Instead, a single anonymous function is called in response to every
HTTP request.

The first app.Run delegate terminates the pipeline.

You can chain multiple request delegates together with app.Use. The next parameter represents the next
delegate in the pipeline. (Remember that you can short-circuit the pipeline by not calling the next parameter.)
You can typically perform actions both before and after the next delegate, as this example demonstrates:

Don't call next.Invoke after the response has been sent to the client. Changes to HttpResponse after the response
has started will throw an exception. For example, changes such as setting headers, status code, etc, will throw an
exception. Writing to the response body after calling next :

May cause a protocol violation. For example, writing more than the stated content-length .
May corrupt the body format. For example, writing an HTML footer to a CSS file.

HttpResponse.HasStarted is a useful hint to indicate if headers have been sent and/or the body has been written to.

The order that middleware components are added in the Configure method defines the order in which

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.runextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.useextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.features.httpresponsefeature#Microsoft_AspNetCore_Http_Features_HttpResponseFeature_HasStarted

public void Configure(IApplicationBuilder app)
{
 app.UseExceptionHandler("/Home/Error"); // Call first to catch exceptions
 // thrown in the following middleware.

 app.UseStaticFiles(); // Return static files and end pipeline.

 app.UseAuthentication(); // Authenticate before you access
 // secure resources.

 app.UseMvcWithDefaultRoute(); // Add MVC to the request pipeline.
}

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // Static files not compressed
 // by middleware.
 app.UseResponseCompression();
 app.UseMvcWithDefaultRoute();
}

Use, Run, and MapUse, Run, and Map

they're invoked on requests, and the reverse order for the response. This ordering is critical for security,
performance, and functionality.

The Configure method (shown below) adds the following middleware components:

1. Exception/error handling
2. Static file server
3. Authentication
4. MVC

ASP.NET Core 2.x
ASP.NET Core 1.x

In the code above, UseExceptionHandler is the first middleware component added to the pipeline—therefore,
it catches any exceptions that occur in later calls.

The static file middleware is called early in the pipeline so it can handle requests and short-circuit without
going through the remaining components. The static file middleware provides no authorization checks. Any
files served by it, including those under wwwroot, are publicly available. See Static files for an approach to
secure static files.

ASP.NET Core 2.x
ASP.NET Core 1.x

If the request isn't handled by the static file middleware, it's passed on to the Identity middleware (
app.UseAuthentication), which performs authentication. Identity doesn't short-circuit unauthenticated

requests. Although Identity authenticates requests, authorization (and rejection) occurs only after MVC
selects a specific Razor Page or controller and action.

The following example demonstrates a middleware ordering where requests for static files are handled by
the static file middleware before the response compression middleware. Static files are not compressed with
this ordering of the middleware. The MVC responses from UseMvcWithDefaultRoute can be compressed.

You configure the HTTP pipeline using Use , Run , and Map . The Use method can short-circuit the pipeline
(that is, if it doesn't call a next request delegate). Run is a convention, and some middleware components

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions#Microsoft_AspNetCore_Builder_MvcApplicationBuilderExtensions_UseMvcWithDefaultRoute_Microsoft_AspNetCore_Builder_IApplicationBuilder_

public class Startup
{
 private static void HandleMapTest1(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test 1");
 });
 }

 private static void HandleMapTest2(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test 2");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Map("/map1", HandleMapTest1);

 app.Map("/map2", HandleMapTest2);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate. <p>");
 });
 }
}

REQUEST RESPONSE

localhost:1234 Hello from non-Map delegate.

localhost:1234/map1 Map Test 1

localhost:1234/map2 Map Test 2

localhost:1234/map3 Hello from non-Map delegate.

may expose Run[Middleware] methods that run at the end of the pipeline.

Map* extensions are used as a convention for branching the pipeline. Map branches the request pipeline
based on matches of the given request path. If the request path starts with the given path, the branch is
executed.

The following table shows the requests and responses from http://localhost:1234 using the previous code:

When Map is used, the matched path segment(s) are removed from HttpRequest.Path and appended to
HttpRequest.PathBase for each request.

MapWhen branches the request pipeline based on the result of the given predicate. Any predicate of type
Func<HttpContext, bool> can be used to map requests to a new branch of the pipeline. In the following

example, a predicate is used to detect the presence of a query string variable branch :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mapextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mapwhenextensions

public class Startup
{
 private static void HandleBranch(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 var branchVer = context.Request.Query["branch"];
 await context.Response.WriteAsync($"Branch used = {branchVer}");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.MapWhen(context => context.Request.Query.ContainsKey("branch"),
 HandleBranch);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate. <p>");
 });
 }
}

REQUEST RESPONSE

localhost:1234 Hello from non-Map delegate.

localhost:1234/?branch=master Branch used = master

app.Map("/level1", level1App => {
 level1App.Map("/level2a", level2AApp => {
 // "/level1/level2a"
 //...
 });
 level1App.Map("/level2b", level2BApp => {
 // "/level1/level2b"
 //...
 });
 });

app.Map("/level1/level2", HandleMultiSeg);

Built-in middleware

MIDDLEWARE DESCRIPTION ORDER

Authentication Provides authentication support. Before HttpContext.User is needed.
Terminal for OAuth callbacks.

The following table shows the requests and responses from http://localhost:1234 using the previous code:

Map supports nesting, for example:

Map can also match multiple segments at once, for example:

ASP.NET Core ships with the following middleware components, as well as a description of the order in
which they should be added:

CORS Configures Cross-Origin Resource
Sharing.

Before components that use CORS.

Diagnostics Configures diagnostics. Before components that generate
errors.

Forwarded Headers Forwards proxied headers onto the
current request.

Before components that consume the
updated fields (examples: scheme,
host, client IP, method).

HTTP Method Override Allows an incoming POST request to
override the method.

Before components that consume the
updated method.

HTTPS Redirection Redirect all HTTP requests to HTTPS
(ASP.NET Core 2.1 or later).

Before components that consume the
URL.

HTTP Strict Transport Security (HSTS) Security enhancement middleware
that adds a special response header
(ASP.NET Core 2.1 or later).

Before responses are sent and after
components that modify requests (for
example, Forwarded Headers, URL
Rewriting).

Response Caching Provides support for caching
responses.

Before components that require
caching.

Response Compression Provides support for compressing
responses.

Before components that require
compression.

Request Localization Provides localization support. Before localization sensitive
components.

Routing Defines and constrains request
routes.

Terminal for matching routes.

Session Provides support for managing user
sessions.

Before components that require
Session.

Static Files Provides support for serving static
files and directory browsing.

Terminal if a request matches files.

URL Rewriting Provides support for rewriting URLs
and redirecting requests.

Before components that consume the
URL.

WebSockets Enables the WebSockets protocol. Before components that are required
to accept WebSocket requests.

MIDDLEWARE DESCRIPTION ORDER

Writing middleware

Middleware is generally encapsulated in a class and exposed with an extension method. Consider the
following middleware, which sets the culture for the current request from the query string:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.httpmethodoverrideextensions

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Use((context, next) =>
 {
 var cultureQuery = context.Request.Query["culture"];
 if (!string.IsNullOrWhiteSpace(cultureQuery))
 {
 var culture = new CultureInfo(cultureQuery);

 CultureInfo.CurrentCulture = culture;
 CultureInfo.CurrentUICulture = culture;
 }

 // Call the next delegate/middleware in the pipeline
 return next();
 });

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(
 $"Hello {CultureInfo.CurrentCulture.DisplayName}");
 });

 }
}

Note: The sample code above is used to demonstrate creating a middleware component. See Globalization
and localization for ASP.NET Core's built-in localization support.

You can test the middleware by passing in the culture, for example http://localhost:7997/?culture=no .

The following code moves the middleware delegate to a class:

using Microsoft.AspNetCore.Http;
using System.Globalization;
using System.Threading.Tasks;

namespace Culture
{
 public class RequestCultureMiddleware
 {
 private readonly RequestDelegate _next;

 public RequestCultureMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public Task InvokeAsync(HttpContext context)
 {
 var cultureQuery = context.Request.Query["culture"];
 if (!string.IsNullOrWhiteSpace(cultureQuery))
 {
 var culture = new CultureInfo(cultureQuery);

 CultureInfo.CurrentCulture = culture;
 CultureInfo.CurrentUICulture = culture;

 }

 // Call the next delegate/middleware in the pipeline
 return this._next(context);
 }
 }
}

NOTENOTE

using Microsoft.AspNetCore.Builder;

namespace Culture
{
 public static class RequestCultureMiddlewareExtensions
 {
 public static IApplicationBuilder UseRequestCulture(
 this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<RequestCultureMiddleware>();
 }
 }
}

In ASP.NET Core 1.x, the middleware Task method's name must be Invoke . In ASP.NET Core 2.0 or later, the name
can be either Invoke or InvokeAsync .

The following extension method exposes the middleware through IApplicationBuilder:

The following code calls the middleware from Configure :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.UseRequestCulture();

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(
 $"Hello {CultureInfo.CurrentCulture.DisplayName}");
 });

 }
}

Per-request dependenciesPer-request dependencies

public class MyMiddleware
{
 private readonly RequestDelegate _next;

 public MyMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public async Task Invoke(HttpContext httpContext, IMyScopedService svc)
 {
 svc.MyProperty = 1000;
 await _next(httpContext);
 }
}

Additional resources

Middleware should follow the Explicit Dependencies Principle by exposing its dependencies in its constructor.
Middleware is constructed once per application lifetime. See Per-request dependencies below if you need to
share services with middleware within a request.

Middleware components can resolve their dependencies from dependency injection through constructor
parameters. UseMiddleware<T> can also accept additional parameters directly.

Because middleware is constructed at app startup, not per-request, scoped lifetime services used by
middleware constructors are not shared with other dependency-injected types during each request. If you
must share a scoped service between your middleware and other types, add these services to the Invoke

method's signature. The Invoke method can accept additional parameters that are populated by dependency
injection. For example:

Migrate HTTP Modules to Middleware
Application Startup
Request Features
Factory-based middleware activation
Middleware activation with a third-party container

http://deviq.com/explicit-dependencies-principle/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.usemiddlewareextensions#methods_summary

Factory-based middleware activation in ASP.NET
Core
6/2/2018 • 2 minutes to read • Edit Online

IMiddleware

By Luke Latham

IMiddlewareFactory/IMiddleware is an extensibility point for middleware activation.

UseMiddleware extension methods check if a middleware's registered type implements IMiddleware . If it does, the
IMiddlewareFactory instance registered in the container is used to resolve the IMiddleware implementation

instead of using the convention-based middleware activation logic. The middleware is registered as a scoped or
transient service in the app's service container.

Benefits:

Activation per request (injection of scoped services)
Strong typing of middleware

IMiddleware is activated per request, so scoped services can be injected into the middleware's constructor.

View or download sample code (how to download)

The sample app demonstrates middleware activated by:

Convention. For more information on conventional middleware activation, see the Middleware topic.
An IMiddleware implementation. The default MiddlewareFactory class activates the middleware.

The middleware implementations function identically and record the value provided by a query string parameter (
key). The middlewares use an injected database context (a scoped service) to record the query string value in an

in-memory database.

IMiddleware defines middleware for the app's request pipeline. The InvokeAsync(HttpContext, RequestDelegate)
method handles requests and returns a Task that represents the execution of the middleware.

Middleware activated by convention:

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/middleware/extensibility.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/middleware/extensibility/sample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.middlewarefactory
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddleware.invokeasync#Microsoft_AspNetCore_Http_IMiddleware_InvokeAsync_Microsoft_AspNetCore_Http_HttpContext_Microsoft_AspNetCore_Http_RequestDelegate_

public class ConventionalMiddleware
{
 private readonly RequestDelegate _next;

 public ConventionalMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public async Task InvokeAsync(HttpContext context, AppDbContext db)
 {
 var keyValue = context.Request.Query["key"];

 if (!string.IsNullOrWhiteSpace(keyValue))
 {
 db.Add(new Request()
 {
 DT = DateTime.UtcNow,
 MiddlewareActivation = "ConventionalMiddleware",
 Value = keyValue
 });

 await db.SaveChangesAsync();
 }

 await _next(context);
 }
}

public class IMiddlewareMiddleware : IMiddleware
{
 private readonly AppDbContext _db;

 public IMiddlewareMiddleware(AppDbContext db)
 {
 _db = db;
 }

 public async Task InvokeAsync(HttpContext context, RequestDelegate next)
 {
 var keyValue = context.Request.Query["key"];

 if (!string.IsNullOrWhiteSpace(keyValue))
 {
 _db.Add(new Request()
 {
 DT = DateTime.UtcNow,
 MiddlewareActivation = "IMiddlewareMiddleware",
 Value = keyValue
 });

 await _db.SaveChangesAsync();
 }

 await next(context);
 }
}

Middleware activated by MiddlewareFactory :

Extensions are created for the middlewares:

public static class MiddlewareExtensions
{
 public static IApplicationBuilder UseConventionalMiddleware(
 this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<ConventionalMiddleware>();
 }

 public static IApplicationBuilder UseIMiddlewareMiddleware(
 this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<IMiddlewareMiddleware>();
 }
}

public static IApplicationBuilder UseIMiddlewareMiddleware(
 this IApplicationBuilder builder, bool option)
{
 // Passing 'option' as an argument throws a NotSupportedException at runtime.
 return builder.UseMiddleware<IMiddlewareMiddleware>(option);
}

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddDbContext<AppDbContext>(options =>
 options.UseInMemoryDatabase("InMemoryDb"));

 services.AddTransient<IMiddlewareMiddleware>();

 services.AddMvc();
}

It isn't possible to pass objects to the factory-activated middleware with UseMiddleware :

The factory-activated middleware is added to the built-in container in Startup.cs:

Both middlewares are registered in the request processing pipeline in Configure :

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseConventionalMiddleware();
 app.UseIMiddlewareMiddleware();

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();
 app.UseMvc();
}

IMiddlewareFactory

Additional resources

IMiddlewareFactory provides methods to create middleware. The middleware factory implementation is
registered in the container as a scoped service.

The default IMiddlewareFactory implementation, MiddlewareFactory, is found in the Microsoft.AspNetCore.Http
package (reference source).

Middleware
Middleware activation with a third-party container

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.middlewarefactory
https://www.nuget.org/packages/Microsoft.AspNetCore.Http/
https://github.com/aspnet/HttpAbstractions/blob/release/2.0/src/Microsoft.AspNetCore.Http/MiddlewareFactory.cs

Middleware activation with a third-party container in
ASP.NET Core
6/2/2018 • 2 minutes to read • Edit Online

NOTENOTE

IMiddlewareFactory

public class SimpleInjectorMiddlewareFactory : IMiddlewareFactory
{
 private readonly Container _container;

 public SimpleInjectorMiddlewareFactory(Container container)
 {
 _container = container;
 }

 public IMiddleware Create(Type middlewareType)
 {
 return _container.GetInstance(middlewareType) as IMiddleware;
 }

 public void Release(IMiddleware middleware)
 {
 // The container is responsible for releasing resources.
 }
}

By Luke Latham

This article demonstrates how to use IMiddlewareFactory and IMiddleware as an extensibility point for
middleware activation with a third-party container. For introductory information on IMiddlewareFactory and
IMiddleware , see the Factory-based middleware activation topic.

View or download sample code (how to download)

The sample app demonstrates middleware activation by an IMiddlewareFactory implementation,
SimpleInjectorMiddlewareFactory . The sample uses the Simple Injector dependency injection (DI) container.

The sample's middleware implementation records the value provided by a query string parameter (key). The
middleware uses an injected database context (a scoped service) to record the query string value in an in-memory
database.

The sample app uses Simple Injector purely for demonstration purposes. Use of Simple Injector isn't an endorsement.
Middleware activation approaches described in the Simple Injector documentation and GitHub issues are recommended by
the maintainers of Simple Injector. For more information, see the Simple Injector documentation and Simple Injector GitHub
repository.

IMiddlewareFactory provides methods to create middleware.

In the sample app, a middleware factory is implemented to create an SimpleInjectorActivatedMiddleware instance.
The middleware factory uses the Simple Injector container to resolve the middleware:

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/middleware/extensibility-third-party-container.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/middleware/extensibility-third-party-container/sample
https://simpleinjector.org
https://github.com/simpleinjector/SimpleInjector
https://simpleinjector.readthedocs.io/en/latest/index.html
https://github.com/simpleinjector/SimpleInjector
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory

IMiddleware

public class SimpleInjectorActivatedMiddleware : IMiddleware
{
 private readonly AppDbContext _db;

 public SimpleInjectorActivatedMiddleware(AppDbContext db)
 {
 _db = db;
 }

 public async Task InvokeAsync(HttpContext context, RequestDelegate next)
 {
 var keyValue = context.Request.Query["key"];

 if (!string.IsNullOrWhiteSpace(keyValue))
 {
 _db.Add(new Request()
 {
 DT = DateTime.UtcNow,
 MiddlewareActivation = "SimpleInjectorActivatedMiddleware",
 Value = keyValue
 });

 await _db.SaveChangesAsync();
 }

 await next(context);
 }
}

public static class MiddlewareExtensions
{
 public static IApplicationBuilder UseSimpleInjectorActivatedMiddleware(
 this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<SimpleInjectorActivatedMiddleware>();
 }
}

IMiddleware defines middleware for the app's request pipeline.

Middleware activated by an IMiddlewareFactory implementation
(Middleware/SimpleInjectorActivatedMiddleware.cs):

An extension is created for the middleware (Middleware/MiddlewareExtensions.cs):

Startup.ConfigureServices must perform several tasks:

Set up the Simple Injector container.
Register the factory and middleware.
Make the app's database context available from the Simple Injector container for a Razor Page.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.imiddleware

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 // Replace the default middleware factory with the
 // SimpleInjectorMiddlewareFactory.
 services.AddTransient<IMiddlewareFactory>(_ =>
 {
 return new SimpleInjectorMiddlewareFactory(_container);
 });

 // Wrap ASP.NET requests in a Simple Injector execution
 // context.
 services.UseSimpleInjectorAspNetRequestScoping(_container);

 // Provide the database context from the Simple
 // Injector container whenever it's requested from
 // the default service container.
 services.AddScoped<AppDbContext>(provider =>
 _container.GetInstance<AppDbContext>());

 _container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

 _container.Register<AppDbContext>(() =>
 {
 var optionsBuilder = new DbContextOptionsBuilder<DbContext>();
 optionsBuilder.UseInMemoryDatabase("InMemoryDb");
 return new AppDbContext(optionsBuilder.Options);
 }, Lifestyle.Scoped);

 _container.Register<SimpleInjectorActivatedMiddleware>();

 _container.Verify();
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseSimpleInjectorActivatedMiddleware();

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();
 app.UseMvc();
}

The middleware is registered in the request processing pipeline in Startup.Configure :

Additional resources
Middleware
Factory-based middleware activation
Simple Injector GitHub repository
Simple Injector documentation

https://github.com/simpleinjector/SimpleInjector
https://simpleinjector.readthedocs.io/en/latest/index.html

Static files in ASP.NET Core
5/12/2018 • 8 minutes to read • Edit Online

Serve static files

public class Program
{
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
}

By Rick Anderson and Scott Addie

Static files, such as HTML, CSS, images, and JavaScript, are assets an ASP.NET Core app serves directly to
clients. Some configuration is required to enable to serving of these files.

View or download sample code (how to download)

Static files are stored within your project's web root directory. The default directory is
<content_root>/wwwroot, but it can be changed via the UseWebRoot method. See Content root and Web
root for more information.

The app's web host must be made aware of the content root directory.

ASP.NET Core 2.x
ASP.NET Core 1.x

The WebHost.CreateDefaultBuilder method sets the content root to the current directory:

Static files are accessible via a path relative to the web root. For example, the Web Application project
template contains several folders within the wwwroot folder :

wwwroot
css
images
js

The URI format to access a file in the images subfolder is
http://<server_address>/images/<image_file_name>. For example,
http://localhost:9189/images/banner3.svg.

ASP.NET Core 2.x
ASP.NET Core 1.x

If targeting .NET Framework, add the Microsoft.AspNetCore.StaticFiles package to your project. If targeting
.NET Core, the Microsoft.AspNetCore.All metapackage includes this package.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/static-files.md
https://twitter.com/RickAndMSFT
https://twitter.com/Scott_Addie
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/static-files/samples
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.usewebroot#Microsoft_AspNetCore_Hosting_HostingAbstractionsWebHostBuilderExtensions_UseWebRoot_Microsoft_AspNetCore_Hosting_IWebHostBuilder_System_String_
http://localhost:9189/images/banner3.svg
https://www.nuget.org/packages/Microsoft.AspNetCore.StaticFiles/

Serve files inside of web rootServe files inside of web root

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles();
}

Serve files outside of web rootServe files outside of web root

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // For the wwwroot folder

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "MyStaticFiles")),
 RequestPath = "/StaticFiles"
 });
}

Set HTTP response headersSet HTTP response headers

Configure the middleware which enables the serving of static files.

Invoke the UseStaticFiles method within Startup.Configure :

The parameterless UseStaticFiles method overload marks the files in web root as servable. The following
markup references wwwroot/images/banner1.svg:

Consider a directory hierarchy in which the static files to be served reside outside of the web root:

wwwroot

MyStaticFiles

css
images
js

images
banner1.svg

A request can access the banner1.svg file by configuring the static file middleware as follows:

In the preceding code, the MyStaticFiles directory hierarchy is exposed publicly via the StaticFiles URI
segment. A request to http://<server_address>/StaticFiles/images/banner1.svg serves the banner1.svg file.

The following markup references MyStaticFiles/images/banner1.svg:

A StaticFileOptions object can be used to set HTTP response headers. In addition to configuring static file
serving from the web root, the following code sets the Cache-Control header :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#Microsoft_AspNetCore_Builder_StaticFileExtensions_UseStaticFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(new StaticFileOptions
 {
 OnPrepareResponse = ctx =>
 {
 // Requires the following import:
 // using Microsoft.AspNetCore.Http;
 ctx.Context.Response.Headers.Append("Cache-Control", "public,max-age=600");
 }
 });
}

Static file authorization

[Authorize]
public IActionResult BannerImage()
{
 var file = Path.Combine(Directory.GetCurrentDirectory(),
 "MyStaticFiles", "images", "banner1.svg");

 return PhysicalFile(file, "image/svg+xml");
}

Enable directory browsing

The HeaderDictionaryExtensions.Append method exists in the Microsoft.AspNetCore.Http package.

The files have been made publicly cacheable for 10 minutes (600 seconds):

The static file middleware doesn't provide authorization checks. Any files served by it, including those under
wwwroot, are publicly accessible. To serve files based on authorization:

Store them outside of wwwroot and any directory accessible to the static file middleware and
Serve them via an action method to which authorization is applied. Return a FileResult object:

Directory browsing allows users of your web app to see a directory listing and files within a specified
directory. Directory browsing is disabled by default for security reasons (see Considerations). Enable directory
browsing by invoking the UseDirectoryBrowser method in Startup.Configure :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.headerdictionaryextensions.append
https://www.nuget.org/packages/Microsoft.AspNetCore.Http/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fileresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.directorybrowserextensions.usedirectorybrowser#Microsoft_AspNetCore_Builder_DirectoryBrowserExtensions_UseDirectoryBrowser_Microsoft_AspNetCore_Builder_IApplicationBuilder_Microsoft_AspNetCore_Builder_DirectoryBrowserOptions_

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // For the wwwroot folder

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });

 app.UseDirectoryBrowser(new DirectoryBrowserOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddDirectoryBrowser();
}

Add required services by invoking the AddDirectoryBrowser method from Startup.ConfigureServices :

The preceding code allows directory browsing of the wwwroot/images folder using the URL
http://<server_address>/MyImages, with links to each file and folder :

See Considerations on the security risks when enabling browsing.

Note the two UseStaticFiles calls in the following example. The first call enables the serving of static files in
the wwwroot folder. The second call enables directory browsing of the wwwroot/images folder using the URL
http://<server_address>/MyImages:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.directorybrowserserviceextensions.adddirectorybrowser#Microsoft_Extensions_DependencyInjection_DirectoryBrowserServiceExtensions_AddDirectoryBrowser_Microsoft_Extensions_DependencyInjection_IServiceCollection_

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // For the wwwroot folder

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });

 app.UseDirectoryBrowser(new DirectoryBrowserOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });
}

Serve a default document

public void Configure(IApplicationBuilder app)
{
 app.UseDefaultFiles();
 app.UseStaticFiles();
}

IMPORTANTIMPORTANT

public void Configure(IApplicationBuilder app)
{
 // Serve my app-specific default file, if present.
 DefaultFilesOptions options = new DefaultFilesOptions();
 options.DefaultFileNames.Clear();
 options.DefaultFileNames.Add("mydefault.html");
 app.UseDefaultFiles(options);
 app.UseStaticFiles();
}

Setting a default home page provides visitors a logical starting point when visiting your site. To serve a default
page without the user fully qualifying the URI, call the UseDefaultFiles method from Startup.Configure :

UseDefaultFiles must be called before UseStaticFiles to serve the default file. UseDefaultFiles is a URL
rewriter that doesn't actually serve the file. Enable the static file middleware via UseStaticFiles to serve the file.

With UseDefaultFiles , requests to a folder search for :

default.htm

default.html

index.htm

index.html

The first file found from the list is served as though the request were the fully qualified URI. The browser URL
continues to reflect the URI requested.

The following code changes the default file name to mydefault.html:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#Microsoft_AspNetCore_Builder_DefaultFilesExtensions_UseDefaultFiles_Microsoft_AspNetCore_Builder_IApplicationBuilder_

UseFileServer

app.UseFileServer();

app.UseFileServer(enableDirectoryBrowsing: true);

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // For the wwwroot folder

 app.UseFileServer(new FileServerOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "MyStaticFiles")),
 RequestPath = "/StaticFiles",
 EnableDirectoryBrowsing = true
 });
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddDirectoryBrowser();
}

URI RESPONSE

http://<server_address>/StaticFiles/images/banner1.svg MyStaticFiles/images/banner1.svg

http://<server_address>/StaticFiles MyStaticFiles/default.html

UseFileServer combines the functionality of UseStaticFiles , UseDefaultFiles , and UseDirectoryBrowser .

The following code enables the serving of static files and the default file. Directory browsing isn't enabled.

The following code builds upon the parameterless overload by enabling directory browsing:

Consider the following directory hierarchy:

wwwroot

MyStaticFiles

css
images
js

images

default.html

banner1.svg

The following code enables static files, default files, and directory browsing of MyStaticFiles :

AddDirectoryBrowser must be called when the EnableDirectoryBrowsing property value is true :

Using the file hierarchy and preceding code, URLs resolve as follows:

If no default-named file exists in the MyStaticFiles directory, http://<server_address>/StaticFiles returns the

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.fileserverextensions.usefileserver#Microsoft_AspNetCore_Builder_FileServerExtensions_UseFileServer_Microsoft_AspNetCore_Builder_IApplicationBuilder_

NOTENOTE

FileExtensionContentTypeProvider

public void Configure(IApplicationBuilder app)
{
 // Set up custom content types - associating file extension to MIME type
 var provider = new FileExtensionContentTypeProvider();
 // Add new mappings
 provider.Mappings[".myapp"] = "application/x-msdownload";
 provider.Mappings[".htm3"] = "text/html";
 provider.Mappings[".image"] = "image/png";
 // Replace an existing mapping
 provider.Mappings[".rtf"] = "application/x-msdownload";
 // Remove MP4 videos.
 provider.Mappings.Remove(".mp4");

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages",
 ContentTypeProvider = provider
 });

 app.UseDirectoryBrowser(new DirectoryBrowserOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });
}

directory listing with clickable links:

UseDefaultFiles and UseDirectoryBrowser use the URL http://<server_address>/StaticFiles without the trailing
slash to trigger a client-side redirect to http://<server_address>/StaticFiles/. Notice the addition of the trailing slash.
Relative URLs within the documents are deemed invalid without a trailing slash.

The FileExtensionContentTypeProvider class contains a Mappings property serving as a mapping of file
extensions to MIME content types. In the following sample, several file extensions are registered to known
MIME types. The .rtf extension is replaced, and .mp4 is removed.

See MIME content types.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.staticfiles.fileextensioncontenttypeprovider
http://www.iana.org/assignments/media-types/media-types.xhtml

Non-standard content types

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(new StaticFileOptions
 {
 ServeUnknownFileTypes = true,
 DefaultContentType = "image/png"
 });
}

WARNINGWARNING

ConsiderationsConsiderations

WARNINGWARNING

WARNINGWARNING

The static file middleware understands almost 400 known file content types. If the user requests a file of an
unknown file type, the static file middleware returns a HTTP 404 (Not Found) response. If directory browsing
is enabled, a link to the file is displayed. The URI returns an HTTP 404 error.

The following code enables serving unknown types and renders the unknown file as an image:

With the preceding code, a request for a file with an unknown content type is returned as an image.

Enabling ServeUnknownFileTypes is a security risk. It's disabled by default, and its use is discouraged.
FileExtensionContentTypeProvider provides a safer alternative to serving files with non-standard extensions.

UseDirectoryBrowser and UseStaticFiles can leak secrets. Disabling directory browsing in production is highly
recommended. Carefully review which directories are enabled via UseStaticFiles or UseDirectoryBrowser . The
entire directory and its sub-directories become publicly accessible. Store files suitable for serving to the public in a
dedicated directory, such as <content_root>/wwwroot. Separate these files from MVC views, Razor Pages (2.x only),
configuration files, etc.

The URLs for content exposed with UseDirectoryBrowser and UseStaticFiles are subject to the case
sensitivity and character restrictions of the underlying file system. For example, Windows is case
insensitive—macOS and Linux aren't.

ASP.NET Core apps hosted in IIS use the ASP.NET Core Module to forward all requests to the app,
including static file requests. The IIS static file handler isn't used. It has no chance to handle requests
before they're handled by the module.

Complete the following steps in IIS Manager to remove the IIS static file handler at the server or
website level:

1. Navigate to the Modules feature.
2. Select StaticFileModule in the list.
3. Click Remove in the Actions sidebar.

If the IIS static file handler is enabled and the ASP.NET Core Module is configured incorrectly, static files are served. This
happens, for example, if the web.config file isn't deployed.

Place code files (including .cs and .cshtml) outside of the app project's web root. A logical separation is

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions.serveunknownfiletypes#Microsoft_AspNetCore_Builder_StaticFileOptions_ServeUnknownFileTypes

Additional resources

therefore created between the app's client-side content and server-based code. This prevents server-side
code from being leaked.

Middleware
Introduction to ASP.NET Core

Routing in ASP.NET Core
6/12/2018 • 19 minutes to read • Edit Online

IMPORTANTIMPORTANT

Routing basics

URL matchingURL matching

By Ryan Nowak, Steve Smith, and Rick Anderson

Routing functionality is responsible for mapping an incoming request to a route handler. Routes are defined in
the ASP.NET app and configured when the app starts up. A route can optionally extract values from the URL
contained in the request, and these values can then be used for request processing. Using route information
from the ASP.NET app, the routing functionality is also able to generate URLs that map to route handlers.
Therefore, routing can find a route handler based on a URL, or the URL corresponding to a given route
handler based on route handler information.

This document covers the low level ASP.NET Core routing. For ASP.NET Core MVC routing, see Route to controller actions

View or download sample code (how to download)

Routing uses routes (implementations of IRouter) to:

map incoming requests to route handlers

generate URLs used in responses

Generally, an app has a single collection of routes. When a request arrives, the route collection is processed in
order. The incoming request looks for a route that matches the request URL by calling the RouteAsync method
on each available route in the route collection. By contrast, a response can use routing to generate URLs (for
example, for redirection or links) based on route information, and thus avoid having to hard-code URLs, which
helps maintainability.

Routing is connected to the middleware pipeline by the RouterMiddleware class. ASP.NET Core MVC adds
routing to the middleware pipeline as part of its configuration. To learn about using routing as a standalone
component, see Using routing middleware.

URL matching is the process by which routing dispatches an incoming request to a handler. This process is
generally based on data in the URL path, but can be extended to consider any data in the request. The ability to
dispatch requests to separate handlers is key to scaling the size and complexity of an application.

Incoming requests enter the RouterMiddleware , which calls the RouteAsync method on each route in sequence.
The IRouter instance chooses whether to handle the request by setting the RouteContext.Handler to a non-
null RequestDelegate . If a route sets a handler for the request, route processing stops and the handler will be
invoked to process the request. If all routes are tried and no handler is found for the request, the middleware
calls next and the next middleware in the request pipeline is invoked.

The primary input to RouteAsync is the RouteContext.HttpContext associated with the current request. The
RouteContext.Handler and RouteContext.RouteData are outputs that will be set after a route matches.

A match during RouteAsync will also set the properties of the RouteContext.RouteData to appropriate values
based on the request processing done so far. If a route matches a request, the RouteContext.RouteData will

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/routing.md
https://github.com/rynowak
https://ardalis.com/
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/routing/sample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.routing.irouter

URL generationURL generation

Creating routesCreating routes

contain important state information about the result.

RouteData.Values is a dictionary of route values produced from the route. These values are usually determined
by tokenizing the URL, and can be used to accept user input, or to make further dispatching decisions inside
the application.

RouteData.DataTokens is a property bag of additional data related to the matched route. DataTokens are
provided to support associating state data with each route so the application can make decisions later based on
which route matched. These values are developer-defined and do not affect the behavior of routing in any way.
Additionally, values stashed in data tokens can be of any type, in contrast to route values, which must be easily
convertible to and from strings.

RouteData.Routers is a list of the routes that took part in successfully matching the request. Routes can be
nested inside one another, and the Routers property reflects the path through the logical tree of routes that
resulted in a match. Generally the first item in Routers is the route collection, and should be used for URL
generation. The last item in Routers is the route handler that matched.

URL generation is the process by which routing can create a URL path based on a set of route values. This
allows for a logical separation between your handlers and the URLs that access them.

URL generation follows a similar iterative process, but starts with user or framework code calling into the
GetVirtualPath method of the route collection. Each route will then have its GetVirtualPath method called in

sequence until a non-null VirtualPathData is returned.

The primary inputs to GetVirtualPath are:

VirtualPathContext.HttpContext

VirtualPathContext.Values

VirtualPathContext.AmbientValues

Routes primarily use the route values provided by the Values and AmbientValues to decide where it's possible
to generate a URL and what values to include. The AmbientValues are the set of route values that were
produced from matching the current request with the routing system. In contrast, Values are the route values
that specify how to generate the desired URL for the current operation. The HttpContext is provided in case a
route needs to get services or additional data associated with the current context.

Tip: Think of Values as being a set of overrides for the AmbientValues . URL generation tries to reuse route
values from the current request to make it easy to generate URLs for links using the same route or route
values.

The output of GetVirtualPath is a VirtualPathData . VirtualPathData is a parallel of RouteData ; it contains the
VirtualPath for the output URL and some additional properties that should be set by the route.

The VirtualPathData.VirtualPath property contains the virtual path produced by the route. Depending on
your needs you may need to process the path further. For instance, if you want to render the generated URL in
HTML you need to prepend the base path of the application.

The VirtualPathData.Router is a reference to the route that successfully generated the URL.

The VirtualPathData.DataTokens properties is a dictionary of additional data related to the route that generated
the URL. This is the parallel of RouteData.DataTokens .

Routing provides the Route class as the standard implementation of IRouter . Route uses the route template

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id:int}");

syntax to define patterns that will match against the URL path when RouteAsync is called. Route will use the
same route template to generate a URL when GetVirtualPath is called.

Most applications will create routes by calling MapRoute or one of the similar extension methods defined on
IRouteBuilder . All of these methods will create an instance of Route and add it to the route collection.

Note: MapRoute doesn't take a route handler parameter - it only adds routes that will be handled by the
DefaultHandler . Since the default handler is an IRouter , it may decide not to handle the request. For example,

ASP.NET MVC is typically configured as a default handler that only handles requests that match an available
controller and action. To learn more about routing to MVC, see Route to controller actions.

This is an example of a MapRoute call used by a typical ASP.NET MVC route definition:

This template will match a URL path like /Products/Details/17 and extract the route values
{ controller = Products, action = Details, id = 17 } . The route values are determined by splitting the URL

path into segments, and matching each segment with the route parameter name in the route template. Route
parameters are named. They're defined by enclosing the parameter name in braces { } .

The template above could also match the URL path / and would produce the values
{ controller = Home, action = Index } . This happens because the {controller} and {action} route

parameters have default values, and the id route parameter is optional. An equals = sign followed by a value
after the route parameter name defines a default value for the parameter. A question mark ? after the route
parameter name defines the parameter as optional. Route parameters with a default value always produce a
route value when the route matches - optional parameters won't produce a route value if there was no
corresponding URL path segment.

See route-template-reference for a thorough description of route template features and syntax.

This example includes a route constraint:

This template will match a URL path like /Products/Details/17 , but not /Products/Details/Apples . The route
parameter definition {id:int} defines a route constraint for the id route parameter. Route constraints
implement IRouteConstraint and inspect route values to verify them. In this example the route value id must
be convertible to an integer. See route-constraint-reference for a more detailed explanation of route constraints
that are provided by the framework.

Additional overloads of MapRoute accept values for constraints , dataTokens , and defaults . These additional
parameters of MapRoute are defined as type object . The typical usage of these parameters is to pass an
anonymously typed object, where the property names of the anonymous type match route parameter names.

The following two examples create equivalent routes:

routes.MapRoute(
 name: "default_route",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" });

routes.MapRoute(
 name: "default_route",
 template: "{controller=Home}/{action=Index}/{id?}");

routes.MapRoute(
 name: "blog",
 template: "Blog/{*article}",
 defaults: new { controller = "Blog", action = "ReadArticle" });

routes.MapRoute(
 name: "us_english_products",
 template: "en-US/Products/{id}",
 defaults: new { controller = "Products", action = "Details" },
 constraints: new { id = new IntRouteConstraint() },
 dataTokens: new { locale = "en-US" });

URL generationURL generation

Tip: The inline syntax for defining constraints and defaults can be more convenient for simple routes. However,
there are features such as data tokens which are not supported by inline syntax.

This example demonstrates a few more features:

This template will match a URL path like /Blog/All-About-Routing/Introduction and will extract the values
{ controller = Blog, action = ReadArticle, article = All-About-Routing/Introduction } . The default route

values for controller and action are produced by the route even though there are no corresponding route
parameters in the template. Default values can be specified in the route template. The article route
parameter is defined as a catch-all by the appearance of an asterisk * before the route parameter name.
Catch-all route parameters capture the remainder of the URL path, and can also match the empty string.

This example adds route constraints and data tokens:

This template will match a URL path like /Products/5 and will extract the values
{ controller = Products, action = Details, id = 5 } and the data tokens { locale = en-US } .

The Route class can also perform URL generation by combining a set of route values with its route template.
This is logically the reverse process of matching the URL path.

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

Using Routing Middleware

public void ConfigureServices(IServiceCollection services)
{
 services.AddRouting();
}

Tip: To better understand URL generation, imagine what URL you want to generate and then think about how
a route template would match that URL. What values would be produced? This is the rough equivalent of how
URL generation works in the Route class.

This example uses a basic ASP.NET MVC style route:

With the route values { controller = Products, action = List } , this route will generate the URL
/Products/List . The route values are substituted for the corresponding route parameters to form the URL

path. Since id is an optional route parameter, it's no problem that it doesn't have a value.

With the route values { controller = Home, action = Index } , this route will generate the URL / . The route
values that were provided match the default values so the segments corresponding to those values can be
safely omitted. Note that both URLs generated would round-trip with this route definition and produce the
same route values that were used to generate the URL.

Tip: An app using ASP.NET MVC should use UrlHelper to generate URLs instead of calling into routing
directly.

For more details about the URL generation process, see url-generation-reference.

Add the NuGet package "Microsoft.AspNetCore.Routing".

Add routing to the service container in Startup.cs:

Routes must be configured in the Configure method in the Startup class. The sample below uses these APIs:

RouteBuilder

Build

MapGet Matches only HTTP GET requests
UseRouter

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
 var trackPackageRouteHandler = new RouteHandler(context =>
 {
 var routeValues = context.GetRouteData().Values;
 return context.Response.WriteAsync(
 $"Hello! Route values: {string.Join(", ", routeValues)}");
 });

 var routeBuilder = new RouteBuilder(app, trackPackageRouteHandler);

 routeBuilder.MapRoute(
 "Track Package Route",
 "package/{operation:regex(^(track|create|detonate)$)}/{id:int}");

 routeBuilder.MapGet("hello/{name}", context =>
 {
 var name = context.GetRouteValue("name");
 // This is the route handler when HTTP GET "hello/<anything>" matches
 // To match HTTP GET "hello/<anything>/<anything>,
 // use routeBuilder.MapGet("hello/{*name}"
 return context.Response.WriteAsync($"Hi, {name}!");
 });

 var routes = routeBuilder.Build();
 app.UseRouter(routes);
}

URI RESPONSE

/package/create/3 Hello! Route values: [operation, create], [id, 3]

/package/track/-3 Hello! Route values: [operation, track], [id, -3]

/package/track/-3/ Hello! Route values: [operation, track], [id, -3]

/package/track/ <Fall through, no match>

GET /hello/Joe Hi, Joe!

POST /hello/Joe <Fall through, matches HTTP GET only>

GET /hello/Joe/Smith <Fall through, no match>

The table below shows the responses with the given URIs.

If you are configuring a single route, call app.UseRouter passing in an IRouter instance. You won't need to call
RouteBuilder .

The framework provides a set of extension methods for creating routes such as:

MapRoute

MapGet

MapPost

MapPut

MapDelete

MapVerb

 Route Template Reference

ROUTE TEMPLATE EXAMPLE MATCHING URL NOTES

hello /hello Only matches the single path /hello

Some of these methods such as MapGet require a RequestDelegate to be provided. The RequestDelegate will
be used as the route handler when the route matches. Other methods in this family allow configuring a
middleware pipeline which will be used as the route handler. If the Map method doesn't accept a handler, such
as MapRoute , then it will use the DefaultHandler .

The Map[Verb] methods use constraints to limit the route to the HTTP Verb in the method name. For example,
see MapGet and MapVerb.

Tokens within curly braces ({ }) define route parameters which will be bound if the route is matched. You can
define more than one route parameter in a route segment, but they must be separated by a literal value. For
example {controller=Home}{action=Index} wouldn't be a valid route, since there's no literal value between
{controller} and {action} . These route parameters must have a name, and may have additional attributes

specified.

Literal text other than route parameters (for example, {id}) and the path separator / must match the text in
the URL. Text matching is case-insensitive and based on the decoded representation of the URLs path. To
match the literal route parameter delimiter { or } , escape it by repeating the character ({{ or }}).

URL patterns that attempt to capture a filename with an optional file extension have additional considerations.
For example, using the template files/{filename}.{ext?} - When both filename and ext exist, both values
will be populated. If only filename exists in the URL, the route matches because the trailing period . is
optional. The following URLs would match this route:

/files/myFile.txt

/files/myFile

You can use the * character as a prefix to a route parameter to bind to the rest of the URI - this is called a
catch-all parameter. For example, blog/{*slug} would match any URI that started with /blog and had any
value following it (which would be assigned to the slug route value). Catch-all parameters can also match the
empty string.

Route parameters may have default values, designated by specifying the default after the parameter name,
separated by an = . For example, {controller=Home} would define Home as the default value for controller .
The default value is used if no value is present in the URL for the parameter. In addition to default values, route
parameters may be optional (specified by appending a ? to the end of the parameter name, as in id?). The
difference between optional and "has default" is that a route parameter with a default value always produces a
value; an optional parameter has a value only when one is provided.

Route parameters may also have constraints, which must match the route value bound from the URL. Adding a
colon : and constraint name after the route parameter name specifies an inline constraint on a route
parameter. If the constraint requires arguments those are provided enclosed in parentheses () after the
constraint name. Multiple inline constraints can be specified by appending another colon : and constraint
name. The constraint name is passed to the IInlineConstraintResolver service to create an instance of
IRouteConstraint to use in URL processing. For example, the route template blog/{article:minlength(10)}

specifies the minlength constraint with the argument 10 . For more description route constraints, and a listing
of the constraints provided by the framework, see route-constraint-reference.

The following table demonstrates some route templates and their behavior.

https://github.com/aspnet/Routing/blob/1.0.0/src/Microsoft.AspNetCore.Routing/RequestDelegateRouteBuilderExtensions.cs#L85-L88
https://github.com/aspnet/Routing/blob/1.0.0/src/Microsoft.AspNetCore.Routing/RequestDelegateRouteBuilderExtensions.cs#L156-L180

{Page=Home} / Matches and sets Page to Home

{Page=Home} /Contact Matches and sets Page to Contact

{controller}/{action}/{id?} /Products/List Maps to Products controller and
List action

{controller}/{action}/{id?} /Products/Details/123 Maps to Products controller and
Details action. id set to 123

{controller=Home}/{action=Index}/{id?} / Maps to Home controller and Index

method; id is ignored.

ROUTE TEMPLATE EXAMPLE MATCHING URL NOTES

Route Constraint Reference

WARNINGWARNING

CONSTRAINT EXAMPLE EXAMPLE MATCHES NOTES

int {id:int} 123456789 , -123456789 Matches any integer

bool {active:bool} true , FALSE Matches true or false

(case-insensitive)

datetime {dob:datetime} 2016-12-31 ,
2016-12-31 7:32pm

Matches a valid DateTime

value (in the invariant
culture - see warning)

decimal {price:decimal} 49.99 , -1,000.01 Matches a valid decimal

value (in the invariant
culture - see warning)

Using a template is generally the simplest approach to routing. Constraints and defaults can also be specified
outside the route template.

Tip: Enable Logging to see how the built in routing implementations, such as Route , match requests.

Route constraints execute when a Route has matched the syntax of the incoming URL and tokenized the URL
path into route values. Route constraints generally inspect the route value associated via the route template
and make a simple yes/no decision about whether or not the value is acceptable. Some route constraints use
data outside the route value to consider whether the request can be routed. For example, the
HttpMethodRouteConstraint can accept or reject a request based on its HTTP verb.

Avoid using constraints for input validation, because doing so means that invalid input will result in a 404 (Not Found)
instead of a 400 with an appropriate error message. Route constraints should be used to disambiguate between similar
routes, not to validate the inputs for a particular route.

The following table demonstrates some route constraints and their expected behavior.

double {weight:double} 1.234 , -1,001.01e8 Matches a valid double

value (in the invariant
culture - see warning)

float {weight:float} 1.234 , -1,001.01e8 Matches a valid float

value (in the invariant
culture - see warning)

guid {id:guid} CD2C1638-1638-72D5-
1638-DEADBEEF1638

,
{CD2C1638-1638-72D5-
1638-DEADBEEF1638}

Matches a valid Guid

value

long {ticks:long} 123456789 , -123456789 Matches a valid long

value

minlength(value) {username:minlength(4)} Rick String must be at least 4
characters

maxlength(value) {filename:maxlength(8)} Richard String must be no more
than 8 characters

length(length) {filename:length(12)} somefile.txt String must be exactly 12
characters long

length(min,max) {filename:length(8,16)} somefile.txt String must be at least 8
and no more than 16
characters long

min(value) {age:min(18)} 19 Integer value must be at
least 18

max(value) {age:max(120)} 91 Integer value must be no
more than 120

range(min,max) {age:range(18,120)} 91 Integer value must be at
least 18 but no more than
120

alpha {name:alpha} Rick String must consist of one
or more alphabetical
characters (a - z , case-
insensitive)

regex(expression) {ssn:regex(^\\d{{3}}-
\\d{{2}}-\\d{{4}}$)}

123-45-6789 String must match the
regular expression (see tips
about defining a regular
expression)

required {name:required} Rick Used to enforce that a non-
parameter value is present
during URL generation

CONSTRAINT EXAMPLE EXAMPLE MATCHES NOTES

WARNINGWARNING

Regular expressions

EXPRESSION NOTE

^\d{3}-\d{2}-\d{4}$ Regular expression

^\\d{{3}}-\\d{{2}}-\\d{{4}}$ Escaped

^[a-z]{2}$ Regular expression

^[[a-z]]{{2}}$ Escaped

EXPRESSION STRING MATCH COMMENT

[a-z]{2} hello yes substring matches

[a-z]{2} 123abc456 yes substring matches

[a-z]{2} mz yes matches expression

[a-z]{2} MZ yes not case sensitive

^[a-z]{2}$ hello no see ^ and $ above

^[a-z]{2}$ 123abc456 no see ^ and $ above

Route constraints that verify the URL can be converted to a CLR type (such as int or DateTime) always use the
invariant culture - they assume the URL is non-localizable. The framework-provided route constraints don't modify the
values stored in route values. All route values parsed from the URL will be stored as strings. For example, the Float route
constraint will attempt to convert the route value to a float, but the converted value is used only to verify it can be
converted to a float.

The ASP.NET Core framework adds
RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.CultureInvariant to the regular expression

constructor. See RegexOptions Enumeration for a description of these members.

Regular expressions use delimiters and tokens similar to those used by Routing and the C# language. Regular
expression tokens must be escaped. For example, to use the regular expression ^\d{3}-\d{2}-\d{4}$ in
Routing, it needs to have the \ characters typed in as \\ in the C# source file to escape the \ string escape
character (unless using verbatim string literals. The { , } , '[' and ']' characters need to be escaped by
doubling them to escape the Routing parameter delimiter characters. The table below shows a regular
expression and the escaped version.

Regular expressions used in routing will often start with the ^ character (match starting position of the string)
and end with the $ character (match ending position of the string). The ^ and $ characters ensure that the
regular expression match the entire route parameter value. Without the ^ and $ characters the regular
expression will match any sub-string within the string, which is often not what you want. The table below
shows some examples and explains why they match or fail to match.

Refer to .NET Framework Regular Expressions for more information on regular expression syntax.

https://github.com/aspnet/Routing/blob/1.0.0/src/Microsoft.AspNetCore.Routing/Constraints/FloatRouteConstraint.cs#L44-L60
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regexoptions
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/dotnet/standard/base-types/regular-expression-language-quick-reference

 URL Generation Reference

app.Run(async (context) =>
{
 var dictionary = new RouteValueDictionary
 {
 { "operation", "create" },
 { "id", 123}
 };

 var vpc = new VirtualPathContext(context, null, dictionary, "Track Package Route");
 var path = routes.GetVirtualPath(vpc).VirtualPath;

 context.Response.ContentType = "text/html";
 await context.Response.WriteAsync("Menu<hr/>");
 await context.Response.WriteAsync($"Create Package 123
");
});

AMBIENT VALUES EXPLICIT VALUES RESULT

controller="Home" action="About" /Home/About

controller="Home" controller="Order",action="About" /Order/About

controller="Home",color="Red" action="About" /Home/About

controller="Home" action="About",color="Red" /Home/About?color=Red

To constrain a parameter to a known set of possible values, use a regular expression. For example
{action:regex(^(list|get|create)$)} only matches the action route value to list , get , or create . If

passed into the constraints dictionary, the string "^(list|get|create)$" would be equivalent. Constraints that are
passed in the constraints dictionary (not inline within a template) that don't match one of the known
constraints are also treated as regular expressions.

The example below shows how to generate a link to a route given a dictionary of route values and a
RouteCollection .

The VirtualPath generated at the end of the sample above is /package/create/123 .

The second parameter to the VirtualPathContext constructor is a collection of ambient values. Ambient values
provide convenience by limiting the number of values a developer must specify within a certain request
context. The current route values of the current request are considered ambient values for link generation. For
example, in an ASP.NET MVC app if you are in the About action of the HomeController , you don't need to
specify the controller route value to link to the Index action (the ambient value of Home will be used).

Ambient values that don't match a parameter are ignored, and ambient values are also ignored when an
explicitly-provided value overrides it, going from left to right in the URL.

Values that are explicitly provided but which don't match anything are added to the query string. The following
table shows the result when using the route template {controller}/{action}/{id?} .

If a route has a default value that doesn't correspond to a parameter and that value is explicitly provided, it
must match the default value. For example:

routes.MapRoute("blog_route", "blog/{*slug}",
 defaults: new { controller = "Blog", action = "ReadPost" });

Link generation would only generate a link for this route when the matching values for controller and action
are provided.

URL Rewriting Middleware in ASP.NET Core
6/15/2018 • 16 minutes to read • Edit Online

NOTENOTE

URL redirect and URL rewrite

By Luke Latham and Mikael Mengistu

View or download sample code (how to download)

URL rewriting is the act of modifying request URLs based on one or more predefined rules. URL rewriting
creates an abstraction between resource locations and their addresses so that the locations and addresses are not
tightly linked. There are several scenarios where URL rewriting is valuable:

Moving or replacing server resources temporarily or permanently while maintaining stable locators for those
resources.
Splitting request processing across different apps or across areas of one app.
Removing, adding, or reorganizing URL segments on incoming requests.
Optimizing public URLs for Search Engine Optimization (SEO).
Permitting the use of friendly public URLs to help people predict the content they will find by following a link.
Redirecting insecure requests to secure endpoints.
Preventing image hotlinking.

You can define rules for changing the URL in several ways, including Regex, Apache mod_rewrite module rules,
IIS Rewrite Module rules, and using custom rule logic. This document introduces URL rewriting with instructions
on how to use URL Rewriting Middleware in ASP.NET Core apps.

URL rewriting can reduce the performance of an app. Where feasible, you should limit the number and complexity of rules.

The difference in wording between URL redirect and URL rewrite may seem subtle at first but has important
implications for providing resources to clients. ASP.NET Core's URL Rewriting Middleware is capable of meeting
the need for both.

A URL redirect is a client-side operation, where the client is instructed to access a resource at another address.
This requires a round-trip to the server. The redirect URL returned to the client appears in the browser's address
bar when the client makes a new request for the resource.

If /resource is redirected to /different-resource , the client requests /resource . The server responds that the
client should obtain the resource at /different-resource with a status code indicating that the redirect is either
temporary or permanent. The client executes a new request for the resource at the redirect URL.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/url-rewriting.md
https://github.com/guardrex
https://github.com/mikaelm12
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/url-rewriting/sample/

URL rewriting sample app

When to use URL Rewriting Middleware

Package

Extension and options

When redirecting requests to a different URL, you indicate whether the redirect is permanent or temporary. The
301 (Moved Permanently) status code is used where the resource has a new, permanent URL and you wish to
instruct the client that all future requests for the resource should use the new URL. The client may cache the
response when a 301 status code is received. The 302 (Found) status code is used where the redirection is
temporary or generally subject to change, such that the client shouldn't store and reuse the redirect URL in the
future. For more information, see RFC 2616: Status Code Definitions.

A URL rewrite is a server-side operation to provide a resource from a different resource address. Rewriting a
URL doesn't require a round-trip to the server. The rewritten URL isn't returned to the client and won't appear in
the browser's address bar. When /resource is rewritten to /different-resource , the client requests /resource ,
and the server internally fetches the resource at /different-resource . Although the client might be able to
retrieve the resource at the rewritten URL, the client won't be informed that the resource exists at the rewritten
URL when it makes its request and receives the response.

You can explore the features of the URL Rewriting Middleware with the URL rewriting sample app. The app
applies rewrite and redirect rules and shows the rewritten or redirected URL.

Use URL Rewriting Middleware when you are unable to use the URL Rewrite module with IIS on Windows
Server, the Apache mod_rewrite module on Apache Server, URL rewriting on Nginx, or your app is hosted on
HTTP.sys server (formerly called WebListener). The main reasons to use the server-based URL rewriting
technologies in IIS, Apache, or Nginx are that the middleware doesn't support the full features of these modules
and the performance of the middleware probably won't match that of the modules. However, there are some
features of the server modules that don't work with ASP.NET Core projects, such as the IsFile and IsDirectory

constraints of the IIS Rewrite module. In these scenarios, use the middleware instead.

To include the middleware in your project, add a reference to the Microsoft.AspNetCore.Rewrite package. This
feature is available for apps that target ASP.NET Core 1.1 or later.

Establish your URL rewrite and redirect rules by creating an instance of the RewriteOptions class with extension

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/url-rewriting/sample/
https://www.iis.net/downloads/microsoft/url-rewrite
https://httpd.apache.org/docs/2.4/rewrite/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener
https://www.nuget.org/packages/Microsoft.AspNetCore.Rewrite/

public void Configure(IApplicationBuilder app)
{
 using (StreamReader apacheModRewriteStreamReader =
 File.OpenText("ApacheModRewrite.txt"))
 using (StreamReader iisUrlRewriteStreamReader =
 File.OpenText("IISUrlRewrite.xml"))
 {
 var options = new RewriteOptions()
 .AddRedirect("redirect-rule/(.*)", "redirected/$1")
 .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2",
 skipRemainingRules: true)
 .AddApacheModRewrite(apacheModRewriteStreamReader)
 .AddIISUrlRewrite(iisUrlRewriteStreamReader)
 .Add(MethodRules.RedirectXMLRequests)
 .Add(new RedirectImageRequests(".png", "/png-images"))
 .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

 app.UseRewriter(options);
 }

 app.Run(context => context.Response.WriteAsync(
 $"Rewritten or Redirected Url: " +
 $"{context.Request.Path + context.Request.QueryString}"));
}

URL redirectURL redirect

methods for each of your rules. Chain multiple rules in the order that you would like them processed. The
RewriteOptions are passed into the URL Rewriting Middleware as it's added to the request pipeline with
app.UseRewriter(options); .

ASP.NET Core 2.x
ASP.NET Core 1.x

Use AddRedirect to redirect requests. The first parameter contains your regex for matching on the path of the
incoming URL. The second parameter is the replacement string. The third parameter, if present, specifies the
status code. If you don't specify the status code, it defaults to 302 (Found), which indicates that the resource is
temporarily moved or replaced.

ASP.NET Core 2.x
ASP.NET Core 1.x

public void Configure(IApplicationBuilder app)
{
 using (StreamReader apacheModRewriteStreamReader =
 File.OpenText("ApacheModRewrite.txt"))
 using (StreamReader iisUrlRewriteStreamReader =
 File.OpenText("IISUrlRewrite.xml"))
 {
 var options = new RewriteOptions()
 .AddRedirect("redirect-rule/(.*)", "redirected/$1")
 .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2",
 skipRemainingRules: true)
 .AddApacheModRewrite(apacheModRewriteStreamReader)
 .AddIISUrlRewrite(iisUrlRewriteStreamReader)
 .Add(MethodRules.RedirectXMLRequests)
 .Add(new RedirectImageRequests(".png", "/png-images"))
 .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

 app.UseRewriter(options);
 }

 app.Run(context => context.Response.WriteAsync(
 $"Rewritten or Redirected Url: " +
 $"{context.Request.Path + context.Request.QueryString}"));
}

WARNINGWARNING

In a browser with developer tools enabled, make a request to the sample app with the path
/redirect-rule/1234/5678 . The regex matches the request path on redirect-rule/(.*) , and the path is replaced

with /redirected/1234/5678 . The redirect URL is sent back to the client with a 302 (Found) status code. The
browser makes a new request at the redirect URL, which appears in the browser's address bar. Since no rules in
the sample app match on the redirect URL, the second request receives a 200 (OK) response from the app and
the body of the response shows the redirect URL. A roundtrip is made to the server when a URL is redirected.

Be cautious when establishing your redirect rules. Your redirect rules are evaluated on each request to the app, including
after a redirect. It's easy to accidently create a loop of infinite redirects.

Original Request: /redirect-rule/1234/5678

The part of the expression contained within parentheses is called a capture group. The dot (.) of the expression
means match any character. The asterisk (*) indicates match the preceding character zero or more times.
Therefore, the last two path segments of the URL, 1234/5678 , are captured by capture group (.*) . Any value
you provide in the request URL after redirect-rule/ is captured by this single capture group.

In the replacement string, captured groups are injected into the string with the dollar sign ($) followed by the

URL redirect to a secure endpointURL redirect to a secure endpoint

public void Configure(IApplicationBuilder app)
{
 var options = new RewriteOptions()
 .AddRedirectToHttps(301, 5001);

 app.UseRewriter(options);
}

public void Configure(IApplicationBuilder app)
{
 var options = new RewriteOptions()
 .AddRedirectToHttpsPermanent();

 app.UseRewriter(options);
}

NOTENOTE

sequence number of the capture. The first capture group value is obtained with $1 , the second with $2 , and
they continue in sequence for the capture groups in your regex. There's only one captured group in the redirect
rule regex in the sample app, so there's only one injected group in the replacement string, which is $1 . When the
rule is applied, the URL becomes /redirected/1234/5678 .

Use AddRedirectToHttps to redirect HTTP requests to the same host and path using HTTPS (https://). If the
status code isn't supplied, the middleware defaults to 302 (Found). If the port isn't supplied, the middleware
defaults to null , which means the protocol changes to https:// and the client accesses the resource on port
443. The example shows how to set the status code to 301 (Moved Permanently) and change the port to 5001.

Use AddRedirectToHttpsPermanent to redirect insecure requests to the same host and path with secure HTTPS
protocol (https:// on port 443). The middleware sets the status code to 301 (Moved Permanently).

When redirecting to HTTPS without the requirement for additional redirect rules, we recommend using HTTPS Redirection
Middleware. For more information, see the Enforce HTTPS topic.

The sample app is capable of demonstrating how to use AddRedirectToHttps or AddRedirectToHttpsPermanent .
Add the extension method to the RewriteOptions . Make an insecure request to the app at any URL. Dismiss the
browser security warning that the self-signed certificate is untrusted or create an exception to trust the certificate.

Original Request using AddRedirectToHttps(301, 5001) : http://localhost:5000/secure

Original Request using AddRedirectToHttpsPermanent : http://localhost:5000/secure

URL rewriteURL rewrite

public void Configure(IApplicationBuilder app)
{
 using (StreamReader apacheModRewriteStreamReader =
 File.OpenText("ApacheModRewrite.txt"))
 using (StreamReader iisUrlRewriteStreamReader =
 File.OpenText("IISUrlRewrite.xml"))
 {
 var options = new RewriteOptions()
 .AddRedirect("redirect-rule/(.*)", "redirected/$1")
 .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2",
 skipRemainingRules: true)
 .AddApacheModRewrite(apacheModRewriteStreamReader)
 .AddIISUrlRewrite(iisUrlRewriteStreamReader)
 .Add(MethodRules.RedirectXMLRequests)
 .Add(new RedirectImageRequests(".png", "/png-images"))
 .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

 app.UseRewriter(options);
 }

 app.Run(context => context.Response.WriteAsync(
 $"Rewritten or Redirected Url: " +
 $"{context.Request.Path + context.Request.QueryString}"));
}

Use AddRewrite to create a rule for rewriting URLs. The first parameter contains your regex for matching on the
incoming URL path. The second parameter is the replacement string. The third parameter,
skipRemainingRules: {true|false} , indicates to the middleware whether or not to skip additional rewrite rules if

the current rule is applied.

ASP.NET Core 2.x
ASP.NET Core 1.x

Original Request: /rewrite-rule/1234/5678

PATH MATCH

/redirect-rule/1234/5678 Yes

/my-cool-redirect-rule/1234/5678 Yes

/anotherredirect-rule/1234/5678 Yes

PATH MATCH

/rewrite-rule/1234/5678 Yes

/my-cool-rewrite-rule/1234/5678 No

/anotherrewrite-rule/1234/5678 No

The first thing you notice in the regex is the carat (^) at the beginning of the expression. This means that
matching starts at the beginning of the URL path.

In the earlier example with the redirect rule, redirect-rule/(.*) , there's no carat at the start of the regex;
therefore, any characters may precede redirect-rule/ in the path for a successful match.

The rewrite rule, ^rewrite-rule/(\d+)/(\d+) , only matches paths if they start with rewrite-rule/ . Notice the
difference in matching between the rewrite rule below and the redirect rule above.

Following the ^rewrite-rule/ portion of the expression, there are two capture groups, (\d+)/(\d+) . The \d

signifies match a digit (number). The plus sign (+) means match one or more of the preceding character.
Therefore, the URL must contain a number followed by a forward-slash followed by another number. These
capture groups are injected into the rewritten URL as $1 and $2 . The rewrite rule replacement string places the
captured groups into the querystring. The requested path of /rewrite-rule/1234/5678 is rewritten to obtain the
resource at /rewritten?var1=1234&var2=5678 . If a querystring is present on the original request, it's preserved
when the URL is rewritten.

There's no roundtrip to the server to obtain the resource. If the resource exists, it's fetched and returned to the
client with a 200 (OK) status code. Because the client isn't redirected, the URL in the browser address bar doesn't
change. As far as the client is concerned, the URL rewrite operation never occurred.

NOTENOTE

Apache mod_rewriteApache mod_rewrite

public void Configure(IApplicationBuilder app)
{
 using (StreamReader apacheModRewriteStreamReader =
 File.OpenText("ApacheModRewrite.txt"))
 using (StreamReader iisUrlRewriteStreamReader =
 File.OpenText("IISUrlRewrite.xml"))
 {
 var options = new RewriteOptions()
 .AddRedirect("redirect-rule/(.*)", "redirected/$1")
 .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2",
 skipRemainingRules: true)
 .AddApacheModRewrite(apacheModRewriteStreamReader)
 .AddIISUrlRewrite(iisUrlRewriteStreamReader)
 .Add(MethodRules.RedirectXMLRequests)
 .Add(new RedirectImageRequests(".png", "/png-images"))
 .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

 app.UseRewriter(options);
 }

 app.Run(context => context.Response.WriteAsync(
 $"Rewritten or Redirected Url: " +
 $"{context.Request.Path + context.Request.QueryString}"));
}

Rewrite path with additional sub directory
RewriteRule ^/apache-mod-rules-redirect/(.*) /redirected?id=$1 [L,R=302]

Use skipRemainingRules: true whenever possible, because matching rules is an expensive process and reduces app
response time. For the fastest app response:

Order your rewrite rules from the most frequently matched rule to the least frequently matched rule.
Skip the processing of the remaining rules when a match occurs and no additional rule processing is required.

Apply Apache mod_rewrite rules with AddApacheModRewrite . Make sure that the rules file is deployed with the
app. For more information and examples of mod_rewrite rules, see Apache mod_rewrite.

ASP.NET Core 2.x
ASP.NET Core 1.x

A StreamReader is used to read the rules from the ApacheModRewrite.txt rules file.

The sample app redirects requests from /apache-mod-rules-redirect/(.*) to /redirected?id=$1 . The response
status code is 302 (Found).

Original Request: /apache-mod-rules-redirect/1234

https://httpd.apache.org/docs/2.4/rewrite/

Su p p o r t e d se r v e r v a r i a b l e sSu p p o r t e d se r v e r v a r i a b l e s

I IS URL Rewrite Module rulesIIS URL Rewrite Module rules

The middleware supports the following Apache mod_rewrite server variables:

CONN_REMOTE_ADDR
HTTP_ACCEPT
HTTP_CONNECTION
HTTP_COOKIE
HTTP_FORWARDED
HTTP_HOST
HTTP_REFERER
HTTP_USER_AGENT
HTTPS
IPV6
QUERY_STRING
REMOTE_ADDR
REMOTE_PORT
REQUEST_FILENAME
REQUEST_METHOD
REQUEST_SCHEME
REQUEST_URI
SCRIPT_FILENAME
SERVER_ADDR
SERVER_PORT
SERVER_PROTOCOL
TIME
TIME_DAY
TIME_HOUR
TIME_MIN
TIME_MON
TIME_SEC
TIME_WDAY
TIME_YEAR

To use rules that apply to the IIS URL Rewrite Module, use AddIISUrlRewrite . Make sure that the rules file is
deployed with the app. Don't direct the middleware to use your web.config file when running on Windows Server
IIS. With IIS, these rules should be stored outside of your web.config to avoid conflicts with the IIS Rewrite
module. For more information and examples of IIS URL Rewrite Module rules, see Using Url Rewrite Module 2.0

https://docs.microsoft.com/iis/extensions/url-rewrite-module/using-url-rewrite-module-20

public void Configure(IApplicationBuilder app)
{
 using (StreamReader apacheModRewriteStreamReader =
 File.OpenText("ApacheModRewrite.txt"))
 using (StreamReader iisUrlRewriteStreamReader =
 File.OpenText("IISUrlRewrite.xml"))
 {
 var options = new RewriteOptions()
 .AddRedirect("redirect-rule/(.*)", "redirected/$1")
 .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2",
 skipRemainingRules: true)
 .AddApacheModRewrite(apacheModRewriteStreamReader)
 .AddIISUrlRewrite(iisUrlRewriteStreamReader)
 .Add(MethodRules.RedirectXMLRequests)
 .Add(new RedirectImageRequests(".png", "/png-images"))
 .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

 app.UseRewriter(options);
 }

 app.Run(context => context.Response.WriteAsync(
 $"Rewritten or Redirected Url: " +
 $"{context.Request.Path + context.Request.QueryString}"));
}

<rewrite>
 <rules>
 <rule name="Rewrite segment to id querystring" stopProcessing="true">
 <match url="^iis-rules-rewrite/(.*)$" />
 <action type="Rewrite" url="rewritten?id={R:1}" appendQueryString="false"/>
 </rule>
 </rules>
</rewrite>

and URL Rewrite Module Configuration Reference.

ASP.NET Core 2.x
ASP.NET Core 1.x

A StreamReader is used to read the rules from the IISUrlRewrite.xml rules file.

The sample app rewrites requests from /iis-rules-rewrite/(.*) to /rewritten?id=$1 . The response is sent to
the client with a 200 (OK) status code.

Original Request: /iis-rules-rewrite/1234

If you have an active IIS Rewrite Module with server-level rules configured that would impact your app in

https://docs.microsoft.com/iis/extensions/url-rewrite-module/url-rewrite-module-configuration-reference

Unsupported featuresUnsupported features

Supported server variablesSupported server variables

NOTENOTE

PhysicalFileProvider fileProvider = new PhysicalFileProvider(Directory.GetCurrentDirectory());

Method-based ruleMethod-based rule

CONTEX T.RESULT ACTION

RuleResult.ContinueRules (default) Continue applying rules

undesirable ways, you can disable the IIS Rewrite Module for an app. For more information, see Disabling IIS
modules.

ASP.NET Core 2.x
ASP.NET Core 1.x

The middleware released with ASP.NET Core 2.x doesn't support the following IIS URL Rewrite Module features:

Outbound Rules
Custom Server Variables
Wildcards
LogRewrittenUrl

The middleware supports the following IIS URL Rewrite Module server variables:

CONTENT_LENGTH
CONTENT_TYPE
HTTP_ACCEPT
HTTP_CONNECTION
HTTP_COOKIE
HTTP_HOST
HTTP_REFERER
HTTP_URL
HTTP_USER_AGENT
HTTPS
LOCAL_ADDR
QUERY_STRING
REMOTE_ADDR
REMOTE_PORT
REQUEST_FILENAME
REQUEST_URI

You can also obtain an IFileProvider via a PhysicalFileProvider . This approach may provide greater flexibility for the
location of your rewrite rules files. Make sure that your rewrite rules files are deployed to the server at the path you
provide.

Use Add(Action<RewriteContext> applyRule) to implement your own rule logic in a method. The RewriteContext

exposes the HttpContext for use in your method. The context.Result determines how additional pipeline
processing is handled.

RuleResult.EndResponse Stop applying rules and send the response

RuleResult.SkipRemainingRules Stop applying rules and send the context to the next
middleware

CONTEX T.RESULT ACTION

public void Configure(IApplicationBuilder app)
{
 using (StreamReader apacheModRewriteStreamReader =
 File.OpenText("ApacheModRewrite.txt"))
 using (StreamReader iisUrlRewriteStreamReader =
 File.OpenText("IISUrlRewrite.xml"))
 {
 var options = new RewriteOptions()
 .AddRedirect("redirect-rule/(.*)", "redirected/$1")
 .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2",
 skipRemainingRules: true)
 .AddApacheModRewrite(apacheModRewriteStreamReader)
 .AddIISUrlRewrite(iisUrlRewriteStreamReader)
 .Add(MethodRules.RedirectXMLRequests)
 .Add(new RedirectImageRequests(".png", "/png-images"))
 .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

 app.UseRewriter(options);
 }

 app.Run(context => context.Response.WriteAsync(
 $"Rewritten or Redirected Url: " +
 $"{context.Request.Path + context.Request.QueryString}"));
}

public static void RedirectXMLRequests(RewriteContext context)
{
 var request = context.HttpContext.Request;

 // Because we're redirecting back to the same app, stop
 // processing if the request has already been redirected
 if (request.Path.StartsWithSegments(new PathString("/xmlfiles")))
 {
 return;
 }

 if (request.Path.Value.EndsWith(".xml", StringComparison.OrdinalIgnoreCase))
 {
 var response = context.HttpContext.Response;
 response.StatusCode = StatusCodes.Status301MovedPermanently;
 context.Result = RuleResult.EndResponse;
 response.Headers[HeaderNames.Location] =
 "/xmlfiles" + request.Path + request.QueryString;
 }
}

ASP.NET Core 2.x
ASP.NET Core 1.x

The sample app demonstrates a method that redirects requests for paths that end with .xml. If you make a
request for /file.xml , it's redirected to /xmlfiles/file.xml . The status code is set to 301 (Moved Permanently).
For a redirect, you must explicitly set the status code of the response; otherwise, a 200 (OK) status code is
returned and the redirect won't occur on the client.

IRule-based ruleIRule-based rule

public void Configure(IApplicationBuilder app)
{
 using (StreamReader apacheModRewriteStreamReader =
 File.OpenText("ApacheModRewrite.txt"))
 using (StreamReader iisUrlRewriteStreamReader =
 File.OpenText("IISUrlRewrite.xml"))
 {
 var options = new RewriteOptions()
 .AddRedirect("redirect-rule/(.*)", "redirected/$1")
 .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2",
 skipRemainingRules: true)
 .AddApacheModRewrite(apacheModRewriteStreamReader)
 .AddIISUrlRewrite(iisUrlRewriteStreamReader)
 .Add(MethodRules.RedirectXMLRequests)
 .Add(new RedirectImageRequests(".png", "/png-images"))
 .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

 app.UseRewriter(options);
 }

 app.Run(context => context.Response.WriteAsync(
 $"Rewritten or Redirected Url: " +
 $"{context.Request.Path + context.Request.QueryString}"));
}

Original Request: /file.xml

Use Add(IRule) to implement your own rule logic in a class that derives from IRule . Using an IRule provides
greater flexibility over using the method-based rule approach. Your derived class may include a constructor,
where you can pass in parameters for the ApplyRule method.

ASP.NET Core 2.x
ASP.NET Core 1.x

The values of the parameters in the sample app for the extension and the newPath are checked to meet several
conditions. The extension must contain a value, and the value must be .png, .jpg, or .gif. If the newPath isn't valid,
an ArgumentException is thrown. If you make a request for image.png, it's redirected to /png-images/image.png . If
you make a request for image.jpg, it's redirected to /jpg-images/image.jpg . The status code is set to 301 (Moved
Permanently), and the context.Result is set to stop processing rules and send the response.

public class RedirectImageRequests : IRule
{
 private readonly string _extension;
 private readonly PathString _newPath;

 public RedirectImageRequests(string extension, string newPath)
 {
 if (string.IsNullOrEmpty(extension))
 {
 throw new ArgumentException(nameof(extension));
 }

 if (!Regex.IsMatch(extension, @"^\.(png|jpg|gif)$"))
 {
 throw new ArgumentException("Invalid extension", nameof(extension));
 }

 if (!Regex.IsMatch(newPath, @"(/[A-Za-z0-9]+)+?"))
 {
 throw new ArgumentException("Invalid path", nameof(newPath));
 }

 _extension = extension;
 _newPath = new PathString(newPath);
 }

 public void ApplyRule(RewriteContext context)
 {
 var request = context.HttpContext.Request;

 // Because we're redirecting back to the same app, stop
 // processing if the request has already been redirected
 if (request.Path.StartsWithSegments(new PathString(_newPath)))
 {
 return;
 }

 if (request.Path.Value.EndsWith(_extension, StringComparison.OrdinalIgnoreCase))
 {
 var response = context.HttpContext.Response;
 response.StatusCode = StatusCodes.Status301MovedPermanently;
 context.Result = RuleResult.EndResponse;
 response.Headers[HeaderNames.Location] =
 _newPath + request.Path + request.QueryString;
 }
 }
}

Original Request: /image.png

Original Request: /image.jpg

Regex examples

GOAL
REGEX STRING &
MATCH EXAMPLE

REPLACEMENT STRING &
OUTPUT EXAMPLE

Rewrite path into querystring ^path/(.*)/(.*)

/path/abc/123

path?var1=$1&var2=$2

/path?var1=abc&var2=123

Strip trailing slash (.*)/$

/path/

$1

/path

Enforce trailing slash (.*[^/])$

/path

$1/

/path/

Avoid rewriting specific requests ^(.*)(?<!\.axd)$ or
^(?!.*\.axd$)(.*)$

Yes: /resource.htm

No: /resource.axd

rewritten/$1

/rewritten/resource.htm

/resource.axd

Rearrange URL segments path/(.*)/(.*)/(.*)

path/1/2/3

path/$3/$2/$1

path/3/2/1

Replace a URL segment ^(.*)/segment2/(.*)

/segment1/segment2/segment3

$1/replaced/$2

/segment1/replaced/segment3

Additional resources
Application Startup
Middleware
Regular expressions in .NET
Regular expression language - quick reference
Apache mod_rewrite
Using Url Rewrite Module 2.0 (for IIS)
URL Rewrite Module Configuration Reference
IIS URL Rewrite Module Forum
Keep a simple URL structure
10 URL Rewriting Tips and Tricks
To slash or not to slash

https://docs.microsoft.com/dotnet/articles/standard/base-types/regular-expressions
https://docs.microsoft.com/dotnet/articles/standard/base-types/quick-ref
https://httpd.apache.org/docs/2.4/rewrite/
https://docs.microsoft.com/iis/extensions/url-rewrite-module/using-url-rewrite-module-20
https://docs.microsoft.com/iis/extensions/url-rewrite-module/url-rewrite-module-configuration-reference
https://forums.iis.net/1152.aspx
https://support.google.com/webmasters/answer/76329?hl=en
http://ruslany.net/2009/04/10-url-rewriting-tips-and-tricks/
https://webmasters.googleblog.com/2010/04/to-slash-or-not-to-slash.html

Use multiple environments in ASP.NET Core
5/4/2018 • 5 minutes to read • Edit Online

Environments

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }

 if (env.IsProduction() || env.IsStaging() || env.IsEnvironment("Staging_2"))
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
}

By Rick Anderson

ASP.NET Core provides support for setting application behavior at runtime with environment variables.

View or download sample code (how to download)

ASP.NET Core reads the environment variable ASPNETCORE_ENVIRONMENT at application startup and stores that
value in IHostingEnvironment.EnvironmentName. ASPNETCORE_ENVIRONMENT can be set to any value, but three
values are supported by the framework: Development, Staging, and Production. If ASPNETCORE_ENVIRONMENT isn't
set, it will default to Production .

The preceding code:

Calls UseDeveloperExceptionPage and UseBrowserLink when ASPNETCORE_ENVIRONMENT is set to
Development .

Calls UseExceptionHandler when the value of ASPNETCORE_ENVIRONMENT is set one of the following:

Staging

Production

Staging_2

The Environment Tag Helper uses the value of IHostingEnvironment.EnvironmentName to include or exclude
markup in the element:

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/environments.md
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/environments/sample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.environmentname?view=aspnetcore-2.0#Microsoft_AspNetCore_Hosting_IHostingEnvironment_EnvironmentName
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.environmentname?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.environmentname.development?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.environmentname.staging?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.environmentname.production?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.developerexceptionpageextensions.usedeveloperexceptionpage?view=aspnetcore-2.0#Microsoft_AspNetCore_Builder_DeveloperExceptionPageExtensions_UseDeveloperExceptionPage_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.browserlinkextensions.usebrowserlink?view=aspnetcore-2.0#Microsoft_AspNetCore_Builder_BrowserLinkExtensions_UseBrowserLink_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler?view=aspnetcore-2.0#Microsoft_AspNetCore_Builder_ExceptionHandlerExtensions_UseExceptionHandler_Microsoft_AspNetCore_Builder_IApplicationBuilder_

@page
@inject Microsoft.AspNetCore.Hosting.IHostingEnvironment hostingEnv
@model AboutModel
@{
 ViewData["Title"] = "About";
}
<h2>@ViewData["Title"]</h2>
<h3>@Model.Message</h3>

<p> ASPNETCORE_ENVIRONMENT = @hostingEnv.EnvironmentName</p>

<environment include="Development">
 <div><environment include="Development"></div>
</environment>
<environment exclude="Development">
 <div><environment exclude="Development"></div>
</environment>
<environment include="Staging,Development,Staging_2">
 <div>
 <environment include="Staging,Development,Staging_2">
 </div>
</environment>

DevelopmentDevelopment

Note: On Windows and macOS, environment variables and values are not case sensitive. Linux environment
variables and values are case sensitive by default.

The development environment can enable features that shouldn't be exposed in production. For example, the
ASP.NET Core templates enable the developer exception page in the development environment.

The environment for local machine development can be set in the Properties\launchSettings.json file of the
project. Environment values set in launchSettings.json override values set in the system environment.

The following JSON shows three profiles from a launchSettings.json file:

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:54339/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "WebApp1": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Staging"
 },
 "applicationUrl": "http://localhost:54340/"
 },
 "Kestrel Staging": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_My_Environment": "1",
 "ASPNETCORE_DETAILEDERRORS": "1",
 "ASPNETCORE_ENVIRONMENT": "Staging"
 },
 "applicationUrl": "http://localhost:51997/"
 }
 }
}

NOTENOTE

"WebApplication1": {
 "commandName": "Project",
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
}

The applicationUrl property in launchSettings.json can specify a list of server URLs. Use a semicolon between the
URLs in the list:

When the application is launched with dotnet run, the first profile with "commandName": "Project" will be used.
The value of commandName specifies the web server to launch. commandName can be one of :

IIS Express
IIS
Project (which launches Kestrel)

When an app is launched with dotnet run:

launchSettings.json is read if available. environmentVariables settings in launchSettings.json override

https://docs.microsoft.com/dotnet/core/tools/dotnet-run
https://docs.microsoft.com/dotnet/core/tools/dotnet-run

PS C:\Webs\WebApp1> dotnet run
Using launch settings from C:\Webs\WebApp1\Properties\launchSettings.json...
Hosting environment: Staging
Content root path: C:\Webs\WebApp1
Now listening on: http://localhost:54340
Application started. Press Ctrl+C to shut down.

WARNINGWARNING

ProductionProduction

environment variables.
The hosting environment is displayed.

The following output shows an app started with dotnet run:

The Visual Studio Debug tab provides a GUI to edit the launchSettings.json file:

Changes made to project profiles may not take effect until the web server is restarted. Kestrel must be restarted
before it will detect changes made to its environment.

launchSettings.json shouldn't store secrets. The Secret Manager tool can be used to store secrets for local development.

The production environment should be configured to maximize security, performance, and application
robustness. Some common settings that differ from development include:

Caching.
Client-side resources are bundled, minified, and potentially served from a CDN.
Diagnostic error pages disabled.
Friendly error pages enabled.

https://docs.microsoft.com/dotnet/core/tools/dotnet-run

 Setting the environment

AzureAzure

WindowsWindows

set ASPNETCORE_ENVIRONMENT=Development

$Env:ASPNETCORE_ENVIRONMENT = "Development"

Production logging and monitoring enabled. For example, Application Insights.

It's often useful to set a specific environment for testing. If the environment isn't set, it will default to Production

which disables most debugging features.

The method for setting the environment depends on the operating system.

For Azure app service:

Select the Application settings blade.
Add the key and value in App settings.

To set the ASPNETCORE_ENVIRONMENT for the current session, if the app is started using dotnet run, the following
commands are used

Command line

PowerShell

These commands take effect only for the current window. When the window is closed, the
ASPNETCORE_ENVIRONMENT setting reverts to the default setting or machine value. In order to set the
value globally on Windows open the Control Panel > System > Advanced system settings and add or edit
the ASPNETCORE_ENVIRONMENT value.

https://docs.microsoft.com/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/dotnet/core/tools/dotnet-run

macOSmacOS

ASPNETCORE_ENVIRONMENT=Development dotnet run

export ASPNETCORE_ENVIRONMENT=Development

export ASPNETCORE_ENVIRONMENT=Development

LinuxLinux

Configuration by environmentConfiguration by environment

Environment based Startup class and methods

web.config

See the Setting environment variables section of the ASP.NET Core Module configuration reference topic.

Per IIS Application Pool

To set environment variables for individual apps running in isolated Application Pools (supported on IIS 10.0+),
see the AppCmd.exe command section of the Environment Variables <environmentVariables> topic.

Setting the current environment for macOS can be done in-line when running the application;

or using export to set it prior to running the app.

Machine level environment variables are set in the .bashrc or .bash_profile file. Edit the file using any text editor
and add the following statment.

For Linux distros, use the export command at the command line for session based variable settings and
bash_profile file for machine level environment settings.

See Configuration by environment for more information.

When an ASP.NET Core app starts, the Startup class bootstraps the app. If a class Startup{EnvironmentName}

exists, that class will be called for that EnvironmentName :

https://docs.microsoft.com/iis/configuration/system.applicationHost/applicationPools/add/environmentVariables/#appcmdexe

public class StartupDevelopment
{
 public StartupDevelopment(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }

 if (env.IsProduction() || env.IsStaging())
 {
 throw new Exception("Not development.");
 }

 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
}

Note: Calling WebHostBuilder.UseStartup overrides configuration sections.

Configure and ConfigureServices support environment specific versions of the form
Configure{EnvironmentName} and Configure{EnvironmentName}Services :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.usestartup?view=aspnetcore-2.0#Microsoft_AspNetCore_Hosting_WebHostBuilderExtensions_UseStartup__1_Microsoft_AspNetCore_Hosting_IWebHostBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure?view=aspnetcore-2.0#Microsoft_AspNetCore_Hosting_StartupBase_Configure_Microsoft_AspNetCore_Builder_IApplicationBuilder_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices?view=aspnetcore-2.0

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 public void ConfigureStagingServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }

 if (env.IsProduction() || env.IsStaging() || env.IsEnvironment("Staging_2"))
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }

 public void ConfigureStaging(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (!env.IsStaging())
 {
 throw new Exception("Not staging.");
 }

 app.UseExceptionHandler("/Error");
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
}

Additional resources
Application startup
Configuration
IHostingEnvironment.EnvironmentName

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.environmentname?view=aspnetcore-2.0#Microsoft_AspNetCore_Hosting_IHostingEnvironment_EnvironmentName

Configuration in ASP.NET Core
6/18/2018 • 15 minutes to read • Edit Online

JSON configuration

By Rick Anderson, Mark Michaelis, Steve Smith, Daniel Roth, and Luke Latham

The Configuration API provides a way to configure an ASP.NET Core web app based on a list of name-value pairs.
Configuration is read at runtime from multiple sources. Name-value pairs can be grouped into a multi-level
hierarchy.

There are configuration providers for :

File formats (INI, JSON, and XML).
Command-line arguments.
Environment variables.
In-memory .NET objects.
The unencrypted Secret Manager storage.
An encrypted user store, such as Azure Key Vault.
Custom providers (installed or created).

Each configuration value maps to a string key. There's built-in binding support to deserialize settings into a custom
POCO object (a simple .NET class with properties).

The options pattern uses options classes to represent groups of related settings. For more information on using the
options pattern, see the Options topic.

View or download sample code (how to download)

The following console app uses the JSON configuration provider :

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/configuration/index.md
https://twitter.com/RickAndMSFT
http://intellitect.com/author/mark-michaelis/
https://ardalis.com/
https://github.com/danroth27
https://github.com/guardrex
https://wikipedia.org/wiki/Plain_Old_CLR_Object
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/index/sample

using System;
using System.IO;
// Requires NuGet package
// Microsoft.Extensions.Configuration.Json
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");

 Configuration = builder.Build();

 Console.WriteLine($"option1 = {Configuration["Option1"]}");
 Console.WriteLine($"option2 = {Configuration["option2"]}");
 Console.WriteLine(
 $"suboption1 = {Configuration["subsection:suboption1"]}");
 Console.WriteLine();

 Console.WriteLine("Wizards:");
 Console.Write($"{Configuration["wizards:0:Name"]}, ");
 Console.WriteLine($"age {Configuration["wizards:0:Age"]}");
 Console.Write($"{Configuration["wizards:1:Name"]}, ");
 Console.WriteLine($"age {Configuration["wizards:1:Age"]}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

{
 "option1": "value1_from_json",
 "option2": 2,

 "subsection": {
 "suboption1": "subvalue1_from_json"
 },
 "wizards": [
 {
 "Name": "Gandalf",
 "Age": "1000"
 },
 {
 "Name": "Harry",
 "Age": "17"
 }
]
}

Console.WriteLine(
 $"suboption1 = {Configuration["subsection:suboption1"]}");

The app reads and displays the following configuration settings:

Configuration consists of a hierarchical list of name-value pairs in which the nodes are separated by a colon (:). To
retrieve a value, access the Configuration indexer with the corresponding item's key:

Console.Write($"{Configuration["wizards:0:Name"]}");
// Output: Gandalf

XML configuration

<wizards>
 <wizard name="Gandalf">
 <age>1000</age>
 </wizard>
 <wizard name="Harry">
 <age>17</age>
 </wizard>
</wizards>

Console.Write($"{Configuration["wizard:Harry:age"]}");
// Output: 17

Configuration by environment

To work with arrays in JSON-formatted configuration sources, use an array index as part of the colon-separated
string. The following example gets the name of the first item in the preceding wizards array:

Name-value pairs written to the built-in Configuration providers are not persisted. However, a custom provider
that saves values can be created. See custom configuration provider.

The preceding sample uses the configuration indexer to read values. To access configuration outside of Startup ,
use the options pattern. For more information, see the Options topic.

To work with arrays in XML-formatted configuration sources, provide a name index to each element. Use the index
to access the values:

It's typical to have different configuration settings for different environments, for example, development, testing,
and production. The CreateDefaultBuilder extension method in an ASP.NET Core 2.x app (or using AddJsonFile

and AddEnvironmentVariables directly in an ASP.NET Core 1.x app) adds configuration providers for reading JSON
files and system configuration sources:

appsettings.json

appsettings.<EnvironmentName>.json

Environment variables

ASP.NET Core 1.x apps need to call AddJsonFile and AddEnvironmentVariables.

See AddJsonFile for an explanation of the parameters. reloadOnChange is only supported in ASP.NET Core 1.1 and
later.

Configuration sources are read in the order that they're specified. In the preceding code, the environment variables
are read last. Any configuration values set through the environment replace those set in the two previous providers.

Consider the following appsettings.Staging.json file:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.environmentvariablesextensions.addenvironmentvariables#Microsoft_Extensions_Configuration_EnvironmentVariablesExtensions_AddEnvironmentVariables_Microsoft_Extensions_Configuration_IConfigurationBuilder_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.jsonconfigurationextensions

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "System": "Information",
 "Microsoft": "Information"
 }
 },
 "MyConfig": "My Config Value for staging."
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 var myConfig = Configuration["MyConfig"];
 // use myConfig
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }

 if (env.IsProduction() || env.IsStaging())
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
}

In-memory provider and binding to a POCO class

In the following code, Configure reads the value of MyConfig :

The environment is typically set to Development , Staging , or Production . For more information, see Use multiple
environments.

Configuration considerations:

IOptionsSnapshot can reload configuration data when it changes.
Configuration keys are not case-sensitive.
Never store passwords or other sensitive data in configuration provider code or in plain text configuration files.
Don't use production secrets in development or test environments. Specify secrets outside of the project so that
they can't be accidentally committed to a source code repository. Learn more about how to use multiple
environments and managing safe storage of app secrets in development.
For hierarchical config values specified in environment variables, a colon (:) may not work on all platforms.
Double underscore (__) is supported by all platforms.
When interacting with the configuration API, a colon (:) works on all platforms.

The following sample shows how to use the in-memory provider and bind to a class:

using System;
using System.Collections.Generic;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 var dict = new Dictionary<string, string>
 {
 {"Profile:MachineName", "Rick"},
 {"App:MainWindow:Height", "11"},
 {"App:MainWindow:Width", "11"},
 {"App:MainWindow:Top", "11"},
 {"App:MainWindow:Left", "11"}
 };

 var builder = new ConfigurationBuilder();
 builder.AddInMemoryCollection(dict);

 Configuration = builder.Build();

 Console.WriteLine($"Hello {Configuration["Profile:MachineName"]}");

 var window = new MyWindow();
 // Bind requrires NuGet package
 // Microsoft.Extensions.Configuration.Binder
 Configuration.GetSection("App:MainWindow").Bind(window);
 Console.WriteLine($"Left {window.Left}");
 Console.WriteLine();

 Console.WriteLine("Press any key...");
 Console.ReadKey();
 }
}

public class MyWindow
{
 public int Height { get; set; }
 public int Width { get; set; }
 public int Top { get; set; }
 public int Left { get; set; }
}

GetValueGetValue

Configuration values are returned as strings, but binding enables the construction of objects. Binding allows the
retrieval of POCO objects or even entire object graphs.

The following sample demonstrates the GetValue<T> extension method:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.configurationbinder.get?view=aspnetcore-2.0#Microsoft_Extensions_Configuration_ConfigurationBinder_Get__1_Microsoft_Extensions_Configuration_IConfiguration_

using System;
using System.Collections.Generic;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 var dict = new Dictionary<string, string>
 {
 {"Profile:MachineName", "Rick"},
 {"App:MainWindow:Height", "11"},
 {"App:MainWindow:Width", "11"},
 {"App:MainWindow:Top", "11"},
 {"App:MainWindow:Left", "11"}
 };

 var builder = new ConfigurationBuilder();
 builder.AddInMemoryCollection(dict);

 Configuration = builder.Build();

 Console.WriteLine($"Hello {Configuration["Profile:MachineName"]}");

 // Show GetValue overload and set the default value to 80
 // Requires NuGet package "Microsoft.Extensions.Configuration.Binder"
 var left = Configuration.GetValue<int>("App:MainWindow:Left", 80);
 Console.WriteLine($"Left {left}");

 var window = new MyWindow();
 Configuration.GetSection("App:MainWindow").Bind(window);
 Console.WriteLine($"Left {window.Left}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

public class MyWindow
{
 public int Height { get; set; }
 public int Width { get; set; }
 public int Top { get; set; }
 public int Left { get; set; }
}

Bind to an object graph

The ConfigurationBinder's GetValue<T> method allows the specification of a default value (80 in the sample).
GetValue<T> is for simple scenarios and doesn't bind to entire sections. GetValue<T> obtains scalar values from
GetSection(key).Value converted to a specific type.

Each object in a class can be recursively bound. Consider the following AppSettings class:

public class AppSettings
{
 public Window Window { get; set; }
 public Connection Connection { get; set; }
 public Profile Profile { get; set; }
}

public class Window
{
 public int Height { get; set; }
 public int Width { get; set; }
}

public class Connection
{
 public string Value { get; set; }
}

public class Profile
{
 public string Machine { get; set; }
}

using System;
using System.IO;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static void Main(string[] args = null)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");

 var config = builder.Build();

 var appConfig = new AppSettings();
 config.GetSection("App").Bind(appConfig);

 Console.WriteLine($"Height {appConfig.Window.Height}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

var appConfig = config.GetSection("App").Get<AppSettings>();

The following sample binds to the AppSettings class:

ASP.NET Core 1.1 and higher can use Get<T> , which works with entire sections. Get<T> can be more convenient
than using Bind . The following code shows how to use Get<T> with the preceding sample:

Using the following appsettings.json file:

{
 "App": {
 "Profile": {
 "Machine": "Rick"
 },
 "Connection": {
 "Value": "connectionstring"
 },
 "Window": {
 "Height": "11",
 "Width": "11"
 }
 }
}

[Fact]
public void CanBindObjectTree()
{
 var dict = new Dictionary<string, string>
 {
 {"App:Profile:Machine", "Rick"},
 {"App:Connection:Value", "connectionstring"},
 {"App:Window:Height", "11"},
 {"App:Window:Width", "11"}
 };
 var builder = new ConfigurationBuilder();
 builder.AddInMemoryCollection(dict);
 var config = builder.Build();

 var settings = new AppSettings();
 config.GetSection("App").Bind(settings);

 Assert.Equal("Rick", settings.Profile.Machine);
 Assert.Equal(11, settings.Window.Height);
 Assert.Equal(11, settings.Window.Width);
 Assert.Equal("connectionstring", settings.Connection.Value);
}

Create an Entity Framework custom provider

public class ConfigurationValue
{
 public string Id { get; set; }
 public string Value { get; set; }
}

The program displays Height 11 .

The following code can be used to unit test the configuration:

In this section, a basic configuration provider that reads name-value pairs from a database using EF is created.

Define a ConfigurationValue entity for storing configuration values in the database:

Add a ConfigurationContext to store and access the configured values:

public class ConfigurationContext : DbContext
{
 public ConfigurationContext(DbContextOptions options) : base(options)
 {
 }

 public DbSet<ConfigurationValue> Values { get; set; }
}

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace CustomConfigurationProvider
{
 public class EFConfigSource : IConfigurationSource
 {
 private readonly Action<DbContextOptionsBuilder> _optionsAction;

 public EFConfigSource(Action<DbContextOptionsBuilder> optionsAction)
 {
 _optionsAction = optionsAction;
 }

 public IConfigurationProvider Build(IConfigurationBuilder builder)
 {
 return new EFConfigProvider(_optionsAction);
 }
 }
}

Create a class that implements IConfigurationSource:

Create the custom configuration provider by inheriting from ConfigurationProvider. The configuration provider
initializes the database when it's empty:

https://docs.microsoft.com/dotnet/api/Microsoft.Extensions.Configuration.IConfigurationSource
https://docs.microsoft.com/dotnet/api/Microsoft.Extensions.Configuration.ConfigurationProvider

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace CustomConfigurationProvider
{
 public class EFConfigProvider : ConfigurationProvider
 {
 public EFConfigProvider(Action<DbContextOptionsBuilder> optionsAction)
 {
 OptionsAction = optionsAction;
 }

 Action<DbContextOptionsBuilder> OptionsAction { get; }

 // Load config data from EF DB.
 public override void Load()
 {
 var builder = new DbContextOptionsBuilder<ConfigurationContext>();
 OptionsAction(builder);

 using (var dbContext = new ConfigurationContext(builder.Options))
 {
 dbContext.Database.EnsureCreated();
 Data = !dbContext.Values.Any()
 ? CreateAndSaveDefaultValues(dbContext)
 : dbContext.Values.ToDictionary(c => c.Id, c => c.Value);
 }
 }

 private static IDictionary<string, string> CreateAndSaveDefaultValues(
 ConfigurationContext dbContext)
 {
 var configValues = new Dictionary<string, string>
 {
 { "key1", "value_from_ef_1" },
 { "key2", "value_from_ef_2" }
 };
 dbContext.Values.AddRange(configValues
 .Select(kvp => new ConfigurationValue { Id = kvp.Key, Value = kvp.Value })
 .ToArray());
 dbContext.SaveChanges();
 return configValues;
 }
 }
}

The highlighted values from the database ("value_from_ef_1" and "value_from_ef_2") are displayed when the
sample is run.

An EFConfigSource extension method for adding the configuration source can be used:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace CustomConfigurationProvider
{
 public static class EntityFrameworkExtensions
 {
 public static IConfigurationBuilder AddEntityFrameworkConfig(
 this IConfigurationBuilder builder, Action<DbContextOptionsBuilder> setup)
 {
 return builder.Add(new EFConfigSource(setup));
 }
 }
}

using System;
using System.IO;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using CustomConfigurationProvider;

public static class Program
{
 public static void Main()
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");

 var connectionStringConfig = builder.Build();

 var config = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 // Add "appsettings.json" to bootstrap EF config.
 .AddJsonFile("appsettings.json")
 // Add the EF configuration provider, which will override any
 // config made with the JSON provider.
 .AddEntityFrameworkConfig(options =>
 options.UseSqlServer(connectionStringConfig.GetConnectionString(
 "DefaultConnection"))
)
 .Build();

 Console.WriteLine("key1={0}", config["key1"]);
 Console.WriteLine("key2={0}", config["key2"]);
 Console.WriteLine("key3={0}", config["key3"]);
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

The following code shows how to use the custom EFConfigProvider :

Note the sample adds the custom EFConfigProvider after the JSON provider, so any settings from the database will
override settings from the appsettings.json file.

Using the following appsettings.json file:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=CustomConfigurationProvider;Trusted_Connection=True;MultipleActiveResultSets=t
rue"
 },
 "key1": "value_from_json_1",
 "key2": "value_from_json_2",
 "key3": "value_from_json_3"
}

key1=value_from_ef_1
key2=value_from_ef_2
key3=value_from_json_3

CommandLine configuration provider

Setup and use the CommandLine configuration providerSetup and use the CommandLine configuration provider

The following output is displayed:

The CommandLine configuration provider receives command-line argument key-value pairs for configuration at
runtime.

View or download the CommandLine configuration sample

Basic Configuration
ASP.NET Core 2.x
ASP.NET Core 1.x

To activate command-line configuration, call the AddCommandLine extension method on an instance of
ConfigurationBuilder:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.commandline.commandlineconfigurationprovider
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/index/sample/CommandLine
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.configurationbuilder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 var dict = new Dictionary<string, string>
 {
 {"Profile:MachineName", "MairaPC"},
 {"App:MainWindow:Left", "1980"}
 };

 var builder = new ConfigurationBuilder();

 builder.AddInMemoryCollection(dict)
 .AddCommandLine(args);

 Configuration = builder.Build();

 Console.WriteLine($"MachineName: {Configuration["Profile:MachineName"]}");
 Console.WriteLine($"Left: {Configuration["App:MainWindow:Left"]}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

MachineName: MairaPC
Left: 1980

dotnet run Profile:MachineName=BartPC App:MainWindow:Left=1979

MachineName: BartPC
Left: 1979

var config = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddEnvironmentVariables()
 .AddCommandLine(args)
 .Build();

Running the code, the following output is displayed:

Passing argument key-value pairs on the command line changes the values of Profile:MachineName and
App:MainWindow:Left :

The console window displays:

To override configuration provided by other configuration providers with command-line configuration, call
AddCommandLine last on ConfigurationBuilder :

ArgumentsArguments

ARGUMENT FORMAT EXAMPLE

Single argument: a key-value pair separated by an equals sign
(=)

key1=value

Sequence of two arguments: a key-value pair separated by a
space

/key1 value1

KEY PREFIX EXAMPLE

No prefix key1=value1

Single dash (-)† -key2=value2

Two dashes (--) --key3=value3

Forward slash (/) /key4=value4

dotnet run key1=value1 -key2=value2 --key3=value3 /key4=value4

KEY PREFIX EXAMPLE

Single dash (-)† -key1 value1

Two dashes (--) --key2 value2

Forward slash (/) /key3 value3

Arguments passed on the command line must conform to one of two formats shown in the following table:

Single argument

The value must follow an equals sign (=). The value can be null (for example, mykey=).

The key may have a prefix.

†A key with a single dash prefix (-) must be provided in switch mappings, described below.

Example command:

Note: If -key2 isn't present in the switch mappings given to the configuration provider, a FormatException is
thrown.

Sequence of two arguments

The value can't be null and must follow the key separated by a space.

The key must have a prefix.

†A key with a single dash prefix (-) must be provided in switch mappings, described below.

Example command:

dotnet run -key1 value1 --key2 value2 /key3 value3

Duplicate keysDuplicate keys

Switch mappingsSwitch mappings

Note: If -key1 isn't present in the switch mappings given to the configuration provider, a FormatException is
thrown.

If duplicate keys are provided, the last key-value pair is used.

When manually building configuration with ConfigurationBuilder , a switch mappings dictionary can be added to
the AddCommandLine method. Switch mappings allow key name replacement logic.

When the switch mappings dictionary is used, the dictionary is checked for a key that matches the key provided by
a command-line argument. If the command-line key is found in the dictionary, the dictionary value (the key
replacement) is passed back to set the configuration. A switch mapping is required for any command-line key
prefixed with a single dash (-).

Switch mappings dictionary key rules:

Switches must start with a dash (-) or double-dash (--).
The switch mappings dictionary must not contain duplicate keys.

In the following example, the GetSwitchMappings method allows command-line arguments to use a single dash (-)
key prefix and avoid leading subkey prefixes.

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static Dictionary<string, string> GetSwitchMappings(
 IReadOnlyDictionary<string, string> configurationStrings)
 {
 return configurationStrings.Select(item =>
 new KeyValuePair<string, string>(
 "-" + item.Key.Substring(item.Key.LastIndexOf(':') + 1),
 item.Key))
 .ToDictionary(
 item => item.Key, item => item.Value);
 }

 public static void Main(string[] args = null)
 {
 var dict = new Dictionary<string, string>
 {
 {"Profile:MachineName", "RickPC"},
 {"App:MainWindow:Left", "1980"}
 };

 var builder = new ConfigurationBuilder();

 builder.AddInMemoryCollection(dict)
 .AddCommandLine(args, GetSwitchMappings(dict));

 Configuration = builder.Build();

 Console.WriteLine($"MachineName: {Configuration["Profile:MachineName"]}");
 Console.WriteLine($"Left: {Configuration["App:MainWindow:Left"]}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

dotnet run

MachineName: RickPC
Left: 1980

dotnet run /Profile:MachineName=DahliaPC /App:MainWindow:Left=1984

Without providing command-line arguments, the dictionary provided to AddInMemoryCollection sets the
configuration values. Run the app with the following command:

The console window displays:

Use the following to pass in configuration settings:

The console window displays:

MachineName: DahliaPC
Left: 1984

KEY VALUE

-MachineName Profile:MachineName

-Left App:MainWindow:Left

dotnet run -MachineName=ChadPC -Left=1988

MachineName: ChadPC
Left: 1988

web.config file

Access configuration during startup

Adding configuration from an external assembly

Access configuration in a Razor Page or MVC view

After the switch mappings dictionary is created, it contains the data shown in the following table:

To demonstrate key switching using the dictionary, run the following command:

The command-line keys are swapped. The console window displays the configuration values for
Profile:MachineName and App:MainWindow:Left :

A web.config file is required when hosting the app in IIS or IIS Express. Settings in web.config enable the ASP.NET
Core Module to launch the app and configure other IIS settings and modules. If the web.config file isn't present and
the project file includes <Project Sdk="Microsoft.NET.Sdk.Web"> , publishing the project creates a web.config file in
the published output (the publish folder). For more information, see Host ASP.NET Core on Windows with IIS.

To access configuration within ConfigureServices or Configure during startup, see the examples in the Application
startup topic.

An IHostingStartup implementation allows adding enhancements to an app at startup from an external assembly
outside of the app's Startup class. For more information, see Enhance an app from an external assembly.

To access configuration settings in a Razor Pages page or an MVC view, add a using directive (C# reference: using
directive) for the Microsoft.Extensions.Configuration namespace and inject IConfiguration into the page or view.

In a Razor Pages page:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/using-directive
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration

@page
@model IndexModel

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Index Page</title>
</head>
<body>
 <h1>Access configuration in a Razor Pages page</h1>
 <p>Configuration["key"]: @Configuration["key"]</p>
</body>
</html>

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Index View</title>
</head>
<body>
 <h1>Access configuration in an MVC view</h1>
 <p>Configuration["key"]: @Configuration["key"]</p>
</body>
</html>

Additional notes

Additional resources

In an MVC view:

Dependency Injection (DI) isn't set up until after ConfigureServices is invoked.
The configuration system isn't DI aware.
IConfiguration has two specializations:

IConfigurationRoot Used for the root node. Can trigger a reload.
IConfigurationSection Represents a section of configuration values. The GetSection and GetChildren

methods return an IConfigurationSection .
Use IConfigurationRoot when reloading configuration or for access to each provider. Neither of these
situations are common.

Options
Use multiple environments
Safe storage of app secrets in development
Host in ASP.NET Core
Dependency Injection
Azure Key Vault configuration provider

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfigurationroot

Configuration in ASP.NET Core
6/18/2018 • 15 minutes to read • Edit Online

JSON configuration

By Rick Anderson, Mark Michaelis, Steve Smith, Daniel Roth, and Luke Latham

The Configuration API provides a way to configure an ASP.NET Core web app based on a list of name-value
pairs. Configuration is read at runtime from multiple sources. Name-value pairs can be grouped into a
multi-level hierarchy.

There are configuration providers for :

File formats (INI, JSON, and XML).
Command-line arguments.
Environment variables.
In-memory .NET objects.
The unencrypted Secret Manager storage.
An encrypted user store, such as Azure Key Vault.
Custom providers (installed or created).

Each configuration value maps to a string key. There's built-in binding support to deserialize settings into a
custom POCO object (a simple .NET class with properties).

The options pattern uses options classes to represent groups of related settings. For more information on
using the options pattern, see the Options topic.

View or download sample code (how to download)

The following console app uses the JSON configuration provider :

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/configuration/index.md
https://twitter.com/RickAndMSFT
http://intellitect.com/author/mark-michaelis/
https://ardalis.com/
https://github.com/danroth27
https://github.com/guardrex
https://wikipedia.org/wiki/Plain_Old_CLR_Object
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/index/sample

using System;
using System.IO;
// Requires NuGet package
// Microsoft.Extensions.Configuration.Json
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");

 Configuration = builder.Build();

 Console.WriteLine($"option1 = {Configuration["Option1"]}");
 Console.WriteLine($"option2 = {Configuration["option2"]}");
 Console.WriteLine(
 $"suboption1 = {Configuration["subsection:suboption1"]}");
 Console.WriteLine();

 Console.WriteLine("Wizards:");
 Console.Write($"{Configuration["wizards:0:Name"]}, ");
 Console.WriteLine($"age {Configuration["wizards:0:Age"]}");
 Console.Write($"{Configuration["wizards:1:Name"]}, ");
 Console.WriteLine($"age {Configuration["wizards:1:Age"]}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

{
 "option1": "value1_from_json",
 "option2": 2,

 "subsection": {
 "suboption1": "subvalue1_from_json"
 },
 "wizards": [
 {
 "Name": "Gandalf",
 "Age": "1000"
 },
 {
 "Name": "Harry",
 "Age": "17"
 }
]
}

Console.WriteLine(
 $"suboption1 = {Configuration["subsection:suboption1"]}");

The app reads and displays the following configuration settings:

Configuration consists of a hierarchical list of name-value pairs in which the nodes are separated by a colon
(:). To retrieve a value, access the Configuration indexer with the corresponding item's key:

Console.Write($"{Configuration["wizards:0:Name"]}");
// Output: Gandalf

XML configuration

<wizards>
 <wizard name="Gandalf">
 <age>1000</age>
 </wizard>
 <wizard name="Harry">
 <age>17</age>
 </wizard>
</wizards>

Console.Write($"{Configuration["wizard:Harry:age"]}");
// Output: 17

Configuration by environment

To work with arrays in JSON-formatted configuration sources, use an array index as part of the colon-
separated string. The following example gets the name of the first item in the preceding wizards array:

Name-value pairs written to the built-in Configuration providers are not persisted. However, a custom
provider that saves values can be created. See custom configuration provider.

The preceding sample uses the configuration indexer to read values. To access configuration outside of
Startup , use the options pattern. For more information, see the Options topic.

To work with arrays in XML-formatted configuration sources, provide a name index to each element. Use
the index to access the values:

It's typical to have different configuration settings for different environments, for example, development,
testing, and production. The CreateDefaultBuilder extension method in an ASP.NET Core 2.x app (or using
AddJsonFile and AddEnvironmentVariables directly in an ASP.NET Core 1.x app) adds configuration

providers for reading JSON files and system configuration sources:

appsettings.json

appsettings.<EnvironmentName>.json

Environment variables

ASP.NET Core 1.x apps need to call AddJsonFile and AddEnvironmentVariables.

See AddJsonFile for an explanation of the parameters. reloadOnChange is only supported in ASP.NET Core
1.1 and later.

Configuration sources are read in the order that they're specified. In the preceding code, the environment
variables are read last. Any configuration values set through the environment replace those set in the two
previous providers.

Consider the following appsettings.Staging.json file:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.environmentvariablesextensions.addenvironmentvariables#Microsoft_Extensions_Configuration_EnvironmentVariablesExtensions_AddEnvironmentVariables_Microsoft_Extensions_Configuration_IConfigurationBuilder_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.jsonconfigurationextensions

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "System": "Information",
 "Microsoft": "Information"
 }
 },
 "MyConfig": "My Config Value for staging."
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 var myConfig = Configuration["MyConfig"];
 // use myConfig
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }

 if (env.IsProduction() || env.IsStaging())
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
}

In-memory provider and binding to a POCO class

In the following code, Configure reads the value of MyConfig :

The environment is typically set to Development , Staging , or Production . For more information, see Use
multiple environments.

Configuration considerations:

IOptionsSnapshot can reload configuration data when it changes.
Configuration keys are not case-sensitive.
Never store passwords or other sensitive data in configuration provider code or in plain text
configuration files. Don't use production secrets in development or test environments. Specify secrets
outside of the project so that they can't be accidentally committed to a source code repository. Learn
more about how to use multiple environments and managing safe storage of app secrets in
development.
For hierarchical config values specified in environment variables, a colon (:) may not work on all
platforms. Double underscore (__) is supported by all platforms.
When interacting with the configuration API, a colon (:) works on all platforms.

The following sample shows how to use the in-memory provider and bind to a class:

using System;
using System.Collections.Generic;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 var dict = new Dictionary<string, string>
 {
 {"Profile:MachineName", "Rick"},
 {"App:MainWindow:Height", "11"},
 {"App:MainWindow:Width", "11"},
 {"App:MainWindow:Top", "11"},
 {"App:MainWindow:Left", "11"}
 };

 var builder = new ConfigurationBuilder();
 builder.AddInMemoryCollection(dict);

 Configuration = builder.Build();

 Console.WriteLine($"Hello {Configuration["Profile:MachineName"]}");

 var window = new MyWindow();
 // Bind requrires NuGet package
 // Microsoft.Extensions.Configuration.Binder
 Configuration.GetSection("App:MainWindow").Bind(window);
 Console.WriteLine($"Left {window.Left}");
 Console.WriteLine();

 Console.WriteLine("Press any key...");
 Console.ReadKey();
 }
}

public class MyWindow
{
 public int Height { get; set; }
 public int Width { get; set; }
 public int Top { get; set; }
 public int Left { get; set; }
}

GetValueGetValue

Configuration values are returned as strings, but binding enables the construction of objects. Binding allows
the retrieval of POCO objects or even entire object graphs.

The following sample demonstrates the GetValue<T> extension method:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.configurationbinder.get?view=aspnetcore-2.0#Microsoft_Extensions_Configuration_ConfigurationBinder_Get__1_Microsoft_Extensions_Configuration_IConfiguration_

using System;
using System.Collections.Generic;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 var dict = new Dictionary<string, string>
 {
 {"Profile:MachineName", "Rick"},
 {"App:MainWindow:Height", "11"},
 {"App:MainWindow:Width", "11"},
 {"App:MainWindow:Top", "11"},
 {"App:MainWindow:Left", "11"}
 };

 var builder = new ConfigurationBuilder();
 builder.AddInMemoryCollection(dict);

 Configuration = builder.Build();

 Console.WriteLine($"Hello {Configuration["Profile:MachineName"]}");

 // Show GetValue overload and set the default value to 80
 // Requires NuGet package "Microsoft.Extensions.Configuration.Binder"
 var left = Configuration.GetValue<int>("App:MainWindow:Left", 80);
 Console.WriteLine($"Left {left}");

 var window = new MyWindow();
 Configuration.GetSection("App:MainWindow").Bind(window);
 Console.WriteLine($"Left {window.Left}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

public class MyWindow
{
 public int Height { get; set; }
 public int Width { get; set; }
 public int Top { get; set; }
 public int Left { get; set; }
}

Bind to an object graph

The ConfigurationBinder's GetValue<T> method allows the specification of a default value (80 in the
sample). GetValue<T> is for simple scenarios and doesn't bind to entire sections. GetValue<T> obtains scalar
values from GetSection(key).Value converted to a specific type.

Each object in a class can be recursively bound. Consider the following AppSettings class:

public class AppSettings
{
 public Window Window { get; set; }
 public Connection Connection { get; set; }
 public Profile Profile { get; set; }
}

public class Window
{
 public int Height { get; set; }
 public int Width { get; set; }
}

public class Connection
{
 public string Value { get; set; }
}

public class Profile
{
 public string Machine { get; set; }
}

using System;
using System.IO;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static void Main(string[] args = null)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");

 var config = builder.Build();

 var appConfig = new AppSettings();
 config.GetSection("App").Bind(appConfig);

 Console.WriteLine($"Height {appConfig.Window.Height}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

var appConfig = config.GetSection("App").Get<AppSettings>();

The following sample binds to the AppSettings class:

ASP.NET Core 1.1 and higher can use Get<T> , which works with entire sections. Get<T> can be more
convenient than using Bind . The following code shows how to use Get<T> with the preceding sample:

Using the following appsettings.json file:

{
 "App": {
 "Profile": {
 "Machine": "Rick"
 },
 "Connection": {
 "Value": "connectionstring"
 },
 "Window": {
 "Height": "11",
 "Width": "11"
 }
 }
}

[Fact]
public void CanBindObjectTree()
{
 var dict = new Dictionary<string, string>
 {
 {"App:Profile:Machine", "Rick"},
 {"App:Connection:Value", "connectionstring"},
 {"App:Window:Height", "11"},
 {"App:Window:Width", "11"}
 };
 var builder = new ConfigurationBuilder();
 builder.AddInMemoryCollection(dict);
 var config = builder.Build();

 var settings = new AppSettings();
 config.GetSection("App").Bind(settings);

 Assert.Equal("Rick", settings.Profile.Machine);
 Assert.Equal(11, settings.Window.Height);
 Assert.Equal(11, settings.Window.Width);
 Assert.Equal("connectionstring", settings.Connection.Value);
}

Create an Entity Framework custom provider

public class ConfigurationValue
{
 public string Id { get; set; }
 public string Value { get; set; }
}

The program displays Height 11 .

The following code can be used to unit test the configuration:

In this section, a basic configuration provider that reads name-value pairs from a database using EF is
created.

Define a ConfigurationValue entity for storing configuration values in the database:

Add a ConfigurationContext to store and access the configured values:

public class ConfigurationContext : DbContext
{
 public ConfigurationContext(DbContextOptions options) : base(options)
 {
 }

 public DbSet<ConfigurationValue> Values { get; set; }
}

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace CustomConfigurationProvider
{
 public class EFConfigSource : IConfigurationSource
 {
 private readonly Action<DbContextOptionsBuilder> _optionsAction;

 public EFConfigSource(Action<DbContextOptionsBuilder> optionsAction)
 {
 _optionsAction = optionsAction;
 }

 public IConfigurationProvider Build(IConfigurationBuilder builder)
 {
 return new EFConfigProvider(_optionsAction);
 }
 }
}

Create a class that implements IConfigurationSource:

Create the custom configuration provider by inheriting from ConfigurationProvider. The configuration
provider initializes the database when it's empty:

https://docs.microsoft.com/dotnet/api/Microsoft.Extensions.Configuration.IConfigurationSource
https://docs.microsoft.com/dotnet/api/Microsoft.Extensions.Configuration.ConfigurationProvider

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace CustomConfigurationProvider
{
 public class EFConfigProvider : ConfigurationProvider
 {
 public EFConfigProvider(Action<DbContextOptionsBuilder> optionsAction)
 {
 OptionsAction = optionsAction;
 }

 Action<DbContextOptionsBuilder> OptionsAction { get; }

 // Load config data from EF DB.
 public override void Load()
 {
 var builder = new DbContextOptionsBuilder<ConfigurationContext>();
 OptionsAction(builder);

 using (var dbContext = new ConfigurationContext(builder.Options))
 {
 dbContext.Database.EnsureCreated();
 Data = !dbContext.Values.Any()
 ? CreateAndSaveDefaultValues(dbContext)
 : dbContext.Values.ToDictionary(c => c.Id, c => c.Value);
 }
 }

 private static IDictionary<string, string> CreateAndSaveDefaultValues(
 ConfigurationContext dbContext)
 {
 var configValues = new Dictionary<string, string>
 {
 { "key1", "value_from_ef_1" },
 { "key2", "value_from_ef_2" }
 };
 dbContext.Values.AddRange(configValues
 .Select(kvp => new ConfigurationValue { Id = kvp.Key, Value = kvp.Value })
 .ToArray());
 dbContext.SaveChanges();
 return configValues;
 }
 }
}

The highlighted values from the database ("value_from_ef_1" and "value_from_ef_2") are displayed when
the sample is run.

An EFConfigSource extension method for adding the configuration source can be used:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace CustomConfigurationProvider
{
 public static class EntityFrameworkExtensions
 {
 public static IConfigurationBuilder AddEntityFrameworkConfig(
 this IConfigurationBuilder builder, Action<DbContextOptionsBuilder> setup)
 {
 return builder.Add(new EFConfigSource(setup));
 }
 }
}

using System;
using System.IO;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using CustomConfigurationProvider;

public static class Program
{
 public static void Main()
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");

 var connectionStringConfig = builder.Build();

 var config = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 // Add "appsettings.json" to bootstrap EF config.
 .AddJsonFile("appsettings.json")
 // Add the EF configuration provider, which will override any
 // config made with the JSON provider.
 .AddEntityFrameworkConfig(options =>
 options.UseSqlServer(connectionStringConfig.GetConnectionString(
 "DefaultConnection"))
)
 .Build();

 Console.WriteLine("key1={0}", config["key1"]);
 Console.WriteLine("key2={0}", config["key2"]);
 Console.WriteLine("key3={0}", config["key3"]);
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

The following code shows how to use the custom EFConfigProvider :

Note the sample adds the custom EFConfigProvider after the JSON provider, so any settings from the
database will override settings from the appsettings.json file.

Using the following appsettings.json file:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=CustomConfigurationProvider;Trusted_Connection=True;MultipleActiveResul
tSets=true"
 },
 "key1": "value_from_json_1",
 "key2": "value_from_json_2",
 "key3": "value_from_json_3"
}

key1=value_from_ef_1
key2=value_from_ef_2
key3=value_from_json_3

CommandLine configuration provider

Setup and use the CommandLine configuration providerSetup and use the CommandLine configuration provider

The following output is displayed:

The CommandLine configuration provider receives command-line argument key-value pairs for
configuration at runtime.

View or download the CommandLine configuration sample

Basic Configuration
ASP.NET Core 2.x
ASP.NET Core 1.x

To activate command-line configuration, call the AddCommandLine extension method on an instance of
ConfigurationBuilder:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.commandline.commandlineconfigurationprovider
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/index/sample/CommandLine
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.configurationbuilder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 var dict = new Dictionary<string, string>
 {
 {"Profile:MachineName", "MairaPC"},
 {"App:MainWindow:Left", "1980"}
 };

 var builder = new ConfigurationBuilder();

 builder.AddInMemoryCollection(dict)
 .AddCommandLine(args);

 Configuration = builder.Build();

 Console.WriteLine($"MachineName: {Configuration["Profile:MachineName"]}");
 Console.WriteLine($"Left: {Configuration["App:MainWindow:Left"]}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

MachineName: MairaPC
Left: 1980

dotnet run Profile:MachineName=BartPC App:MainWindow:Left=1979

MachineName: BartPC
Left: 1979

var config = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddEnvironmentVariables()
 .AddCommandLine(args)
 .Build();

Running the code, the following output is displayed:

Passing argument key-value pairs on the command line changes the values of Profile:MachineName and
App:MainWindow:Left :

The console window displays:

To override configuration provided by other configuration providers with command-line configuration, call
AddCommandLine last on ConfigurationBuilder :

ArgumentsArguments

ARGUMENT FORMAT EXAMPLE

Single argument: a key-value pair separated by an equals
sign (=)

key1=value

Sequence of two arguments: a key-value pair separated by
a space

/key1 value1

KEY PREFIX EXAMPLE

No prefix key1=value1

Single dash (-)† -key2=value2

Two dashes (--) --key3=value3

Forward slash (/) /key4=value4

dotnet run key1=value1 -key2=value2 --key3=value3 /key4=value4

KEY PREFIX EXAMPLE

Single dash (-)† -key1 value1

Two dashes (--) --key2 value2

Forward slash (/) /key3 value3

Arguments passed on the command line must conform to one of two formats shown in the following table:

Single argument

The value must follow an equals sign (=). The value can be null (for example, mykey=).

The key may have a prefix.

†A key with a single dash prefix (-) must be provided in switch mappings, described below.

Example command:

Note: If -key2 isn't present in the switch mappings given to the configuration provider, a FormatException

is thrown.

Sequence of two arguments

The value can't be null and must follow the key separated by a space.

The key must have a prefix.

†A key with a single dash prefix (-) must be provided in switch mappings, described below.

Example command:

dotnet run -key1 value1 --key2 value2 /key3 value3

Duplicate keysDuplicate keys

Switch mappingsSwitch mappings

Note: If -key1 isn't present in the switch mappings given to the configuration provider, a FormatException

is thrown.

If duplicate keys are provided, the last key-value pair is used.

When manually building configuration with ConfigurationBuilder , a switch mappings dictionary can be
added to the AddCommandLine method. Switch mappings allow key name replacement logic.

When the switch mappings dictionary is used, the dictionary is checked for a key that matches the key
provided by a command-line argument. If the command-line key is found in the dictionary, the dictionary
value (the key replacement) is passed back to set the configuration. A switch mapping is required for any
command-line key prefixed with a single dash (-).

Switch mappings dictionary key rules:

Switches must start with a dash (-) or double-dash (--).
The switch mappings dictionary must not contain duplicate keys.

In the following example, the GetSwitchMappings method allows command-line arguments to use a single
dash (-) key prefix and avoid leading subkey prefixes.

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Extensions.Configuration;

public class Program
{
 public static IConfiguration Configuration { get; set; }

 public static Dictionary<string, string> GetSwitchMappings(
 IReadOnlyDictionary<string, string> configurationStrings)
 {
 return configurationStrings.Select(item =>
 new KeyValuePair<string, string>(
 "-" + item.Key.Substring(item.Key.LastIndexOf(':') + 1),
 item.Key))
 .ToDictionary(
 item => item.Key, item => item.Value);
 }

 public static void Main(string[] args = null)
 {
 var dict = new Dictionary<string, string>
 {
 {"Profile:MachineName", "RickPC"},
 {"App:MainWindow:Left", "1980"}
 };

 var builder = new ConfigurationBuilder();

 builder.AddInMemoryCollection(dict)
 .AddCommandLine(args, GetSwitchMappings(dict));

 Configuration = builder.Build();

 Console.WriteLine($"MachineName: {Configuration["Profile:MachineName"]}");
 Console.WriteLine($"Left: {Configuration["App:MainWindow:Left"]}");
 Console.WriteLine();

 Console.WriteLine("Press a key...");
 Console.ReadKey();
 }
}

dotnet run

MachineName: RickPC
Left: 1980

dotnet run /Profile:MachineName=DahliaPC /App:MainWindow:Left=1984

Without providing command-line arguments, the dictionary provided to AddInMemoryCollection sets the
configuration values. Run the app with the following command:

The console window displays:

Use the following to pass in configuration settings:

The console window displays:

MachineName: DahliaPC
Left: 1984

KEY VALUE

-MachineName Profile:MachineName

-Left App:MainWindow:Left

dotnet run -MachineName=ChadPC -Left=1988

MachineName: ChadPC
Left: 1988

web.config file

Access configuration during startup

Adding configuration from an external assembly

Access configuration in a Razor Page or MVC view

After the switch mappings dictionary is created, it contains the data shown in the following table:

To demonstrate key switching using the dictionary, run the following command:

The command-line keys are swapped. The console window displays the configuration values for
Profile:MachineName and App:MainWindow:Left :

A web.config file is required when hosting the app in IIS or IIS Express. Settings in web.config enable the
ASP.NET Core Module to launch the app and configure other IIS settings and modules. If the web.config file
isn't present and the project file includes <Project Sdk="Microsoft.NET.Sdk.Web"> , publishing the project
creates a web.config file in the published output (the publish folder). For more information, see Host
ASP.NET Core on Windows with IIS.

To access configuration within ConfigureServices or Configure during startup, see the examples in the
Application startup topic.

An IHostingStartup implementation allows adding enhancements to an app at startup from an external
assembly outside of the app's Startup class. For more information, see Enhance an app from an external
assembly.

To access configuration settings in a Razor Pages page or an MVC view, add a using directive (C# reference:
using directive) for the Microsoft.Extensions.Configuration namespace and inject IConfiguration into the
page or view.

In a Razor Pages page:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/using-directive
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration

@page
@model IndexModel

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Index Page</title>
</head>
<body>
 <h1>Access configuration in a Razor Pages page</h1>
 <p>Configuration["key"]: @Configuration["key"]</p>
</body>
</html>

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Index View</title>
</head>
<body>
 <h1>Access configuration in an MVC view</h1>
 <p>Configuration["key"]: @Configuration["key"]</p>
</body>
</html>

Additional notes

Additional resources

In an MVC view:

Dependency Injection (DI) isn't set up until after ConfigureServices is invoked.
The configuration system isn't DI aware.
IConfiguration has two specializations:

IConfigurationRoot Used for the root node. Can trigger a reload.
IConfigurationSection Represents a section of configuration values. The GetSection and
GetChildren methods return an IConfigurationSection .

Use IConfigurationRoot when reloading configuration or for access to each provider. Neither of
these situations are common.

Options
Use multiple environments
Safe storage of app secrets in development
Host in ASP.NET Core
Dependency Injection
Azure Key Vault configuration provider

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfigurationroot

Options pattern in ASP.NET Core
6/10/2018 • 9 minutes to read • Edit Online

Basic options configuration

public class MyOptions
{
 public MyOptions()
 {
 // Set default value.
 Option1 = "value1_from_ctor";
 }

 public string Option1 { get; set; }
 public int Option2 { get; set; } = 5;
}

// Example #1: Basic options
// Register the Configuration instance which MyOptions binds against.
services.Configure<MyOptions>(Configuration);

private readonly MyOptions _options;

By Luke Latham

The options pattern uses classes to represent groups of related settings. When configuration settings are isolated
by feature into separate classes, the app adheres to two important software engineering principles:

The Interface Segregation Principle (ISP): Features (classes) that depend on configuration settings depend
only on the configuration settings that they use.
Separation of Concerns: Settings for different parts of the app aren't dependent or coupled to one another.

View or download sample code (how to download) This article is easier to follow with the sample app.

Basic options configuration is demonstrated as Example #1 in the sample app.

An options class must be non-abstract with a public parameterless constructor. The following class, MyOptions ,
has two properties, Option1 and Option2 . Setting default values is optional, but the class constructor in the
following example sets the default value of Option1 . Option2 has a default value set by initializing the property
directly (Models/MyOptions.cs):

The MyOptions class is added to the service container with Configure<TOptions>(IServiceCollection,
IConfiguration) and bound to configuration:

The following page model uses constructor dependency injection with IOptions<TOptions> to access the
settings (Pages/Index.cshtml.cs):

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/configuration/options.md
https://github.com/guardrex
http://deviq.com/interface-segregation-principle/
http://deviq.com/separation-of-concerns/
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/options/sample
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/options/sample
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.optionsconfigurationservicecollectionextensions.configure#Microsoft_Extensions_DependencyInjection_OptionsConfigurationServiceCollectionExtensions_Configure__1_Microsoft_Extensions_DependencyInjection_IServiceCollection_Microsoft_Extensions_Configuration_IConfiguration_
https://docs.microsoft.com/dotnet/api/Microsoft.Extensions.Options.IOptions-1

public IndexModel(
 IOptions<MyOptions> optionsAccessor,
 IOptions<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptions<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.Value;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.Value;
 _subOptions = subOptionsAccessor.Value;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #1: Simple options
var option1 = _options.Option1;
var option2 = _options.Option2;
SimpleOptions = $"option1 = {option1}, option2 = {option2}";

{
 "option1": "value1_from_json",
 "option2": -1,
 "subsection": {
 "suboption1": "subvalue1_from_json",
 "suboption2": 200
 },
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

option1 = value1_from_json, option2 = -1

Configure simple options with a delegate

The sample's appsettings.json file specifies values for option1 and option2 :

When the app is run, the page model's OnGet method returns a string showing the option class values:

Configuring simple options with a delegate is demonstrated as Example #2 in the sample app.

Use a delegate to set options values. The sample app uses the MyOptionsWithDelegateConfig class
(Models/MyOptionsWithDelegateConfig.cs):

https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/options/sample

public class MyOptionsWithDelegateConfig
{
 public MyOptionsWithDelegateConfig()
 {
 // Set default value.
 Option1 = "value1_from_ctor";
 }

 public string Option1 { get; set; }
 public int Option2 { get; set; } = 5;
}

// Example #2: Options bound and configured by a delegate
services.Configure<MyOptionsWithDelegateConfig>(myOptions =>
{
 myOptions.Option1 = "value1_configured_by_delegate";
 myOptions.Option2 = 500;
});

private readonly MyOptionsWithDelegateConfig _optionsWithDelegateConfig;

public IndexModel(
 IOptions<MyOptions> optionsAccessor,
 IOptions<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptions<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.Value;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.Value;
 _subOptions = subOptionsAccessor.Value;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #2: Options configured by delegate
var delegate_config_option1 = _optionsWithDelegateConfig.Option1;
var delegate_config_option2 = _optionsWithDelegateConfig.Option2;
SimpleOptionsWithDelegateConfig =
 $"delegate_option1 = {delegate_config_option1}, " +
 $"delegate_option2 = {delegate_config_option2}";

In the following code, a second IConfigureOptions<TOptions> service is added to the service container. It uses a
delegate to configure the binding with MyOptionsWithDelegateConfig :

Index.cshtml.cs:

You can add multiple configuration providers. Configuration providers are available in NuGet packages. They're
applied in order that they're registered.

Each call to Configure<TOptions> adds an IConfigureOptions<TOptions> service to the service container. In the
preceding example, the values of Option1 and Option2 are both specified in appsettings.json, but the values of
Option1 and Option2 are overridden by the configured delegate.

When more than one configuration service is enabled, the last configuration source specified wins and sets the
configuration value. When the app is run, the page model's OnGet method returns a string showing the option

https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.iconfigureoptions-1.configure

delegate_option1 = value1_configured_by_delgate, delegate_option2 = 500

Suboptions configuration

// Example #3: Sub-options
// Bind options using a sub-section of the appsettings.json file.
services.Configure<MySubOptions>(Configuration.GetSection("subsection"));

{
 "option1": "value1_from_json",
 "option2": -1,
 "subsection": {
 "suboption1": "subvalue1_from_json",
 "suboption2": 200
 },
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

class values:

Suboptions configuration is demonstrated as Example #3 in the sample app.

Apps should create options classes that pertain to specific feature groups (classes) in the app. Parts of the app
that require configuration values should only have access to the configuration values that they use.

When binding options to configuration, each property in the options type is bound to a configuration key of the
form property[:sub-property:] . For example, the MyOptions.Option1 property is bound to the key Option1 ,
which is read from the option1 property in appsettings.json.

In the following code, a third IConfigureOptions<TOptions> service is added to the service container. It binds
MySubOptions to the section subsection of the appsettings.json file:

The GetSection extension method requires the Microsoft.Extensions.Options.ConfigurationExtensions NuGet
package. If the app uses the Microsoft.AspNetCore.App metapackage (ASP.NET Core 2.1 or later), the package is
automatically included.

The sample's appsettings.json file defines a subsection member with keys for suboption1 and suboption2 :

The MySubOptions class defines properties, SubOption1 and SubOption2 , to hold the sub-option values
(Models/MySubOptions.cs):

https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/options/sample
https://www.nuget.org/packages/Microsoft.Extensions.Options.ConfigurationExtensions/

public class MySubOptions
{
 public MySubOptions()
 {
 // Set default values.
 SubOption1 = "value1_from_ctor";
 SubOption2 = 5;
 }

 public string SubOption1 { get; set; }
 public int SubOption2 { get; set; }
}

private readonly MySubOptions _subOptions;

public IndexModel(
 IOptions<MyOptions> optionsAccessor,
 IOptions<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptions<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.Value;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.Value;
 _subOptions = subOptionsAccessor.Value;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #3: Sub-options
var subOption1 = _subOptions.SubOption1;
var subOption2 = _subOptions.SubOption2;
SubOptions = $"subOption1 = {subOption1}, subOption2 = {subOption2}";

subOption1 = subvalue1_from_json, subOption2 = 200

Options provided by a view model or with direct view injection

private readonly MyOptions _options;

The page model's OnGet method returns a string with the sub-option values (Pages/Index.cshtml.cs):

When the app is run, the OnGet method returns a string showing the sub-option class values:

Options provided by a view model or with direct view injection is demonstrated as Example #4 in the sample
app.

Options can be supplied in a view model or by injecting IOptions<TOptions> directly into a view
(Pages/Index.cshtml.cs):

https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/options/sample

public IndexModel(
 IOptions<MyOptions> optionsAccessor,
 IOptions<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptions<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.Value;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.Value;
 _subOptions = subOptionsAccessor.Value;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #4: Bind options directly to the page
MyOptions = _options;

@page
@model IndexModel
@using Microsoft.Extensions.Options
@using UsingOptionsSample.Models
@inject IOptions<MyOptions> OptionsAccessor
@{
 ViewData["Title"] = "Using Options Sample";
}

<h1>@ViewData["Title"]</h1>

Reload configuration data with IOptionsSnapshot

For direct injection, inject IOptions<MyOptions> with an @inject directive:

When the app is run, the option values are shown in the rendered page:

Reloading configuration data with IOptionsSnapshot is demonstrated in Example #5 in the sample app.

Requires ASP.NET Core 1.1 or later.

IOptionsSnapshot supports reloading options with minimal processing overhead. In ASP.NET Core 1.1,
IOptionsSnapshot is a snapshot of IOptionsMonitor<TOptions> and updates automatically whenever the

monitor triggers changes based on the data source changing. In ASP.NET Core 2.0 and later, options are

https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/options/sample
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

private readonly MyOptions _snapshotOptions;

public IndexModel(
 IOptions<MyOptions> optionsAccessor,
 IOptions<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptions<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.Value;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.Value;
 _subOptions = subOptionsAccessor.Value;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #5: Snapshot options
var snapshotOption1 = _snapshotOptions.Option1;
var snapshotOption2 = _snapshotOptions.Option2;
SnapshotOptions =
 $"snapshot option1 = {snapshotOption1}, " +
 $"snapshot option2 = {snapshotOption2}";

snapshot option1 = value1_from_json, snapshot option2 = -1

snapshot option1 = value1_from_json UPDATED, snapshot option2 = 200

Named options support with IConfigureNamedOptions

computed once per request when accessed and cached for the lifetime of the request.

The following example demonstrates how a new IOptionsSnapshot is created after appsettings.json changes
(Pages/Index.cshtml.cs). Multiple requests to the server return constant values provided by the appsettings.json
file until the file is changed and configuration reloads.

The following image shows the initial option1 and option2 values loaded from the appsettings.json file:

Change the values in the appsettings.json file to value1_from_json UPDATED and 200 . Save the appsettings.json

file. Refresh the browser to see that the options values are updated:

Named options support with IConfigureNamedOptions is demonstrated as Example #6 in the sample app.

Requires ASP.NET Core 2.0 or later.

Named options support allows the app to distinguish between named options configurations. In the sample app,
named options are declared with the OptionsServiceCollectionExtensions.Configure<TOptions>
(IServiceCollection, String, Action<TOptions>) which in turn calls the extension method
ConfigureNamedOptions<TOptions>.Configure method:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/options/sample
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configure
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.configurenamedoptions-1.configure

// Example #6: Named options (named_options_1)
// Register the ConfigurationBuilder instance which MyOptions binds against.
// Specify that the options loaded from configuration are named
// "named_options_1".
services.Configure<MyOptions>("named_options_1", Configuration);

// Example #6: Named options (named_options_2)
// Specify that the options loaded from the MyOptions class are named
// "named_options_2".
// Use a delegate to configure option values.
services.Configure<MyOptions>("named_options_2", myOptions =>
{
 myOptions.Option1 = "named_options_2_value1_from_action";
});

private readonly MyOptions _named_options_1;
private readonly MyOptions _named_options_2;

public IndexModel(
 IOptions<MyOptions> optionsAccessor,
 IOptions<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptions<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.Value;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.Value;
 _subOptions = subOptionsAccessor.Value;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #6: Named options
var named_options_1 =
 $"named_options_1: option1 = {_named_options_1.Option1}, " +
 $"option2 = {_named_options_1.Option2}";
var named_options_2 =
 $"named_options_2: option1 = {_named_options_2.Option1}, " +
 $"option2 = {_named_options_2.Option2}";
NamedOptions = $"{named_options_1} {named_options_2}";

named_options_1: option1 = value1_from_json, option2 = -1
named_options_2: option1 = named_options_2_value1_from_action, option2 = 5

The sample app accesses the named options with IOptionsSnapshot<TOptions>.Get (Pages/Index.cshtml.cs):

Running the sample app, the named options are returned:

named_options_1 values are provided from configuration, which are loaded from the appsettings.json file.
named_options_2 values are provided by:

The named_options_2 delegate in ConfigureServices for Option1 .
The default value for Option2 provided by the MyOptions class.

Configure all named options instances with the OptionsServiceCollectionExtensions.ConfigureAll method. The
following code configures Option1 for all named configuration instances with a common value. Add the

https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1.get
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configureall

services.ConfigureAll<MyOptions>(myOptions =>
{
 myOptions.Option1 = "ConfigureAll replacement value";
});

named_options_1: option1 = ConfigureAll replacement value, option2 = -1
named_options_2: option1 = ConfigureAll replacement value, option2 = 5

NOTENOTE

IPostConfigureOptions

services.PostConfigure<MyOptions>(myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

services.PostConfigure<MyOptions>("named_options_1", myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

services.PostConfigureAll<MyOptions>("named_options_1", myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

Options factory, monitoring, and cache

following code manually to the Configure method:

Running the sample app after adding the code produces the following result:

In ASP.NET Core 2.0 and later, all options are named instances. Existing IConfigureOption instances are treated as
targeting the Options.DefaultName instance, which is string.Empty . IConfigureNamedOptions also implements
IConfigureOptions . The default implementation of the IOptionsFactory<TOptions> (reference source has logic to use

each appropriately. The null named option is used to target all of the named instances instead of a specific named
instance (ConfigureAll and PostConfigureAll use this convention).

Requires ASP.NET Core 2.0 or later.

Set postconfiguration with IPostConfigureOptions<TOptions>. Postconfiguration runs after all
IConfigureOptions<TOptions> configuration occurs:

PostConfigure<TOptions> is available to post-configure named options:

Use PostConfigureAll<TOptions> to post-configure all named configuration instances:

IOptionsMonitor is used for notifications when TOptions instances change. IOptionsMonitor supports
reloadable options, change notifications, and IPostConfigureOptions .

IOptionsFactory<TOptions> (ASP.NET Core 2.0 or later) is responsible for creating new options instances. It has
a single Create method. The default implementation takes all registered IConfigureOptions and

https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsfactory-1
https://github.com/aspnet/Options/blob/release/2.0/src/Microsoft.Extensions.Options/IOptionsFactory.cs
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configureall
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.postconfigureall
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1.postconfigure
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.postconfigureall
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsfactory-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsfactory-1.create

Accessing options during startup

See also

IPostConfigureOptions and runs all the configures first, followed by the post-configures. It distinguishes between
IConfigureNamedOptions and IConfigureOptions and only calls the appropriate interface.

IOptionsMonitorCache<TOptions> (ASP.NET Core 2.0 or later) is used by IOptionsMonitor to cache TOptions

instances. The IOptionsMonitorCache invalidates options instances in the monitor so that the value is recomputed
(TryRemove). Values can be manually introduced as well with TryAdd. The Clear method is used when all named
instances should be recreated on demand.

IOptions can be used in Configure , since services are built before the Configure method executes. If a service
provider is built in ConfigureServices to access options, it wouldn't contain any options configurations provided
after the service provider is built. Therefore, an inconsistent options state may exist due to the ordering of
service registrations.

Since options are typically loaded from configuration, configuration can be used in startup in both Configure

and ConfigureServices . For examples of using configuration during startup, see the Application startup topic.

Configuration

https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.tryremove
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.tryadd
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.clear

Enhance an app from an external assembly in
ASP.NET Core with IHostingStartup
6/13/2018 • 5 minutes to read • Edit Online

Discover loaded hosting startup assemblies

public class IndexModel : PageModel
{
 private readonly IConfiguration _config;

 public IndexModel(IConfiguration config)
 {
 _config = config;
 }

 public string[] LoadedHostingStartupAssemblies { get; private set; }

 public void OnGet()
 {
 LoadedHostingStartupAssemblies =
 _config[WebHostDefaults.HostingStartupAssembliesKey]
 .Split(new[] { ';' }, StringSplitOptions.RemoveEmptyEntries) ?? new string[0];
 }
}

Disable automatic loading of hosting startup assemblies

By Luke Latham

An IHostingStartup implementation allows adding enhancements to an app at startup from an external assembly
outside of the app's Startup class. For example, an external tooling library can use an IHostingStartup

implementation to provide additional configuration providers or services to an app. IHostingStartup is available

in ASP.NET Core 2.0 and later.

View or download sample code (how to download)

To discover hosting startup assemblies loaded by the app or by libraries, enable logging and check the application
logs. Errors that occur when loading assemblies are logged. Loaded hosting startup assemblies are logged at the
Debug level, and all errors are logged.

The sample app reads the HostingStartupAssembliesKey into a string array and displays the result in the app's
Index page:

There are two ways to disable the automatic loading of hosting startup assemblies:

Set the Prevent Hosting Startup host configuration setting.
Set the ASPNETCORE_PREVENTHOSTINGSTARTUP environment variable.

When either the host setting or the environment variable is set to true or 1 , hosting startup assemblies aren't
automatically loaded. If both are set, the host setting controls the behavior.

Disabling hosting startup assemblies using the host setting or environment variable disables them globally and
may disable several characteristics of an app. It isn't currently possible to selectively disable a hosting startup

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/configuration/platform-specific-configuration.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/platform-specific-configuration/sample/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostdefaults.hostingstartupassemblieskey

Implement IHostingStartup
Create the assemblyCreate the assembly

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Hosting.Abstractions"
 Version="2.1.0" />
 </ItemGroup>

</Project>

[assembly: HostingStartup(typeof(StartupEnhancement.StartupEnhancementHostingStartup))]

namespace StartupEnhancement
{
 public class StartupEnhancementHostingStartup : IHostingStartup
 {
 public void Configure(IWebHostBuilder builder)
 {
 // Use the IWebHostBuilder to add app enhancements.
 }
 }
}

assembly added by a library unless the library offers its own configuration option. A future release will offer the
ability to selectively disable hosting startup assemblies (see GitHub issue aspnet/Hosting #1243).

An IHostingStartup enhancement is deployed as an assembly based on a console app without an entry point.
The assembly references the Microsoft.AspNetCore.Hosting.Abstractions package:

A HostingStartup attribute identifies a class as an implementation of IHostingStartup for loading and execution
when building the IWebHost. In the following example, the namespace is StartupEnhancement , and the class is
StartupEnhancementHostingStartup :

A class implements IHostingStartup . The class's Configure method uses an IWebHostBuilder to add
enhancements to an app. IHostingStartup.Configure in the hosting startup assembly is called by the runtime
before Startup.Configure in user code, which allows user code to overwrite any configruation provided by the
hosting startup assembly.

When building an IHostingStartup project, the dependencies file (*.deps.json) sets the runtime location of the
assembly to the bin folder :

https://github.com/aspnet/Hosting/pull/1243
https://www.nuget.org/packages/Microsoft.AspNetCore.Hosting.Abstractions/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.hostingstartupattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhost
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup.configure
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder

"targets": {
 ".NETCoreApp,Version=v2.1": {
 "StartupEnhancement/1.0.0": {
 "dependencies": {
 "Microsoft.AspNetCore.Hosting.Abstractions": "2.1.0"
 },
 "runtime": {
 "StartupEnhancement.dll": {}
 }
 }
 }
}

Update the dependencies fileUpdate the dependencies file

"targets": {
 ".NETCoreApp,Version=v2.1": {
 "StartupEnhancement/1.0.0": {
 "dependencies": {
 "Microsoft.AspNetCore.Hosting.Abstractions": "2.1.0"
 },
 "runtime": {
 "lib/netcoreapp2.1/StartupEnhancement.dll": {}
 }
 }
 }
}

Enhancement activationEnhancement activation

<DRIVE>\Users\<USER>\.dotnet\store\x64\<TARGET_FRAMEWORK_MONIKER>\<ENHANCEMENT_ASSEMBLY_NAME>\
<ENHANCEMENT_VERSION>\lib\<TARGET_FRAMEWORK_MONIKER>\

<DRIVE>\Program Files\dotnet\store\x64\<TARGET_FRAMEWORK_MONIKER>\<ENHANCEMENT_ASSEMBLY_NAME>\
<ENHANCEMENT_VERSION>\lib\<TARGET_FRAMEWORK_MONIKER>\

Only part of the file is shown. The assembly name in the example is StartupEnhancement .

The runtime location is specified in the *.deps.json file. To active the enhancement, the runtime element must
specify the location of the enhancement's runtime assembly. Prefix the runtime location with
lib/<TARGET_FRAMEWORK_MONIKER>/ :

In the sample app, modification of the *.deps.json file is performed by a PowerShell script. The PowerShell script is
automatically triggered by a build target in the project file.

Place the assembly file

The IHostingStartup implementation's assembly file must be bin-deployed in the app or placed in the runtime
store:

For per-user use, place the assembly in the user profile's runtime store at:

For global use, place the assembly in the .NET Core installation's runtime store:

When deploying the assembly to the runtime store, the symbols file may be deployed as well but isn't required for
the enhancement to work.

Place the dependencies file

The implementation's *.deps.json file must be in an accessible location.

https://docs.microsoft.com/powershell/scripting/powershell-scripting
https://docs.microsoft.com/dotnet/core/deploying/runtime-store

<DRIVE>\Users\<USER>\.dotnet\x64\additionalDeps\<ENHANCEMENT_ASSEMBLY_NAME>\shared\Microsoft.NETCore.App\
<SHARED_FRAMEWORK_VERSION>\

<DRIVE>\Program Files\dotnet\additionalDeps\<ENHANCEMENT_ASSEMBLY_NAME>\shared\Microsoft.NETCore.App\
<SHARED_FRAMEWORK_VERSION>\

<DRIVE>\Users\<USER>\.dotnet\x64\additionalDeps\

<DRIVE>\Program Files\dotnet\additionalDeps\<ENHANCEMENT_ASSEMBLY_NAME>\shared\Microsoft.NETCore.App\
<SHARED_FRAMEWORK_VERSION>\<ENHANCEMENT_ASSEMBLY_NAME>.deps.json

%UserProfile%\.dotnet\x64\additionalDeps\StartupDiagnostics\

Sample app

For per-user use, place the file in the additonalDeps folder of the user profile's .dotnet settings:

For global use, place the file in the additonalDeps folder of the .NET Core installation:

The shared framework version reflects the version of the shared runtime that the target app uses. The shared
runtime is shown in the *.runtimeconfig.json file. In the sample app, the shared runtime is specified in the
HostingStartupSample.runtimeconfig.json file.

Set environment variables

Set the following environment variables in the context of the app that uses the enhancement.

ASPNETCORE_HOSTINGSTARTUPASSEMBLIES

Only hosting startup assemblies are scanned for the HostingStartupAttribute . The assembly name of the
implementation is provided in this environment variable. The sample app sets this value to StartupDiagnostics .

The value can also be set using the Hosting Startup Assemblies host configuration setting.

When multiple hosting startup assembles are present, their Configure methods are executed in the order that the
assemblies are listed.

DOTNET_ADDITIONAL_DEPS

The location of the implementation's *.deps.json file.

If the file is placed in the user profile's .dotnet folder for per-user use:

If the file is placed in the .NET Core installation for global use, provide the full path to the file:

The sample app sets this value to:

For examples of how to set environment variables for various operating systems, see Use multiple environments.

The sample app (how to download) uses IHostingStartup to create a diagnostics tool. The tool adds two
middlewares to the app at startup that provide diagnostic information:

Registered services
Address: scheme, host, path base, path, query string
Connection: remote IP, remote port, local IP, local port, client certificate

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup.configure
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/configuration/platform-specific-configuration/sample/

Request headers
Environment variables

To run the sample:

1. The Startup Diagnostic project uses PowerShell to modify its StartupDiagnostics.deps.json file. PowerShell is
installed by default on Windows OS starting with Windows 7 SP1 and Windows Server 2008 R2 SP1. To
obtain PowerShell on other platforms, see Installing Windows PowerShell.

2. Build the Startup Diagnostic project. A build target in the project file:

3. Set the environment variables:

4. Run the sample app.
5. Request the /services endpoint to see the app's registered services. Request the /diag endpoint to see the

diagnostic information.

Moves the assembly and symbols files to the user profile's runtime store.
Triggers the PowerShell script to modify the StartupDiagnostics.deps.json file.
Moves the StartupDiagnostics.deps.json file to the user profile's additionalDeps folder.

ASPNETCORE_HOSTINGSTARTUPASSEMBLIES : StartupDiagnostics

DOTNET_ADDITIONAL_DEPS : %UserProfile%\.dotnet\x64\additionalDeps\StartupDiagnostics\

https://docs.microsoft.com/powershell/scripting/powershell-scripting
https://docs.microsoft.com/powershell/scripting/setup/installing-windows-powershell

Logging in ASP.NET Core
6/15/2018 • 22 minutes to read • Edit Online

How to create logs

public class TodoController : Controller
{
 private readonly ITodoRepository _todoRepository;
 private readonly ILogger _logger;

 public TodoController(ITodoRepository todoRepository,
 ILogger<TodoController> logger)
 {
 _todoRepository = todoRepository;
 _logger = logger;
 }

public IActionResult GetById(string id)
{
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {ID}", id);
 var item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({ID}) NOT FOUND", id);
 return NotFound();
 }
 return new ObjectResult(item);
}

How to add providers

By Steve Smith and Tom Dykstra

ASP.NET Core supports a logging API that works with a variety of logging providers. Built-in providers let you
send logs to one or more destinations, and you can plug in a third-party logging framework. This article shows
how to use the built-in logging API and providers in your code.

ASP.NET Core 2.x
ASP.NET Core 1.x

View or download sample code (how to download)

To create logs, implement an ILogger object from the dependency injection container :

Then call logging methods on that logger object:

This example creates logs with the TodoController class as the category. Categories are explained later in this
article.

ASP.NET Core doesn't provide async logger methods because logging should be so fast that it isn't worth the
cost of using async. If you're in a situation where that's not true, consider changing the way you log. If your data
store is slow, write the log messages to a fast store first, then move them to a slow store later. For example, log
to a message queue that's read and persisted to slow storage by another process.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/logging/index.md
https://ardalis.com/
https://github.com/tdykstra
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/logging/index/sample2
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.ilogger

public static void Main(string[] args)
{
 var webHost = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 var env = hostingContext.HostingEnvironment;
 config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true, reloadOnChange:
true);
 config.AddEnvironmentVariables();
 })
 .ConfigureLogging((hostingContext, logging) =>
 {
 logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 })
 .UseStartup<Startup>()
 .Build();

 webHost.Run();
}

public static void Main(string[] args)
{
 BuildWebHost(args).Run();
}

public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();

Sample logging output

ASP.NET Core 2.x
ASP.NET Core 1.x

A logging provider takes the messages that you create with an ILogger object and displays or stores them. For
example, the Console provider displays messages on the console, and the Azure App Service provider can store
them in Azure blob storage.

To use a provider, call the provider's Add<ProviderName> extension method in Program.cs:

The default project template enables logging with the CreateDefaultBuilder method:

You'll find information about each built-in logging provider and links to third-party logging providers later in
the article.

With the sample code shown in the preceding section, you'll see logs in the console when you run from the
command line. Here's an example of console output:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder?view=aspnetcore-2.0#Microsoft_AspNetCore_WebHost_CreateDefaultBuilder_System_String___

info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
 Request starting HTTP/1.1 GET http://localhost:5000/api/todo/0
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
 Executing action method TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments (0) -
ModelState is Valid
info: TodoApi.Controllers.TodoController[1002]
 Getting item 0
warn: TodoApi.Controllers.TodoController[4000]
 GetById(0) NOT FOUND
info: Microsoft.AspNetCore.Mvc.StatusCodeResult[1]
 Executing HttpStatusCodeResult, setting HTTP status code 404
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
 Executed action TodoApi.Controllers.TodoController.GetById (TodoApi) in 42.9286ms
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
 Request finished in 148.889ms 404

Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request starting HTTP/1.1 GET
http://localhost:53104/api/todo/0
Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executing action method
TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments (0) - ModelState is Valid
TodoApi.Controllers.TodoController:Information: Getting item 0
TodoApi.Controllers.TodoController:Warning: GetById(0) NOT FOUND
Microsoft.AspNetCore.Mvc.StatusCodeResult:Information: Executing HttpStatusCodeResult, setting HTTP status
code 404
Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executed action
TodoApi.Controllers.TodoController.GetById (TodoApi) in 152.5657ms
Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request finished in 316.3195ms 404

NuGet packages

Log category

These logs were created by going to http://localhost:5000/api/todo/0 , which triggers execution of both
ILogger calls shown in the preceding section.

Here's an example of the same logs as they appear in the Debug window when you run the sample application
in Visual Studio:

The logs that were created by the ILogger calls shown in the preceding section begin with
"TodoApi.Controllers.TodoController". The logs that begin with "Microsoft" categories are from ASP.NET Core.
ASP.NET Core itself and your application code are using the same logging API and the same logging providers.

The remainder of this article explains some details and options for logging.

The ILogger and ILoggerFactory interfaces are in Microsoft.Extensions.Logging.Abstractions, and default
implementations for them are in Microsoft.Extensions.Logging.

A category is included with each log that you create. You specify the category when you create an ILogger

object. The category may be any string, but a convention is to use the fully qualified name of the class from
which the logs are written. For example: "TodoApi.Controllers.TodoController".

You can specify the category as a string or use an extension method that derives the category from the type. To
specify the category as a string, call CreateLogger on an ILoggerFactory instance, as shown below.

https://www.nuget.org/packages/Microsoft.Extensions.Logging.Abstractions/
https://www.nuget.org/packages/microsoft.extensions.logging/

public class TodoController : Controller
{
 private readonly ITodoRepository _todoRepository;
 private readonly ILogger _logger;

 public TodoController(ITodoRepository todoRepository,
 ILoggerFactory logger)
 {
 _todoRepository = todoRepository;
 _logger = logger.CreateLogger("TodoApi.Controllers.TodoController");
 }

public class TodoController : Controller
{
 private readonly ITodoRepository _todoRepository;
 private readonly ILogger _logger;

 public TodoController(ITodoRepository todoRepository,
 ILogger<TodoController> logger)
 {
 _todoRepository = todoRepository;
 _logger = logger;
 }

Log level

public IActionResult GetById(string id)
{
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {ID}", id);
 var item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({ID}) NOT FOUND", id);
 return NotFound();
 }
 return new ObjectResult(item);
}

Most of the time, it will be easier to use ILogger<T> , as in the following example.

This is equivalent to calling CreateLogger with the fully qualified type name of T .

Each time you write a log, you specify its LogLevel. The log level indicates the degree of severity or importance.
For example, you might write an Information log when a method ends normally, a Warning log when a method
returns a 404 return code, and an Error log when you catch an unexpected exception.

In the following code example, the names of the methods (for example, LogWarning) specify the log level. The
first parameter is the Log event ID. The second parameter is a message template with placeholders for
argument values provided by the remaining method parameters. The method parameters are explained in more
detail later in this article.

Log methods that include the level in the method name are extension methods for ILogger. Behind the scenes,
these methods call a Log method that takes a LogLevel parameter. You can call the Log method directly rather
than one of these extension methods, but the syntax is relatively complicated. For more information, see the
ILogger interface and the logger extensions source code.

ASP.NET Core defines the following log levels, ordered here from least to highest severity.

Trace = 0

https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.logLevel
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.loggerextensions
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.ilogger
https://github.com/aspnet/Logging/blob/master/src/Microsoft.Extensions.Logging.Abstractions/LoggerExtensions.cs
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.loglevel

For information that's valuable only to a developer debugging an issue. These messages may contain
sensitive application data and so shouldn't be enabled in a production environment. Disabled by default.
Example: Credentials: {"User":"someuser", "Password":"P@ssword"}

Debug = 1

For information that has short-term usefulness during development and debugging. Example:
Entering method Configure with flag set to true. You typically wouldn't enable Debug level logs in

production unless you are troubleshooting, due to the high volume of logs.

Information = 2

For tracking the general flow of the application. These logs typically have some long-term value.
Example: Request received for path /api/todo

Warning = 3

For abnormal or unexpected events in the application flow. These may include errors or other conditions
that don't cause the application to stop, but which may need to be investigated. Handled exceptions are a
common place to use the Warning log level. Example: FileNotFoundException for file quotes.txt.

Error = 4

For errors and exceptions that cannot be handled. These messages indicate a failure in the current activity
or operation (such as the current HTTP request), not an application-wide failure. Example log message:
Cannot insert record due to duplicate key violation.

Critical = 5

For failures that require immediate attention. Examples: data loss scenarios, out of disk space.

You can use the log level to control how much log output is written to a particular storage medium or display
window. For example, in production you might want all logs of Information level and lower to go to a volume
data store, and all logs of Warning level and higher to go to a value data store. During development, you might
normally send logs of Warning or higher severity to the console. Then when you need to troubleshoot, you can
add Debug level. The Log filtering section later in this article explains how to control which log levels a provider
handles.

The ASP.NET Core framework writes Debug level logs for framework events. The log examples earlier in this
article excluded logs below Information level, so no Debug level logs were shown. Here's an example of
console logs if you run the sample application configured to show Debug and higher logs for the console
provider.

info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
 Request starting HTTP/1.1 GET http://localhost:62555/api/todo/0
dbug: Microsoft.AspNetCore.Routing.Tree.TreeRouter[1]
 Request successfully matched the route with name 'GetTodo' and template 'api/Todo/{id}'.
dbug: Microsoft.AspNetCore.Mvc.Internal.ActionSelector[2]
 Action 'TodoApi.Controllers.TodoController.Update (TodoApi)' with id '089d59b6-92ec-472d-b552-
cc613dfd625d' did not match the constraint 'Microsoft.AspNetCore.Mvc.Internal.HttpMethodActionConstraint'
dbug: Microsoft.AspNetCore.Mvc.Internal.ActionSelector[2]
 Action 'TodoApi.Controllers.TodoController.Delete (TodoApi)' with id 'f3476abe-4bd9-4ad3-9261-
3ead09607366' did not match the constraint 'Microsoft.AspNetCore.Mvc.Internal.HttpMethodActionConstraint'
dbug: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
 Executing action TodoApi.Controllers.TodoController.GetById (TodoApi)
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
 Executing action method TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments (0) -
ModelState is Valid
info: TodoApi.Controllers.TodoController[1002]
 Getting item 0
warn: TodoApi.Controllers.TodoController[4000]
 GetById(0) NOT FOUND
dbug: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
 Executed action method TodoApi.Controllers.TodoController.GetById (TodoApi), returned result
Microsoft.AspNetCore.Mvc.NotFoundResult.
info: Microsoft.AspNetCore.Mvc.StatusCodeResult[1]
 Executing HttpStatusCodeResult, setting HTTP status code 404
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
 Executed action TodoApi.Controllers.TodoController.GetById (TodoApi) in 0.8788ms
dbug: Microsoft.AspNetCore.Server.Kestrel[9]
 Connection id "0HL6L7NEFF2QD" completed keep alive response.
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
 Request finished in 2.7286ms 404

Log event ID

public IActionResult GetById(string id)
{
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {ID}", id);
 var item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({ID}) NOT FOUND", id);
 return NotFound();
 }
 return new ObjectResult(item);
}

public class LoggingEvents
{
 public const int GenerateItems = 1000;
 public const int ListItems = 1001;
 public const int GetItem = 1002;
 public const int InsertItem = 1003;
 public const int UpdateItem = 1004;
 public const int DeleteItem = 1005;

 public const int GetItemNotFound = 4000;
 public const int UpdateItemNotFound = 4001;
}

Each time you write a log, you can specify an event ID. The sample app does this by using a locally-defined
LoggingEvents class:

info: TodoApi.Controllers.TodoController[1002]
 Getting item invalidid
warn: TodoApi.Controllers.TodoController[4000]
 GetById(invalidid) NOT FOUND

Log message template

public IActionResult GetById(string id)
{
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {ID}", id);
 var item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({ID}) NOT FOUND", id);
 return NotFound();
 }
 return new ObjectResult(item);
}

string p1 = "parm1";
string p2 = "parm2";
_logger.LogInformation("Parameter values: {p2}, {p1}", p1, p2);

Parameter values: parm1, parm2

_logger.LogInformation("Getting item {ID} at {RequestTime}", id, DateTime.Now);

An event ID is an integer value that you can use to associate a set of logged events with one another. For
instance, a log for adding an item to a shopping cart could be event ID 1000 and a log for completing a
purchase could be event ID 1001.

In logging output, the event ID may be stored in a field or included in the text message, depending on the
provider. The Debug provider doesn't show event IDs, but the console provider shows them in brackets after the
category:

Each time you write a log message, you provide a message template. The message template can be a string or it
can contain named placeholders into which argument values are placed. The template isn't a format string, and
placeholders should be named, not numbered.

The order of placeholders, not their names, determines which parameters are used to provide their values. If
you have the following code:

The resulting log message looks like this:

The logging framework does message formatting in this way to make it possible for logging providers to
implement semantic logging, also known as structured logging. Because the arguments themselves are passed
to the logging system, not just the formatted message template, logging providers can store the parameter
values as fields in addition to the message template. If you're directing your log output to Azure Table Storage
and your logger method call looks like this:

Each Azure Table entity can have ID and RequestTime properties, which simplifies queries on log data. You can
find all logs within a particular RequestTime range without the need to parse the time out of the text message.

https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging

Logging exceptions

catch (Exception ex)
{
 _logger.LogWarning(LoggingEvents.GetItemNotFound, ex, "GetById({ID}) NOT FOUND", id);
 return NotFound();
}
return new ObjectResult(item);

TodoApi.Controllers.TodoController:Warning: GetById(036dd898-fb01-47e8-9a65-f92eb73cf924) NOT FOUND

System.Exception: Item not found exception.
 at TodoApi.Controllers.TodoController.GetById(String id) in
C:\logging\sample\src\TodoApi\Controllers\TodoController.cs:line 226

Log filtering

The logger methods have overloads that let you pass in an exception, as in the following example:

Different providers handle the exception information in different ways. Here's an example of Debug provider
output from the code shown above.

ASP.NET Core 2.x
ASP.NET Core 1.x

You can specify a minimum log level for a specific provider and category or for all providers or all categories.
Any logs below the minimum level aren't passed to that provider, so they don't get displayed or stored.

If you want to suppress all logs, you can specify LogLevel.None as the minimum log level. The integer value of
LogLevel.None is 6, which is higher than LogLevel.Critical (5).

Create filter rules in configuration

The project templates create code that calls CreateDefaultBuilder to set up logging for the Console and Debug
providers. The CreateDefaultBuilder method also sets up logging to look for configuration in a Logging

section, using code like the following:

public static void Main(string[] args)
{
 var webHost = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 var env = hostingContext.HostingEnvironment;
 config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true, reloadOnChange:
true);
 config.AddEnvironmentVariables();
 })
 .ConfigureLogging((hostingContext, logging) =>
 {
 logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 })
 .UseStartup<Startup>()
 .Build();

 webHost.Run();
}

{
 "Logging": {
 "Debug": {
 "LogLevel": {
 "Default": "Information"
 }
 },
 "Console": {
 "IncludeScopes": false,
 "LogLevel": {
 "Microsoft.AspNetCore.Mvc.Razor.Internal": "Warning",
 "Microsoft.AspNetCore.Mvc.Razor.Razor": "Debug",
 "Microsoft.AspNetCore.Mvc.Razor": "Error",
 "Default": "Information"
 }
 },
 "LogLevel": {
 "Default": "Debug"
 }
 }
}

The configuration data specifies minimum log levels by provider and category, as in the following example:

This JSON creates six filter rules, one for the Debug provider, four for the Console provider, and one that applies
to all providers. You'll see later how just one of these rules is chosen for each provider when an ILogger object
is created.

Filter rules in code

You can register filter rules in code, as shown in the following example:

WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft", LogLevel.Trace))
 .Build();

NUMBER PROVIDER
CATEGORIES THAT BEGIN
WITH ... MINIMUM LOG LEVEL

1 Debug All categories Information

2 Console Microsoft.AspNetCore.Mvc.
Razor.Internal

Warning

3 Console Microsoft.AspNetCore.Mvc.
Razor.Razor

Debug

4 Console Microsoft.AspNetCore.Mvc.
Razor

Error

5 Console All categories Information

6 All providers All categories Debug

7 All providers System Debug

8 Debug Microsoft Trace

The second AddFilter specifies the Debug provider by using its type name. The first AddFilter applies to all
providers because it doesn't specify a provider type.

How filtering rules are applied

The configuration data and the AddFilter code shown in the preceding examples create the rules shown in the
following table. The first six come from the configuration example and the last two come from the code
example.

When you create an ILogger object to write logs with, the ILoggerFactory object selects a single rule per
provider to apply to that logger. All messages written by that ILogger object are filtered based on the selected
rules. The most specific rule possible for each provider and category pair is selected from the available rules.

The following algorithm is used for each provider when an ILogger is created for a given category:

Select all rules that match the provider or its alias. If none are found, select all rules with an empty provider.
From the result of the preceding step, select rules with longest matching category prefix. If none are found,
select all rules that don't specify a category.
If multiple rules are selected take the last one.
If no rules are selected, use MinimumLevel .

For example, suppose you have the preceding list of rules and you create an ILogger object for category
"Microsoft.AspNetCore.Mvc.Razor.RazorViewEngine":

For the Debug provider, rules 1, 6, and 8 apply. Rule 8 is most specific, so that's the one selected.
For the Console provider, rules 3, 4, 5, and 6 apply. Rule 3 is most specific.

WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(logging => logging.SetMinimumLevel(LogLevel.Warning))
 .Build();

WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(logBuilder =>
 {
 logBuilder.AddFilter((provider, category, logLevel) =>
 {
 if (provider == "Microsoft.Extensions.Logging.Console.ConsoleLoggerProvider" &&
 category == "TodoApi.Controllers.TodoController")
 {
 return false;
 }
 return true;
 });
 })
 .Build();

Log scopes

When you create logs with an ILogger for category "Microsoft.AspNetCore.Mvc.Razor.RazorViewEngine", logs
of Trace level and above will go to the Debug provider, and logs of Debug level and above will go to the
Console provider.

Provider aliases

You can use the type name to specify a provider in configuration, but each provider defines a shorter alias that's
easier to use. For the built-in providers, use the following aliases:

Console
Debug
EventLog
AzureAppServices
TraceSource
EventSource

Default minimum level

There's a minimum level setting that takes effect only if no rules from configuration or code apply for a given
provider and category. The following example shows how to set the minimum level:

If you don't explicitly set the minimum level, the default value is Information , which means that Trace and
Debug logs are ignored.

Filter functions

You can write code in a filter function to apply filtering rules. A filter function is invoked for all providers and
categories that don't have rules assigned to them by configuration or code. Code in the function has access to
the provider type, category, and log level to decide whether or not a message should be logged. For example:

You can group a set of logical operations within a scope in order to attach the same data to each log that's
created as part of that set. For example, you might want every log created as part of processing a transaction to
include the transaction ID.

public IActionResult GetById(string id)
{
 TodoItem item;
 using (_logger.BeginScope("Message attached to logs created in the using block"))
 {
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {ID}", id);
 item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({ID}) NOT FOUND", id);
 return NotFound();
 }
 }
 return new ObjectResult(item);
}

.ConfigureLogging((hostingContext, logging) =>
{
 logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole(options => options.IncludeScopes = true);
 logging.AddDebug();
})

NOTENOTE

info: TodoApi.Controllers.TodoController[1002]
 => RequestId:0HKV9C49II9CK RequestPath:/api/todo/0 => TodoApi.Controllers.TodoController.GetById
(TodoApi) => Message attached to logs created in the using block
 Getting item 0
warn: TodoApi.Controllers.TodoController[4000]
 => RequestId:0HKV9C49II9CK RequestPath:/api/todo/0 => TodoApi.Controllers.TodoController.GetById
(TodoApi) => Message attached to logs created in the using block
 GetById(0) NOT FOUND

Built-in logging providers

A scope is an IDisposable type that's returned by the ILogger.BeginScope<TState> method and lasts until it's
disposed. You use a scope by wrapping your logger calls in a using block, as shown here:

The following code enables scopes for the console provider :

ASP.NET Core 2.x
ASP.NET Core 1.x

In Program.cs:

Configuring the IncludeScopes console logger option is required to enable scope-based logging. Configuration of
IncludeScopes using appsettings configuration files will be available with the release of ASP.NET Core 2.1.

Each log message includes the scoped information:

ASP.NET Core ships the following providers:

Console
Debug
EventSource
EventLog

https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.ilogger.beginscope

Console providerConsole provider

logging.AddConsole()

Debug providerDebug provider

logging.AddDebug()

EventSource providerEventSource provider

logging.AddEventSourceLogger()

TraceSource
Azure App Service

The Microsoft.Extensions.Logging.Console provider package sends log output to the console.

ASP.NET Core 2.x
ASP.NET Core 1.x

The Microsoft.Extensions.Logging.Debug provider package writes log output by using the
System.Diagnostics.Debug class (Debug.WriteLine method calls).

On Linux, this provider writes logs to /var/log/message.

ASP.NET Core 2.x
ASP.NET Core 1.x

For apps that target ASP.NET Core 1.1.0 or higher, the Microsoft.Extensions.Logging.EventSource provider
package can implement event tracing. On Windows, it uses ETW. The provider is cross-platform, but there are
no event collection and display tools yet for Linux or macOS.

ASP.NET Core 2.x
ASP.NET Core 1.x

A good way to collect and view logs is to use the PerfView utility. There are other tools for viewing ETW logs,
but PerfView provides the best experience for working with the ETW events emitted by ASP.NET.

To configure PerfView for collecting events logged by this provider, add the string
*Microsoft-Extensions-Logging to the Additional Providers list. (Don't miss the asterisk at the start of the

string.)

https://www.nuget.org/packages/Microsoft.Extensions.Logging.Console
https://www.nuget.org/packages/Microsoft.Extensions.Logging.Debug
https://docs.microsoft.com/dotnet/api/system.diagnostics.debug
https://www.nuget.org/packages/Microsoft.Extensions.Logging.EventSource
https://msdn.microsoft.com/library/windows/desktop/bb968803
https://www.microsoft.com/download/details.aspx?id=28567

Windows EventLog providerWindows EventLog provider

logging.AddEventLog()

TraceSource providerTraceSource provider

logging.AddTraceSource(sourceSwitchName);

The Microsoft.Extensions.Logging.EventLog provider package sends log output to the Windows Event Log.

ASP.NET Core 2.x
ASP.NET Core 1.x

The Microsoft.Extensions.Logging.TraceSource provider package uses the System.Diagnostics.TraceSource
libraries and providers.

ASP.NET Core 2.x
ASP.NET Core 1.x

AddTraceSource overloads let you pass in a source switch and a trace listener.

To use this provider, an application has to run on the .NET Framework (rather than .NET Core). The provider lets
you route messages to a variety of listeners, such as the TextWriterTraceListener used in the sample application.

The following example configures a TraceSource provider that logs Warning and higher messages to the
console window.

https://www.nuget.org/packages/Microsoft.Extensions.Logging.EventLog
https://www.nuget.org/packages/Microsoft.Extensions.Logging.TraceSource
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracesource
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.tracesourcefactoryextensions
https://docs.microsoft.com/dotnet/framework/debug-trace-profile/trace-listeners
https://docs.microsoft.com/dotnet/api/system.diagnostics.textwritertracelistenerr

public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
{
 loggerFactory
 .AddDebug();

 // add Trace Source logging
 var testSwitch = new SourceSwitch("sourceSwitch", "Logging Sample");
 testSwitch.Level = SourceLevels.Warning;
 loggerFactory.AddTraceSource(testSwitch,
 new TextWriterTraceListener(writer: Console.Out));

Azure App Service providerAzure App Service provider

logging.AddAzureWebAppDiagnostics();

The Microsoft.Extensions.Logging.AzureAppServices provider package writes logs to text files in an Azure App
Service app's file system and to blob storage in an Azure Storage account. The provider is available only for
apps that target ASP.NET Core 1.1 or later.

ASP.NET Core 2.x
ASP.NET Core 1.x

If targeting .NET Core, don't install the provider package or explicitly call AddAzureWebAppDiagnostics. The
provider is automatically available to the app when the app is deployed to Azure App Service.

If targeting .NET Framework, add the provider package to the project and invoke AddAzureWebAppDiagnostics :

When you deploy to an App Service app, the app honors the settings in the Diagnostic Logs section of the App
Service page of the Azure portal. When these settings are updated, the changes take effect immediately
without requiring a restart or redeployment of the app.

https://www.nuget.org/packages/Microsoft.Extensions.Logging.AzureAppServices
https://azure.microsoft.com/documentation/articles/storage-dotnet-how-to-use-blobs/#what-is-blob-storage
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.azureappservicesloggerfactoryextensions.addazurewebappdiagnostics
https://azure.microsoft.com/documentation/articles/web-sites-enable-diagnostic-log/#enablediag

 Third-party logging providers

The default location for log files is in the D:\home\LogFiles\Application folder, and the default file name is
diagnostics-yyyymmdd.txt. The default file size limit is 10 MB, and the default maximum number of files
retained is 2. The default blob name is {app-name}{timestamp}/yyyy/mm/dd/hh/{guid}-applicationLog.txt. For
more information about default behavior, see AzureAppServicesDiagnosticsSettings.

The provider only works when the project runs in the Azure environment. It has no effect when the project is
run locally—it doesn't write to local files or local development storage for blobs.

Third-party logging frameworks that work with ASP.NET Core:

elmah.io (GitHub repo)
Gelf (GitHub repo)
JSNLog (GitHub repo)
Loggr (GitHub repo)
NLog (GitHub repo)
Serilog (GitHub repo)

Some third-party frameworks can perform semantic logging, also known as structured logging.

Using a third-party framework is similar to using one of the built-in providers:

1. Add a NuGet package to your project.
2. Call an extension method on ILoggerFactory .

For more information, see each framework's documentation.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.azureappservices.azureappservicesdiagnosticssettings
https://elmah.io/
https://github.com/elmahio/Elmah.Io.Extensions.Logging
http://docs.graylog.org/en/2.3/pages/gelf.html
https://github.com/mattwcole/gelf-extensions-logging
http://jsnlog.com/
https://github.com/mperdeck/jsnlog
http://loggr.net/
https://github.com/imobile3/Loggr.Extensions.Logging
http://nlog-project.org/
https://github.com/NLog/NLog.Extensions.Logging
https://serilog.net/
https://github.com/serilog/serilog-extensions-logging
https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging

Azure log streaming
Azure log streaming enables you to view log activity in real time from:

The application server
The web server
Failed request tracing

To configure Azure log streaming:

Navigate to the Diagnostics Logs page from your application's portal page
Set Application Logging (Filesystem) to on.

Navigate to the Log Streaming page to view application messages. They're logged by application through the
ILogger interface.

Additional resources
High-performance logging with LoggerMessage

High-performance logging with LoggerMessage in
ASP.NET Core
6/2/2018 • 7 minutes to read • Edit Online

LoggerMessage.Define

private static readonly Action<ILogger, Exception> _indexPageRequested;

By Luke Latham

LoggerMessage features create cacheable delegates that require fewer object allocations and reduced
computational overhead compared to logger extension methods, such as LogInformation , LogDebug , and
LogError . For high-performance logging scenarios, use the LoggerMessage pattern.

LoggerMessage provides the following performance advantages over Logger extension methods:

Logger extension methods require "boxing" (converting) value types, such as int , into object . The
LoggerMessage pattern avoids boxing by using static Action fields and extension methods with strongly-typed

parameters.
Logger extension methods must parse the message template (named format string) every time a log message
is written. LoggerMessage only requires parsing a template once when the message is defined.

View or download sample code (how to download)

The sample app demonstrates LoggerMessage features with a basic quote tracking system. The app adds and
deletes quotes using an in-memory database. As these operations occur, log messages are generated using the
LoggerMessage pattern.

Define(LogLevel, EventId, String) creates an Action delegate for logging a message. Define overloads permit
passing up to six type parameters to a named format string (template).

The string provided to the Define method is a template and not an interpolated string. Placeholders are filled in
the order that the types are specified. Placeholder names in the template should be descriptive and consistent
across templates. They serve as property names within structured log data. We recommend Pascal casing for
placeholder names. For example, {Count} , {FirstName} .

Each log message is an Action held in a static field created by LoggerMessage.Define . For example, the sample app
creates a field to describe a log message for a GET request for the Index page (Internal/LoggerExtensions.cs):

For the Action , specify:

The log level.
A unique event identifier (EventId) with the name of the static extension method.
The message template (named format string).

A request for the Index page of the sample app sets the:

Log level to Information .
Event id to 1 with the name of the IndexPageRequested method.
Message template (named format string) to a string.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/logging/loggermessage.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/dotnet/api/Microsoft.Extensions.Logging.LoggerExtensions
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/logging/loggermessage/sample/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/dotnet/standard/design-guidelines/capitalization-conventions
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.eventid

_indexPageRequested = LoggerMessage.Define(
 LogLevel.Information,
 new EventId(1, nameof(IndexPageRequested)),
 "GET request for Index page");

public static void IndexPageRequested(this ILogger logger)
{
 _indexPageRequested(logger, null);
}

public async Task OnGetAsync()
{
 _logger.IndexPageRequested();

 Quotes = await _db.Quotes.AsNoTracking().ToListAsync();
}

info: LoggerMessageSample.Pages.IndexModel[1]
 => RequestId:0HL90M6E7PHK4:00000001 RequestPath:/ => /Index
 GET request for Index page

private static readonly Action<ILogger, string, Exception> _quoteAdded;

_quoteAdded = LoggerMessage.Define<string>(
 LogLevel.Information,
 new EventId(2, nameof(QuoteAdded)),
 "Quote added (Quote = '{Quote}')");

public static void QuoteAdded(this ILogger logger, string quote)
{
 _quoteAdded(logger, quote, null);
}

Structured logging stores may use the event name when it's supplied with the event id to enrich logging. For
example, Serilog uses the event name.

The Action is invoked through a strongly-typed extension method. The IndexPageRequested method logs a
message for an Index page GET request in the sample app:

IndexPageRequested is called on the logger in the OnGetAsync method in Pages/Index.cshtml.cs:

Inspect the app's console output:

To pass parameters to a log message, define up to six types when creating the static field. The sample app logs a
string when adding a quote by defining a string type for the Action field:

The delegate's log message template receives its placeholder values from the types provided. The sample app
defines a delegate for adding a quote where the quote parameter is a string :

The static extension method for adding a quote, QuoteAdded , receives the quote argument value and passes it to
the Action delegate:

In the Index page's page model (Pages/Index.cshtml.cs), QuoteAdded is called to log the message:

https://github.com/serilog/serilog-extensions-logging

public async Task<IActionResult> OnPostAddQuoteAsync()
{
 _db.Quotes.Add(Quote);
 await _db.SaveChangesAsync();

 _logger.QuoteAdded(Quote.Text);

 return RedirectToPage();
}

info: LoggerMessageSample.Pages.IndexModel[2]
 => RequestId:0HL90M6E7PHK5:0000000A RequestPath:/ => /Index
 Quote added (Quote = 'You can avoid reality, but you cannot avoid the consequences of avoiding reality.
- Ayn Rand')

private static readonly Action<ILogger, string, int, Exception> _quoteDeleted;
private static readonly Action<ILogger, int, Exception> _quoteDeleteFailed;

_quoteDeleted = LoggerMessage.Define<string, int>(
 LogLevel.Information,
 new EventId(4, nameof(QuoteDeleted)),
 "Quote deleted (Quote = '{Quote}' Id = {Id})");

_quoteDeleteFailed = LoggerMessage.Define<int>(
 LogLevel.Error,
 new EventId(5, nameof(QuoteDeleteFailed)),
 "Quote delete failed (Id = {Id})");

public static void QuoteDeleted(this ILogger logger, string quote, int id)
{
 _quoteDeleted(logger, quote, id, null);
}

public static void QuoteDeleteFailed(this ILogger logger, int id, Exception ex)
{
 _quoteDeleteFailed(logger, id, ex);
}

Inspect the app's console output:

The sample app implements a try – catch pattern for quote deletion. An informational message is logged for a
successful delete operation. An error message is logged for a delete operation when an exception is thrown. The
log message for the unsuccessful delete operation includes the exception stack trace (Internal/LoggerExtensions.cs):

Note how the exception is passed to the delegate in QuoteDeleteFailed :

In the page model for the Index page, a successful quote deletion calls the QuoteDeleted method on the logger.
When a quote isn't found for deletion, an ArgumentNullException is thrown. The exception is trapped by the try –
catch statement and logged by calling the QuoteDeleteFailed method on the logger in the catch block

(Pages/Index.cshtml.cs):

public async Task<IActionResult> OnPostDeleteQuoteAsync(int id)
{
 var quote = await _db.Quotes.FindAsync(id);

 // DO NOT use this approach in production code!
 // You should check quote to see if it's null before removing
 // it and saving changes to the database. A try-catch is used
 // here for demonstration purposes of LoggerMessage features.
 try
 {
 _db.Quotes.Remove(quote);
 await _db.SaveChangesAsync();

 _logger.QuoteDeleted(quote.Text, id);
 }
 catch (ArgumentNullException ex)
 {
 _logger.QuoteDeleteFailed(id, ex);
 }

 return RedirectToPage();
}

info: LoggerMessageSample.Pages.IndexModel[4]
 => RequestId:0HL90M6E7PHK5:00000016 RequestPath:/ => /Index
 Quote deleted (Quote = 'You can avoid reality, but you cannot avoid the consequences of avoiding
reality. - Ayn Rand' Id = 1)

fail: LoggerMessageSample.Pages.IndexModel[5]
 => RequestId:0HL90M6E7PHK5:00000010 RequestPath:/ => /Index
 Quote delete failed (Id = 999)
System.ArgumentNullException: Value cannot be null.
Parameter name: entity
 at Microsoft.EntityFrameworkCore.Utilities.Check.NotNull[T](T value, String parameterName)
 at Microsoft.EntityFrameworkCore.DbContext.Remove[TEntity](TEntity entity)
 at Microsoft.EntityFrameworkCore.Internal.InternalDbSet`1.Remove(TEntity entity)
 at LoggerMessageSample.Pages.IndexModel.<OnPostDeleteQuoteAsync>d__14.MoveNext() in
 <PATH>\sample\Pages\Index.cshtml.cs:line 87

LoggerMessage.DefineScope

When a quote is successfully deleted, inspect the app's console output:

When quote deletion fails, inspect the app's console output. Note that the exception is included in the log message:

DefineScope(String) creates a Func delegate for defining a log scope. DefineScope overloads permit passing up to
three type parameters to a named format string (template).

As is the case with the Define method, the string provided to the DefineScope method is a template and not an
interpolated string. Placeholders are filled in the order that the types are specified. Placeholder names in the
template should be descriptive and consistent across templates. They serve as property names within structured
log data. We recommend Pascal casing for placeholder names. For example, {Count} , {FirstName} .

Define a log scope to apply to a series of log messages using the DefineScope(String) method.

The sample app has a Clear All button for deleting all of the quotes in the database. The quotes are deleted by
removing them one at a time. Each time a quote is deleted, the QuoteDeleted method is called on the logger. A log
scope is added to these log messages.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/dotnet/standard/design-guidelines/capitalization-conventions
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.loggermessage.definescope

{
 "Logging": {
 "Console": {
 "IncludeScopes": true
 },
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

private static Func<ILogger, int, IDisposable> _allQuotesDeletedScope;

_allQuotesDeletedScope = LoggerMessage.DefineScope<int>("All quotes deleted (Count = {Count})");

public static IDisposable AllQuotesDeletedScope(this ILogger logger, int count)
{
 return _allQuotesDeletedScope(logger, count);
}

public async Task<IActionResult> OnPostDeleteAllQuotesAsync()
{
 var quoteCount = await _db.Quotes.CountAsync();

 using (_logger.AllQuotesDeletedScope(quoteCount))
 {
 foreach (Quote quote in _db.Quotes)
 {
 _db.Quotes.Remove(quote);

 _logger.QuoteDeleted(quote.Text, quote.Id);
 }
 await _db.SaveChangesAsync();
 }

 return RedirectToPage();
}

Enable IncludeScopes in the console logger section of appsettings.json:

To create a log scope, add a field to hold a Func delegate for the scope. The sample app creates a field called
_allQuotesDeletedScope (Internal/LoggerExtensions.cs):

Use DefineScope to create the delegate. Up to three types can be specified for use as template arguments when
the delegate is invoked. The sample app uses a message template that includes the number of deleted quotes (an
int type):

Provide a static extension method for the log message. Include any type parameters for named properties that
appear in the message template. The sample app takes in a count of quotes to delete and returns
_allQuotesDeletedScope :

The scope wraps the logging extension calls in a using block:

Inspect the log messages in the app's console output. The following result shows three quotes deleted with the log
scope message included:

info: LoggerMessageSample.Pages.IndexModel[4]
 => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => All quotes deleted (Count = 3)
 Quote deleted (Quote = 'Quote 1' Id = 2)
info: LoggerMessageSample.Pages.IndexModel[4]
 => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => All quotes deleted (Count = 3)
 Quote deleted (Quote = 'Quote 2' Id = 3)
info: LoggerMessageSample.Pages.IndexModel[4]
 => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => All quotes deleted (Count = 3)
 Quote deleted (Quote = 'Quote 3' Id = 4)

Additional resources
Logging

Handle errors in ASP.NET Core
5/30/2018 • 6 minutes to read • Edit Online

The developer exception page

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole();
 env.EnvironmentName = EnvironmentName.Production;
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/error");
 }

WARNINGWARNING

By Steve Smith and Tom Dykstra

This article covers common appoaches to handling errors in ASP.NET Core apps.

View or download sample code (how to download)

To configure an app to display a page that shows detailed information about exceptions, install the
Microsoft.AspNetCore.Diagnostics NuGet package and add a line to the Configure method in the Startup class:

Put UseDeveloperExceptionPage before any middleware you want to catch exceptions in, such as app.UseMvc .

Enable the developer exception page only when the app is running in the Development environment. You don't want
to share detailed exception information publicly when the app runs in production. Learn more about configuring
environments.

To see the developer exception page, run the sample application with the environment set to Development , and
add ?throw=true to the base URL of the app. The page includes several tabs with information about the
exception and the request. The first tab includes a stack trace.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/error-handling.md
https://ardalis.com/
https://github.com/tdykstra/
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/error-handling/sample

The next tab shows the query string parameters, if any.

This request didn't have any cookies, but if it did, they would appear on the Cookies tab. You can see the headers
that were passed in the last tab.

Configuring a custom exception handling page

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole();
 env.EnvironmentName = EnvironmentName.Production;
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/error");
 }

Configure an exception handler page to use when the app isn't running in the Development environment.

In a Razor Pages app, the dotnet new Razor Pages template provides an Error page and ErrorModel page model
class in the Pages folder.

In an MVC app, don't decorate the error handler action method with HTTP method attributes, such as HttpGet .
Explicit verbs prevent some requests from reaching the method. Allow anonymous access to the method so that
unauthenticated users are able to receive the error view.

For example, the following error handler method is provided by the dotnet new MVC template and appears in
the Home controller :

https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/dotnet/core/tools/dotnet-new

[AllowAnonymous]
public IActionResult Error()
{
 return View(new ErrorViewModel { RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier });
}

Configuring status code pages

app.UseStatusCodePages();

app.UseStatusCodePages(async context =>
{
 context.HttpContext.Response.ContentType = "text/plain";
 await context.HttpContext.Response.WriteAsync(
 "Status code page, status code: " +
 context.HttpContext.Response.StatusCode);
});

app.UseStatusCodePages("text/plain", "Status code page, status code: {0}");

app.UseStatusCodePagesWithRedirects("/error/{0}");

app.UseStatusCodePagesWithReExecute("/error/{0}");

By default, an app doesn't provide a rich status code page for HTTP status codes, such as 404 Not Found. To
provide status code pages, configure the Status Code Pages Middleware by adding a line to the
Startup.Configure method:

By default, Status Code Pages Middleware adds simple, text-only handlers for common status codes, such as 404:

The middleware supports several extension methods. One method takes a lambda expression:

Another method takes a content type and format string:

There are also redirect and re-execute extension methods. The redirect method sends a 302 status code to the
client:

The re-execute method returns the original status code to the client but also executes the handler for the redirect
URL:

Status code pages can be disabled for specific requests in a Razor Pages handler method or in an MVC controller.
To disable status code pages, attempt to retrieve the IStatusCodePagesFeature from the request's
HttpContext.Features collection and disable the feature if it's available:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.diagnostics.istatuscodepagesfeature
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httpcontext.features

var statusCodePagesFeature = HttpContext.Features.Get<IStatusCodePagesFeature>();

if (statusCodePagesFeature != null)
{
 statusCodePagesFeature.Enabled = false;
}

@page
@model ErrorModel
@{
 ViewData["Title"] = "Error";
}

<h1 class="text-danger">Error.</h1>
<h2 class="text-danger">An error occurred while processing your request.</h2>

@if (Model.ShowRequestId)
{
 <p>
 Request ID: <code>@Model.RequestId</code>
 </p>
}

<h3>Development Mode</h3>
<p>
 Swapping to Development environment will display more detailed information about the
error that occurred.
</p>
<p>
 Development environment should not be enabled in deployed applications, as it can result
in sensitive information from exceptions being displayed to end users. For local debugging, development
environment can be enabled by setting the ASPNETCORE_ENVIRONMENT environment variable to
Development, and restarting the application.
</p>

public class ErrorModel : PageModel
{
 public string RequestId { get; set; }

 public bool ShowRequestId => !string.IsNullOrEmpty(RequestId);

 [ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
 public void OnGet()
 {
 RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier;
 }
}

Exception-handling code

If using a UseStatusCodePages* overload that points to an endpoint within the app, create an MVC view or Razor
Page for the endpoint. For example, the dotnet new template for a Razor Pages app produces the following page
and page model class:

Error.cshtml:

Error.cshtml.cs:

Code in exception handling pages can throw exceptions. It's often a good idea for production error pages to
consist of purely static content.

https://docs.microsoft.com/dotnet/core/tools/dotnet-new

Server exception handling

Startup exception handling

ASP.NET MVC error handling

Exception FiltersException Filters

TIPTIP

Handling Model State ErrorsHandling Model State Errors

Also, be aware that once the headers for a response have been sent, you can't change the response's status code,
nor can any exception pages or handlers run. The response must be completed or the connection aborted.

In addition to the exception handling logic in your app, the server hosting your app performs some exception
handling. If the server catches an exception before the headers are sent, the server sends a 500 Internal Server
Error response with no body. If the server catches an exception after the headers have been sent, the server
closes the connection. Requests that aren't handled by your app are handled by the server. Any exception that
occurs is handled by the server's exception handling. Any configured custom error pages or exception handling
middleware or filters don't affect this behavior.

Only the hosting layer can handle exceptions that take place during app startup. Using the Web Host, you can
configure how the host behaves in response to errors during startup with the captureStartupErrors and
detailedErrors keys.

Hosting can only show an error page for a captured startup error if the error occurs after host address/port
binding. If any binding fails for any reason, the hosting layer logs a critical exception, the dotnet process crashes,
and no error page is displayed when the app is running on the Kestrel server.

When running on IIS or IIS Express, a 502.5 Process Failure is returned by the ASP.NET Core Module if the
process can't be started. Follow the troubleshooting advice in the Troubleshoot ASP.NET Core on IIS topic.

MVC apps have some additional options for handling errors, such as configuring exception filters and
performing model validation.

Exception filters can be configured globally or on a per-controller or per-action basis in an MVC app. These filters
handle any unhandled exception that occurs during the execution of a controller action or another filter, and are
not called otherwise. Learn more about exception filters in Filters.

Exception filters are good for trapping exceptions that occur within MVC actions, but they're not as flexible as error
handling middleware. Prefer middleware for the general case, and use filters only where you need to do error handling
differently based on which MVC action was chosen.

Model validation occurs prior to invoking each controller action, and it's the action method's responsibility to
inspect ModelState.IsValid and react appropriately.

Some apps will choose to follow a standard convention for dealing with model validation errors, in which case a
filter may be an appropriate place to implement such a policy. You should test how your actions behave with
invalid model states. Learn more in Test controller logic.

https://docs.microsoft.com/iis
https://docs.microsoft.com/iis/extensions/introduction-to-iis-express/iis-express-overview

File Providers in ASP.NET Core
3/1/2018 • 6 minutes to read • Edit Online

File Provider abstractions

File Provider implementations

PhysicalFileProviderPhysicalFileProvider

IFileProvider provider = new PhysicalFileProvider(applicationRoot);
IDirectoryContents contents = provider.GetDirectoryContents(""); // the applicationRoot contents
IFileInfo fileInfo = provider.GetFileInfo("wwwroot/js/site.js"); // a file under applicationRoot

By Steve Smith

ASP.NET Core abstracts file system access through the use of File Providers.

View or download sample code (how to download)

File Providers are an abstraction over file systems. The main interface is IFileProvider . IFileProvider exposes
methods to get file information (IFileInfo), directory information (IDirectoryContents), and to set up change
notifications (using an IChangeToken).

IFileInfo provides methods and properties about individual files or directories. It has two boolean properties,
Exists and IsDirectory , as well as properties describing the file's Name , Length (in bytes), and LastModified

date. You can read from the file using its CreateReadStream method.

Three implementations of IFileProvider are available: Physical, Embedded, and Composite. The physical provider
is used to access the actual system's files. The embedded provider is used to access files embedded in assemblies.
The composite provider is used to provide combined access to files and directories from one or more other
providers.

The PhysicalFileProvider provides access to the physical file system. It wraps the System.IO.File type (for the
physical provider), scoping all paths to a directory and its children. This scoping limits access to a certain directory
and its children, preventing access to the file system outside of this boundary. When instantiating this provider, you
must provide it with a directory path, which serves as the base path for all requests made to this provider (and
which restricts access outside of this path). In an ASP.NET Core app, you can instantiate a PhysicalFileProvider

provider directly, or you can request an IFileProvider in a Controller or service's constructor through dependency
injection. The latter approach will typically yield a more flexible and testable solution.

The sample below shows how to create a PhysicalFileProvider .

You can iterate through its directory contents or get a specific file's information by providing a subpath.

To request a provider from a controller, specify it in the controller's constructor and assign it to a local field. Use the
local instance from your action methods:

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/file-providers.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/file-providers/sample

public class HomeController : Controller
{
 private readonly IFileProvider _fileProvider;

 public HomeController(IFileProvider fileProvider)
 {
 _fileProvider = fileProvider;
 }

 public IActionResult Index()
 {
 var contents = _fileProvider.GetDirectoryContents("");
 return View(contents);
 }

using System.Linq;
using System.Reflection;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.FileProviders;
using Microsoft.Extensions.Logging;

namespace FileProviderSample
{
 public class Startup
 {
 private IHostingEnvironment _hostingEnvironment;
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();

 _hostingEnvironment = env;
 }

 public IConfigurationRoot Configuration { get; }

 // This method gets called by the runtime. Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();

 var physicalProvider = _hostingEnvironment.ContentRootFileProvider;
 var embeddedProvider = new EmbeddedFileProvider(Assembly.GetEntryAssembly());
 var compositeProvider = new CompositeFileProvider(physicalProvider, embeddedProvider);

 // choose one provider to use for the app and register it
 //services.AddSingleton<IFileProvider>(physicalProvider);
 //services.AddSingleton<IFileProvider>(embeddedProvider);
 services.AddSingleton<IFileProvider>(compositeProvider);
 }

Then, create the provider in the app's Startup class:

In the Index.cshtml view, iterate through the IDirectoryContents provided:

@using Microsoft.Extensions.FileProviders
@model IDirectoryContents

<h2>Folder Contents</h2>

 @foreach (IFileInfo item in Model)
 {
 if (item.IsDirectory)
 {
 @item.Name
 }
 else
 {
 @item.Name - @item.Length bytes
 }
 }

EmbeddedFileProviderEmbeddedFileProvider

<ItemGroup>
 <EmbeddedResource Include="Resource.txt;***.js"
Exclude="bin**;obj**;***.xproj;packages**;@(EmbeddedResource)" />
 <Content Update="wwwroot***;Views***;Areas**\Views;appsettings.json;web.config">
 <CopyToPublishDirectory>PreserveNewest</CopyToPublishDirectory>
 </Content>
</ItemGroup>

The result:

The EmbeddedFileProvider is used to access files embedded in assemblies. In .NET Core, you embed files in an
assembly with the <EmbeddedResource> element in the .csproj file:

You can use globbing patterns when specifying files to embed in the assembly. These patterns can be used to

NOTENOTE

var embeddedProvider = new EmbeddedFileProvider(Assembly.GetEntryAssembly());

NOTENOTE

TIPTIP

CompositeFileProviderCompositeFileProvider

match one or more files.

It's unlikely you would ever want to actually embed every .js file in your project in its assembly; the above sample is for demo
purposes only.

When creating an EmbeddedFileProvider , pass the assembly it will read to its constructor.

The snippet above demonstrates how to create an EmbeddedFileProvider with access to the currently executing
assembly.

Updating the sample app to use an EmbeddedFileProvider results in the following output:

Embedded resources don't expose directories. Rather, the path to the resource (via its namespace) is embedded in its
filename using . separators.

The EmbeddedFileProvider constructor accepts an optional baseNamespace parameter. Specifying this will scope calls to
GetDirectoryContents to those resources under the provided namespace.

The CompositeFileProvider combines IFileProvider instances, exposing a single interface for working with files
from multiple providers. When creating the CompositeFileProvider , you pass one or more IFileProvider

var physicalProvider = _hostingEnvironment.ContentRootFileProvider;
var embeddedProvider = new EmbeddedFileProvider(Assembly.GetEntryAssembly());
var compositeProvider = new CompositeFileProvider(physicalProvider, embeddedProvider);

Watching for changes

instances to its constructor :

Updating the sample app to use a CompositeFileProvider that includes both the physical and embedded providers
configured previously, results in the following output:

The IFileProvider Watch method provides a way to watch one or more files or directories for changes. This
method accepts a path string, which can use globbing patterns to specify multiple files, and returns an
IChangeToken . This token exposes a HasChanged property that can be inspected, and a RegisterChangeCallback

method that's called when changes are detected to the specified path string. Note that each change token only calls
its associated callback in response to a single change. To enable constant monitoring, you can use a
TaskCompletionSource as shown below, or re-create IChangeToken instances in response to changes.

private static PhysicalFileProvider _fileProvider =
 new PhysicalFileProvider(Directory.GetCurrentDirectory());

public static void Main(string[] args)
{
 Console.WriteLine("Monitoring quotes.txt for changes (Ctrl-c to quit)...");

 while (true)
 {
 MainAsync().GetAwaiter().GetResult();
 }
}

private static async Task MainAsync()
{
 IChangeToken token = _fileProvider.Watch("quotes.txt");
 var tcs = new TaskCompletionSource<object>();

 token.RegisterChangeCallback(state =>
 ((TaskCompletionSource<object>)state).TrySetResult(null), tcs);

 await tcs.Task.ConfigureAwait(false);

 Console.WriteLine("quotes.txt changed");
}

NOTENOTE

Globbing patterns

In this article's sample, a console application is configured to display a message whenever a text file is modified:

The result, after saving the file several times:

Some file systems, such as Docker containers and network shares, may not reliably send change notifications. Set the
DOTNET_USE_POLLINGFILEWATCHER environment variable to 1 or true to poll the file system for changes every 4 seconds.

File system paths use wildcard patterns called globbing patterns. These simple patterns can be used to specify
groups of files. The two wildcard characters are * and ** .

Globbing pattern examplesGlobbing pattern examples

File Provider usage in ASP.NET Core

Recommendations for use in apps

*

Matches anything at the current folder level, or any filename, or any file extension. Matches are terminated by /

and . characters in the file path.

**

Matches anything across multiple directory levels. Can be used to recursively match many files within a directory
hierarchy.

directory/file.txt

Matches a specific file in a specific directory.

directory/*.txt

Matches all files with .txt extension in a specific directory.

directory/*/bower.json

Matches all bower.json files in directories exactly one level below the directory directory.

directory/**/*.txt

Matches all files with .txt extension found anywhere under the directory directory.

Several parts of ASP.NET Core utilize file providers. IHostingEnvironment exposes the app's content root and web
root as IFileProvider types. The static files middleware uses file providers to locate static files. Razor makes heavy
use of IFileProvider in locating views. Dotnet's publish functionality uses file providers and globbing patterns to
specify which files should be published.

If your ASP.NET Core app requires file system access, you can request an instance of IFileProvider through
dependency injection, and then use its methods to perform the access, as shown in this sample. This allows you to
configure the provider once, when the app starts up, and reduces the number of implementation types your app
instantiates.

Host in ASP.NET Core
6/10/2018 • 2 minutes to read • Edit Online

.NET apps configure and launch a host. The host is responsible for app startup and lifetime management. Two
host APIs are available for use:

Web Host – Suitable for hosting web apps.
Generic Host (ASP.NET Core 2.1 or later) – Suitable for hosting non-web apps (for example, apps that run
background tasks). In a future release, the Generic Host will be suitable for hosting any kind of app,
including web apps. The Generic Host will eventually replace the Web Host.

For hosting ASP.NET Core web apps, developers should use the Web Host based on IWebHostBuilder. For
hosting non-web apps, developers should use the Generic Host based on HostBuilder.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/host/index.md
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostbuilder

ASP.NET Core Web Host
5/31/2018 • 17 minutes to read • Edit Online

Set up a host

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

By Luke Latham

ASP.NET Core apps configure and launch a host. The host is responsible for app startup and lifetime management.
At a minimum, the host configures a server and a request processing pipeline. This topic covers the ASP.NET Core
Web Host (IWebHostBuilder), which is useful for hosting web apps. For coverage of the .NET Generic Host
(IHostBuilder), see the Generic Host topic.

ASP.NET Core 2.x
ASP.NET Core 1.x

Create a host using an instance of IWebHostBuilder. This is typically performed in the app's entry point, the Main

method. In the project templates, Main is located in Program.cs. A typical Program.cs calls CreateDefaultBuilder
to start setting up a host:

CreateDefaultBuilder performs the following tasks:

Configures Kestrel as the web server and configures the server using the app's hosting configuration
providers. For the Kestrel default options, see the Kestrel options section of Kestrel web server implementation
in ASP.NET Core.
Sets the content root to the path returned by Directory.GetCurrentDirectory.
Loads optional IConfiguration from:

Configures logging for console and debug output. Logging includes log filtering rules specified in a Logging
configuration section of an appsettings.json or appsettings.{Environment}.json file.
When running behind IIS, enables IIS integration. Configures the base path and port the server listens on
when using the ASP.NET Core Module. The module creates a reverse proxy between IIS and Kestrel. Also
configures the app to capture startup errors. For the IIS default options, see the IIS options section of Host
ASP.NET Core on Windows with IIS.
Sets ServiceProviderOptions.ValidateScopes to true if the app's environment is Development. For more

appsettings.json.
appsettings.{Environment}.json.
User secrets when the app runs in the Development environment using the entry assembly.
Environment variables.
Command-line arguments.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/host/web-host.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovideroptions.validatescopes

NOTENOTE

Host configuration values

Capture Startup ErrorsCapture Startup Errors

WebHost.CreateDefaultBuilder(args)
 .CaptureStartupErrors(true)

Content RootContent Root

information, see Scope validation.

The content root determines where the host searches for content files, such as MVC view files. When the app is
started from the project's root folder, the project's root folder is used as the content root. This is the default used in
Visual Studio and the dotnet new templates.

For more information on app configuration, see Configuration in ASP.NET Core.

As an alternative to using the static CreateDefaultBuilder method, creating a host from WebHostBuilder is a supported
approach with ASP.NET Core 2.x. For more information, see the ASP.NET Core 1.x tab.

When setting up a host, Configure and ConfigureServices methods can be provided. If a Startup class is
specified, it must define a Configure method. For more information, see Application Startup in ASP.NET Core.
Multiple calls to ConfigureServices append to one another. Multiple calls to Configure or UseStartup on the
WebHostBuilder replace previous settings.

WebHostBuilder relies on the following approaches to set the host configuration values:

Host builder configuration, which includes environment variables with the format
ASPNETCORE_{configurationKey} . For example, ASPNETCORE_ENVIRONMENT .

Explicit methods, such as HostingAbstractionsWebHostBuilderExtensions.UseContentRoot.
UseSetting and the associated key. When setting a value with UseSetting , the value is set as a string regardless
of the type.

The host uses whichever option sets a value last. For more information, see Override configuration in the next
section.

This setting controls the capture of startup errors.

Key: captureStartupErrors
Type: bool (true or 1)
Default: Defaults to false unless the app runs with Kestrel behind IIS, where the default is true .
Set using: CaptureStartupErrors

Environment variable: ASPNETCORE_CAPTURESTARTUPERRORS

When false , errors during startup result in the host exiting. When true , the host captures exceptions during
startup and attempts to start the server.

ASP.NET Core 2.x
ASP.NET Core 1.x

This setting determines where ASP.NET Core begins searching for content files, such as MVC views.

Key: contentRoot
Type: string

https://www.visualstudio.com/
https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.configure?view=aspnetcore-1.1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configureservices?view=aspnetcore-1.1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.usecontentroot
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.usesetting

WebHost.CreateDefaultBuilder(args)
 .UseContentRoot("c:\\<content-root>")

Detailed ErrorsDetailed Errors

WebHost.CreateDefaultBuilder(args)
 .UseSetting(WebHostDefaults.DetailedErrorsKey, "true")

EnvironmentEnvironment

WebHost.CreateDefaultBuilder(args)
 .UseEnvironment(EnvironmentName.Development)

Hosting Startup AssembliesHosting Startup Assemblies

Default: Defaults to the folder where the app assembly resides.
Set using: UseContentRoot

Environment variable: ASPNETCORE_CONTENTROOT

The content root is also used as the base path for the Web Root setting. If the path doesn't exist, the host fails to
start.

ASP.NET Core 2.x
ASP.NET Core 1.x

Determines if detailed errors should be captured.

Key: detailedErrors
Type: bool (true or 1)
Default: false
Set using: UseSetting

Environment variable: ASPNETCORE_DETAILEDERRORS

When enabled (or when the Environment is set to Development), the app captures detailed exceptions.

ASP.NET Core 2.x
ASP.NET Core 1.x

Sets the app's environment.

Key: environment
Type: string
Default: Production
Set using: UseEnvironment

Environment variable: ASPNETCORE_ENVIRONMENT

The environment can be set to any value. Framework-defined values include Development , Staging , and
Production . Values aren't case sensitive. By default, the Environment is read from the ASPNETCORE_ENVIRONMENT

environment variable. When using Visual Studio, environment variables may be set in the launchSettings.json file.
For more information, see Use multiple environments.

ASP.NET Core 2.x
ASP.NET Core 1.x

Sets the app's hosting startup assemblies.

Key: hostingStartupAssemblies

https://www.visualstudio.com/

WebHost.CreateDefaultBuilder(args)
 .UseSetting(WebHostDefaults.HostingStartupAssembliesKey, "assembly1;assembly2")

Prefer Hosting URLsPrefer Hosting URLs

WebHost.CreateDefaultBuilder(args)
 .PreferHostingUrls(false)

Prevent Hosting StartupPrevent Hosting Startup

WebHost.CreateDefaultBuilder(args)
 .UseSetting(WebHostDefaults.PreventHostingStartupKey, "true")

Type: string
Default: Empty string
Set using: UseSetting

Environment variable: ASPNETCORE_HOSTINGSTARTUPASSEMBLIES

A semicolon-delimited string of hosting startup assemblies to load on startup. This feature is new in ASP.NET
Core 2.0.

Although the configuration value defaults to an empty string, the hosting startup assemblies always include the
app's assembly. When hosting startup assemblies are provided, they're added to the app's assembly for loading
when the app builds its common services during startup.

ASP.NET Core 2.x
ASP.NET Core 1.x

Indicates whether the host should listen on the URLs configured with the WebHostBuilder instead of those
configured with the IServer implementation.

Key: preferHostingUrls
Type: bool (true or 1)
Default: true
Set using: PreferHostingUrls

Environment variable: ASPNETCORE_PREFERHOSTINGURLS

This feature is new in ASP.NET Core 2.0.

ASP.NET Core 2.x
ASP.NET Core 1.x

Prevents the automatic loading of hosting startup assemblies, including hosting startup assemblies configured by
the app's assembly. See Enhance an app from an external assembly with IHostingStartup for more information.

Key: preventHostingStartup
Type: bool (true or 1)
Default: false
Set using: UseSetting

Environment variable: ASPNETCORE_PREVENTHOSTINGSTARTUP

This feature is new in ASP.NET Core 2.0.

ASP.NET Core 2.x
ASP.NET Core 1.x

Server URLsServer URLs

WebHost.CreateDefaultBuilder(args)
 .UseUrls("http://*:5000;http://localhost:5001;https://hostname:5002")

Shutdown TimeoutShutdown Timeout

WebHost.CreateDefaultBuilder(args)
 .UseShutdownTimeout(TimeSpan.FromSeconds(10))

Startup AssemblyStartup Assembly

Indicates the IP addresses or host addresses with ports and protocols that the server should listen on for requests.

Key: urls
Type: string
Default: http://localhost:5000
Set using: UseUrls

Environment variable: ASPNETCORE_URLS

Set to a semicolon-separated (;) list of URL prefixes to which the server should respond. For example,
http://localhost:123 . Use "*" to indicate that the server should listen for requests on any IP address or hostname

using the specified port and protocol (for example, http://*:5000). The protocol (http:// or https://) must be
included with each URL. Supported formats vary between servers.

ASP.NET Core 2.x
ASP.NET Core 1.x

Kestrel has its own endpoint configuration API. For more information, see Kestrel web server implementation in
ASP.NET Core.

Specifies the amount of time to wait for the web host to shut down.

Key: shutdownTimeoutSeconds
Type: int
Default: 5
Set using: UseShutdownTimeout

Environment variable: ASPNETCORE_SHUTDOWNTIMEOUTSECONDS

Although the key accepts an int with UseSetting (for example,
.UseSetting(WebHostDefaults.ShutdownTimeoutKey, "10")), the UseShutdownTimeout extension method takes a

TimeSpan. This feature is new in ASP.NET Core 2.0.

During the timeout period, hosting:

Triggers IApplicationLifetime.ApplicationStopping.
Attempts to stop hosted services, logging any errors for services that fail to stop.

If the timeout period expires before all of the hosted services stop, any remaining active services are stopped
when the app shuts down. The services stop even if they haven't finished processing. If services require additional
time to stop, increase the timeout.

ASP.NET Core 2.x
ASP.NET Core 1.x

Determines the assembly to search for the Startup class.

Key: startupAssembly

http://localhost:5000
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useshutdowntimeout
https://docs.microsoft.com/dotnet/api/system.timespan
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime.applicationstopping

WebHost.CreateDefaultBuilder(args)
 .UseStartup("StartupAssemblyName")

WebHost.CreateDefaultBuilder(args)
 .UseStartup<TStartup>()

Web RootWeb Root

WebHost.CreateDefaultBuilder(args)
 .UseWebRoot("public")

Override configuration

{
 urls: "http://*:5005"
}

Type: string
Default: The app's assembly
Set using: UseStartup

Environment variable: ASPNETCORE_STARTUPASSEMBLY

The assembly by name (string) or type (TStartup) can be referenced. If multiple UseStartup methods are called,
the last one takes precedence.

ASP.NET Core 2.x
ASP.NET Core 1.x

Sets the relative path to the app's static assets.

Key: webroot
Type: string
Default: If not specified, the default is "(Content Root)/wwwroot", if the path exists. If the path doesn't exist, then a
no-op file provider is used.
Set using: UseWebRoot

Environment variable: ASPNETCORE_WEBROOT

ASP.NET Core 2.x
ASP.NET Core 1.x

Use Configuration to configure the host. In the following example, host configuration is optionally specified in a
hosting.json file. Any configuration loaded from the hosting.json file may be overridden by command-line
arguments. The built configuration (in config) is used to configure the host with UseConfiguration .

ASP.NET Core 2.x
ASP.NET Core 1.x

hosting.json:

Overriding the configuration provided by UseUrls with hosting.json config first, command-line argument config
second:

public class Program
{
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args)
 {
 var config = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("hosting.json", optional: true)
 .AddCommandLine(args)
 .Build();

 return WebHost.CreateDefaultBuilder(args)
 .UseUrls("http://*:5000")
 .UseConfiguration(config)
 .Configure(app =>
 {
 app.Run(context =>
 context.Response.WriteAsync("Hello, World!"));
 })
 .Build();
 }
}

NOTENOTE

dotnet run --urls "http://*:8080"

Manage the host

host.Run();

The UseConfiguration extension method isn't currently capable of parsing a configuration section returned by GetSection

(for example, .UseConfiguration(Configuration.GetSection("section")) . The GetSection method filters the
configuration keys to the section requested but leaves the section name on the keys (for example, section:urls ,
section:environment). The UseConfiguration method expects the keys to match the WebHostBuilder keys (for

example, urls , environment). The presence of the section name on the keys prevents the section's values from
configuring the host. This issue will be addressed in an upcoming release. For more information and workarounds, see
Passing configuration section into WebHostBuilder.UseConfiguration uses full keys.

To specify the host run on a particular URL, the desired value can be passed in from a command prompt when
executing dotnet run. The command-line argument overrides the urls value from the hosting.json file, and the
server listens on port 8080:

ASP.NET Core 2.x
ASP.NET Core 1.x

Run

The Run method starts the web app and blocks the calling thread until the host is shut down:

Start

Run the host in a non-blocking manner by calling its Start method:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useconfiguration
https://github.com/aspnet/Hosting/issues/839
https://docs.microsoft.com/dotnet/core/tools/dotnet-run

using (host)
{
 host.Start();
 Console.ReadLine();
}

var urls = new List<string>()
{
 "http://*:5000",
 "http://localhost:5001"
};

var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .Start(urls.ToArray());

using (host)
{
 Console.ReadLine();
}

using (var host = WebHost.Start(app => app.Response.WriteAsync("Hello, World!")))
{
 Console.WriteLine("Use Ctrl-C to shutdown the host...");
 host.WaitForShutdown();
}

using (var host = WebHost.Start("http://localhost:8080", app => app.Response.WriteAsync("Hello, World!")))
{
 Console.WriteLine("Use Ctrl-C to shutdown the host...");
 host.WaitForShutdown();
}

If a list of URLs is passed to the Start method, it listens on the URLs specified:

The app can initialize and start a new host using the pre-configured defaults of CreateDefaultBuilder using a
static convenience method. These methods start the server without console output and with WaitForShutdown
wait for a break (Ctrl-C/SIGINT or S IGTERM):

Start(RequestDelegate app)

Start with a RequestDelegate :

Make a request in the browser to http://localhost:5000 to receive the response "Hello World!" WaitForShutdown

blocks until a break (Ctrl-C/SIGINT or S IGTERM) is issued. The app displays the Console.WriteLine message and
waits for a keypress to exit.

Start(string url, RequestDelegate app)

Start with a URL and RequestDelegate :

Produces the same result as Start(RequestDelegate app), except the app responds on http://localhost:8080 .

Start(Action<IRouteBuilder> routeBuilder)

Use an instance of IRouteBuilder (Microsoft.AspNetCore.Routing) to use routing middleware:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostextensions.waitforshutdown
https://www.nuget.org/packages/Microsoft.AspNetCore.Routing/

using (var host = WebHost.Start(router => router
 .MapGet("hello/{name}", (req, res, data) =>
 res.WriteAsync($"Hello, {data.Values["name"]}!"))
 .MapGet("buenosdias/{name}", (req, res, data) =>
 res.WriteAsync($"Buenos dias, {data.Values["name"]}!"))
 .MapGet("throw/{message?}", (req, res, data) =>
 throw new Exception((string)data.Values["message"] ?? "Uh oh!"))
 .MapGet("{greeting}/{name}", (req, res, data) =>
 res.WriteAsync($"{data.Values["greeting"]}, {data.Values["name"]}!"))
 .MapGet("", (req, res, data) => res.WriteAsync("Hello, World!"))))
{
 Console.WriteLine("Use Ctrl-C to shutdown the host...");
 host.WaitForShutdown();
}

REQUEST RESPONSE

http://localhost:5000/hello/Martin Hello, Martin!

http://localhost:5000/buenosdias/Catrina Buenos dias, Catrina!

http://localhost:5000/throw/ooops! Throws an exception with string "ooops!"

http://localhost:5000/throw Throws an exception with string "Uh oh!"

http://localhost:5000/Sante/Kevin Sante, Kevin!

http://localhost:5000 Hello World!

using (var host = WebHost.Start("http://localhost:8080", router => router
 .MapGet("hello/{name}", (req, res, data) =>
 res.WriteAsync($"Hello, {data.Values["name"]}!"))
 .MapGet("buenosdias/{name}", (req, res, data) =>
 res.WriteAsync($"Buenos dias, {data.Values["name"]}!"))
 .MapGet("throw/{message?}", (req, res, data) =>
 throw new Exception((string)data.Values["message"] ?? "Uh oh!"))
 .MapGet("{greeting}/{name}", (req, res, data) =>
 res.WriteAsync($"{data.Values["greeting"]}, {data.Values["name"]}!"))
 .MapGet("", (req, res, data) => res.WriteAsync("Hello, World!"))))
{
 Console.WriteLine("Use Ctrl-C to shut down the host...");
 host.WaitForShutdown();
}

Use the following browser requests with the example:

WaitForShutdown blocks until a break (Ctrl-C/SIGINT or S IGTERM) is issued. The app displays the
Console.WriteLine message and waits for a keypress to exit.

Start(string url, Action<IRouteBuilder> routeBuilder)

Use a URL and an instance of IRouteBuilder :

Produces the same result as Start(Action<IRouteBuilder> routeBuilder), except the app responds at
http://localhost:8080 .

StartWith(Action<IApplicationBuilder> app)

using (var host = WebHost.StartWith(app =>
 app.Use(next =>
 {
 return async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 };
 })))
{
 Console.WriteLine("Use Ctrl-C to shut down the host...");
 host.WaitForShutdown();
}

using (var host = WebHost.StartWith("http://localhost:8080", app =>
 app.Use(next =>
 {
 return async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 };
 })))
{
 Console.WriteLine("Use Ctrl-C to shut down the host...");
 host.WaitForShutdown();
}

IHostingEnvironment interface

public class CustomFileReader
{
 private readonly IHostingEnvironment _env;

 public CustomFileReader(IHostingEnvironment env)
 {
 _env = env;
 }

 public string ReadFile(string filePath)
 {
 var fileProvider = _env.WebRootFileProvider;
 // Process the file here
 }
}

Provide a delegate to configure an IApplicationBuilder :

Make a request in the browser to http://localhost:5000 to receive the response "Hello World!" WaitForShutdown

blocks until a break (Ctrl-C/SIGINT or S IGTERM) is issued. The app displays the Console.WriteLine message and
waits for a keypress to exit.

StartWith(string url, Action<IApplicationBuilder> app)

Provide a URL and a delegate to configure an IApplicationBuilder :

Produces the same result as StartWith(Action<IApplicationBuilder> app), except the app responds on
http://localhost:8080 .

The IHostingEnvironment interface provides information about the app's web hosting environment. Use
constructor injection to obtain the IHostingEnvironment in order to use its properties and extension methods:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment

public class Startup
{
 public Startup(IHostingEnvironment env)
 {
 HostingEnvironment = env;
 }

 public IHostingEnvironment HostingEnvironment { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 if (HostingEnvironment.IsDevelopment())
 {
 // Development configuration
 }
 else
 {
 // Staging/Production configuration
 }

 var contentRootPath = HostingEnvironment.ContentRootPath;
 }
}

NOTENOTE

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 // In Development, use the developer exception page
 app.UseDeveloperExceptionPage();
 }
 else
 {
 // In Staging/Production, route exceptions to /error
 app.UseExceptionHandler("/error");
 }

 var contentRootPath = env.ContentRootPath;
}

A convention-based approach can be used to configure the app at startup based on the environment.
Alternatively, inject the IHostingEnvironment into the Startup constructor for use in ConfigureServices :

In addition to the IsDevelopment extension method, IHostingEnvironment offers IsStaging , IsProduction , and
IsEnvironment(string environmentName) methods. See Use multiple environments for details.

The IHostingEnvironment service can also be injected directly into the Configure method for setting up the
processing pipeline:

IHostingEnvironment can be injected into the Invoke method when creating custom middleware:

public async Task Invoke(HttpContext context, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 // Configure middleware for Development
 }
 else
 {
 // Configure middleware for Staging/Production
 }

 var contentRootPath = env.ContentRootPath;
}

IApplicationLifetime interface

CANCELLATION TOKEN TRIGGERED WHEN…

ApplicationStarted The host has fully started.

ApplicationStopped The host is completing a graceful shutdown. All requests
should be processed. Shutdown blocks until this event
completes.

ApplicationStopping The host is performing a graceful shutdown. Requests may
still be processing. Shutdown blocks until this event
completes.

IApplicationLifetime allows for post-startup and shutdown activities. Three properties on the interface are
cancellation tokens used to register Action methods that define startup and shutdown events.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstarted
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstopped
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstopping

public class Startup
{
 public void Configure(IApplicationBuilder app, IApplicationLifetime appLifetime)
 {
 appLifetime.ApplicationStarted.Register(OnStarted);
 appLifetime.ApplicationStopping.Register(OnStopping);
 appLifetime.ApplicationStopped.Register(OnStopped);

 Console.CancelKeyPress += (sender, eventArgs) =>
 {
 appLifetime.StopApplication();
 // Don't terminate the process immediately, wait for the Main thread to exit gracefully.
 eventArgs.Cancel = true;
 };
 }

 private void OnStarted()
 {
 // Perform post-startup activities here
 }

 private void OnStopping()
 {
 // Perform on-stopping activities here
 }

 private void OnStopped()
 {
 // Perform post-stopped activities here
 }
}

public class MyClass
{
 private readonly IApplicationLifetime _appLifetime;

 public MyClass(IApplicationLifetime appLifetime)
 {
 _appLifetime = appLifetime;
 }

 public void Shutdown()
 {
 _appLifetime.StopApplication();
 }
}

Scope validation

StopApplication requests termination of the app. The following class uses StopApplication to gracefully shut
down an app when the class's Shutdown method is called:

In ASP.NET Core 2.0 or later, CreateDefaultBuilder sets ServiceProviderOptions.ValidateScopes to true if the
app's environment is Development.

When ValidateScopes is set to true , the default service provider performs checks to verify that:

Scoped services aren't directly or indirectly resolved from the root service provider.
Scoped services aren't directly or indirectly injected into singletons.

The root service provider is created when BuildServiceProvider is called. The root service provider's lifetime
corresponds to the app/server's lifetime when the provider starts with the app and is disposed when the app shuts

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime.stopapplication
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovideroptions.validatescopes
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectioncontainerbuilderextensions.buildserviceprovider

WebHost.CreateDefaultBuilder(args)
 .UseDefaultServiceProvider((context, options) => {
 options.ValidateScopes = true;
 })

Troubleshooting System.ArgumentException

services.AddSingleton<IStartup, Startup>();

Unhandled Exception: System.ArgumentException: A valid non-empty application name must be provided.

WebHost.CreateDefaultBuilder(args)
 .UseSetting("applicationName", "<Assembly Name>")
 ...

WebHost.CreateDefaultBuilder(args)
 .Configure(_ => { })
 ...

Additional resources

down.

Scoped services are disposed by the container that created them. If a scoped service is created in the root
container, the service's lifetime is effectively promoted to singleton because it's only disposed by the root container
when app/server is shut down. Validating service scopes catches these situations when BuildServiceProvider is
called.

To always validate scopes, including in the Production environment, configure the ServiceProviderOptions with
UseDefaultServiceProvider on the host builder :

Applies to ASP.NET Core 2.0 Only

A host may be built by injecting IStartup directly into the dependency injection container rather than calling
UseStartup or Configure :

If the host is built this way, the following error may occur :

This occurs because the applicationName(ApplicationKey) (the current assembly) is required to scan for
HostingStartupAttributes . If the app manually injects IStartup into the dependency injection container, add the

following call to WebHostBuilder with the assembly name specified:

Alternatively, add a dummy Configure to the WebHostBuilder , which sets the applicationName (ApplicationKey)
automatically:

NOTE : This is only required with the ASP.NET Core 2.0 release and only when the app doesn't call UseStartup or
Configure .

For more information, see Announcements: Microsoft.Extensions.PlatformAbstractions has been removed
(comment) and the StartupInjection sample.

Host on Windows with IIS
Host on Linux with Nginx

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovideroptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.usedefaultserviceprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostdefaults#Microsoft_AspNetCore_Hosting_WebHostDefaults_ApplicationKey
https://github.com/aspnet/Announcements/issues/237#issuecomment-323786938
https://github.com/aspnet/Hosting/blob/8377d226f1e6e1a97dabdb6769a845eeccc829ed/samples/SampleStartups/StartupInjection.cs

Host on Linux with Apache
Host in a Windows Service

.NET Generic Host
6/4/2018 • 9 minutes to read • Edit Online

Introduction

Set up a host

public static async Task Main(string[] args)
{
 var host = new HostBuilder()
 .Build();

 await host.RunAsync();
}

Host configuration

By Luke Latham

.NET apps configure and launch a host. The host is responsible for app startup and lifetime management. This
topic covers the ASP.NET Core Generic Host (HostBuilder), which is useful for hosting apps that don't process
HTTP requests. For coverage of the Web Host (WebHostBuilder), see the Web Host topic.

The goal of the Generic Host is to decouple the HTTP pipeline from the Web Host API to enable a wider array of
host scenarios. Messaging, background tasks, and other non-HTTP workloads based on the Generic Host benefit
from cross-cutting capabilities, such as configuration, dependency injection (DI), and logging.

The Generic Host is new in ASP.NET Core 2.1 and isn't suitable for web hosting scenarios. For web hosting
scenarios, use the Web Host. The Generic Host is under development to replace the Web Host in a future release
and act as the primary host API in both HTTP and non-HTTP scenarios.

View or download sample code (how to download)

When running the sample app in Visual Studio Code, use an external or integrated terminal. Don't run the sample
in an internalConsole .

To set the console in Visual Studio Code:

1. Open the .vscode/launch.json file.
2. In the .NET Core Launch (console) configuration, locate the console entry. Set the value to either

externalTerminal or integratedTerminal .

The Generic Host library is available in the Microsoft.Extensions.Hosting namespace and provided by the
Microsoft.Extensions.Hosting package. The Microsoft.Extensions.Hosting package is included in the
Microsoft.AspNetCore.App metapackage (ASP.NET Core 2.1 or later).

IHostedService is the entry point to code execution. Each IHostedService implementation is executed in the order
of service registration in ConfigureServices. StartAsync is called on each IHostedService when the host starts,
and StopAsync is called in reverse registration order when the host shuts down gracefully.

IHostBuilder is the main component that libraries and apps use to initialize, build, and run the host:

HostBuilder relies on the following approaches to set the host configuration values:

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/host/generic-host.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/host/generic-host/samples/
https://code.visualstudio.com/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting
https://www.nuget.org/packages/Microsoft.Extensions.Hosting/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice.startasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice.stopasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostbuilder

Configuration builderConfiguration builder

{
 "environment": "Development"
}

var host = new HostBuilder()
 .ConfigureHostConfiguration(configHost =>
 {
 configHost.AddEnvironmentVariables();
 configHost.AddJsonFile("hostsettings.json", optional: true);
 configHost.AddCommandLine(args);
 })

NOTENOTE

Extension method configurationExtension method configuration

Content RootContent Root

var host = new HostBuilder()
 .UseContentRoot("c:\\<content-root>")

EnvironmentEnvironment

Configuration builder
Extension method configuration

Host builder configuration is created by calling ConfigureHostConfiguration on the IHostBuilder implementation.
ConfigureHostConfiguration uses an IConfigurationBuilder to create an IConfiguration for the host. The

configuration builder initializes the IHostingEnvironment for use in the app's build process.
ConfigureHostConfiguration can be called multiple times with additive results. The host uses whichever option sets

a value last.

hostsettings.json:

Example HostBuilder configuration using ConfigureHostConfiguration :

The AddConfiguration extension method isn't currently capable of parsing a configuration section returned by GetSection
(for example, .AddConfiguration(Configuration.GetSection("section")) . The GetSection method filters the
configuration keys to the section requested but leaves the section name on the keys (for example, section:environment).
The AddConfiguration method expects the keys to match the HostBuilder keys (for example, environment). The
presence of the section name on the keys prevents the section's values from configuring the host. This issue will be
addressed in an upcoming release. For more information and workarounds, see Passing configuration section into
WebHostBuilder.UseConfiguration uses full keys.

Extension methods are called on the IHostBuilder implementation to configure the content root and the
environment.

This setting determines where the host begins searching for content files.

Key: contentRoot
Type: string
Default: Defaults to the folder where the app assembly resides.
Set using: UseContentRoot

Environment variable: ASPNETCORE_CONTENTROOT

If the path doesn't exist, the host fails to start.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostbuilder.configurehostconfiguration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfigurationbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostingenvironment
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.chainedbuilderextensions.addconfiguration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration.getsection
https://github.com/aspnet/Hosting/issues/839

var host = new HostBuilder()
 .UseEnvironment(EnvironmentName.Development)

ConfigureAppConfiguration

var host = new HostBuilder()
 .ConfigureAppConfiguration((hostContext, configApp) =>
 {
 configApp.AddEnvironmentVariables();
 configApp.AddJsonFile("appsettings.json", optional: true);
 configApp.AddJsonFile(
 $"appsettings.{hostContext.HostingEnvironment.EnvironmentName}.json",
 optional: true);
 configApp.AddCommandLine(args);
 })

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

Sets the app's environment.

Key: environment
Type: string
Default: Production
Set using: UseEnvironment

Environment variable: ASPNETCORE_ENVIRONMENT

The environment can be set to any value. Framework-defined values include Development , Staging , and
Production . Values aren't case sensitive. By default, the Environment is read from the ASPNETCORE_ENVIRONMENT

environment variable. When using Visual Studio, environment variables may be set in the launchSettings.json file.
For more information, see Use multiple environments.

App builder configuration is created by calling ConfigureAppConfiguration on the IHostBuilder implementation.
ConfigureAppConfiguration uses an IConfigurationBuilder to create an IConfiguration for the app.
ConfigureAppConfiguration can be called multiple times with additive results. The app uses whichever option sets a

value last. The configuration created by ConfigureAppConfiguration is available at
HostBuilderContext.Configuration for subsequent operations and in Services.

Example app configuration using ConfigureAppConfiguration :

appsettings.json:

appsettings.Development.json:

https://www.visualstudio.com/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostbuilder.configureappconfiguration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfigurationbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostbuildercontext.configuration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihost.services

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

{
 "Logging": {
 "LogLevel": {
 "Default": "Error",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

NOTENOTE

ConfigureServices

var host = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 services.AddLogging();
 services.AddHostedService<LifetimeEventsHostedService>();
 services.AddHostedService<TimedHostedService>();
 })

ConfigureLogging

appsettings.Production.json:

The AddConfiguration extension method isn't currently capable of parsing a configuration section returned by GetSection
(for example, .AddConfiguration(Configuration.GetSection("section")) . The GetSection method filters the
configuration keys to the section requested but leaves the section name on the keys (for example,
section:Logging:LogLevel:Default). The AddConfiguration method expects an exact match to configuration keys (for

example, Logging:LogLevel:Default). The presence of the section name on the keys prevents the section's values from
configuring the app. This issue will be addressed in an upcoming release. For more information and workarounds, see
Passing configuration section into WebHostBuilder.UseConfiguration uses full keys.

ConfigureServices adds services to the app's dependency injection container. ConfigureServices can be called
multiple times with additive results.

A hosted service is a class with background task logic that implements the IHostedService interface. For more
information, see the Background tasks with hosted services topic.

The sample app uses the AddHostedService extension method to add a service for lifetime events,
LifetimeEventsHostedService , and a timed background task, TimedHostedService , to the app:

ConfigureLogging adds a delegate for configuring the provided ILoggingBuilder. ConfigureLogging may be called
multiple times with additive results.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.chainedbuilderextensions.addconfiguration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration.getsection
https://github.com/aspnet/Hosting/issues/839
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.configureservices
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/host/generic-host/samples/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.configurelogging
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.iloggingbuilder

var host = new HostBuilder()
 .ConfigureLogging((hostContext, configLogging) =>
 {
 configLogging.AddConsole();
 configLogging.AddDebug();
 })

UseConsoleLifetimeUseConsoleLifetime

var host = new HostBuilder()
 .UseConsoleLifetime()

Container configuration

namespace GenericHostSample
{
 internal class ServiceContainer
 {
 }
}

using System;
using Microsoft.Extensions.DependencyInjection;

namespace GenericHostSample
{
 internal class ServiceContainerFactory : IServiceProviderFactory<MyContainer>
 {
 public ServiceContainer CreateBuilder(IServiceCollection services)
 {
 return new ServiceContainer();
 }

 public IServiceProvider CreateServiceProvider(ServiceContainer containerBuilder)
 {
 throw new NotImplementedException();
 }
 }
}

UseConsoleLifetime listens for Ctrl+C /SIGINT or S IGTERM and calls StopApplication to start the shutdown
process. UseConsoleLifetime unblocks extensions such as RunAsync and WaitForShutdownAsync.
ConsoleLifetime is pre-registered as the default lifetime implementation. The last lifetime registered is used.

To support plugging in other containers, the host can accept an IServiceProviderFactory. Providing a factory isn't
part of the DI container registration but is instead a host intrinsic used to create the concrete DI container.
UseServiceProviderFactory(IServiceProviderFactory<TContainerBuilder>) overrides the default factory used to
create the app's service provider.

Custom container configuration is managed by the ConfigureContainer method. ConfigureContainer provides a
strongly-typed experience for configuring the container on top of the underlying host API. ConfigureContainer

can be called multiple times with additive results.

Create a service container for the app:

Provide a service container factory:

Use the factory and configure the custom service container for the app:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.useconsolelifetime
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.stopapplication
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.internal.consolelifetime
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.iserviceproviderfactory-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostbuilder.useserviceproviderfactory
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurecontainer

var host = new HostBuilder()
 .UseServiceProviderFactory<ServiceContainer>(new SerivceContainerFactory())
 .ConfigureContainer<ServiceContainer>((hostContext, container) =>
 {
 })

Extensibility

// UseRabbitMq is an extension method that sets up RabbitMQ to handle incoming
// messages.
var host = new HostBuilder()
 .UseRabbitMq<MyMessageHandler>()
 .Build();

await host.StartAsync();

Manage the host

RunRun

public class Program
{
 public void Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 host.Run();
 }
}

RunAsyncRunAsync

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 await host.RunAsync();
 }
}

RunConsoleAsyncRunConsoleAsync

Host extensibility is performed with extension methods on IHostBuilder . The following example shows how an
extension method extends an IHostBuilder implementation with RabbitMQ. The extension method (elsewhere in
the app) registers a RabbitMQ IHostedService :

The IHost implementation is responsible for starting and stopping the IHostedService implementations that are
registered in the service container.

Run runs the app and blocks the calling thread until the host is shut down:

RunAsync runs the app and returns a Task that completes when the cancellation token or shutdown is triggered:

RunConsoleAsync enables console support, builds and starts the host, and waits for Ctrl+C /SIGINT or

https://www.rabbitmq.com/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihost
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.run
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.runasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.runconsoleasync

public class Program
{
 public static async Task Main(string[] args)
 {
 var hostBuilder = new HostBuilder();

 await hostBuilder.RunConsoleAsync();
 }
}

Start and StopAsyncStart and StopAsync

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 using (host)
 {
 host.Start();

 await host.StopAsync(TimeSpan.FromSeconds(5));
 }
 }
}

StartAsync and StopAsyncStartAsync and StopAsync

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 using (host)
 {
 await host.StartAsync();

 await host.StopAsync();
 }
 }
}

WaitForShutdownWaitForShutdown

SIGTERM to shut down.

Start starts the host synchronously.

StopAsync(TimeSpan) attempts to stop the host within the provided timeout.

StartAsync starts the app.

StopAsync stops the app.

WaitForShutdown is triggered via the IHostLifetime, such as ConsoleLifetime (listens for Ctrl+C /SIGINT or
SIGTERM). WaitForShutdown calls StopAsync.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.start
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.stopasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihost.startasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihost.stopasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdown
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostlifetime
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.internal.consolelifetime
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihost.stopasync

public class Program
{
 public void Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 using (host)
 {
 host.Start();

 host.WaitForShutdown();
 }
 }
}

WaitForShutdownAsyncWaitForShutdownAsync

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 using (host)
 {
 await host.StartAsync();

 await host.WaitForShutdownAsync();
 }

 }
}

External controlExternal control

WaitForShutdownAsync returns a Task that completes when shutdown is triggered via the given token and calls
StopAsync.

External control of the host can be achieved using methods that can be called externally:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdownasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihost.stopasync

public class Program
{
 private IHost _host;

 public Program()
 {
 _host = new HostBuilder()
 .Build();
 }

 public async Task StartAsync()
 {
 _host.StartAsync();
 }

 public async Task StopAsync()
 {
 using (_host)
 {
 await _host.StopAsync(TimeSpan.FromSeconds(5));
 }
 }
}

IHostingEnvironment interface

public class MyClass
{
 private readonly IHostingEnvironment _env;

 public MyClass(IHostingEnvironment env)
 {
 _env = env;
 }

 public void DoSomething()
 {
 var environmentName = _env.EnvironmentName;
 }
}

IApplicationLifetime interface

CANCELLATION TOKEN TRIGGERED WHEN…

ApplicationStarted The host has fully started.

IHostLifetime.WaitForStartAsync is called at the start of StartAsync, which waits until it's complete before
continuing. This can be used to delay startup until signaled by an external event.

IHostingEnvironment provides information about the app's hosting environment. Use constructor injection to
obtain the IHostingEnvironment in order to use its properties and extension methods:

For more information, see Use multiple environments.

IApplicationLifetime allows for post-startup and shutdown activities, including graceful shutdown requests. Three
properties on the interface are cancellation tokens used to register Action methods that define startup and
shutdown events.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostlifetime.waitforstartasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihost.startasync
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostingenvironment
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstarted

ApplicationStopped The host is completing a graceful shutdown. All requests
should be processed. Shutdown blocks until this event
completes.

ApplicationStopping The host is performing a graceful shutdown. Requests may
still be processing. Shutdown blocks until this event
completes.

CANCELLATION TOKEN TRIGGERED WHEN…

internal class LifetimeEventsHostedService : IHostedService
{
 private readonly ILogger _logger;
 private readonly IApplicationLifetime _appLifetime;

 public LifetimeEventsHostedService(
 ILogger<LifetimeEventsHostedService> logger, IApplicationLifetime appLifetime)
 {
 _logger = logger;
 _appLifetime = appLifetime;
 }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 _appLifetime.ApplicationStarted.Register(OnStarted);
 _appLifetime.ApplicationStopping.Register(OnStopping);
 _appLifetime.ApplicationStopped.Register(OnStopped);

 return Task.CompletedTask;
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 return Task.CompletedTask;
 }

 private void OnStarted()
 {
 _logger.LogInformation("OnStarted has been called.");

 // Perform post-startup activities here
 }

 private void OnStopping()
 {
 _logger.LogInformation("OnStopping has been called.");

 // Perform on-stopping activities here
 }

 private void OnStopped()
 {
 _logger.LogInformation("OnStopped has been called.");

 // Perform post-stopped activities here
 }
}

Constructor-inject the IApplicationLifetime service into any class. The sample app uses contructor injection into a
LifetimeEventsHostedService class (an IHostedService implementation) to register the events.

LifetimeEventsHostedService.cs:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstopped
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstopping
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/host/generic-host/samples/

public class MyClass
{
 private readonly IApplicationLifetime _appLifetime;

 public MyClass(IApplicationLifetime appLifetime)
 {
 _appLifetime = appLifetime;
 }

 public void Shutdown()
 {
 _appLifetime.StopApplication();
 }
}

Additional resources

StopApplication requests termination of the app. The following class uses StopApplication to gracefully shut
down an app when the class's Shutdown method is called:

Background tasks with hosted services
Hosting repo samples on GitHub

https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.stopapplication
https://github.com/aspnet/Hosting/tree/release/2.1/samples

Background tasks with hosted services in ASP.NET
Core
6/12/2018 • 4 minutes to read • Edit Online

IHostedService interface

Timed background tasks

By Luke Latham

In ASP.NET Core, background tasks can be implemented as hosted services. A hosted service is a class with
background task logic that implements the IHostedService interface. This topic provides three hosted service
examples:

Background task that runs on a timer.
Hosted service that activates a scoped service. The scoped service can use dependency injection.
Queued background tasks that run sequentially.

View or download sample code (how to download)

The sample app is provided in two versions:

Web Host – The Web Host is useful for hosting web apps. The example code shown in this topic is from the
Web Host version of the sample. For more information, see the Web Host topic.
Generic Host – The Generic Host is new in ASP.NET Core 2.1. For more information, see the Generic Host
topic.

Hosted services implement the IHostedService interface. The interface defines two methods for objects that are
managed by the host:

StartAsync(CancellationToken) - Called after the server has started and
IApplicationLifetime.ApplicationStarted is triggered. StartAsync contains the logic to start the background
task.

StopAsync(CancellationToken) - Triggered when the host is performing a graceful shutdown. StopAsync

contains the logic to end the background task and dispose of any unmanaged resources. If the app shuts
down unexpectedly (for example, the app's process fails), StopAsync might not be called.

The hosted service is activated once at app startup and gracefully shutdown at app shutdown. When IDisposable
is implemented, resources can be disposed when the service container is disposed. If an error is thrown during
background task execution, Dispose should be called even if StopAsync isn't called.

A timed background task makes use of the System.Threading.Timer class. The timer triggers the task's DoWork

method. The timer is disabled on StopAsync and disposed when the service container is disposed on Dispose :

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/host/hosted-services.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/host/hosted-services/samples/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice.startasync
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime.applicationstarted
https://docs.microsoft.com/dotnet/api/microsoft.extensions.hosting.ihostedservice.stopasync
https://docs.microsoft.com/dotnet/api/system.idisposable
https://docs.microsoft.com/dotnet/api/system.threading.timer

internal class TimedHostedService : IHostedService, IDisposable
{
 private readonly ILogger _logger;
 private Timer _timer;

 public TimedHostedService(ILogger<TimedHostedService> logger)
 {
 _logger = logger;
 }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 _logger.LogInformation("Timed Background Service is starting.");

 _timer = new Timer(DoWork, null, TimeSpan.Zero,
 TimeSpan.FromSeconds(5));

 return Task.CompletedTask;
 }

 private void DoWork(object state)
 {
 _logger.LogInformation("Timed Background Service is working.");
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 _logger.LogInformation("Timed Background Service is stopping.");

 _timer?.Change(Timeout.Infinite, 0);

 return Task.CompletedTask;
 }

 public void Dispose()
 {
 _timer?.Dispose();
 }
}

services.AddHostedService<TimedHostedService>();

services.AddSingleton<IHostedService, TimedHostedService>();

Consuming a scoped service in a background task

The service is registered in Startup.ConfigureServices with the AddHostedService extension method:

The service is registered in Startup.ConfigureServices :

To use scoped services within an IHostedService , create a scope. No scope is created for a hosted service by
default.

The scoped background task service contains the background task's logic. In the following example, ILogger is
injected into the service:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.ilogger

internal interface IScopedProcessingService
{
 void DoWork();
}

internal class ScopedProcessingService : IScopedProcessingService
{
 private readonly ILogger _logger;

 public ScopedProcessingService(ILogger<ScopedProcessingService> logger)
 {
 _logger = logger;
 }

 public void DoWork()
 {
 _logger.LogInformation("Scoped Processing Service is working.");
 }
}

The hosted service creates a scope to resolve the scoped background task service to call its DoWork method:

internal class ConsumeScopedServiceHostedService : IHostedService
{
 private readonly ILogger _logger;

 public ConsumeScopedServiceHostedService(IServiceProvider services,
 ILogger<ConsumeScopedServiceHostedService> logger)
 {
 Services = services;
 _logger = logger;
 }

 public IServiceProvider Services { get; }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 _logger.LogInformation(
 "Consume Scoped Service Hosted Service is starting.");

 DoWork();

 return Task.CompletedTask;
 }

 private void DoWork()
 {
 _logger.LogInformation(
 "Consume Scoped Service Hosted Service is working.");

 using (var scope = Services.CreateScope())
 {
 var scopedProcessingService =
 scope.ServiceProvider
 .GetRequiredService<IScopedProcessingService>();

 scopedProcessingService.DoWork();
 }
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 _logger.LogInformation(
 "Consume Scoped Service Hosted Service is stopping.");

 return Task.CompletedTask;
 }
}

services.AddHostedService<ConsumeScopedServiceHostedService>();
services.AddScoped<IScopedProcessingService, ScopedProcessingService>();

services.AddSingleton<IHostedService, ConsumeScopedServiceHostedService>();
services.AddScoped<IScopedProcessingService, ScopedProcessingService>();

Queued background tasks

The services are registered in Startup.ConfigureServices . The IHostedService implementation is registered with
the AddHostedService extension method:

The services are registered in Startup.ConfigureServices :

A background task queue is based on the .NET 4.x QueueBackgroundWorkItem (tentatively scheduled to be built-

https://docs.microsoft.com/dotnet/api/system.web.hosting.hostingenvironment.queuebackgroundworkitem
https://github.com/aspnet/Hosting/issues/1280

public interface IBackgroundTaskQueue
{
 void QueueBackgroundWorkItem(Func<CancellationToken, Task> workItem);

 Task<Func<CancellationToken, Task>> DequeueAsync(
 CancellationToken cancellationToken);
}

public class BackgroundTaskQueue : IBackgroundTaskQueue
{
 private ConcurrentQueue<Func<CancellationToken, Task>> _workItems =
 new ConcurrentQueue<Func<CancellationToken, Task>>();
 private SemaphoreSlim _signal = new SemaphoreSlim(0);

 public void QueueBackgroundWorkItem(
 Func<CancellationToken, Task> workItem)
 {
 if (workItem == null)
 {
 throw new ArgumentNullException(nameof(workItem));
 }

 _workItems.Enqueue(workItem);
 _signal.Release();
 }

 public async Task<Func<CancellationToken, Task>> DequeueAsync(
 CancellationToken cancellationToken)
 {
 await _signal.WaitAsync(cancellationToken);
 _workItems.TryDequeue(out var workItem);

 return workItem;
 }
}

in for ASP.NET Core 3.0):

In QueueHostedService , background tasks (workItem) in the queue are dequeued and executed:

public class QueuedHostedService : IHostedService
{
 private CancellationTokenSource _shutdown =
 new CancellationTokenSource();
 private Task _backgroundTask;
 private readonly ILogger _logger;

 public QueuedHostedService(IBackgroundTaskQueue taskQueue,
 ILoggerFactory loggerFactory)
 {
 TaskQueue = taskQueue;
 _logger = loggerFactory.CreateLogger<QueuedHostedService>();
 }

 public IBackgroundTaskQueue TaskQueue { get; }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 _logger.LogInformation("Queued Hosted Service is starting.");

 _backgroundTask = Task.Run(BackgroundProceessing);

 return Task.CompletedTask;
 }

 private async Task BackgroundProceessing()
 {
 while (!_shutdown.IsCancellationRequested)
 {
 var workItem =
 await TaskQueue.DequeueAsync(_shutdown.Token);

 try
 {
 await workItem(_shutdown.Token);
 }
 catch (Exception ex)
 {
 _logger.LogError(ex,
 $"Error occurred executing {nameof(workItem)}.");
 }
 }
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 _logger.LogInformation("Queued Hosted Service is stopping.");

 _shutdown.Cancel();

 return Task.WhenAny(_backgroundTask,
 Task.Delay(Timeout.Infinite, cancellationToken));
 }
}

services.AddHostedService<QueuedHostedService>();
services.AddSingleton<IBackgroundTaskQueue, BackgroundTaskQueue>();

The services are registered in Startup.ConfigureServices . The IHostedService implementation is registered with
the AddHostedService extension method:

The services are registered in Startup.ConfigureServices :

services.AddSingleton<IHostedService, QueuedHostedService>();
services.AddSingleton<IBackgroundTaskQueue, BackgroundTaskQueue>();

public IndexModel(IBackgroundTaskQueue queue,
 IApplicationLifetime appLifetime,
 ILogger<IndexModel> logger)
{
 Queue = queue;
 _appLifetime = appLifetime;
 _logger = logger;
}

public IBackgroundTaskQueue Queue { get; }

public IActionResult OnPostAddTask()
{
 Queue.QueueBackgroundWorkItem(async token =>
 {
 var guid = Guid.NewGuid().ToString();

 for (int delayLoop = 0; delayLoop < 3; delayLoop++)
 {
 _logger.LogInformation(
 $"Queued Background Task {guid} is running. {delayLoop}/3");
 await Task.Delay(TimeSpan.FromSeconds(5), token);
 }

 _logger.LogInformation(
 $"Queued Background Task {guid} is complete. 3/3");
 });

 return RedirectToPage();
}

Additional resources

In the Index page model class, the IBackgroundTaskQueue is injected into the constructor and assigned to Queue :

When the Add Task button is selected on the Index page, the OnPostAddTask method is executed.
QueueBackgroundWorkItem is called to enqueue the work item:

Implement background tasks in microservices with IHostedService and the BackgroundService class
System.Threading.Timer

https://docs.microsoft.com/dotnet/standard/microservices-architecture/multi-container-microservice-net-applications/background-tasks-with-ihostedservice
https://docs.microsoft.com/dotnet/api/system.threading.timer

Session and application state in ASP.NET Core
5/18/2018 • 13 minutes to read • Edit Online

Session state

WARNINGWARNING

TempData

TempData providersTempData providers

By Rick Anderson, Steve Smith, and Diana LaRose

HTTP is a stateless protocol. A web server treats each HTTP request as an independent request and doesn't retain
user values from previous requests. This article discusses different ways to preserve application and session state
between requests.

Session state is a feature in ASP.NET Core that you can use to save and store user data while the user browses
your web app. Consisting of a dictionary or hash table on the server, session state persists data across requests
from a browser. The session data is backed by a cache.

ASP.NET Core maintains session state by giving the client a cookie that contains the session ID, which is sent to
the server with each request. The server uses the session ID to fetch the session data. Because the session cookie
is specific to the browser, you cannot share sessions across browsers. Session cookies are deleted only when the
browser session ends. If a cookie is received for an expired session, a new session that uses the same session
cookie is created.

The server retains a session for a limited time after the last request. Either set the session timeout or use the
default value of 20 minutes. Session state is ideal for storing user data that's specific to a particular session but
doesn't need to be persisted permanently. Data is deleted from the backing store either when calling
Session.Clear or when the session expires in the data store. The server doesn't know when the browser is closed

or when the session cookie is deleted.

Don't store sensitive data in session. The client might not close the browser and clear the session cookie (and some
browsers keep session cookies alive across windows). Also, a session might not be restricted to a single user; the next user
might continue with the same session.

The in-memory session provider stores session data on the local server. If you plan to run your web app on a
server farm, you must use sticky sessions to tie each session to a specific server. The Windows Azure Web Sites
platform defaults to sticky sessions (Application Request Routing or ARR). However, sticky sessions can affect
scalability and complicate web app updates. A better option is to use the Redis or SQL Server distributed caches,
which don't require sticky sessions. For more information, see Work with a Distributed Cache. For details on
setting up service providers, see Configuring Session later in this article.

ASP.NET Core MVC exposes the TempData property on a controller. This property stores data until it's read. The
Keep and Peek methods can be used to examine the data without deletion. TempData is particularly useful for

redirection, when data is needed for more than a single request. TempData is implemented by TempData
providers, for example, using either cookies or session state.

ASP.NET Core 2.x
ASP.NET Core 1.x

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/app-state.md
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://github.com/DianaLaRose
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controller.tempdata?view=aspnetcore-2.0#Microsoft_AspNetCore_Mvc_Controller_TempData
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controller?view=aspnetcore-2.0

Choosing a TempData providerChoosing a TempData provider

NOTENOTE

Configure the TempData providerConfigure the TempData provider

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddSessionStateTempDataProvider();

 services.AddSession();
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseSession();
 app.UseMvcWithDefaultRoute();
}

IMPORTANTIMPORTANT

In ASP.NET Core 2.0 and later, the cookie-based TempData provider is used by default to store TempData in
cookies.

The cookie data is encrypted using IDataProtector, encoded with Base64UrlTextEncoder, then chunked. Because
the cookie is chunked, the single cookie size limit found in ASP.NET Core 1.x doesn't apply. The cookie data isn't
compressed because compressing encrypted data can lead to security problems such as the CRIME and BREACH
attacks. For more information on the cookie-based TempData provider, see CookieTempDataProvider.

Choosing a TempData provider involves several considerations, such as:

1. Does the application already use session state for other purposes? If so, using the session state TempData
provider has no additional cost to the application (aside from the size of the data).

2. Does the application use TempData only sparingly, for relatively small amounts of data (up to 500 bytes)? If so,
the cookie TempData provider will add a small cost to each request that carries TempData. If not, the session
state TempData provider can be beneficial to avoid round-tripping a large amount of data in each request until
the TempData is consumed.

3. Does the application run in a web farm (multiple servers)? If so, there's no additional configuration needed to
use the cookie TempData provider.

Most web clients (such as web browsers) enforce limits on the maximum size of each cookie, the total number of cookies, or
both. Therefore, when using the cookie TempData provider, verify the app won't exceed these limits. Consider the total size
of the data, accounting for the overheads of encryption and chunking.

ASP.NET Core 2.x
ASP.NET Core 1.x

The cookie-based TempData provider is enabled by default. The following Startup class code configures the
session-based TempData provider :

Ordering is critical for middleware components. In the preceding example, an exception of type
InvalidOperationException occurs when UseSession is invoked after UseMvcWithDefaultRoute . See Middleware

Ordering for more detail.

If targeting .NET Framework and using the session-based provider, add the Microsoft.AspNetCore.Session NuGet package
to your project.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webutilities.base64urltextencoder
https://wikipedia.org/wiki/CRIME_(security_exploit)
https://wikipedia.org/wiki/BREACH_(security_exploit)
https://github.com/aspnet/Mvc/blob/dev/src/Microsoft.AspNetCore.Mvc.ViewFeatures/ViewFeatures/CookieTempDataProvider.cs
https://www.nuget.org/packages/Microsoft.AspNetCore.Session

Query strings

Post data and hidden fields

Cookies

HttpContext.Items

Cache

Working with Session State
Configuring SessionConfiguring Session

You can pass a limited amount of data from one request to another by adding it to the new request's query string.
This is useful for capturing state in a persistent manner that allows links with embedded state to be shared
through email or social networks. However, for this reason, you should never use query strings for sensitive data.
In addition to being easily shared, including data in query strings can create opportunities for Cross-Site Request
Forgery (CSRF) attacks, which can trick users into visiting malicious sites while authenticated. Attackers can then
steal user data from your app or take malicious actions on behalf of the user. Any preserved application or session
state must protect against CSRF attacks. For more information on CSRF attacks, see Prevent Cross-Site Request
Forgery (XSRF/CSRF) attacks.

Data can be saved in hidden form fields and posted back on the next request. This is common in multi-page
forms. However, because the client can potentially tamper with the data, the server must always revalidate it.

Cookies provide a way to store user-specific data in web applications. Because cookies are sent with every
request, their size should be kept to a minimum. Ideally, only an identifier should be stored in a cookie with the
actual data stored on the server. Most browsers restrict cookies to 4096 bytes. In addition, only a limited number
of cookies are available for each domain.

Because cookies are subject to tampering, they must be validated on the server. Although the durability of the
cookie on a client is subject to user intervention and expiration, they're generally the most durable form of data
persistence on the client.

Cookies are often used for personalization, where content is customized for a known user. Because the user is
only identified and not authenticated in most cases, you can typically secure a cookie by storing the user name,
account name, or a unique user ID (such as a GUID) in the cookie. You can then use the cookie to access the user
personalization infrastructure of a site.

The Items collection is a good location to store data that's needed only while processing one particular request.
The collection's contents are discarded after each request. The Items collection is best used as a way for
components or middleware to communicate when they operate at different points in time during a request and
have no direct way to pass parameters. For more information, see Work with HttpContext.Items, later in this
article.

Caching is an efficient way to store and retrieve data. You can control the lifetime of cached items based on time
and other considerations. Learn more about how to cache.

The Microsoft.AspNetCore.Session package provides middleware for managing session state. To enable the
session middleware, Startup must contain:

Any of the IDistributedCache memory caches. The IDistributedCache implementation is used as a backing
store for session.
AddSession call, which requires NuGet package "Microsoft.AspNetCore.Session".

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.sessionservicecollectionextensions#Microsoft_Extensions_DependencyInjection_SessionServiceCollectionExtensions_AddSession_Microsoft_Extensions_DependencyInjection_IServiceCollection_

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using System;

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();

 // Adds a default in-memory implementation of IDistributedCache.
 services.AddDistributedMemoryCache();

 services.AddSession(options =>
 {
 // Set a short timeout for easy testing.
 options.IdleTimeout = TimeSpan.FromSeconds(10);
 options.Cookie.HttpOnly = true;
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseSession();
 app.UseMvcWithDefaultRoute();
 }
}

Loading Session asynchronouslyLoading Session asynchronously

Implementation detailsImplementation details

UseSession call.

The following code shows how to set up the in-memory session provider.

ASP.NET Core 2.x
ASP.NET Core 1.x

You can reference Session from HttpContext once it's installed and configured.

If you try to access Session before UseSession has been called, the exception
InvalidOperationException: Session has not been configured for this application or request is thrown.

If you try to create a new Session (that is, no session cookie has been created) after you have already begun
writing to the Response stream, the exception
InvalidOperationException: The session cannot be established after the response has started is thrown. The

exception can be found in the web server log; it will not be displayed in the browser.

The default session provider in ASP.NET Core loads the session record from the underlying IDistributedCache
store asynchronously only if the ISession.LoadAsync method is explicitly called before the TryGetValue , Set , or
Remove methods. If LoadAsync isn't called first, the underlying session record is loaded synchronously, which

could potentially impact the ability of the app to scale.

To have applications enforce this pattern, wrap the DistributedSessionStore and DistributedSession
implementations with versions that throw an exception if the LoadAsync method isn't called before TryGetValue ,
Set , or Remove . Register the wrapped versions in the services container.

Session uses a cookie to track and identify requests from a single browser. By default, this cookie is named
".AspNet.Session", and it uses a path of "/". Because the cookie default doesn't specify a domain, it's not made
available to the client-side script on the page (because CookieHttpOnly defaults to true).

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.sessionmiddlewareextensions#methods_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.isession#Microsoft_AspNetCore_Http_ISession_LoadAsync
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.session.distributedsessionstore
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.session.distributedsession

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 // Adds a default in-memory implementation of IDistributedCache.
 services.AddDistributedMemoryCache();

 services.AddSession(options =>
 {
 options.Cookie.Name = ".AdventureWorks.Session";
 options.IdleTimeout = TimeSpan.FromSeconds(10);
 });
}

Set and get Session valuesSet and get Session values

@using Microsoft.AspNetCore.Http
Session Value = @Context.Session.GetString("_Name")

To override session defaults, use SessionOptions :

ASP.NET Core 2.x
ASP.NET Core 1.x

The server uses the IdleTimeout property to determine how long a session can be idle before its contents are
abandoned. This property is independent of the cookie expiration. Each request that passes through the Session
middleware (read from or written to) resets the timeout.

Because Session is non-locking, if two requests both attempt to modify the contents of session, the last one
overrides the first. Session is implemented as a coherent session, which means that all the contents are stored
together. Two requests that are modifying different parts of the session (different keys) might still impact each
other.

Session is accessed from a Razor Page or view with Context.Session :

Session is accessed from a PageModel class or controller with HttpContext.Session . This property is an ISession
implementation.

The following example shows setting and getting an int and a string:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.isession

public class HomeController : Controller
{
 const string SessionKeyName = "_Name";
 const string SessionKeyYearsMember = "_YearsMember";
 const string SessionKeyDate = "_Date";

 public IActionResult Index()
 {
 // Requires using Microsoft.AspNetCore.Http;
 HttpContext.Session.SetString(SessionKeyName, "Rick");
 HttpContext.Session.SetInt32(SessionKeyYearsMember, 3);
 return RedirectToAction("SessionNameYears");
 }
 public IActionResult SessionNameYears()
 {
 var name = HttpContext.Session.GetString(SessionKeyName);
 var yearsMember = HttpContext.Session.GetInt32(SessionKeyYearsMember);

 return Content($"Name: \"{name}\", Membership years: \"{yearsMember}\"");
 }
}

using Microsoft.AspNetCore.Http;
using Newtonsoft.Json;

public static class SessionExtensions
{
 public static void Set<T>(this ISession session, string key, T value)
 {
 session.SetString(key, JsonConvert.SerializeObject(value));
 }

 public static T Get<T>(this ISession session,string key)
 {
 var value = session.GetString(key);
 return value == null ? default(T) :
 JsonConvert.DeserializeObject<T>(value);
 }
}

public IActionResult SetDate()
{
 // Requires you add the Set extension method mentioned in the article.
 HttpContext.Session.Set<DateTime>(SessionKeyDate, DateTime.Now);
 return RedirectToAction("GetDate");
}

public IActionResult GetDate()
{
 // Requires you add the Get extension method mentioned in the article.
 var date = HttpContext.Session.Get<DateTime>(SessionKeyDate);
 var sessionTime = date.TimeOfDay.ToString();
 var currentTime = DateTime.Now.TimeOfDay.ToString();

 return Content($"Current time: {currentTime} - "
 + $"session time: {sessionTime}");
}

Working with HttpContext.Items

If you add the following extension methods, you can set and get serializable objects to Session:

The following sample shows how to set and get a serializable object:

 Working with HttpContext.Items

app.Use(async (context, next) =>
{
 // perform some verification
 context.Items["isVerified"] = true;
 await next.Invoke();
});

app.Run(async (context) =>
{
 await context.Response.WriteAsync("Verified request? " +
 context.Items["isVerified"]);
});

public class SampleMiddleware
{
 public static readonly object SampleKey = new Object();

 public async Task Invoke(HttpContext httpContext)
 {
 httpContext.Items[SampleKey] = "some value";
 // additional code omitted
 }
}

public class HomeController : Controller
{
 public IActionResult Index()
 {
 string value = HttpContext.Items[SampleMiddleware.SampleKey];
 }
}

Application state data

The HttpContext abstraction provides support for a dictionary collection of type IDictionary<object, object> ,
called Items . This collection is available from the start of an HttpRequest and is discarded at the end of each
request. You can access it by assigning a value to a keyed entry, or by requesting the value for a particular key.

In the following sample, Middleware adds isVerified to the Items collection.

Later in the pipeline, another middleware could access it:

For middleware that will only be used by a single app, string keys are acceptable. However, middleware that will
be shared between applications should use unique object keys to avoid any chance of key collisions. If you are
developing middleware that must work across multiple applications, use a unique object key defined in your
middleware class as shown below:

Other code can access the value stored in HttpContext.Items using the key exposed by the middleware class:

This approach also has the advantage of eliminating repetition of "magic strings" in multiple places in the code.

Use Dependency Injection to make data available to all users:

1. Define a service containing the data (for example, a class named MyAppData).

Common errors when working with session

Additional resourcesAdditional resources

public class MyAppData
{
 // Declare properties/methods/etc.
}

public class MyController : Controller
{
 public MyController(MyAppData myService)
 {
 // Do something with the service (read some data from it,
 // store it in a private field/property, etc.)
 }
}

2. Add the service class to ConfigureServices (for example services.AddSingleton<MyAppData>();).

3. Consume the data service class in each controller :

"Unable to resolve service for type 'Microsoft.Extensions.Caching.Distributed.IDistributedCache' while
attempting to activate 'Microsoft.AspNetCore.Session.DistributedSessionStore'."

This is usually caused by failing to configure at least one IDistributedCache implementation. For more
information, see Work with a Distributed Cache and In memory caching.

In the event that the session middleware fails to persist a session (for example: if the database isn't
available), it logs the exception and swallows it. The request will then continue normally, which leads to
very unpredictable behavior.

A typical example:

Someone stores a shopping basket in session. The user adds an item but the commit fails. The app doesn't know
about the failure so it reports the message "The item has been added", which isn't true.

The recommended way to check for such errors is to call await feature.Session.CommitAsync(); from app code
when you're done writing to the session. Then you can do what you like with the error. It works the same way
when calling LoadAsync .

ASP.NET Core 1.x: Sample code used in this document
ASP.NET Core 2.x: Sample code used in this document

https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/app-state/sample/src/WebAppSession
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/app-state/sample/src/WebAppSessionDotNetCore2.0App

Web server implementations in ASP.NET Core
5/24/2018 • 4 minutes to read • Edit Online

Kestrel

I IS with KestrelIIS with Kestrel

Nginx with KestrelNginx with Kestrel

By Tom Dykstra, Steve Smith, Stephen Halter, and Chris Ross

An ASP.NET Core app runs with an in-process HTTP server implementation. The server implementation listens
for HTTP requests and surfaces them to the app as sets of request features composed into an HttpContext.

ASP.NET Core ships two server implementations:

Kestrel is the default, cross-platform HTTP server for ASP.NET Core.
HTTP.sys is a Windows-only HTTP server based on the HTTP.sys kernel driver and HTTP Server API.
(HTTP.sys is called WebListener in ASP.NET Core 1.x.)

Kestrel is the default web server included in ASP.NET Core project templates.

ASP.NET Core 2.x
ASP.NET Core 1.x

Kestrel can be used by itself or with a reverse proxy server, such as IIS, Nginx, or Apache. A reverse proxy server
receives HTTP requests from the Internet and forwards them to Kestrel after some preliminary handling.

Either configuration—with or without a reverse proxy server—is a valid and supported hosting configuration for
ASP.NET Core 2.0 or later apps. For more information, see When to use Kestrel with a reverse proxy.

IIS, Nginx, and Apache can't be used without Kestrel or a custom server implementation. ASP.NET Core was
designed to run in its own process so that it can behave consistently across platforms. IIS, Nginx, and Apache
dictate their own startup procedure and environment. To use these server technologies directly, ASP.NET Core
would need to adapt to the requirements of each server. Using a web server implementation, such as Kestrel,
ASP.NET Core has control over the startup process and environment when hosted on different server
technologies.

When using IIS or IIS Express as a reverse proxy for ASP.NET Core, the ASP.NET Core app runs in a process
separate from the IIS worker process. In the IIS process, the ASP.NET Core Module coordinates the reverse proxy
relationship. The primary functions of the ASP.NET Core Module are to start the ASP.NET Core app, restart the
app when it crashes, and forward HTTP traffic to the app. For more information, see ASP.NET Core Module.

For information on how to use Nginx on Linux as a reverse proxy server for Kestrel, see Host on Linux with
Nginx.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/servers/index.md
https://github.com/tdykstra
https://ardalis.com/
https://twitter.com/halter73
https://github.com/Tratcher
https://docs.microsoft.com/dotnet/api/system.web.httpcontext
https://msdn.microsoft.com/library/windows/desktop/aa364510.aspx
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener
https://docs.microsoft.com/iis/get-started/introduction-to-iis/introduction-to-iis-architecture
https://docs.microsoft.com/iis/extensions/introduction-to-iis-express/iis-express-overview

Apache with KestrelApache with Kestrel

HTTP.sys

ASP.NET Core server infrastructure

Custom servers

Server startup

For information on how to use Apache on Linux as a reverse proxy server for Kestrel, see Host on Linux with
Apache.

ASP.NET Core 2.x
ASP.NET Core 1.x

If ASP.NET Core apps are run on Windows, HTTP.sys is an alternative to Kestrel. Kestrel is generally
recommended for best performance. HTTP.sys can be used in scenarios where the app is exposed to the Internet
and required features are supported by HTTP.sys but not Kestrel. For information on HTTP.sys features, see
HTTP.sys.

HTTP.sys can also be used for apps that are only exposed to an internal network.

The IApplicationBuilder available in the Startup.Configure method exposes the ServerFeatures property of type
IFeatureCollection. Kestrel and HTTP.sys (WebListener in ASP.NET Core 1.x) only expose a single feature each,
IServerAddressesFeature, but different server implementations may expose additional functionality.

IServerAddressesFeature can be used to find out which port the server implementation has bound at runtime.

If the built-in servers don't meet the app's requirements, a custom server implementation can be created. The
Open Web Interface for .NET (OWIN) guide demonstrates how to write a Nowin-based IServer implementation.
Only the feature interfaces that the app uses require implementation, though at a minimum IHttpRequestFeature
and IHttpResponseFeature must be supported.

When using Visual Studio, Visual Studio for Mac, or Visual Studio Code, the server is launched when the app is
started by the Integrated Development Environment (IDE). In Visual Studio on Windows, launch profiles can be
used to start the app and server with either IIS Express/ASP.NET Core Module or the console. In Visual Studio
Code, the app and server are started by Omnisharp, which activates the CoreCLR debugger. Using Visual Studio
for Mac, the app and server are started by the Mono Soft-Mode Debugger.

When launching an app from a command prompt in the project's folder, dotnet run launches the app and server
(Kestrel and HTTP.sys only). The configuration is specified by the -c|--configuration option, which is set to either
Debug (default) or Release . If launch profiles are present in a launchSettings.json file, use the
--launch-profile <NAME> option to set the launch profile (for example, Development or Production). For more

information, see the dotnet run and .NET Core distribution packaging topics.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.serverfeatures
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.features.ifeaturecollection
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.server.features.iserveraddressesfeature
https://github.com/Bobris/Nowin
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.server.iserver
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.features.ihttprequestfeature
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.features.ihttpresponsefeature
https://www.visualstudio.com/vs/
https://www.visualstudio.com/vs/mac/
https://code.visualstudio.com/
https://docs.microsoft.com/iis/extensions/introduction-to-iis-express/iis-express-overview
https://github.com/OmniSharp/omnisharp-vscode
http://www.mono-project.com/docs/advanced/runtime/docs/soft-debugger/
https://docs.microsoft.com/dotnet/core/tools/dotnet-run
https://docs.microsoft.com/dotnet/core/tools/dotnet-run
https://docs.microsoft.com/dotnet/core/build/distribution-packaging

Additional resources
Kestrel
Kestrel with IIS
Host on Linux with Nginx
Host on Linux with Apache
HTTP.sys (for ASP.NET Core 1.x, see WebListener)

https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener

Kestrel web server implementation in ASP.NET Core
6/14/2018 • 21 minutes to read • Edit Online

When to use Kestrel with a reverse proxy

By Tom Dykstra, Chris Ross, and Stephen Halter

Kestrel is a cross-platform web server for ASP.NET Core. Kestrel is the web server that's included by default in
ASP.NET Core project templates.

Kestrel supports the following features:

HTTPS
Opaque upgrade used to enable WebSockets
Unix sockets for high performance behind Nginx

Kestrel is supported on all platforms and versions that .NET Core supports.

View or download sample code (how to download)

ASP.NET Core 2.x
ASP.NET Core 1.x

You can use Kestrel by itself or with a reverse proxy server, such as IIS, Nginx, or Apache. A reverse proxy
server receives HTTP requests from the Internet and forwards them to Kestrel after some preliminary
handling.

Either configuration—with or without a reverse proxy server—is a valid and supported hosting configuration
for ASP.NET Core 2.0 or later apps.

A reverse proxy scenario exists when there are multiple apps that share the same IP and port running on a
single server. Kestrel doesn't support this scenario because Kestrel doesn't support sharing the same IP and
port among multiple processes. When Kestrel is configured to listen on a port, Kestrel handles all of the traffic
for that port regardless of requests' host header. A reverse proxy that can share ports has the ability to forward
requests to Kestrel on a unique IP and port.

Even if a reverse proxy server isn't required, using a reverse proxy server might be a good choice:

It can limit the exposed public surface area of the apps that it hosts.
It provides an additional layer of configuration and defense.
It might integrate better with existing infrastructure.
It simplifies load balancing and SSL configuration. Only the reverse proxy server requires an SSL
certificate, and that server can communicate with your app servers on the internal network using plain
HTTP.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/servers/kestrel.md
https://github.com/tdykstra
https://github.com/Tratcher
https://twitter.com/halter73
https://github.com/aspnet/websockets
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/servers/kestrel/samples

WARNINGWARNING

How to use Kestrel in ASP.NET Core apps

public static void Main(string[] args)
{
 CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();

Kestrel optionsKestrel options

If not using a reverse proxy with host filtering enabled, host filtering must be enabled.

ASP.NET Core 2.x
ASP.NET Core 1.x

The Microsoft.AspNetCore.Server.Kestrel package is included in the [Microsoft.AspNetCore.App metapackage]
(xref:fundamentals/metapackage-app) (ASP.NET Core 2.1 or later).

ASP.NET Core project templates use Kestrel by default. In Program.cs, the template code calls
CreateDefaultBuilder, which calls UseKestrel behind the scenes.

ASP.NET Core 2.x
ASP.NET Core 1.x

The Kestrel web server has constraint configuration options that are especially useful in Internet-facing
deployments. A few important limits that can be customized:

Maximum client connections
Maximum request body size
Minimum request body data rate

Set these and other constraints on the Limits property of the KestrelServerOptions class. The Limits property
holds an instance of the KestrelServerLimits class.

Maximum client connections

MaxConcurrentConnections
MaxConcurrentUpgradedConnections

The maximum number of concurrent open TCP connections can be set for the entire app with the following
code:

https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.limits
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxconcurrentconnections
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxconcurrentupgradedconnections

.UseKestrel(options =>
{
 options.Limits.MaxConcurrentConnections = 100;
 options.Limits.MaxConcurrentUpgradedConnections = 100;
 options.Limits.MaxRequestBodySize = 10 * 1024;
 options.Limits.MinRequestBodyDataRate =
 new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
 options.Limits.MinResponseDataRate =
 new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
 options.Listen(IPAddress.Loopback, 5000);
 options.Listen(IPAddress.Loopback, 5001, listenOptions =>
 {
 listenOptions.UseHttps("testCert.pfx", "testPassword");
 });
});

.UseKestrel(options =>
{
 options.Limits.MaxConcurrentConnections = 100;
 options.Limits.MaxConcurrentUpgradedConnections = 100;
 options.Limits.MaxRequestBodySize = 10 * 1024;
 options.Limits.MinRequestBodyDataRate =
 new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
 options.Limits.MinResponseDataRate =
 new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
 options.Listen(IPAddress.Loopback, 5000);
 options.Listen(IPAddress.Loopback, 5001, listenOptions =>
 {
 listenOptions.UseHttps("testCert.pfx", "testPassword");
 });
});

[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

There's a separate limit for connections that have been upgraded from HTTP or HTTPS to another protocol
(for example, on a WebSockets request). After a connection is upgraded, it isn't counted against the
MaxConcurrentConnections limit.

The maximum number of connections is unlimited (null) by default.

Maximum request body size

MaxRequestBodySize

The default maximum request body size is 30,000,000 bytes, which is approximately 28.6 MB.

The recommended approach to override the limit in an ASP.NET Core MVC app is to use the RequestSizeLimit
attribute on an action method:

Here's an example that shows how to configure the constraint for the app on every request:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxrequestbodysize
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute

.UseKestrel(options =>
{
 options.Limits.MaxConcurrentConnections = 100;
 options.Limits.MaxConcurrentUpgradedConnections = 100;
 options.Limits.MaxRequestBodySize = 10 * 1024;
 options.Limits.MinRequestBodyDataRate =
 new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
 options.Limits.MinResponseDataRate =
 new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
 options.Listen(IPAddress.Loopback, 5000);
 options.Listen(IPAddress.Loopback, 5001, listenOptions =>
 {
 listenOptions.UseHttps("testCert.pfx", "testPassword");
 });
});

app.Run(async (context) =>
{
 context.Features.Get<IHttpMaxRequestBodySizeFeature>()
 .MaxRequestBodySize = 10 * 1024;
 context.Features.Get<IHttpMinRequestBodyDataRateFeature>()
 .MinDataRate = new MinDataRate(bytesPerSecond: 100,
 gracePeriod: TimeSpan.FromSeconds(10));
 context.Features.Get<IHttpMinResponseDataRateFeature>()
 .MinDataRate = new MinDataRate(bytesPerSecond: 100,
 gracePeriod: TimeSpan.FromSeconds(10));

You can override the setting on a specific request in middleware:

An exception is thrown if you attempt to configure the limit on a request after the app has started to read the
request. There's an IsReadOnly property that indicates if the MaxRequestBodySize property is in read-only state,
meaning it's too late to configure the limit.

Minimum request body data rate

MinRequestBodyDataRate
MinResponseDataRate

Kestrel checks every second if data is arriving at the specified rate in bytes/second. If the rate drops below the
minimum, the connection is timed out. The grace period is the amount of time that Kestrel gives the client to
increase its send rate up to the minimum; the rate isn't checked during that time. The grace period helps avoid
dropping connections that are initially sending data at a slow rate due to TCP slow-start.

The default minimum rate is 240 bytes/second with a 5 second grace period.

A minimum rate also applies to the response. The code to set the request limit and the response limit is the
same except for having RequestBody or Response in the property and interface names.

Here's an example that shows how to configure the minimum data rates in Program.cs:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.minrequestbodydatarate
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.minresponsedatarate

.UseKestrel(options =>
{
 options.Limits.MaxConcurrentConnections = 100;
 options.Limits.MaxConcurrentUpgradedConnections = 100;
 options.Limits.MaxRequestBodySize = 10 * 1024;
 options.Limits.MinRequestBodyDataRate =
 new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
 options.Limits.MinResponseDataRate =
 new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
 options.Listen(IPAddress.Loopback, 5000);
 options.Listen(IPAddress.Loopback, 5001, listenOptions =>
 {
 listenOptions.UseHttps("testCert.pfx", "testPassword");
 });
});

app.Run(async (context) =>
{
 context.Features.Get<IHttpMaxRequestBodySizeFeature>()
 .MaxRequestBodySize = 10 * 1024;
 context.Features.Get<IHttpMinRequestBodyDataRateFeature>()
 .MinDataRate = new MinDataRate(bytesPerSecond: 100,
 gracePeriod: TimeSpan.FromSeconds(10));
 context.Features.Get<IHttpMinResponseDataRateFeature>()
 .MinDataRate = new MinDataRate(bytesPerSecond: 100,
 gracePeriod: TimeSpan.FromSeconds(10));

Endpoint configurationEndpoint configuration

You can configure the rates per request in middleware:

For information about other Kestrel options and limits, see:

KestrelServerOptions
KestrelServerLimits
ListenOptions

ASP.NET Core 2.x
ASP.NET Core 1.x

By default, ASP.NET Core binds to http://localhost:5000 . Call Listen or ListenUnixSocket methods on
KestrelServerOptions to configure URL prefixes and ports for Kestrel. UseUrls , the --urls command-line
argument, urls host configuration key, and the ASPNETCORE_URLS environment variable also work but have the
limitations noted later in this section.

The urls host configuration key must come from the host configuration, not the app configuration. Adding a
urls key and value to appsettings.json doesn't affect host configuration because the host is completely

initialized by the time the configuration is read from the configuration file. However, a urls key in
appsettings.json can be used with UseConfiguration on the host builder to configure the host:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useconfiguration

var config = new ConfigurationBuilder()
.SetBasePath(Directory.GetCurrentDirectory())
.AddJsonFile("appSettings.json", optional: true, reloadOnChange: true)
.Build();

var host = new WebHostBuilder()
.UseKestrel()
.UseConfiguration(config)
.UseContentRoot(Directory.GetCurrentDirectory())
.UseStartup<Startup>()
.Build();

By default, ASP.NET Core binds to:

http://localhost:5000

https://localhost:5001 (when a local development certificate is present)

A development certificate is created:

When the .NET Core SDK is installed.
The dev-certs tool is used to create a certificate.

Some browsers require that you grant explicit permission to the browser to trust the local development
certificate.

ASP.NET Core 2.1 and later project templates configure apps to run on HTTPS by default and include HTTPS
redirection and HSTS support.

Call Listen or ListenUnixSocket methods on KestrelServerOptions to configure URL prefixes and ports for
Kestrel.

UseUrls , the --urls command-line argument, urls host configuration key, and the ASPNETCORE_URLS

environment variable also work but have the limitations noted later in this section (a default certificate must be
available for HTTPS endpoint configuration).

ASP.NET Core 2.1 KestrelServerOptions configuration:

ConfigureEndpointDefaults(Action<ListenOptions>)
Specifies a configuration Action to run for each specified endpoint. Calling ConfigureEndpointDefaults

multiple times replaces prior Action s with the last Action specified.

ConfigureHttpsDefaults(Action<HttpsConnectionAdapterOptions>)
Specifies a configuration Action to run for each HTTPS endpoint. Calling ConfigureHttpsDefaults multiple
times replaces prior Action s with the last Action specified.

Configure(IConfiguration)
Creates a configuration loader for setting up Kestrel that takes an IConfiguration as input. The configuration
must be scoped to the configuration section for Kestrel.

ListenOptions.UseHttps
Configure Kestrel to use HTTPS.

ListenOptions.UseHttps extensions:

UseHttps – Configure Kestrel to use HTTPS with the default certificate. Throws an exception if no default
certificate is configured.
UseHttps(string fileName)

UseHttps(string fileName, string password)

https://docs.microsoft.com/dotnet/core/sdk
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.iconfiguration

UseHttps(string fileName, string password, Action<HttpsConnectionAdapterOptions> configureOptions)

UseHttps(StoreName storeName, string subject)

UseHttps(StoreName storeName, string subject, bool allowInvalid)

UseHttps(StoreName storeName, string subject, bool allowInvalid, StoreLocation location)

UseHttps(StoreName storeName, string subject, bool allowInvalid, StoreLocation location,
Action<HttpsConnectionAdapterOptions> configureOptions)

UseHttps(X509Certificate2 serverCertificate)

UseHttps(X509Certificate2 serverCertificate, Action<HttpsConnectionAdapterOptions> configureOptions)

UseHttps(Action<HttpsConnectionAdapterOptions> configureOptions)

ListenOptions.UseHttps parameters:

filename is the path and file name of a certificate file, relative to the directory that contains the app's
content files.
password is the password required to access the X.509 certificate data.
configureOptions is an Action to configure the HttpsConnectionAdapterOptions . Returns the ListenOptions

.
storeName is the certificate store from which to load the certificate.
subject is the subject name for the certificate.
allowInvalid indicates if invalid certificates should be considered, such as self-signed certificates.
location is the store location to load the certificate from.
serverCertificate is the X.509 certificate.

In production, HTTPS must be explicitly configured. At a minimum, a default certificate must be provided.

Supported configurations described next:

No configuration
Replace the default certificate from configuration
Change the defaults in code

No configuration

Kestrel listens on http://localhost:5000 and https://localhost:5001 (if a default cert is available).

Specify URLs using the:

ASPNETCORE_URLS environment variable.
--urls command-line argument.
urls host configuration key.
UseUrls extension method.

For more information, see Server URLs and Override configuration.

The value provided using these approaches can be one or more HTTP and HTTPS endpoints (HTTPS if a
default cert is available). Configure the value as a semicolon-separated list (for example,
"Urls": "http://localhost:8000;http://localhost:8001").

Replace the default certificate from configuration

WebHost.CreateDefaultBuilder calls serverOptions.Configure(context.Configuration.GetSection("Kestrel")) by
default to load Kestrel configuration. A default HTTPS app settings configuration schema is available for
Kestrel. Configure multiple endpoints, including the URLs and the certificates to use, either from a file on disk
or from a certificate store.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder

{
"Kestrel": {
"EndPoints": {
"Http": {
"Url": "http://localhost:5000"
},

"HttpsInlineCertFile": {
"Url": "https://localhost:5001",
"Certificate": {
"Path": "<path to .pfx file>",
"Password": "<certificate password>"
}
},

"HttpsInlineCertStore": {
"Url": "https://localhost:5002",
"Certificate": {
"Subject": "<subject; required>",
"Store": "<certificate store; defaults to My>",
"Location": "<location; defaults to CurrentUser>",
"AllowInvalid": "<true or false; defaults to false>"
}
},

"HttpsDefaultCert": {
"Url": "https://localhost:5003"
},

"Https": {
"Url": "https://*:5004",
"Certificate": {
"Path": "<path to .pfx file>",
"Password": "<certificate password>"
}
}
},
"Certificates": {
"Default": {
"Path": "<path to .pfx file>",
"Password": "<certificate password>"
}
}
}
}

"Default": {
"Subject": "<subject; required>",
"Store": "<cert store; defaults to My>",
"Location": "<location; defaults to CurrentUser>",
"AllowInvalid": "<true or false; defaults to false>"
}

In the following appsettings.json example:

Set AllowInvalid to true to permit the use of invalid certificates (for example, self-signed certificates).
Any HTTPS endpoint that doesn't specify a certificate (HttpsDefaultCert in the example that follows) falls
back to the cert defined under Certificates > Default or the development certificate.

An alternative to using Path and Password for any certificate node is to specify the certificate using certificate
store fields. For example, the Certificates > Default certificate can be specified as:

Schema notes:

serverOptions.Configure(context.Configuration.GetSection("Kestrel"))
.Endpoint("HTTPS", opt =>
{
opt.HttpsOptions.SslProtocols = SslProtocols.Tls12;
});

options.ConfigureEndpointDefaults(opt =>
{
opt.NoDelay = true;
});

options.ConfigureHttpsDefaults(httpsOptions =>
{
httpsOptions.SslProtocols = SslProtocols.Tls12;
});

Endpoints names are case-insensitive. For example, HTTPS and Https are valid.
The Url parameter is required for each endpoint. The format for this parameter is the same as the top-
level Urls configuration parameter except that it's limited to a single value.
These endpoints replace those defined in the top-level Urls configuration rather than adding to them.
Endpoints defined in code via Listen are cumulative with the endpoints defined in the configuration
section.
The Certificate section is optional. If the Certificate section isn't specified, the defaults defined in earlier
scenarios are used. If no defaults are available, the server throws an exception and fails to start.
The Certificate section supports both Path–Password and Subject–Store certificates.
Any number of endpoints may be defined in this way so long as they don't cause port conflicts.
serverOptions.Configure(context.Configuration.GetSection("Kestrel")) returns a
KestrelConfigurationLoader with an .Endpoint(string name, options => { }) method that can be used to

supplement a configured endpoint's settings:

You can also directly access KestrelServerOptions.ConfigurationLoader to keep iterating on the existing loader,
such as the one provided by WebHost.CreateDefaultBuilder.

The configuration section for each endpoint is a available on the options in the Endpoint method so that
custom settings may be read.
Multiple configurations may be loaded by calling
serverOptions.Configure(context.Configuration.GetSection("Kestrel")) again with another section. Only the

last configuration is used, unless Load is explicitly called on prior instances. The metapackage doesn't call
Load so that its default configuration section may be replaced.
KestrelConfigurationLoader mirrors the Listen family of APIs from KestrelServerOptions as Endpoint

overloads, so code and config endpoints may be configured in the same place. These overloads don't use
names and only consume default settings from configuration.

Change the defaults in code

ConfigureEndpointDefaults and ConfigureHttpsDefaults can be used to change default settings for
ListenOptions and HttpsConnectionAdapterOptions , including overriding the default certificate specified in the

prior scenario. ConfigureEndpointDefaults and ConfigureHttpsDefaults should be called before any endpoints
are configured.

Kestrel support for SNI

Server Name Indication (SNI) can be used to host multiple domains on the same IP address and port. For SNI
to function, the client sends the host name for the secure session to the server during the TLS handshake so

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://tools.ietf.org/html/rfc6066#section-3

WebHost.CreateDefaultBuilder()
.UseKestrel((context, options) =>
{
options.ListenAnyIP(5005, listenOptions =>
{
listenOptions.UseHttps(httpsOptions =>
{
var localhostCert = CertificateLoader.LoadFromStoreCert(
"localhost", "My", StoreLocation.CurrentUser,
allowInvalid: true);
var exampleCert = CertificateLoader.LoadFromStoreCert(
"example.com", "My", StoreLocation.CurrentUser,
allowInvalid: true);
var subExampleCert = CertificateLoader.LoadFromStoreCert(
"sub.example.com", "My", StoreLocation.CurrentUser,
allowInvalid: true);
var certs = new Dictionary(StringComparer.OrdinalIgnoreCase);
certs["localhost"] = localhostCert;
certs["example.com"] = exampleCert;
certs["sub.example.com"] = subExampleCert;

httpsOptions.ServerCertificateSelector = (connectionContext, name) =>
{
if (name != null && certs.TryGetValue(name, out var cert))
{
return cert;
}

return exampleCert;
};
});
});
});

that the server can provide the correct certificate. The client uses the furnished certificate for encrypted
communication with the server during the secure session that follows the TLS handshake.

Kestrel supports SNI via the ServerCertificateSelector callback. The callback is invoked once per connection
to allow the app to inspect the host name and select the appropriate certificate.

SNI support requires:

Running on target framework netcoreapp2.1 . On netcoreapp2.0 and net461 , the callback is invoked but
the name is always null . The name is also null if the client doesn't provide the host name parameter in
the TLS handshake.
All websites run on the same Kestrel instance. Kestrel doesn't support sharing an IP address and port
across multiple instances without a reverse proxy.

Bind to a TCP socket

The Listen method binds to a TCP socket, and an options lambda permits SSL certificate configuration:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen

public static void Main(string[] args)
{
 CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .UseKestrel(options =>
 {
 options.Listen(IPAddress.Loopback, 8000);
 options.Listen(IPAddress.Loopback, 8001, listenOptions =>
 {
 listenOptions.UseHttps("testCert.pfx", "testPassword");
 });
 });

.UseKestrel(options =>
{
 options.ListenUnixSocket("/tmp/kestrel-test.sock");
 options.ListenUnixSocket("/tmp/kestrel-test.sock", listenOptions =>
 {
 listenOptions.UseHttps("testCert.pfx", "testpassword");
 });
});

Now listening on: http://127.0.0.1:48508

The example configures SSL for an endpoint with ListenOptions. Use the same API to configure other Kestrel
settings for specific endpoints.

On Windows, self-signed certificates can be created using the New-SelfSignedCertificate PowerShell cmdlet.
For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

On macOS, Linux, and Windows, certificates can be created using OpenSSL.

Bind to a Unix socket

Listen on a Unix socket with ListenUnixSocket for improved performance with Nginx, as shown in this
example:

Port 0

When the port number 0 is specified, Kestrel dynamically binds to an available port. The following example
shows how to determine which port Kestrel actually bound at runtime:

When the app is run, the console window output indicates the dynamic port where the app can be reached:

UseUrls, --urls command-line argument, urls host configuration key, and ASPNETCORE_URLS
environment variable limitations

Configure endpoints with the following approaches:

UseUrls
--urls command-line argument
urls host configuration key

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions
https://docs.microsoft.com/powershell/module/pkiclient/new-selfsignedcertificate?view=win10-ps
https://github.com/aspnet/Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1
https://www.openssl.org/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls

Transport configuration

<PackageReference Include="Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv"
Version="2.1.0" />

public class Program
{
public static void Main(string[] args)
{
CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
WebHost.CreateDefaultBuilder(args)
.UseLibuv()
.UseStartup<Startup>();
}

URL prefixesURL prefixes

ASPNETCORE_URLS environment variable

These methods are useful for making code work with servers other than Kestrel. However, be aware of these
limitations:

SSL can't be used with these approaches unless a default certificate is provided in the HTTPS endpoint
configuration (for example, using KestrelServerOptions configuration or a configuration file as shown
earlier in this topic).
When both the Listen and UseUrls approaches are used simultaneously, the Listen endpoints override
the UseUrls endpoints.

IIS endpoint configuration

When using IIS, the URL bindings for IIS override bindings are set by either Listen or UseUrls . For more
information, see the ASP.NET Core Module topic.

With the release of ASP.NET Core 2.1, Kestrel's default transport is no longer based on Libuv but instead
based on managed sockets. This is a breaking change for ASP.NET Core 2.0 apps upgrading to 2.1 that call
WebHostBuilderLibuvExtensions.UseLibuv and depend on either of the following packages:

Microsoft.AspNetCore.Server.Kestrel (direct package reference)
Microsoft.AspNetCore.App

For ASP.NET Core 2.1 or later projects that use the Microsoft.AspNetCore.App metapackage and require the
use of Libuv:

Add a dependency for the Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv package to the app's
project file:

Call WebHostBuilderLibuvExtensions.UseLibuv:

When using UseUrls , --urls command-line argument, urls host configuration key, or ASPNETCORE_URLS

environment variable, the URL prefixes can be in any of the following formats.

ASP.NET Core 2.x
ASP.NET Core 1.x

Only HTTP URL prefixes are valid. Kestrel doesn't support SSL when configuring URL bindings using

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderlibuvextensions.uselibuv
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel/
https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderlibuvextensions.uselibuv

 Host filtering

using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Primitives;

UseUrls .

http://65.55.39.10:80/

http://[0:0:0:0:0:ffff:4137:270a]:80/

http://contoso.com:80/
http://*:80/

WARNINGWARNING

http://localhost:5000/
http://127.0.0.1:5000/
http://[::1]:5000/

IPv4 address with port number

0.0.0.0 is a special case that binds to all IPv4 addresses.

IPv6 address with port number

[::] is the IPv6 equivalent of IPv4 0.0.0.0 .

Host name with port number

Host names, * , and + , aren't special. Anything not recognized as a valid IP address or localhost

binds to all IPv4 and IPv6 IPs. To bind different host names to different ASP.NET Core apps on the same
port, use HTTP.sys or a reverse proxy server, such as IIS, Nginx, or Apache.

If not using a reverse proxy with host filtering enabled, enable host filtering.

Host localhost name with port number or loopback IP with port number

When localhost is specified, Kestrel attempts to bind to both IPv4 and IPv6 loopback interfaces. If the
requested port is in use by another service on either loopback interface, Kestrel fails to start. If either
loopback interface is unavailable for any other reason (most commonly because IPv6 isn't supported),
Kestrel logs a warning.

While Kestrel supports configuration based on prefixes such as http://example.com:5000 , Kestrel largely
ignores the host name. Host localhost is a special case used for binding to loopback addresses. Any host
other than an explicit IP address binds to all public IP addresses. None of this information is used to validate
request Host headers.

As a workaround, host behind a reverse proxy with host header filtering. This is the only supported scenario
for Kestrel in ASP.NET Core 1.x.

As a workaround, use middleware to filter requests by the Host header :

using Microsoft.Net.Http.Headers;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

// A normal middleware would provide an options type, config binding, extension methods, etc..
// This intentionally does all of the work inside of the middleware so it can be
// easily copy-pasted into docs and other projects.
public class HostFilteringMiddleware
{
private readonly RequestDelegate _next;
private readonly IList<string> _hosts;
private readonly ILogger<HostFilteringMiddleware> _logger;

public HostFilteringMiddleware(RequestDelegate next, IConfiguration config,
ILogger<HostFilteringMiddleware> logger)
{
if (config == null)
{
throw new ArgumentNullException(nameof(config));
}

_next = next ?? throw new ArgumentNullException(nameof(next));
_logger = logger ?? throw new ArgumentNullException(nameof(logger));

// A semicolon separated list of host names without the port numbers.
// IPv6 addresses must use the bounding brackets and be in their normalized form.
_hosts = config["AllowedHosts"]?.Split(new[] { ';' }, StringSplitOptions.RemoveEmptyEntries);
if (_hosts == null || _hosts.Count == 0)
{
throw new InvalidOperationException("No configuration entry found for AllowedHosts.");
}
}

public Task Invoke(HttpContext context)
{
if (!ValidateHost(context))
{
context.Response.StatusCode = 400;
_logger.LogDebug("Request rejected due to incorrect Host header.");
return Task.CompletedTask;
}

return _next(context);
}

// This does not duplicate format validations that are expected to be performed by the host.
private bool ValidateHost(HttpContext context)
{
StringSegment host = context.Request.Headers[HeaderNames.Host].ToString().Trim();

if (StringSegment.IsNullOrEmpty(host))
{
// Http/1.0 does not require the Host header.
// Http/1.1 requires the header but the value may be empty.
return true;
}

// Drop the port

var colonIndex = host.LastIndexOf(':');

// IPv6 special case
if (host.StartsWith("[", StringComparison.Ordinal))
{
var endBracketIndex = host.IndexOf(']');
if (endBracketIndex < 0)
{
// Invalid format

// Invalid format
return false;
}
if (colonIndex < endBracketIndex)
{
// No port, just the IPv6 Host
colonIndex = -1;
}
}

if (colonIndex > 0)
{
host = host.Subsegment(0, colonIndex);
}

foreach (var allowedHost in _hosts)
{
if (StringSegment.Equals(allowedHost, host, StringComparison.OrdinalIgnoreCase))
{
return true;
}

// Sub-domain wildcards: *.example.com
if (allowedHost.StartsWith("*.", StringComparison.Ordinal) && host.Length >= allowedHost.Length)
{
// .example.com
var allowedRoot = new StringSegment(allowedHost, 1, allowedHost.Length - 1);

var hostRoot = host.Subsegment(host.Length - allowedRoot.Length, allowedRoot.Length);
if (hostRoot.Equals(allowedRoot, StringComparison.OrdinalIgnoreCase))
{
return true;
}
}
}

return false;
}
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
if (env.IsDevelopment())
{
app.UseDeveloperExceptionPage();
app.UseBrowserLink();
}
else
{
app.UseExceptionHandler("/Home/Error");
}

app.UseMiddleware<HostFilteringMiddleware>();

app.UseMvcWithDefaultRoute();
}

Register the preceding HostFilteringMiddleware in Startup.Configure . Note that the ordering of middleware
registration is important. Registration should occur immediately after Diagnostic Middleware registration (for
example, app.UseExceptionHandler).

The middleware expects an AllowedHosts key in appsettings.json/appsettings.<EnvironmentName>.json. The
value is a semicolon-delimited list of host names without port numbers:

As a workaround, use Host Filtering Middleware. Host Filtering Middleware is provided by the

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

{
"AllowedHosts": "example.com;localhost"
}

NOTENOTE

Additional resources

Microsoft.AspNetCore.HostFiltering package, which is included in the Microsoft.AspNetCore.App
metapackage (ASP.NET Core 2.1 or later). The middleware is added by CreateDefaultBuilder, which calls
AddHostFiltering:

Host Filtering Middleware is disabled by default. To enable the middleware, define an AllowedHosts key in
appsettings.json/appsettings.<EnvironmentName>.json. The value is a semicolon-delimited list of host names
without port numbers:

appsettings.json:

Forwarded Headers Middleware also has an ForwardedHeadersOptions.AllowedHosts option. Forwarded Headers
Middleware and Host Filtering Middleware have similar functionality for different scenarios. Setting AllowedHosts with
Forwarded Headers Middleware is appropriate when the Host header isn't preserved while forwarding requests with a
reverse proxy server or load balancer. Setting AllowedHosts with Host Filtering Middleware is appropriate when Kestrel
is used as an edge server or when the Host header is directly forwarded.

For more information on Forwarded Headers Middleware, see Configure ASP.NET Core to work with proxy servers and
load balancers.

Enforce HTTPS
Kestrel source code
RFC 7230: Message Syntax and Routing (Section 5.4: Host)
Configure ASP.NET Core to work with proxy servers and load balancers

https://www.nuget.org/packages/Microsoft.AspNetCore.HostFiltering
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.hostfilteringservicesextensions.addhostfiltering
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.allowedhosts
https://github.com/aspnet/KestrelHttpServer
https://tools.ietf.org/html/rfc7230#section-5.4

ASP.NET Core Module
5/14/2018 • 2 minutes to read • Edit Online

ASP.NET Core Module description

By Tom Dykstra, Rick Strahl, and Chris Ross

The ASP.NET Core Module allows ASP.NET Core apps to run behind IIS in a reverse proxy configuration. IIS
provides advanced web app security and manageability features.

Supported Windows versions:

Windows 7 or later
Windows Server 2008 R2 or later

The ASP.NET Core Module only works with Kestrel. The module is incompatible with HTTP.sys (formerly
called WebListener).

The ASP.NET Core Module is a native IIS module that plugs into the IIS pipeline to redirect web requests to
backend ASP.NET Core apps. Many native modules, such as Windows Authentication, remain active. To learn
more about IIS modules active with the module, see IIS modules.

Because ASP.NET Core apps run in a process separate from the IIS worker process, the module also handles
process management. The module starts the process for the ASP.NET Core app when the first request arrives
and restarts the app if it crashes. This is essentially the same behavior as seen with ASP.NET 4.x apps that run
in-process in IIS that are managed by the Windows Process Activation Service (WAS).

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module, and ASP.NET Core
apps:

Requests arrive from the web to the kernel-mode HTTP.sys driver. The driver routes the requests to IIS on the
website's configured port, usually 80 (HTTP) or 443 (HTTPS). The module forwards the requests to Kestrel
on a random port for the app, which isn't port 80/443.

The module specifies the port via an environment variable at startup, and the IIS Integration Middleware
configures the server to listen on http://localhost:{port} . Additional checks are performed, and requests
that don't originate from the module are rejected. The module doesn't support HTTPS forwarding, so
requests are forwarded over HTTP even if received by IIS over HTTPS.

After Kestrel picks up a request from the module, the request is pushed into the ASP.NET Core middleware
pipeline. The middleware pipeline handles the request and passes it on as an HttpContext instance to the
app's logic. The app's response is passed back to IIS, which pushes it back out to the HTTP client that initiated
the request.

The ASP.NET Core Module has a few other functions. The module can:

Set environment variables for the worker process.
Log stdout output to file storage for troubleshooting startup issues.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/servers/aspnet-core-module.md
https://github.com/tdykstra
https://github.com/RickStrahl
https://github.com/Tratcher
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener
https://docs.microsoft.com/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was

How to install and use the ASP.NET Core Module

Additional resources

Forward Windows authentication tokens.

For detailed instructions on how to install and use the ASP.NET Core Module, see Host on Windows with IIS.
For information on configuring the module, see the ASP.NET Core Module configuration reference.

Host on Windows with IIS
ASP.NET Core Module configuration reference
ASP.NET Core Module GitHub repository (source code)

https://github.com/aspnet/AspNetCoreModule

HTTP.sys web server implementation in ASP.NET
Core
6/2/2018 • 6 minutes to read • Edit Online

NOTENOTE

IMPORTANTIMPORTANT

When to use HTTP.sys

By Tom Dykstra, Chris Ross, and Luke Latham

This topic applies to ASP.NET Core 2.0 or later. In earlier versions of ASP.NET Core, HTTP.sys is named WebListener.

HTTP.sys is a web server for ASP.NET Core that only runs on Windows. HTTP.sys is an alternative to Kestrel and
offers some features that Kestrel doesn't provide.

HTTP.sys is incompatible with the ASP.NET Core Module and can't be used with IIS or IIS Express.

HTTP.sys supports the following features:

Windows Authentication
Port sharing
HTTPS with SNI
HTTP/2 over TLS (Windows 10 or later)
Direct file transmission
Response caching
WebSockets (Windows 8 or later)

Supported Windows versions:

Windows 7 or later
Windows Server 2008 R2 or later

View or download sample code (how to download)

HTTP.sys is useful for deployments where:

There's a need to expose the server directly to the Internet without using IIS.

An internal deployment requires a feature not available in Kestrel, such as Windows Authentication.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/servers/httpsys.md
https://github.com/tdykstra
https://github.com/Tratcher
https://github.com/guardrex
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener
https://docs.microsoft.com/iis/get-started/introduction-to-iis/introduction-to-iis-architecture#hypertext-transfer-protocol-stack-httpsys
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/servers/httpsys/sample

How to use HTTP.sys
Configure the ASP.NET Core app to use HTTP.sysConfigure the ASP.NET Core app to use HTTP.sys

HTTP.sys is mature technology that protects against many types of attacks and provides the robustness,
security, and scalability of a full-featured web server. IIS itself runs as an HTTP listener on top of HTTP.sys.

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .UseHttpSys(options =>
 {
 // The following options are set to default values.
 options.Authentication.Schemes = AuthenticationSchemes.None;
 options.Authentication.AllowAnonymous = true;
 options.MaxConnections = null;
 options.MaxRequestBodySize = 30000000;
 options.UrlPrefixes.Add("http://localhost:5000");
 });

PROPERTY DESCRIPTION DEFAULT

AllowSynchronousIO Control whether synchronous
input/output is allowed for the
HttpContext.Request.Body and
HttpContext.Response.Body .

true

Authentication.AllowAnonymous Allow anonymous requests. true

Authentication.Schemes Specify the allowed authentication
schemes. May be modified at any
time prior to disposing the listener.
Values are provided by the
AuthenticationSchemes enum:
Basic , Kerberos , Negotiate ,
None , and NTLM .

None

EnableResponseCaching Attempt kernel-mode caching for
responses with eligible headers. The
response may not include
Set-Cookie , Vary , or Pragma

headers. It must include a
Cache-Control header that's
public and either a
shared-max-age or max-age

value, or an Expires header.

true

1. A package reference in the project file isn't required when using the Microsoft.AspNetCore.App
metapackage (nuget.org) (ASP.NET Core 2.1 or later). When not using the Microsoft.AspNetCore.App

metapackage, add a package reference to Microsoft.AspNetCore.Server.HttpSys.

2. Call the UseHttpSys extension method when building the web host, specifying any required HTTP.sys
options:

Additional HTTP.sys configuration is handled through registry settings.

HTTP.sys options

https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.HttpSys/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderhttpsysextensions.usehttpsys
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions
https://support.microsoft.com/kb/820129
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.allowsynchronousio
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.allowanonymous
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.schemes
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationschemes
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.enableresponsecaching
https://docs.microsoft.com/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode

MaxAccepts The maximum number of
concurrent accepts.

5 × Environment.
ProcessorCount

MaxConnections The maximum number of
concurrent connections to accept.
Use -1 for infinite. Use null to
use the registry's machine-wide
setting.

null

(unlimited)

MaxRequestBodySize See the MaxRequestBodySize
section.

30000000 bytes
(~28.6 MB)

RequestQueueLimit The maximum number of requests
that can be queued.

1000

ThrowWriteExceptions Indicate if response body writes that
fail due to client disconnects should
throw exceptions or complete
normally.

false

(complete normally)

Timeouts Expose the HTTP.sys
TimeoutManager configuration,
which may also be configured in the
registry. Follow the API links to
learn more about each setting,
including default values:

UrlPrefixes Specify the UrlPrefixCollection to
register with HTTP.sys. The most
useful is UrlPrefixCollection.Add,
which is used to add a prefix to the
collection. These may be modified at
any time prior to disposing the
listener.

PROPERTY DESCRIPTION DEFAULT

Timeouts.DrainEntityBody –
Time allowed for the HTTP
Server API to drain the
entity body on a Keep-Alive
connection.
Timeouts.EntityBody – Time
allowed for the request
entity body to arrive.
Timeouts.HeaderWait – Time
allowed for the HTTP Server
API to parse the request
header.
Timeouts.IdleConnection –
Time allowed for an idle
connection.
Timeouts.MinSendBytesPerS
econd – The minimum send
rate for the response.
Timeouts.RequestQueue –
Time allowed for the request
to remain in the request
queue before the app picks
it up.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxaccepts
https://docs.microsoft.com/dotnet/api/system.environment.processorcount
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxconnections
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.requestqueuelimit
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.throwwriteexceptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts.drainentitybody
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts.entitybody
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts.headerwait
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts.idleconnection
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts.minsendbytespersecond
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts.requestqueue
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection.add

[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
 ILogger<Startup> logger)
{
 app.Use(async (context, next) =>
 {
 context.Features.Get<IHttpMaxRequestBodySizeFeature>()
 .MaxRequestBodySize = 10 * 1024;

 var serverAddressesFeature = app.ServerFeatures.Get<IServerAddressesFeature>();
 var addresses = string.Join(", ", serverAddressesFeature?.Addresses);

 logger.LogInformation($"Addresses: {addresses}");

 await next.Invoke();
 });

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 // Enable HTTPS Redirection Middleware when hosting the app securely.
 //app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();
 app.UseMvc();
}

 MaxRequestBodySize

The maximum allowed size of any request body in bytes. When set to null , the maximum request body
size is unlimited. This limit has no effect on upgraded connections, which are always unlimited.

The recommended method to override the limit in an ASP.NET Core MVC app for a single
IActionResult is to use the RequestSizeLimitAttribute attribute on an action method:

An exception is thrown if the app attempts to configure the limit on a request after the app has started
reading the request. An IsReadOnly property can be used to indicate if the MaxRequestBodySize property
is in a read-only state, meaning it's too late to configure the limit.

If the app should override MaxRequestBodySize per-request, use the IHttpMaxRequestBodySizeFeature:

3. If using Visual Studio, make sure the app isn't configured to run IIS or IIS Express.

In Visual Studio, the default launch profile is for IIS Express. To run the project as a console app,
manually change the selected profile, as shown in the following screen shot:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.features.ihttpmaxrequestbodysizefeature

Configure Windows ServerConfigure Windows Server

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .UseHttpSys(options =>
 {
 // The following options are set to default values.
 options.Authentication.Schemes = AuthenticationSchemes.None;
 options.Authentication.AllowAnonymous = true;
 options.MaxConnections = null;
 options.MaxRequestBodySize = 30000000;
 options.UrlPrefixes.Add("http://localhost:5000");
 });

1. If the app is a framework-dependent deployment, install .NET Core, .NET Framework, or both (if the app
is a .NET Core app targeting the .NET Framework).

.NET Core – If the app requires .NET Core, obtain and run the .NET Core installer from .NET All
Downloads.
.NET Framework – If the app requires .NET Framework, see .NET Framework: Installation guide to
find installation instructions. Install the required .NET Framework. The installer for the latest .NET
Framework can be found at .NET All Downloads.

2. Configure URLs and ports for the app.

By default, ASP.NET Core binds to http://localhost:5000 . To configure URL prefixes and ports, options
include using:

UseUrls
urls command-line argument
ASPNETCORE_URLS environment variable

UrlPrefixes
The following code example shows how to use UrlPrefixes:

An advantage of UrlPrefixes is that an error message is generated immediately for improperly
formatted prefixes.

The settings in UrlPrefixes override UseUrls / urls / ASPNETCORE_URLS settings. Therefore, an advantage
of UseUrls , urls , and the ASPNETCORE_URLS environment variable is that it's easier to switch between
Kestrel and HTTP.sys. For more information on UseUrls , urls , and ASPNETCORE_URLS , see the Host in
ASP.NET Core topic.

HTTP.sys uses the HTTP Server API UrlPrefix string formats.

https://docs.microsoft.com/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://www.microsoft.com/net/download/all
https://docs.microsoft.com/dotnet/framework/install/
https://www.microsoft.com/net/download/all
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes
https://msdn.microsoft.com/library/windows/desktop/aa364698.aspx

Proxy server and load balancer scenarios

Additional resources

WARNINGWARNING
Top-level wildcard bindings (http://*:80/ and http://+:80) should not be used. Top-level wildcard bindings
can open up your app to security vulnerabilities. This applies to both strong and weak wildcards. Use explicit host
names rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com) doesn't have this security
risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). See rfc7230 section-5.4
for more information.

3. Preregister URL prefixes to bind to HTTP.sys and set up x.509 certificates.

If URL prefixes aren't preregistered in Windows, run the app with administrator privileges. The only
exception is when binding to localhost using HTTP (not HTTPS) with a port number greater than 1024.
In that case, administrator privileges aren't required.

netsh http add urlacl url=http://+:80/ user=Users
netsh http add urlacl url=https://+:443/ user=Users

netsh http add sslcert ipport=0.0.0.0:443 certhash=MyCertHash_Here appid="{00000000-0000-0000-
0000-000000000000}"

a. The built-in tool for configuring HTTP.sys is netsh.exe. netsh.exe is used to reserve URL prefixes
and assign X.509 certificates. The tool requires administrator privileges.

The following example shows the commands to reserve URL prefixes for ports 80 and 443:

The following example shows how to assign an X.509 certificate:

Reference documentation for netsh.exe:

Netsh Commands for Hypertext Transfer Protocol (HTTP)
UrlPrefix Strings

b. Create self-signed X.509 certificates, if required.

On Windows, self-signed certificates can be created using the New-SelfSignedCertificate
PowerShell cmdlet. For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

On macOS, Linux, and Windows, certificates can be created using OpenSSL.

4. Open firewall ports to allow traffic to reach HTTP.sys. Use netsh.exe or PowerShell cmdlets.

For apps hosted by HTTP.sys that interact with requests from the Internet or a corporate network, additional
configuration might be required when hosting behind proxy servers and load balancers. For more information,
see Configure ASP.NET Core to work with proxy servers and load balancers.

HTTP Server API
aspnet/HttpSysServer GitHub repository (source code)
Host in ASP.NET Core

https://tools.ietf.org/html/rfc7230#section-5.4
https://technet.microsoft.com/library/cc725882.aspx
https://msdn.microsoft.com/library/windows/desktop/aa364698.aspx
https://docs.microsoft.com/powershell/module/pkiclient/new-selfsignedcertificate?view=win10-ps
https://github.com/aspnet/Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1
https://www.openssl.org/
https://technet.microsoft.com/library/jj554906
https://msdn.microsoft.com/library/windows/desktop/aa364510.aspx
https://github.com/aspnet/HttpSysServer/

Globalization and localization in ASP.NET Core
5/12/2018 • 16 minutes to read • Edit Online

Make the app's content localizable

using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Localization;

namespace Localization.StarterWeb.Controllers
{
 [Route("api/[controller]")]
 public class AboutController : Controller
 {
 private readonly IStringLocalizer<AboutController> _localizer;

 public AboutController(IStringLocalizer<AboutController> localizer)
 {
 _localizer = localizer;
 }

 [HttpGet]
 public string Get()
 {
 return _localizer["About Title"];
 }
 }
}

By Rick Anderson, Damien Bowden, Bart Calixto, Nadeem Afana, and Hisham Bin Ateya

Creating a multilingual website with ASP.NET Core will allow your site to reach a wider audience. ASP.NET
Core provides services and middleware for localizing into different languages and cultures.

Internationalization involves Globalization and Localization. Globalization is the process of designing apps that
support different cultures. Globalization adds support for input, display, and output of a defined set of
language scripts that relate to specific geographic areas.

Localization is the process of adapting a globalized app, which you have already processed for localizability, to
a particular culture/locale. For more information see Globalization and localization terms near the end of
this document.

App localization involves the following:

1. Make the app's content localizable

2. Provide localized resources for the languages and cultures you support

3. Implement a strategy to select the language/culture for each request

Introduced in ASP.NET Core, IStringLocalizer and IStringLocalizer<T> were architected to improve
productivity when developing localized apps. IStringLocalizer uses the ResourceManager and
ResourceReader to provide culture-specific resources at run time. The simple interface has an indexer and an
IEnumerable for returning localized strings. IStringLocalizer doesn't require you to store the default language

strings in a resource file. You can develop an app targeted for localization and not need to create resource files
early in development. The code below shows how to wrap the string "About Title" for localization.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/localization.md
https://twitter.com/RickAndMSFT
https://twitter.com/damien_bod
https://twitter.com/bartmax
https://twitter.com/NadeemAfana
https://twitter.com/hishambinateya
https://docs.microsoft.com/dotnet/api/system.globalization
https://docs.microsoft.com/dotnet/standard/globalization-localization/localization
https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/dotnet/api/system.resources.resourcereader

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Localization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Localization;

namespace Localization.StarterWeb.Controllers
{
 public class BookController : Controller
 {
 private readonly IHtmlLocalizer<BookController> _localizer;

 public BookController(IHtmlLocalizer<BookController> localizer)
 {
 _localizer = localizer;
 }

 public IActionResult Hello(string name)
 {
 ViewData["Message"] = _localizer["Hello<i> {0}</i>", name];

 return View();
 }

{
 public class TestController : Controller
 {
 private readonly IStringLocalizer _localizer;
 private readonly IStringLocalizer _localizer2;

 public TestController(IStringLocalizerFactory factory)
 {
 var type = typeof(SharedResource);
 var assemblyName = new AssemblyName(type.GetTypeInfo().Assembly.FullName);
 _localizer = factory.Create(type);
 _localizer2 = factory.Create("SharedResource", assemblyName.Name);
 }

 public IActionResult About()
 {
 ViewData["Message"] = _localizer["Your application description page."]
 + " loc 2: " + _localizer2["Your application description page."];

In the code above, the IStringLocalizer<T> implementation comes from Dependency Injection. If the localized
value of "About Title" isn't found, then the indexer key is returned, that is, the string "About Title". You can leave
the default language literal strings in the app and wrap them in the localizer, so that you can focus on
developing the app. You develop your app with your default language and prepare it for the localization step
without first creating a default resource file. Alternatively, you can use the traditional approach and provide a
key to retrieve the default language string. For many developers the new workflow of not having a default
language .resx file and simply wrapping the string literals can reduce the overhead of localizing an app. Other
developers will prefer the traditional work flow as it can make it easier to work with longer string literals and
make it easier to update localized strings.

Use the IHtmlLocalizer<T> implementation for resources that contain HTML. IHtmlLocalizer HTML encodes
arguments that are formatted in the resource string, but doesn't HTML encode the resource string itself. In the
sample highlighted below, only the value of name parameter is HTML encoded.

Note: You generally want to only localize text and not HTML.

At the lowest level, you can get IStringLocalizerFactory out of Dependency Injection:

// Dummy class to group shared resources

namespace Localization.StarterWeb
{
 public class SharedResource
 {
 }
}

public class InfoController : Controller
{
 private readonly IStringLocalizer<InfoController> _localizer;
 private readonly IStringLocalizer<SharedResource> _sharedLocalizer;

 public InfoController(IStringLocalizer<InfoController> localizer,
 IStringLocalizer<SharedResource> sharedLocalizer)
 {
 _localizer = localizer;
 _sharedLocalizer = sharedLocalizer;
 }

 public string TestLoc()
 {
 string msg = "Shared resx: " + _sharedLocalizer["Hello!"] +
 " Info resx " + _localizer["Hello!"];
 return msg;
 }

View localization

@using Microsoft.AspNetCore.Mvc.Localization

@inject IViewLocalizer Localizer

@{
 ViewData["Title"] = Localizer["About"];
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p>@Localizer["Use this area to provide additional information."]</p>

The code above demonstrates each of the two factory create methods.

You can partition your localized strings by controller, area, or have just one container. In the sample app, a
dummy class named SharedResource is used for shared resources.

Some developers use the Startup class to contain global or shared strings. In the sample below, the
InfoController and the SharedResource localizers are used:

The IViewLocalizer service provides localized strings for a view. The ViewLocalizer class implements this
interface and finds the resource location from the view file path. The following code shows how to use the
default implementation of IViewLocalizer :

The default implementation of IViewLocalizer finds the resource file based on the view's file name. There's no
option to use a global shared resource file. ViewLocalizer implements the localizer using IHtmlLocalizer , so
Razor doesn't HTML encode the localized string. You can parameterize resource strings and IViewLocalizer

will HTML encode the parameters, but not the resource string. Consider the following Razor markup:

@Localizer["<i>Hello</i> {0}!", UserManager.GetUserName(User)]

KEY VALUE

<i>Hello</i> {0}! <i>Bonjour</i> {0} !

@using Microsoft.AspNetCore.Mvc.Localization
@using Localization.StarterWeb.Services

@inject IViewLocalizer Localizer
@inject IHtmlLocalizer<SharedResource> SharedLocalizer

@{
 ViewData["Title"] = Localizer["About"];
}
<h2>@ViewData["Title"].</h2>

<h1>@SharedLocalizer["Hello!"]</h1>

DataAnnotations localization

public class RegisterViewModel
{
 [Required(ErrorMessage = "The Email field is required.")]
 [EmailAddress(ErrorMessage = "The Email field is not a valid email address.")]
 [Display(Name = "Email")]
 public string Email { get; set; }

 [Required(ErrorMessage = "The Password field is required.")]
 [StringLength(8, ErrorMessage = "The {0} must be at least {2} characters long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm password")]
 [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
 public string ConfirmPassword { get; set; }
}

A French resource file could contain the following:

The rendered view would contain the HTML markup from the resource file.

Note: You generally want to only localize text and not HTML.

To use a shared resource file in a view, inject IHtmlLocalizer<T> :

DataAnnotations error messages are localized with IStringLocalizer<T> . Using the option
ResourcesPath = "Resources" , the error messages in RegisterViewModel can be stored in either of the following

paths:

Resources/ViewModels.Account.RegisterViewModel.fr.resx

Resources/ViewModels/Account/RegisterViewModel.fr.resx

In ASP.NET Core MVC 1.1.0 and higher, non-validation attributes are localized. ASP.NET Core MVC 1.0 does
not look up localized strings for non-validation attributes.

Using one resource string for multiple classesUsing one resource string for multiple classes

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddDataAnnotationsLocalization(options => {
 options.DataAnnotationLocalizerProvider = (type, factory) =>
 factory.Create(typeof(SharedResource));
 });
}

Provide localized resources for the languages and cultures you
support
SupportedCultures and SupportedUICulturesSupportedCultures and SupportedUICultures

Resource files

The following code shows how to use one resource string for validation attributes with multiple classes:

In the preceeding code, SharedResource is the class corresponding to the resx where your validation messages
are stored. With this approach, DataAnnotations will only use SharedResource , rather than the resource for
each class.

ASP.NET Core allows you to specify two culture values, SupportedCultures and SupportedUICultures . The
CultureInfo object for SupportedCultures determines the results of culture-dependent functions, such as date,
time, number, and currency formatting. SupportedCultures also determines the sorting order of text, casing
conventions, and string comparisons. See CultureInfo.CurrentCulture for more info on how the server gets the
Culture. The SupportedUICultures determines which translates strings (from .resx files) are looked up by the
ResourceManager. The ResourceManager simply looks up culture-specific strings that's determined by
CurrentUICulture . Every thread in .NET has CurrentCulture and CurrentUICulture objects. ASP.NET Core

inspects these values when rendering culture-dependent functions. For example, if the current thread's culture
is set to "en-US" (English, United States), DateTime.Now.ToLongDateString() displays "Thursday, February 18,
2016", but if CurrentCulture is set to "es-ES" (Spanish, Spain) the output will be "jueves, 18 de febrero de
2016".

A resource file is a useful mechanism for separating localizable strings from code. Translated strings for the
non-default language are isolated .resx resource files. For example, you might want to create Spanish resource
file named Welcome.es.resx containing translated strings. "es" is the language code for Spanish. To create this
resource file in Visual Studio:

1. In Solution Explorer, right click on the folder which will contain the resource file > Add > New Item.

https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.stringcomparer.currentculture#System_StringComparer_CurrentCulture
https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager

2. In the Search installed templates box, enter "resource" and name the file.

3. Enter the key value (native string) in the Name column and the translated string in the Value column.

Resource file naming

Visual Studio shows the Welcome.es.resx file.

Resources are named for the full type name of their class minus the assembly name. For example, a French
resource in a project whose main assembly is LocalizationWebsite.Web.dll for the class
LocalizationWebsite.Web.Startup would be named Startup.fr.resx. A resource for the class
LocalizationWebsite.Web.Controllers.HomeController would be named Controllers.HomeController.fr.resx. If

your targeted class's namespace isn't the same as the assembly name you will need the full type name. For
example, in the sample project a resource for the type ExtraNamespace.Tools would be named
ExtraNamespace.Tools.fr.resx.

In the sample project, the ConfigureServices method sets the ResourcesPath to "Resources", so the project
relative path for the home controller's French resource file is Resources/Controllers.HomeController.fr.resx.
Alternatively, you can use folders to organize resource files. For the home controller, the path would be
Resources/Controllers/HomeController.fr.resx. If you don't use the ResourcesPath option, the .resx file would go
in the project base directory. The resource file for HomeController would be named
Controllers.HomeController.fr.resx. The choice of using the dot or path naming convention depends on how you
want to organize your resource files.

RESOURCE NAME DOT OR PATH NAMING

Resources/Controllers.HomeController.fr.resx Dot

Resources/Controllers/HomeController.fr.resx Path

Culture fallback behavior

Generate resource files with Visual StudioGenerate resource files with Visual Studio

Add other culturesAdd other cultures

Implement a strategy to select the language/culture for each request

Resource files using @inject IViewLocalizer in Razor views follow a similar pattern. The resource file for a
view can be named using either dot naming or path naming. Razor view resource files mimic the path of their
associated view file. Assuming we set the ResourcesPath to "Resources", the French resource file associated
with the Views/Home/About.cshtml view could be either of the following:

Resources/Views/Home/About.fr.resx

Resources/Views.Home.About.fr.resx

If you don't use the ResourcesPath option, the .resx file for a view would be located in the same folder as the
view.

When searching for a resource, localization engages in "culture fallback". Starting from the requested culture, if
not found, it reverts to the parent culture of that culture. As an aside, the CultureInfo.Parent property
represents the parent culture. This usually (but not always) means removing the national signifier from the ISO.
For example, the dialect of Spanish spoken in Mexico is "es-MX". It has the parent "es"—Spanish non-specific
to any country.

Imagine your site receives a request for a "Welcome" resource using culture "fr-CA". The localization system
looks for the following resources, in order, and selects the first match:

Welcome.fr-CA.resx

Welcome.fr.resx

Welcome.resx (if the NeutralResourcesLanguage is "fr-CA")

As an example, if you remove the ".fr" culture designator and you have the culture set to French, the default
resource file is read and strings are localized. The Resource manager designates a default or fallback resource
for when nothing meets your requested culture. If you want to just return the key when missing a resource for
the requested culture you must not have a default resource file.

If you create a resource file in Visual Studio without a culture in the file name (for example, Welcome.resx),
Visual Studio will create a C# class with a property for each string. That's usually not what you want with
ASP.NET Core. You typically don't have a default .resx resource file (a .resx file without the culture name). We
suggest you create the .resx file with a culture name (for example Welcome.fr.resx). When you create a .resx file
with a culture name, Visual Studio won't generate the class file. We anticipate that many developers won't
create a default language resource file.

Each language and culture combination (other than the default language) requires a unique resource file. You
create resource files for different cultures and locales by creating new resource files in which the ISO language
codes are part of the file name (for example, en-us, fr-ca, and en-gb). These ISO codes are placed between the
file name and the .resx file extension, as in Welcome.es-MX.resx (Spanish/Mexico).

https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.parent

Configure localizationConfigure localization

services.AddLocalization(options => options.ResourcesPath = "Resources");

services.AddMvc()
 .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix)
 .AddDataAnnotationsLocalization();

Localization middlewareLocalization middleware

var supportedCultures = new[]
{
 new CultureInfo(enUSCulture),
 new CultureInfo("en-AU"),
 new CultureInfo("en-GB"),
 new CultureInfo("en"),
 new CultureInfo("es-ES"),
 new CultureInfo("es-MX"),
 new CultureInfo("es"),
 new CultureInfo("fr-FR"),
 new CultureInfo("fr"),
};

app.UseRequestLocalization(new RequestLocalizationOptions
{
 DefaultRequestCulture = new RequestCulture(enUSCulture),
 // Formatting numbers, dates, etc.
 SupportedCultures = supportedCultures,
 // UI strings that we have localized.
 SupportedUICultures = supportedCultures
});

app.UseStaticFiles();
// To configure external authentication,
// see: http://go.microsoft.com/fwlink/?LinkID=532715
app.UseAuthentication();
app.UseMvcWithDefaultRoute();

Localization is configured in the ConfigureServices method:

AddLocalization Adds the localization services to the services container. The code above also sets the
resources path to "Resources".

AddViewLocalization Adds support for localized view files. In this sample view localization is based on
the view file suffix. For example "fr" in the Index.fr.cshtml file.

AddDataAnnotationsLocalization Adds support for localized DataAnnotations validation messages
through IStringLocalizer abstractions.

The current culture on a request is set in the localization Middleware. The localization middleware is enabled in
the Configure method. The localization middleware must be configured before any middleware which might
check the request culture (for example, app.UseMvcWithDefaultRoute()).

UseRequestLocalization initializes a RequestLocalizationOptions object. On every request the list of
RequestCultureProvider in the RequestLocalizationOptions is enumerated and the first provider that can

successfully determine the request culture is used. The default providers come from the
RequestLocalizationOptions class:

1. QueryStringRequestCultureProvider

2. CookieRequestCultureProvider

3. AcceptLanguageHeaderRequestCultureProvider

QueryStringRequestCultureProviderQueryStringRequestCultureProvider

CookieRequestCultureProviderCookieRequestCultureProvider

c=en-UK|uic=en-US

The Accept-Language HTTP headerThe Accept-Language HTTP header

Set the Accept-Language HTTP header in IESet the Accept-Language HTTP header in IE

The default list goes from most specific to least specific. Later in the article we'll see how you can change the
order and even add a custom culture provider. If none of the providers can determine the request culture, the
DefaultRequestCulture is used.

Some apps will use a query string to set the culture and UI culture. For apps that use the cookie or Accept-
Language header approach, adding a query string to the URL is useful for debugging and testing code. By
default, the QueryStringRequestCultureProvider is registered as the first localization provider in the
RequestCultureProvider list. You pass the query string parameters culture and ui-culture . The following

example sets the specific culture (language and region) to Spanish/Mexico:

http://localhost:5000/?culture=es-MX&ui-culture=es-MX

If you only pass in one of the two (culture or ui-culture), the query string provider will set both values using
the one you passed in. For example, setting just the culture will set both the Culture and the UICulture :

http://localhost:5000/?culture=es-MX

Production apps will often provide a mechanism to set the culture with the ASP.NET Core culture cookie. Use
the MakeCookieValue method to create a cookie.

The CookieRequestCultureProvider DefaultCookieName returns the default cookie name used to track the user's
preferred culture information. The default cookie name is .AspNetCore.Culture .

The cookie format is c=%LANGCODE%|uic=%LANGCODE% , where c is Culture and uic is UICulture , for example:

If you only specify one of culture info and UI culture, the specified culture will be used for both culture info and
UI culture.

The Accept-Language header is settable in most browsers and was originally intended to specify the user's
language. This setting indicates what the browser has been set to send or has inherited from the underlying
operating system. The Accept-Language HTTP header from a browser request isn't an infallible way to detect
the user's preferred language (see Setting language preferences in a browser). A production app should
include a way for a user to customize their choice of culture.

1. From the gear icon, tap Internet Options.

2. Tap Languages.

https://msdn.microsoft.com/library/system.globalization.cultureinfo.aspx
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-lang-priorities.en.php

Use a custom providerUse a custom provider

private const string enUSCulture = "en-US";

services.Configure<RequestLocalizationOptions>(options =>
{
 var supportedCultures = new[]
 {
 new CultureInfo(enUSCulture),
 new CultureInfo("fr")
 };

 options.DefaultRequestCulture = new RequestCulture(culture: enUSCulture, uiCulture: enUSCulture);
 options.SupportedCultures = supportedCultures;
 options.SupportedUICultures = supportedCultures;

 options.RequestCultureProviders.Insert(0, new CustomRequestCultureProvider(async context =>
 {
 // My custom request culture logic
 return new ProviderCultureResult("en");
 }));
});

Set the culture programmaticallySet the culture programmatically

3. Tap Set Language Preferences.

4. Tap Add a language.

5. Add the language.

6. Tap the language, then tap Move Up.

Suppose you want to let your customers store their language and culture in your databases. You could write a
provider to look up these values for the user. The following code shows how to add a custom provider :

Use RequestLocalizationOptions to add or remove localization providers.

@using Microsoft.AspNetCore.Builder
@using Microsoft.AspNetCore.Http.Features
@using Microsoft.AspNetCore.Localization
@using Microsoft.AspNetCore.Mvc.Localization
@using Microsoft.Extensions.Options

@inject IViewLocalizer Localizer
@inject IOptions<RequestLocalizationOptions> LocOptions

@{
 var requestCulture = Context.Features.Get<IRequestCultureFeature>();
 var cultureItems = LocOptions.Value.SupportedUICultures
 .Select(c => new SelectListItem { Value = c.Name, Text = c.DisplayName })
 .ToList();
 var returnUrl = string.IsNullOrEmpty(Context.Request.Path) ? "~/" : $"~{Context.Request.Path.Value}";
}

<div title="@Localizer["Request culture provider:"] @requestCulture?.Provider?.GetType().Name">
 <form id="selectLanguage" asp-controller="Home"
 asp-action="SetLanguage" asp-route-returnUrl="@returnUrl"
 method="post" class="form-horizontal" role="form">
 <label asp-for="@requestCulture.RequestCulture.UICulture.Name">@Localizer["Language:"]</label>
<select name="culture"
 onchange="this.form.submit();"
 asp-for="@requestCulture.RequestCulture.UICulture.Name" asp-items="cultureItems">
 </select>
 </form>
</div>

<div class="container body-content" style="margin-top:60px">
 @RenderBody()
 <hr>
 <footer>
 <div class="row">
 <div class="col-md-6">
 <p>© @System.DateTime.Now.Year - Localization.StarterWeb</p>
 </div>
 <div class="col-md-6 text-right">
 @await Html.PartialAsync("_SelectLanguagePartial")
 </div>
 </div>
 </footer>
</div>

This sample Localization.StarterWeb project on GitHub contains UI to set the Culture . The
Views/Shared/_SelectLanguagePartial.cshtml file allows you to select the culture from the list of supported
cultures:

The Views/Shared/_SelectLanguagePartial.cshtml file is added to the footer section of the layout file so it will
be available to all views:

The SetLanguage method sets the culture cookie.

https://github.com/aspnet/entropy

[HttpPost]
public IActionResult SetLanguage(string culture, string returnUrl)
{
 Response.Cookies.Append(
 CookieRequestCultureProvider.DefaultCookieName,
 CookieRequestCultureProvider.MakeCookieValue(new RequestCulture(culture)),
 new CookieOptions { Expires = DateTimeOffset.UtcNow.AddYears(1) }
);

 return LocalRedirect(returnUrl);
}

Globalization and localization terms

Additional resources

You can't plug in the _SelectLanguagePartial.cshtml to sample code for this project. The
Localization.StarterWeb project on GitHub has code to flow the RequestLocalizationOptions to a Razor
partial through the Dependency Injection container.

The process of localizing your app also requires a basic understanding of relevant character sets commonly
used in modern software development and an understanding of the issues associated with them. Although all
computers store text as numbers (codes), different systems store the same text using different numbers. The
localization process refers to translating the app user interface (UI) for a specific culture/locale.

Localizability is an intermediate process for verifying that a globalized app is ready for localization.

The RFC 4646 format for the culture name is <languagecode2>-<country/regioncode2> , where <languagecode2>

is the language code and <country/regioncode2> is the subculture code. For example, es-CL for Spanish
(Chile), en-US for English (United States), and en-AU for English (Australia). RFC 4646 is a combination of an
ISO 639 two-letter lowercase culture code associated with a language and an ISO 3166 two-letter uppercase
subculture code associated with a country or region. See Language Culture Name.

Internationalization is often abbreviated to "I18N". The abbreviation takes the first and last letters and the
number of letters between them, so 18 stands for the number of letters between the first "I" and the last "N".
The same applies to Globalization (G11N), and Localization (L10N).

Terms:

Globalization (G11N): The process of making an app support different languages and regions.
Localization (L10N): The process of customizing an app for a given language and region.
Internationalization (I18N): Describes both globalization and localization.
Culture: It's a language and, optionally, a region.
Neutral culture: A culture that has a specified language, but not a region. (for example "en", "es")
Specific culture: A culture that has a specified language and region. (for example "en-US", "en-GB", "es-CL")
Parent culture: The neutral culture that contains a specific culture. (for example, "en" is the parent culture of
"en-US" and "en-GB")
Locale: A locale is the same as a culture.

Localization.StarterWeb project used in the article.
Resource Files in Visual Studio
Resources in .resx Files
Microsoft Multilingual App Toolkit

https://github.com/aspnet/entropy
https://docs.microsoft.com/dotnet/standard/globalization-localization/localizability-review
https://www.ietf.org/rfc/rfc4646.txt
https://www.ietf.org/rfc/rfc4646.txt
https://msdn.microsoft.com/library/ee825488(v=cs.20).aspx
https://github.com/aspnet/entropy
https://docs.microsoft.com/cpp/windows/resource-files-visual-studio
https://docs.microsoft.com/dotnet/framework/resources/working-with-resx-files-programmatically
https://marketplace.visualstudio.com/items?itemName=MultilingualAppToolkit.MultilingualAppToolkit-18308

Configure portable object localization in ASP.NET
Core
3/15/2018 • 6 minutes to read • Edit Online

What is a PO file?

ExampleExample

#: Services/EmailService.cs:29
msgid "Enter a comma separated list of email addresses."
msgstr "Entrez une liste d'emails séparés par une virgule."

#: Views/Email.cshtml:112
msgid "The email address is \"{0}\"."
msgid_plural "The email addresses are \"{0}\"."
msgstr[0] "L'adresse email est \"{0}\"."
msgstr[1] "Les adresses email sont \"{0}\""

By Sébastien Ros and Scott Addie

This article walks through the steps for using Portable Object (PO) files in an ASP.NET Core application with the
Orchard Core framework.

Note: Orchard Core isn't a Microsoft product. Consequently, Microsoft provides no support for this feature.

View or download sample code (how to download)

PO files are distributed as text files containing the translated strings for a given language. Some advantages of
using PO files instead .resx files include:

PO files support pluralization; .resx files don't support pluralization.
PO files aren't compiled like .resx files. As such, specialized tooling and build steps aren't required.
PO files work well with collaborative online editing tools.

Here is a sample PO file containing the translation for two strings in French, including one with its plural form:

fr.po

This example uses the following syntax:

#: : A comment indicating the context of the string to be translated. The same string might be translated
differently depending on where it's being used.
msgid : The untranslated string.
msgstr : The translated string.

In the case of pluralization support, more entries can be defined.

msgid_plural : The untranslated plural string.
msgstr[0] : The translated string for the case 0.
msgstr[N] : The translated string for the case N.

The PO file specification can be found here.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/portable-object-localization.md
https://github.com/sebastienros
https://twitter.com/Scott_Addie
https://github.com/OrchardCMS/OrchardCore
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/localization/sample/POLocalization
https://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/PO-Files.html

Configuring PO file support in ASP.NET Core

Referencing the packageReferencing the package

<PackageReference Include="OrchardCore.Localization.Core" Version="1.0.0-beta1-3187" />

Registering the serviceRegistering the service

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix);

 services.AddPortableObjectLocalization();

 services.Configure<RequestLocalizationOptions>(options =>
 {
 var supportedCultures = new List<CultureInfo>
 {
 new CultureInfo("en-US"),
 new CultureInfo("en"),
 new CultureInfo("fr-FR"),
 new CultureInfo("fr")
 };

 options.DefaultRequestCulture = new RequestCulture("en-US");
 options.SupportedCultures = supportedCultures;
 options.SupportedUICultures = supportedCultures;
 });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseRequestLocalization();

 app.UseMvcWithDefaultRoute();
}

This example is based on an ASP.NET Core MVC application generated from a Visual Studio 2017 project
template.

Add a reference to the OrchardCore.Localization.Core NuGet package. It's available on MyGet at the following
package source: https://www.myget.org/F/orchardcore-preview/api/v3/index.json

The .csproj file now contains a line similar to the following (version number may vary):

Add the required services to the ConfigureServices method of Startup.cs:

Add the required middleware to the Configure method of Startup.cs:

https://www.myget.org/
https://www.myget.org/F/orchardcore-preview/api/v3/index.json

@using Microsoft.AspNetCore.Mvc.Localization
@inject IViewLocalizer Localizer

<p>@Localizer["Hello world!"]</p>

Creating a PO fileCreating a PO file

msgid "Hello world!"
msgstr "Bonjour le monde!"

Testing the applicationTesting the application

Pluralization

Creating pluralization PO filesCreating pluralization PO files

msgid "There is one item."
msgid_plural "There are {0} items."
msgstr[0] "Il y a un élément."
msgstr[1] "Il y a {0} éléments."

Adding a language using different pluralization formsAdding a language using different pluralization forms

Add the following code to your Razor view of choice. About.cshtml is used in this example.

An IViewLocalizer instance is injected and used to translate the text "Hello world!".

Create a file named .po in your application root folder. In this example, the file name is fr.po because the French
language is used:

This file stores both the string to translate and the French-translated string. Translations revert to their parent
culture, if necessary. In this example, the fr.po file is used if the requested culture is fr-FR or fr-CA .

Run your application, and navigate to the URL /Home/About . The text Hello world! is displayed.

Navigate to the URL /Home/About?culture=fr-FR . The text Bonjour le monde! is displayed.

PO files support pluralization forms, which is useful when the same string needs to be translated differently based
on a cardinality. This task is made complicated by the fact that each language defines custom rules to select which
string to use based on the cardinality.

The Orchard Localization package provides an API to invoke these different plural forms automatically.

Add the following content to the previously mentioned fr.po file:

See What is a PO file? for an explanation of what each entry in this example represents.

English and French strings were used in the previous example. English and French have only two pluralization
forms and share the same form rules, which is that a cardinality of one is mapped to the first plural form. Any other
cardinality is mapped to the second plural form.

Not all languages share the same rules. This is illustrated with the Czech language, which has three plural forms.

Create the cs.po file as follows, and note how the pluralization needs three different translations:

msgid "Hello world!"
msgstr "Ahoj světe!!"

msgid "There is one item."
msgid_plural "There are {0} items."
msgstr[0] "Existuje jedna položka."
msgstr[1] "Existují {0} položky."
msgstr[2] "Existuje {0} položek."

var supportedCultures = new List<CultureInfo>
{
 new CultureInfo("en-US"),
 new CultureInfo("en"),
 new CultureInfo("fr-FR"),
 new CultureInfo("fr"),
 new CultureInfo("cs")
};

<p>@Localizer.Plural(1, "There is one item.", "There are {0} items.")</p>
<p>@Localizer.Plural(2, "There is one item.", "There are {0} items.")</p>
<p>@Localizer.Plural(5, "There is one item.", "There are {0} items.")</p>

There is one item.
There are 2 items.
There are 5 items.

Il y a un élément.
Il y a 2 éléments.
Il y a 5 éléments.

Existuje jedna položka.
Existují 2 položky.
Existuje 5 položek.

Advanced tasks
Contextualizing stringsContextualizing strings

To accept Czech localizations, add "cs" to the list of supported cultures in the ConfigureServices method:

Edit the Views/Home/About.cshtml file to render localized, plural strings for several cardinalities:

Note: In a real world scenario, a variable would be used to represent the count. Here, we repeat the same code
with three different values to expose a very specific case.

Upon switching cultures, you see the following:

For /Home/About :

For /Home/About?culture=fr :

For /Home/About?culture=cs :

Note that for the Czech culture, the three translations are different. The French and English cultures share the same
construction for the two last translated strings.

msgctxt "Views.Home.About"
msgid "Hello world!"
msgstr "Bonjour le monde!"

msgid "Hello world!"
msgstr "Bonjour le monde!"

Changing the location of PO filesChanging the location of PO files

services.AddPortableObjectLocalization(options => options.ResourcesPath = "Localization");

Implementing a custom logic for finding localization filesImplementing a custom logic for finding localization files

Using a different default pluralized languageUsing a different default pluralized language

Applications often contain the strings to be translated in several places. The same string may have a different
translation in certain locations within an app (Razor views or class files). A PO file supports the notion of a file
context, which can be used to categorize the string being represented. Using a file context, a string can be translated
differently, depending on the file context (or lack of a file context).

The PO localization services use the name of the full class or the view that's used when translating a string. This is
accomplished by setting the value on the msgctxt entry.

Consider a minor addition to the previous fr.po example. A Razor view located at Views/Home/About.cshtml can be
defined as the file context by setting the reserved msgctxt entry's value:

With the msgctxt set as such, text translation occurs when navigating to /Home/About?culture=fr-FR . The
translation won't occur when navigating to /Home/Contact?culture=fr-FR .

When no specific entry is matched with a given file context, Orchard Core's fallback mechanism looks for an
appropriate PO file without a context. Assuming there's no specific file context defined for
Views/Home/Contact.cshtml, navigating to /Home/Contact?culture=fr-FR loads a PO file such as:

The default location of PO files can be changed in ConfigureServices :

In this example, the PO files are loaded from the Localization folder.

When more complex logic is needed to locate PO files, the
OrchardCore.Localization.PortableObject.ILocalizationFileLocationProvider interface can be implemented and

registered as a service. This is useful when PO files can be stored in varying locations or when the files have to be
found within a hierarchy of folders.

The package includes a Plural extension method that's specific to two plural forms. For languages requiring more
plural forms, create an extension method. With an extension method, you won't need to provide any localization file
for the default language — the original strings are already available directly in the code.

You can use the more generic Plural(int count, string[] pluralForms, params object[] arguments) overload which
accepts a string array of translations.

Initiate HTTP requests
5/7/2018 • 12 minutes to read • Edit Online

Consumption patterns

Basic usageBasic usage

services.AddHttpClient();

By Glenn Condron, Ryan Nowak, and Steve Gordon

An IHttpClientFactory can be registered and used to configure and create HttpClient instances in an app. It offers
the following benefits:

Provides a central location for naming and configuring logical HttpClient instances. For example, a "github"
client can be registered and configured to access GitHub. A default client can be registered for other purposes.
Codifies the concept of outgoing middleware via delegating handlers in HttpClient and provides extensions
for Polly-based middleware to take advantage of that.
Manages the pooling and lifetime of underlying HttpClientMessageHandler instances to avoid common DNS
problems that occur when manually managing HttpClient lifetimes.
Adds a configurable logging experience (via ILogger) for all requests sent through clients created by the
factory.

There are several ways IHttpClientFactory can be used in an app:

Basic usage
Named clients
Typed clients
Generated clients

None of them are strictly superior to another. The best approach depends upon the app's constraints.

The IHttpClientFactory can be registered by calling the AddHttpClient extension method on the
IServiceCollection , inside the ConfigureServices method in Startup.cs.

Once registered, code can accept an IHttpClientFactory anywhere services can be injected with dependency
injection (DI). The IHttpClientFactory can be used to create a HttpClient instance:

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/http-requests.md
https://github.com/glennc
https://github.com/rynowak
https://github.com/stevejgordon
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient

public class BasicUsageModel : PageModel
{
 private readonly IHttpClientFactory _clientFactory;

 public IEnumerable<GitHubBranch> Branches { get; private set; }

 public bool GetBranchesError { get; private set; }

 public BasicUsageModel(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task OnGet()
 {
 var request = new HttpRequestMessage(HttpMethod.Get,
"https://api.github.com/repos/aspnet/docs/branches");
 request.Headers.Add("Accept", "application/vnd.github.v3+json");
 request.Headers.Add("User-Agent", "HttpClientFactory-Sample");

 var client = _clientFactory.CreateClient();

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 Branches = await response.Content.ReadAsAsync<IEnumerable<GitHubBranch>>();
 }
 else
 {
 GetBranchesError = true;
 Branches = Array.Empty<GitHubBranch>();
 }
 }
}

Named clientsNamed clients

services.AddHttpClient("github", c =>
{
 c.BaseAddress = new Uri("https://api.github.com/");
 c.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json"); // Github API versioning
 c.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample"); // Github requires a user-agent
});

Using IHttpClientFactory in this fashion is a great way to refactor an existing app. It has no impact on the way
HttpClient is used. In places where HttpClient instances are currently created, replace those occurrences with a

call to CreateClient .

If an app requires multiple distinct uses of HttpClient , each with a different configuration, an option is to use
named clients. Configuration for a named HttpClient can be specified during registration in ConfigureServices .

In the preceding code, AddHttpClient is called, providing the name "github". This client has some default
configuration applied—namely the base address and two headers required to work with the GitHub API.

Each time CreateClient is called, a new instance of HttpClient is created and the configuration action is called.

To consume a named client, a string parameter can be passed to CreateClient . Specify the name of the client to be
created:

public class NamedClientModel : PageModel
{
 private readonly IHttpClientFactory _clientFactory;

 public IEnumerable<GitHubPullRequest> PullRequests { get; private set; }

 public bool GetPullRequestsError { get; private set; }

 public bool HasPullRequests => PullRequests.Any();

 public NamedClientModel(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task OnGet()
 {
 var request = new HttpRequestMessage(HttpMethod.Get, "repos/aspnet/docs/pulls");

 var client = _clientFactory.CreateClient("github");

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 PullRequests = await response.Content.ReadAsAsync<IEnumerable<GitHubPullRequest>>();
 }
 else
 {
 GetPullRequestsError = true;
 PullRequests = Array.Empty<GitHubPullRequest>();
 }
 }
}

Typed clientsTyped clients

In the preceding code, the request doesn't need to specify a hostname. It can pass just the path, since the base
address configured for the client is used.

Typed clients provide the same capabilities as named clients without the need to use strings as keys. The typed
client approach provides IntelliSense and compiler help when consuming clients. They provide a single location to
configure and interact with a particular HttpClient . For example, a single typed client might be used for a single
backend endpoint and encapsulate all logic dealing with that endpoint. Another advantage is that they work with
DI and can be injected where required in your app.

A typed client accepts a HttpClient parameter in its constructor :

public class GitHubService
{
 public HttpClient Client { get; }

 public GitHubService(HttpClient client)
 {
 client.BaseAddress = new Uri("https://api.github.com/");
 client.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json"); // GitHub API versioning
 client.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample"); // GitHub requires a user-
agent

 Client = client;
 }

 public async Task<IEnumerable<GitHubIssue>> GetAspNetDocsIssues()
 {
 var response = await Client.GetAsync("/repos/aspnet/docs/issues?
state=open&sort=created&direction=desc");

 response.EnsureSuccessStatusCode();

 var result = await response.Content.ReadAsAsync<IEnumerable<GitHubIssue>>();

 return result;
 }
}

services.AddHttpClient<GitHubService>();

In the preceding code, the configuration is moved into the typed client. The HttpClient object is exposed as a
public property. It's possible to define API-specific methods that expose HttpClient functionality. The
GetAspNetDocsIssues method encapsulates the code needed to query for and parse out the latest open issues from

a GitHub repository.

To register a typed client, the generic AddHttpClient extension method can be used within ConfigureServices ,
specifying the typed client class:

The typed client is registered as transient with DI. The typed client can be injected and consumed directly:

public class TypedClientModel : PageModel
{
 private readonly GitHubService _gitHubService;

 public IEnumerable<GitHubIssue> LatestIssues { get; private set; }

 public bool HasIssue => LatestIssues.Any();

 public bool GetIssuesError { get; private set; }

 public TypedClientModel(GitHubService gitHubService)
 {
 _gitHubService = gitHubService;
 }

 public async Task OnGet()
 {
 try
 {
 LatestIssues = await _gitHubService.GetAspNetDocsIssues();
 }
 catch(HttpRequestException)
 {
 GetIssuesError = true;
 LatestIssues = Array.Empty<GitHubIssue>();
 }
 }
}

services.AddHttpClient<RepoService>(c =>
{
 c.BaseAddress = new Uri("https://api.github.com/");
 c.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json");
 c.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample");
});

public class RepoService
{
 private readonly HttpClient _httpClient; // not exposed publicly

 public RepoService(HttpClient client)
 {
 _httpClient = client;
 }

 public async Task<IEnumerable<string>> GetRepos()
 {
 var response = await _httpClient.GetAsync("aspnet/repos");

 response.EnsureSuccessStatusCode();

 var result = await response.Content.ReadAsAsync<IEnumerable<string>>();

 return result;
 }
}

If preferred, the configuration for a typed client can be specified during registration in ConfigureServices , rather
than in the typed client's constructor :

It's possible to entirely encapsulate the HttpClient within a typed client. Rather than exposing it as a property,
public methods can be provided which call the HttpClient instance internally.

 Generated clientsGenerated clients

public interface IHelloClient
{
 [Get("/helloworld")]
 Task<Reply> GetMessageAsync();
}

public class Reply
{
 public string Message { get; set; }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient("hello", c =>
 {
 c.BaseAddress = new Uri("http://localhost:5000");
 })
 .AddTypedClient(c => Refit.RestService.For<IHelloClient>(c));

 services.AddMvc();
}

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly IHelloClient _client;

 public ValuesController(IHelloClient client)
 {
 _client = client;
 }

 [HttpGet("/")]
 public async Task<ActionResult<Reply>> Index()
 {
 return await _client.GetMessageAsync();
 }
}

Outgoing request middleware

In the preceding code, the HttpClient is stored as a private field. All access to make external calls goes through
the GetRepos method.

IHttpClientFactory can be used in combination with other third-party libraries such as Refit. Refit is a REST
library for .NET. It converts REST APIs into live interfaces. An implementation of the interface is generated
dynamically by the RestService , using HttpClient to make the external HTTP calls.

An interface and a reply are defined to represent the external API and its response:

A typed client can be added, using Refit to generate the implementation:

The defined interface can be consumed where necessary, with the implementation provided by DI and Refit:

HttpClient already has the concept of delegating handlers that can be linked together for outgoing HTTP
requests. The IHttpClientFactory makes it easy to define the handlers to apply for each named client. It supports
registration and chaining of multiple handlers to build an outgoing request middleware pipeline. Each of these
handlers is able to perform work before and after the outgoing request. This pattern is similar to the inbound

https://github.com/paulcbetts/refit

public class ValidateHeaderHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 if (!request.Headers.Contains("X-API-KEY"))
 {
 return new HttpResponseMessage(HttpStatusCode.BadRequest)
 {
 Content = new StringContent("You must supply an API key header called X-API-KEY")
 };
 }

 return await base.SendAsync(request, cancellationToken);
 }
}

services.AddTransient<ValidateHeaderHandler>();

services.AddHttpClient("externalservice", c =>
{
 c.BaseAddress = new Uri("https://localhost:5000/"); // assume this is an "external" service which requires
an API KEY
})
.AddHttpMessageHandler<ValidateHeaderHandler>();

services.AddTransient<SecureRequestHandler>();
services.AddTransient<RequestDataHandler>();

services.AddHttpClient("clientwithhandlers")
 // This handler is on the outside and called first during the request, last during the response.
 .AddHttpMessageHandler<SecureRequestHandler>()
 // This handler is on the inside, closest to the request being sent.
 .AddHttpMessageHandler<RequestDataHandler>();

Use Polly-based handlers

middleware pipeline in ASP.NET Core. The pattern provides a mechanism to manage cross-cutting concerns
around HTTP requests, including caching, error handling, serialization, and logging.

To create a handler, define a class deriving from DelegatingHandler . Override the SendAsync method to execute
code before passing the request to the next handler in the pipeline:

The preceding code defines a basic handler. It checks to see if an X-API-KEY header has been included on the
request. If the header is missing, it can avoid the HTTP call and return a suitable response.

During registration, one or more handlers can be added to the configuration for a HttpClient . This task is
accomplished via extension methods on the IHttpClientBuilder .

In the preceding code, the ValidateHeaderHandler is registered with DI. The handler must be registered in DI as
transient. Once registered, AddHttpMessageHandler can be called, passing in the type for the handler.

Multiple handlers can be registered in the order that they should execute. Each handler wraps the next handler
until the final HttpClientHandler executes the request:

IHttpClientFactory integrates with a popular third-party library called Polly. Polly is a comprehensive resilience
and transient fault-handling library for .NET. It allows developers to express policies such as Retry, Circuit Breaker,
Timeout, Bulkhead Isolation, and Fallback in a fluent and thread-safe manner.

https://github.com/App-vNext/Polly

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" Version="2.1.0-rc1-final" />
 <PackageReference Include="Microsoft.Extensions.Http.Polly" Version="2.1.0-rc1-final" />
 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink" Version="2.1.0-rc1-final" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.1.0-rc1-final" />
 </ItemGroup>

</Project>

Handle transient faultsHandle transient faults

services.AddHttpClient<UnreliableEndpointCallerService>()
 .AddTransientHttpErrorPolicy(p => p.WaitAndRetryAsync(3, _ => TimeSpan.FromMilliseconds(600)));

Dynamically select policiesDynamically select policies

var timeout = Policy.TimeoutAsync<HttpResponseMessage>(TimeSpan.FromSeconds(10));
var longTimeout = Policy.TimeoutAsync<HttpResponseMessage>(TimeSpan.FromSeconds(30));

services.AddHttpClient("conditionalpolicy")
// Run some code to select a policy based on the request
 .AddPolicyHandler(request => request.Method == HttpMethod.Get ? timeout : longTimeout);

Add multiple Polly handlersAdd multiple Polly handlers

Extension methods are provided to enable the use of Polly policies with configured HttpClient instances. The
Polly extensions are available in a NuGet package called 'Microsoft.Extensions.Http.Polly'. This package is not
included by default by the 'Microsoft.AspNetCore.App' metapackage. To use the extensions, a PackageReference
should be explicitly included in the project.

After restoring this package, extension methods are available to support adding Polly-based handlers to clients.

The most common faults you may expect to occur when making external HTTP calls will be transient. A convenient
extension method called AddTransientHttpErrorPolicy is included which allows a policy to be defined to handle
transient errors. Policies configured with this extension method handle HttpRequestException , HTTP 5xx
responses, and HTTP 408 responses.

The AddTransientHttpErrorPolicy extension can be used within ConfigureServices . The extension provides access
to a PolicyBuilder object configured to handle errors representing a possible transient fault:

In the preceding code, a WaitAndRetryAsync policy is defined. Failed requests are retried up to three times with a
delay of 600 ms between attempts.

Additional extension methods exist which can be used to add Polly-based handlers. One such extension is
AddPolicyHandler , which has multiple overloads. One overload allows the request to be inspected when defining

which policy to apply:

In the preceding code, if the outgoing request is a GET, a 10-second timeout is applied. For any other HTTP
method, a 30-second timeout is used.

It is common to nest Polly policies to provide enhanced functionality:

services.AddHttpClient("multiplepolicies")
 .AddTransientHttpErrorPolicy(p => p.RetryAsync(3))
 .AddTransientHttpErrorPolicy(p => p.CircuitBreakerAsync(5, TimeSpan.FromSeconds(30)));

Add policies from the Polly registryAdd policies from the Polly registry

var registry = services.AddPolicyRegistry();

registry.Add("regular", timeout);
registry.Add("long", longTimeout);

services.AddHttpClient("regulartimeouthandler")
 .AddPolicyHandlerFromRegistry("regular");

HttpClient and lifetime management

services.AddHttpClient("extendedhandlerlifetime")
 .SetHandlerLifetime(TimeSpan.FromMinutes(5));

Logging

In the preceding example, two handlers are added. The first uses the AddTransientHttpErrorPolicy extension to add
a retry policy. Failed requests are retried up to three times. The second call to AddTransientHttpErrorPolicy adds a
circuit breaker policy. Further external requests are blocked for 30 seconds if five failed attempts occur
sequentially. Circuit breaker policies are stateful. All calls through this client share the same circuit state.

An approach to managing regularly used policies is to define them once and register them with a PolicyRegistry .
An extension method is provided which allows a handler to be added using a policy from the registry:

In the preceding code, a PolicyRegistry is added to the ServiceCollection and two policies are registered with it. In
order to use a policy from the registry, the AddPolicyHandlerFromRegistry method is used, passing the name of the
policy to apply.

Further information about IHttpClientFactory and Polly integrations can be found on the Polly wiki.

Each time CreateClient is called on the IHttpClientFactory , a new instance of a HttpClient is returned. There
will be a HttpMessageHandler per named client. IHttpClientFactory will pool the HttpMessageHandler instances
created by the factory to reduce resource consumption. A HttpMessageHandler instance may be reused from the
pool when creating a new HttpClient instance if its lifetime hasn't expired.

Pooling of handlers is desirable as each handler typically manages its own underlying HTTP connections; creating
more handlers than necessary can result in connection delays. Some handlers also keep connections open
indefinitely, which can prevent the handler from reacting to DNS changes.

The default handler lifetime is two minutes. The default value can be overridden on a per named client basis. To
override it, call SetHandlerLifetime on the IHttpClientBuilder that is returned when creating the client:

Clients created via IHttpClientFactory record log messages for all requests. You'll need to enable the appropriate
information level in your logging configuration to see the default log messages. Additional logging, such as the
logging of request headers, is only included at trace level.

The log category used for each client includes the name of the client. A client named "MyNamedClient", for
example, logs messages with a category of System.Net.Http.HttpClient.MyNamedClient.LogicalHandler . Messages
with the suffix of "LogicalHandler" occur on the outside of request handler pipeline. On the request, messages are
logged before any other handlers in the pipeline have processed it. On the response, messages are logged after

https://github.com/App-vNext/Polly/wiki/Polly-and-HttpClientFactory

Configure the HttpMessageHandler

services.AddHttpClient("configured-inner-handler")
 .ConfigurePrimaryHttpMessageHandler(() =>
 {
 return new HttpClientHandler()
 {
 AllowAutoRedirect = false,
 UseDefaultCredentials = true
 };
 });

any other pipeline handlers have received the response.

Logging also occurs on the inside of the request handler pipeline. In the case of the "MyNamedClient" example,
those messages are logged against the log category System.Net.Http.HttpClient.MyNamedClient.ClientHandler . For
the request, this occurs after all other handlers have run and immediately before the request is sent out on the
network. On the response, this logging includes the state of the response before it passes back through the
handler pipeline.

Enabling logging on the outside and inside of the pipeline enables inspection of the changes made by the other
pipeline handlers. This may include changes to request headers, for example, or to the response status code.

Including the name of the client in the log category enables log filtering for specific named clients where
necessary.

It may be necessary to control the configuration of the inner HttpMessageHandler used by a client.

An IHttpClientBuilder is returned when adding named or typed clients. The ConfigurePrimaryHttpMessageHandler

extension method can be used to define a delegate. The delegate is used to create and configure the primary
HttpMessageHandler used by that client:

Request Features in ASP.NET Core
1/30/2018 • 2 minutes to read • Edit Online

Feature interfaces

NOTENOTE

Feature collections

By Steve Smith

Web server implementation details related to HTTP requests and responses are defined in interfaces. These
interfaces are used by server implementations and middleware to create and modify the application's hosting
pipeline.

ASP.NET Core defines a number of HTTP feature interfaces in Microsoft.AspNetCore.Http.Features which are used
by servers to identify the features they support. The following feature interfaces handle requests and return
responses:

IHttpRequestFeature Defines the structure of an HTTP request, including the protocol, path, query string, headers,
and body.

IHttpResponseFeature Defines the structure of an HTTP response, including the status code, headers, and body of
the response.

IHttpAuthenticationFeature Defines support for identifying users based on a ClaimsPrincipal and specifying an
authentication handler.

IHttpUpgradeFeature Defines support for HTTP Upgrades, which allow the client to specify which additional
protocols it would like to use if the server wishes to switch protocols.

IHttpBufferingFeature Defines methods for disabling buffering of requests and/or responses.

IHttpConnectionFeature Defines properties for local and remote addresses and ports.

IHttpRequestLifetimeFeature Defines support for aborting connections, or detecting if a request has been
terminated prematurely, such as by a client disconnect.

IHttpSendFileFeature Defines a method for sending files asynchronously.

IHttpWebSocketFeature Defines an API for supporting web sockets.

IHttpRequestIdentifierFeature Adds a property that can be implemented to uniquely identify requests.

ISessionFeature Defines ISessionFactory and ISession abstractions for supporting user sessions.

ITlsConnectionFeature Defines an API for retrieving client certificates.

ITlsTokenBindingFeature Defines methods for working with TLS token binding parameters.

ISessionFeature isn't a server feature, but is implemented by the SessionMiddleware (see Managing Application State).

The Features property of HttpContext provides an interface for getting and setting the available HTTP features
for the current request. Since the feature collection is mutable even within the context of a request, middleware

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/request-features.md
https://ardalis.com/
https://tools.ietf.org/html/rfc2616.html#section-14.42

 Middleware and request features

Summary

Additional resources

can be used to modify the collection and add support for additional features.

While servers are responsible for creating the feature collection, middleware can both add to this collection and
consume features from the collection. For example, the StaticFileMiddleware accesses the IHttpSendFileFeature

feature. If the feature exists, it's used to send the requested static file from its physical path. Otherwise, a slower
alternative method is used to send the file. When available, the IHttpSendFileFeature allows the operating system
to open the file and perform a direct kernel mode copy to the network card.

Additionally, middleware can add to the feature collection established by the server. Existing features can even be
replaced by middleware, allowing the middleware to augment the functionality of the server. Features added to
the collection are available immediately to other middleware or the underlying application itself later in the
request pipeline.

By combining custom server implementations and specific middleware enhancements, the precise set of features
an application requires can be constructed. This allows missing features to be added without requiring a change in
server, and ensures only the minimal amount of features are exposed, thus limiting attack surface area and
improving performance.

Feature interfaces define specific HTTP features that a given request may support. Servers define collections of
features, and the initial set of features supported by that server, but middleware can be used to enhance these
features.

Servers
Middleware
Open Web Interface for .NET (OWIN)

Primitives in ASP.NET Core
1/29/2018 • 2 minutes to read • Edit Online

ASP.NET Core primitives are low-level building blocks shared by framework extensions. You can use these building
blocks in your own code.

Detect changes with Change Tokens

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/primitives/index.md

Detect changes with change tokens in ASP.NET Core
6/4/2018 • 8 minutes to read • Edit Online

IChangeToken interface

ChangeToken class

Example uses of change tokens in ASP.NET Core

By Luke Latham

A change token is a general-purpose, low-level building block used to track changes.

View or download sample code (how to download)

IChangeToken propagates notifications that a change has occurred. IChangeToken resides in the
Microsoft.Extensions.Primitives namespace. For apps that don't use the Microsoft.AspNetCore.App metapackage
(ASP.NET Core 2.1 or later), reference the Microsoft.Extensions.Primitives NuGet package in the project file.

IChangeToken has two properties:

ActiveChangedCallbacks indicate if the token proactively raises callbacks. If ActiveChangedCallbacks is set to
false , a callback is never called, and the app must poll HasChanged for changes. It's also possible for a token to

never be cancelled if no changes occur or the underlying change listener is disposed or disabled.
HasChanged gets a value that indicates if a change has occurred.

The interface has one method, RegisterChangeCallback(Action<Object>, Object), which registers a callback that's
invoked when the token has changed. HasChanged must be set before the callback is invoked.

ChangeToken is a static class used to propagate notifications that a change has occurred. ChangeToken resides in
the Microsoft.Extensions.Primitives namespace. For apps that don't use the Microsoft.AspNetCore.App
metapackage, reference the Microsoft.Extensions.Primitives NuGet package in the project file.

The ChangeToken OnChange(Func<IChangeToken>, Action) method registers an Action to call whenever the
token changes:

Func<IChangeToken> produces the token.
Action is called when the token changes.

ChangeToken has an OnChange<TState>(Func<IChangeToken>, Action<TState>, TState) overload that takes an
additional TState parameter that's passed into the token consumer Action .

OnChange returns an IDisposable. Calling Dispose stops the token from listening for further changes and releases
the token's resources.

Change tokens are used in prominent areas of ASP.NET Core monitoring changes to objects:

For monitoring changes to files, IFileProvider's Watch method creates an IChangeToken for the specified files
or folder to watch.
IChangeToken tokens can be added to cache entries to trigger cache evictions on change.

For TOptions changes, the default OptionsMonitor implementation of IOptionsMonitor has an overload that
accepts one or more IOptionsChangeTokenSource instances. Each instance returns an IChangeToken to register

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/primitives/change-tokens.md
https://github.com/guardrex
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/primitives/change-tokens/sample/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives.ichangetoken
https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives
https://www.nuget.org/packages/Microsoft.Extensions.Primitives/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives.ichangetoken.activechangecallbacks
https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives.ichangetoken.haschanged
https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives.ichangetoken.registerchangecallback
https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives
https://www.nuget.org/packages/Microsoft.Extensions.Primitives/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives.changetoken.onchange?view=aspnetcore-2.0#Microsoft_Extensions_Primitives_ChangeToken_OnChange_System_Func_Microsoft_Extensions_Primitives_IChangeToken__System_Action_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives.changetoken.onchange?view=aspnetcore-2.0#Microsoft_Extensions_Primitives_ChangeToken_OnChange__1_System_Func_Microsoft_Extensions_Primitives_IChangeToken__System_Action___0____0_
https://docs.microsoft.com/dotnet/api/system.idisposable
https://docs.microsoft.com/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.watch
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.optionsmonitor-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/dotnet/api/microsoft.extensions.options.ioptionschangetokensource-1

Monitoring for configuration changes

config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true, reloadOnChange: true);

a change notification callback for tracking options changes.

By default, ASP.NET Core templates use JSON configuration files (appsettings.json, appsettings.Development.json,
and appsettings.Production.json) to load app configuration settings.

These files are configured using the AddJsonFile(IConfigurationBuilder, String, Boolean, Boolean) extension
method on ConfigurationBuilder that accepts a reloadOnChange parameter (ASP.NET Core 1.1 and later).
reloadOnChange indicates if configuration should be reloaded on file changes. See this setting in the WebHost

convenience method CreateDefaultBuilder:

File-based configuration is represented by FileConfigurationSource. FileConfigurationSource uses IFileProvider
to monitor files.

By default, the IFileMonitor is provided by a PhysicalFileProvider, which uses FileSystemWatcher to monitor for
configuration file changes.

The sample app demonstrates two implementations for monitoring configuration changes. If either the
appsettings.json file changes or the Environment version of the file changes, each implementation executes custom
code. The sample app writes a message to the console.

A configuration file's FileSystemWatcher can trigger multiple token callbacks for a single configuration file change.
The sample's implementation guards against this problem by checking file hashes on the configuration files.
Checking file hashes ensures that at least one of the configuration files has changed before running the custom
code. The sample uses SHA1 file hashing (Utilities/Utilities.cs):

https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.jsonconfigurationextensions.addjsonfile?view=aspnetcore-2.0#Microsoft_Extensions_Configuration_JsonConfigurationExtensions_AddJsonFile_Microsoft_Extensions_Configuration_IConfigurationBuilder_System_String_System_Boolean_System_Boolean_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.configurationbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.fileconfigurationsource
https://docs.microsoft.com/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/dotnet/api/microsoft.extensions.fileproviders.physicalfileprovider
https://docs.microsoft.com/dotnet/api/system.io.filesystemwatcher

public static byte[] ComputeHash(string filePath)
{
 var runCount = 1;

 while(runCount < 4)
 {
 try
 {
 if (File.Exists(filePath))
 {
 using (var fs = File.OpenRead(filePath))
 {
 return System.Security.Cryptography.SHA1.Create().ComputeHash(fs);
 }
 }
 else
 {
 throw new FileNotFoundException();
 }
 }
 catch (IOException ex)
 {
 if (runCount == 3 || ex.HResult != -2147024864)
 {
 throw;
 }
 else
 {
 Thread.Sleep(TimeSpan.FromSeconds(Math.Pow(2, runCount)));
 runCount++;
 }
 }
 }

 return new byte[20];
}

Simple startup change tokenSimple startup change token

ChangeToken.OnChange(
 () => config.GetReloadToken(),
 (state) => InvokeChanged(state),
 env);

A retry is implemented with an exponential back-off. The re-try is present because file locking may occur that
temporarily prevents computing a new hash on one of the files.

Register a token consumer Action callback for change notifications to the configuration reload token (Startup.cs):

config.GetReloadToken() provides the token. The callback is the InvokeChanged method:

private void InvokeChanged(IHostingEnvironment env)
{
 byte[] appsettingsHash = ComputeHash("appSettings.json");
 byte[] appsettingsEnvHash =
 ComputeHash($"appSettings.{env.EnvironmentName}.json");

 if (!_appsettingsHash.SequenceEqual(appsettingsHash) ||
 !_appsettingsEnvHash.SequenceEqual(appsettingsEnvHash))
 {
 _appsettingsHash = appsettingsHash;
 _appsettingsEnvHash = appsettingsEnvHash;

 WriteConsole("Configuration changed (Simple Startup Change Token)");
 }
}

Monitoring configuration changes as a serviceMonitoring configuration changes as a service

public interface IConfigurationMonitor
{
 bool MonitoringEnabled { get; set; }
 string CurrentState { get; set; }
}

public ConfigurationMonitor(IConfiguration config, IHostingEnvironment env)
{
 _env = env;

 ChangeToken.OnChange<IConfigurationMonitor>(
 () => config.GetReloadToken(),
 InvokeChanged,
 this);
}

public bool MonitoringEnabled { get; set; } = false;
public string CurrentState { get; set; } = "Not monitoring";

The state of the callback is used to pass in the IHostingEnvironment . This is useful to determine the correct
appsettings configuration JSON file to monitor, appsettings.<Environment>.json. File hashes are used to prevent
the WriteConsole statement from running multiple times due to multiple token callbacks when the configuration
file has only changed once.

This system runs as long as the app is running and can't be disabled by the user.

The sample implements:

Basic startup token monitoring.
Monitoring as a service.
A mechanism to enable and disable monitoring.

The sample establishes an IConfigurationMonitor interface (Extensions/ConfigurationMonitor.cs):

The constructor of the implemented class, ConfigurationMonitor , registers a callback for change notifications:

config.GetReloadToken() supplies the token. InvokeChanged is the callback method. The state in this instance is a
reference to the IConfigurationMonitor instance that is used to access the monitoring state. Two properties are
used:

MonitoringEnabled indicates if the callback should run its custom code.

private void InvokeChanged(IConfigurationMonitor state)
{
 if (MonitoringEnabled)
 {
 byte[] appsettingsHash = ComputeHash("appSettings.json");
 byte[] appsettingsEnvHash =
 ComputeHash($"appSettings.{_env.EnvironmentName}.json");

 if (!_appsettingsHash.SequenceEqual(appsettingsHash) ||
 !_appsettingsEnvHash.SequenceEqual(appsettingsEnvHash))
 {
 string message = $"State updated at {DateTime.Now}";

 _appsettingsHash = appsettingsHash;
 _appsettingsEnvHash = appsettingsEnvHash;

 WriteConsole($"Configuration changed (ConfigurationMonitor Class) {message}, state:
{state.CurrentState}");
 }
 }
}

services.AddSingleton<IConfigurationMonitor, ConfigurationMonitor>();

public IndexModel(
 IConfiguration config,
 IConfigurationMonitor monitor,
 FileService fileService)
{
 _config = config;
 _monitor = monitor;
 _fileService = fileService;
}

<button class="btn btn-danger" asp-page-handler="StopMonitoring">Stop Monitoring</button>

CurrentState describes the current monitoring state for use in the UI.

The InvokeChanged method is similar to the earlier approach, except that it:

Doesn't run its code unless MonitoringEnabled is true .
Notes the current state in its WriteConsole output.

An instance ConfigurationMonitor is registered as a service in ConfigureServices of Startup.cs:

The Index page offers the user control over configuration monitoring. The instance of IConfigurationMonitor is
injected into the IndexModel :

A button enables and disables monitoring:

public IActionResult OnPostStartMonitoring()
{
 _monitor.MonitoringEnabled = true;
 _monitor.CurrentState = "Monitoring!";

 return RedirectToPage();
}

public IActionResult OnPostStopMonitoring()
{
 _monitor.MonitoringEnabled = false;
 _monitor.CurrentState = "Not monitoring";

 return RedirectToPage();
}

Monitoring cached file changes

When OnPostStartMonitoring is triggered, monitoring is enabled, and the current state is cleared. When
OnPostStopMonitoring is triggered, monitoring is disabled, and the state is set to reflect that monitoring isn't

occurring.

File content can be cached in-memory using IMemoryCache. In-memory caching is described in the Cache in-
memory topic. Without taking additional steps, such as the implementation described below, stale (outdated) data
is returned from a cache if the source data changes.

Not taking into account the status of a cached source file when renewing a sliding expiration period leads to stale
cache data. Each request for the data renews the sliding expiration period, but the file is never reloaded into the
cache. Any app features that use the file's cached content are subject to possibly receiving stale content.

Using change tokens in a file caching scenario prevents stale file content in the cache. The sample app
demonstrates an implementation of the approach.

The sample uses GetFileContent to:

Return file content.
Implement a retry algorithm with exponential back-off to cover cases where a file lock is temporarily
preventing a file from being read.

Utilities/Utilities.cs:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryoptions.slidingexpiration

public async static Task<string> GetFileContent(string filePath)
{
 var runCount = 1;

 while(runCount < 4)
 {
 try
 {
 if (File.Exists(filePath))
 {
 using (var fileStreamReader = File.OpenText(filePath))
 {
 return await fileStreamReader.ReadToEndAsync();
 }
 }
 else
 {
 throw new FileNotFoundException();
 }
 }
 catch (IOException ex)
 {
 if (runCount == 3 || ex.HResult != -2147024864)
 {
 throw;
 }
 else
 {
 await Task.Delay(TimeSpan.FromSeconds(Math.Pow(2, runCount)));
 runCount++;
 }
 }
 }

 return null;
}

A FileService is created to handle cached file lookups. The GetFileContent method call of the service attempts to
obtain file content from the in-memory cache and return it to the caller (Services/FileService.cs).

If cached content isn't found using the cache key, the following actions are taken:

1. The file content is obtained using GetFileContent .
2. A change token is obtained from the file provider with IFileProviders.Watch. The token's callback is triggered

when the file is modified.
3. The file content is cached with a sliding expiration period. The change token is attached with

MemoryCacheEntryExtensions.AddExpirationToken to evict the cache entry if the file changes while it's cached.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.watch
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryoptions.slidingexpiration
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryextensions.addexpirationtoken

public class FileService
{
 private readonly IMemoryCache _cache;
 private readonly IFileProvider _fileProvider;
 private List<string> _tokens = new List<string>();

 public FileService(IMemoryCache cache, IHostingEnvironment env)
 {
 _cache = cache;
 _fileProvider = env.ContentRootFileProvider;
 }

 public async Task<string> GetFileContents(string fileName)
 {
 // For the purposes of this example, files are stored
 // in the content root of the app. To obtain the physical
 // path to a file at the content root, use the
 // ContentRootFileProvider on IHostingEnvironment.
 var filePath = _fileProvider.GetFileInfo(fileName).PhysicalPath;
 string fileContent;

 // Try to obtain the file contents from the cache.
 if (_cache.TryGetValue(filePath, out fileContent))
 {
 return fileContent;
 }

 // The cache doesn't have the entry, so obtain the file
 // contents from the file itself.
 fileContent = await GetFileContent(filePath);

 if (fileContent != null)
 {
 // Obtain a change token from the file provider whose
 // callback is triggered when the file is modified.
 var changeToken = _fileProvider.Watch(fileName);

 // Configure the cache entry options for a five minute
 // sliding expiration and use the change token to
 // expire the file in the cache if the file is
 // modified.
 var cacheEntryOptions = new MemoryCacheEntryOptions()
 .SetSlidingExpiration(TimeSpan.FromMinutes(5))
 .AddExpirationToken(changeToken);

 // Put the file contents into the cache.
 _cache.Set(filePath, fileContent, cacheEntryOptions);

 return fileContent;
 }

 return string.Empty;
 }
}

services.AddMemoryCache();
services.AddSingleton<FileService>();

var fileContent = await _fileService.GetFileContents("poem.txt");

The FileService is registered in the service container along with the memory caching service (Startup.cs):

The page model loads the file's content using the service (Pages/Index.cshtml.cs):

CompositeChangeToken class

var firstCancellationTokenSource = new CancellationTokenSource();
var secondCancellationTokenSource = new CancellationTokenSource();

var firstCancellationToken = firstCancellationTokenSource.Token;
var secondCancellationToken = secondCancellationTokenSource.Token;

var firstCancellationChangeToken = new CancellationChangeToken(firstCancellationToken);
var secondCancellationChangeToken = new CancellationChangeToken(secondCancellationToken);

var compositeChangeToken =
 new CompositeChangeToken(
 new List<IChangeToken>
 {
 firstCancellationChangeToken,
 secondCancellationChangeToken
 });

Additional resources

For representing one or more IChangeToken instances in a single object, use the CompositeChangeToken class.

HasChanged on the composite token reports true if any represented token HasChanged is true .
ActiveChangeCallbacks on the composite token reports true if any represented token ActiveChangeCallbacks is
true . If multiple concurrent change events occur, the composite change callback is invoked exactly one time.

Cache in-memory
Work with a distributed cache
Response caching
Response Caching Middleware
Cache Tag Helper
Distributed Cache Tag Helper

https://docs.microsoft.com/dotnet/api/microsoft.extensions.primitives.compositechangetoken

Open Web Interface for .NET (OWIN) with ASP.NET
Core
4/17/2018 • 5 minutes to read • Edit Online

Running OWIN middleware in the ASP.NET pipeline

public Task OwinHello(IDictionary<string, object> environment)
{
 string responseText = "Hello World via OWIN";
 byte[] responseBytes = Encoding.UTF8.GetBytes(responseText);

 // OWIN Environment Keys: http://owin.org/spec/spec/owin-1.0.0.html
 var responseStream = (Stream)environment["owin.ResponseBody"];
 var responseHeaders = (IDictionary<string, string[]>)environment["owin.ResponseHeaders"];

 responseHeaders["Content-Length"] = new string[] {
responseBytes.Length.ToString(CultureInfo.InvariantCulture) };
 responseHeaders["Content-Type"] = new string[] { "text/plain" };

 return responseStream.WriteAsync(responseBytes, 0, responseBytes.Length);
}

By Steve Smith and Rick Anderson

ASP.NET Core supports the Open Web Interface for .NET (OWIN). OWIN allows web apps to be decoupled from
web servers. It defines a standard way for middleware to be used in a pipeline to handle requests and associated
responses. ASP.NET Core applications and middleware can interoperate with OWIN-based applications, servers,
and middleware.

OWIN provides a decoupling layer that allows two frameworks with disparate object models to be used together.
The Microsoft.AspNetCore.Owin package provides two adapter implementations:

ASP.NET Core to OWIN
OWIN to ASP.NET Core

This allows ASP.NET Core to be hosted on top of an OWIN compatible server/host, or for other OWIN
compatible components to be run on top of ASP.NET Core.

Note: Using these adapters comes with a performance cost. Applications using only ASP.NET Core components
shouldn't use the Owin package or adapters.

View or download sample code (how to download)

ASP.NET Core's OWIN support is deployed as part of the Microsoft.AspNetCore.Owin package. You can import
OWIN support into your project by installing this package.

OWIN middleware conforms to the OWIN specification, which requires a
Func<IDictionary<string, object>, Task> interface, and specific keys be set (such as owin.ResponseBody). The

following simple OWIN middleware displays "Hello World":

The sample signature returns a Task and accepts an IDictionary<string, object> as required by OWIN.

The following code shows how to add the OwinHello middleware (shown above) to the ASP.NET pipeline with the
UseOwin extension method.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/owin.md
https://ardalis.com/
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/owin/sample
http://owin.org/spec/spec/owin-1.0.0.html

public void Configure(IApplicationBuilder app)
{
 app.UseOwin(pipeline =>
 {
 pipeline(next => OwinHello);
 });
}

NOTENOTE

NOTENOTE

app.UseOwin(pipeline =>
{
 pipeline(async (next) =>
 {
 // do something before
 await OwinHello(new OwinEnvironment(HttpContext));
 // do something after
 });
});

Using ASP.NET Hosting on an OWIN-based server

You can configure other actions to take place within the OWIN pipeline.

Response headers should only be modified prior to the first write to the response stream.

Multiple calls to UseOwin is discouraged for performance reasons. OWIN components will operate best if grouped together.

OWIN-based servers can host ASP.NET applications. One such server is Nowin, a .NET OWIN web server. In the
sample for this article, I've included a project that references Nowin and uses it to create an IServer capable of
self-hosting ASP.NET Core.

https://github.com/Bobris/Nowin

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Hosting;

namespace NowinSample
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseNowin()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

 host.Run();
 }
 }
}

using System;
using Microsoft.AspNetCore.Hosting.Server;
using Microsoft.Extensions.DependencyInjection;
using Nowin;
using NowinSample;

namespace Microsoft.AspNetCore.Hosting
{
 public static class NowinWebHostBuilderExtensions
 {
 public static IWebHostBuilder UseNowin(this IWebHostBuilder builder)
 {
 return builder.ConfigureServices(services =>
 {
 services.AddSingleton<IServer, NowinServer>();
 });
 }

 public static IWebHostBuilder UseNowin(this IWebHostBuilder builder, Action<ServerBuilder> configure)
 {
 builder.ConfigureServices(services =>
 {
 services.Configure(configure);
 });
 return builder.UseNowin();
 }
 }
}

IServer is an interface that requires a Features property and a Start method.

Start is responsible for configuring and starting the server, which in this case is done through a series of fluent
API calls that set addresses parsed from the IServerAddressesFeature. Note that the fluent configuration of the
_builder variable specifies that requests will be handled by the appFunc defined earlier in the method. This Func

is called on each request to process incoming requests.

We'll also add an IWebHostBuilder extension to make it easy to add and configure the Nowin server.

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Hosting;

namespace NowinSample
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseNowin()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

 host.Run();
 }
 }
}

Run ASP.NET Core on an OWIN-based server and use its WebSockets
support

With this in place, invoke the extension in Program.cs to run an ASP.NET Core app using this custom server :

Learn more about ASP.NET Servers.

Another example of how OWIN-based servers' features can be leveraged by ASP.NET Core is access to features
like WebSockets. The .NET OWIN web server used in the previous example has support for Web Sockets built in,
which can be leveraged by an ASP.NET Core application. The example below shows a simple web app that
supports Web Sockets and echoes back everything sent to the server through WebSockets.

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Use(async (context, next) =>
 {
 if (context.WebSockets.IsWebSocketRequest)
 {
 WebSocket webSocket = await context.WebSockets.AcceptWebSocketAsync();
 await EchoWebSocket(webSocket);
 }
 else
 {
 await next();
 }
 });

 app.Run(context =>
 {
 return context.Response.WriteAsync("Hello World");
 });
 }

 private async Task EchoWebSocket(WebSocket webSocket)
 {
 byte[] buffer = new byte[1024];
 WebSocketReceiveResult received = await webSocket.ReceiveAsync(
 new ArraySegment<byte>(buffer), CancellationToken.None);

 while (!webSocket.CloseStatus.HasValue)
 {
 // Echo anything we receive
 await webSocket.SendAsync(new ArraySegment<byte>(buffer, 0, received.Count),
 received.MessageType, received.EndOfMessage, CancellationToken.None);

 received = await webSocket.ReceiveAsync(new ArraySegment<byte>(buffer),
 CancellationToken.None);
 }

 await webSocket.CloseAsync(webSocket.CloseStatus.Value,
 webSocket.CloseStatusDescription, CancellationToken.None);
 }
}

This sample is configured using the same NowinServer as the previous one - the only difference is in how the
application is configured in its Configure method. A test using a simple websocket client demonstrates the
application:

https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/owin/sample
https://chrome.google.com/webstore/detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo?hl=en

OWIN environment

 var environment = new OwinEnvironment(HttpContext);
 var features = new OwinFeatureCollection(environment);

OWIN keys

Request data (OWIN v1.0.0)Request data (OWIN v1.0.0)

KEY VALUE (TYPE) DESCRIPTION

owin.RequestScheme String

owin.RequestMethod String

owin.RequestPathBase String

owin.RequestPath String

owin.RequestQueryString String

owin.RequestProtocol String

owin.RequestHeaders IDictionary<string,string[]>

You can construct an OWIN environment using the HttpContext .

OWIN depends on an IDictionary<string,object> object to communicate information throughout an HTTP
Request/Response exchange. ASP.NET Core implements the keys listed below. See the primary specification,
extensions, and OWIN Key Guidelines and Common Keys.

http://owin.org/#spec
http://owin.org/spec/spec/CommonKeys.html

owin.RequestBody Stream

KEY VALUE (TYPE) DESCRIPTION

Request data (OWIN v1.1.0)Request data (OWIN v1.1.0)

KEY VALUE (TYPE) DESCRIPTION

owin.RequestId String Optional

Response data (OWIN v1.0.0)Response data (OWIN v1.0.0)

KEY VALUE (TYPE) DESCRIPTION

owin.ResponseStatusCode int Optional

owin.ResponseReasonPhrase String Optional

owin.ResponseHeaders IDictionary<string,string[]>

owin.ResponseBody Stream

Other data (OWIN v1.0.0)Other data (OWIN v1.0.0)

KEY VALUE (TYPE) DESCRIPTION

owin.CallCancelled CancellationToken

owin.Version String

Common keysCommon keys

KEY VALUE (TYPE) DESCRIPTION

ssl.ClientCertificate X509Certificate

ssl.LoadClientCertAsync Func<Task>

server.RemoteIpAddress String

server.RemotePort String

server.LocalIpAddress String

server.LocalPort String

server.IsLocal bool

server.OnSendingHeaders Action<Action<object>,object>

SendFiles v0.3.0SendFiles v0.3.0

KEY VALUE (TYPE) DESCRIPTION

sendfile.SendAsync See delegate signature Per Request

Opaque v0.3.0Opaque v0.3.0

KEY VALUE (TYPE) DESCRIPTION

opaque.Version String

opaque.Upgrade OpaqueUpgrade See delegate signature

opaque.Stream Stream

opaque.CallCancelled CancellationToken

WebSocket v0.3.0WebSocket v0.3.0

KEY VALUE (TYPE) DESCRIPTION

websocket.Version String

websocket.Accept WebSocketAccept See delegate signature

websocket.AcceptAlt Non-spec

websocket.SubProtocol String See RFC6455 Section 4.2.2 Step 5.5

websocket.SendAsync WebSocketSendAsync See delegate signature

websocket.ReceiveAsync WebSocketReceiveAsync See delegate signature

websocket.CloseAsync WebSocketCloseAsync See delegate signature

websocket.CallCancelled CancellationToken

websocket.ClientCloseStatus int Optional

websocket.ClientCloseDescription String Optional

Additional resources
Middleware
Servers

http://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
http://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
http://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
https://tools.ietf.org/html/rfc6455#section-4.2.2
http://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
http://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
http://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm

WebSockets support in ASP.NET Core
5/14/2018 • 4 minutes to read • Edit Online

Prerequisites

When to use WebSockets

How to use it

By Tom Dykstra and Andrew Stanton-Nurse

This article explains how to get started with WebSockets in ASP.NET Core. WebSocket (RFC 6455) is a protocol
that enables two-way persistent communication channels over TCP connections. It's used in apps that benefit
from fast, real-time communication, such as chat, dashboard, and game apps.

View or download sample code (how to download). See the Next steps section for more information.

ASP.NET Core 1.1 or later

Any OS that supports ASP.NET Core:

Windows 7 / Windows Server 2008 or later
Linux
macOS

If the app runs on Windows with IIS:

Windows 8 / Windows Server 2012 or later
IIS 8 / IIS 8 Express
WebSockets must be enabled in IIS (See the IIS/IIS Express support section.)

If the app runs on HTTP.sys:

Windows 8 / Windows Server 2012 or later
For supported browsers, see https://caniuse.com/#feat=websockets.

Use WebSockets to work directly with a socket connection. For example, use WebSockets for the best possible
performance with a real-time game.

ASP.NET SignalR provides a richer app model for real-time functionality, but it only runs on ASP.NET 4.x, not
ASP.NET Core. An ASP.NET Core version of SignalR is scheduled for release with ASP.NET Core 2.1. See
ASP.NET Core 2.1 high-level planning.

Until SignalR Core is released, WebSockets can be used. However, features that SignalR provides must be
provided and supported by the developer. For example:

Support for a broader range of browser versions by using automatic fallback to alternative transport methods.
Automatic reconnection when a connection drops.
Support for clients calling methods on the server or vice versa.
Support for scaling to multiple servers.

Install the Microsoft.AspNetCore.WebSockets package.
Configure the middleware.

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/websockets.md
https://github.com/tdykstra
https://github.com/anurse
https://wikipedia.org/wiki/WebSocket
https://tools.ietf.org/html/rfc6455
https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/websockets/sample
https://caniuse.com/#feat=websockets
https://docs.microsoft.com/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://github.com/aspnet/Announcements/issues/288
https://www.nuget.org/packages/Microsoft.AspNetCore.WebSockets/

Configure the middlewareConfigure the middleware

app.UseWebSockets();

var webSocketOptions = new WebSocketOptions()
{
 KeepAliveInterval = TimeSpan.FromSeconds(120),
 ReceiveBufferSize = 4 * 1024
};
app.UseWebSockets(webSocketOptions);

Accept WebSocket requestsAccept WebSocket requests

app.Use(async (context, next) =>
{
 if (context.Request.Path == "/ws")
 {
 if (context.WebSockets.IsWebSocketRequest)
 {
 WebSocket webSocket = await context.WebSockets.AcceptWebSocketAsync();
 await Echo(context, webSocket);
 }
 else
 {
 context.Response.StatusCode = 400;
 }
 }
 else
 {
 await next();
 }

});

Send and receive messagesSend and receive messages

Accept WebSocket requests.
Send and receive messages.

Add the WebSockets middleware in the Configure method of the Startup class:

The following settings can be configured:

KeepAliveInterval - How frequently to send "ping" frames to the client to ensure proxies keep the connection
open.
ReceiveBufferSize - The size of the buffer used to receive data. Advanced users may need to change this for

performance tuning based on the size of the data.

Somewhere later in the request life cycle (later in the Configure method or in an MVC action, for example) check
if it's a WebSocket request and accept the WebSocket request.

The following example is from later in the Configure method:

A WebSocket request could come in on any URL, but this sample code only accepts requests for /ws .

The AcceptWebSocketAsync method upgrades the TCP connection to a WebSocket connection and provides a
WebSocket object. Use the WebSocket object to send and receive messages.

The code shown earlier that accepts the WebSocket request passes the WebSocket object to an Echo method.
The code receives a message and immediately sends back the same message. Messages are sent and received in

https://docs.microsoft.com/dotnet/core/api/system.net.websockets.websocket

private async Task Echo(HttpContext context, WebSocket webSocket)
{
 var buffer = new byte[1024 * 4];
 WebSocketReceiveResult result = await webSocket.ReceiveAsync(new ArraySegment<byte>(buffer),
CancellationToken.None);
 while (!result.CloseStatus.HasValue)
 {
 await webSocket.SendAsync(new ArraySegment<byte>(buffer, 0, result.Count), result.MessageType,
result.EndOfMessage, CancellationToken.None);

 result = await webSocket.ReceiveAsync(new ArraySegment<byte>(buffer), CancellationToken.None);
 }
 await webSocket.CloseAsync(result.CloseStatus.Value, result.CloseStatusDescription,
CancellationToken.None);
}

IIS/IIS Express support

a loop until the client closes the connection:

When accepting the WebSocket connection before beginning the loop, the middleware pipeline ends. Upon
closing the socket, the pipeline unwinds. That is, the request stops moving forward in the pipeline when the
WebSocket is accepted. When the loop is finished and the socket is closed, the request proceeds back up the
pipeline.

Windows Server 2012 or later and Windows 8 or later with IIS/IIS Express 8 or later has support for the
WebSocket protocol.

To enable support for the WebSocket protocol on Windows Server 2012 or later :

1. Use the Add Roles and Features wizard from the Manage menu or the link in Server Manager.
2. Select Role-based or Feature-based Installation. Select Next.
3. Select the appropriate server (the local server is selected by default). Select Next.
4. Expand Web Server (IIS) in the Roles tree, expand Web Server, and then expand Application

Development.
5. Select WebSocket Protocol. Select Next.
6. If additional features aren't needed, select Next.
7. Select Install.
8. When the installation completes, select Close to exit the wizard.

To enable support for the WebSocket protocol on Windows 8 or later :

1. Navigate to Control Panel > Programs > Programs and Features > Turn Windows features on or off
(left side of the screen).

2. Open the following nodes: Internet Information Services > World Wide Web Services > Application
Development Features.

3. Select the WebSocket Protocol feature. Select OK.

Disable WebSocket when using socket.io on node.js

If using the WebSocket support in socket.io on Node.js, disable the default IIS WebSocket module using the
webSocket element in web.config or applicationHost.config. If this step isn't performed, the IIS WebSocket

module attempts to handle the WebSocket communication rather than Node.js and the app.

https://socket.io/
https://nodejs.org/

<system.webServer>
 <webSocket enabled="false" />
</system.webServer>

Next steps
The sample app that accompanies this article is an echo app. It has a web page that makes WebSocket
connections, and the server resends any messages it receives back to the client. Run the app from a command
prompt (it's not set up to run from Visual Studio with IIS Express) and navigate to http://localhost:5000. The web
page shows the connection status in the upper left:

Select Connect to send a WebSocket request to the URL shown. Enter a test message and select Send. When
done, select Close Socket. The Communication Log section reports each open, send, and close action as it
happens.

https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals/websockets/sample
http://localhost:5000

Microsoft.AspNetCore.App metapackage for
ASP.NET Core 2.1
5/18/2018 • 2 minutes to read • Edit Online

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" />
 </ItemGroup>

</Project>

This feature requires ASP.NET Core 2.1 and later targeting .NET Core 2.1 and later.

The Microsoft.AspNetCore.App metapackage for ASP.NET Core:

Does not include third-party dependencies except for Json.NET, Remotion.Linq, and IX-Async. These 3rd-
party dependencies are deemed necessary to ensure the major frameworks features function.
Includes all supported packages by the ASP.NET Core team except those that contain third-party
dependencies (other than those previously mentioned).
Includes all supported packages by the Entity Framework Core team except those that contain third-party
dependencies (other than those previously mentioned).

All the features of ASP.NET Core 2.1 and later and Entity Framework Core 2.1 and later are included in the
Microsoft.AspNetCore.App package. The default project templates targeting ASP.NET Core 2.1 and later use this

package. We recommend applications targeting ASP.NET Core 2.1 and later and Entity Framework Core 2.1 and
later use the Microsoft.AspNetCore.App package.

The version number of the Microsoft.AspNetCore.App metapackage represents the ASP.NET Core version and
Entity Framework Core version.

Using the Microsoft.AspNetCore.App metapackage provides version restrictions that protect your app:

If a package is included that has a transitive (not direct) dependency on a package in
Microsoft.AspNetCore.App , and those version numbers differ, NuGet will generate an error.

Other packages added to your app cannot change the version of packages included in
Microsoft.AspNetCore.App .

Version consistency ensures a reliable experience. Microsoft.AspNetCore.App was designed to prevent
untested version combinations of related bits being used together in the same app.

Applications that use the Microsoft.AspNetCore.App metapackage automatically take advantage of the ASP.NET
Core shared framework. When you use the Microsoft.AspNetCore.App metapackage, no assets from the
referenced ASP.NET Core NuGet packages are deployed with the application — the ASP.NET Core shared
framework contains these assets. The assets in the shared framework are precompiled to improve application
startup time. For more information, see "shared framework" in .NET Core distribution packaging.

The following .csproj project file references the Microsoft.AspNetCore.App metapackage for ASP.NET Core:

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/metapackage-app.md
https://www.nuget.org/packages/Microsoft.AspNetCore.App
https://docs.microsoft.com/dotnet/core/packages#metapackages
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Remotion.Linq/
https://www.nuget.org/packages/System.Interactive.Async/
https://docs.microsoft.com/dotnet/core/build/distribution-packaging

The preceding markup represents a typical ASP.NET Core 2.1 and later template. It doesn't specify a version
number for the Microsoft.AspNetCore.App package reference. When the version is not specified, an implicit
version is specified by the SDK, that is, Microsoft.NET.Sdk.Web . We recommend relying on the implicit version
specified by the SDK and not explicitly setting the version number on the package reference. You can leave a
GitHub comment at Discussion for the Microsoft.AspNetCore.App implicit version.

The implicit version is set to major.minor.0 for portable apps. The shared framework roll-forward mechanism
will run the app on the latest compatible version among the installed shared frameworks. To guarantee the same
version is used in development, test, and production, ensure the same version of the shared framework is
installed in all environments. For self contained apps, the implicit version number is set to the
major.minor.patch of the shared framework bundled in the installed SDK.

Specifying a version number on the Microsoft.AspNetCore.App reference does not guarantee that version of the
shared framework will be chosen. For example, suppose version "2.1.1" is specified, but "2.1.3" is installed. In
that case, the app will use "2.1.3". Although not recommended, you can disable roll forward (patch and/or
minor). For more information regarding dotnet host roll-forward and how to configure its behavior, see dotnet
host roll forward.

The Microsoft.AspNetCore.App metapackage is not a traditional package that is updated from NuGet. Similar to
Microsoft.NETCore.App , Microsoft.AspNetCore.App represents a shared runtime, which has special versioning

semantics handled outside of NuGet. For more information, see Packages, metapackages and frameworks.

If your application previously used Microsoft.AspNetCore.All , see Migrating from Microsoft.AspNetCore.All to
Microsoft.AspNetCore.App.

https://github.com/dotnet/core/blob/master/release-notes/1.0/sdk/1.0-rc3-implicit-package-refs.md
https://github.com/aspnet/Docs/issues/6430
https://github.com/dotnet/core-setup/blob/master/Documentation/design-docs/roll-forward-on-no-candidate-fx.md
https://docs.microsoft.com/dotnet/core/packages#metapackages
https://docs.microsoft.com/dotnet/core/packages

Microsoft.AspNetCore.All metapackage for ASP.NET
Core 2.0
6/2/2018 • 2 minutes to read • Edit Online

NOTENOTE

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 </ItemGroup>
</Project>

Migrating from Microsoft.AspNetCore.All to
Microsoft.AspNetCore.App

We recommend applications targeting ASP.NET Core 2.1 and later use the Microsoft.AspNetCore.App rather than this
package. See Migrating from Microsoft.AspNetCore.All to Microsoft.AspNetCore.App in this article.

This feature requires ASP.NET Core 2.x targeting .NET Core 2.x.

The Microsoft.AspNetCore.All metapackage for ASP.NET Core includes:

All supported packages by the ASP.NET Core team.
All supported packages by the Entity Framework Core.
Internal and 3rd-party dependencies used by ASP.NET Core and Entity Framework Core.

All the features of ASP.NET Core 2.x and Entity Framework Core 2.x are included in the
Microsoft.AspNetCore.All package. The default project templates targeting ASP.NET Core 2.0 use this package.

The version number of the Microsoft.AspNetCore.All metapackage represents the ASP.NET Core version and
Entity Framework Core version.

Applications that use the Microsoft.AspNetCore.All metapackage automatically take advantage of the .NET Core
Runtime Store. The Runtime Store contains all the runtime assets needed to run ASP.NET Core 2.x applications.
When you use the Microsoft.AspNetCore.All metapackage, no assets from the referenced ASP.NET Core NuGet
packages are deployed with the application — the .NET Core Runtime Store contains these assets. The assets in
the Runtime Store are precompiled to improve application startup time.

You can use the package trimming process to remove packages that you don't use. Trimmed packages are
excluded in published application output.

The following .csproj file references the Microsoft.AspNetCore.All metapackage for ASP.NET Core:

The following packages are included in Microsoft.AspNetCore.All but not the Microsoft.AspNetCore.App

package.

Microsoft.AspNetCore.ApplicationInsights.HostingStartup

https://github.com/aspnet/Docs/blob/master/aspnetcore/fundamentals/metapackage.md
https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://docs.microsoft.com/dotnet/core/deploying/runtime-store

Microsoft.AspNetCore.AzureAppServices.HostingStartup

Microsoft.AspNetCore.AzureAppServicesIntegration

Microsoft.AspNetCore.DataProtection.AzureKeyVault

Microsoft.AspNetCore.DataProtection.AzureStorage

Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv

Microsoft.AspNetCore.SignalR.Redis

Microsoft.Data.Sqlite

Microsoft.Data.Sqlite.Core

Microsoft.EntityFrameworkCore.Sqlite

Microsoft.EntityFrameworkCore.Sqlite.Core

Microsoft.Extensions.Caching.Redis

Microsoft.Extensions.Configuration.AzureKeyVault

Microsoft.Extensions.Logging.AzureAppServices

Microsoft.VisualStudio.Web.BrowserLink

To move from Microsoft.AspNetCore.All to Microsoft.AspNetCore.App , if your app uses any APIs from the above
packages, or packages brought in by those packages, add references to those packages in your project.

Any dependencies of the preceding packages that otherwise aren't dependencies of Microsoft.AspNetCore.App

are not included implicitly. For example:

StackExchange.Redis as a dependency of Microsoft.Extensions.Caching.Redis

Microsoft.ApplicationInsights as a dependency of Microsoft.AspNetCore.ApplicationInsights.HostingStartup

Choose between ASP.NET and ASP.NET Core
5/12/2018 • 2 minutes to read • Edit Online

ASP.NET Core

ASP.NET

Framework selection

ASP.NET CORE ASP.NET

Build for Windows, macOS, or Linux Build for Windows

Razor Pages is the recommended approach to create a Web UI
as of ASP.NET Core 2.x. See also MVC, Web API, and SignalR.

Use Web Forms, SignalR, MVC, Web API, WebHooks, or Web
Pages

Multiple versions per machine One version per machine

Develop with Visual Studio, Visual Studio for Mac, or Visual
Studio Code using C# or F#

Develop with Visual Studio using C#, VB, or F#

Higher performance than ASP.NET Good performance

Choose .NET Framework or .NET Core runtime Use .NET Framework runtime

ASP.NET Core scenarios

ASP.NET scenarios

No matter the web app you're creating, ASP.NET has a solution for you: from enterprise web apps targeting
Windows Server, to small microservices targeting Linux containers, and everything in between.

ASP.NET Core is an open-source, cross-platform framework for building modern, cloud-based web apps on
Windows, macOS, or Linux.

ASP.NET is a mature framework that provides all the services needed to build enterprise-grade, server-based web
apps on Windows.

Review the table below to determine which framework is most appropriate for your needs.

Razor Pages is the recommended approach to create a Web UI as of ASP.NET Core 2.x.
Websites
APIs
Real-time

Websites
APIs
Real-time

https://github.com/aspnet/Docs/blob/master/aspnetcore/choose-aspnet-framework.md
https://docs.microsoft.com/aspnet/web-forms
https://docs.microsoft.com/aspnet/signalr
https://docs.microsoft.com/aspnet/mvc
https://docs.microsoft.com/aspnet/web-api/
https://docs.microsoft.com/aspnet/webhooks/
https://docs.microsoft.com/aspnet/web-pages
https://www.visualstudio.com/vs/visual-studio-mac/
https://code.visualstudio.com/
https://docs.microsoft.com/dotnet/articles/standard/choosing-core-framework-server
https://docs.microsoft.com/aspnet/mvc
https://docs.microsoft.com/aspnet/web-api
https://docs.microsoft.com/aspnet/signalr

Resources
Introduction to ASP.NET
Introduction to ASP.NET Core

https://docs.microsoft.com/aspnet/overview

Introduction to Razor Pages in ASP.NET Core
6/10/2018 • 19 minutes to read • Edit Online

Prerequisites

Creating a Razor Pages project

Razor Pages

By Rick Anderson and Ryan Nowak

Razor Pages is a new aspect of ASP.NET Core MVC that makes coding page-focused scenarios easier and
more productive.

If you're looking for a tutorial that uses the Model-View-Controller approach, see Get started with ASP.NET
Core MVC.

This document provides an introduction to Razor Pages. It's not a step by step tutorial. If you find some of the
sections too advanced, see Get started with Razor Pages. For an overview of ASP.NET Core, see the
Introduction to ASP.NET Core.

Install one of the following:

CLI tooling: Windows, Linux, or macOS: .NET Core SDK 2.0 or later
IDE/editor tooling

Windows: Visual Studio for Windows

Linux: Visual Studio Code
macOS: Visual Studio for Mac

ASP.NET and web development workload
.NET Core cross-platform development workload

Visual Studio
Visual Studio for Mac
Visual Studio Code
.NET Core CLI

See Get started with Razor Pages for detailed instructions on how to create a Razor Pages project using
Visual Studio.

Razor Pages is enabled in Startup.cs:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/razor-pages/index.md
https://twitter.com/RickAndMSFT
https://github.com/rynowak
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/linux
https://www.microsoft.com/net/download/macos

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 // Includes support for Razor Pages and controllers.
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
}

@page

<h1>Hello, world!</h1>
<h2>The time on the server is @DateTime.Now</h2>

@page
@using RazorPagesIntro.Pages
@model IndexModel2

<h2>Separate page model</h2>
<p>
 @Model.Message
</p>

using Microsoft.AspNetCore.Mvc.RazorPages;
using System;

namespace RazorPagesIntro.Pages
{
 public class IndexModel2 : PageModel
 {
 public string Message { get; private set; } = "PageModel in C#";

 public void OnGet()
 {
 Message += $" Server time is { DateTime.Now }";
 }
 }
}

 Consider a basic page:

The preceding code looks a lot like a Razor view file. What makes it different is the @page directive. @page

makes the file into an MVC action - which means that it handles requests directly, without going through a
controller. @page must be the first Razor directive on a page. @page affects the behavior of other Razor
constructs.

A similar page, using a PageModel class, is shown in the following two files. The Pages/Index2.cshtml file:

The Pages/Index2.cshtml.cs page model:

By convention, the PageModel class file has the same name as the Razor Page file with .cs appended. For
example, the previous Razor Page is Pages/Index2.cshtml. The file containing the PageModel class is named
Pages/Index2.cshtml.cs.

FILE NAME AND PATH MATCHING URL

/Pages/Index.cshtml / or /Index

/Pages/Contact.cshtml /Contact

/Pages/Store/Contact.cshtml /Store/Contact

/Pages/Store/Index.cshtml /Store or /Store/Index

Writing a basic form

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using RazorPagesContacts.Data;

namespace RazorPagesContacts
{
 public class Startup
 {
 public IHostingEnvironment HostingEnvironment { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<AppDbContext>(options =>
 options.UseInMemoryDatabase("name"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

The associations of URL paths to pages are determined by the page's location in the file system. The
following table shows a Razor Page path and the matching URL:

Notes:

The runtime looks for Razor Pages files in the Pages folder by default.
Index is the default page when a URL doesn't include a page.

Razor Pages is designed to make common patterns used with web browsers easy to implement when
building an app. Model binding, Tag Helpers, and HTML helpers all just work with the properties defined in a
Razor Page class. Consider a page that implements a basic "contact us" form for the Contact model:

For the samples in this document, the DbContext is initialized in the Startup.cs file.

The data model:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/razor-pages/index/sample/RazorPagesContacts/Startup.cs#L15-L16

using System.ComponentModel.DataAnnotations;

namespace RazorPagesContacts.Data
{
 public class Customer
 {
 public int Id { get; set; }

 [Required, StringLength(100)]
 public string Name { get; set; }
 }
}

using Microsoft.EntityFrameworkCore;

namespace RazorPagesContacts.Data
{
 public class AppDbContext : DbContext
 {
 public AppDbContext(DbContextOptions options)
 : base(options)
 {
 }

 public DbSet<Customer> Customers { get; set; }
 }
}

@page
@model RazorPagesContacts.Pages.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

The db context:

The Pages/Create.cshtml view file:

The Pages/Create.cshtml.cs page model:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages
{
 public class CreateModel : PageModel
 {
 private readonly AppDbContext _db;

 public CreateModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }
 }
}

By convention, the PageModel class is called <PageName>Model and is in the same namespace as the page.

The PageModel class allows separation of the logic of a page from its presentation. It defines page handlers
for requests sent to the page and the data used to render the page. This separation allows you to manage
page dependencies through dependency injection and to unit test the pages.

The page has an OnPostAsync handler method, which runs on POST requests (when a user posts the form).
You can add handler methods for any HTTP verb. The most common handlers are:

OnGet to initialize state needed for the page. OnGet sample.
OnPost to handle form submissions.

The Async naming suffix is optional but is often used by convention for asynchronous functions. The
OnPostAsync code in the preceding example looks similar to what you would normally write in a controller.

The preceding code is typical for Razor Pages. Most of the MVC primitives like model binding, validation, and
action results are shared.

The previous OnPostAsync method:

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
}

public class CreateModel : PageModel
{
 private readonly AppDbContext _db;

 public CreateModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }
}

The basic flow of OnPostAsync :

Check for validation errors.

If there are no errors, save the data and redirect.
If there are errors, show the page again with validation messages. Client-side validation is identical to
traditional ASP.NET Core MVC applications. In many cases, validation errors would be detected on the
client, and never submitted to the server.

When the data is entered successfully, the OnPostAsync handler method calls the RedirectToPage helper
method to return an instance of RedirectToPageResult . RedirectToPage is a new action result, similar to
RedirectToAction or RedirectToRoute , but customized for pages. In the preceding sample, it redirects to the

root Index page (/Index). RedirectToPage is detailed in the URL generation for Pages section.

When the submitted form has validation errors (that are passed to the server), the OnPostAsync handler
method calls the Page helper method. Page returns an instance of PageResult . Returning Page is similar to
how actions in controllers return View . PageResult is the default return type for a handler method. A
handler method that returns void renders the page.

The Customer property uses [BindProperty] attribute to opt in to model binding.

Razor Pages, by default, bind properties only with non-GET verbs. Binding to properties can reduce the
amount of code you have to write. Binding reduces code by using the same property to render form fields (

NOTENOTE

@page
@model RazorPagesContacts.Pages.IndexModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<h1>Contacts</h1>
<form method="post">
 <table class="table">
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var contact in Model.Customers)
 {
 <tr>
 <td>@contact.Id</td>
 <td>@contact.Name</td>
 <td>
 <a asp-page="./Edit" asp-route-id="@contact.Id">edit
 <button type="submit" asp-page-handler="delete"
 asp-route-id="@contact.Id">delete</button>
 </td>
 </tr>
 }
 </tbody>
 </table>

 <a asp-page="./Create">Create
</form>

<input asp-for="Customer.Name" />) and accept the input.

For security reasons, you must opt in to binding GET request data to page model properties. Verify user input before
mapping it to properties. Opting in to this behavior is useful when addressing scenarios which rely on query string or
route values.

To bind a property on GET requests, set the [BindProperty] attribute's SupportsGet property to true :
[BindProperty(SupportsGet = true)]

The home page (Index.cshtml):

The code behind Index.cshtml.cs file:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;
using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesContacts.Pages
{
 public class IndexModel : PageModel
 {
 private readonly AppDbContext _db;

 public IndexModel(AppDbContext db)
 {
 _db = db;
 }

 public IList<Customer> Customers { get; private set; }

 public async Task OnGetAsync()
 {
 Customers = await _db.Customers.AsNoTracking().ToListAsync();
 }

 public async Task<IActionResult> OnPostDeleteAsync(int id)
 {
 var contact = await _db.Customers.FindAsync(id);

 if (contact != null)
 {
 _db.Customers.Remove(contact);
 await _db.SaveChangesAsync();
 }

 return RedirectToPage();
 }
 }
}

<a asp-page="./Edit" asp-route-id="@contact.Id">edit

The Index.cshtml file contains the following markup to create an edit link for each contact:

The Anchor Tag Helper used the asp-route-{value} attribute to generate a link to the Edit page. The link
contains route data with the contact ID. For example, http://localhost:5000/Edit/1 .

The Pages/Edit.cshtml file:

@page "{id:int}"
@model RazorPagesContacts.Pages.EditModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@{
 ViewData["Title"] = "Edit Customer";
}

<h1>Edit Customer - @Model.Customer.Id</h1>
<form method="post">
 <div asp-validation-summary="All"></div>
 <input asp-for="Customer.Id" type="hidden" />
 <div>
 <label asp-for="Customer.Name"></label>
 <div>
 <input asp-for="Customer.Name" />

 </div>
 </div>

 <div>
 <button type="submit">Save</button>
 </div>
</form>

@page "{id:int?}"

The first line contains the @page "{id:int}" directive. The routing constraint "{id:int}" tells the page to
accept requests to the page that contain int route data. If a request to the page doesn't contain route data
that can be converted to an int , the runtime returns an HTTP 404 (not found) error. To make the ID
optional, append ? to the route constraint:

The Pages/Edit.cshtml.cs file:

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages
{
 public class EditModel : PageModel
 {
 private readonly AppDbContext _db;

 public EditModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Customer = await _db.Customers.FindAsync(id);

 if (Customer == null)
 {
 return RedirectToPage("/Index");
 }

 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Attach(Customer).State = EntityState.Modified;

 try
 {
 await _db.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 throw new Exception($"Customer {Customer.Id} not found!");
 }

 return RedirectToPage("/Index");
 }
 }
}

<button type="submit" asp-page-handler="delete"
 asp-route-id="@contact.Id">delete</button>

The Index.cshtml file also contains markup to create a delete button for each customer contact:

When the delete button is rendered in HTML, its formaction includes parameters for :

The customer contact ID specified by the asp-route-id attribute.

<button type="submit" formaction="/?id=1&handler=delete">delete</button>

public async Task<IActionResult> OnPostDeleteAsync(int id)
{
 var contact = await _db.Customers.FindAsync(id);

 if (contact != null)
 {
 _db.Customers.Remove(contact);
 await _db.SaveChangesAsync();
 }

 return RedirectToPage();
}

Mark page properties required

The handler specified by the asp-page-handler attribute.

Here is an example of a rendered delete button with a customer contact ID of 1 :

When the button is selected, a form POST request is sent to the server. By convention, the name of the
handler method is selected based the value of the handler parameter according to the scheme
OnPost[handler]Async .

Because the handler is delete in this example, the OnPostDeleteAsync handler method is used to process
the POST request. If the asp-page-handler is set to a different value, such as remove , a page handler method
with the name OnPostRemoveAsync is selected.

The OnPostDeleteAsync method:

Accepts the id from the query string.
Queries the database for the customer contact with FindAsync .
If the customer contact is found, they're removed from the list of customer contacts. The database is
updated.
Calls RedirectToPage to redirect to the root Index page (/Index).

Properties on a PageModel can be decorated with the Required attribute:

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.requiredattribute

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 [Required(ErrorMessage = "Color is required")]
 public string Color { get; set; }

 public IActionResult OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 // Process color.

 return RedirectToPage("./Index");
 }
 }
}

Manage HEAD requests with the OnGet handler

public void OnHead()
{
HttpContext.Response.Headers.Add("HandledBy", "Handled by OnHead!");
}

services.AddMvc()
.SetCompatibilityVersion(Microsoft.AspNetCore.Mvc.CompatibilityVersion.Version_2_1);

See Model validation for more information.

Ordinarily, a HEAD handler is created and called for HEAD requests:

If no HEAD handler (OnHead) is defined, Razor Pages falls back to calling the GET page handler (OnGet) in
ASP.NET Core 2.1 or later. Opt in to this behavior with the SetCompatibilityVersion method in
Startup.Configure for ASP.NET Core 2.1 to 2.x:

SetCompatibilityVersion effectively sets the Razor Pages option AllowMappingHeadRequestsToGetHandler to
true .

Rather than opting into all 2.1 behaviors with SetCompatibilityVersion , you can explicitly opt-in to specific
behaviors. The following code opts into the mapping HEAD requests to the GET handler.

services.AddMvc()
.AddRazorPagesOptions(options =>
{
options.AllowMappingHeadRequestsToGetHandler = true;
});

XSRF/CSRF and Razor Pages

Using Layouts, partials, templates, and Tag Helpers with Razor
Pages

<!DOCTYPE html>
<html>
<head>
 <title>Razor Pages Sample</title>
</head>
<body>
 <a asp-page="/Index">Home
 @RenderBody()
 <a asp-page="/Customers/Create">Create

</body>
</html>

@{
 Layout = "_Layout";
}

You don't have to write any code for antiforgery validation. Antiforgery token generation and validation are
automatically included in Razor Pages.

Pages work with all the capabilities of the Razor view engine. Layouts, partials, templates, Tag Helpers,
_ViewStart.cshtml, _ViewImports.cshtml work in the same way they do for conventional Razor views.

Let's declutter this page by taking advantage of some of those capabilities.

Add a layout page to Pages/_Layout.cshtml:

The Layout:

Controls the layout of each page (unless the page opts out of layout).
Imports HTML structures such as JavaScript and stylesheets.

See layout page for more information.

The Layout property is set in Pages/_ViewStart.cshtml:

The layout is in the Pages folder. Pages look for other views (layouts, templates, partials) hierarchically,
starting in the same folder as the current page. A layout in the Pages folder can be used from any Razor page
under the Pages folder.

We recommend you not put the layout file in the Views/Shared folder. Views/Shared is an MVC views
pattern. Razor Pages are meant to rely on folder hierarchy, not path conventions.

View search from a Razor Page includes the Pages folder. The layouts, templates, and partials you're using
with MVC controllers and conventional Razor views just work.

Add a Pages/_ViewImports.cshtml file:

@namespace RazorPagesContacts.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@page
@namespace RazorPagesIntro.Pages.Customers

@model NameSpaceModel

<h2>Name space</h2>
<p>
 @Model.Message
</p>

namespace RazorPagesContacts.Pages
{
 public class EditModel : PageModel
 {
 private readonly AppDbContext _db;

 public EditModel(AppDbContext db)
 {
 _db = db;
 }

 // Code removed for brevity.

@namespace RazorPagesContacts.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@namespace is explained later in the tutorial. The @addTagHelper directive brings in the built-in Tag Helpers to
all the pages in the Pages folder.

 When the @namespace directive is used explicitly on a page:

The directive sets the namespace for the page. The @model directive doesn't need to include the namespace.

When the @namespace directive is contained in _ViewImports.cshtml, the specified namespace supplies the
prefix for the generated namespace in the Page that imports the @namespace directive. The rest of the
generated namespace (the suffix portion) is the dot-separated relative path between the folder containing
_ViewImports.cshtml and the folder containing the page.

For example, the code behind file Pages/Customers/Edit.cshtml.cs explicitly sets the namespace:

The Pages/_ViewImports.cshtml file sets the following namespace:

The generated namespace for the Pages/Customers/Edit.cshtml Razor Page is the same as the code behind
file. The @namespace directive was designed so the C# classes added to a project and pages-generated code
just work without having to add an @using directive for the code behind file.

@namespace also works with conventional Razor views.

The original Pages/Create.cshtml view file:

@page
@model RazorPagesContacts.Pages.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

@page
@model CreateModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

URL generation for Pages

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
}

The updated Pages/Create.cshtml view file:

The Razor Pages starter project contains the Pages/_ValidationScriptsPartial.cshtml, which hooks up client-
side validation.

The Create page, shown previously, uses RedirectToPage :

The app has the following file/folder structure:

/Pages

Index.cshtml

/Customers

REDIRECTTOPAGE(X) PAGE

RedirectToPage("/Index") Pages/Index

RedirectToPage("./Index"); Pages/Customers/Index

RedirectToPage("../Index") Pages/Index

RedirectToPage("Index") Pages/Customers/Index

ViewData attribute

public class AboutModel : PageModel
{
[ViewData]
public string Title { get; } = "About";

public void OnGet()
{
}
}

Create.cshtml

Edit.cshtml

Index.cshtml

The Pages/Customers/Create.cshtml and Pages/Customers/Edit.cshtml pages redirect to Pages/Index.cshtml
after success. The string /Index is part of the URI to access the preceding page. The string /Index can be
used to generate URIs to the Pages/Index.cshtml page. For example:

Url.Page("/Index", ...)

<a asp-page="/Index">My Index Page

RedirectToPage("/Index")

The page name is the path to the page from the root /Pages folder including a leading / (for example,
/Index). The preceding URL generation samples offer enhanced options and functional capabilities over

hardcoding a URL. URL generation uses routing and can generate and encode parameters according to how
the route is defined in the destination path.

URL generation for pages supports relative names. The following table shows which Index page is selected
with different RedirectToPage parameters from Pages/Customers/Create.cshtml:

RedirectToPage("Index") , RedirectToPage("./Index") , and RedirectToPage("../Index") are relative names.
The RedirectToPage parameter is combined with the path of the current page to compute the name of the
destination page.

Relative name linking is useful when building sites with a complex structure. If you use relative names to link
between pages in a folder, you can rename that folder. All the links still work (because they didn't include the
folder name).

Data can be passed to a page with ViewDataAttribute. Properties on controllers or Razor Page models
decorated with [ViewData] have their values stored and loaded from the ViewDataDictionary.

In the following example, the AboutModel contains a Title property decorated with [ViewData] . The Title

property is set to the title of the About page:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewdataattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary

<h1>@Model.Title</h1>

<!DOCTYPE html>
<html lang="en">
<head>
<title>@ViewData["Title"] - WebApplication</title>
...

TempData

public class CreateDotModel : PageModel
{
 private readonly AppDbContext _db;

 public CreateDotModel(AppDbContext db)
 {
 _db = db;
 }

 [TempData]
 public string Message { get; set; }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 Message = $"Customer {Customer.Name} added";
 return RedirectToPage("./Index");
 }
}

<h3>Msg: @Model.Message</h3>

In the About page, access the Title property as a model property:

In the layout, the title is read from the ViewData dictionary:

ASP.NET Core exposes the TempData property on a controller. This property stores data until it's read. The
Keep and Peek methods can be used to examine the data without deletion. TempData is useful for

redirection, when data is needed for more than a single request.

The [TempData] attribute is new in ASP.NET Core 2.0 and is supported on controllers and pages.

The following code sets the value of Message using TempData :

The following markup in the Pages/Customers/Index.cshtml file displays the value of Message using
TempData .

The Pages/Customers/Index.cshtml.cs page model applies the [TempData] attribute to the Message property.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controller.tempdata?view=aspnetcore-2.0#Microsoft_AspNetCore_Mvc_Controller_TempData
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controller

[TempData]
public string Message { get; set; }

Multiple handlers per page

@page
@model CreateFATHModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" asp-page-handler="JoinList" value="Join" />
 <input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />
 </form>
</body>
</html>

See TempData for more information.

The following page generates markup for two page handlers using the asp-page-handler Tag Helper :

The form in the preceding example has two submit buttons, each using the FormActionTagHelper to submit to
a different URL. The asp-page-handler attribute is a companion to asp-page . asp-page-handler generates
URLs that submit to each of the handler methods defined by a page. asp-page isn't specified because the
sample is linking to the current page.

The page model:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages.Customers
{
 public class CreateFATHModel : PageModel
 {
 private readonly AppDbContext _db;

 public CreateFATHModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostJoinListAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }

 public async Task<IActionResult> OnPostJoinListUCAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }
 Customer.Name = Customer.Name?.ToUpper();
 return await OnPostJoinListAsync();
 }
 }
}

<input type="submit" asp-page-handler="JoinList" value="Join" />
<input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />

Customizing Routing

The preceding code uses named handler methods. Named handler methods are created by taking the text in
the name after On<HTTP Verb> and before Async (if present). In the preceding example, the page methods
are OnPostJoinListAsync and OnPostJoinListUCAsync. With OnPost and Async removed, the handler
names are JoinList and JoinListUC .

Using the preceding code, the URL path that submits to OnPostJoinListAsync is
http://localhost:5000/Customers/CreateFATH?handler=JoinList . The URL path that submits to
OnPostJoinListUCAsync is http://localhost:5000/Customers/CreateFATH?handler=JoinListUC .

You can change the query string ?handler=JoinList in the URL to a route segment /JoinList by specifying
the route template @page "{handler?}" .

If you don't like the query string ?handler=JoinList in the URL, you can change the route to put the handler

@page "{handler?}"
@model CreateRouteModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" asp-page-handler="JoinList" value="Join" />
 <input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />
 </form>
</body>
</html>

Configuration and settings

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.RootDirectory = "/MyPages";
 options.Conventions.AuthorizeFolder("/MyPages/Admin");
 });
}

Specify that Razor Pages are at the content rootSpecify that Razor Pages are at the content root

name in the path portion of the URL. You can customize the route by adding a route template enclosed in
double quotes after the @page directive.

Using the preceding code, the URL path that submits to OnPostJoinListAsync is
http://localhost:5000/Customers/CreateFATH/JoinList . The URL path that submits to OnPostJoinListUCAsync

is http://localhost:5000/Customers/CreateFATH/JoinListUC .

The ? following handler means the route parameter is optional.

You can use @page to append segments and parameters to a page's default route. Using an absolute or
virtual path to change the page's route (like "~/Some/Other/Path") isn't supported.

To configure advanced options, use the extension method AddRazorPagesOptions on the MVC builder :

Currently you can use the RazorPagesOptions to set the root directory for pages, or add application model
conventions for pages. We'll enable more extensibility this way in the future.

To precompile views, see Razor view compilation .

Download or view sample code.

See Get started with Razor Pages, which builds on this introduction.

By default, Razor Pages are rooted in the /Pages directory. Add WithRazorPagesAtContentRoot to AddMvc
to specify that your Razor Pages are at the content root (ContentRootPath) of the app:

https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/razor-pages/index/sample
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.withrazorpagesatcontentroot
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc#Microsoft_Extensions_DependencyInjection_MvcServiceCollectionExtensions_AddMvc_Microsoft_Extensions_DependencyInjection_IServiceCollection_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.contentrootpath

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 ...
 })
 .WithRazorPagesAtContentRoot();

Specify that Razor Pages are at a custom root directorySpecify that Razor Pages are at a custom root directory

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 ...
 })
 .WithRazorPagesRoot("/path/to/razor/pages");

See also

Add WithRazorPagesRoot to AddMvc to specify that your Razor Pages are at a custom root directory in the
app (provide a relative path):

Introduction to ASP.NET Core
Razor syntax
Get started with Razor Pages
Razor Pages authorization conventions
Razor Pages custom route and page model providers
Razor Pages unit tests

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvccorebuilderextensions.withrazorpagesroot
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc#Microsoft_Extensions_DependencyInjection_MvcServiceCollectionExtensions_AddMvc_Microsoft_Extensions_DependencyInjection_IServiceCollection_

Filter methods for Razor Pages in ASP.NET Core
4/18/2018 • 4 minutes to read • Edit Online

NOTENOTE

Implement Razor Page filters globally

By Rick Anderson

Razor Page filters IPageFilter and IAsyncPageFilter allow Razor Pages to run code before and after a Razor Page
handler is run. Razor Page filters are similar to ASP.NET Core MVC action filters, except they can't be applied to
individual page handler methods.

Razor Page filters:

Run code after a handler method has been selected, but before model binding occurs.
Run code before the handler method executes, after model binding is complete.
Run code after the handler method executes.
Can be implemented on a page or globally.
Cannot be applied to specific page handler methods.

Code can be run before a handler method executes using the page constructor or middleware, but only Razor Page
filters have access to HttpContext. Filters have a FilterContext derived parameter, which provides access to
HttpContext . For example, the Implement a filter attribute sample adds a header to the response, something that

can't be done with constructors or middleware.

View or download sample code (how to download)

Razor Page filters provide the following methods, which can be applied globally or at the page level:

Synchronous methods:

OnPageHandlerSelected : Called after a handler method has been selected, but before model binding
occurs.
OnPageHandlerExecuting : Called before the handler method executes, after model binding is complete.
OnPageHandlerExecuted : Called after the handler method executes, before the action result.

Asynchronous methods:

OnPageHandlerSelectionAsync : Called asynchronously after the handler method has been selected, but
before model binding occurs.
OnPageHandlerExecutionAsync : Called asynchronously before the handler method is invoked, after
model binding is complete.

Implement either the synchronous or the async version of a filter interface, not both. The framework checks first to see if the
filter implements the async interface, and if so, it calls that. If not, it calls the synchronous interface's method(s). If both
interfaces are implemented, only the async methods are be called. The same rule applies to overrides in pages, implement the
synchronous or the async version of the override, not both.

The following code implements IAsyncPageFilter :

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/razor-pages/filter.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.httpcontext?view=aspnetcore-2.0#Microsoft_AspNetCore_Mvc_RazorPages_PageModel_HttpContext
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.filtercontext?view=aspnetcore-2.0
https://github.com/aspnet/Docs/tree/live/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerselected?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerexecuting?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerexecuted?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter.onpagehandlerselectionasync?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter.onpagehandlerexecutionasync?view=aspnetcore-2.0

using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.Extensions.Logging;
using System.Threading.Tasks;

namespace PageFilter.Filters
{
 public class SampleAsyncPageFilter : IAsyncPageFilter
 {
 private readonly ILogger _logger;

 public SampleAsyncPageFilter(ILogger logger)
 {
 _logger = logger;
 }

 public async Task OnPageHandlerSelectionAsync(
 PageHandlerSelectedContext context)
 {
 _logger.LogDebug("Global OnPageHandlerSelectionAsync called.");
 await Task.CompletedTask;
 }

 public async Task OnPageHandlerExecutionAsync(
 PageHandlerExecutingContext context,
 PageHandlerExecutionDelegate next)
 {
 _logger.LogDebug("Global OnPageHandlerExecutionAsync called.");
 await next.Invoke();
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Filters.Add(new SampleAsyncPageFilter(_logger));
 });
}

In the preceding code, ILogger is not required. It's used in the sample to provide trace information for the
application.

The following code enables the SampleAsyncPageFilter in the Startup class:

The following code shows the complete Startup class:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.ilogger?view=aspnetcore-2.0

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using PageFilter.Filters;

namespace PageFilter
{
 public class Startup
 {
 ILogger _logger;
 public Startup(ILoggerFactory loggerFactory, IConfiguration configuration)
 {
 _logger = loggerFactory.CreateLogger<GlobalFiltersLogger>();
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc(options =>
 {
 options.Filters.Add(new SampleAsyncPageFilter(_logger));
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseMvc();
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AddFolderApplicationModelConvention(
 "/subFolder",
 model => model.Filters.Add(new SampleAsyncPageFilter(_logger)));
 });
}

The following code calls AddFolderApplicationModelConvention to apply the SampleAsyncPageFilter to only pages in
/subFolder:

The following code implements the synchronous IPageFilter :

using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.Extensions.Logging;

namespace PageFilter.Filters
{
 public class SamplePageFilter : IPageFilter
 {
 private readonly ILogger _logger;

 public SamplePageFilter(ILogger logger)
 {
 _logger = logger;
 }

 public void OnPageHandlerSelected(PageHandlerSelectedContext context)
 {
 _logger.LogDebug("Global sync OnPageHandlerSelected called.");
 }

 public void OnPageHandlerExecuting(PageHandlerExecutingContext context)
 {
 _logger.LogDebug("Global sync PageHandlerExecutingContext called.");
 }

 public void OnPageHandlerExecuted(PageHandlerExecutedContext context)
 {
 _logger.LogDebug("Global sync OnPageHandlerExecuted called.");
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Filters.Add(new SamplePageFilter(_logger));
 });
}

Implement Razor Page filters by overriding filter methods

The following code enables the SamplePageFilter :

The following code overrides the synchronous Razor Page filters:

using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.Extensions.Logging;

namespace PageFilter.Pages
{
 public class IndexModel : PageModel
 {
 private readonly ILogger _logger;

 public IndexModel(ILogger<IndexModel> logger)
 {
 _logger = logger;
 }
 public string Message { get; set; }

 public void OnGet()
 {
 _logger.LogDebug("IndexModel/OnGet");
 }

 public override void OnPageHandlerSelected(
 PageHandlerSelectedContext context)
 {
 _logger.LogDebug("IndexModel/OnPageHandlerSelected");
 }

 public override void OnPageHandlerExecuting(
 PageHandlerExecutingContext context)
 {
 Message = "Message set in handler executing";
 _logger.LogDebug("IndexModel/OnPageHandlerExecuting");
 }

 public override void OnPageHandlerExecuted(
 PageHandlerExecutedContext context)
 {
 _logger.LogDebug("IndexModel/OnPageHandlerExecuted");
 }
 }
}

Implement a filter attribute

The built-in attribute-based filter OnResultExecutionAsync filter can be subclassed. The following filter adds a
header to the response:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresultfilter.onresultexecutionasync?view=aspnetcore-2.0#Microsoft_AspNetCore_Mvc_Filters_IAsyncResultFilter_OnResultExecutionAsync_Microsoft_AspNetCore_Mvc_Filters_ResultExecutingContext_Microsoft_AspNetCore_Mvc_Filters_ResultExecutionDelegate_

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

namespace PageFilter.Filters
{
 public class AddHeaderAttribute : ResultFilterAttribute
 {
 private readonly string _name;
 private readonly string _value;

 public AddHeaderAttribute (string name, string value)
 {
 _name = name;
 _value = value;
 }

 public override void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(_name, new string[] { _value });
 }
 }
}

[AddHeader("Author", "Rick")]
public class ContactModel : PageModel
{
 private readonly ILogger _logger;

 public ContactModel(ILogger<ContactModel> logger)
 {
 _logger = logger;
 }
 public string Message { get; set; }

 public async Task OnGetAsync()
 {
 Message = "Your contact page.";
 _logger.LogDebug("Contact/OnGet");
 await Task.CompletedTask;
 }
}

Authorize filter attribute

The following code applies the AddHeader attribute:

See Overriding the default order for instructions on overriding the order.

See Cancellation and short circuiting for instructions to short-circuit the filter pipeline from a filter.

The Authorize attribute can be applied to a PageModel :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute?view=aspnetcore-2.0

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace PageFilter.Pages
{
 [Authorize]
 public class ModelWithAuthFilterModel : PageModel
 {
 public IActionResult OnGet() => Page();
 }
}

Create reusable UI using the Razor Class Library
project in ASP.NET Core.
6/10/2018 • 5 minutes to read • Edit Online

Create a class library containing Razor UI

Referencing Razor Class Library content

Walkthrough: Create a Razor Class Library project and use from a
Razor Pages project

Test the download appTest the download app

By Rick Anderson

Razor views, pages, controllers, page models, View components, and data models can be built into a Razor Class
Library (RCL). The RCL can be packaged and reused. Applications can include the RCL and override the views and
pages it contains. When a view, partial view, or Razor Page is found in both the web app and the RCL, the Razor
markup (.cshtml file) in the web app takes precedence.

This feature requires .NET Core 2.1 SDK or later

View or download sample code (how to download)

Visual Studio
.NET Core CLI

From the Visual Studio File menu, select New > Project.
Select ASP.NET Core Web Application.
Name the library (for example, "RazorClassLib") > OK. To avoid a file name collision with the generated view
library, ensure the library name doesn't end in .Views .
Verify ASP.NET Core 2.1 or later is selected.
Select Razor Class Library > OK.

Add Razor files to the RCL.

We recommend RCL content go in the Areas folder.

The RCL can be referenced by:

NuGet package. See Creating NuGet packages and dotnet add package and Create and publish a NuGet
package.
{ProjectName}.csproj. See dotnet-add reference.

You can download the complete project and test it rather than creating it. The sample download contains
additional code and links that make the project easy to test. You can leave feedback in this GitHub issue with your
comments on download samples versus step-by-step instructions.

If you haven't downloaded the completed app and would rather create the walkthrough project, skip to the next
section.

Visual Studio

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/razor-pages/ui-class.md
https://twitter.com/RickAndMSFT
https://www.microsoft.com/net/download/all
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/razor-pages/ui-class/samples
https://docs.microsoft.com/nuget/create-packages/creating-a-package
https://docs.microsoft.com/dotnet/core/tools/dotnet-add-package
https://docs.microsoft.com/nuget/quickstart/create-and-publish-a-package-using-visual-studio
https://docs.microsoft.com/dotnet/core/tools/dotnet-add-reference
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/razor-pages/ui-class/samples
https://github.com/aspnet/Docs/issues/6098

Create a Razor Class Library

Add Razor files and folders to the project.Add Razor files and folders to the project.

<h3> WebApp1 _Message.cshtml partial view.</h3>

<p>RazorUIClassLib\Areas\MyFeature\Pages\Shared_Message.cshtml</p>

Use the Razor UI library from a Razor Pages projectUse the Razor UI library from a Razor Pages project

.NET Core CLI

Open the .sln file in Visual Studio. Run the app.

Follow the instructions in Test WebApp1

In this section, a Razor Class Library (RCL) is created. Razor files are added to the RCL.

Visual Studio
.NET Core CLI

Create the RCL project:

From the Visual Studio File menu, select New > Project.
Select ASP.NET Core Web Application.
Name the app RazorUIClassLib.
Verify ASP.NET Core 2.1 or later is selected.
Select Razor Class Library > OK.

Create the Razor Pages web app:

From Solution Explorer, right-click the solution > Add > New Project.
Select ASP.NET Core Web Application.
Name the app WebApp1.
Verify ASP.NET Core 2.1 or later is selected.
Select Web Application > OK.

Add a Razor partial view file named RazorUIClassLib/Areas/MyFeature/Pages/Shared/_Message.cshtml.
Replace the markup in RazorUIClassLib/Areas/MyFeature/Pages/Shared/_Message.cshtml with the following
code:

Copy the _ViewStart.cshtml file from the WebApp1 project to
RazorUIClassLib/Areas/MyFeature/Pages/_ViewStart.cshtml.

The viewstart file is required to use the layout of the Razor Pages project.

Visual Studio
.NET Core CLI

From Solution Explorer, right-click on WebApp1 and select Set as StartUp Project.
From Solution Explorer, right-click on WebApp1 and select Build Dependencies > Project
Dependencies.
Check RazorUIClassLib as a dependency of WebApp1.
From Solution Explorer, right-click on WebApp1 and select Add > Reference.
In the Reference Manager dialog, check RazorUIClassLib > OK.

Run the app.

Test WebApp1Test WebApp1

Override views, partial views, and pages

Verify the Razor UI class library is being used.

Browse to /MyFeature/Page1 .

When a view, partial view, or Razor Page is found in both the web app and the Razor Class Library, the Razor
markup (.cshtml file) in the web app takes precedence. For example, add
WebApp1/Areas/MyFeature/Pages/Page1.cshtml to WebApp1, and Page1 in the WebApp1 will take precedence
over Page1in the Razor Class Library.

In the sample download, rename WebApp1/Areas/MyFeature2 to WebApp1/Areas/MyFeature to test
precedence.

Copy the RazorUIClassLib/Areas/MyFeature/Pages/Shared/_Message.cshtml partial view to
WebApp1/Areas/MyFeature/Pages/Shared/_Message.cshtml. Update the markup to indicate the new location.
Build and run the app to verify the app's version of the partial is being used.

Razor Pages route and app conventions in ASP.NET
Core
6/2/2018 • 15 minutes to read • Edit Online

SCENARIO THE SAMPLE DEMONSTRATES ...

Model conventions

Conventions.Add

Add a route template and header to an app's pages.

Page route action conventions Add a route template to pages in a folder and to a single
page.

Page model action conventions Add a header to pages in a folder, add a header to a single
page, and configure a filter factory to add a header to an
app's pages.

Default page app model provider Replace the default page model provider to change the
conventions for handler names.

SCENARIO THE SAMPLE DEMONSTRATES ...

Model conventions

Conventions.Add

Add a route template and header to an app's pages.

Page route action conventions Add a route template to pages in a folder and to a single
page.

By Luke Latham

Learn how to use page route and app model provider conventions to control page routing, discovery, and
processing in Razor Pages apps. When you need to configure custom page routes for individual pages, configure
routing to pages with the AddPageRoute convention described later in this topic.

View or download sample code (how to download)

IPageRouteModelConvention
IPageApplicationModelConvention

AddFolderRouteModelConvention
AddPageRouteModelConvention
AddPageRoute

AddFolderApplicationModelConvention
AddPageApplicationModelConvention
ConfigureFilter (filter class, lambda expression, or filter
factory)

IPageRouteModelConvention
IPageApplicationModelConvention
IPageHandlerModelConvention

AddFolderRouteModelConvention
AddPageRouteModelConvention
AddPageRoute

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/razor-pages/razor-pages-conventions.md
https://github.com/guardrex
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/razor-pages/razor-pages-conventions/sample/

Page model action conventions Add a header to pages in a folder, add a header to a single
page, and configure a filter factory to add a header to an
app's pages.

Default page app model provider Replace the default page model provider to change the
conventions for handler names.

SCENARIO THE SAMPLE DEMONSTRATES ...

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.Add(...);
 options.Conventions.AddFolderRouteModelConvention("/OtherPages", model => { ... });
 options.Conventions.AddPageRouteModelConvention("/About", model => { ... });
 options.Conventions.AddPageRoute("/Contact", "TheContactPage/{text?}");
 options.Conventions.AddFolderApplicationModelConvention("/OtherPages", model => { ... });
 options.Conventions.AddPageApplicationModelConvention("/About", model => { ... });
 options.Conventions.ConfigureFilter(model => { ... });
 options.Conventions.ConfigureFilter(...);
 });
}

Model conventions

AddFolderApplicationModelConvention
AddPageApplicationModelConvention
ConfigureFilter (filter class, lambda expression, or filter
factory)

Razor Pages conventions are added and configured using the AddRazorPagesOptions extension method to
AddMvc on the service collection in the Startup class. The following convention examples are explained later in
this topic:

Add a delegate for IPageConvention to add model conventions that apply to Razor Pages.

Add a route model convention to all pages

Use Conventions to create and add an IPageRouteModelConvention to the collection of IPageConvention
instances that are applied during page route model construction.

The sample app adds a {globalTemplate?} route template to all of the pages in the app:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention

public class GlobalTemplatePageRouteModelConvention
 : IPageRouteModelConvention
{
 public void Apply(PageRouteModel model)
 {
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = -1,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{globalTemplate?}"),
 }
 });
 }
 }
}

NOTENOTE

options.Conventions.Add(new GlobalTemplatePageRouteModelConvention());

The Order property for the AttributeRouteModel is set to -1 . This ensures that this template is given priority for the
first route data value position when a single route value is provided and also that it would have priority over automatically
generated Razor Pages routes. For example, the sample adds an {aboutTemplate?} route template later in the topic. The
{aboutTemplate?} template is given an Order of 1 . When the About page is requested at /About/RouteDataValue ,

"RouteDataValue" is loaded into RouteData.Values["globalTemplate"] (Order = -1) and not
RouteData.Values["aboutTemplate"] (Order = 1) due to setting the Order property.

Razor Pages options, such as adding Conventions, are added when MVC is added to the service collection in
Startup.ConfigureServices . For an example, see the sample app.

Request the sample's About page at localhost:5000/About/GlobalRouteValue and inspect the result:

Add an app model convention to all pages

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/razor-pages/razor-pages-conventions/sample/

public class GlobalHeaderPageApplicationModelConvention
 : IPageApplicationModelConvention
{
 public void Apply(PageApplicationModel model)
 {
 model.Filters.Add(new AddHeaderAttribute(
 "GlobalHeader", new string[] { "Global Header Value" }));
 }
}

options.Conventions.Add(new GlobalHeaderPageApplicationModelConvention());

public class GlobalPageHandlerModelConvention
: IPageHandlerModelConvention
{
public void Apply(PageHandlerModel model)
{
...
}
}

services.AddMvc()
.AddRazorPagesOptions(options =>
{
options.Conventions.Add(new GlobalPageHandlerModelConvention());
});

Use Conventions to create and add an IPageApplicationModelConvention to the collection of IPageConvention
instances that are applied during page app model construction.

To demonstrate this and other conventions later in the topic, the sample app includes an AddHeaderAttribute class.
The class constructor accepts a name string and a values string array. These values are used in its
OnResultExecuting method to set a response header. The full class is shown in the Page model action conventions

section later in the topic.

The sample app uses the AddHeaderAttribute class to add a header, GlobalHeader , to all of the pages in the app:

Startup.cs:

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Add a handler model convention to all pages

Use Conventions to create and add an IPageHandlerModelConvention to the collection of IPageConvention
instances that are applied during page handler model construction.

Startup.ConfigureServices :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipagehandlermodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention

 Page route action conventions

options.Conventions.AddFolderRouteModelConvention("/OtherPages", model =>
{
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 1,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{otherPagesTemplate?}"),
 }
 });
 }
});

NOTENOTE

The default route model provider that derives from IPageRouteModelProvider invokes conventions which are
designed to provide extensibility points for configuring page routes.

Folder route model convention

Use AddFolderRouteModelConvention to create and add an IPageRouteModelConvention that invokes an action
on the PageRouteModel for all of the pages under the specified folder.

The sample app uses AddFolderRouteModelConvention to add an {otherPagesTemplate?} route template to the pages
in the OtherPages folder :

The Order property for the AttributeRouteModel is set to 1 . This ensures that the template for {globalTemplate?}

(set earlier in the topic) is given priority for the first route data value position when a single route value is provided. If the
Page1 page is requested at /OtherPages/Page1/RouteDataValue , "RouteDataValue" is loaded into
RouteData.Values["globalTemplate"] (Order = -1) and not RouteData.Values["otherPagesTemplate"] (Order = 1

) due to setting the Order property.

Request the sample's Page1 page at localhost:5000/OtherPages/Page1/GlobalRouteValue/OtherPagesRouteValue and
inspect the result:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderroutemodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutemodel

options.Conventions.AddPageRouteModelConvention("/About", model =>
{
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 1,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{aboutTemplate?}"),
 }
 });
 }
});

NOTENOTE

Configure a page route

Page route model convention

Use AddPageRouteModelConvention to create and add an IPageRouteModelConvention that invokes an action
on the PageRouteModel for the page with the specified name.

The sample app uses AddPageRouteModelConvention to add an {aboutTemplate?} route template to the About page:

The Order property for the AttributeRouteModel is set to 1 . This ensures that the template for {globalTemplate?}

(set earlier in the topic) is given priority for the first route data value position when a single route value is provided. If the
About page is requested at /About/RouteDataValue , "RouteDataValue" is loaded into
RouteData.Values["globalTemplate"] (Order = -1) and not RouteData.Values["aboutTemplate"] (Order = 1) due

to setting the Order property.

Request the sample's About page at localhost:5000/About/GlobalRouteValue/AboutRouteValue and inspect the result:

Use AddPageRoute to configure a route to a page at the specified page path. Generated links to the page use your

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addpageroutemodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutemodel
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.addpageroute

options.Conventions.AddPageRoute("/Contact", "TheContactPage/{text?}");

@page "{text?}"
@model ContactModel
@{
 ViewData["Title"] = "Contact";
}

<h1>@ViewData["Title"]</h1>
<h2>@Model.Message</h2>

<address>
 One Microsoft Way

 Redmond, WA 98052-6399

 <abbr title="Phone">P:</abbr>
 425.555.0100
</address>

<address>
 Support: Support@example.com

 Marketing: Marketing@example.com
</address>

<p>@Model.RouteDataTextTemplateValue</p>

specified route. AddPageRoute uses AddPageRouteModelConvention to establish the route.

The sample app creates a route to /TheContactPage for Contact.cshtml:

The Contact page can also be reached at /Contact via its default route.

The sample app's custom route to the Contact page allows for an optional text route segment ({text?}). The
page also includes this optional segment in its @page directive in case the visitor accesses the page at its /Contact

route:

Note that the URL generated for the Contact link in the rendered page reflects the updated route:

Visit the Contact page at either its ordinary route, /Contact , or the custom route, /TheContactPage . If you supply
an additional text route segment, the page shows the HTML-encoded segment that you provide:

 Page model action conventions

public class AddHeaderAttribute : ResultFilterAttribute
{
 private readonly string _name;
 private readonly string[] _values;

 public AddHeaderAttribute(string name, string[] values)
 {
 _name = name;
 _values = values;
 }

 public override void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(_name, _values);
 base.OnResultExecuting(context);
 }
}

The default page model provider that implements IPageApplicationModelProvider invokes conventions which are
designed to provide extensibility points for configuring page models. These conventions are useful when building
and modifying page discovery and processing scenarios.

For the examples in this section, the sample app uses an AddHeaderAttribute class, which is a ResultFilterAttribute,
that applies a response header :

Using conventions, the sample demonstrates how to apply the attribute to all of the pages in a folder and to a
single page.

Folder app model convention

Use AddFolderApplicationModelConvention to create and add an IPageApplicationModelConvention that invokes
an action on PageApplicationModel instances for all pages under the specified folder.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.resultfilterattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderapplicationmodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageapplicationmodel

options.Conventions.AddFolderApplicationModelConvention("/OtherPages", model =>
{
 model.Filters.Add(new AddHeaderAttribute(
 "OtherPagesHeader", new string[] { "OtherPages Header Value" }));
});

options.Conventions.AddPageApplicationModelConvention("/About", model =>
{
 model.Filters.Add(new AddHeaderAttribute(
 "AboutHeader", new string[] { "About Header Value" }));
});

The sample demonstrates the use of AddFolderApplicationModelConvention by adding a header, OtherPagesHeader ,
to the pages inside the OtherPages folder of the app:

Request the sample's Page1 page at localhost:5000/OtherPages/Page1 and inspect the headers to view the result:

Page app model convention

Use AddPageApplicationModelConvention to create and add an IPageApplicationModelConvention that invokes
an action on the PageApplicationModel for the page with the speciifed name.

The sample demonstrates the use of AddPageApplicationModelConvention by adding a header, AboutHeader , to the
About page:

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Configure a filter

ConfigureFilter configures the specified filter to apply. You can implement a filter class, but the sample app shows
how to implement a filter in a lambda expression, which is implemented behind-the-scenes as a factory that
returns a filter :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addpageapplicationmodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageapplicationmodel
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.configurefilter

options.Conventions.ConfigureFilter(model =>
{
 if (model.RelativePath.Contains("OtherPages/Page2"))
 {
 return new AddHeaderAttribute(
 "OtherPagesPage2Header",
 new string[] { "OtherPages/Page2 Header Value" });
 }
 return new EmptyFilter();
});

options.Conventions.ConfigureFilter(new AddHeaderWithFactory());

The page app model is used to check the relative path for segments that lead to the Page2 page in the OtherPages
folder. If the condition passes, a header is added. If not, the EmptyFilter is applied.

EmptyFilter is an Action filter. Since Action filters are ignored by Razor Pages, the EmptyFilter no-ops as
intended if the path doesn't contain OtherPages/Page2 .

Request the sample's Page2 page at localhost:5000/OtherPages/Page2 and inspect the headers to view the result:

Configure a filter factory

ConfigureFilter configures the specified factory to apply filters to all Razor Pages.

The sample app provides an example of using a filter factory by adding a header, FilterFactoryHeader , with two
values to the app's pages:

AddHeaderWithFactory.cs:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.configurefilter?view=aspnetcore-2.0#Microsoft_Extensions_DependencyInjection_PageConventionCollectionExtensions_ConfigureFilter_Microsoft_AspNetCore_Mvc_ApplicationModels_PageConventionCollection_System_Func_Microsoft_AspNetCore_Mvc_ApplicationModels_PageApplicationModel_Microsoft_AspNetCore_Mvc_Filters_IFilterMetadata__

public class AddHeaderWithFactory : IFilterFactory
{
 // Implement IFilterFactory
 public IFilterMetadata CreateInstance(IServiceProvider serviceProvider)
 {
 return new AddHeaderFilter();
 }

 private class AddHeaderFilter : IResultFilter
 {
 public void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(
 "FilterFactoryHeader",
 new string[]
 {
 "Filter Factory Header Value 1",
 "Filter Factory Header Value 2"
 });
 }

 public void OnResultExecuted(ResultExecutedContext context)
 {
 }
 }

 public bool IsReusable
 {
 get
 {
 return false;
 }
 }
}

Replace the default page app model provider

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Razor Pages uses the IPageApplicationModelProvider interface to create a DefaultPageApplicationModelProvider.
You can inherit from the default model provider to provide your own implementation logic for handler discovery
and processing. The default implementation (reference source) establishes conventions for unnamed and named
handler naming, which is described below.

Default unnamed handler methods

Handler methods for HTTP verbs ("unnamed" handler methods) follow a convention: On<HTTP verb>[Async]

(appending Async is optional but recommended for async methods).

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.internal.defaultpageapplicationmodelprovider
https://github.com/aspnet/Mvc/blob/rel/2.0.1/src/Microsoft.AspNetCore.Mvc.RazorPages/Internal/DefaultPageApplicationModelProvider.cs

UNNAMED HANDLER METHOD OPERATION

OnGet / OnGetAsync Initialize the page state.

OnPost / OnPostAsync Handle POST requests.

OnDelete / OnDeleteAsync Handle DELETE requests†.

OnPut / OnPutAsync Handle PUT requests†.

OnPatch / OnPatchAsync Handle PATCH requests†.

EXAMPLE NAMED HANDLER METHOD EXAMPLE OPERATION

OnGetMessage / OnGetMessageAsync Obtain a message.

OnPostMessage / OnPostMessageAsync POST a message.

OnDeleteMessage / OnDeleteMessageAsync DELETE a message†.

OnPutMessage / OnPutMessageAsync PUT a message†.

OnPatchMessage / OnPatchMessageAsync PATCH a message†.

HANDLER METHOD OPERATION

Get Initialize the page state.

Post / PostAsync Handle POST requests.

Delete / DeleteAsync Handle DELETE requests†.

Put / PutAsync Handle PUT requests†.

Patch / PatchAsync Handle PATCH requests†.

†Used for making API calls to the page.

Default named handler methods

Handler methods provided by the developer ("named" handler methods) follow a similar convention. The handler
name appears after the HTTP verb or between the HTTP verb and Async : On<HTTP verb><handler name>[Async]

(appending Async is optional but recommended for async methods). For example, methods that process
messages might take the naming shown in the table below.

†Used for making API calls to the page.

Customize handler method names

Assume that you prefer to change the way unnamed and named handler methods are named. An alternative
naming scheme is to avoid starting the method names with "On" and use the first word segment to determine the
HTTP verb. You can make other changes, such as converting the verbs for DELETE, PUT, and PATCH to POST.
Such a scheme provides the method names shown in the following table.

GetMessage Obtain a message.

PostMessage / PostMessageAsync POST a message.

DeleteMessage / DeleteMessageAsync POST a message to delete.

PutMessage / PutMessageAsync POST a message to put.

PatchMessage / PatchMessageAsync POST a message to patch.

HANDLER METHOD OPERATION

public class CustomPageApplicationModelProvider :
 DefaultPageApplicationModelProvider
{
 public CustomPageApplicationModelProvider(IModelMetadataProvider modelMetadataProvider,
IOptions<MvcOptions> options)
 : base (modelMetadataProvider, options)
 {
 }

 protected override PageHandlerModel CreateHandlerModel(MethodInfo method)
 {
 if (method == null)
 {
 throw new ArgumentNullException(nameof(method));
 }

 if (!IsHandler(method))
 {
 return null;
 }

 if (!TryParseHandlerMethod(
 method.Name, out var httpMethod, out var handlerName))
 {
 return null;
 }

 var handlerModel = new PageHandlerModel(
 method,
 method.GetCustomAttributes(inherit: true))
 {
 Name = method.Name,
 HandlerName = handlerName,
 HttpMethod = httpMethod,
 };

 var methodParameters = handlerModel.MethodInfo.GetParameters();

 for (var i = 0; i < methodParameters.Length; i++)
 {
 var parameter = methodParameters[i];
 var parameterModel = CreateParameterModel(parameter);
 parameterModel.Handler = handlerModel;

 handlerModel.Parameters.Add(parameterModel);

†Used for making API calls to the page.

To establish this scheme, inherit from the DefaultPageApplicationModelProvider class and override the
CreateHandlerModel method to supply custom logic for resolving PageModel handler names. The sample app
shows you how this is done in its CustomPageApplicationModelProvider class:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.internal.defaultpageapplicationmodelprovider.createhandlermodel
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel

 handlerModel.Parameters.Add(parameterModel);
 }

 return handlerModel;
 }

 private static bool TryParseHandlerMethod(
 string methodName, out string httpMethod, out string handler)
 {
 httpMethod = null;
 handler = null;

 // Parse the method name according to our conventions to
 // determine the required HTTP verb and optional
 // handler name.
 //
 // Valid names look like:
 // - Get
 // - Post
 // - PostAsync
 // - GetMessage
 // - PostMessage
 // - DeleteMessage
 // - DeleteMessageAsync

 var length = methodName.Length;
 if (methodName.EndsWith("Async", StringComparison.Ordinal))
 {
 length -= "Async".Length;
 }

 if (length == 0)
 {
 // The method is named "Async". Exit processing.
 return false;
 }

 // The HTTP verb is at the start of the method name. Use
 // casing to determine where it ends.
 var handlerNameStart = 1;
 for (; handlerNameStart < length; handlerNameStart++)
 {
 if (char.IsUpper(methodName[handlerNameStart]))
 {
 break;
 }
 }

 httpMethod = methodName.Substring(0, handlerNameStart);

 // The handler name follows the HTTP verb and is optional.
 // It includes everything up to the end excluding the
 // "Async" suffix, if present.
 handler = handlerNameStart == length ? null : methodName.Substring(0, length);

 if (string.Equals(httpMethod, "GET", StringComparison.OrdinalIgnoreCase) ||
 string.Equals(httpMethod, "POST", StringComparison.OrdinalIgnoreCase))
 {
 // Do nothing. The httpMethod is correct for GET and POST.
 return true;
 }
 if (string.Equals(httpMethod, "DELETE", StringComparison.OrdinalIgnoreCase) ||
 string.Equals(httpMethod, "PUT", StringComparison.OrdinalIgnoreCase) ||
 string.Equals(httpMethod, "PATCH", StringComparison.OrdinalIgnoreCase))
 {
 // Convert HTTP verbs for DELETE, PUT, and PATCH to POST
 // For example: DeleteMessage, PutMessage, PatchMessage -> POST
 httpMethod = "POST";
 return true;
 }

 }
 else
 {
 return false;
 }
 }
}

services.AddSingleton<IPageApplicationModelProvider,
 CustomPageApplicationModelProvider>();

Highlights of the class include:

The class inherits from DefaultPageApplicationModelProvider .
The TryParseHandlerMethod processes a handler to determine the HTTP verb (httpMethod) and named handler
name (handlerName) when creating the PageHandlerModel .

An Async postfix is ignored, if present.
Casing is used to parse the HTTP verb from the method name.
When the method name (without Async) is equal to the HTTP verb name, there's no named handler.
The handlerName is set to null , and the method name is Get , Post , Delete , Put , or Patch .
When the method name (without Async) is longer than the HTTP verb name, there's a named handler.
The handlerName is set to <method name (less 'Async', if present)> . For example, both "GetMessage"
and "GetMessageAsync" yield a handler name of "GetMessage".
DELETE, PUT, and PATCH HTTP verbs are converted to POST.

Register the CustomPageApplicationModelProvider in the Startup class:

The page model in Index.cshtml.cs shows how the ordinary handler method naming conventions are changed for
pages in the app. The ordinary "On" prefix naming used with Razor Pages is removed. The method that initializes
the page state is now named Get . You can see this convention used throughout the app if you open any page
model for any of the pages.

Each of the other methods start with the HTTP verb that describes its processing. The two methods that start with
Delete would normally be treated as DELETE HTTP verbs, but the logic in TryParseHandlerMethod explicitly sets

the verb to POST for both handlers.

Note that Async is optional between DeleteAllMessages and DeleteMessageAsync . They're both asynchronous
methods, but you can choose to use the Async postfix or not; we recommend that you do. DeleteAllMessages is
used here for demonstration purposes, but we recommend that you name such a method DeleteAllMessagesAsync .
It doesn't affect the processing of the sample's implementation, but using the Async postfix calls out the fact that
it's an asynchronous method.

public async Task Get()
{
 Messages = await _db.Messages.AsNoTracking().ToListAsync();
}

public async Task<IActionResult> PostMessageAsync()
{
 _db.Messages.Add(Message);
 await _db.SaveChangesAsync();

 Result = $"{nameof(PostMessageAsync)} handler: Message '{Message.Text}' added.";

 return RedirectToPage();
}

public async Task<IActionResult> DeleteAllMessages()
{
 foreach (Message message in _db.Messages)
 {
 _db.Messages.Remove(message);
 }
 await _db.SaveChangesAsync();

 Result = $"{nameof(DeleteAllMessages)} handler: All messages deleted.";

 return RedirectToPage();
}

public async Task<IActionResult> DeleteMessageAsync(int id)
{
 var message = await _db.Messages.FindAsync(id);

 if (message != null)
 {
 _db.Messages.Remove(message);
 await _db.SaveChangesAsync();
 }

 Result = $"{nameof(DeleteMessageAsync)} handler: Message with Id: {id} deleted.";

 return RedirectToPage();
}

Note the handler names provided in Index.cshtml match the DeleteAllMessages and DeleteMessageAsync handler
methods:

<div class="row">
 <div class="col-md-3">
 <form method="post">
 <h2>Clear all messages</h2>
 <hr>
 <div class="form-group">
 <button type="submit" asp-page-handler="DeleteAllMessages"
 class="btn btn-danger">Clear All</button>
 </div>
 </form>
 </div>
</div>

<div class="row">
 <div class="col-md-12">
 <form method="post">
 <h2>Messages</h2>
 <hr>

 @foreach (var message in Model.Messages)
 {

 @message.Text
 <button type="submit" asp-page-handler="DeleteMessage"
 class="btn btn-danger"
 asp-route-id="@message.Id">Delete</button>

 }

 </form>
 </div>

MVC Filters and the Page filter (IPageFilter)

Additional resources

Async in the handler method name DeleteMessageAsync is factored out by the TryParseHandlerMethod for handler
matching of POST request to method. The asp-page-handler name of DeleteMessage is matched to the handler
method DeleteMessageAsync .

MVC Action filters are ignored by Razor Pages, since Razor Pages use handler methods. Other types of MVC
filters are available for you to use: Authorization, Exception, Resource, and Result. For more information, see the
Filters topic.

The Page filter (IPageFilter) is a filter that applies to Razor Pages. For more information, see Filter methods for
Razor Pages.

Razor Pages authorization conventions

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter

ASP.NET Core Razor SDK
6/14/2018 • 3 minutes to read • Edit Online

Prerequisites

Using the Razor SDK

<Project SDK="Microsoft.NET.Sdk.Razor">
 ...
</Project>

<Project Sdk="Microsoft.NET.Sdk.Razor">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.1.0" />
 </ItemGroup>

</Project>

PropertiesProperties

By Rick Anderson

The .NET Core 2.1 SDK or later includes the Microsoft.NET.Sdk.Razor MSBuild SDK (Razor SDK). The Razor SDK:

Standardizes the experience around building, packaging, and publishing projects containing Razor files for
ASP.NET Core MVC-based projects.
Includes a set of predefined targets, properties, and items that allow customizing the compilation of Razor files.

.NET Core 2.1 SDK or later

Most web apps don't need to expressly reference the Razor SDK.

To use the Razor SDK to build class libraries containing Razor views or Razor Pages:

Use Microsoft.NET.Sdk.Razor instead of Microsoft.NET.Sdk :

Typically a package reference to Microsoft.AspNetCore.Mvc is required to bring in additional dependencies
required to build and compile Razor Pages and Razor views. At minimum, your project needs to add
package references to:

Microsoft.AspNetCore.Razor.Design

Microsoft.AspNetCore.Mvc.Razor.Extensions

The preceding packages are included in Microsoft.AspNetCore.Mvc . The following markup shows a basic .csproj file
that uses the Razor SDK to build Razor files for an ASP.NET Core Razor Pages app:

The following properties control the Razor's SDK behavior as part of a project build:

RazorCompileOnBuild : When true , compiles and emits the Razor assembly as part of building the project.

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/razor-pages/sdk.md
https://twitter.com/RickAndMSFT
https://www.microsoft.com/net/download/all
https://www.microsoft.com/net/download/all

ITEMS DESCRIPTION

RazorGenerate Item elements (.cshtml files) that are inputs to code
generation targets.

RazorCompile Item elements (.cs files) that are inputs to Razor compilation
targets. Use this ItemGroup to specify additional files to be
compiled into the Razor assembly.

RazorTargetAssemblyAttribute Item elements used to code generate attributes for the Razor
assembly. For example:
<RazorAssemblyAttribute
Include="System.Reflection.AssemblyMetadataAttribute"

_Parameter1="BuildSource"
_Parameter2="https://docs.asp.net/">

RazorEmbeddedResource Item elements added as embedded resources to the
generated Razor assembly

PROPERTY DESCRIPTION

RazorTargetName File name (without extension) of the assembly produced by
Razor.

RazorOutputPath The Razor output directory.

RazorCompileToolset Used to determine the toolset used to build the Razor
assembly. Valid values are Implicit , , and
PrecompilationTool .

EnableDefaultContentItems When true , includes certain file types, such as .cshtml files,
as content in the project. When referenced via
Microsoft.NET.Sdk.Web, also includes all files under wwwroot,
and config files.

EnableDefaultRazorGenerateItems When true , includes .cshtml files from Content items in
RazorGenerate items.

GenerateRazorTargetAssemblyInfo When true , generates a .cs file containing attributes
specified by RazorAssemblyAttribute and includes it in the
compile output.

EnableDefaultRazorTargetAssemblyInfoAttributes When true , adds a default set of assembly attributes to
RazorAssemblyAttribute .

CopyRazorGenerateFilesToPublishDirectory When true , copies RazorGenerate items (.cshtml) files to the
publish directory. Typically Razor files are not needed for a
published application if they participate in compilation at
build-time or publish-time. Defaults to false .

Defaults to true .
RazorCompileOnPublish : When true , compiles and emits the Razor assembly as part of publishing the project.

Defaults to true .

The following properties and items are used to configure inputs and output to the Razor SDK:

CopyRefAssembliesToPublishDirectory When true , copy reference assembly items to the publish
directory. Typically reference assemblies are not needed for a
published application if Razor compilation occurs at build-time
or publish-time. Set to true , if your published application
requires runtime compilation, for example, modifies cshtml
files at runtime, or uses embedded views. Defaults to false .

IncludeRazorContentInPack When true , all Razor content items (.cshtml files) will be
marked for inclusion in the generated NuGet package.
Defaults to false .

EmbedRazorGenerateSources When true , adds RazorGenerate (.cshtml) items as
embedded files to the generated Razor assembly. Defaults to
false .

UseRazorBuildServer When true , uses a persistent build server process to offload
code generation work. Defaults to the value of
UseSharedCompilation .

PROPERTY DESCRIPTION

TargetsTargets

Runtime compilation of Razor viewsRuntime compilation of Razor views

The Razor SDK defines two primary targets:

RazorGenerate - Code generates .cs files from RazorGenerate item elements. Use RazorGenerateDependsOn

property to specify additional targets that can run before or after this target.
RazorCompile - Compiles generated .cs files in to a Razor assembly. Use RazorCompileDependsOn to specify

additional targets that can run before or after this target.

By default, the Razor SDK doesn't publish reference assemblies that are required to perform runtime
compilation. This results in compilation failures when the application model relies on runtime compilation—
for example, the app uses embedded views or changes views after the app is published. Set
CopyRefAssembliesToPublishDirectory to true to continue publishing reference assemblies.

For web applications, ensure your app is targeting Microsoft.NET.Sdk.Web SDK.

Overview of ASP.NET Core MVC
5/30/2018 • 9 minutes to read • Edit Online

What is the MVC pattern?

NOTENOTE

Model ResponsibilitiesModel Responsibilities

By Steve Smith

ASP.NET Core MVC is a rich framework for building web apps and APIs using the Model-View-Controller design
pattern.

The Model-View-Controller (MVC) architectural pattern separates an application into three main groups of
components: Models, Views, and Controllers. This pattern helps to achieve separation of concerns. Using this
pattern, user requests are routed to a Controller which is responsible for working with the Model to perform user
actions and/or retrieve results of queries. The Controller chooses the View to display to the user, and provides it
with any Model data it requires.

The following diagram shows the three main components and which ones reference the others:

This delineation of responsibilities helps you scale the application in terms of complexity because it's easier to
code, debug, and test something (model, view, or controller) that has a single job (and follows the Single
Responsibility Principle). It's more difficult to update, test, and debug code that has dependencies spread across
two or more of these three areas. For example, user interface logic tends to change more frequently than business
logic. If presentation code and business logic are combined in a single object, an object containing business logic
must be modified every time the user interface is changed. This often introduces errors and requires the retesting
of business logic after every minimal user interface change.

Both the view and the controller depend on the model. However, the model depends on neither the view nor the controller.
This is one of the key benefits of the separation. This separation allows the model to be built and tested independent of the
visual presentation.

The Model in an MVC application represents the state of the application and any business logic or operations that
should be performed by it. Business logic should be encapsulated in the model, along with any implementation
logic for persisting the state of the application. Strongly-typed views typically use ViewModel types designed to

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/overview.md
https://ardalis.com/
http://deviq.com/separation-of-concerns/
http://deviq.com/single-responsibility-principle/

NOTENOTE

View ResponsibilitiesView Responsibilities

Controller ResponsibilitiesController Responsibilities

NOTENOTE

TIPTIP

What is ASP.NET Core MVC

Features

contain the data to display on that view. The controller creates and populates these ViewModel instances from the
model.

There are many ways to organize the model in an app that uses the MVC architectural pattern. Learn more about some
different kinds of model types.

Views are responsible for presenting content through the user interface. They use the Razor view engine to
embed .NET code in HTML markup. There should be minimal logic within views, and any logic in them should
relate to presenting content. If you find the need to perform a great deal of logic in view files in order to display
data from a complex model, consider using a View Component, ViewModel, or view template to simplify the
view.

Controllers are the components that handle user interaction, work with the model, and ultimately select a view to
render. In an MVC application, the view only displays information; the controller handles and responds to user
input and interaction. In the MVC pattern, the controller is the initial entry point, and is responsible for selecting
which model types to work with and which view to render (hence its name - it controls how the app responds to a
given request).

Controllers shouldn't be overly complicated by too many responsibilities. To keep controller logic from becoming overly
complex, use the Single Responsibility Principle to push business logic out of the controller and into the domain model.

If you find that your controller actions frequently perform the same kinds of actions, you can follow the Don't Repeat
Yourself principle by moving these common actions into filters.

The ASP.NET Core MVC framework is a lightweight, open source, highly testable presentation framework
optimized for use with ASP.NET Core.

ASP.NET Core MVC provides a patterns-based way to build dynamic websites that enables a clean separation of
concerns. It gives you full control over markup, supports TDD-friendly development and uses the latest web
standards.

ASP.NET Core MVC includes the following:

Routing
Model binding
Model validation
Dependency injection
Filters
Areas
Web APIs

http://deviq.com/kinds-of-models/
http://deviq.com/single-responsibility-principle/
http://deviq.com/don-t-repeat-yourself/

RoutingRouting

routes.MapRoute(name: "Default", template: "{controller=Home}/{action=Index}/{id?}");

[Route("api/[controller]")]
public class ProductsController : Controller
{
 [HttpGet("{id}")]
 public IActionResult GetProduct(int id)
 {
 ...
 }
}

Model bindingModel binding

public async Task<IActionResult> Login(LoginViewModel model, string returnUrl = null) { ... }

Model validationModel validation

Testability
Razor view engine
Strongly typed views
Tag Helpers
View Components

ASP.NET Core MVC is built on top of ASP.NET Core's routing, a powerful URL-mapping component that lets you
build applications that have comprehensible and searchable URLs. This enables you to define your application's
URL naming patterns that work well for search engine optimization (SEO) and for link generation, without regard
for how the files on your web server are organized. You can define your routes using a convenient route template
syntax that supports route value constraints, defaults and optional values.

Convention-based routing enables you to globally define the URL formats that your application accepts and how
each of those formats maps to a specific action method on given controller. When an incoming request is
received, the routing engine parses the URL and matches it to one of the defined URL formats, and then calls the
associated controller's action method.

Attribute routing enables you to specify routing information by decorating your controllers and actions with
attributes that define your application's routes. This means that your route definitions are placed next to the
controller and action with which they're associated.

ASP.NET Core MVC model binding converts client request data (form values, route data, query string
parameters, HTTP headers) into objects that the controller can handle. As a result, your controller logic doesn't
have to do the work of figuring out the incoming request data; it simply has the data as parameters to its action
methods.

ASP.NET Core MVC supports validation by decorating your model object with data annotation validation
attributes. The validation attributes are checked on the client side before values are posted to the server, as well as
on the server before the controller action is called.

using System.ComponentModel.DataAnnotations;
public class LoginViewModel
{
 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
}

public async Task<IActionResult> Login(LoginViewModel model, string returnUrl = null)
{
 if (ModelState.IsValid)
 {
 // work with the model
 }
 // At this point, something failed, redisplay form
 return View(model);
}

Dependency injectionDependency injection

@inject SomeService ServiceName
<!DOCTYPE html>
<html lang="en">
<head>
 <title>@ServiceName.GetTitle</title>
</head>
<body>
 <h1>@ServiceName.GetTitle</h1>
</body>
</html>

FiltersFilters

[Authorize]
 public class AccountController : Controller
 {

A controller action:

The framework handles validating request data both on the client and on the server. Validation logic specified on
model types is added to the rendered views as unobtrusive annotations and is enforced in the browser with
jQuery Validation.

ASP.NET Core has built-in support for dependency injection (DI). In ASP.NET Core MVC, controllers can request
needed services through their constructors, allowing them to follow the Explicit Dependencies Principle.

Your app can also use dependency injection in view files, using the @inject directive:

Filters help developers encapsulate cross-cutting concerns, like exception handling or authorization. Filters enable
running custom pre- and post-processing logic for action methods, and can be configured to run at certain points
within the execution pipeline for a given request. Filters can be applied to controllers or actions as attributes (or
can be run globally). Several filters (such as Authorize) are included in the framework.

https://jqueryvalidation.org/
http://deviq.com/explicit-dependencies-principle/

AreasAreas

Web APIsWeb APIs

TestabilityTestability

Razor view engineRazor view engine

 @for (int i = 0; i < 5; i++) {
 List item @i
 }

Strongly typed viewsStrongly typed views

@model IEnumerable<Product>

 @foreach (Product p in Model)
 {
 @p.Name
 }

Tag HelpersTag Helpers

Areas provide a way to partition a large ASP.NET Core MVC Web app into smaller functional groupings. An area
is an MVC structure inside an application. In an MVC project, logical components like Model, Controller, and
View are kept in different folders, and MVC uses naming conventions to create the relationship between these
components. For a large app, it may be advantageous to partition the app into separate high level areas of
functionality. For instance, an e-commerce app with multiple business units, such as checkout, billing, and search
etc. Each of these units have their own logical component views, controllers, and models.

In addition to being a great platform for building web sites, ASP.NET Core MVC has great support for building
Web APIs. You can build services that reach a broad range of clients including browsers and mobile devices.

The framework includes support for HTTP content-negotiation with built-in support to format data as JSON or
XML. Write custom formatters to add support for your own formats.

Use link generation to enable support for hypermedia. Easily enable support for cross-origin resource sharing
(CORS) so that your Web APIs can be shared across multiple Web applications.

The framework's use of interfaces and dependency injection make it well-suited to unit testing, and the
framework includes features (like a TestHost and InMemory provider for Entity Framework) that make
integration tests quick and easy as well. Learn more about how to test controller logic.

ASP.NET Core MVC views use the Razor view engine to render views. Razor is a compact, expressive and fluid
template markup language for defining views using embedded C# code. Razor is used to dynamically generate
web content on the server. You can cleanly mix server code with client side content and code.

Using the Razor view engine you can define layouts, partial views and replaceable sections.

Razor views in MVC can be strongly typed based on your model. Controllers can pass a strongly typed model to
views enabling your views to have type checking and IntelliSense support.

For example, the following view renders a model of type IEnumerable<Product> :

Tag Helpers enable server side code to participate in creating and rendering HTML elements in Razor files. You
can use tag helpers to define custom tags (for example, <environment>) or to modify the behavior of existing tags
(for example, <label>). Tag Helpers bind to specific elements based on the element name and its attributes. They
provide the benefits of server-side rendering while still preserving an HTML editing experience.

http://www.w3.org/TR/cors/

<p>
 Thank you for confirming your email.
 Please <a asp-controller="Account" asp-action="Login">Click here to Log in.
</p>

<environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
</environment>
<environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.1.4.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery">
 </script>
</environment>

View ComponentsView Components

There are many built-in Tag Helpers for common tasks - such as creating forms, links, loading assets and more -
and even more available in public GitHub repositories and as NuGet packages. Tag Helpers are authored in C#,
and they target HTML elements based on element name, attribute name, or parent tag. For example, the built-in
LinkTagHelper can be used to create a link to the Login action of the AccountsController :

The EnvironmentTagHelper can be used to include different scripts in your views (for example, raw or minified)
based on the runtime environment, such as Development, Staging, or Production:

Tag Helpers provide an HTML-friendly development experience and a rich IntelliSense environment for creating
HTML and Razor markup. Most of the built-in Tag Helpers target existing HTML elements and provide server-
side attributes for the element.

View Components allow you to package rendering logic and reuse it throughout the application. They're similar
to partial views, but with associated logic.

Model Binding in ASP.NET Core
3/15/2018 • 7 minutes to read • Edit Online

Introduction to model binding

How model binding works

public IActionResult Edit(int? id)

By Rachel Appel

Model binding in ASP.NET Core MVC maps data from HTTP requests to action method parameters. The
parameters may be simple types such as strings, integers, or floats, or they may be complex types. This is
a great feature of MVC because mapping incoming data to a counterpart is an often repeated scenario,
regardless of size or complexity of the data. MVC solves this problem by abstracting binding away so
developers don't have to keep rewriting a slightly different version of that same code in every app.
Writing your own text to type converter code is tedious, and error prone.

When MVC receives an HTTP request, it routes it to a specific action method of a controller. It determines
which action method to run based on what is in the route data, then it binds values from the HTTP
request to that action method's parameters. For example, consider the following URL:

http://contoso.com/movies/edit/2

Since the route template looks like this, {controller=Home}/{action=Index}/{id?} , movies/edit/2 routes to
the Movies controller, and its Edit action method. It also accepts an optional parameter called id . The
code for the action method should look something like this:

Note: The strings in the URL route are not case sensitive.

MVC will try to bind request data to the action parameters by name. MVC will look for values for each
parameter using the parameter name and the names of its public settable properties. In the above
example, the only action parameter is named id , which MVC binds to the value with the same name in
the route values. In addition to route values MVC will bind data from various parts of the request and it
does so in a set order. Below is a list of the data sources in the order that model binding looks through
them:

1. Form values : These are form values that go in the HTTP request using the POST method.
(including jQuery POST requests).

2. Route values : The set of route values provided by Routing

3. Query strings : The query string part of the URI.

Note: Form values, route data, and query strings are all stored as name-value pairs.

Since model binding asked for a key named id and there's nothing named id in the form values, it
moved on to the route values looking for that key. In our example, it's a match. Binding happens, and the
value is converted to the integer 2. The same request using Edit(string id) would convert to the string "2".

So far the example uses simple types. In MVC simple types are any .NET primitive type or type with a
string type converter. If the action method's parameter were a class such as the Movie type, which

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/models/model-binding.md
https://github.com/rachelappel

 Customize model binding behavior with attributes

contains both simple and complex types as properties, MVC's model binding will still handle it nicely. It
uses reflection and recursion to traverse the properties of complex types looking for matches. Model
binding looks for the pattern parameter_name.property_name to bind values to properties. If it doesn't
find matching values of this form, it will attempt to bind using just the property name. For those types
such as Collection types, model binding looks for matches to parameter_name[index] or just [index].
Model binding treats Dictionary types similarly, asking for parameter_name[key] or just [key], as long as
the keys are simple types. Keys that are supported match the field names HTML and tag helpers
generated for the same model type. This enables round-tripping values so that the form fields remain
filled with the user's input for their convenience, for example, when bound data from a create or edit
didn't pass validation.

In order for binding to happen the class must have a public default constructor and member to be bound
must be public writable properties. When model binding happens the class will only be instantiated using
the public default constructor, then the properties can be set.

When a parameter is bound, model binding stops looking for values with that name and it moves on to
bind the next parameter. Otherwise, the default model binding behavior sets parameters to their default
values depending on their type:

T[] : With the exception of arrays of type byte[] , binding sets parameters of type T[] to
Array.Empty<T>() . Arrays of type byte[] are set to null .

Reference Types: Binding creates an instance of a class with the default constructor without setting
properties. However, model binding sets string parameters to null .

Nullable Types: Nullable types are set to null . In the above example, model binding sets id to
null since it's of type int? .

Value Types: Non-nullable value types of type T are set to default(T) . For example, model
binding will set a parameter int id to 0. Consider using model validation or nullable types rather
than relying on default values.

If binding fails, MVC doesn't throw an error. Every action which accepts user input should check the
ModelState.IsValid property.

Note: Each entry in the controller's ModelState property is a ModelStateEntry containing an Errors

property. It's rarely necessary to query this collection yourself. Use ModelState.IsValid instead.

Additionally, there are some special data types that MVC must consider when performing model binding:

IFormFile , IEnumerable<IFormFile> : One or more uploaded files that are part of the HTTP request.

CancellationToken : Used to cancel activity in asynchronous controllers.

These types can be bound to action parameters or to properties on a class type.

Once model binding is complete, Validation occurs. Default model binding works great for the vast
majority of development scenarios. It's also extensible so if you have unique needs you can customize the
built-in behavior.

MVC contains several attributes that you can use to direct its default model binding behavior to a
different source. For example, you can specify whether binding is required for a property, or if it should
never happen at all by using the [BindRequired] or [BindNever] attributes. Alternatively, you can
override the default data source, and specify the model binder's data source. Below is a list of model
binding attributes:

Bind formatted data from the request body

NOTENOTE

NOTENOTE

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddXmlSerializerFormatters();
 }

Custom Model BindingCustom Model Binding

[BindRequired] : This attribute adds a model state error if binding cannot occur.

[BindNever] : Tells the model binder to never bind to this parameter.

[FromHeader] , [FromQuery] , [FromRoute] , [FromForm] : Use these to specify the exact binding
source you want to apply.

[FromServices] : This attribute uses dependency injection to bind parameters from services.

[FromBody] : Use the configured formatters to bind data from the request body. The formatter is
selected based on content type of the request.

[ModelBinder] : Used to override the default model binder, binding source and name.

Attributes are very helpful tools when you need to override the default behavior of model binding.

Request data can come in a variety of formats including JSON, XML and many others. When you use the
[FromBody] attribute to indicate that you want to bind a parameter to data in the request body, MVC uses
a configured set of formatters to handle the request data based on its content type. By default MVC
includes a JsonInputFormatter class for handling JSON data, but you can add additional formatters for
handling XML and other custom formats.

There can be at most one parameter per action decorated with [FromBody] . The ASP.NET Core MVC run-time
delegates the responsibility of reading the request stream to the formatter. Once the request stream is read for a
parameter, it's generally not possible to read the request stream again for binding other [FromBody] parameters.

The JsonInputFormatter is the default formatter and is based on Json.NET.

ASP.NET selects input formatters based on the Content-Type header and the type of the parameter, unless
there's an attribute applied to it specifying otherwise. If you'd like to use XML or another format you must
configure it in the Startup.cs file, but you may first have to obtain a reference to
Microsoft.AspNetCore.Mvc.Formatters.Xml using NuGet. Your startup code should look something like this:

Code in the Startup.cs file contains a ConfigureServices method with a services argument you can use
to build up services for your ASP.NET app. In the sample, we are adding an XML formatter as a service
that MVC will provide for this app. The options argument passed into the AddMvc method allows you to
add and manage filters, formatters, and other system options from MVC upon app startup. Then apply
the Consumes attribute to controller classes or action methods to work with the format you want.

You can extend model binding by writing your own custom model binders. Learn more about custom
model binding.

https://www.newtonsoft.com/json
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html

Model validation in ASP.NET Core MVC
6/10/2018 • 15 minutes to read • Edit Online

Introduction to model validation

Validation Attributes

public class Movie
{
 public int Id { get; set; }

 [Required]
 [StringLength(100)]
 public string Title { get; set; }

 [ClassicMovie(1960)]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Required]
 [StringLength(1000)]
 public string Description { get; set; }

 [Range(0, 999.99)]
 public decimal Price { get; set; }

 [Required]
 public Genre Genre { get; set; }

 public bool Preorder { get; set; }
}

By Rachel Appel

Before an app stores data in a database, the app must validate the data. Data must be checked for potential
security threats, verified that it's appropriately formatted by type and size, and it must conform to your
rules. Validation is necessary although it can be redundant and tedious to implement. In MVC, validation
happens on both the client and server.

Fortunately, .NET has abstracted validation into validation attributes. These attributes contain validation
code, thereby reducing the amount of code you must write.

View or download sample from GitHub.

Validation attributes are a way to configure model validation so it's similar conceptually to validation on
fields in database tables. This includes constraints such as assigning data types or required fields. Other
types of validation include applying patterns to data to enforce business rules, such as a credit card, phone
number, or email address. Validation attributes make enforcing these requirements much simpler and
easier to use.

Below is an annotated Movie model from an app that stores information about movies and TV shows.
Most of the properties are required and several string properties have length requirements. Additionally,
there's a numeric range restriction in place for the Price property from 0 to $999.99, along with a custom
validation attribute.

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/models/validation.md
https://github.com/rachelappel
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/models/validation/sample

Notes on the use of the Required attribute

Model State

Simply reading through the model reveals the rules about data for this app, making it easier to maintain
the code. Below are several popular built-in validation attributes:

[CreditCard] : Validates the property has a credit card format.

[Compare] : Validates two properties in a model match.

[EmailAddress] : Validates the property has an email format.

[Phone] : Validates the property has a telephone format.

[Range] : Validates the property value falls within the given range.

[RegularExpression] : Validates that the data matches the specified regular expression.

[Required] : Makes a property required.

[StringLength] : Validates that a string property has at most the given maximum length.

[Url] : Validates the property has a URL format.

MVC supports any attribute that derives from ValidationAttribute for validation purposes. Many useful
validation attributes can be found in the System.ComponentModel.DataAnnotations namespace.

There may be instances where you need more features than built-in attributes provide. For those times,
you can create custom validation attributes by deriving from ValidationAttribute or changing your model
to implement IValidatableObject .

Non-nullable value types (such as decimal , int , float , and DateTime) are inherently required and don't
need the Required attribute. The app performs no server-side validation checks for non-nullable types that
are marked Required .

MVC model binding, which isn't concerned with validation and validation attributes, rejects a form field
submission containing a missing value or whitespace for a non-nullable type. In the absence of a
BindRequired attribute on the target property, model binding ignores missing data for non-nullable types,

where the form field is absent from the incoming form data.

The BindRequired attribute (also see Customize model binding behavior with attributes) is useful to ensure
form data is complete. When applied to a property, the model binding system requires a value for that
property. When applied to a type, the model binding system requires values for all of the properties of that
type.

When you use a Nullable<T> type (for example, decimal? or System.Nullable<decimal>) and mark it
Required , a server-side validation check is performed as if the property were a standard nullable type (for

example, a string).

Client-side validation requires a value for a form field that corresponds to a model property that you've
marked Required and for a non-nullable type property that you haven't marked Required . Required can
be used to control the client-side validation error message.

Model state represents validation errors in submitted HTML form values.

MVC will continue validating fields until reaches the maximum number of errors (200 by default). You can
configure this number by inserting the following code into the ConfigureServices method in the Startup.cs

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.bindrequiredattribute
https://docs.microsoft.com/dotnet/csharp/programming-guide/nullable-types/

services.AddMvc(options => options.MaxModelValidationErrors = 50);

Handling Model State Errors

Manual validation

TryValidateModel(movie);

Custom validation

file:

Model validation occurs prior to each controller action being invoked, and it's the action method's
responsibility to inspect ModelState.IsValid and react appropriately. In many cases, the appropriate
reaction is to return an error response, ideally detailing the reason why model validation failed.

Some apps will choose to follow a standard convention for dealing with model validation errors, in which
case a filter may be an appropriate place to implement such a policy. You should test how your actions
behave with valid and invalid model states.

After model binding and validation are complete, you may want to repeat parts of it. For example, a user
may have entered text in a field expecting an integer, or you may need to compute a value for a model's
property.

You may need to run validation manually. To do so, call the TryValidateModel method, as shown here:

Validation attributes work for most validation needs. However, some validation rules are specific to your
business. Your rules might not be common data validation techniques such as ensuring a field is required
or that it conforms to a range of values. For these scenarios, custom validation attributes are a great
solution. Creating your own custom validation attributes in MVC is easy. Just inherit from the
ValidationAttribute , and override the IsValid method. The IsValid method accepts two parameters,

the first is an object named value and the second is a ValidationContext object named validationContext.
Value refers to the actual value from the field that your custom validator is validating.

In the following sample, a business rule states that users may not set the genre to Classic for a movie
released after 1960. The [ClassicMovie] attribute checks the genre first, and if it's a classic, then it checks
the release date to see that it's later than 1960. If it's released after 1960, validation fails. The attribute
accepts an integer parameter representing the year that you can use to validate data. You can capture the
value of the parameter in the attribute's constructor, as shown here:

public class ClassicMovieAttribute : ValidationAttribute, IClientModelValidator
{
 private int _year;

 public ClassicMovieAttribute(int Year)
 {
 _year = Year;
 }

 protected override ValidationResult IsValid(object value, ValidationContext validationContext)
 {
 Movie movie = (Movie)validationContext.ObjectInstance;

 if (movie.Genre == Genre.Classic && movie.ReleaseDate.Year > _year)
 {
 return new ValidationResult(GetErrorMessage());
 }

 return ValidationResult.Success;
 }

private string GetErrorMessage()
{
 return $"Classic movies must have a release year earlier than {_year}.";
}

public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
{
 if (Genre == Genre.Classic && ReleaseDate.Year > _classicYear)
 {
 yield return new ValidationResult(
 $"Classic movies must have a release year earlier than {_classicYear}.",
 new[] { "ReleaseDate" });
 }
}

Client side validation

The movie variable above represents a Movie object that contains the data from the form submission to
validate. In this case, the validation code checks the date and genre in the IsValid method of the
ClassicMovieAttribute class as per the rules. Upon successful validation , IsValid returns a
ValidationResult.Success code. When validation fails, a ValidationResult with an error message is

returned:

When a user modifies the Genre field and submits the form, the IsValid method of the
ClassicMovieAttribute will verify whether the movie is a classic. Like any built-in attribute, apply the
ClassicMovieAttribute to a property such as ReleaseDate to ensure validation happens, as shown in the

previous code sample. Since the example works only with Movie types, a better option is to use
IValidatableObject as shown in the following paragraph.

Alternatively, this same code could be placed in the model by implementing the Validate method on the
IValidatableObject interface. While custom validation attributes work well for validating individual

properties, implementing IValidatableObject can be used to implement class-level validation as seen here.

Client side validation is a great convenience for users. It saves time they would otherwise spend waiting for
a round trip to the server. In business terms, even a few fractions of seconds multiplied hundreds of times
each day adds up to be a lot of time, expense, and frustration. Straightforward and immediate validation

<script src="https://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.0.min.js"></script>

<script src="https://ajax.aspnetcdn.com/ajax/jquery.validate/1.16.0/jquery.validate.min.js"></script>
<script
src="https://ajax.aspnetcdn.com/ajax/jquery.validation.unobtrusive/3.2.6/jquery.validate.unobtrusive.mi
n.js"></script>

<div class="form-group">
 <label asp-for="ReleaseDate" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="ReleaseDate" class="form-control" />

 </div>
</div>

<form action="/Movies/Create" method="post">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <div class="text-danger"></div>
 <div class="form-group">
 <label class="col-md-2 control-label" for="ReleaseDate">ReleaseDate</label>
 <div class="col-md-10">
 <input class="form-control" type="datetime"
 data-val="true" data-val-required="The ReleaseDate field is required."
 id="ReleaseDate" name="ReleaseDate" value="" />
 <span class="text-danger field-validation-valid"
 data-valmsg-for="ReleaseDate" data-valmsg-replace="true">
 </div>
 </div>
 </div>
</form>

enables users to work more efficiently and produce better quality input and output.

You must have a view with the proper JavaScript script references in place for client side validation to work
as you see here.

The jQuery Unobtrusive Validation script is a custom Microsoft front-end library that builds on the popular
jQuery Validate plugin. Without jQuery Unobtrusive Validation, you would have to code the same
validation logic in two places: once in the server side validation attributes on model properties, and then
again in client side scripts (the examples for jQuery Validate's validate() method shows how complex this
could become). Instead, MVC's Tag Helpers and HTML helpers are able to use the validation attributes and
type metadata from model properties to render HTML 5 data- attributes in the form elements that need
validation. MVC generates the data- attributes for both built-in and custom attributes. jQuery
Unobtrusive Validation then parses thes data- attributes and passes the logic to jQuery Validate,
effectively "copying" the server side validation logic to the client. You can display validation errors on the
client using the relevant tag helpers as shown here:

The tag helpers above render the HTML below. Notice that the data- attributes in the HTML output
correspond to the validation attributes for the ReleaseDate property. The data-val-required attribute
below contains an error message to display if the user doesn't fill in the release date field. jQuery
Unobtrusive Validation passes this value to the jQuery Validate required() method, which then displays
that message in the accompanying element.

Client-side validation prevents submission until the form is valid. The Submit button runs JavaScript that
either submits the form or displays error messages.

https://github.com/aspnet/jquery-validation-unobtrusive
https://jqueryvalidation.org/
https://jqueryvalidation.org/validate/
http://w3c.github.io/html/dom.html#embedding-custom-non-visible-data-with-the-data-attributes
https://jqueryvalidation.org/required-method/

Add Validation to Dynamic FormsAdd Validation to Dynamic Forms

$.get({
 url: "https://url/that/returns/a/form",
 dataType: "html",
 error: function(jqXHR, textStatus, errorThrown) {
 alert(textStatus + ": Couldn't add form. " + errorThrown);
 },
 success: function(newFormHTML) {
 var container = document.getElementById("form-container");
 container.insertAdjacentHTML("beforeend", newFormHTML);
 var forms = container.getElementsByTagName("form");
 var newForm = forms[forms.length - 1];
 $.validator.unobtrusive.parse(newForm);
 }
})

Add Validation to Dynamic ControlsAdd Validation to Dynamic Controls

$.get({
 url: "https://url/that/returns/a/control",
 dataType: "html",
 error: function(jqXHR, textStatus, errorThrown) {
 alert(textStatus + ": Couldn't add control. " + errorThrown);
 },
 success: function(newInputHTML) {
 var form = document.getElementById("my-form");
 form.insertAdjacentHTML("beforeend", newInputHTML);
 $(form).removeData("validator") // Added by jQuery Validate
 .removeData("unobtrusiveValidation"); // Added by jQuery Unobtrusive Validation
 $.validator.unobtrusive.parse(form);
 }
})

IClientModelValidator

MVC determines type attribute values based on the .NET data type of a property, possibly overridden
using [DataType] attributes. The base [DataType] attribute does no real server-side validation. Browsers
choose their own error messages and display those errors as they wish, however the jQuery Validation
Unobtrusive package can override the messages and display them consistently with others. This happens
most obviously when users apply [DataType] subclasses such as [EmailAddress] .

Because jQuery Unobtrusive Validation passes validation logic and parameters to jQuery Validate when
the page first loads, dynamically generated forms won't automatically exhibit validation. Instead, you must
tell jQuery Unobtrusive Validation to parse the dynamic form immediately after creating it. For example,
the code below shows how you might set up client side validation on a form added via AJAX.

The $.validator.unobtrusive.parse() method accepts a jQuery selector for its one argument. This method
tells jQuery Unobtrusive Validation to parse the data- attributes of forms within that selector. The values
of those attributes are then passed to the jQuery Validate plugin so that the form exhibits the desired client
side validation rules.

You can also update the validation rules on a form when individual controls, such as <input/> s and
<select/> s, are dynamically generated. You cannot pass selectors for these elements to the parse()

method directly because the surrounding form has already been parsed and won't update. Instead, you first
remove the existing validation data, then reparse the entire form, as shown below:

You may create client side logic for your custom attribute, and unobtrusive validation which creates an
adapter to jquery validation will execute it on the client for you automatically as part of validation. The first

http://bradwilson.typepad.com/blog/2010/10/mvc3-unobtrusive-validation.html
http://jqueryvalidation.org/documentation/

public void AddValidation(ClientModelValidationContext context)
{
 if (context == null)
 {
 throw new ArgumentNullException(nameof(context));
 }

 MergeAttribute(context.Attributes, "data-val", "true");
 MergeAttribute(context.Attributes, "data-val-classicmovie", GetErrorMessage());

 var year = _year.ToString(CultureInfo.InvariantCulture);
 MergeAttribute(context.Attributes, "data-val-classicmovie-year", year);
}

<input class="form-control" type="datetime"
 data-val="true"
 data-val-classicmovie="Classic movies must have a release year earlier than 1960."
 data-val-classicmovie-year="1960"
 data-val-required="The ReleaseDate field is required."
 id="ReleaseDate" name="ReleaseDate" value="" />

$(function () {
 $.validator.addMethod('classicmovie',
 function (value, element, params) {
 // Get element value. Classic genre has value '0'.
 var genre = $(params[0]).val(),
 year = params[1],
 date = new Date(value);
 if (genre && genre.length > 0 && genre[0] === '0') {
 // Since this is a classic movie, invalid if release date is after given year.
 return date.getFullYear() <= year;
 }

 return true;
 });

 $.validator.unobtrusive.adapters.add('classicmovie',
 ['year'],
 function (options) {
 var element = $(options.form).find('select#Genre')[0];
 options.rules['classicmovie'] = [element, parseInt(options.params['year'])];
 options.messages['classicmovie'] = options.message;
 });
});

step is to control what data- attributes are added by implementing the IClientModelValidator interface as
shown here:

Attributes that implement this interface can add HTML attributes to generated fields. Examining the output
for the ReleaseDate element reveals HTML that's similar to the previous example, except now there's a
data-val-classicmovie attribute that was defined in the AddValidation method of IClientModelValidator .

Unobtrusive validation uses the data in the data- attributes to display error messages. However, jQuery
doesn't know about rules or messages until you add them to jQuery's validator object. This is shown in
the example below that adds a method named classicmovie containing custom client validation code to
the jQuery validator object. An explanations of the unobtrusive.adapters.add method can be found here

Now jQuery has the information to execute the custom JavaScript validation as well as the error message
to display if that validation code returns false.

http://bradwilson.typepad.com/blog/2010/10/mvc3-unobtrusive-validation.html

Remote validation

[Remote(action: "VerifyEmail", controller: "Users")]
public string Email { get; set; }

[AcceptVerbs("Get", "Post")]
public IActionResult VerifyEmail(string email)
{
 if (!_userRepository.VerifyEmail(email))
 {
 return Json($"Email {email} is already in use.");
 }

 return Json(true);
}

[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(LastName))]
public string FirstName { get; set; }
[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(FirstName))]
public string LastName { get; set; }

Remote validation is a great feature to use when you need to validate data on the client against data on the
server. For example, your app may need to verify whether an email or user name is already in use, and it
must query a large amount of data to do so. Downloading large sets of data for validating one or a few
fields consumes too many resources. It may also expose sensitive information. An alternative is to make a
round-trip request to validate a field.

You can implement remote validation in a two step process. First, you must annotate your model with the
[Remote] attribute. The [Remote] attribute accepts multiple overloads you can use to direct client side

JavaScript to the appropriate code to call. The example below points to the VerifyEmail action method of
the Users controller.

The second step is putting the validation code in the corresponding action method as defined in the
[Remote] attribute. According to the jQuery Validate remote() method documentation:

The serverside response must be a JSON string that must be "true" for valid elements, and can be
"false" , undefined , or null for invalid elements, using the default error message. If the serverside

response is a string, eg. "That name is already taken, try peter123 instead" , this string will be
displayed as a custom error message in place of the default.

The definition of the VerifyEmail() method follows these rules, as shown below. It returns a validation
error message if the email is taken, or true if the email is free, and wraps the result in a JsonResult

object. The client side can then use the returned value to proceed or display the error if needed.

Now when users enter an email, JavaScript in the view makes a remote call to see if that email has been
taken and, if so, displays the error message. Otherwise, the user can submit the form as usual.

The AdditionalFields property of the [Remote] attribute is useful for validating combinations of fields
against data on the server. For example, if the User model from above had two additional properties
called FirstName and LastName , you might want to verify that no existing users already have that pair of
names. You define the new properties as shown in the following code:

AdditionalFields could've been set explicitly to the strings "FirstName" and "LastName" , but using the
nameof operator like this simplifies later refactoring. The action method to perform the validation must

https://jqueryvalidation.org/remote-method/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/nameof

[AcceptVerbs("Get", "Post")]
public IActionResult VerifyName(string firstName, string lastName)
{
 if (!_userRepository.VerifyName(firstName, lastName))
 {
 return Json(data: $"A user named {firstName} {lastName} already exists.");
 }

 return Json(data: true);
}

[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(FirstName) + "," +
nameof(LastName))]
public string MiddleName { get; set; }

then accept two arguments, one for the value of FirstName and one for the value of LastName .

Now when users enter a first and last name, JavaScript:

Makes a remote call to see if that pair of names has been taken.
If the pair has been taken, an error message is displayed.
If not taken, the user can submit the form.

If you need to validate two or more additional fields with the [Remote] attribute, you provide them as a
comma-delimited list. For example, to add a MiddleName property to the model, set the [Remote] attribute
as shown in the following code:

AdditionalFields , like all attribute arguments, must be a constant expression. Therefore, you must not use
an interpolated string or call string.Join() to initialize AdditionalFields . For every additional field that
you add to the [Remote] attribute, you must add another argument to the corresponding controller action
method.

https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/interpolated-strings
https://msdn.microsoft.com/library/system.string.join(v=vs.110).aspx

Views in ASP.NET Core MVC
5/9/2018 • 13 minutes to read • Edit Online

Benefits of using views

By Steve Smith and Luke Latham

This document explains views used in ASP.NET Core MVC applications. For information on Razor Pages, see
Introduction to Razor Pages.

In the Model-View-Controller (MVC) pattern, the view handles the app's data presentation and user interaction.
A view is an HTML template with embedded Razor markup. Razor markup is code that interacts with HTML
markup to produce a webpage that's sent to the client.

In ASP.NET Core MVC, views are .cshtml files that use the C# programming language in Razor markup. Usually,
view files are grouped into folders named for each of the app's controllers. The folders are stored in a Views
folder at the root of the app:

The Home controller is represented by a Home folder inside the Views folder. The Home folder contains the
views for the About, Contact, and Index (homepage) webpages. When a user requests one of these three
webpages, controller actions in the Home controller determine which of the three views is used to build and
return a webpage to the user.

Use layouts to provide consistent webpage sections and reduce code repetition. Layouts often contain the header,
navigation and menu elements, and the footer. The header and footer usually contain boilerplate markup for
many metadata elements and links to script and style assets. Layouts help you avoid this boilerplate markup in
your views.

Partial views reduce code duplication by managing reusable parts of views. For example, a partial view is useful
for an author biography on a blog website that appears in several views. An author biography is ordinary view
content and doesn't require code to execute in order to produce the content for the webpage. Author biography
content is available to the view by model binding alone, so using a partial view for this type of content is ideal.

View components are similar to partial views in that they allow you to reduce repetitive code, but they're
appropriate for view content that requires code to run on the server in order to render the webpage. View
components are useful when the rendered content requires database interaction, such as for a website shopping
cart. View components aren't limited to model binding in order to produce webpage output.

Views help to establish a Separation of Concerns (SoC) design within an MVC app by separating the user
interface markup from other parts of the app. Following SoC design makes your app modular, which provides
several benefits:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/overview.md
https://ardalis.com/
https://github.com/guardrex
https://docs.microsoft.com/dotnet/csharp/
http://deviq.com/separation-of-concerns/

Creating a view

@{
 ViewData["Title"] = "About";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p>Use this area to provide additional information.</p>

How controllers specify views

public IActionResult About()
{
 ViewData["Message"] = "Your application description page.";

 return View();
}

The app is easier to maintain because it's better organized. Views are generally grouped by app feature. This
makes it easier to find related views when working on a feature.
The parts of the app are loosely coupled. You can build and update the app's views separately from the
business logic and data access components. You can modify the views of the app without necessarily having to
update other parts of the app.
It's easier to test the user interface parts of the app because the views are separate units.
Due to better organization, it's less likely that you'll accidently repeat sections of the user interface.

Views that are specific to a controller are created in the Views/[ControllerName] folder. Views that are shared
among controllers are placed in the Views/Shared folder. To create a view, add a new file and give it the same
name as its associated controller action with the .cshtml file extension. To create a view that corresponds with the
About action in the Home controller, create an About.cshtml file in the Views/Home folder :

Razor markup starts with the @ symbol. Run C# statements by placing C# code within Razor code blocks set off
by curly braces ({ ... }). For example, see the assignment of "About" to ViewData["Title"] shown above. You
can display values within HTML by simply referencing the value with the @ symbol. See the contents of the
<h2> and <h3> elements above.

The view content shown above is only part of the entire webpage that's rendered to the user. The rest of the
page's layout and other common aspects of the view are specified in other view files. To learn more, see the
Layout topic.

Views are typically returned from actions as a ViewResult, which is a type of ActionResult. Your action method
can create and return a ViewResult directly, but that isn't commonly done. Since most controllers inherit from
Controller, you simply use the View helper method to return the ViewResult :

HomeController.cs

When this action returns, the About.cshtml view shown in the last section is rendered as the following webpage:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.actionresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controller

 View discoveryView discovery

return View("Views/Home/About.cshtml");

The View helper method has several overloads. You can optionally specify:

return View("Orders");

return View(Orders);

return View("Orders", Orders);

An explicit view to return:

A model to pass to the view:

Both a view and a model:

When an action returns a view, a process called view discovery takes place. This process determines which view
file is used based on the view name.

The default behavior of the View method (return View();) is to return a view with the same name as the action
method from which it's called. For example, the About ActionResult method name of the controller is used to
search for a view file named About.cshtml. First, the runtime looks in the Views/[ControllerName] folder for the
view. If it doesn't find a matching view there, it searches the Shared folder for the view.

It doesn't matter if you implicitly return the ViewResult with return View(); or explicitly pass the view name to
the View method with return View("<ViewName>"); . In both cases, view discovery searches for a matching view
file in this order :

1. Views/[ControllerName]/[ViewName].cshtml

2. Views/Shared/[ViewName].cshtml

A view file path can be provided instead of a view name. If using an absolute path starting at the app root
(optionally starting with "/" or "~/"), the .cshtml extension must be specified:

You can also use a relative path to specify views in different directories without the .cshtml extension. Inside the
HomeController , you can return the Index view of your Manage views with a relative path:

return View("../Manage/Index");

return View("./About");

Passing data to views

Strongly-typed data (viewmodel)Strongly-typed data (viewmodel)

@model WebApplication1.ViewModels.Address

<h2>Contact</h2>
<address>
 @Model.Street

 @Model.City, @Model.State @Model.PostalCode

 <abbr title="Phone">P:</abbr> 425.555.0100
</address>

Similarly, you can indicate the current controller-specific directory with the "./" prefix:

Partial views and view components use similar (but not identical) discovery mechanisms.

You can customize the default convention for how views are located within the app by using a custom
IViewLocationExpander.

View discovery relies on finding view files by file name. If the underlying file system is case sensitive, view names
are probably case sensitive. For compatibility across operating systems, match case between controller and action
names and associated view folders and file names. If you encounter an error that a view file can't be found while
working with a case-sensitive file system, confirm that the casing matches between the requested view file and
the actual view file name.

Follow the best practice of organizing the file structure for your views to reflect the relationships among
controllers, actions, and views for maintainability and clarity.

Pass data to views using several approaches:

Strongly-typed data: viewmodel
Weakly-typed data

ViewData (ViewDataAttribute)
ViewBag

The most robust approach is to specify a model type in the view. This model is commonly referred to as a
viewmodel. You pass an instance of the viewmodel type to the view from the action.

Using a viewmodel to pass data to a view allows the view to take advantage of strong type checking. Strong
typing (or strongly-typed) means that every variable and constant has an explicitly defined type (for example,
string , int , or DateTime). The validity of types used in a view is checked at compile time.

Visual Studio and Visual Studio Code list strongly-typed class members using a feature called IntelliSense. When
you want to see the properties of a viewmodel, type the variable name for the viewmodel followed by a period (
.). This helps you write code faster with fewer errors.

Specify a model using the @model directive. Use the model with @Model :

To provide the model to the view, the controller passes it as a parameter :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razor.iviewlocationexpander
https://www.visualstudio.com/vs/
https://code.visualstudio.com/
https://docs.microsoft.com/visualstudio/ide/using-intellisense

public IActionResult Contact()
{
 ViewData["Message"] = "Your contact page.";

 var viewModel = new Address()
 {
 Name = "Microsoft",
 Street = "One Microsoft Way",
 City = "Redmond",
 State = "WA",
 PostalCode = "98052-6399"
 };

 return View(viewModel);
}

namespace WebApplication1.ViewModels
{
 public class Address
 {
 public string Name { get; set; }
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string PostalCode { get; set; }
 }
}

Weakly-typed data (ViewData, ViewData attribute, and ViewBag)Weakly-typed data (ViewData, ViewData attribute, and ViewBag)

PASSING DATA BETWEEN A ... EXAMPLE

Controller and a view Populating a dropdown list with data.

View and a layout view Setting the <title> element content in the layout view from a
view file.

Partial view and a view A widget that displays data based on the webpage that the
user requested.

There are no restrictions on the model types that you can provide to a view. We recommend using Plain Old CLR
Object (POCO) viewmodels with little or no behavior (methods) defined. Usually, viewmodel classes are either
stored in the Models folder or a separate ViewModels folder at the root of the app. The Address viewmodel used
in the example above is a POCO viewmodel stored in a file named Address.cs:

Nothing prevents you from using the same classes for both your viewmodel types and your business model
types. However, using separate models allows your views to vary independently from the business logic and data
access parts of your app. Separation of models and viewmodels also offers security benefits when models use
model binding and validation for data sent to the app by the user.

ViewBag isn't available in Razor Pages.

In addition to strongly-typed views, views have access to a weakly-typed (also called loosely-typed) collection of
data. Unlike strong types, weak types (or loose types) means that you don't explicitly declare the type of data
you're using. You can use the collection of weakly-typed data for passing small amounts of data in and out of
controllers and views.

This collection can be referenced through either the ViewData or ViewBag properties on controllers and views.
The ViewData property is a dictionary of weakly-typed objects. The ViewBag property is a wrapper around

public IActionResult SomeAction()
{
 ViewData["Greeting"] = "Hello";
 ViewData["Address"] = new Address()
 {
 Name = "Steve",
 Street = "123 Main St",
 City = "Hudson",
 State = "OH",
 PostalCode = "44236"
 };

 return View();
}

@{
 // Since Address isn't a string, it requires a cast.
 var address = ViewData["Address"] as Address;
}

@ViewData["Greeting"] World!

<address>
 @address.Name

 @address.Street

 @address.City, @address.State @address.PostalCode
</address>

ViewData that provides dynamic properties for the underlying ViewData collection.

ViewData and ViewBag are dynamically resolved at runtime. Since they don't offer compile-time type checking,
both are generally more error-prone than using a viewmodel. For that reason, some developers prefer to
minimally or never use ViewData and ViewBag .

 ViewData

ViewData is a ViewDataDictionary object accessed through string keys. String data can be stored and used
directly without the need for a cast, but you must cast other ViewData object values to specific types when you
extract them. You can use ViewData to pass data from controllers to views and within views, including partial
views and layouts.

The following is an example that sets values for a greeting and an address using ViewData in an action:

Work with the data in a view:

ViewData attribute

Another approach that uses the ViewDataDictionary is ViewDataAttribute. Properties on controllers or Razor
Page models decorated with [ViewData] have their values stored and loaded from the dictionary.

In the following example, the Home controller contains a Title property decorated with [ViewData] . The About

method sets the title for the About view:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewdataattribute

public class HomeController : Controller
{
[ViewData]
public string Title { get; set; }

public IActionResult About()
{
Title = "About Us";
ViewData["Message"] = "Your application description page.";

return View();
}
}

<h1>@Model.Title</h1>

<!DOCTYPE html>
<html lang="en">
<head>
<title>@ViewData["Title"] - WebApplication</title>
...

public IActionResult SomeAction()
{
 ViewBag.Greeting = "Hello";
 ViewBag.Address = new Address()
 {
 Name = "Steve",
 Street = "123 Main St",
 City = "Hudson",
 State = "OH",
 PostalCode = "44236"
 };

 return View();
}

@ViewBag.Greeting World!

<address>
 @ViewBag.Address.Name

 @ViewBag.Address.Street

 @ViewBag.Address.City, @ViewBag.Address.State @ViewBag.Address.PostalCode
</address>

In the About view, access the Title property as a model property:

In the layout, the title is read from the ViewData dictionary:

ViewBag

ViewBag isn't available in Razor Pages.

ViewBag is a DynamicViewData object that provides dynamic access to the objects stored in ViewData . ViewBag

can be more convenient to work with, since it doesn't require casting. The following example shows how to use
ViewBag with the same result as using ViewData above:

Using ViewData and ViewBag simultaneously

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.internal.dynamicviewdata

@{
 Layout = "/Views/Shared/_Layout.cshtml";
 ViewBag.Title = "About Contoso";
 ViewData["Description"] = "Let us tell you about Contoso's philosophy and mission.";
}

<!DOCTYPE html>
<html lang="en">
<head>
 <title>@ViewData["Title"]</title>
 <meta name="description" content="@ViewBag.Description">
 ...

<!DOCTYPE html>
<html lang="en">
<head>
 <title>About Contoso</title>
 <meta name="description" content="Let us tell you about Contoso's philosophy and mission.">
 ...

ViewBag isn't available in Razor Pages.

Since ViewData and ViewBag refer to the same underlying ViewData collection, you can use both ViewData and
ViewBag and mix and match between them when reading and writing values.

Set the title using ViewBag and the description using ViewData at the top of an About.cshtml view:

Read the properties but reverse the use of ViewData and ViewBag . In the _Layout.cshtml file, obtain the title
using ViewData and obtain the description using ViewBag :

Remember that strings don't require a cast for ViewData . You can use @ViewData["Title"] without casting.

Using both ViewData and ViewBag at the same time works, as does mixing and matching reading and writing the
properties. The following markup is rendered:

Summary of the differences between ViewData and ViewBag

ViewBag isn't available in the Razor Pages.

ViewData

ViewBag

Derives from ViewDataDictionary, so it has dictionary properties that can be useful, such as
ContainsKey , Add , Remove , and Clear .

Keys in the dictionary are strings, so whitespace is allowed. Example:
ViewData["Some Key With Whitespace"]

Any type other than a string must be cast in the view to use ViewData .

Derives from DynamicViewData, so it allows the creation of dynamic properties using dot notation (
@ViewBag.SomeKey = <value or object>), and no casting is required. The syntax of ViewBag makes it

quicker to add to controllers and views.
Simpler to check for null values. Example: @ViewBag.Person?.Name

When to use ViewData or ViewBag

Both ViewData and ViewBag are equally valid approaches for passing small amounts of data among controllers
and views. The choice of which one to use is based on preference. You can mix and match ViewData and ViewBag

objects, however, the code is easier to read and maintain with one approach used consistently. Both approaches

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.internal.dynamicviewdata

Dynamic viewsDynamic views

<address>
 @Model.Street

 @Model.City, @Model.State @Model.PostalCode

 <abbr title="Phone">P:</abbr> 425.555.0100
</address>

More view features

are dynamically resolved at runtime and thus prone to causing runtime errors. Some development teams avoid
them.

Views that don't declare a model type using @model but that have a model instance passed to them (for example,
return View(Address);) can reference the instance's properties dynamically:

This feature offers flexibility but doesn't offer compilation protection or IntelliSense. If the property doesn't exist,
webpage generation fails at runtime.

Tag Helpers make it easy to add server-side behavior to existing HTML tags. Using Tag Helpers avoids the need
to write custom code or helpers within your views. Tag helpers are applied as attributes to HTML elements and
are ignored by editors that can't process them. This allows you to edit and render view markup in a variety of
tools.

Generating custom HTML markup can be achieved with many built-in HTML Helpers. More complex user
interface logic can be handled by View Components. View components provide the same SoC that controllers
and views offer. They can eliminate the need for actions and views that deal with data used by common user
interface elements.

Like many other aspects of ASP.NET Core, views support dependency injection, allowing services to be injected
into views.

Razor syntax reference for ASP.NET Core
5/9/2018 • 11 minutes to read • Edit Online

Rendering HTML

Razor syntax

<p>@@Username</p>

<p>@Username</p>

Support@contoso.com

Implicit Razor expressions

<p>@DateTime.Now</p>
<p>@DateTime.IsLeapYear(2016)</p>

<p>@await DoSomething("hello", "world")</p>

By Rick Anderson, Luke Latham, Taylor Mullen, and Dan Vicarel

Razor is a markup syntax for embedding server-based code into webpages. The Razor syntax consists of Razor
markup, C#, and HTML. Files containing Razor generally have a .cshtml file extension.

The default Razor language is HTML. Rendering HTML from Razor markup is no different than rendering HTML
from an HTML file. HTML markup in .cshtml Razor files is rendered by the server unchanged.

Razor supports C# and uses the @ symbol to transition from HTML to C#. Razor evaluates C# expressions and
renders them in the HTML output.

When an @ symbol is followed by a Razor reserved keyword, it transitions into Razor-specific markup.
Otherwise, it transitions into plain C#.

To escape an @ symbol in Razor markup, use a second @ symbol:

The code is rendered in HTML with a single @ symbol:

HTML attributes and content containing email addresses don't treat the @ symbol as a transition character. The
email addresses in the following example are untouched by Razor parsing:

Implicit Razor expressions start with @ followed by C# code:

With the exception of the C# await keyword, implicit expressions must not contain spaces. If the C# statement
has a clear ending, spaces can be intermingled:

Implicit expressions cannot contain C# generics, as the characters inside the brackets (<>) are interpreted as an
HTML tag. The following code is not valid:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/razor.md
https://twitter.com/RickAndMSFT
https://github.com/guardrex
https://twitter.com/ntaylormullen
https://github.com/Rabadash8820

<p>@GenericMethod<int>()</p>

Explicit Razor expressions

<p>Last week this time: @(DateTime.Now - TimeSpan.FromDays(7))</p>

<p>Last week: @DateTime.Now - TimeSpan.FromDays(7)</p>

<p>Last week: 7/7/2016 4:39:52 PM - TimeSpan.FromDays(7)</p>

@{
 var joe = new Person("Joe", 33);
}

<p>Age@(joe.Age)</p>

<p>@(GenericMethod<int>())</p>

Expression encoding

The preceding code generates a compiler error similar to one of the following:

The "int" element wasn't closed. All elements must be either self-closing or have a matching end tag.
Cannot convert method group 'GenericMethod' to non-delegate type 'object'. Did you intend to invoke the
method?`

Generic method calls must be wrapped in an explicit Razor expression or a Razor code block.

Explicit Razor expressions consist of an @ symbol with balanced parenthesis. To render last week's time, the
following Razor markup is used:

Any content within the @() parenthesis is evaluated and rendered to the output.

Implicit expressions, described in the previous section, generally can't contain spaces. In the following code, one
week isn't subtracted from the current time:

The code renders the following HTML:

Explicit expressions can be used to concatenate text with an expression result:

Without the explicit expression, <p>Age@joe.Age</p> is treated as an email address, and <p>Age@joe.Age</p> is
rendered. When written as an explicit expression, <p>Age33</p> is rendered.

Explicit expressions can be used to render output from generic methods in .cshtml files. The following markup
shows how to correct the error shown earlier caused by the brackets of a C# generic. The code is written as an
explicit expression:

C# expressions that evaluate to a string are HTML encoded. C# expressions that evaluate to IHtmlContent are
rendered directly through IHtmlContent.WriteTo . C# expressions that don't evaluate to IHtmlContent are
converted to a string by ToString and encoded before they're rendered.

@("Hello World")

Hello World

Hello World

WARNINGWARNING

@Html.Raw("Hello World")

Hello World

Razor code blocks

@{
 var quote = "The future depends on what you do today. - Mahatma Gandhi";
}

<p>@quote</p>

@{
 quote = "Hate cannot drive out hate, only love can do that. - Martin Luther King, Jr.";
}

<p>@quote</p>

<p>The future depends on what you do today. - Mahatma Gandhi</p>
<p>Hate cannot drive out hate, only love can do that. - Martin Luther King, Jr.</p>

Implicit transitionsImplicit transitions

The code renders the following HTML:

The HTML is shown in the browser as:

HtmlHelper.Raw output isn't encoded but rendered as HTML markup.

Using HtmlHelper.Raw on unsanitized user input is a security risk. User input might contain malicious JavaScript or other
exploits. Sanitizing user input is difficult. Avoid using HtmlHelper.Raw with user input.

The code renders the following HTML:

Razor code blocks start with @ and are enclosed by {} . Unlike expressions, C# code inside code blocks isn't
rendered. Code blocks and expressions in a view share the same scope and are defined in order :

The code renders the following HTML:

The default language in a code block is C#, but the Razor Page can transition back to HTML:

@{
 var inCSharp = true;
 <p>Now in HTML, was in C# @inCSharp</p>
}

Explicit delimited transitionExplicit delimited transition

@for (var i = 0; i < people.Length; i++)
{
 var person = people[i];
 <text>Name: @person.Name</text>
}

Explicit Line Transition with @:Explicit Line Transition with @:

@for (var i = 0; i < people.Length; i++)
{
 var person = people[i];
 @:Name: @person.Name
}

Control structures

Conditionals @if, else if, else, and @switchConditionals @if, else if, else, and @switch

@if (value % 2 == 0)
{
 <p>The value was even.</p>
}

To define a subsection of a code block that should render HTML, surround the characters for rendering with the
Razor <text> tag:

Use this approach to render HTML that isn't surrounded by an HTML tag. Without an HTML or Razor tag, a
Razor runtime error occurs.

The <text> tag is useful to control whitespace when rendering content:

Only the content between the <text> tag is rendered.
No whitespace before or after the <text> tag appears in the HTML output.

To render the rest of an entire line as HTML inside a code block, use the @: syntax:

Without the @: in the code, a Razor runtime error is generated.

Warning: Extra @ characters in a Razor file can cause compiler errors at statements later in the block. These
compiler errors can be difficult to understand because the actual error occurs before the reported error. This error
is common after combining multiple implicit/explicit expressions into a single code block.

Control structures are an extension of code blocks. All aspects of code blocks (transitioning to markup, inline C#)
also apply to the following structures:

@if controls when code runs:

else and else if don't require the @ symbol:

@if (value % 2 == 0)
{
 <p>The value was even.</p>
}
else if (value >= 1337)
{
 <p>The value is large.</p>
}
else
{
 <p>The value is odd and small.</p>
}

@switch (value)
{
 case 1:
 <p>The value is 1!</p>
 break;
 case 1337:
 <p>Your number is 1337!</p>
 break;
 default:
 <p>Your number wasn't 1 or 1337.</p>
 break;
}

Looping @for, @foreach, @while, and @do whileLooping @for, @foreach, @while, and @do while

@{
 var people = new Person[]
 {
 new Person("Weston", 33),
 new Person("Johnathon", 41),
 ...
 };
}

@for (var i = 0; i < people.Length; i++)
{
 var person = people[i];
 <p>Name: @person.Name</p>
 <p>Age: @person.Age</p>
}

@foreach (var person in people)
{
 <p>Name: @person.Name</p>
 <p>Age: @person.Age</p>
}

The following markup shows how to use a switch statement:

Templated HTML can be rendered with looping control statements. To render a list of people:

The following looping statements are supported:

@for

@foreach

@{ var i = 0; }
@while (i < people.Length)
{
 var person = people[i];
 <p>Name: @person.Name</p>
 <p>Age: @person.Age</p>

 i++;
}

@{ var i = 0; }
@do
{
 var person = people[i];
 <p>Name: @person.Name</p>
 <p>Age: @person.Age</p>

 i++;
} while (i < people.Length);

Compound @usingCompound @using

@using (Html.BeginForm())
{
 <div>
 email:
 <input type="email" id="Email" value="">
 <button>Register</button>
 </div>
}

@try, catch, finally@try, catch, finally

@try
{
 throw new InvalidOperationException("You did something invalid.");
}
catch (Exception ex)
{
 <p>The exception message: @ex.Message</p>
}
finally
{
 <p>The finally statement.</p>
}

@lock@lock

@while

@do while

In C#, a using statement is used to ensure an object is disposed. In Razor, the same mechanism is used to create
HTML Helpers that contain additional content. In the following code, HTML Helpers render a form tag with the
@using statement:

Scope-level actions can be performed with Tag Helpers.

Exception handling is similar to C#:

Razor has the capability to protect critical sections with lock statements:

@lock (SomeLock)
{
 // Do critical section work
}

CommentsComments

@{
 /* C# comment */
 // Another C# comment
}
<!-- HTML comment -->

<!-- HTML comment -->

@*
 @{
 /* C# comment */
 // Another C# comment
 }
 <!-- HTML comment -->
*@

Directives

@{
 var quote = "Getting old ain't for wimps! - Anonymous";
}

<div>Quote of the Day: @quote</div>

public class _Views_Something_cshtml : RazorPage<dynamic>
{
 public override async Task ExecuteAsync()
 {
 var output = "Getting old ain't for wimps! - Anonymous";

 WriteLiteral("/r/n<div>Quote of the Day: ");
 Write(output);
 WriteLiteral("</div>");
 }
}

Razor supports C# and HTML comments:

The code renders the following HTML:

Razor comments are removed by the server before the webpage is rendered. Razor uses @* *@ to delimit
comments. The following code is commented out, so the server doesn't render any markup:

Razor directives are represented by implicit expressions with reserved keywords following the @ symbol. A
directive typically changes the way a view is parsed or enables different functionality.

Understanding how Razor generates code for a view makes it easier to understand how directives work.

The code generates a class similar to the following:

@using@using

@using System.IO
@{
 var dir = Directory.GetCurrentDirectory();
}
<p>@dir</p>

@model@model

@model TypeNameOfModel

@model LoginViewModel

public class _Views_Account_Login_cshtml : RazorPage<LoginViewModel>

<div>The Login Email: @Model.Email</div>

@inherits@inherits

@inherits TypeNameOfClassToInheritFrom

using Microsoft.AspNetCore.Mvc.Razor;

public abstract class CustomRazorPage<TModel> : RazorPage<TModel>
{
 public string CustomText { get; } = "Gardyloo! - A Scottish warning yelled from a window before dumping a
slop bucket on the street below.";
}

Later in this article, the section Viewing the Razor C# class generated for a view explains how to view this
generated class.

The @using directive adds the C# using directive to the generated view:

The @model directive specifies the type of the model passed to a view:

In an ASP.NET Core MVC app created with individual user accounts, the Views/Account/Login.cshtml view
contains the following model declaration:

The class generated inherits from RazorPage<dynamic> :

Razor exposes a Model property for accessing the model passed to the view:

The @model directive specifies the type of this property. The directive specifies the T in RazorPage<T> that the
generated class that the view derives from. If the @model directive isn't specified, the Model property is of type
dynamic . The value of the model is passed from the controller to the view. For more information, see Strongly

typed models and the @model keyword.

The @inherits directive provides full control of the class the view inherits:

The following code is a custom Razor page type:

The CustomText is displayed in a view:

@inherits CustomRazorPage<TModel>

<div>Custom text: @CustomText</div>

<div>Custom text: Gardyloo! - A Scottish warning yelled from a window before dumping a slop bucket on the
street below.</div>

@inherits CustomRazorPage<TModel>

@inherits CustomRazorPage<TModel>

<div>The Login Email: @Model.Email</div>
<div>Custom text: @CustomText</div>

<div>The Login Email: rick@contoso.com</div>
<div>Custom text: Gardyloo! - A Scottish warning yelled from a window before dumping a slop bucket on the
street below.</div>

@inject@inject

@functions@functions

@functions { // C# Code }

@functions {
 public string GetHello()
 {
 return "Hello";
 }
}

<div>From method: @GetHello()</div>

<div>From method: Hello</div>

The code renders the following HTML:

@model and @inherits can be used in the same view. @inherits can be in a _ViewImports.cshtml file that the
view imports:

The following code is an example of a strongly-typed view:

If "rick@contoso.com" is passed in the model, the view generates the following HTML markup:

The @inject directive enables the Razor Page to inject a service from the service container into a view. For more
information, see Dependency injection into views.

The @functions directive enables a Razor Page to add a C# code block to a view:

For example:

The code generates the following HTML markup:

The following code is the generated Razor C# class:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Razor;

public class _Views_Home_Test_cshtml : RazorPage<dynamic>
{
 // Functions placed between here
 public string GetHello()
 {
 return "Hello";
 }
 // And here.
#pragma warning disable 1998
 public override async Task ExecuteAsync()
 {
 WriteLiteral("\r\n<div>From method: ");
 Write(GetHello());
 WriteLiteral("</div>\r\n");
 }
#pragma warning restore 1998

@section@section

Tag Helpers

DIRECTIVE FUNCTION

@addTagHelper Makes Tag Helpers available to a view.

@removeTagHelper Removes Tag Helpers previously added from a view.

@tagHelperPrefix Specifies a tag prefix to enable Tag Helper support and to
make Tag Helper usage explicit.

Razor reserved keywords
Razor keywordsRazor keywords

C# Razor keywordsC# Razor keywords

The @section directive is used in conjunction with the layout to enable views to render content in different parts
of the HTML page. For more information, see Sections.

There are three directives that pertain to Tag Helpers.

page (Requires ASP.NET Core 2.0 and later)
namespace
functions
inherits
model
section
helper (Not currently supported by ASP.NET Core)

Razor keywords are escaped with @(Razor Keyword) (for example, @(functions)).

case
do
default
for

Reserved keywords not used by RazorReserved keywords not used by Razor

Viewing the Razor C# class generated for a view

using Microsoft.AspNetCore.Mvc.Razor.Extensions;
using Microsoft.AspNetCore.Razor.Language;

public class CustomTemplateEngine : MvcRazorTemplateEngine
{
 public CustomTemplateEngine(RazorEngine engine, RazorProject project)
 : base(engine, project)
 {
 }

 public override RazorCSharpDocument GenerateCode(RazorCodeDocument codeDocument)
 {
 var csharpDocument = base.GenerateCode(codeDocument);
 var generatedCode = csharpDocument.GeneratedCode;

 // Look at generatedCode

 return csharpDocument;
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 services.AddSingleton<RazorTemplateEngine, CustomTemplateEngine>();
}

foreach
if
else
lock
switch
try
catch
finally
using
while

C# Razor keywords must be double-escaped with @(@C# Razor Keyword) (for example, @(@case)). The first @

escapes the Razor parser. The second @ escapes the C# parser.

class

Add the following class to the ASP.NET Core MVC project:

Override the RazorTemplateEngine added by MVC with the CustomTemplateEngine class:

Set a break point on the return csharpDocument statement of CustomTemplateEngine . When program execution
stops at the break point, view the value of generatedCode .

View lookups and case sensitivity

* Area, controller, and action names.
* Razor Pages.

The Razor view engine performs case-sensitive lookups for views. However, the actual lookup is determined by
the underlying file system:

File based source:

Precompiled views: With ASP.NET Core 2.0 and later, looking up precompiled views is case insensitive on all
operating systems. The behavior is identical to physical file provider's behavior on Windows. If two
precompiled views differ only in case, the result of lookup is non-deterministic.

On operating systems with case insensitive file systems (for example, Windows), physical file provider
lookups are case insensitive. For example, return View("Test") results in matches for
/Views/Home/Test.cshtml, /Views/home/test.cshtml, and any other casing variant.
On case-sensitive file systems (for example, Linux, OSX, and with EmbeddedFileProvider), lookups are
case-sensitive. For example, return View("Test") specifically matches /Views/Home/Test.cshtml.

Developers are encouraged to match the casing of file and directory names to the casing of:

Matching case ensures the deployments find their views regardless of the underlying file system.

Razor file compilation in ASP.NET Core
5/18/2018 • 2 minutes to read • Edit Online

Precompilation considerations

Deploy precompiled files

IMPORTANTIMPORTANT

<PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.ViewCompilation"
 Version="2.0.4"
 PrivateAssets="All" />

IMPORTANTIMPORTANT

By Rick Anderson

A Razor file is compiled at runtime, when the associated MVC view is invoked. Build-time Razor file publishing is
unsupported. Razor files can optionally be compiled at publish time and deployed with the app—using the
precompilation tool.

A Razor file is compiled at runtime, when the associated Razor Page or MVC view is invoked. Build-time Razor file
publishing is unsupported. Razor files can optionally be compiled at publish time and deployed with the app—
using the precompilation tool.

A Razor file is compiled at runtime, when the associated Razor Page or MVC view is invoked. Razor files are
compiled at both build and publish time using the Razor SDK.

The following are side effects of precompiling Razor files:

A smaller published bundle
A faster startup time
You can't edit Razor files—the associated content is absent from the published bundle.

Build- and publish-time compilation of Razor files is enabled by default by the Razor SDK. Editing Razor files after
they're updated is supported at build time. By default, only the compiled Views.dll and no .cshtml files are
deployed with your app.

The Razor SDK is effective only when no precompilation-specific properties are set in the project file. For instance, setting the
.csproj file's MvcRazorCompileOnPublish property to true disables the Razor SDK.

If your project targets .NET Framework, install the Microsoft.AspNetCore.Mvc.Razor.ViewCompilation NuGet
package:

If your project targets .NET Core, no changes are necessary.

The ASP.NET Core 2.x project templates implicitly set the MvcRazorCompileOnPublish property to true by default.
Consequently, this element can be safely removed from the .csproj file.

Razor file precompilation is unavailable when performing a self-contained deployment (SCD) in ASP.NET Core 2.0.

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/view-compilation.md
https://twitter.com/RickAndMSFT
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.ViewCompilation/
https://docs.microsoft.com/dotnet/core/deploying/#self-contained-deployments-scd

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 <MvcRazorCompileOnPublish>true</MvcRazorCompileOnPublish>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.0" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="1.1.0" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="1.1.0" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.ViewCompilation" Version="1.1.0-*" />
 </ItemGroup>
</Project>

dotnet publish -c Release

Additional resources

Set the MvcRazorCompileOnPublish property to true , and install the
Microsoft.AspNetCore.Mvc.Razor.ViewCompilation NuGet package. The following .csproj sample highlights these
settings:

Prepare the app for a framework-dependent deployment with the .NET Core CLI publish command. For example,
execute the following command at the project root:

A <project_name>.PrecompiledViews.dll file, containing the compiled Razor files, is produced when
precompilation succeeds. For example, the screenshot below depicts the contents of Index.cshtml within
WebApplication1.PrecompiledViews.dll:

Views in ASP.NET Core MVC

Introduction to Razor Pages in ASP.NET Core
Views in ASP.NET Core MVC

Introduction to Razor Pages in ASP.NET Core
Views in ASP.NET Core MVC
ASP.NET Core Razor SDK

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.ViewCompilation/
https://docs.microsoft.com/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/dotnet/core/tools/dotnet-publish

Layout in ASP.NET Core
3/15/2018 • 5 minutes to read • Edit Online

What is a Layout

By Steve Smith

Views frequently share visual and programmatic elements. In this article, you'll learn how to use common
layouts, share directives, and run common code before rendering views in your ASP.NET app.

Most web apps have a common layout that provides the user with a consistent experience as they navigate
from page to page. The layout typically includes common user interface elements such as the app header,
navigation or menu elements, and footer.

Common HTML structures such as scripts and stylesheets are also frequently used by many pages within
an app. All of these shared elements may be defined in a layout file, which can then be referenced by any
view used within the app. Layouts reduce duplicate code in views, helping them follow the Don't Repeat
Yourself (DRY) principle.

By convention, the default layout for an ASP.NET app is named _Layout.cshtml . The Visual Studio ASP.NET
Core MVC project template includes this layout file in the Views/Shared folder :

This layout defines a top level template for views in the app. Apps don't require a layout, and apps can

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/layout.md
https://ardalis.com/
http://deviq.com/don-t-repeat-yourself/

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - WebApplication1</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet"
href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Home" asp-action="Index" class="navbar-
brand">WebApplication1
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 @await Html.PartialAsync("_LoginPartial")
 </div>
 </div>
 </div>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2016 - WebApplication1</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"

define more than one layout, with different views specifying different layouts.

An example _Layout.cshtml :

 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("scripts", required: false)
</body>
</html>

Specifying a Layout

@{
 Layout = "_Layout";
}

SectionsSections

@section Scripts {
 <script type="text/javascript" src="/scripts/main.js"></script>
 }

Ignoring sectionsIgnoring sections

Importing Shared Directives

Razor views have a Layout property. Individual views specify a layout by setting this property:

The layout specified can use a full path (example: /Views/Shared/_Layout.cshtml) or a partial name (example:
_Layout). When a partial name is provided, the Razor view engine will search for the layout file using its

standard discovery process. The controller-associated folder is searched first, followed by the Shared folder.
This discovery process is identical to the one used to discover partial views.

By default, every layout must call RenderBody . Wherever the call to RenderBody is placed, the contents of
the view will be rendered.

A layout can optionally reference one or more sections, by calling RenderSection . Sections provide a way to
organize where certain page elements should be placed. Each call to RenderSection can specify whether
that section is required or optional. If a required section isn't found, an exception will be thrown. Individual
views specify the content to be rendered within a section using the @section Razor syntax. If a view defines
a section, it must be rendered (or an error will occur).

An example @section definition in a view:

In the code above, validation scripts are added to the scripts section on a view that includes a form. Other
views in the same application might not require any additional scripts, and so wouldn't need to define a
scripts section.

Sections defined in a view are available only in its immediate layout page. They cannot be referenced from
partials, view components, or other parts of the view system.

By default, the body and all sections in a content page must all be rendered by the layout page. The Razor
view engine enforces this by tracking whether the body and each section have been rendered.

To instruct the view engine to ignore the body or sections, call the IgnoreBody and IgnoreSection methods.

The body and every section in a Razor page must be either rendered or ignored.

Views can use Razor directives to do many things, such as importing namespaces or performing

@using WebApplication1
@using WebApplication1.Models
@using WebApplication1.Models.AccountViewModels
@using WebApplication1.Models.ManageViewModels
@using Microsoft.AspNetCore.Identity
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Running Code Before Each View

dependency injection. Directives shared by many views may be specified in a common _ViewImports.cshtml

file. The _ViewImports file supports the following directives:

@addTagHelper

@removeTagHelper

@tagHelperPrefix

@using

@model

@inherits

@inject

The file doesn't support other Razor features, such as functions and section definitions.

A sample _ViewImports.cshtml file:

The _ViewImports.cshtml file for an ASP.NET Core MVC app is typically placed in the Views folder. A
_ViewImports.cshtml file can be placed within any folder, in which case it will only be applied to views within

that folder and its subfolders. _ViewImports files are processed starting at the root level, and then for each
folder leading up to the location of the view itself, so settings specified at the root level may be overridden at
the folder level.

For example, if a root level _ViewImports.cshtml file specifies @model and @addTagHelper , and another
_ViewImports.cshtml file in the controller-associated folder of the view specifies a different @model and

adds another @addTagHelper , the view will have access to both tag helpers and will use the latter @model .

If multiple _ViewImports.cshtml files are run for a view, combined behavior of the directives included in the
ViewImports.cshtml files will be as follows:

@addTagHelper , @removeTagHelper : all run, in order

@tagHelperPrefix : the closest one to the view overrides any others

@model : the closest one to the view overrides any others

@inherits : the closest one to the view overrides any others

@using : all are included; duplicates are ignored

@inject : for each property, the closest one to the view overrides any others with the same property
name

If you have code you need to run before every view, this should be placed in the _ViewStart.cshtml file. By
convention, the _ViewStart.cshtml file is located in the Views folder. The statements listed in
_ViewStart.cshtml are run before every full view (not layouts, and not partial views). Like

@{
 Layout = "_Layout";
}

NOTENOTE

ViewImports.cshtml, _ViewStart.cshtml is hierarchical. If a _ViewStart.cshtml file is defined in the
controller-associated view folder, it will be run after the one defined in the root of the Views folder (if any).

A sample _ViewStart.cshtml file:

The file above specifies that all views will use the _Layout.cshtml layout.

Neither _ViewStart.cshtml nor _ViewImports.cshtml are typically placed in the /Views/Shared folder. The
app-level versions of these files should be placed directly in the /Views folder.

Tag Helpers in ASP.NET Core
6/14/2018 • 11 minutes to read • Edit Online

What are Tag Helpers?

What Tag Helpers provide

By Rick Anderson

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in
Razor files. For example, the built-in ImageTagHelper can append a version number to the image
name. Whenever the image changes, the server generates a new unique version for the image, so
clients are guaranteed to get the current image (instead of a stale cached image). There are many
built-in Tag Helpers for common tasks - such as creating forms, links, loading assets and more - and
even more available in public GitHub repositories and as NuGet packages. Tag Helpers are authored
in C#, and they target HTML elements based on element name, attribute name, or parent tag. For
example, the built-in LabelTagHelper can target the HTML <label> element when the
LabelTagHelper attributes are applied. If you're familiar with HTML Helpers, Tag Helpers reduce the

explicit transitions between HTML and C# in Razor views. In many cases, HTML Helpers provide an
alternative approach to a specific Tag Helper, but it's important to recognize that Tag Helpers don't
replace HTML Helpers and there's not a Tag Helper for each HTML Helper. Tag Helpers compared to
HTML Helpers explains the differences in more detail.

An HTML-friendly development experience For the most part, Razor markup using Tag Helpers
looks like standard HTML. Front-end designers conversant with HTML/CSS/JavaScript can edit
Razor without learning C# Razor syntax.

A rich IntelliSense environment for creating HTML and Razor markup This is in sharp
contrast to HTML Helpers, the previous approach to server-side creation of markup in Razor views.
Tag Helpers compared to HTML Helpers explains the differences in more detail. IntelliSense support
for Tag Helpers explains the IntelliSense environment. Even developers experienced with Razor C#
syntax are more productive using Tag Helpers than writing C# Razor markup.

A way to make you more productive and able to produce more robust, reliable, and
maintainable code using information only available on the server For example, historically the
mantra on updating images was to change the name of the image when you change the image.
Images should be aggressively cached for performance reasons, and unless you change the name of
an image, you risk clients getting a stale copy. Historically, after an image was edited, the name had
to be changed and each reference to the image in the web app needed to be updated. Not only is this
very labor intensive, it's also error prone (you could miss a reference, accidentally enter the wrong
string, etc.) The built-in ImageTagHelper can do this for you automatically. The ImageTagHelper can
append a version number to the image name, so whenever the image changes, the server
automatically generates a new unique version for the image. Clients are guaranteed to get the
current image. This robustness and labor savings comes essentially free by using the ImageTagHelper

.

Most built-in Tag Helpers target standard HTML elements and provide server-side attributes for the
element. For example, the <input> element used in many views in the Views/Account folder
contains the asp-for attribute. This attribute extracts the name of the specified model property into
the rendered HTML. Consider a Razor view with the following model:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/intro.md
https://twitter.com/RickAndMSFT
http://stephenwalther.com/archive/2009/03/03/chapter-6-understanding-html-helpers

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
}

<label asp-for="Movie.Title"></label>

<label for="Movie_Title">Title</label>

Managing Tag Helper scope

@addTagHelper makes Tag Helpers available makes Tag Helpers available

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, AuthoringTagHelpers

@using AuthoringTagHelpers
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, AuthoringTagHelpers

The following Razor markup:

Generates the following HTML:

The asp-for attribute is made available by the For property in the LabelTagHelper. See Author Tag
Helpers for more information.

Tag Helpers scope is controlled by a combination of @addTagHelper , @removeTagHelper , and the "!"
opt-out character.

If you create a new ASP.NET Core web app named AuthoringTagHelpers, the following
Views/_ViewImports.cshtml file will be added to your project:

The @addTagHelper directive makes Tag Helpers available to the view. In this case, the view file is
Pages/_ViewImports.cshtml, which by default is inherited by all files in the Pages folder and sub-
folders; making Tag Helpers available. The code above uses the wildcard syntax ("*") to specify that
all Tag Helpers in the specified assembly (Microsoft.AspNetCore.Mvc.TagHelpers) will be available to
every view file in the Views directory or sub-directory. The first parameter after @addTagHelper

specifies the Tag Helpers to load (we are using "*" for all Tag Helpers), and the second parameter
"Microsoft.AspNetCore.Mvc.TagHelpers" specifies the assembly containing the Tag Helpers.
Microsoft.AspNetCore.Mvc.TagHelpers is the assembly for the built-in ASP.NET Core Tag Helpers.

To expose all of the Tag Helpers in this project (which creates an assembly named
AuthoringTagHelpers), you would use the following:

If your project contains an EmailTagHelper with the default namespace (
AuthoringTagHelpers.TagHelpers.EmailTagHelper), you can provide the fully qualified name (FQN) of

the Tag Helper :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.labeltaghelper?view=aspnetcore-2.0

@using AuthoringTagHelpers
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper AuthoringTagHelpers.TagHelpers.EmailTagHelper, AuthoringTagHelpers

@addTagHelper AuthoringTagHelpers.TagHelpers.E*, AuthoringTagHelpers
@addTagHelper AuthoringTagHelpers.TagHelpers.Email*, AuthoringTagHelpers

@removeTagHelper removes Tag Helpers removes Tag Helpers

Controlling Tag Helper scope with the Controlling Tag Helper scope with the _ViewImports.cshtml_ViewImports.cshtml file file

Opting out of individual elementsOpting out of individual elements

<!span asp-validation-for="Email" class="text-danger"></!span>

Using Using @tagHelperPrefix to make Tag Helper usage explicit to make Tag Helper usage explicit

@tagHelperPrefix th:

To add a Tag Helper to a view using an FQN, you first add the FQN (
AuthoringTagHelpers.TagHelpers.EmailTagHelper), and then the assembly name

(AuthoringTagHelpers). Most developers prefer to use the "*" wildcard syntax. The wildcard syntax
allows you to insert the wildcard character "*" as the suffix in an FQN. For example, any of the
following directives will bring in the EmailTagHelper :

As mentioned previously, adding the @addTagHelper directive to the Views/_ViewImports.cshtml file
makes the Tag Helper available to all view files in the Views directory and sub-directories. You can
use the @addTagHelper directive in specific view files if you want to opt-in to exposing the Tag Helper
to only those views.

The @removeTagHelper has the same two parameters as @addTagHelper , and it removes a Tag Helper
that was previously added. For example, @removeTagHelper applied to a specific view removes the
specified Tag Helper from the view. Using @removeTagHelper in a Views/Folder/_ViewImports.cshtml

file removes the specified Tag Helper from all of the views in Folder.

You can add a _ViewImports.cshtml to any view folder, and the view engine applies the directives
from both that file and the Views/_ViewImports.cshtml file. If you added an empty
Views/Home/_ViewImports.cshtml file for the Home views, there would be no change because the
_ViewImports.cshtml file is additive. Any @addTagHelper directives you add to the
Views/Home/_ViewImports.cshtml file (that are not in the default Views/_ViewImports.cshtml file)
would expose those Tag Helpers to views only in the Home folder.

You can disable a Tag Helper at the element level with the Tag Helper opt-out character ("!"). For
example, Email validation is disabled in the with the Tag Helper opt-out character :

You must apply the Tag Helper opt-out character to the opening and closing tag. (The Visual Studio
editor automatically adds the opt-out character to the closing tag when you add one to the opening
tag). After you add the opt-out character, the element and Tag Helper attributes are no longer
displayed in a distinctive font.

The @tagHelperPrefix directive allows you to specify a tag prefix string to enable Tag Helper support
and to make Tag Helper usage explicit. For example, you could add the following markup to the
Views/_ViewImports.cshtml file:

In the code image below, the Tag Helper prefix is set to th: , so only those elements using the prefix

 IntelliSense support for Tag Helpers

th: support Tag Helpers (Tag Helper-enabled elements have a distinctive font). The <label> and
<input> elements have the Tag Helper prefix and are Tag Helper-enabled, while the element

doesn't.

The same hierarchy rules that apply to @addTagHelper also apply to @tagHelperPrefix .

When you create a new ASP.NET web app in Visual Studio, it adds the NuGet package
"Microsoft.AspNetCore.Razor.Tools". This is the package that adds Tag Helper tooling.

Consider writing an HTML <label> element. As soon as you enter <l in the Visual Studio editor,
IntelliSense displays matching elements:

Not only do you get HTML help, but the icon (the "@" symbol with "<>" under it).

identifies the element as targeted by Tag Helpers. Pure HTML elements (such as the fieldset)
display the "<>" icon.

A pure HTML <label> tag displays the HTML tag (with the default Visual Studio color theme) in a
brown font, the attributes in red, and the attribute values in blue.

After you enter <label , IntelliSense lists the available HTML/CSS attributes and the Tag Helper-
targeted attributes:

 Tag Helpers compared to HTML Helpers

@Html.Label("FirstName", "First Name:", new {@class="caption"})

IntelliSense statement completion allows you to enter the tab key to complete the statement with the
selected value:

As soon as a Tag Helper attribute is entered, the tag and attribute fonts change. Using the default
Visual Studio "Blue" or "Light" color theme, the font is bold purple. If you're using the "Dark" theme
the font is bold teal. The images in this document were taken using the default theme.

You can enter the Visual Studio CompleteWord shortcut (Ctrl +spacebar is the default inside the
double quotes (""), and you are now in C#, just like you would be in a C# class. IntelliSense displays
all the methods and properties on the page model. The methods and properties are available
because the property type is ModelExpression . In the image below, I'm editing the Register view, so
the RegisterViewModel is available.

IntelliSense lists the properties and methods available to the model on the page. The rich
IntelliSense environment helps you select the CSS class:

Tag Helpers attach to HTML elements in Razor views, while HTML Helpers are invoked as methods
interspersed with HTML in Razor views. Consider the following Razor markup, which creates an
HTML label with the CSS class "caption":

The at (@) symbol tells Razor this is the start of code. The next two parameters ("FirstName" and
"First Name:") are strings, so IntelliSense can't help. The last argument:

https://docs.microsoft.com/visualstudio/ide/default-keyboard-shortcuts-in-visual-studio
http://stephenwalther.com/archive/2009/03/03/chapter-6-understanding-html-helpers
https://docs.microsoft.com/visualstudio/ide/using-intellisense

new {@class="caption"}

<label class="caption" for="FirstName">First Name</label>

<label class="caption" for="FirstName">Name First</label>

Is an anonymous object used to represent attributes. Because class is a reserved keyword in C#, you
use the @ symbol to force C# to interpret "@class=" as a symbol (property name). To a front-end
designer (someone familiar with HTML/CSS/JavaScript and other client technologies but not
familiar with C# and Razor), most of the line is foreign. The entire line must be authored with no help
from IntelliSense.

Using the LabelTagHelper , the same markup can be written as:

With the Tag Helper version, as soon as you enter <l in the Visual Studio editor, IntelliSense
displays matching elements:

IntelliSense helps you write the entire line. The LabelTagHelper also defaults to setting the content of
the asp-for attribute value ("FirstName") to "First Name"; It converts camel-cased properties to a
sentence composed of the property name with a space where each new upper-case letter occurs. In
the following markup:

generates:

The camel-cased to sentence-cased content isn't used if you add content to the <label> . For
example:

generates:

The following code image shows the Form portion of the Views/Account/Register.cshtml Razor view
generated from the legacy ASP.NET 4.5.x MVC template included with Visual Studio 2015.

@Html.AntiForgeryToken()

The Visual Studio editor displays C# code with a grey background. For example, the
AntiForgeryToken HTML Helper :

is displayed with a grey background. Most of the markup in the Register view is C#. Compare that to
the equivalent approach using Tag Helpers:

The markup is much cleaner and easier to read, edit, and maintain than the HTML Helpers approach.
The C# code is reduced to the minimum that the server needs to know about. The Visual Studio
editor displays markup targeted by a Tag Helper in a distinctive font.

<div class="form-group">
 <label asp-for="Email" class="col-md-2 control-label"></label>
 <div class="col-md-10">
 <input asp-for="Email" class="form-control" />

 </div>
</div>

Tag Helpers compared to Web Server Controls

Customizing the Tag Helper element font

Consider the Email group:

Each of the "asp-" attributes has a value of "Email", but "Email" isn't a string. In this context, "Email" is
the C# model expression property for the RegisterViewModel .

The Visual Studio editor helps you write all of the markup in the Tag Helper approach of the register
form, while Visual Studio provides no help for most of the code in the HTML Helpers approach.
IntelliSense support for Tag Helpers goes into detail on working with Tag Helpers in the Visual
Studio editor.

Tag Helpers don't own the element they're associated with; they simply participate in the
rendering of the element and content. ASP.NET Web Server controls are declared and
invoked on a page.

Web Server controls have a non-trivial lifecycle that can make developing and debugging
difficult.

Web Server controls allow you to add functionality to the client Document Object Model
(DOM) elements by using a client control. Tag Helpers have no DOM.

Web Server controls include automatic browser detection. Tag Helpers have no knowledge of
the browser.

Multiple Tag Helpers can act on the same element (see Avoiding Tag Helper conflicts) while
you typically can't compose Web Server controls.

Tag Helpers can modify the tag and content of HTML elements that they're scoped to, but
don't directly modify anything else on a page. Web Server controls have a less specific scope
and can perform actions that affect other parts of your page; enabling unintended side effects.

Web Server controls use type converters to convert strings into objects. With Tag Helpers,
you work natively in C#, so you don't need to do type conversion.

Web Server controls use System.ComponentModel to implement the run-time and design-
time behavior of components and controls. System.ComponentModel includes the base classes
and interfaces for implementing attributes and type converters, binding to data sources, and
licensing components. Contrast that to Tag Helpers, which typically derive from TagHelper ,
and the TagHelper base class exposes only two methods, Process and ProcessAsync .

You can customize the font and colorization from Tools > Options > Environment > Fonts and
Colors:

https://msdn.microsoft.com/library/7698y1f0.aspx
https://msdn.microsoft.com/library/zsyt68f1.aspx
https://docs.microsoft.com/dotnet/api/system.componentmodel

Additional resources
Author Tag Helpers
Working with Forms
TagHelperSamples on GitHub contains Tag Helper samples for working with Bootstrap.

https://github.com/dpaquette/TagHelperSamples
http://getbootstrap.com/

Author Tag Helpers in ASP.NET Core
5/2/2018 • 16 minutes to read • Edit Online

Get started with Tag Helpers

A minimal Tag Helper

<email>Support</email>

Support@contoso.com

By Rick Anderson

View or download sample code (how to download)

This tutorial provides an introduction to programming Tag Helpers. Introduction to Tag Helpers describes the
benefits that Tag Helpers provide.

A tag helper is any class that implements the ITagHelper interface. However, when you author a tag helper, you
generally derive from TagHelper , doing so gives you access to the Process method.

1. Create a new ASP.NET Core project called AuthoringTagHelpers. You won't need authentication for this
project.

2. Create a folder to hold the Tag Helpers called TagHelpers. The TagHelpers folder is not required, but it's a
reasonable convention. Now let's get started writing some simple tag helpers.

In this section, you write a tag helper that updates an email tag. For example:

The server will use our email tag helper to convert that markup into the following:

That is, an anchor tag that makes this an email link. You might want to do this if you are writing a blog engine
and need it to send email for marketing, support, and other contacts, all to the same domain.

using Microsoft.AspNetCore.Razor.TagHelpers;
using System.Threading.Tasks;

namespace AuthoringTagHelpers.TagHelpers
{
 public class EmailTagHelper : TagHelper
 {
 public override void Process(TagHelperContext context, TagHelperOutput output)
 {
 output.TagName = "a"; // Replaces <email> with <a> tag
 }
 }
}

1. Add the following EmailTagHelper class to the TagHelpers folder.

Notes:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/authoring.md
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/tag-helpers/authoring/sample

@using AuthoringTagHelpers
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper AuthoringTagHelpers.TagHelpers.EmailTagHelper, AuthoringTagHelpers

public class Email : TagHelper

@using AuthoringTagHelpers
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, AuthoringTagHelpers

Tag helpers use a naming convention that targets elements of the root class name (minus the
TagHelper portion of the class name). In this example, the root name of EmailTagHelper is email,
so the <email> tag will be targeted. This naming convention should work for most tag helpers,
later on I'll show how to override it.

The EmailTagHelper class derives from TagHelper . The TagHelper class provides methods and
properties for writing Tag Helpers.

The overridden Process method controls what the tag helper does when executed. The TagHelper

class also provides an asynchronous version (ProcessAsync) with the same parameters.

The context parameter to Process (and ProcessAsync) contains information associated with the
execution of the current HTML tag.

The output parameter to Process (and ProcessAsync) contains a stateful HTML element
representative of the original source used to generate an HTML tag and content.

Our class name has a suffix of TagHelper, which is not required, but it's considered a best practice
convention. You could declare the class as:

2. To make the EmailTagHelper class available to all our Razor views, add the addTagHelper directive to the
Views/_ViewImports.cshtml file:

The code above uses the wildcard syntax to specify all the tag helpers in our assembly will be available.
The first string after @addTagHelper specifies the tag helper to load (Use "*" for all tag helpers), and the
second string "AuthoringTagHelpers" specifies the assembly the tag helper is in. Also, note that the
second line brings in the ASP.NET Core MVC tag helpers using the wildcard syntax (those helpers are
discussed in Introduction to Tag Helpers.) It's the @addTagHelper directive that makes the tag helper
available to the Razor view. Alternatively, you can provide the fully qualified name (FQN) of a tag helper
as shown below:

To add a tag helper to a view using a FQN, you first add the FQN (
AuthoringTagHelpers.TagHelpers.EmailTagHelper), and then the assembly name (AuthoringTagHelpers). Most

developers will prefer to use the wildcard syntax. Introduction to Tag Helpers goes into detail on tag helper
adding, removing, hierarchy, and wildcard syntax.

3. Update the markup in the Views/Home/Contact.cshtml file with these changes:

SetAttribute and SetContent

public class EmailTagHelper : TagHelper
{
 private const string EmailDomain = "contoso.com";

 // Can be passed via <email mail-to="..." />.
 // Pascal case gets translated into lower-kebab-case.
 public string MailTo { get; set; }

 public override void Process(TagHelperContext context, TagHelperOutput output)
 {
 output.TagName = "a"; // Replaces <email> with <a> tag

 var address = MailTo + "@" + EmailDomain;
 output.Attributes.SetAttribute("href", "mailto:" + address);
 output.Content.SetContent(address);
 }
}

@{
 ViewData["Title"] = "Contact";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<address>
 One Microsoft Way

 Redmond, WA 98052

 <abbr title="Phone">P:</abbr>
 425.555.0100
</address>

<address>
 Support:<email>Support</email>

 Marketing:<email>Marketing</email>
</address>

4. Run the app and use your favorite browser to view the HTML source so you can verify that the email tags
are replaced with anchor markup (For example, <a>Support). Support and Marketing are rendered as
a links, but they don't have an href attribute to make them functional. We'll fix that in the next section.

In this section, we'll update the EmailTagHelper so that it will create a valid anchor tag for email. We'll update it
to take information from a Razor view (in the form of a mail-to attribute) and use that in generating the anchor.

Update the EmailTagHelper class with the following:

Notes:

Pascal-cased class and property names for tag helpers are translated into their lower kebab case.
Therefore, to use the MailTo attribute, you'll use <email mail-to="value"/> equivalent.

The last line sets the completed content for our minimally functional tag helper.

The highlighted line shows the syntax for adding attributes:

https://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101

public override void Process(TagHelperContext context, TagHelperOutput output)
{
 output.TagName = "a"; // Replaces <email> with <a> tag

 var address = MailTo + "@" + EmailDomain;
 output.Attributes.SetAttribute("href", "mailto:" + address);
 output.Content.SetContent(address);
}

ProcessAsyncProcessAsync

That approach works for the attribute "href" as long as it doesn't currently exist in the attributes collection. You
can also use the output.Attributes.Add method to add a tag helper attribute to the end of the collection of tag
attributes.

@{
 ViewData["Title"] = "Contact Copy";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<address>
 One Microsoft Way Copy Version

 Redmond, WA 98052-6399

 <abbr title="Phone">P:</abbr>
 425.555.0100
</address>

<address>
 Support:<email mail-to="Support"></email>

 Marketing:<email mail-to="Marketing"></email>
</address>

NOTENOTE

[HtmlTargetElement("email", TagStructure = TagStructure.WithoutEndTag)]
public class EmailVoidTagHelper : TagHelper
{
 private const string EmailDomain = "contoso.com";
 // Code removed for brevity

1. Update the markup in the Views/Home/Contact.cshtml file with these changes:

2. Run the app and verify that it generates the correct links.

If you were to write the email tag self-closing (<email mail-to="Rick" />), the final output would also be self-
closing. To enable the ability to write the tag with only a start tag (<email mail-to="Rick">) you must decorate
the class with the following:

With a self-closing email tag helper, the output would be . Self-
closing anchor tags are not valid HTML, so you wouldn't want to create one, but you might want to create
a tag helper that's self-closing. Tag helpers set the type of the TagMode property after reading a tag.

In this section, we'll write an asynchronous email helper.

1. Replace the EmailTagHelper class with the following code:

RemoveAll, PreContent.SetHtmlContent and PostContent.SetHtmlContentRemoveAll, PreContent.SetHtmlContent and PostContent.SetHtmlContent

public class EmailTagHelper : TagHelper
{
 private const string EmailDomain = "contoso.com";
 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 output.TagName = "a"; // Replaces <email> with <a> tag
 var content = await output.GetChildContentAsync();
 var target = content.GetContent() + "@" + EmailDomain;
 output.Attributes.SetAttribute("href", "mailto:" + target);
 output.Content.SetContent(target);
 }
}

@{
 ViewData["Title"] = "Contact";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<address>
 One Microsoft Way

 Redmond, WA 98052

 <abbr title="Phone">P:</abbr>
 425.555.0100
</address>

<address>
 Support:<email>Support</email>

 Marketing:<email>Marketing</email>
</address>

Notes:

This version uses the asynchronous ProcessAsync method. The asynchronous
GetChildContentAsync returns a Task containing the TagHelperContent .

Use the output parameter to get contents of the HTML element.

2. Make the following change to the Views/Home/Contact.cshtml file so the tag helper can get the target
email.

3. Run the app and verify that it generates valid email links.

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace AuthoringTagHelpers.TagHelpers
{
 [HtmlTargetElement(Attributes = "bold")]
 public class BoldTagHelper : TagHelper
 {
 public override void Process(TagHelperContext context, TagHelperOutput output)
 {
 output.Attributes.RemoveAll("bold");
 output.PreContent.SetHtmlContent("");
 output.PostContent.SetHtmlContent("");
 }
 }
}

1. Add the following BoldTagHelper class to the TagHelpers folder.

[HtmlTargetElement("bold")]
[HtmlTargetElement(Attributes = "bold")]
public class BoldTagHelper : TagHelper
{
 public override void Process(TagHelperContext context, TagHelperOutput output)
 {
 output.Attributes.RemoveAll("bold");
 output.PreContent.SetHtmlContent("");
 output.PostContent.SetHtmlContent("");
 }
}

[HtmlTargetElement("bold", Attributes = "bold")]

@{
 ViewData["Title"] = "About";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p bold>Use this area to provide additional information.</p>

<bold> Is this bold?</bold>

Notes:

The [HtmlTargetElement] attribute passes an attribute parameter that specifies that any HTML
element that contains an HTML attribute named "bold" will match, and the Process override
method in the class will run. In our sample, the Process method removes the "bold" attribute and
surrounds the containing markup with .

Because you don't want to replace the existing tag content, you must write the opening

tag with the PreContent.SetHtmlContent method and the closing tag with the
PostContent.SetHtmlContent method.

2. Modify the About.cshtml view to contain a bold attribute value. The completed code is shown below.

3. Run the app. You can use your favorite browser to inspect the source and verify the markup.

The [HtmlTargetElement] attribute above only targets HTML markup that provides an attribute name of
"bold". The <bold> element wasn't modified by the tag helper.

4. Comment out the [HtmlTargetElement] attribute line and it will default to targeting <bold> tags, that is,
HTML markup of the form <bold> . Remember, the default naming convention will match the class name
BoldTagHelper to <bold> tags.

5. Run the app and verify that the <bold> tag is processed by the tag helper.

Decorating a class with multiple [HtmlTargetElement] attributes results in a logical-OR of the targets. For
example, using the code below, a bold tag or a bold attribute will match.

When multiple attributes are added to the same statement, the runtime treats them as a logical-AND. For
example, in the code below, an HTML element must be named "bold" with an attribute named "bold" (
<bold bold />) to match.

You can also use the [HtmlTargetElement] to change the name of the targeted element. For example if you
wanted the BoldTagHelper to target <MyBold> tags, you would use the following attribute:

[HtmlTargetElement("MyBold")]

Pass a model to a Tag Helper

using System;

namespace AuthoringTagHelpers.Models
{
 public class WebsiteContext
 {
 public Version Version { get; set; }
 public int CopyrightYear { get; set; }
 public bool Approved { get; set; }
 public int TagsToShow { get; set; }
 }
}

using System;
using AuthoringTagHelpers.Models;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace AuthoringTagHelpers.TagHelpers
{
 public class WebsiteInformationTagHelper : TagHelper
 {
 public WebsiteContext Info { get; set; }

 public override void Process(TagHelperContext context, TagHelperOutput output)
 {
 output.TagName = "section";
 output.Content.SetHtmlContent(
$@"Version: {Info.Version}
Copyright Year: {Info.CopyrightYear}
Approved: {Info.Approved}
Number of tags to show: {Info.TagsToShow}");
 output.TagMode = TagMode.StartTagAndEndTag;
 }
 }
}

[HtmlTargetElement("WebsiteInformation")]

1. Add a Models folder.

2. Add the following WebsiteContext class to the Models folder :

3. Add the following WebsiteInformationTagHelper class to the TagHelpers folder.

Notes:

As mentioned previously, tag helpers translates Pascal-cased C# class names and properties for
tag helpers into lower kebab case. Therefore, to use the WebsiteInformationTagHelper in Razor,
you'll write <website-information /> .

You are not explicitly identifying the target element with the [HtmlTargetElement] attribute, so the
default of website-information will be targeted. If you applied the following attribute (note it's not
kebab case but matches the class name):

http://wiki.c2.com/?KebabCase

[HtmlTargetElement("Website-Information")]

$@"Version: {Info.Version}

@using AuthoringTagHelpers.Models
@{
 ViewData["Title"] = "About";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p bold>Use this area to provide additional information.</p>

<bold> Is this bold?</bold>

<h3> web site info </h3>
<website-information info="new WebsiteContext {
 Version = new Version(1, 3),
 CopyrightYear = 1638,
 Approved = true,
 TagsToShow = 131 }" />

NOTENOTE

<website-information info="new WebsiteContext {
 Version = new Version(1, 3),
 CopyrightYear = 1638,
 Approved = true,
 TagsToShow = 131 }" />

The lower kebab case tag <website-information /> wouldn't match. If you want use the
[HtmlTargetElement] attribute, you would use kebab case as shown below:

Elements that are self-closing have no content. For this example, the Razor markup will use a self-
closing tag, but the tag helper will be creating a section element (which isn't self-closing and you
are writing content inside the section element). Therefore, you need to set TagMode to
StartTagAndEndTag to write output. Alternatively, you can comment out the line setting TagMode

and write markup with a closing tag. (Example markup is provided later in this tutorial.)

The $ (dollar sign) in the following line uses an interpolated string:

4. Add the following markup to the About.cshtml view. The highlighted markup displays the web site
information.

In the Razor markup shown below:

Razor knows the info attribute is a class, not a string, and you want to write C# code. Any non-string tag helper
attribute should be written without the @ character.

5. Run the app, and navigate to the About view to see the web site information.

http://www.w3.org/TR/html5/sections.html#the-section-element
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/interpolated-strings

Condition Tag Helper

NOTENOTE

<website-information info="new WebsiteContext {
 Version = new Version(1, 3),
 CopyrightYear = 1638,
 Approved = true,
 TagsToShow = 131 }" >
</website-information>

You can use the following markup with a closing tag and remove the line with TagMode.StartTagAndEndTag in
the tag helper:

The condition tag helper renders output when passed a true value.

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace AuthoringTagHelpers.TagHelpers
{
 [HtmlTargetElement(Attributes = nameof(Condition))]
 public class ConditionTagHelper : TagHelper
 {
 public bool Condition { get; set; }

 public override void Process(TagHelperContext context, TagHelperOutput output)
 {
 if (!Condition)
 {
 output.SuppressOutput();
 }
 }
 }
}

@using AuthoringTagHelpers.Models
@model WebsiteContext

@{
 ViewData["Title"] = "Home Page";
}

<div>
 <h3>Information about our website (outdated):</h3>
 <website-information info=@Model />
 <div condition="@Model.Approved">
 <p>
 This website has <strong surround="em"> @Model.Approved been approved yet.
 Visit www.contoso.com for more information.
 </p>
 </div>
</div>

1. Add the following ConditionTagHelper class to the TagHelpers folder.

2. Replace the contents of the Views/Home/Index.cshtml file with the following markup:

3. Replace the Index method in the Home controller with the following code:

NOTENOTE

[HtmlTargetElement(Attributes = nameof(Condition))]
 // [HtmlTargetElement(Attributes = "condition")]
 public class ConditionTagHelper : TagHelper
{
 public bool Condition { get; set; }

 public override void Process(TagHelperContext context, TagHelperOutput output)
 {
 if (!Condition)
 {
 output.SuppressOutput();
 }
 }
}

Avoid Tag Helper conflictsAvoid Tag Helper conflicts

public IActionResult Index(bool approved = false)
{
 return View(new WebsiteContext
 {
 Approved = approved,
 CopyrightYear = 2015,
 Version = new Version(1, 3, 3, 7),
 TagsToShow = 20
 });
}

4. Run the app and browse to the home page. The markup in the conditional div won't be rendered.
Append the query string ?approved=true to the URL (for example,
http://localhost:1235/Home/Index?approved=true). approved is set to true and the conditional markup will

be displayed.

Use the nameof operator to specify the attribute to target rather than specifying a string as you did with the bold tag
helper:

The nameof operator will protect the code should it ever be refactored (we might want to change the name to
RedCondition).

In this section, you write a pair of auto-linking tag helpers. The first will replace markup containing a URL
starting with HTTP to an HTML anchor tag containing the same URL (and thus yielding a link to the URL). The
second will do the same for a URL starting with WWW.

Because these two helpers are closely related and you may refactor them in the future, we'll keep them in the
same file.

1. Add the following AutoLinkerHttpTagHelper class to the TagHelpers folder.

https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/nameof
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/nameof

[HtmlTargetElement("p")]
public class AutoLinkerHttpTagHelper : TagHelper
{
 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 var childContent = await output.GetChildContentAsync();
 // Find Urls in the content and replace them with their anchor tag equivalent.
 output.Content.SetHtmlContent(Regex.Replace(
 childContent.GetContent(),
 @"\b(?:https?://)(\S+)\b",
 "$0")); // http link version}
 }
}

NOTENOTE

@{
 ViewData["Title"] = "Contact";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<address>
 One Microsoft Way

 Redmond, WA 98052

 <abbr title="Phone">P:</abbr>
 425.555.0100
</address>

<address>
 Support:<email>Support</email>

 Marketing:<email>Marketing</email>
</address>

<p>Visit us at http://docs.asp.net or at www.microsoft.com</p>

The AutoLinkerHttpTagHelper class targets p elements and uses Regex to create the anchor.

2. Add the following markup to the end of the Views/Home/Contact.cshtml file:

3. Run the app and verify that the tag helper renders the anchor correctly.

4. Update the AutoLinker class to include the AutoLinkerWwwTagHelper which will convert www text to an
anchor tag that also contains the original www text. The updated code is highlighted below:

https://docs.microsoft.com/dotnet/standard/base-types/regular-expression-language-quick-reference

 [HtmlTargetElement("p")]
 public class AutoLinkerHttpTagHelper : TagHelper
 {
 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 var childContent = await output.GetChildContentAsync();
 // Find Urls in the content and replace them with their anchor tag equivalent.
 output.Content.SetHtmlContent(Regex.Replace(
 childContent.GetContent(),
 @"\b(?:https?://)(\S+)\b",
 "$0")); // http link version}
 }
 }

 [HtmlTargetElement("p")]
 public class AutoLinkerWwwTagHelper : TagHelper
 {
 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 var childContent = await output.GetChildContentAsync();
 // Find Urls in the content and replace them with their anchor tag equivalent.
 output.Content.SetHtmlContent(Regex.Replace(
 childContent.GetContent(),
 @"\b(www\.)(\S+)\b",
 "$0")); // www version
 }
 }
}

5. Run the app. Notice the www text is rendered as a link but the HTTP text isn't. If you put a break point in
both classes, you can see that the HTTP tag helper class runs first. The problem is that the tag helper
output is cached, and when the WWW tag helper is run, it overwrites the cached output from the HTTP
tag helper. Later in the tutorial we'll see how to control the order that tag helpers run in. We'll fix the code
with the following:

 public class AutoLinkerHttpTagHelper : TagHelper
 {
 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 var childContent = output.Content.IsModified ? output.Content.GetContent() :
 (await output.GetChildContentAsync()).GetContent();

 // Find Urls in the content and replace them with their anchor tag equivalent.
 output.Content.SetHtmlContent(Regex.Replace(
 childContent,
 @"\b(?:https?://)(\S+)\b",
 "$0")); // http link version}
 }
 }

 [HtmlTargetElement("p")]
 public class AutoLinkerWwwTagHelper : TagHelper
 {
 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 var childContent = output.Content.IsModified ? output.Content.GetContent() :
 (await output.GetChildContentAsync()).GetContent();

 // Find Urls in the content and replace them with their anchor tag equivalent.
 output.Content.SetHtmlContent(Regex.Replace(
 childContent,
 @"\b(www\.)(\S+)\b",
 "$0")); // www version
 }
 }

NOTENOTE

var childContent = await output.GetChildContentAsync();

var childContent = output.Content.IsModified ? output.Content.GetContent() :
 (await output.GetChildContentAsync()).GetContent();

In the first edition of the auto-linking tag helpers, you got the content of the target with the following code:

That is, you call GetChildContentAsync using the TagHelperOutput passed into the ProcessAsync method.
As mentioned previously, because the output is cached, the last tag helper to run wins. You fixed that problem with
the following code:

The code above checks to see if the content has been modified, and if it has, it gets the content from the output
buffer.

6. Run the app and verify that the two links work as expected. While it might appear our auto linker tag
helper is correct and complete, it has a subtle problem. If the WWW tag helper runs first, the www links
won't be correct. Update the code by adding the Order overload to control the order that the tag runs in.
The Order property determines the execution order relative to other tag helpers targeting the same
element. The default order value is zero and instances with lower values are executed first.

Inspect and retrieve child content

public class AutoLinkerHttpTagHelper : TagHelper
{
 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 var childContent = output.Content.IsModified ? output.Content.GetContent() :
 (await output.GetChildContentAsync()).GetContent();

 // Find Urls in the content and replace them with their anchor tag equivalent.
 output.Content.SetHtmlContent(Regex.Replace(
 childContent,
 @"\b(?:https?://)(\S+)\b",
 "$0")); // http link version}
 }
}

public class AutoLinkerHttpTagHelper : TagHelper
{
 // This filter must run before the AutoLinkerWwwTagHelper as it searches and replaces http and
 // the AutoLinkerWwwTagHelper adds http to the markup.
 public override int Order
 {
 get { return int.MinValue; }
 }

The above code will guarantee that the HTTP tag helper runs before the WWW tag helper. Change Order

to MaxValue and verify that the markup generated for the WWW tag is incorrect.

The tag helpers provide several properties to retrieve content.

The result of GetChildContentAsync can be appended to output.Content .
You can inspect the result of GetChildContentAsync with GetContent .
If you modify output.Content , the TagHelper body won't be executed or rendered unless you call
GetChildContentAsync as in our auto-linker sample:

Multiple calls to GetChildContentAsync returns the same value and doesn't re-execute the TagHelper body
unless you pass in a false parameter indicating not to use the cached result.

Tag Helpers in forms in ASP.NET Core
5/2/2018 • 17 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
 <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
 <!-- Input and Submit elements -->
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

Using a named routeUsing a named route

By Rick Anderson, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML
Form element provides the primary mechanism web apps use to post back data to the server. Most of this
document describes Tag Helpers and how they can help you productively create robust HTML forms. We
recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to
recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When
an HTML Helper alternative exists, it's mentioned.

The Form Tag Helper :

Generates the HTML <FORM> action attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the
[ValidateAntiForgeryToken] attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name> attribute, where <Parameter Name> is added to the route values.
The routeValues parameters to Html.BeginForm and Html.BeginRouteForm provide similar functionality.

Has an HTML Helper alternative Html.BeginForm and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action attribute value from the Form Tag Helper attributes asp-controller and
asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken] attribute in the HTTP Post action method). Protecting a
pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route Tag Helper attribute can also generate markup for the HTML action attribute. An app with a route
named register could use the following markup for the registration page:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

<form asp-route="register" method="post">
 <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@ViewData["ReturnUrl"]"
 method="post" class="form-horizontal" role="form">

NOTENOTE

The Input Tag Helper

<input asp-for="<Expression Name>" />

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
 'RegisterViewModel' does not contain a definition for 'Email' and no
 extension method 'Email' accepting a first argument of type 'RegisterViewModel'
 could be found (are you missing a using directive or an assembly reference?)

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User
Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl is only populated automatically when you try to access an authorized resource but
are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the
login page with the returnUrl set.

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

Generates the id and name HTML attributes for the expression name specified in the asp-for attribute.
asp-for="Property1.Property2" is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for attribute value. See the Expression names section for additional information.

Sets the HTML type attribute value based on the model type and data annotation attributes applied to the
model property

Won't overwrite the HTML type attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor and Html.EditorFor . See the HTML Helper
alternatives to Input Tag Helper section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get
an error similar to the following:

The Input Tag Helper sets the HTML type attribute based on the .NET type. The following table lists some
common .NET types and generated HTML type (not every .NET type is listed).

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

.NET TYPE INPUT TYPE

Bool type=”checkbox”

String type=”text”

DateTime type=”datetime”

Byte type=”number”

Int type=”number”

Single, Double type=”number”

ATTRIBUTE INPUT TYPE

[EmailAddress] type=”email”

[Url] type=”url”

[HiddenInput] type=”hidden”

[Phone] type=”tel”

[DataType(DataType.Password)] type=”password”

[DataType(DataType.Date)] type=”date”

[DataType(DataType.Time)] type=”time”

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

The following table shows some common data annotations attributes that the input tag helper will map to specific
input types (not every validation attribute is listed):

Sample:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

 <form method="post" action="/Demo/RegisterInput">
 Email:
 <input type="email" data-val="true"
 data-val-email="The Email Address field is not a valid email address."
 data-val-required="The Email Address field is required."
 id="Email" name="Email" value="" />

 Password:
 <input type="password" data-val="true"
 data-val-required="The Password field is required."
 id="Password" name="Password" />

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty,
 new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

The code above generates the following HTML:

The data annotations applied to the Email and Password properties generate metadata on the model. The Input
Tag Helper consumes the model metadata and produces HTML5 data-val-* attributes (see Model Validation).
These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery
validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of
the validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is
provided in the attribute, it's displayed as the value for the data-val-rule attribute. There are also attributes of the
form data-val-ruleName-argumentName="argumentValue" that provide additional details about the rule, for example,
data-val-maxlength-max="1024" .

Html.TextBox , Html.TextBoxFor , Html.Editor and Html.EditorFor have overlapping features with the Input Tag
Helper. The Input Tag Helper will automatically set the type attribute; Html.TextBox and Html.TextBoxFor won't.
Html.Editor and Html.EditorFor handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor and Html.TextBoxFor are strongly typed (they use lambda expressions);
Html.TextBox and Html.Editor are not (they use expression names).

@Html.Editor() and @Html.EditorFor() use a special ViewDataDictionary entry named htmlAttributes when
executing their default templates. This behavior is optionally augmented using additionalViewData parameters. The
key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes object
passed to input helpers like @Html.TextBox() .

The asp-for attribute value is a ModelExpression and the right hand side of a lambda expression. Therefore,
asp-for="Property1" becomes m => m.Property1 in the generated code which is why you don't need to prefix with
Model . You can use the "@" character to start an inline expression and move before the m. :

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/

@{
 var joe = "Joe";
 }
 <input asp-for="@joe" />

<input type="text" id="joe" name="joe" value="Joe" />

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
 public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
 public string Email { get; set; }

 [DataType(DataType.Password)]
 public string Password { get; set; }

 public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 Address: <input asp-for="Address.AddressLine1" />

 <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="" />

Expression names and CollectionsExpression names and Collections

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member" generates the same name as
asp-for="CollectionProperty[i].Member" when i has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including
ModelState . Consider <input type="text" asp-for="@Name" /> . The calculated value attribute is the first non-null

value from:

ModelState entry with key "Name".
Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex
model class that contains a child Address property.

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

public class Person
{
 public List<string> Colors { get; set; }

 public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
 {
 ViewData["Index"] = colorIndex;
 return View(GetPerson(id));
 }

@model Person
@{
 var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
 @Html.EditorFor(m => m.Colors[index])
 <label asp-for="Age"></label>
 <input asp-for="Age" />

 <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" />

public class ToDoItem
{
 public string Name { get; set; }

 public bool IsDone { get; set; }
}

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color element:

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
 <table>
 <tr> <th>Name</th> <th>Is Done</th> </tr>

 @for (int i = 0; i < Model.Count; i++)
 {
 <tr>
 @Html.EditorFor(model => model[i])
 </tr>
 }

 </table>
 <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
 <label asp-for="@Model.Name"></label>
 @Html.DisplayFor(model => model.Name)
</td>
<td>
 <input asp-for="@Model.IsDone" />
</td>

@*
 This template replaces the following Razor which evaluates the indexer three times.
 <td>
 <label asp-for="@Model[i].Name"></label>
 @Html.DisplayFor(model => model[i].Name)
 </td>
 <td>
 <input asp-for="@Model[i].IsDone" />
 </td>
*@

NOTENOTE

NOTENOTE

The Textarea Tag Helper

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

Always use for (and not foreach) to iterate over a list. Evaluating an indexer in a LINQ expression can be expensive and
should be minimized.

The commented sample code above shows how you would replace the lambda expression with the @ operator to access
each ToDoItem in the list.

The Textarea Tag Helper tag helper is similar to the Input Tag Helper.

Generates the id and name attributes, and the data validation attributes from the model for a <textarea>
element.

https://www.w3.org/wiki/HTML/Elements/textarea

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class DescriptionViewModel
 {
 [MinLength(5)]
 [MaxLength(1024)]
 public string Description { get; set; }
 }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
 <textarea asp-for="Description"></textarea>
 <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
 <textarea data-val="true"
 data-val-maxlength="The field Description must be a string or array type with a maximum length of
'1024'."
 data-val-maxlength-max="1024"
 data-val-minlength="The field Description must be a string or array type with a minimum length of
'5'."
 data-val-minlength-min="5"
 id="Description" name="Description">
 </textarea>
 <button type="submit">Test</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Label Tag Helper

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

Generates the label caption and for attribute on a element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display attribute. The intended display name
might change over time, and the combination of Display attribute and Label Tag Helper will apply the
Display everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class SimpleViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }
 }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
 <label asp-for="Email"></label>
 <input asp-for="Email" />

</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

The following HTML is generated for the <label> element:

The Label Tag Helper generated the for attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id and for elements so they can be correctly associated. The
caption in this sample comes from the Display attribute. If the model didn't contain a Display attribute, the
caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper (which displays a validation message for
a single property on your model), and the Validation Summary Tag Helper (which displays a summary of validation
errors). The Input Tag Helper adds HTML5 client side validation attributes to input elements based on data
annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper
displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property" attribute to the span element, which attaches the validation
error messages on the input field of the specified model property. When a client side validation error occurs,
jQuery displays the error message in the element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only
be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper is used with the asp-validation-for attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span

<span class="field-validation-valid"
 data-valmsg-for="Email"
 data-valmsg-replace="true">

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
 data-valmsg-replace="true">
 The Email Address field is required.

The Validation Summary Tag HelperThe Validation Summary Tag Helper

ASP-VALIDATION-SUMMARY VALIDATION MESSAGES DISPLAYED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

You generally use the Validation Message Tag Helper after an Input Tag Helper for the same property. Doing so
displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model
Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side
validation is disabled), MVC places that error message as the body of the element.

Targets <div> elements with the asp-validation-summary attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper is used to display a summary of validation messages. The
asp-validation-summary attribute value can be any of the following:

In the following example, the data model is decorated with DataAnnotation attributes, which generates validation
error messages on the <input> element. When a validation error occurs, the Validation Tag Helper displays the
error message:

https://jquery.com/

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
 <div asp-validation-summary="ModelOnly"></div>
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

<form action="/DemoReg/Register" method="post">
 <div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none"></div>
 Email: <input name="Email" id="Email" type="email" value=""
 data-val-required="The Email field is required."
 data-val-email="The Email field is not a valid email address."
 data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Email">

 Password: <input name="Password" id="Password" type="password"
 data-val-required="The Password field is required." data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Password">

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select>

The generated HTML (when the model is valid):

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor and Html.ListBoxFor

The Select Tag Helper asp-for specifies the model property name for the select element and asp-items specifies
the option elements. For example:

Sample:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModel
 {
 public string Country { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 };
 }
}

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
 if (ModelState.IsValid)
 {
 var msg = model.Country + " selected";
 return RedirectToAction("IndexSuccess", new { message = msg});
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
 <select asp-for="Country" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

The Index method initializes the CountryViewModel , sets the selected country and passes it to the Index view.

The HTTP POST Index method displays the selection:

The Index view:

Which generates the following HTML (with "CA" selected):

<form method="post" action="/">
 <select id="Country" name="Country">
 <option value="MX">Mexico</option>
 <option selected="selected" value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select>

Enum bindingEnum binding

 public class CountryEnumViewModel
 {
 public CountryEnum EnumCountry { get; set; }
 }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

We don't recommend using ViewBag or ViewData with the Select Tag Helper. A view model is more robust at providing
MVC metadata and generally less problematic.

The asp-for attribute value is a special case and doesn't require a Model prefix, the other Tag Helper attributes do
(such as asp-items)

It's often convenient to use <select> with an enum property and generate the SelectListItem elements from the
enum values.

Sample:

The GetEnumSelectList method generates a SelectList object for an enum.

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
 <select asp-for="EnumCountry"
 asp-items="Html.GetEnumSelectList<CountryEnum>()"> >
 </select>

<button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

 <form method="post" action="/Home/IndexEnum">
 <select data-val="true" data-val-required="The EnumCountry field is required."
 id="EnumCountry" name="EnumCountry">
 <option value="0">United Mexican States</option>
 <option value="1">United States of America</option>
 <option value="2">Canada</option>
 <option value="3">France</option>
 <option value="4">Germany</option>
 <option selected="selected" value="5">Spain</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Option GroupOption Group

You can decorate your enumerator list with the Display attribute to get a richer UI:

The following HTML is generated:

The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup objects.

The CountryViewModelGroup groups the SelectListItem elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup

public class CountryViewModelGroup
{
 public CountryViewModelGroup()
 {
 var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
 var EuropeGroup = new SelectListGroup { Name = "Europe" };

 Countries = new List<SelectListItem>
 {
 new SelectListItem
 {
 Value = "MEX",
 Text = "Mexico",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "CAN",
 Text = "Canada",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "US",
 Text = "USA",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "FR",
 Text = "France",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "ES",
 Text = "Spain",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "DE",
 Text = "Germany",
 Group = EuropeGroup
 }
 };
 }

 public string Country { get; set; }

 public List<SelectListItem> Countries { get; }

The two groups are shown below:

 <form method="post" action="/Home/IndexGroup">
 <select id="Country" name="Country">
 <optgroup label="North America">
 <option value="MEX">Mexico</option>
 <option value="CAN">Canada</option>
 <option value="US">USA</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="FR">France</option>
 <option value="ES">Spain</option>
 <option value="DE">Germany</option>
 </optgroup>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModelIEnumerable
 {
 public IEnumerable<string> CountryCodes { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 new SelectListItem { Value = "FR", Text = "France" },
 new SelectListItem { Value = "ES", Text = "Spain" },
 new SelectListItem { Value = "DE", Text = "Germany"}
 };
 }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the
asp-for attribute is an IEnumerable . For example, given the following model:

With the following view:

http://w3c.github.io/html-reference/select.html

@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
 <select asp-for="CountryCodes" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
 <select id="CountryCodes"
 multiple="multiple"
 name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 @Html.EditorForModel()

<button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
 <option value="">--none--</option>
</select>

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate
repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action
method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 <select asp-for="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
</form>

 <form method="post" action="/Home/IndexEmpty">
 <select id="Country" name="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA" selected="selected">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Additional resources

The correct <option> element will be selected (contain the selected="selected" attribute) depending on the
current Country value.

Tag Helpers
HTML Form element
Request Verification Token
Model Binding
Model Validation
IAttributeAdapter Interface
Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.DataAnnotations.IAttributeAdapter
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final

ASP.NET Core built-in Tag Helpers
3/15/2018 • 2 minutes to read • Edit Online

NOTENOTE

Built-in ASP.NET Core Tag Helpers

Additional resources

By Peter Kellner

ASP.NET Core includes many built-in Tag Helpers to boost your productivity. This section provides an overview of
the built-in Tag Helpers.

There are built-in Tag Helpers which aren't discussed, since they're used internally by the Razor view engine. This includes a
Tag Helper for the ~ character, which expands to the root path of the website.

Anchor Tag Helper

Cache Tag Helper

Distributed Cache Tag Helper

Environment Tag Helper

Form Tag Helper

Image Tag Helper

Input Tag Helper

Label Tag Helper

Partial Tag Helper

Select Tag Helper

Textarea Tag Helper

Validation Message Tag Helper

Validation Summary Tag Helper

Client-side development
Tag Helpers

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/index.md
http://peterkellner.net

Anchor Tag Helper in ASP.NET Core
4/10/2018 • 6 minutes to read • Edit Online

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;

public class SpeakerController : Controller
{
 private List<Speaker> Speakers =
 new List<Speaker>
 {
 new Speaker {SpeakerId = 10},
 new Speaker {SpeakerId = 11},
 new Speaker {SpeakerId = 12}
 };

 [Route("Speaker/{id:int}")]
 public IActionResult Detail(int id) =>
 View(Speakers.FirstOrDefault(a => a.SpeakerId == id));

 [Route("/Speaker/Evaluations",
 Name = "speakerevals")]
 public IActionResult Evaluations() => View();

 [Route("/Speaker/EvaluationsCurrent",
 Name = "speakerevalscurrent")]
 public IActionResult Evaluations(
 int speakerId,
 bool currentYear) => View();

 public IActionResult Index() => View(Speakers);
}

public class Speaker
{
 public int SpeakerId { get; set; }
}

asp-controller

By Peter Kellner and Scott Addie

View or download sample code (how to download)

The Anchor Tag Helper enhances the standard HTML anchor (<a ... >) tag by adding new attributes. By
convention, the attribute names are prefixed with asp- . The rendered anchor element's href attribute value is
determined by the values of the asp- attributes.

SpeakerController is used in samples throughout this document:

An inventory of the asp- attributes follows.

The asp-controller attribute assigns the controller used for generating the URL. The following markup lists all
speakers:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/anchor-tag-helper.md
http://peterkellner.net
https://github.com/scottaddie
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/tag-helpers/built-in/samples
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.controller

<a asp-controller="Speaker"
 asp-action="Index">All Speakers

All Speakers

All Speakers

asp-action

<a asp-controller="Speaker"
 asp-action="Evaluations">Speaker Evaluations

Speaker Evaluations

asp-route-{value}

public IActionResult AnchorTagHelper(int id)
{
 var speaker = new Speaker
 {
 SpeakerId = id
 };

 return View(speaker);
}

The generated HTML:

If the asp-controller attribute is specified and asp-action isn't, the default asp-action value is the controller
action associated with the currently executing view. If asp-action is omitted from the preceding markup, and
the Anchor Tag Helper is used in HomeController's Index view (/Home), the generated HTML is:

The asp-action attribute value represents the controller action name included in the generated href attribute.
The following markup sets the generated href attribute value to the speaker evaluations page:

The generated HTML:

If no asp-controller attribute is specified, the default controller calling the view executing the current view is
used.

If the asp-action attribute value is Index , then no action is appended to the URL, leading to the invocation of
the default Index action. The action specified (or defaulted), must exist in the controller referenced in
asp-controller .

The asp-route-{value} attribute enables a wildcard route prefix. Any value occupying the {value} placeholder is
interpreted as a potential route parameter. If a default route isn't found, this route prefix is appended to the
generated href attribute as a request parameter and value. Otherwise, it's substituted in the route template.

Consider the following controller action:

With a default route template defined in Startup.Configure:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.action
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.routevalues

app.UseMvc(routes =>
{
 // need route and attribute on controller: [Area("Blogs")]
 routes.MapRoute(name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");

 // default route for non-areas
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

@model Speaker
<!DOCTYPE html>
<html>
<body>
 <a asp-controller="Speaker"
 asp-action="Detail"
 asp-route-id="@Model.SpeakerId">SpeakerId: @Model.SpeakerId
</body>
</html>

SpeakerId: 12

@model Speaker
<!DOCTYPE html>
<html>
<body>
 <a asp-controller="Speaker"
 asp-action="Detail"
 asp-route-speakerid="@Model.SpeakerId">SpeakerId: @Model.SpeakerId
<body>
</html>

SpeakerId: 12

asp-route

[Route("/Speaker/Evaluations",
 Name = "speakerevals")]
public IActionResult Evaluations() => View();

The MVC view uses the model, provided by the action, as follows:

The default route's {id?} placeholder was matched. The generated HTML:

Assume the route prefix isn't part of the matching routing template, as with the following MVC view:

The following HTML is generated because speakerid wasn't found in the matching route:

If either asp-controller or asp-action aren't specified, then the same default processing is followed as is in the
asp-route attribute.

The asp-route attribute is used for creating a URL linking directly to a named route. Using routing attributes, a
route can be named as shown in the SpeakerController and used in its Evaluations action:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.route

<a asp-route="speakerevals">Speaker Evaluations

Speaker Evaluations

asp-all-route-data

@{
var parms = new Dictionary<string, string>
 {
 { "speakerId", "11" },
 { "currentYear", "true" }
 };
}

<a asp-route="speakerevalscurrent"
 asp-all-route-data="parms">Speaker Evaluations

Speaker Evaluations

[Route("/Speaker/EvaluationsCurrent",
 Name = "speakerevalscurrent")]
public IActionResult Evaluations(
 int speakerId,
 bool currentYear) => View();

asp-fragment

In the following markup, the asp-route attribute references the named route:

The Anchor Tag Helper generates a route directly to that controller action using the URL /Speaker/Evaluations.
The generated HTML:

If asp-controller or asp-action is specified in addition to asp-route , the route generated may not be what
you expect. To avoid a route conflict, asp-route shouldn't be used with the asp-controller and asp-action

attributes.

The asp-all-route-data attribute supports the creation of a dictionary of key-value pairs. The key is the
parameter name, and the value is the parameter value.

In the following example, a dictionary is initialized and passed to a Razor view. Alternatively, the data could be
passed in with your model.

The preceding code generates the following HTML:

The asp-all-route-data dictionary is flattened to produce a querystring meeting the requirements of the
overloaded Evaluations action:

If any keys in the dictionary match route parameters, those values are substituted in the route as appropriate.
The other non-matching values are generated as request parameters.

The asp-fragment attribute defines a URL fragment to append to the URL. The Anchor Tag Helper adds the
hash character (#). Consider the following markup:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.routevalues
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.fragment

<a asp-controller="Speaker"
 asp-action="Evaluations"
 asp-fragment="SpeakerEvaluations">Speaker Evaluations

Speaker Evaluations

asp-area

<a asp-area="Blogs"
 asp-controller="Home"
 asp-action="AboutBlog">About Blog

About Blog

The generated HTML:

Hash tags are useful when building client-side apps. They can be used for easy marking and searching in
JavaScript, for example.

The asp-area attribute sets the area name used to set the appropriate route. The following example depicts how
the area attribute causes a remapping of routes. Setting asp-area to "Blogs" prefixes the directory Areas/Blogs

to the routes of the associated controllers and views for this anchor tag.

<Project name>
wwwroot
Areas

Controllers

Blogs
Controllers

Views
HomeController.cs

Home

_ViewStart.cshtml

AboutBlog.cshtml

Index.cshtml

Given the preceding directory hierarchy, the markup to reference the AboutBlog.cshtml file is:

The generated HTML:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.area

TIPTIP

app.UseMvc(routes =>
{
 // need route and attribute on controller: [Area("Blogs")]
 routes.MapRoute(name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}");

 // default route for non-areas
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

asp-protocol

<a asp-protocol="https"
 asp-controller="Home"
 asp-action="About">About

About

asp-host

<a asp-protocol="https"
 asp-host="microsoft.com"
 asp-controller="Home"
 asp-action="About">About

About

asp-page

<a asp-page="/Attendee">All Attendees

For areas to work in an MVC app, the route template must include a reference to the area, if it exists. That template is
represented by the second parameter of the routes.MapRoute method call in Startup.Configure:

The asp-protocol attribute is for specifying a protocol (such as https) in your URL. For example:

The generated HTML:

The host name in the example is localhost, but the Anchor Tag Helper uses the website's public domain when
generating the URL.

The asp-host attribute is for specifying a host name in your URL. For example:

The generated HTML:

The asp-page attribute is used with Razor Pages. Use it to set an anchor tag's href attribute value to a specific
page. Prefixing the page name with a forward slash ("/") creates the URL.

The following sample points to the attendee Razor Page:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.protocol
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.host
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.page

All Attendees

<a asp-page="/Attendee"
 asp-route-attendeeid="10">View Attendee

View Attendee

asp-page-handler

public void OnGetProfile(int attendeeId)
{
 ViewData["AttendeeId"] = attendeeId;

 // code omitted for brevity
}

<a asp-page="/Attendee"
 asp-page-handler="Profile"
 asp-route-attendeeid="12">Attendee Profile

Attendee Profile

Additional resources

The generated HTML:

The asp-page attribute is mutually exclusive with the asp-route , asp-controller , and asp-action attributes.
However, asp-page can be used with asp-route-{value} to control routing, as the following markup
demonstrates:

The generated HTML:

The asp-page-handler attribute is used with Razor Pages. It's intended for linking to specific page handlers.

Consider the following page handler :

The page model's associated markup links to the OnGetProfile page handler. Note that the On<Verb> prefix of
the page handler method name is omitted in the asp-page-handler attribute value. If this were an asynchronous
method, the Async suffix would be omitted too.

The generated HTML:

Areas
Intro to Razor Pages

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.pagehandler

Cache Tag Helper in ASP.NET Core MVC
4/10/2018 • 4 minutes to read • Edit Online

<cache>@DateTime.Now</cache>

Cache Tag Helper Attributes
enabledenabled

ATTRIBUTE TYPE VALID VALUES

boolean "true" (default)

"false"

<cache enabled="true">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

expires-onexpires-on

ATTRIBUTE TYPE EXAMPLE VALUE

DateTimeOffset "@new DateTime(2025,1,29,17,02,0)"

By Peter Kellner

The Cache Tag Helper provides the ability to dramatically improve the performance of your ASP.NET Core app by
caching its content to the internal ASP.NET Core cache provider.

The Razor View Engine sets the default expires-after to twenty minutes.

The following Razor markup caches the date/time:

The first request to the page that contains CacheTagHelper will display the current date/time. Additional requests
will show the cached value until the cache expires (default 20 minutes) or is evicted by memory pressure.

You can set the cache duration with the following attributes:

Determines whether the content enclosed by the Cache Tag Helper is cached. The default is true . If set to false

this Cache Tag Helper will have no caching effect on the rendered output.

Example:

Sets an absolute expiration date. The following example will cache the contents of the Cache Tag Helper until 5:02
PM on January 29, 2025.

Example:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/cache-tag-helper.md
http://peterkellner.net

<cache expires-on="@new DateTime(2025,1,29,17,02,0)">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

expires-afterexpires-after

ATTRIBUTE TYPE EXAMPLE VALUE

TimeSpan "@TimeSpan.FromSeconds(120)"

<cache expires-after="@TimeSpan.FromSeconds(120)">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

expires-slidingexpires-sliding

ATTRIBUTE TYPE EXAMPLE VALUE

TimeSpan "@TimeSpan.FromSeconds(60)"

<cache expires-sliding="@TimeSpan.FromSeconds(60)">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-headervary-by-header

ATTRIBUTE TYPE EXAMPLE VALUES

String "User-Agent"

"User-Agent,content-encoding"

<cache vary-by-header="User-Agent">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-queryvary-by-query

Sets the length of time from the first request time to cache the contents.

Example:

Sets the time that a cache entry should be evicted if it has not been accessed.

Example:

Accepts a single header value or a comma-separated list of header values that trigger a cache refresh when they
change. The following example monitors the header value User-Agent . The example will cache the content for
every different User-Agent presented to the web server.

Example:

ATTRIBUTE TYPE EXAMPLE VALUES

String "Make"

"Make,Model"

<cache vary-by-query="Make,Model">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-routevary-by-route

ATTRIBUTE TYPE EXAMPLE VALUES

String "Make"

"Make,Model"

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{Make?}/{Model?}");

<cache vary-by-route="Make,Model">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-cookievary-by-cookie

ATTRIBUTE TYPE EXAMPLE VALUES

String ".AspNetCore.Identity.Application"

".AspNetCore.Identity.Application,HairColor"

Accepts a single header value or a comma-separated list of header values that trigger a cache refresh when the
header value changes. The following example looks at the values of Make and Model .

Example:

Accepts a single header value or a comma-separated list of header values that trigger a cache refresh when the
route data parameter value(s) change. Example:

Startup.cs

Index.cshtml

Accepts a single header value or a comma-separated list of header values that trigger a cache refresh when the
header values(s) change. The following example looks at the cookie associated with ASP.NET Identity. When a
user is authenticated the request cookie to be set which triggers a cache refresh.

Example:

<cache vary-by-cookie=".AspNetCore.Identity.Application">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-uservary-by-user

ATTRIBUTE TYPE EXAMPLE VALUES

Boolean "true"

"false" (default)

<cache vary-by-user="true">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-byvary-by

ATTRIBUTE TYPE EXAMPLE VALUES

String "@Model"

Specifies whether or not the cache should reset when the logged-in user (or Context Principal) changes. The
current user is also known as the Request Context Principal and can be viewed in a Razor view by referencing
@User.Identity.Name .

The following example looks at the current logged in user.

Example:

Using this attribute maintains the contents in cache through a log-in and log-out cycle. When using
vary-by-user="true" , a log-in and log-out action invalidates the cache for the authenticated user. The cache is

invalidated because a new unique cookie value is generated on login. Cache is maintained for the anonymous
state when no cookie is present or has expired. This means if no user is logged in, the cache will be maintained.

Allows for customization of what data gets cached. When the object referenced by the attribute's string value
changes, the content of the Cache Tag Helper is updated. Often a string-concatenation of model values are
assigned to this attribute. Effectively, that means an update to any of the concatenated values invalidates the
cache.

The following example assumes the controller method rendering the view sums the integer value of the two route
parameters, myParam1 and myParam2 , and returns that as the single model property. When this sum changes, the
content of the Cache Tag Helper is rendered and cached again.

Example:

Action:

public IActionResult Index(string myParam1,string myParam2,string myParam3)
{
 int num1;
 int num2;
 int.TryParse(myParam1, out num1);
 int.TryParse(myParam2, out num2);
 return View(viewName, num1 + num2);
}

<cache vary-by="@Model"">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

prioritypriority

ATTRIBUTE TYPE EXAMPLE VALUES

CacheItemPriority "High"

"Low"

"NeverRemove"

"Normal"

<cache priority="High">
 Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

Additional resources

Index.cshtml

Provides cache eviction guidance to the built-in cache provider. The web server will evict Low cache entries first
when it's under memory pressure.

Example:

The priority attribute doesn't guarantee a specific level of cache retention. CacheItemPriority is only a
suggestion. Setting this attribute to NeverRemove doesn't guarantee that the cache will always be retained. See
Additional Resources for more information.

The Cache Tag Helper is dependent on the memory cache service. The Cache Tag Helper adds the service if it has
not been added.

Cache in-memory
Introduction to Identity

Distributed Cache Tag Helper in ASP.NET Core
5/9/2018 • 2 minutes to read • Edit Online

Distributed Cache Tag Helper Attributes
enabled expires-on expires-after expires-sliding vary-by-header vary-by-query vary-by-route vary-by-cookieenabled expires-on expires-after expires-sliding vary-by-header vary-by-query vary-by-route vary-by-cookie
vary-by-user vary-by priorityvary-by-user vary-by priority

name (required)name (required)

ATTRIBUTE TYPE EXAMPLE VALUE

string "my-distributed-cache-unique-key-101"

<distributed-cache name="my-distributed-cache-unique-key-101">
 Time Inside Cache Tag Helper: @DateTime.Now
</distributed-cache>

Distributed Cache Tag Helper IDistributedCache implementations

By Peter Kellner

The Distributed Cache Tag Helper provides the ability to dramatically improve the performance of your ASP.NET
Core app by caching its content to a distributed cache source.

The Distributed Cache Tag Helper inherits from the same base class as the Cache Tag Helper. All attributes
associated with the Cache Tag Helper will also work on the Distributed Tag Helper.

The Distributed Cache Tag Helper follows the Explicit Dependencies Principle known as Constructor
Injection. Specifically, the IDistributedCache interface container is passed into the Distributed Cache Tag
Helper's constructor. If no specific concrete implementation of IDistributedCache has been created in
ConfigureServices , usually found in startup.cs, then the Distributed Cache Tag Helper will use the same in-

memory provider for storing cached data as the basic Cache Tag Helper.

See Cache Tag Helper for definitions. Distributed Cache Tag Helper inherits from the same class as Cache Tag
Helper so all these attributes are common from Cache Tag Helper.

The required name attribute is used as a key to that cache stored for each instance of a Distributed Cache Tag
Helper. Unlike the basic Cache Tag Helper that assigns a key to each Cache Tag Helper instance based on the
Razor page name and location of the Tag Helper in the razor page, the Distributed Cache Tag Helper only bases
its key on the attribute name

Usage Example:

There are two implementations of IDistributedCache built in to ASP.NET Core. One is based on SQL Server and
the other is based on Redis. Details of these implementations can be found at Work with a distributed cache in
ASP.NET Core. Both implementations involve setting an instance of IDistributedCache in ASP.NET Core's
Startup.cs.

There are no tag attributes specifically associated with using any specific implementation of IDistributedCache .

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/distributed-cache-tag-helper.md
http://peterkellner.net

Additional resources
Cache Tag Helper in ASP.NET Core MVC
Dependency injection in ASP.NET Core
Work with a distributed cache in ASP.NET Core
Cache in-memory in ASP.NET Core
Introduction to Identity on ASP.NET Core

Environment Tag Helper in ASP.NET Core
1/29/2018 • 2 minutes to read • Edit Online

Environment Tag Helper Attributes
namesnames

<environment names="Staging,Production">
 HostingEnvironment.EnvironmentName is Staging or Production
</environment>

include and exclude attributes

include ASP.NET Core 2.0 and laterinclude ASP.NET Core 2.0 and later

<environment include="Staging,Production">
 HostingEnvironment.EnvironmentName is Staging or Production
</environment>

exclude ASP.NET Core 2.0 and laterexclude ASP.NET Core 2.0 and later

<environment exclude="Development">
 HostingEnvironment.EnvironmentName is Staging or Production
</environment>

Additional resources

By Peter Kellner and Hisham Bin Ateya

The Environment Tag Helper conditionally renders its enclosed content based on the current hosting environment.
Its single attribute names is a comma separated list of environment names, that if any match to the current
environment, will trigger the enclosed content to be rendered.

Accepts a single hosting environment name or a comma-separated list of hosting environment names that trigger
the rendering of the enclosed content.

These value(s) are compared to the current value returned from the ASP.NET Core static property
HostingEnvironment.EnvironmentName . This value is one of the following: Staging; Development or Production.

The comparison ignores case.

An example of a valid environment tag helper is:

ASP.NET Core 2.x adds the include & exclude attributes. These attributes control rendering the enclosed
content based on the included or excluded hosting environment names.

The include property has a similar behavior of the names attribute in ASP.NET Core 1.0.

In contrast, the exclude property lets the EnvironmentTagHelper render the enclosed content for all hosting
environment names except the one(s) that you specified.

Use multiple environments in ASP.NET Core
Dependency injection in ASP.NET Core

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/environment-tag-helper.md
http://peterkellner.net
https://twitter.com/hishambinateya

Tag Helpers in forms in ASP.NET Core
5/2/2018 • 17 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
 <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
 <!-- Input and Submit elements -->
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

Using a named routeUsing a named route

By Rick Anderson, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML
Form element provides the primary mechanism web apps use to post back data to the server. Most of this
document describes Tag Helpers and how they can help you productively create robust HTML forms. We
recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to
recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When
an HTML Helper alternative exists, it's mentioned.

The Form Tag Helper :

Generates the HTML <FORM> action attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the
[ValidateAntiForgeryToken] attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name> attribute, where <Parameter Name> is added to the route values.
The routeValues parameters to Html.BeginForm and Html.BeginRouteForm provide similar functionality.

Has an HTML Helper alternative Html.BeginForm and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action attribute value from the Form Tag Helper attributes asp-controller and
asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken] attribute in the HTTP Post action method). Protecting a
pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route Tag Helper attribute can also generate markup for the HTML action attribute. An app with a route
named register could use the following markup for the registration page:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

<form asp-route="register" method="post">
 <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@ViewData["ReturnUrl"]"
 method="post" class="form-horizontal" role="form">

NOTENOTE

The Input Tag Helper

<input asp-for="<Expression Name>" />

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
 'RegisterViewModel' does not contain a definition for 'Email' and no
 extension method 'Email' accepting a first argument of type 'RegisterViewModel'
 could be found (are you missing a using directive or an assembly reference?)

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User
Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl is only populated automatically when you try to access an authorized resource but
are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the
login page with the returnUrl set.

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

Generates the id and name HTML attributes for the expression name specified in the asp-for attribute.
asp-for="Property1.Property2" is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for attribute value. See the Expression names section for additional information.

Sets the HTML type attribute value based on the model type and data annotation attributes applied to the
model property

Won't overwrite the HTML type attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor and Html.EditorFor . See the HTML Helper
alternatives to Input Tag Helper section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get
an error similar to the following:

The Input Tag Helper sets the HTML type attribute based on the .NET type. The following table lists some
common .NET types and generated HTML type (not every .NET type is listed).

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

.NET TYPE INPUT TYPE

Bool type=”checkbox”

String type=”text”

DateTime type=”datetime”

Byte type=”number”

Int type=”number”

Single, Double type=”number”

ATTRIBUTE INPUT TYPE

[EmailAddress] type=”email”

[Url] type=”url”

[HiddenInput] type=”hidden”

[Phone] type=”tel”

[DataType(DataType.Password)] type=”password”

[DataType(DataType.Date)] type=”date”

[DataType(DataType.Time)] type=”time”

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

The following table shows some common data annotations attributes that the input tag helper will map to specific
input types (not every validation attribute is listed):

Sample:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

 <form method="post" action="/Demo/RegisterInput">
 Email:
 <input type="email" data-val="true"
 data-val-email="The Email Address field is not a valid email address."
 data-val-required="The Email Address field is required."
 id="Email" name="Email" value="" />

 Password:
 <input type="password" data-val="true"
 data-val-required="The Password field is required."
 id="Password" name="Password" />

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty,
 new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

The code above generates the following HTML:

The data annotations applied to the Email and Password properties generate metadata on the model. The Input
Tag Helper consumes the model metadata and produces HTML5 data-val-* attributes (see Model Validation).
These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery
validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of
the validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is
provided in the attribute, it's displayed as the value for the data-val-rule attribute. There are also attributes of the
form data-val-ruleName-argumentName="argumentValue" that provide additional details about the rule, for example,
data-val-maxlength-max="1024" .

Html.TextBox , Html.TextBoxFor , Html.Editor and Html.EditorFor have overlapping features with the Input Tag
Helper. The Input Tag Helper will automatically set the type attribute; Html.TextBox and Html.TextBoxFor won't.
Html.Editor and Html.EditorFor handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor and Html.TextBoxFor are strongly typed (they use lambda expressions);
Html.TextBox and Html.Editor are not (they use expression names).

@Html.Editor() and @Html.EditorFor() use a special ViewDataDictionary entry named htmlAttributes when
executing their default templates. This behavior is optionally augmented using additionalViewData parameters. The
key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes object
passed to input helpers like @Html.TextBox() .

The asp-for attribute value is a ModelExpression and the right hand side of a lambda expression. Therefore,
asp-for="Property1" becomes m => m.Property1 in the generated code which is why you don't need to prefix with
Model . You can use the "@" character to start an inline expression and move before the m. :

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/

@{
 var joe = "Joe";
 }
 <input asp-for="@joe" />

<input type="text" id="joe" name="joe" value="Joe" />

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
 public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
 public string Email { get; set; }

 [DataType(DataType.Password)]
 public string Password { get; set; }

 public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 Address: <input asp-for="Address.AddressLine1" />

 <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="" />

Expression names and CollectionsExpression names and Collections

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member" generates the same name as
asp-for="CollectionProperty[i].Member" when i has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including
ModelState . Consider <input type="text" asp-for="@Name" /> . The calculated value attribute is the first non-null

value from:

ModelState entry with key "Name".
Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex
model class that contains a child Address property.

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

public class Person
{
 public List<string> Colors { get; set; }

 public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
 {
 ViewData["Index"] = colorIndex;
 return View(GetPerson(id));
 }

@model Person
@{
 var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
 @Html.EditorFor(m => m.Colors[index])
 <label asp-for="Age"></label>
 <input asp-for="Age" />

 <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" />

public class ToDoItem
{
 public string Name { get; set; }

 public bool IsDone { get; set; }
}

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color element:

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
 <table>
 <tr> <th>Name</th> <th>Is Done</th> </tr>

 @for (int i = 0; i < Model.Count; i++)
 {
 <tr>
 @Html.EditorFor(model => model[i])
 </tr>
 }

 </table>
 <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
 <label asp-for="@Model.Name"></label>
 @Html.DisplayFor(model => model.Name)
</td>
<td>
 <input asp-for="@Model.IsDone" />
</td>

@*
 This template replaces the following Razor which evaluates the indexer three times.
 <td>
 <label asp-for="@Model[i].Name"></label>
 @Html.DisplayFor(model => model[i].Name)
 </td>
 <td>
 <input asp-for="@Model[i].IsDone" />
 </td>
*@

NOTENOTE

NOTENOTE

The Textarea Tag Helper

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

Always use for (and not foreach) to iterate over a list. Evaluating an indexer in a LINQ expression can be expensive and
should be minimized.

The commented sample code above shows how you would replace the lambda expression with the @ operator to access
each ToDoItem in the list.

The Textarea Tag Helper tag helper is similar to the Input Tag Helper.

Generates the id and name attributes, and the data validation attributes from the model for a <textarea>
element.

https://www.w3.org/wiki/HTML/Elements/textarea

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class DescriptionViewModel
 {
 [MinLength(5)]
 [MaxLength(1024)]
 public string Description { get; set; }
 }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
 <textarea asp-for="Description"></textarea>
 <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
 <textarea data-val="true"
 data-val-maxlength="The field Description must be a string or array type with a maximum length of
'1024'."
 data-val-maxlength-max="1024"
 data-val-minlength="The field Description must be a string or array type with a minimum length of
'5'."
 data-val-minlength-min="5"
 id="Description" name="Description">
 </textarea>
 <button type="submit">Test</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Label Tag Helper

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

Generates the label caption and for attribute on a element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display attribute. The intended display name
might change over time, and the combination of Display attribute and Label Tag Helper will apply the
Display everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class SimpleViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }
 }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
 <label asp-for="Email"></label>
 <input asp-for="Email" />

</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

The following HTML is generated for the <label> element:

The Label Tag Helper generated the for attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id and for elements so they can be correctly associated. The
caption in this sample comes from the Display attribute. If the model didn't contain a Display attribute, the
caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper (which displays a validation message for
a single property on your model), and the Validation Summary Tag Helper (which displays a summary of validation
errors). The Input Tag Helper adds HTML5 client side validation attributes to input elements based on data
annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper
displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property" attribute to the span element, which attaches the validation
error messages on the input field of the specified model property. When a client side validation error occurs,
jQuery displays the error message in the element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only
be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper is used with the asp-validation-for attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span

<span class="field-validation-valid"
 data-valmsg-for="Email"
 data-valmsg-replace="true">

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
 data-valmsg-replace="true">
 The Email Address field is required.

The Validation Summary Tag HelperThe Validation Summary Tag Helper

ASP-VALIDATION-SUMMARY VALIDATION MESSAGES DISPLAYED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

You generally use the Validation Message Tag Helper after an Input Tag Helper for the same property. Doing so
displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model
Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side
validation is disabled), MVC places that error message as the body of the element.

Targets <div> elements with the asp-validation-summary attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper is used to display a summary of validation messages. The
asp-validation-summary attribute value can be any of the following:

In the following example, the data model is decorated with DataAnnotation attributes, which generates validation
error messages on the <input> element. When a validation error occurs, the Validation Tag Helper displays the
error message:

https://jquery.com/

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
 <div asp-validation-summary="ModelOnly"></div>
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

<form action="/DemoReg/Register" method="post">
 <div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none"></div>
 Email: <input name="Email" id="Email" type="email" value=""
 data-val-required="The Email field is required."
 data-val-email="The Email field is not a valid email address."
 data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Email">

 Password: <input name="Password" id="Password" type="password"
 data-val-required="The Password field is required." data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Password">

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select>

The generated HTML (when the model is valid):

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor and Html.ListBoxFor

The Select Tag Helper asp-for specifies the model property name for the select element and asp-items specifies
the option elements. For example:

Sample:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModel
 {
 public string Country { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 };
 }
}

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
 if (ModelState.IsValid)
 {
 var msg = model.Country + " selected";
 return RedirectToAction("IndexSuccess", new { message = msg});
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
 <select asp-for="Country" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

The Index method initializes the CountryViewModel , sets the selected country and passes it to the Index view.

The HTTP POST Index method displays the selection:

The Index view:

Which generates the following HTML (with "CA" selected):

<form method="post" action="/">
 <select id="Country" name="Country">
 <option value="MX">Mexico</option>
 <option selected="selected" value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select>

Enum bindingEnum binding

 public class CountryEnumViewModel
 {
 public CountryEnum EnumCountry { get; set; }
 }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

We don't recommend using ViewBag or ViewData with the Select Tag Helper. A view model is more robust at providing
MVC metadata and generally less problematic.

The asp-for attribute value is a special case and doesn't require a Model prefix, the other Tag Helper attributes do
(such as asp-items)

It's often convenient to use <select> with an enum property and generate the SelectListItem elements from the
enum values.

Sample:

The GetEnumSelectList method generates a SelectList object for an enum.

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
 <select asp-for="EnumCountry"
 asp-items="Html.GetEnumSelectList<CountryEnum>()"> >
 </select>

<button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

 <form method="post" action="/Home/IndexEnum">
 <select data-val="true" data-val-required="The EnumCountry field is required."
 id="EnumCountry" name="EnumCountry">
 <option value="0">United Mexican States</option>
 <option value="1">United States of America</option>
 <option value="2">Canada</option>
 <option value="3">France</option>
 <option value="4">Germany</option>
 <option selected="selected" value="5">Spain</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Option GroupOption Group

You can decorate your enumerator list with the Display attribute to get a richer UI:

The following HTML is generated:

The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup objects.

The CountryViewModelGroup groups the SelectListItem elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup

public class CountryViewModelGroup
{
 public CountryViewModelGroup()
 {
 var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
 var EuropeGroup = new SelectListGroup { Name = "Europe" };

 Countries = new List<SelectListItem>
 {
 new SelectListItem
 {
 Value = "MEX",
 Text = "Mexico",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "CAN",
 Text = "Canada",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "US",
 Text = "USA",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "FR",
 Text = "France",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "ES",
 Text = "Spain",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "DE",
 Text = "Germany",
 Group = EuropeGroup
 }
 };
 }

 public string Country { get; set; }

 public List<SelectListItem> Countries { get; }

The two groups are shown below:

 <form method="post" action="/Home/IndexGroup">
 <select id="Country" name="Country">
 <optgroup label="North America">
 <option value="MEX">Mexico</option>
 <option value="CAN">Canada</option>
 <option value="US">USA</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="FR">France</option>
 <option value="ES">Spain</option>
 <option value="DE">Germany</option>
 </optgroup>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModelIEnumerable
 {
 public IEnumerable<string> CountryCodes { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 new SelectListItem { Value = "FR", Text = "France" },
 new SelectListItem { Value = "ES", Text = "Spain" },
 new SelectListItem { Value = "DE", Text = "Germany"}
 };
 }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the
asp-for attribute is an IEnumerable . For example, given the following model:

With the following view:

http://w3c.github.io/html-reference/select.html

@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
 <select asp-for="CountryCodes" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
 <select id="CountryCodes"
 multiple="multiple"
 name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 @Html.EditorForModel()

<button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
 <option value="">--none--</option>
</select>

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate
repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action
method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 <select asp-for="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
</form>

 <form method="post" action="/Home/IndexEmpty">
 <select id="Country" name="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA" selected="selected">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Additional resources

The correct <option> element will be selected (contain the selected="selected" attribute) depending on the
current Country value.

Tag Helpers
HTML Form element
Request Verification Token
Model Binding
Model Validation
IAttributeAdapter Interface
Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.DataAnnotations.IAttributeAdapter
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final

Image Tag Helper in ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

Image Tag Helper Attributes
asp-append-versionasp-append-version

<img src="~/images/asplogo.png"
 asp-append-version="true" />

<img
 src="/images/asplogo.png?v=Kl_dqr9NVtnMdsM2MUg4qthUnWZm5T1fCEimBPWDNgM"/>

srcsrc

NOTENOTE

Additional resources

By Peter Kellner

The Image Tag Helper enhances the img () tag. It requires a src tag as well as the boolean attribute
asp-append-version .

If the image source (src) is a static file on the host web server, a unique cache busting string is appended as a
query parameter to the image source. This ensures that if the file on the host web server changes, a unique request
URL is generated that includes the updated request parameter. The cache busting string is a unique value
representing the hash of the static image file.

If the image source (src) isn't a static file (for example a remote URL or the file doesn't exist on the server), the
 tag's src attribute is generated with no cache busting query string parameter.

When specified along with a src attribute, the Image Tag Helper is invoked.

An example of a valid img tag helper is:

If the static file exists in the directory ..wwwroot/images/asplogo.png the generated html is similar to the following
(the hash will be different):

The value assigned to the parameter v is the hash value of the file on disk. If the web server is unable to obtain
read access to the static file referenced, no v parameters is added to the src attribute.

To activate the Image Tag Helper, the src attribute is required on the element.

The Image Tag Helper uses the Cache provider on the local web server to store the calculated Sha512 of a given file. If the
file is requested again the Sha512 doesn't need to be recalculated. The Cache is invalidated by a file watcher that's attached
to the file when the file's Sha512 is calculated.

Cache in-memory in ASP.NET Core

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/image-tag-helper.md
http://peterkellner.net

Tag Helpers in forms in ASP.NET Core
5/2/2018 • 17 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
 <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
 <!-- Input and Submit elements -->
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

Using a named routeUsing a named route

By Rick Anderson, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML
Form element provides the primary mechanism web apps use to post back data to the server. Most of this
document describes Tag Helpers and how they can help you productively create robust HTML forms. We
recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to
recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When
an HTML Helper alternative exists, it's mentioned.

The Form Tag Helper :

Generates the HTML <FORM> action attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the
[ValidateAntiForgeryToken] attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name> attribute, where <Parameter Name> is added to the route values.
The routeValues parameters to Html.BeginForm and Html.BeginRouteForm provide similar functionality.

Has an HTML Helper alternative Html.BeginForm and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action attribute value from the Form Tag Helper attributes asp-controller and
asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken] attribute in the HTTP Post action method). Protecting a
pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route Tag Helper attribute can also generate markup for the HTML action attribute. An app with a route
named register could use the following markup for the registration page:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

<form asp-route="register" method="post">
 <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@ViewData["ReturnUrl"]"
 method="post" class="form-horizontal" role="form">

NOTENOTE

The Input Tag Helper

<input asp-for="<Expression Name>" />

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
 'RegisterViewModel' does not contain a definition for 'Email' and no
 extension method 'Email' accepting a first argument of type 'RegisterViewModel'
 could be found (are you missing a using directive or an assembly reference?)

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User
Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl is only populated automatically when you try to access an authorized resource but
are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the
login page with the returnUrl set.

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

Generates the id and name HTML attributes for the expression name specified in the asp-for attribute.
asp-for="Property1.Property2" is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for attribute value. See the Expression names section for additional information.

Sets the HTML type attribute value based on the model type and data annotation attributes applied to the
model property

Won't overwrite the HTML type attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor and Html.EditorFor . See the HTML Helper
alternatives to Input Tag Helper section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get
an error similar to the following:

The Input Tag Helper sets the HTML type attribute based on the .NET type. The following table lists some
common .NET types and generated HTML type (not every .NET type is listed).

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

.NET TYPE INPUT TYPE

Bool type=”checkbox”

String type=”text”

DateTime type=”datetime”

Byte type=”number”

Int type=”number”

Single, Double type=”number”

ATTRIBUTE INPUT TYPE

[EmailAddress] type=”email”

[Url] type=”url”

[HiddenInput] type=”hidden”

[Phone] type=”tel”

[DataType(DataType.Password)] type=”password”

[DataType(DataType.Date)] type=”date”

[DataType(DataType.Time)] type=”time”

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

The following table shows some common data annotations attributes that the input tag helper will map to specific
input types (not every validation attribute is listed):

Sample:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

 <form method="post" action="/Demo/RegisterInput">
 Email:
 <input type="email" data-val="true"
 data-val-email="The Email Address field is not a valid email address."
 data-val-required="The Email Address field is required."
 id="Email" name="Email" value="" />

 Password:
 <input type="password" data-val="true"
 data-val-required="The Password field is required."
 id="Password" name="Password" />

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty,
 new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

The code above generates the following HTML:

The data annotations applied to the Email and Password properties generate metadata on the model. The Input
Tag Helper consumes the model metadata and produces HTML5 data-val-* attributes (see Model Validation).
These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery
validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of
the validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is
provided in the attribute, it's displayed as the value for the data-val-rule attribute. There are also attributes of the
form data-val-ruleName-argumentName="argumentValue" that provide additional details about the rule, for example,
data-val-maxlength-max="1024" .

Html.TextBox , Html.TextBoxFor , Html.Editor and Html.EditorFor have overlapping features with the Input Tag
Helper. The Input Tag Helper will automatically set the type attribute; Html.TextBox and Html.TextBoxFor won't.
Html.Editor and Html.EditorFor handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor and Html.TextBoxFor are strongly typed (they use lambda expressions);
Html.TextBox and Html.Editor are not (they use expression names).

@Html.Editor() and @Html.EditorFor() use a special ViewDataDictionary entry named htmlAttributes when
executing their default templates. This behavior is optionally augmented using additionalViewData parameters. The
key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes object
passed to input helpers like @Html.TextBox() .

The asp-for attribute value is a ModelExpression and the right hand side of a lambda expression. Therefore,
asp-for="Property1" becomes m => m.Property1 in the generated code which is why you don't need to prefix with
Model . You can use the "@" character to start an inline expression and move before the m. :

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/

@{
 var joe = "Joe";
 }
 <input asp-for="@joe" />

<input type="text" id="joe" name="joe" value="Joe" />

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
 public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
 public string Email { get; set; }

 [DataType(DataType.Password)]
 public string Password { get; set; }

 public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 Address: <input asp-for="Address.AddressLine1" />

 <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="" />

Expression names and CollectionsExpression names and Collections

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member" generates the same name as
asp-for="CollectionProperty[i].Member" when i has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including
ModelState . Consider <input type="text" asp-for="@Name" /> . The calculated value attribute is the first non-null

value from:

ModelState entry with key "Name".
Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex
model class that contains a child Address property.

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

public class Person
{
 public List<string> Colors { get; set; }

 public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
 {
 ViewData["Index"] = colorIndex;
 return View(GetPerson(id));
 }

@model Person
@{
 var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
 @Html.EditorFor(m => m.Colors[index])
 <label asp-for="Age"></label>
 <input asp-for="Age" />

 <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" />

public class ToDoItem
{
 public string Name { get; set; }

 public bool IsDone { get; set; }
}

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color element:

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
 <table>
 <tr> <th>Name</th> <th>Is Done</th> </tr>

 @for (int i = 0; i < Model.Count; i++)
 {
 <tr>
 @Html.EditorFor(model => model[i])
 </tr>
 }

 </table>
 <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
 <label asp-for="@Model.Name"></label>
 @Html.DisplayFor(model => model.Name)
</td>
<td>
 <input asp-for="@Model.IsDone" />
</td>

@*
 This template replaces the following Razor which evaluates the indexer three times.
 <td>
 <label asp-for="@Model[i].Name"></label>
 @Html.DisplayFor(model => model[i].Name)
 </td>
 <td>
 <input asp-for="@Model[i].IsDone" />
 </td>
*@

NOTENOTE

NOTENOTE

The Textarea Tag Helper

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

Always use for (and not foreach) to iterate over a list. Evaluating an indexer in a LINQ expression can be expensive and
should be minimized.

The commented sample code above shows how you would replace the lambda expression with the @ operator to access
each ToDoItem in the list.

The Textarea Tag Helper tag helper is similar to the Input Tag Helper.

Generates the id and name attributes, and the data validation attributes from the model for a <textarea>
element.

https://www.w3.org/wiki/HTML/Elements/textarea

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class DescriptionViewModel
 {
 [MinLength(5)]
 [MaxLength(1024)]
 public string Description { get; set; }
 }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
 <textarea asp-for="Description"></textarea>
 <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
 <textarea data-val="true"
 data-val-maxlength="The field Description must be a string or array type with a maximum length of
'1024'."
 data-val-maxlength-max="1024"
 data-val-minlength="The field Description must be a string or array type with a minimum length of
'5'."
 data-val-minlength-min="5"
 id="Description" name="Description">
 </textarea>
 <button type="submit">Test</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Label Tag Helper

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

Generates the label caption and for attribute on a element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display attribute. The intended display name
might change over time, and the combination of Display attribute and Label Tag Helper will apply the
Display everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class SimpleViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }
 }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
 <label asp-for="Email"></label>
 <input asp-for="Email" />

</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

The following HTML is generated for the <label> element:

The Label Tag Helper generated the for attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id and for elements so they can be correctly associated. The
caption in this sample comes from the Display attribute. If the model didn't contain a Display attribute, the
caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper (which displays a validation message for
a single property on your model), and the Validation Summary Tag Helper (which displays a summary of validation
errors). The Input Tag Helper adds HTML5 client side validation attributes to input elements based on data
annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper
displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property" attribute to the span element, which attaches the validation
error messages on the input field of the specified model property. When a client side validation error occurs,
jQuery displays the error message in the element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only
be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper is used with the asp-validation-for attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span

<span class="field-validation-valid"
 data-valmsg-for="Email"
 data-valmsg-replace="true">

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
 data-valmsg-replace="true">
 The Email Address field is required.

The Validation Summary Tag HelperThe Validation Summary Tag Helper

ASP-VALIDATION-SUMMARY VALIDATION MESSAGES DISPLAYED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

You generally use the Validation Message Tag Helper after an Input Tag Helper for the same property. Doing so
displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model
Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side
validation is disabled), MVC places that error message as the body of the element.

Targets <div> elements with the asp-validation-summary attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper is used to display a summary of validation messages. The
asp-validation-summary attribute value can be any of the following:

In the following example, the data model is decorated with DataAnnotation attributes, which generates validation
error messages on the <input> element. When a validation error occurs, the Validation Tag Helper displays the
error message:

https://jquery.com/

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
 <div asp-validation-summary="ModelOnly"></div>
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

<form action="/DemoReg/Register" method="post">
 <div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none"></div>
 Email: <input name="Email" id="Email" type="email" value=""
 data-val-required="The Email field is required."
 data-val-email="The Email field is not a valid email address."
 data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Email">

 Password: <input name="Password" id="Password" type="password"
 data-val-required="The Password field is required." data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Password">

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select>

The generated HTML (when the model is valid):

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor and Html.ListBoxFor

The Select Tag Helper asp-for specifies the model property name for the select element and asp-items specifies
the option elements. For example:

Sample:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModel
 {
 public string Country { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 };
 }
}

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
 if (ModelState.IsValid)
 {
 var msg = model.Country + " selected";
 return RedirectToAction("IndexSuccess", new { message = msg});
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
 <select asp-for="Country" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

The Index method initializes the CountryViewModel , sets the selected country and passes it to the Index view.

The HTTP POST Index method displays the selection:

The Index view:

Which generates the following HTML (with "CA" selected):

<form method="post" action="/">
 <select id="Country" name="Country">
 <option value="MX">Mexico</option>
 <option selected="selected" value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select>

Enum bindingEnum binding

 public class CountryEnumViewModel
 {
 public CountryEnum EnumCountry { get; set; }
 }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

We don't recommend using ViewBag or ViewData with the Select Tag Helper. A view model is more robust at providing
MVC metadata and generally less problematic.

The asp-for attribute value is a special case and doesn't require a Model prefix, the other Tag Helper attributes do
(such as asp-items)

It's often convenient to use <select> with an enum property and generate the SelectListItem elements from the
enum values.

Sample:

The GetEnumSelectList method generates a SelectList object for an enum.

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
 <select asp-for="EnumCountry"
 asp-items="Html.GetEnumSelectList<CountryEnum>()"> >
 </select>

<button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

 <form method="post" action="/Home/IndexEnum">
 <select data-val="true" data-val-required="The EnumCountry field is required."
 id="EnumCountry" name="EnumCountry">
 <option value="0">United Mexican States</option>
 <option value="1">United States of America</option>
 <option value="2">Canada</option>
 <option value="3">France</option>
 <option value="4">Germany</option>
 <option selected="selected" value="5">Spain</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Option GroupOption Group

You can decorate your enumerator list with the Display attribute to get a richer UI:

The following HTML is generated:

The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup objects.

The CountryViewModelGroup groups the SelectListItem elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup

public class CountryViewModelGroup
{
 public CountryViewModelGroup()
 {
 var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
 var EuropeGroup = new SelectListGroup { Name = "Europe" };

 Countries = new List<SelectListItem>
 {
 new SelectListItem
 {
 Value = "MEX",
 Text = "Mexico",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "CAN",
 Text = "Canada",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "US",
 Text = "USA",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "FR",
 Text = "France",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "ES",
 Text = "Spain",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "DE",
 Text = "Germany",
 Group = EuropeGroup
 }
 };
 }

 public string Country { get; set; }

 public List<SelectListItem> Countries { get; }

The two groups are shown below:

 <form method="post" action="/Home/IndexGroup">
 <select id="Country" name="Country">
 <optgroup label="North America">
 <option value="MEX">Mexico</option>
 <option value="CAN">Canada</option>
 <option value="US">USA</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="FR">France</option>
 <option value="ES">Spain</option>
 <option value="DE">Germany</option>
 </optgroup>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModelIEnumerable
 {
 public IEnumerable<string> CountryCodes { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 new SelectListItem { Value = "FR", Text = "France" },
 new SelectListItem { Value = "ES", Text = "Spain" },
 new SelectListItem { Value = "DE", Text = "Germany"}
 };
 }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the
asp-for attribute is an IEnumerable . For example, given the following model:

With the following view:

http://w3c.github.io/html-reference/select.html

@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
 <select asp-for="CountryCodes" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
 <select id="CountryCodes"
 multiple="multiple"
 name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 @Html.EditorForModel()

<button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
 <option value="">--none--</option>
</select>

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate
repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action
method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 <select asp-for="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
</form>

 <form method="post" action="/Home/IndexEmpty">
 <select id="Country" name="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA" selected="selected">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Additional resources

The correct <option> element will be selected (contain the selected="selected" attribute) depending on the
current Country value.

Tag Helpers
HTML Form element
Request Verification Token
Model Binding
Model Validation
IAttributeAdapter Interface
Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.DataAnnotations.IAttributeAdapter
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final

Tag Helpers in forms in ASP.NET Core
5/2/2018 • 17 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
 <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
 <!-- Input and Submit elements -->
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

Using a named routeUsing a named route

By Rick Anderson, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML
Form element provides the primary mechanism web apps use to post back data to the server. Most of this
document describes Tag Helpers and how they can help you productively create robust HTML forms. We
recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to
recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When
an HTML Helper alternative exists, it's mentioned.

The Form Tag Helper :

Generates the HTML <FORM> action attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the
[ValidateAntiForgeryToken] attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name> attribute, where <Parameter Name> is added to the route values.
The routeValues parameters to Html.BeginForm and Html.BeginRouteForm provide similar functionality.

Has an HTML Helper alternative Html.BeginForm and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action attribute value from the Form Tag Helper attributes asp-controller and
asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken] attribute in the HTTP Post action method). Protecting a
pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route Tag Helper attribute can also generate markup for the HTML action attribute. An app with a route
named register could use the following markup for the registration page:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

<form asp-route="register" method="post">
 <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@ViewData["ReturnUrl"]"
 method="post" class="form-horizontal" role="form">

NOTENOTE

The Input Tag Helper

<input asp-for="<Expression Name>" />

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
 'RegisterViewModel' does not contain a definition for 'Email' and no
 extension method 'Email' accepting a first argument of type 'RegisterViewModel'
 could be found (are you missing a using directive or an assembly reference?)

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User
Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl is only populated automatically when you try to access an authorized resource but
are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the
login page with the returnUrl set.

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

Generates the id and name HTML attributes for the expression name specified in the asp-for attribute.
asp-for="Property1.Property2" is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for attribute value. See the Expression names section for additional information.

Sets the HTML type attribute value based on the model type and data annotation attributes applied to the
model property

Won't overwrite the HTML type attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor and Html.EditorFor . See the HTML Helper
alternatives to Input Tag Helper section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get
an error similar to the following:

The Input Tag Helper sets the HTML type attribute based on the .NET type. The following table lists some
common .NET types and generated HTML type (not every .NET type is listed).

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

.NET TYPE INPUT TYPE

Bool type=”checkbox”

String type=”text”

DateTime type=”datetime”

Byte type=”number”

Int type=”number”

Single, Double type=”number”

ATTRIBUTE INPUT TYPE

[EmailAddress] type=”email”

[Url] type=”url”

[HiddenInput] type=”hidden”

[Phone] type=”tel”

[DataType(DataType.Password)] type=”password”

[DataType(DataType.Date)] type=”date”

[DataType(DataType.Time)] type=”time”

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

The following table shows some common data annotations attributes that the input tag helper will map to specific
input types (not every validation attribute is listed):

Sample:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

 <form method="post" action="/Demo/RegisterInput">
 Email:
 <input type="email" data-val="true"
 data-val-email="The Email Address field is not a valid email address."
 data-val-required="The Email Address field is required."
 id="Email" name="Email" value="" />

 Password:
 <input type="password" data-val="true"
 data-val-required="The Password field is required."
 id="Password" name="Password" />

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty,
 new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

The code above generates the following HTML:

The data annotations applied to the Email and Password properties generate metadata on the model. The Input
Tag Helper consumes the model metadata and produces HTML5 data-val-* attributes (see Model Validation).
These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery
validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of
the validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is
provided in the attribute, it's displayed as the value for the data-val-rule attribute. There are also attributes of the
form data-val-ruleName-argumentName="argumentValue" that provide additional details about the rule, for example,
data-val-maxlength-max="1024" .

Html.TextBox , Html.TextBoxFor , Html.Editor and Html.EditorFor have overlapping features with the Input Tag
Helper. The Input Tag Helper will automatically set the type attribute; Html.TextBox and Html.TextBoxFor won't.
Html.Editor and Html.EditorFor handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor and Html.TextBoxFor are strongly typed (they use lambda expressions);
Html.TextBox and Html.Editor are not (they use expression names).

@Html.Editor() and @Html.EditorFor() use a special ViewDataDictionary entry named htmlAttributes when
executing their default templates. This behavior is optionally augmented using additionalViewData parameters. The
key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes object
passed to input helpers like @Html.TextBox() .

The asp-for attribute value is a ModelExpression and the right hand side of a lambda expression. Therefore,
asp-for="Property1" becomes m => m.Property1 in the generated code which is why you don't need to prefix with
Model . You can use the "@" character to start an inline expression and move before the m. :

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/

@{
 var joe = "Joe";
 }
 <input asp-for="@joe" />

<input type="text" id="joe" name="joe" value="Joe" />

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
 public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
 public string Email { get; set; }

 [DataType(DataType.Password)]
 public string Password { get; set; }

 public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 Address: <input asp-for="Address.AddressLine1" />

 <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="" />

Expression names and CollectionsExpression names and Collections

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member" generates the same name as
asp-for="CollectionProperty[i].Member" when i has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including
ModelState . Consider <input type="text" asp-for="@Name" /> . The calculated value attribute is the first non-null

value from:

ModelState entry with key "Name".
Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex
model class that contains a child Address property.

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

public class Person
{
 public List<string> Colors { get; set; }

 public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
 {
 ViewData["Index"] = colorIndex;
 return View(GetPerson(id));
 }

@model Person
@{
 var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
 @Html.EditorFor(m => m.Colors[index])
 <label asp-for="Age"></label>
 <input asp-for="Age" />

 <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" />

public class ToDoItem
{
 public string Name { get; set; }

 public bool IsDone { get; set; }
}

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color element:

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
 <table>
 <tr> <th>Name</th> <th>Is Done</th> </tr>

 @for (int i = 0; i < Model.Count; i++)
 {
 <tr>
 @Html.EditorFor(model => model[i])
 </tr>
 }

 </table>
 <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
 <label asp-for="@Model.Name"></label>
 @Html.DisplayFor(model => model.Name)
</td>
<td>
 <input asp-for="@Model.IsDone" />
</td>

@*
 This template replaces the following Razor which evaluates the indexer three times.
 <td>
 <label asp-for="@Model[i].Name"></label>
 @Html.DisplayFor(model => model[i].Name)
 </td>
 <td>
 <input asp-for="@Model[i].IsDone" />
 </td>
*@

NOTENOTE

NOTENOTE

The Textarea Tag Helper

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

Always use for (and not foreach) to iterate over a list. Evaluating an indexer in a LINQ expression can be expensive and
should be minimized.

The commented sample code above shows how you would replace the lambda expression with the @ operator to access
each ToDoItem in the list.

The Textarea Tag Helper tag helper is similar to the Input Tag Helper.

Generates the id and name attributes, and the data validation attributes from the model for a <textarea>
element.

https://www.w3.org/wiki/HTML/Elements/textarea

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class DescriptionViewModel
 {
 [MinLength(5)]
 [MaxLength(1024)]
 public string Description { get; set; }
 }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
 <textarea asp-for="Description"></textarea>
 <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
 <textarea data-val="true"
 data-val-maxlength="The field Description must be a string or array type with a maximum length of
'1024'."
 data-val-maxlength-max="1024"
 data-val-minlength="The field Description must be a string or array type with a minimum length of
'5'."
 data-val-minlength-min="5"
 id="Description" name="Description">
 </textarea>
 <button type="submit">Test</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Label Tag Helper

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

Generates the label caption and for attribute on a element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display attribute. The intended display name
might change over time, and the combination of Display attribute and Label Tag Helper will apply the
Display everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class SimpleViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }
 }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
 <label asp-for="Email"></label>
 <input asp-for="Email" />

</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

The following HTML is generated for the <label> element:

The Label Tag Helper generated the for attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id and for elements so they can be correctly associated. The
caption in this sample comes from the Display attribute. If the model didn't contain a Display attribute, the
caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper (which displays a validation message for
a single property on your model), and the Validation Summary Tag Helper (which displays a summary of validation
errors). The Input Tag Helper adds HTML5 client side validation attributes to input elements based on data
annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper
displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property" attribute to the span element, which attaches the validation
error messages on the input field of the specified model property. When a client side validation error occurs,
jQuery displays the error message in the element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only
be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper is used with the asp-validation-for attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span

<span class="field-validation-valid"
 data-valmsg-for="Email"
 data-valmsg-replace="true">

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
 data-valmsg-replace="true">
 The Email Address field is required.

The Validation Summary Tag HelperThe Validation Summary Tag Helper

ASP-VALIDATION-SUMMARY VALIDATION MESSAGES DISPLAYED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

You generally use the Validation Message Tag Helper after an Input Tag Helper for the same property. Doing so
displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model
Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side
validation is disabled), MVC places that error message as the body of the element.

Targets <div> elements with the asp-validation-summary attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper is used to display a summary of validation messages. The
asp-validation-summary attribute value can be any of the following:

In the following example, the data model is decorated with DataAnnotation attributes, which generates validation
error messages on the <input> element. When a validation error occurs, the Validation Tag Helper displays the
error message:

https://jquery.com/

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
 <div asp-validation-summary="ModelOnly"></div>
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

<form action="/DemoReg/Register" method="post">
 <div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none"></div>
 Email: <input name="Email" id="Email" type="email" value=""
 data-val-required="The Email field is required."
 data-val-email="The Email field is not a valid email address."
 data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Email">

 Password: <input name="Password" id="Password" type="password"
 data-val-required="The Password field is required." data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Password">

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select>

The generated HTML (when the model is valid):

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor and Html.ListBoxFor

The Select Tag Helper asp-for specifies the model property name for the select element and asp-items specifies
the option elements. For example:

Sample:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModel
 {
 public string Country { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 };
 }
}

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
 if (ModelState.IsValid)
 {
 var msg = model.Country + " selected";
 return RedirectToAction("IndexSuccess", new { message = msg});
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
 <select asp-for="Country" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

The Index method initializes the CountryViewModel , sets the selected country and passes it to the Index view.

The HTTP POST Index method displays the selection:

The Index view:

Which generates the following HTML (with "CA" selected):

<form method="post" action="/">
 <select id="Country" name="Country">
 <option value="MX">Mexico</option>
 <option selected="selected" value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select>

Enum bindingEnum binding

 public class CountryEnumViewModel
 {
 public CountryEnum EnumCountry { get; set; }
 }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

We don't recommend using ViewBag or ViewData with the Select Tag Helper. A view model is more robust at providing
MVC metadata and generally less problematic.

The asp-for attribute value is a special case and doesn't require a Model prefix, the other Tag Helper attributes do
(such as asp-items)

It's often convenient to use <select> with an enum property and generate the SelectListItem elements from the
enum values.

Sample:

The GetEnumSelectList method generates a SelectList object for an enum.

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
 <select asp-for="EnumCountry"
 asp-items="Html.GetEnumSelectList<CountryEnum>()"> >
 </select>

<button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

 <form method="post" action="/Home/IndexEnum">
 <select data-val="true" data-val-required="The EnumCountry field is required."
 id="EnumCountry" name="EnumCountry">
 <option value="0">United Mexican States</option>
 <option value="1">United States of America</option>
 <option value="2">Canada</option>
 <option value="3">France</option>
 <option value="4">Germany</option>
 <option selected="selected" value="5">Spain</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Option GroupOption Group

You can decorate your enumerator list with the Display attribute to get a richer UI:

The following HTML is generated:

The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup objects.

The CountryViewModelGroup groups the SelectListItem elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup

public class CountryViewModelGroup
{
 public CountryViewModelGroup()
 {
 var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
 var EuropeGroup = new SelectListGroup { Name = "Europe" };

 Countries = new List<SelectListItem>
 {
 new SelectListItem
 {
 Value = "MEX",
 Text = "Mexico",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "CAN",
 Text = "Canada",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "US",
 Text = "USA",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "FR",
 Text = "France",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "ES",
 Text = "Spain",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "DE",
 Text = "Germany",
 Group = EuropeGroup
 }
 };
 }

 public string Country { get; set; }

 public List<SelectListItem> Countries { get; }

The two groups are shown below:

 <form method="post" action="/Home/IndexGroup">
 <select id="Country" name="Country">
 <optgroup label="North America">
 <option value="MEX">Mexico</option>
 <option value="CAN">Canada</option>
 <option value="US">USA</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="FR">France</option>
 <option value="ES">Spain</option>
 <option value="DE">Germany</option>
 </optgroup>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModelIEnumerable
 {
 public IEnumerable<string> CountryCodes { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 new SelectListItem { Value = "FR", Text = "France" },
 new SelectListItem { Value = "ES", Text = "Spain" },
 new SelectListItem { Value = "DE", Text = "Germany"}
 };
 }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the
asp-for attribute is an IEnumerable . For example, given the following model:

With the following view:

http://w3c.github.io/html-reference/select.html

@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
 <select asp-for="CountryCodes" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
 <select id="CountryCodes"
 multiple="multiple"
 name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 @Html.EditorForModel()

<button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
 <option value="">--none--</option>
</select>

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate
repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action
method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 <select asp-for="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
</form>

 <form method="post" action="/Home/IndexEmpty">
 <select id="Country" name="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA" selected="selected">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Additional resources

The correct <option> element will be selected (contain the selected="selected" attribute) depending on the
current Country value.

Tag Helpers
HTML Form element
Request Verification Token
Model Binding
Model Validation
IAttributeAdapter Interface
Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.DataAnnotations.IAttributeAdapter
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final

Partial Tag Helper in ASP.NET Core
5/9/2018 • 2 minutes to read • Edit Online

Overview

namespace TagHelpersBuiltIn.Models
{
 public class Product
 {
 public int Number { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }
 }
}

name

<partial name="Shared/_ProductPartial.cshtml"
 for="Product" />

for

By Scott Addie

View or download sample code (how to download)

The Partial Tag Helper is used for rendering a partial view in Razor Pages and MVC apps. Consider that it:

Requires ASP.NET Core 2.1 or later.
Is an alternative to HTML Helper syntax.
Renders the partial view asynchronously.

The HTML Helper options for rendering a partial view include:

@await Html.PartialAsync
@await Html.RenderPartialAsync
@Html.Partial
@Html.RenderPartial

The Product model is used in samples throughout this document:

An inventory of the Partial Tag Helper attributes follows.

The name attribute is required. It indicates the name or the path of the partial view to be rendered. When a partial
view name is provided, the view discovery process is initiated. That process is bypassed when an explicit path is
provided.

The following markup uses an explicit path, indicating that _ProductPartial.cshtml is to be loaded from the Shared
folder. Using the for attribute, a model is passed to the partial view for binding.

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/partial-tag-helper.md
https://github.com/scottaddie
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/tag-helpers/built-in/samples
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.partialasync
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.renderpartialasync
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.partial
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.renderpartial

<partial name="_ProductPartial"
 for="Product" />

using Microsoft.AspNetCore.Mvc.RazorPages;
using TagHelpersBuiltIn.Models;

namespace TagHelpersBuiltIn.Pages
{
 public class ProductModel : PageModel
 {
 public Product Product { get; set; }

 public void OnGet()
 {
 Product = new Product
 {
 Number = 1,
 Name = "Test product",
 Description = "This is a test product"
 };
 }
 }
}

model

<partial name="_ProductPartial"
 model='new Product { Number = 1, Name = "Test product", Description = "This is a test" }' />

view-data

@{
 ViewData["IsNumberReadOnly"] = true;
}

<partial name="_ProductViewDataPartial"
 for="Product"
 view-data="@ViewData" />

The for attribute assigns a ModelExpression to be evaluated against the current model. A ModelExpression infers
the @Model. syntax. For example, for="Product" can be used instead of for="@Model.Product" . This default
inference behavior is overridden by using the @ symbol to define an inline expression. The for attribute can't be
used with the model attribute.

The following markup loads _ProductPartial.cshtml:

The partial view is bound to the associated page model's Product property:

The model attribute assigns a model instance to pass to the partial view. The model attribute can't be used with
the for attribute.

In the following markup, a new Product object is instantiated and passed to the model attribute for binding:

The view-data attribute assigns a ViewDataDictionary to pass to the partial view. The following markup makes
the entire ViewData collection accessible to the partial view:

In the preceding code, the IsNumberReadOnly key value is set to true and added to the ViewData collection.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.modelexpression
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary

@model TagHelpersBuiltIn.Models.Product

<div class="form-group">
 <label asp-for="Number"></label>
 @if ((bool)ViewData["IsNumberReadOnly"])
 {
 <input asp-for="Number" type="number" class="form-control" readonly />
 }
 else
 {
 <input asp-for="Number" type="number" class="form-control" />
 }
</div>
<div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" type="text" class="form-control" />
</div>
<div class="form-group">
 <label asp-for="Description"></label>
 <textarea asp-for="Description" rows="4" cols="50" class="form-control"></textarea>
</div>

Additional resources

Consequently, ViewData["IsNumberReadOnly"] is made accessible within the following partial view:

In this example, the value of ViewData["IsNumberReadOnly"] determines whether the Number field is displayed as
read only.

Partial views
Weakly typed data (ViewData, ViewData attribute, and ViewBag)

Tag Helpers in forms in ASP.NET Core
5/2/2018 • 17 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
 <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
 <!-- Input and Submit elements -->
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

Using a named routeUsing a named route

By Rick Anderson, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML
Form element provides the primary mechanism web apps use to post back data to the server. Most of this
document describes Tag Helpers and how they can help you productively create robust HTML forms. We
recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to
recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When
an HTML Helper alternative exists, it's mentioned.

The Form Tag Helper :

Generates the HTML <FORM> action attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the
[ValidateAntiForgeryToken] attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name> attribute, where <Parameter Name> is added to the route values.
The routeValues parameters to Html.BeginForm and Html.BeginRouteForm provide similar functionality.

Has an HTML Helper alternative Html.BeginForm and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action attribute value from the Form Tag Helper attributes asp-controller and
asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken] attribute in the HTTP Post action method). Protecting a
pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route Tag Helper attribute can also generate markup for the HTML action attribute. An app with a route
named register could use the following markup for the registration page:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

<form asp-route="register" method="post">
 <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@ViewData["ReturnUrl"]"
 method="post" class="form-horizontal" role="form">

NOTENOTE

The Input Tag Helper

<input asp-for="<Expression Name>" />

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
 'RegisterViewModel' does not contain a definition for 'Email' and no
 extension method 'Email' accepting a first argument of type 'RegisterViewModel'
 could be found (are you missing a using directive or an assembly reference?)

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User
Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl is only populated automatically when you try to access an authorized resource but
are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the
login page with the returnUrl set.

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

Generates the id and name HTML attributes for the expression name specified in the asp-for attribute.
asp-for="Property1.Property2" is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for attribute value. See the Expression names section for additional information.

Sets the HTML type attribute value based on the model type and data annotation attributes applied to the
model property

Won't overwrite the HTML type attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor and Html.EditorFor . See the HTML Helper
alternatives to Input Tag Helper section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get
an error similar to the following:

The Input Tag Helper sets the HTML type attribute based on the .NET type. The following table lists some
common .NET types and generated HTML type (not every .NET type is listed).

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

.NET TYPE INPUT TYPE

Bool type=”checkbox”

String type=”text”

DateTime type=”datetime”

Byte type=”number”

Int type=”number”

Single, Double type=”number”

ATTRIBUTE INPUT TYPE

[EmailAddress] type=”email”

[Url] type=”url”

[HiddenInput] type=”hidden”

[Phone] type=”tel”

[DataType(DataType.Password)] type=”password”

[DataType(DataType.Date)] type=”date”

[DataType(DataType.Time)] type=”time”

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

The following table shows some common data annotations attributes that the input tag helper will map to specific
input types (not every validation attribute is listed):

Sample:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

 <form method="post" action="/Demo/RegisterInput">
 Email:
 <input type="email" data-val="true"
 data-val-email="The Email Address field is not a valid email address."
 data-val-required="The Email Address field is required."
 id="Email" name="Email" value="" />

 Password:
 <input type="password" data-val="true"
 data-val-required="The Password field is required."
 id="Password" name="Password" />

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty,
 new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

The code above generates the following HTML:

The data annotations applied to the Email and Password properties generate metadata on the model. The Input
Tag Helper consumes the model metadata and produces HTML5 data-val-* attributes (see Model Validation).
These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery
validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of
the validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is
provided in the attribute, it's displayed as the value for the data-val-rule attribute. There are also attributes of the
form data-val-ruleName-argumentName="argumentValue" that provide additional details about the rule, for example,
data-val-maxlength-max="1024" .

Html.TextBox , Html.TextBoxFor , Html.Editor and Html.EditorFor have overlapping features with the Input Tag
Helper. The Input Tag Helper will automatically set the type attribute; Html.TextBox and Html.TextBoxFor won't.
Html.Editor and Html.EditorFor handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor and Html.TextBoxFor are strongly typed (they use lambda expressions);
Html.TextBox and Html.Editor are not (they use expression names).

@Html.Editor() and @Html.EditorFor() use a special ViewDataDictionary entry named htmlAttributes when
executing their default templates. This behavior is optionally augmented using additionalViewData parameters. The
key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes object
passed to input helpers like @Html.TextBox() .

The asp-for attribute value is a ModelExpression and the right hand side of a lambda expression. Therefore,
asp-for="Property1" becomes m => m.Property1 in the generated code which is why you don't need to prefix with
Model . You can use the "@" character to start an inline expression and move before the m. :

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/

@{
 var joe = "Joe";
 }
 <input asp-for="@joe" />

<input type="text" id="joe" name="joe" value="Joe" />

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
 public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
 public string Email { get; set; }

 [DataType(DataType.Password)]
 public string Password { get; set; }

 public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 Address: <input asp-for="Address.AddressLine1" />

 <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="" />

Expression names and CollectionsExpression names and Collections

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member" generates the same name as
asp-for="CollectionProperty[i].Member" when i has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including
ModelState . Consider <input type="text" asp-for="@Name" /> . The calculated value attribute is the first non-null

value from:

ModelState entry with key "Name".
Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex
model class that contains a child Address property.

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

public class Person
{
 public List<string> Colors { get; set; }

 public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
 {
 ViewData["Index"] = colorIndex;
 return View(GetPerson(id));
 }

@model Person
@{
 var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
 @Html.EditorFor(m => m.Colors[index])
 <label asp-for="Age"></label>
 <input asp-for="Age" />

 <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" />

public class ToDoItem
{
 public string Name { get; set; }

 public bool IsDone { get; set; }
}

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color element:

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
 <table>
 <tr> <th>Name</th> <th>Is Done</th> </tr>

 @for (int i = 0; i < Model.Count; i++)
 {
 <tr>
 @Html.EditorFor(model => model[i])
 </tr>
 }

 </table>
 <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
 <label asp-for="@Model.Name"></label>
 @Html.DisplayFor(model => model.Name)
</td>
<td>
 <input asp-for="@Model.IsDone" />
</td>

@*
 This template replaces the following Razor which evaluates the indexer three times.
 <td>
 <label asp-for="@Model[i].Name"></label>
 @Html.DisplayFor(model => model[i].Name)
 </td>
 <td>
 <input asp-for="@Model[i].IsDone" />
 </td>
*@

NOTENOTE

NOTENOTE

The Textarea Tag Helper

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

Always use for (and not foreach) to iterate over a list. Evaluating an indexer in a LINQ expression can be expensive and
should be minimized.

The commented sample code above shows how you would replace the lambda expression with the @ operator to access
each ToDoItem in the list.

The Textarea Tag Helper tag helper is similar to the Input Tag Helper.

Generates the id and name attributes, and the data validation attributes from the model for a <textarea>
element.

https://www.w3.org/wiki/HTML/Elements/textarea

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class DescriptionViewModel
 {
 [MinLength(5)]
 [MaxLength(1024)]
 public string Description { get; set; }
 }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
 <textarea asp-for="Description"></textarea>
 <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
 <textarea data-val="true"
 data-val-maxlength="The field Description must be a string or array type with a maximum length of
'1024'."
 data-val-maxlength-max="1024"
 data-val-minlength="The field Description must be a string or array type with a minimum length of
'5'."
 data-val-minlength-min="5"
 id="Description" name="Description">
 </textarea>
 <button type="submit">Test</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Label Tag Helper

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

Generates the label caption and for attribute on a element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display attribute. The intended display name
might change over time, and the combination of Display attribute and Label Tag Helper will apply the
Display everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class SimpleViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }
 }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
 <label asp-for="Email"></label>
 <input asp-for="Email" />

</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

The following HTML is generated for the <label> element:

The Label Tag Helper generated the for attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id and for elements so they can be correctly associated. The
caption in this sample comes from the Display attribute. If the model didn't contain a Display attribute, the
caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper (which displays a validation message for
a single property on your model), and the Validation Summary Tag Helper (which displays a summary of validation
errors). The Input Tag Helper adds HTML5 client side validation attributes to input elements based on data
annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper
displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property" attribute to the span element, which attaches the validation
error messages on the input field of the specified model property. When a client side validation error occurs,
jQuery displays the error message in the element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only
be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper is used with the asp-validation-for attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span

<span class="field-validation-valid"
 data-valmsg-for="Email"
 data-valmsg-replace="true">

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
 data-valmsg-replace="true">
 The Email Address field is required.

The Validation Summary Tag HelperThe Validation Summary Tag Helper

ASP-VALIDATION-SUMMARY VALIDATION MESSAGES DISPLAYED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

You generally use the Validation Message Tag Helper after an Input Tag Helper for the same property. Doing so
displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model
Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side
validation is disabled), MVC places that error message as the body of the element.

Targets <div> elements with the asp-validation-summary attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper is used to display a summary of validation messages. The
asp-validation-summary attribute value can be any of the following:

In the following example, the data model is decorated with DataAnnotation attributes, which generates validation
error messages on the <input> element. When a validation error occurs, the Validation Tag Helper displays the
error message:

https://jquery.com/

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
 <div asp-validation-summary="ModelOnly"></div>
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

<form action="/DemoReg/Register" method="post">
 <div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none"></div>
 Email: <input name="Email" id="Email" type="email" value=""
 data-val-required="The Email field is required."
 data-val-email="The Email field is not a valid email address."
 data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Email">

 Password: <input name="Password" id="Password" type="password"
 data-val-required="The Password field is required." data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Password">

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select>

The generated HTML (when the model is valid):

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor and Html.ListBoxFor

The Select Tag Helper asp-for specifies the model property name for the select element and asp-items specifies
the option elements. For example:

Sample:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModel
 {
 public string Country { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 };
 }
}

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
 if (ModelState.IsValid)
 {
 var msg = model.Country + " selected";
 return RedirectToAction("IndexSuccess", new { message = msg});
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
 <select asp-for="Country" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

The Index method initializes the CountryViewModel , sets the selected country and passes it to the Index view.

The HTTP POST Index method displays the selection:

The Index view:

Which generates the following HTML (with "CA" selected):

<form method="post" action="/">
 <select id="Country" name="Country">
 <option value="MX">Mexico</option>
 <option selected="selected" value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select>

Enum bindingEnum binding

 public class CountryEnumViewModel
 {
 public CountryEnum EnumCountry { get; set; }
 }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

We don't recommend using ViewBag or ViewData with the Select Tag Helper. A view model is more robust at providing
MVC metadata and generally less problematic.

The asp-for attribute value is a special case and doesn't require a Model prefix, the other Tag Helper attributes do
(such as asp-items)

It's often convenient to use <select> with an enum property and generate the SelectListItem elements from the
enum values.

Sample:

The GetEnumSelectList method generates a SelectList object for an enum.

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
 <select asp-for="EnumCountry"
 asp-items="Html.GetEnumSelectList<CountryEnum>()"> >
 </select>

<button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

 <form method="post" action="/Home/IndexEnum">
 <select data-val="true" data-val-required="The EnumCountry field is required."
 id="EnumCountry" name="EnumCountry">
 <option value="0">United Mexican States</option>
 <option value="1">United States of America</option>
 <option value="2">Canada</option>
 <option value="3">France</option>
 <option value="4">Germany</option>
 <option selected="selected" value="5">Spain</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Option GroupOption Group

You can decorate your enumerator list with the Display attribute to get a richer UI:

The following HTML is generated:

The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup objects.

The CountryViewModelGroup groups the SelectListItem elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup

public class CountryViewModelGroup
{
 public CountryViewModelGroup()
 {
 var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
 var EuropeGroup = new SelectListGroup { Name = "Europe" };

 Countries = new List<SelectListItem>
 {
 new SelectListItem
 {
 Value = "MEX",
 Text = "Mexico",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "CAN",
 Text = "Canada",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "US",
 Text = "USA",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "FR",
 Text = "France",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "ES",
 Text = "Spain",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "DE",
 Text = "Germany",
 Group = EuropeGroup
 }
 };
 }

 public string Country { get; set; }

 public List<SelectListItem> Countries { get; }

The two groups are shown below:

 <form method="post" action="/Home/IndexGroup">
 <select id="Country" name="Country">
 <optgroup label="North America">
 <option value="MEX">Mexico</option>
 <option value="CAN">Canada</option>
 <option value="US">USA</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="FR">France</option>
 <option value="ES">Spain</option>
 <option value="DE">Germany</option>
 </optgroup>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModelIEnumerable
 {
 public IEnumerable<string> CountryCodes { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 new SelectListItem { Value = "FR", Text = "France" },
 new SelectListItem { Value = "ES", Text = "Spain" },
 new SelectListItem { Value = "DE", Text = "Germany"}
 };
 }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the
asp-for attribute is an IEnumerable . For example, given the following model:

With the following view:

http://w3c.github.io/html-reference/select.html

@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
 <select asp-for="CountryCodes" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
 <select id="CountryCodes"
 multiple="multiple"
 name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 @Html.EditorForModel()

<button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
 <option value="">--none--</option>
</select>

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate
repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action
method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 <select asp-for="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
</form>

 <form method="post" action="/Home/IndexEmpty">
 <select id="Country" name="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA" selected="selected">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Additional resources

The correct <option> element will be selected (contain the selected="selected" attribute) depending on the
current Country value.

Tag Helpers
HTML Form element
Request Verification Token
Model Binding
Model Validation
IAttributeAdapter Interface
Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.DataAnnotations.IAttributeAdapter
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final

Tag Helpers in forms in ASP.NET Core
5/2/2018 • 17 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
 <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
 <!-- Input and Submit elements -->
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

Using a named routeUsing a named route

By Rick Anderson, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML
Form element provides the primary mechanism web apps use to post back data to the server. Most of this
document describes Tag Helpers and how they can help you productively create robust HTML forms. We
recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to
recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When
an HTML Helper alternative exists, it's mentioned.

The Form Tag Helper :

Generates the HTML <FORM> action attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the
[ValidateAntiForgeryToken] attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name> attribute, where <Parameter Name> is added to the route values.
The routeValues parameters to Html.BeginForm and Html.BeginRouteForm provide similar functionality.

Has an HTML Helper alternative Html.BeginForm and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action attribute value from the Form Tag Helper attributes asp-controller and
asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken] attribute in the HTTP Post action method). Protecting a
pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route Tag Helper attribute can also generate markup for the HTML action attribute. An app with a route
named register could use the following markup for the registration page:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

<form asp-route="register" method="post">
 <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@ViewData["ReturnUrl"]"
 method="post" class="form-horizontal" role="form">

NOTENOTE

The Input Tag Helper

<input asp-for="<Expression Name>" />

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
 'RegisterViewModel' does not contain a definition for 'Email' and no
 extension method 'Email' accepting a first argument of type 'RegisterViewModel'
 could be found (are you missing a using directive or an assembly reference?)

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User
Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl is only populated automatically when you try to access an authorized resource but
are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the
login page with the returnUrl set.

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

Generates the id and name HTML attributes for the expression name specified in the asp-for attribute.
asp-for="Property1.Property2" is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for attribute value. See the Expression names section for additional information.

Sets the HTML type attribute value based on the model type and data annotation attributes applied to the
model property

Won't overwrite the HTML type attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor and Html.EditorFor . See the HTML Helper
alternatives to Input Tag Helper section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get
an error similar to the following:

The Input Tag Helper sets the HTML type attribute based on the .NET type. The following table lists some
common .NET types and generated HTML type (not every .NET type is listed).

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

.NET TYPE INPUT TYPE

Bool type=”checkbox”

String type=”text”

DateTime type=”datetime”

Byte type=”number”

Int type=”number”

Single, Double type=”number”

ATTRIBUTE INPUT TYPE

[EmailAddress] type=”email”

[Url] type=”url”

[HiddenInput] type=”hidden”

[Phone] type=”tel”

[DataType(DataType.Password)] type=”password”

[DataType(DataType.Date)] type=”date”

[DataType(DataType.Time)] type=”time”

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

The following table shows some common data annotations attributes that the input tag helper will map to specific
input types (not every validation attribute is listed):

Sample:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

 <form method="post" action="/Demo/RegisterInput">
 Email:
 <input type="email" data-val="true"
 data-val-email="The Email Address field is not a valid email address."
 data-val-required="The Email Address field is required."
 id="Email" name="Email" value="" />

 Password:
 <input type="password" data-val="true"
 data-val-required="The Password field is required."
 id="Password" name="Password" />

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty,
 new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

The code above generates the following HTML:

The data annotations applied to the Email and Password properties generate metadata on the model. The Input
Tag Helper consumes the model metadata and produces HTML5 data-val-* attributes (see Model Validation).
These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery
validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of
the validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is
provided in the attribute, it's displayed as the value for the data-val-rule attribute. There are also attributes of the
form data-val-ruleName-argumentName="argumentValue" that provide additional details about the rule, for example,
data-val-maxlength-max="1024" .

Html.TextBox , Html.TextBoxFor , Html.Editor and Html.EditorFor have overlapping features with the Input Tag
Helper. The Input Tag Helper will automatically set the type attribute; Html.TextBox and Html.TextBoxFor won't.
Html.Editor and Html.EditorFor handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor and Html.TextBoxFor are strongly typed (they use lambda expressions);
Html.TextBox and Html.Editor are not (they use expression names).

@Html.Editor() and @Html.EditorFor() use a special ViewDataDictionary entry named htmlAttributes when
executing their default templates. This behavior is optionally augmented using additionalViewData parameters. The
key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes object
passed to input helpers like @Html.TextBox() .

The asp-for attribute value is a ModelExpression and the right hand side of a lambda expression. Therefore,
asp-for="Property1" becomes m => m.Property1 in the generated code which is why you don't need to prefix with
Model . You can use the "@" character to start an inline expression and move before the m. :

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/

@{
 var joe = "Joe";
 }
 <input asp-for="@joe" />

<input type="text" id="joe" name="joe" value="Joe" />

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
 public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
 public string Email { get; set; }

 [DataType(DataType.Password)]
 public string Password { get; set; }

 public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 Address: <input asp-for="Address.AddressLine1" />

 <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="" />

Expression names and CollectionsExpression names and Collections

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member" generates the same name as
asp-for="CollectionProperty[i].Member" when i has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including
ModelState . Consider <input type="text" asp-for="@Name" /> . The calculated value attribute is the first non-null

value from:

ModelState entry with key "Name".
Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex
model class that contains a child Address property.

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

public class Person
{
 public List<string> Colors { get; set; }

 public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
 {
 ViewData["Index"] = colorIndex;
 return View(GetPerson(id));
 }

@model Person
@{
 var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
 @Html.EditorFor(m => m.Colors[index])
 <label asp-for="Age"></label>
 <input asp-for="Age" />

 <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" />

public class ToDoItem
{
 public string Name { get; set; }

 public bool IsDone { get; set; }
}

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color element:

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
 <table>
 <tr> <th>Name</th> <th>Is Done</th> </tr>

 @for (int i = 0; i < Model.Count; i++)
 {
 <tr>
 @Html.EditorFor(model => model[i])
 </tr>
 }

 </table>
 <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
 <label asp-for="@Model.Name"></label>
 @Html.DisplayFor(model => model.Name)
</td>
<td>
 <input asp-for="@Model.IsDone" />
</td>

@*
 This template replaces the following Razor which evaluates the indexer three times.
 <td>
 <label asp-for="@Model[i].Name"></label>
 @Html.DisplayFor(model => model[i].Name)
 </td>
 <td>
 <input asp-for="@Model[i].IsDone" />
 </td>
*@

NOTENOTE

NOTENOTE

The Textarea Tag Helper

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

Always use for (and not foreach) to iterate over a list. Evaluating an indexer in a LINQ expression can be expensive and
should be minimized.

The commented sample code above shows how you would replace the lambda expression with the @ operator to access
each ToDoItem in the list.

The Textarea Tag Helper tag helper is similar to the Input Tag Helper.

Generates the id and name attributes, and the data validation attributes from the model for a <textarea>
element.

https://www.w3.org/wiki/HTML/Elements/textarea

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class DescriptionViewModel
 {
 [MinLength(5)]
 [MaxLength(1024)]
 public string Description { get; set; }
 }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
 <textarea asp-for="Description"></textarea>
 <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
 <textarea data-val="true"
 data-val-maxlength="The field Description must be a string or array type with a maximum length of
'1024'."
 data-val-maxlength-max="1024"
 data-val-minlength="The field Description must be a string or array type with a minimum length of
'5'."
 data-val-minlength-min="5"
 id="Description" name="Description">
 </textarea>
 <button type="submit">Test</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Label Tag Helper

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

Generates the label caption and for attribute on a element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display attribute. The intended display name
might change over time, and the combination of Display attribute and Label Tag Helper will apply the
Display everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class SimpleViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }
 }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
 <label asp-for="Email"></label>
 <input asp-for="Email" />

</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

The following HTML is generated for the <label> element:

The Label Tag Helper generated the for attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id and for elements so they can be correctly associated. The
caption in this sample comes from the Display attribute. If the model didn't contain a Display attribute, the
caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper (which displays a validation message for
a single property on your model), and the Validation Summary Tag Helper (which displays a summary of validation
errors). The Input Tag Helper adds HTML5 client side validation attributes to input elements based on data
annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper
displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property" attribute to the span element, which attaches the validation
error messages on the input field of the specified model property. When a client side validation error occurs,
jQuery displays the error message in the element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only
be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper is used with the asp-validation-for attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span

<span class="field-validation-valid"
 data-valmsg-for="Email"
 data-valmsg-replace="true">

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
 data-valmsg-replace="true">
 The Email Address field is required.

The Validation Summary Tag HelperThe Validation Summary Tag Helper

ASP-VALIDATION-SUMMARY VALIDATION MESSAGES DISPLAYED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

You generally use the Validation Message Tag Helper after an Input Tag Helper for the same property. Doing so
displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model
Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side
validation is disabled), MVC places that error message as the body of the element.

Targets <div> elements with the asp-validation-summary attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper is used to display a summary of validation messages. The
asp-validation-summary attribute value can be any of the following:

In the following example, the data model is decorated with DataAnnotation attributes, which generates validation
error messages on the <input> element. When a validation error occurs, the Validation Tag Helper displays the
error message:

https://jquery.com/

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
 <div asp-validation-summary="ModelOnly"></div>
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

<form action="/DemoReg/Register" method="post">
 <div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none"></div>
 Email: <input name="Email" id="Email" type="email" value=""
 data-val-required="The Email field is required."
 data-val-email="The Email field is not a valid email address."
 data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Email">

 Password: <input name="Password" id="Password" type="password"
 data-val-required="The Password field is required." data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Password">

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select>

The generated HTML (when the model is valid):

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor and Html.ListBoxFor

The Select Tag Helper asp-for specifies the model property name for the select element and asp-items specifies
the option elements. For example:

Sample:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModel
 {
 public string Country { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 };
 }
}

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
 if (ModelState.IsValid)
 {
 var msg = model.Country + " selected";
 return RedirectToAction("IndexSuccess", new { message = msg});
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
 <select asp-for="Country" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

The Index method initializes the CountryViewModel , sets the selected country and passes it to the Index view.

The HTTP POST Index method displays the selection:

The Index view:

Which generates the following HTML (with "CA" selected):

<form method="post" action="/">
 <select id="Country" name="Country">
 <option value="MX">Mexico</option>
 <option selected="selected" value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select>

Enum bindingEnum binding

 public class CountryEnumViewModel
 {
 public CountryEnum EnumCountry { get; set; }
 }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

We don't recommend using ViewBag or ViewData with the Select Tag Helper. A view model is more robust at providing
MVC metadata and generally less problematic.

The asp-for attribute value is a special case and doesn't require a Model prefix, the other Tag Helper attributes do
(such as asp-items)

It's often convenient to use <select> with an enum property and generate the SelectListItem elements from the
enum values.

Sample:

The GetEnumSelectList method generates a SelectList object for an enum.

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
 <select asp-for="EnumCountry"
 asp-items="Html.GetEnumSelectList<CountryEnum>()"> >
 </select>

<button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

 <form method="post" action="/Home/IndexEnum">
 <select data-val="true" data-val-required="The EnumCountry field is required."
 id="EnumCountry" name="EnumCountry">
 <option value="0">United Mexican States</option>
 <option value="1">United States of America</option>
 <option value="2">Canada</option>
 <option value="3">France</option>
 <option value="4">Germany</option>
 <option selected="selected" value="5">Spain</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Option GroupOption Group

You can decorate your enumerator list with the Display attribute to get a richer UI:

The following HTML is generated:

The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup objects.

The CountryViewModelGroup groups the SelectListItem elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup

public class CountryViewModelGroup
{
 public CountryViewModelGroup()
 {
 var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
 var EuropeGroup = new SelectListGroup { Name = "Europe" };

 Countries = new List<SelectListItem>
 {
 new SelectListItem
 {
 Value = "MEX",
 Text = "Mexico",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "CAN",
 Text = "Canada",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "US",
 Text = "USA",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "FR",
 Text = "France",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "ES",
 Text = "Spain",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "DE",
 Text = "Germany",
 Group = EuropeGroup
 }
 };
 }

 public string Country { get; set; }

 public List<SelectListItem> Countries { get; }

The two groups are shown below:

 <form method="post" action="/Home/IndexGroup">
 <select id="Country" name="Country">
 <optgroup label="North America">
 <option value="MEX">Mexico</option>
 <option value="CAN">Canada</option>
 <option value="US">USA</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="FR">France</option>
 <option value="ES">Spain</option>
 <option value="DE">Germany</option>
 </optgroup>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModelIEnumerable
 {
 public IEnumerable<string> CountryCodes { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 new SelectListItem { Value = "FR", Text = "France" },
 new SelectListItem { Value = "ES", Text = "Spain" },
 new SelectListItem { Value = "DE", Text = "Germany"}
 };
 }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the
asp-for attribute is an IEnumerable . For example, given the following model:

With the following view:

http://w3c.github.io/html-reference/select.html

@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
 <select asp-for="CountryCodes" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
 <select id="CountryCodes"
 multiple="multiple"
 name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 @Html.EditorForModel()

<button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
 <option value="">--none--</option>
</select>

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate
repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action
method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 <select asp-for="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
</form>

 <form method="post" action="/Home/IndexEmpty">
 <select id="Country" name="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA" selected="selected">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Additional resources

The correct <option> element will be selected (contain the selected="selected" attribute) depending on the
current Country value.

Tag Helpers
HTML Form element
Request Verification Token
Model Binding
Model Validation
IAttributeAdapter Interface
Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.DataAnnotations.IAttributeAdapter
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final

Tag Helpers in forms in ASP.NET Core
5/2/2018 • 17 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
 <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
 <!-- Input and Submit elements -->
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

Using a named routeUsing a named route

By Rick Anderson, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML
Form element provides the primary mechanism web apps use to post back data to the server. Most of this
document describes Tag Helpers and how they can help you productively create robust HTML forms. We
recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to
recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When
an HTML Helper alternative exists, it's mentioned.

The Form Tag Helper :

Generates the HTML <FORM> action attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the
[ValidateAntiForgeryToken] attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name> attribute, where <Parameter Name> is added to the route values.
The routeValues parameters to Html.BeginForm and Html.BeginRouteForm provide similar functionality.

Has an HTML Helper alternative Html.BeginForm and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action attribute value from the Form Tag Helper attributes asp-controller and
asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken] attribute in the HTTP Post action method). Protecting a
pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route Tag Helper attribute can also generate markup for the HTML action attribute. An app with a route
named register could use the following markup for the registration page:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

<form asp-route="register" method="post">
 <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@ViewData["ReturnUrl"]"
 method="post" class="form-horizontal" role="form">

NOTENOTE

The Input Tag Helper

<input asp-for="<Expression Name>" />

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
 'RegisterViewModel' does not contain a definition for 'Email' and no
 extension method 'Email' accepting a first argument of type 'RegisterViewModel'
 could be found (are you missing a using directive or an assembly reference?)

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User
Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl is only populated automatically when you try to access an authorized resource but
are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the
login page with the returnUrl set.

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

Generates the id and name HTML attributes for the expression name specified in the asp-for attribute.
asp-for="Property1.Property2" is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for attribute value. See the Expression names section for additional information.

Sets the HTML type attribute value based on the model type and data annotation attributes applied to the
model property

Won't overwrite the HTML type attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor and Html.EditorFor . See the HTML Helper
alternatives to Input Tag Helper section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get
an error similar to the following:

The Input Tag Helper sets the HTML type attribute based on the .NET type. The following table lists some
common .NET types and generated HTML type (not every .NET type is listed).

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

.NET TYPE INPUT TYPE

Bool type=”checkbox”

String type=”text”

DateTime type=”datetime”

Byte type=”number”

Int type=”number”

Single, Double type=”number”

ATTRIBUTE INPUT TYPE

[EmailAddress] type=”email”

[Url] type=”url”

[HiddenInput] type=”hidden”

[Phone] type=”tel”

[DataType(DataType.Password)] type=”password”

[DataType(DataType.Date)] type=”date”

[DataType(DataType.Time)] type=”time”

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

The following table shows some common data annotations attributes that the input tag helper will map to specific
input types (not every validation attribute is listed):

Sample:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

 <form method="post" action="/Demo/RegisterInput">
 Email:
 <input type="email" data-val="true"
 data-val-email="The Email Address field is not a valid email address."
 data-val-required="The Email Address field is required."
 id="Email" name="Email" value="" />

 Password:
 <input type="password" data-val="true"
 data-val-required="The Password field is required."
 id="Password" name="Password" />

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty,
 new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

The code above generates the following HTML:

The data annotations applied to the Email and Password properties generate metadata on the model. The Input
Tag Helper consumes the model metadata and produces HTML5 data-val-* attributes (see Model Validation).
These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery
validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of
the validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is
provided in the attribute, it's displayed as the value for the data-val-rule attribute. There are also attributes of the
form data-val-ruleName-argumentName="argumentValue" that provide additional details about the rule, for example,
data-val-maxlength-max="1024" .

Html.TextBox , Html.TextBoxFor , Html.Editor and Html.EditorFor have overlapping features with the Input Tag
Helper. The Input Tag Helper will automatically set the type attribute; Html.TextBox and Html.TextBoxFor won't.
Html.Editor and Html.EditorFor handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor and Html.TextBoxFor are strongly typed (they use lambda expressions);
Html.TextBox and Html.Editor are not (they use expression names).

@Html.Editor() and @Html.EditorFor() use a special ViewDataDictionary entry named htmlAttributes when
executing their default templates. This behavior is optionally augmented using additionalViewData parameters. The
key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes object
passed to input helpers like @Html.TextBox() .

The asp-for attribute value is a ModelExpression and the right hand side of a lambda expression. Therefore,
asp-for="Property1" becomes m => m.Property1 in the generated code which is why you don't need to prefix with
Model . You can use the "@" character to start an inline expression and move before the m. :

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/

@{
 var joe = "Joe";
 }
 <input asp-for="@joe" />

<input type="text" id="joe" name="joe" value="Joe" />

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
 public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
 public string Email { get; set; }

 [DataType(DataType.Password)]
 public string Password { get; set; }

 public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 Address: <input asp-for="Address.AddressLine1" />

 <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="" />

Expression names and CollectionsExpression names and Collections

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member" generates the same name as
asp-for="CollectionProperty[i].Member" when i has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including
ModelState . Consider <input type="text" asp-for="@Name" /> . The calculated value attribute is the first non-null

value from:

ModelState entry with key "Name".
Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex
model class that contains a child Address property.

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

public class Person
{
 public List<string> Colors { get; set; }

 public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
 {
 ViewData["Index"] = colorIndex;
 return View(GetPerson(id));
 }

@model Person
@{
 var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
 @Html.EditorFor(m => m.Colors[index])
 <label asp-for="Age"></label>
 <input asp-for="Age" />

 <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" />

public class ToDoItem
{
 public string Name { get; set; }

 public bool IsDone { get; set; }
}

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color element:

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
 <table>
 <tr> <th>Name</th> <th>Is Done</th> </tr>

 @for (int i = 0; i < Model.Count; i++)
 {
 <tr>
 @Html.EditorFor(model => model[i])
 </tr>
 }

 </table>
 <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
 <label asp-for="@Model.Name"></label>
 @Html.DisplayFor(model => model.Name)
</td>
<td>
 <input asp-for="@Model.IsDone" />
</td>

@*
 This template replaces the following Razor which evaluates the indexer three times.
 <td>
 <label asp-for="@Model[i].Name"></label>
 @Html.DisplayFor(model => model[i].Name)
 </td>
 <td>
 <input asp-for="@Model[i].IsDone" />
 </td>
*@

NOTENOTE

NOTENOTE

The Textarea Tag Helper

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

Always use for (and not foreach) to iterate over a list. Evaluating an indexer in a LINQ expression can be expensive and
should be minimized.

The commented sample code above shows how you would replace the lambda expression with the @ operator to access
each ToDoItem in the list.

The Textarea Tag Helper tag helper is similar to the Input Tag Helper.

Generates the id and name attributes, and the data validation attributes from the model for a <textarea>
element.

https://www.w3.org/wiki/HTML/Elements/textarea

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class DescriptionViewModel
 {
 [MinLength(5)]
 [MaxLength(1024)]
 public string Description { get; set; }
 }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
 <textarea asp-for="Description"></textarea>
 <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
 <textarea data-val="true"
 data-val-maxlength="The field Description must be a string or array type with a maximum length of
'1024'."
 data-val-maxlength-max="1024"
 data-val-minlength="The field Description must be a string or array type with a minimum length of
'5'."
 data-val-minlength-min="5"
 id="Description" name="Description">
 </textarea>
 <button type="submit">Test</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Label Tag Helper

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

Generates the label caption and for attribute on a element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display attribute. The intended display name
might change over time, and the combination of Display attribute and Label Tag Helper will apply the
Display everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class SimpleViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }
 }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
 <label asp-for="Email"></label>
 <input asp-for="Email" />

</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

The following HTML is generated for the <label> element:

The Label Tag Helper generated the for attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id and for elements so they can be correctly associated. The
caption in this sample comes from the Display attribute. If the model didn't contain a Display attribute, the
caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper (which displays a validation message for
a single property on your model), and the Validation Summary Tag Helper (which displays a summary of validation
errors). The Input Tag Helper adds HTML5 client side validation attributes to input elements based on data
annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper
displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property" attribute to the span element, which attaches the validation
error messages on the input field of the specified model property. When a client side validation error occurs,
jQuery displays the error message in the element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only
be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper is used with the asp-validation-for attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span

<span class="field-validation-valid"
 data-valmsg-for="Email"
 data-valmsg-replace="true">

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
 data-valmsg-replace="true">
 The Email Address field is required.

The Validation Summary Tag HelperThe Validation Summary Tag Helper

ASP-VALIDATION-SUMMARY VALIDATION MESSAGES DISPLAYED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

You generally use the Validation Message Tag Helper after an Input Tag Helper for the same property. Doing so
displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model
Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side
validation is disabled), MVC places that error message as the body of the element.

Targets <div> elements with the asp-validation-summary attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper is used to display a summary of validation messages. The
asp-validation-summary attribute value can be any of the following:

In the following example, the data model is decorated with DataAnnotation attributes, which generates validation
error messages on the <input> element. When a validation error occurs, the Validation Tag Helper displays the
error message:

https://jquery.com/

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
 <div asp-validation-summary="ModelOnly"></div>
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

<form action="/DemoReg/Register" method="post">
 <div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none"></div>
 Email: <input name="Email" id="Email" type="email" value=""
 data-val-required="The Email field is required."
 data-val-email="The Email field is not a valid email address."
 data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Email">

 Password: <input name="Password" id="Password" type="password"
 data-val-required="The Password field is required." data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Password">

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select>

The generated HTML (when the model is valid):

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor and Html.ListBoxFor

The Select Tag Helper asp-for specifies the model property name for the select element and asp-items specifies
the option elements. For example:

Sample:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModel
 {
 public string Country { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 };
 }
}

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
 if (ModelState.IsValid)
 {
 var msg = model.Country + " selected";
 return RedirectToAction("IndexSuccess", new { message = msg});
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
 <select asp-for="Country" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

The Index method initializes the CountryViewModel , sets the selected country and passes it to the Index view.

The HTTP POST Index method displays the selection:

The Index view:

Which generates the following HTML (with "CA" selected):

<form method="post" action="/">
 <select id="Country" name="Country">
 <option value="MX">Mexico</option>
 <option selected="selected" value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select>

Enum bindingEnum binding

 public class CountryEnumViewModel
 {
 public CountryEnum EnumCountry { get; set; }
 }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

We don't recommend using ViewBag or ViewData with the Select Tag Helper. A view model is more robust at providing
MVC metadata and generally less problematic.

The asp-for attribute value is a special case and doesn't require a Model prefix, the other Tag Helper attributes do
(such as asp-items)

It's often convenient to use <select> with an enum property and generate the SelectListItem elements from the
enum values.

Sample:

The GetEnumSelectList method generates a SelectList object for an enum.

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
 <select asp-for="EnumCountry"
 asp-items="Html.GetEnumSelectList<CountryEnum>()"> >
 </select>

<button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

 <form method="post" action="/Home/IndexEnum">
 <select data-val="true" data-val-required="The EnumCountry field is required."
 id="EnumCountry" name="EnumCountry">
 <option value="0">United Mexican States</option>
 <option value="1">United States of America</option>
 <option value="2">Canada</option>
 <option value="3">France</option>
 <option value="4">Germany</option>
 <option selected="selected" value="5">Spain</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Option GroupOption Group

You can decorate your enumerator list with the Display attribute to get a richer UI:

The following HTML is generated:

The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup objects.

The CountryViewModelGroup groups the SelectListItem elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup

public class CountryViewModelGroup
{
 public CountryViewModelGroup()
 {
 var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
 var EuropeGroup = new SelectListGroup { Name = "Europe" };

 Countries = new List<SelectListItem>
 {
 new SelectListItem
 {
 Value = "MEX",
 Text = "Mexico",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "CAN",
 Text = "Canada",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "US",
 Text = "USA",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "FR",
 Text = "France",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "ES",
 Text = "Spain",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "DE",
 Text = "Germany",
 Group = EuropeGroup
 }
 };
 }

 public string Country { get; set; }

 public List<SelectListItem> Countries { get; }

The two groups are shown below:

 <form method="post" action="/Home/IndexGroup">
 <select id="Country" name="Country">
 <optgroup label="North America">
 <option value="MEX">Mexico</option>
 <option value="CAN">Canada</option>
 <option value="US">USA</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="FR">France</option>
 <option value="ES">Spain</option>
 <option value="DE">Germany</option>
 </optgroup>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModelIEnumerable
 {
 public IEnumerable<string> CountryCodes { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 new SelectListItem { Value = "FR", Text = "France" },
 new SelectListItem { Value = "ES", Text = "Spain" },
 new SelectListItem { Value = "DE", Text = "Germany"}
 };
 }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the
asp-for attribute is an IEnumerable . For example, given the following model:

With the following view:

http://w3c.github.io/html-reference/select.html

@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
 <select asp-for="CountryCodes" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
 <select id="CountryCodes"
 multiple="multiple"
 name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 @Html.EditorForModel()

<button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
 <option value="">--none--</option>
</select>

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate
repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action
method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 <select asp-for="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
</form>

 <form method="post" action="/Home/IndexEmpty">
 <select id="Country" name="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA" selected="selected">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Additional resources

The correct <option> element will be selected (contain the selected="selected" attribute) depending on the
current Country value.

Tag Helpers
HTML Form element
Request Verification Token
Model Binding
Model Validation
IAttributeAdapter Interface
Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.DataAnnotations.IAttributeAdapter
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final

Tag Helpers in forms in ASP.NET Core
5/2/2018 • 17 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
 <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
 <!-- Input and Submit elements -->
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

Using a named routeUsing a named route

By Rick Anderson, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a
Form. The HTML Form element provides the primary mechanism web apps use to post back data
to the server. Most of this document describes Tag Helpers and how they can help you
productively create robust HTML forms. We recommend you read Introduction to Tag Helpers
before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's
important to recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper
for each HTML Helper. When an HTML Helper alternative exists, it's mentioned.

The Form Tag Helper :

Generates the HTML <FORM> action attribute value for a MVC controller action or
named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when
used with the [ValidateAntiForgeryToken] attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name> attribute, where <Parameter Name> is added to
the route values. The routeValues parameters to Html.BeginForm and
Html.BeginRouteForm provide similar functionality.

Has an HTML Helper alternative Html.BeginForm and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action attribute value from the Form Tag Helper attributes
asp-controller and asp-action . The Form Tag Helper also generates a hidden Request

Verification Token to prevent cross-site request forgery (when used with the
[ValidateAntiForgeryToken] attribute in the HTTP Post action method). Protecting a pure HTML

Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for
you.

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

<form asp-route="register" method="post">
 <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@ViewData["ReturnUrl"]"
 method="post" class="form-horizontal" role="form">

NOTENOTE

The Input Tag Helper

<input asp-for="<Expression Name>" />

The asp-route Tag Helper attribute can also generate markup for the HTML action attribute. An
app with a route named register could use the following markup for the registration page:

Many of the views in the Views/Account folder (generated when you create a new web app with
Individual User Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl is only populated automatically when you try to access an
authorized resource but are not authenticated or authorized. When you attempt an unauthorized access,
the security middleware redirects you to the login page with the returnUrl set.

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

Generates the id and name HTML attributes for the expression name specified in the
asp-for attribute. asp-for="Property1.Property2" is equivalent to
m => m.Property1.Property2 . The name of the expression is what is used for the asp-for

attribute value. See the Expression names section for additional information.

Sets the HTML type attribute value based on the model type and data annotation
attributes applied to the model property

Won't overwrite the HTML type attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model
properties

Has an HTML Helper feature overlap with Html.TextBoxFor and Html.EditorFor . See the
HTML Helper alternatives to Input Tag Helper section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag
Helper you'll get an error similar to the following:

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
 'RegisterViewModel' does not contain a definition for 'Email' and no
 extension method 'Email' accepting a first argument of type 'RegisterViewModel'
 could be found (are you missing a using directive or an assembly reference?)

.NET TYPE INPUT TYPE

Bool type=”checkbox”

String type=”text”

DateTime type=”datetime”

Byte type=”number”

Int type=”number”

Single, Double type=”number”

ATTRIBUTE INPUT TYPE

[EmailAddress] type=”email”

[Url] type=”url”

[HiddenInput] type=”hidden”

[Phone] type=”tel”

[DataType(DataType.Password)] type=”password”

[DataType(DataType.Date)] type=”date”

[DataType(DataType.Time)] type=”time”

The Input Tag Helper sets the HTML type attribute based on the .NET type. The following table
lists some common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper
will map to specific input types (not every validation attribute is listed):

Sample:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

 <form method="post" action="/Demo/RegisterInput">
 Email:
 <input type="email" data-val="true"
 data-val-email="The Email Address field is not a valid email address."
 data-val-required="The Email Address field is required."
 id="Email" name="Email" value="" />

 Password:
 <input type="password" data-val="true"
 data-val-required="The Password field is required."
 id="Password" name="Password" />

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

The code above generates the following HTML:

The data annotations applied to the Email and Password properties generate metadata on the
model. The Input Tag Helper consumes the model metadata and produces HTML5 data-val-*

attributes (see Model Validation). These attributes describe the validators to attach to the input
fields. This provides unobtrusive HTML5 and jQuery validation. The unobtrusive attributes have
the format data-val-rule="Error Message" , where rule is the name of the validation rule (such as
data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is provided in

the attribute, it's displayed as the value for the data-val-rule attribute. There are also attributes
of the form data-val-ruleName-argumentName="argumentValue" that provide additional details about
the rule, for example, data-val-maxlength-max="1024" .

Html.TextBox , Html.TextBoxFor , Html.Editor and Html.EditorFor have overlapping features
with the Input Tag Helper. The Input Tag Helper will automatically set the type attribute;
Html.TextBox and Html.TextBoxFor won't. Html.Editor and Html.EditorFor handle collections,

complex objects and templates; the Input Tag Helper doesn't. The Input Tag Helper,
Html.EditorFor and Html.TextBoxFor are strongly typed (they use lambda expressions);

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty,
 new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
 var joe = "Joe";
 }
 <input asp-for="@joe" />

<input type="text" id="joe" name="joe" value="Joe" />

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
 public string AddressLine1 { get; set; }
}

Html.TextBox and Html.Editor are not (they use expression names).

@Html.Editor() and @Html.EditorFor() use a special ViewDataDictionary entry named
htmlAttributes when executing their default templates. This behavior is optionally augmented

using additionalViewData parameters. The key "htmlAttributes" is case-insensitive. The key
"htmlAttributes" is handled similarly to the htmlAttributes object passed to input helpers like
@Html.TextBox() .

The asp-for attribute value is a ModelExpression and the right hand side of a lambda expression.
Therefore, asp-for="Property1" becomes m => m.Property1 in the generated code which is why
you don't need to prefix with Model . You can use the "@" character to start an inline expression
and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member" generates the same name as
asp-for="CollectionProperty[i].Member" when i has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources,
including ModelState . Consider <input type="text" asp-for="@Name" /> . The calculated value

attribute is the first non-null value from:

ModelState entry with key "Name".
Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a
more complex model class that contains a child Address property.

public class RegisterAddressViewModel
{
 public string Email { get; set; }

 [DataType(DataType.Password)]
 public string Password { get; set; }

 public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 Address: <input asp-for="Address.AddressLine1" />

 <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="" />

Expression names and CollectionsExpression names and Collections

public class Person
{
 public List<string> Colors { get; set; }

 public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
 {
 ViewData["Index"] = colorIndex;
 return View(GetPerson(id));
 }

@model Person
@{
 var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
 @Html.EditorFor(m => m.Colors[index])
 <label asp-for="Age"></label>
 <input asp-for="Age" />

 <button type="submit">Post</button>
</form>

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color element:

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" />

public class ToDoItem
{
 public string Name { get; set; }

 public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
 <table>
 <tr> <th>Name</th> <th>Is Done</th> </tr>

 @for (int i = 0; i < Model.Count; i++)
 {
 <tr>
 @Html.EditorFor(model => model[i])
 </tr>
 }

 </table>
 <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
 <label asp-for="@Model.Name"></label>
 @Html.DisplayFor(model => model.Name)
</td>
<td>
 <input asp-for="@Model.IsDone" />
</td>

@*
 This template replaces the following Razor which evaluates the indexer three times.
 <td>
 <label asp-for="@Model[i].Name"></label>
 @Html.DisplayFor(model => model[i].Name)
 </td>
 <td>
 <input asp-for="@Model[i].IsDone" />
 </td>
*@

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

NOTENOTE

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class DescriptionViewModel
 {
 [MinLength(5)]
 [MaxLength(1024)]
 public string Description { get; set; }
 }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
 <textarea asp-for="Description"></textarea>
 <button type="submit">Test</button>
</form>

Always use for (and not foreach) to iterate over a list. Evaluating an indexer in a LINQ expression can
be expensive and should be minimized.

The commented sample code above shows how you would replace the lambda expression with the @

operator to access each ToDoItem in the list.

The Textarea Tag Helper tag helper is similar to the Input Tag Helper.

Generates the id and name attributes, and the data validation attributes from the model
for a <textarea> element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

https://www.w3.org/wiki/HTML/Elements/textarea

<form method="post" action="/Demo/RegisterTextArea">
 <textarea data-val="true"
 data-val-maxlength="The field Description must be a string or array type with a maximum
length of '1024'."
 data-val-maxlength-max="1024"
 data-val-minlength="The field Description must be a string or array type with a minimum
length of '5'."
 data-val-minlength-min="5"
 id="Description" name="Description">
 </textarea>
 <button type="submit">Test</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class SimpleViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }
 }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
 <label asp-for="Email"></label>
 <input asp-for="Email" />

</form>

<label for="Email">Email Address</label>

Generates the label caption and for attribute on a element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display attribute. The intended
display name might change over time, and the combination of Display attribute and Label
Tag Helper will apply the Display everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

The following HTML is generated for the <label> element:

The Label Tag Helper generated the for attribute value of "Email", which is the ID associated

https://www.w3.org/wiki/HTML/Elements/label

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span class="field-validation-valid"
 data-valmsg-for="Email"
 data-valmsg-replace="true">

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
 data-valmsg-replace="true">
 The Email Address field is required.

with the <input> element. The Tag Helpers generate consistent id and for elements so they
can be correctly associated. The caption in this sample comes from the Display attribute. If the
model didn't contain a Display attribute, the caption would be the property name of the
expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper (which displays a
validation message for a single property on your model), and the Validation Summary Tag Helper

(which displays a summary of validation errors). The Input Tag Helper adds HTML5 client side
validation attributes to input elements based on data annotation attributes on your model classes.
Validation is also performed on the server. The Validation Tag Helper displays these error
messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property" attribute to the span element, which attaches
the validation error messages on the input field of the specified model property. When a
client side validation error occurs, jQuery displays the error message in the

element.

Validation also takes place on the server. Clients may have JavaScript disabled and some
validation can only be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper is used with the asp-validation-for attribute on a HTML
span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper after an Input Tag Helper for the same
property. Doing so displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side
validation. See Model Validation for more information.

When a server side validation error occurs (for example when you have custom server side
validation or client-side validation is disabled), MVC places that error message as the body of the
 element.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/

 The Validation Summary Tag HelperThe Validation Summary Tag Helper

ASP-VALIDATION-SUMMARY VALIDATION MESSAGES DISPLAYED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public class RegisterViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email Address")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
 <div asp-validation-summary="ModelOnly"></div>
 Email: <input asp-for="Email" />

 Password: <input asp-for="Password" />

 <button type="submit">Register</button>
</form>

Targets <div> elements with the asp-validation-summary attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper is used to display a summary of validation messages. The
asp-validation-summary attribute value can be any of the following:

In the following example, the data model is decorated with DataAnnotation attributes, which
generates validation error messages on the <input> element. When a validation error occurs, the
Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):

<form action="/DemoReg/Register" method="post">
 <div class="validation-summary-valid" data-valmsg-summary="true">
 <li style="display:none"></div>
 Email: <input name="Email" id="Email" type="email" value=""
 data-val-required="The Email field is required."
 data-val-email="The Email field is not a valid email address."
 data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Email">

 Password: <input name="Password" id="Password" type="password"
 data-val-required="The Password field is required." data-val="true">

 <span class="field-validation-valid" data-valmsg-replace="true"
 data-valmsg-for="Password">

 <button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select>

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModel
 {
 public string Country { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 };
 }
}

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor and Html.ListBoxFor

The Select Tag Helper asp-for specifies the model property name for the select element and
asp-items specifies the option elements. For example:

Sample:

The Index method initializes the CountryViewModel , sets the selected country and passes it to the
Index view.

The HTTP POST Index method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
 if (ModelState.IsValid)
 {
 var msg = model.Country + " selected";
 return RedirectToAction("IndexSuccess", new { message = msg});
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
 <select asp-for="Country" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/">
 <select id="Country" name="Country">
 <option value="MX">Mexico</option>
 <option selected="selected" value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select>

Enum bindingEnum binding

The Index view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag or ViewData with the Select Tag Helper. A view model is more
robust at providing MVC metadata and generally less problematic.

The asp-for attribute value is a special case and doesn't require a Model prefix, the other Tag
Helper attributes do (such as asp-items)

It's often convenient to use <select> with an enum property and generate the SelectListItem

elements from the enum values.

Sample:

 public class CountryEnumViewModel
 {
 public CountryEnum EnumCountry { get; set; }
 }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
 <select asp-for="EnumCountry"
 asp-items="Html.GetEnumSelectList<CountryEnum>()"> >
 </select>

<button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
 public enum CountryEnum
 {
 [Display(Name = "United Mexican States")]
 Mexico,
 [Display(Name = "United States of America")]
 USA,
 Canada,
 France,
 Germany,
 Spain
 }
}

The GetEnumSelectList method generates a SelectList object for an enum.

You can decorate your enumerator list with the Display attribute to get a richer UI:

The following HTML is generated:

 <form method="post" action="/Home/IndexEnum">
 <select data-val="true" data-val-required="The EnumCountry field is required."
 id="EnumCountry" name="EnumCountry">
 <option value="0">United Mexican States</option>
 <option value="1">United States of America</option>
 <option value="2">Canada</option>
 <option value="3">France</option>
 <option value="4">Germany</option>
 <option selected="selected" value="5">Spain</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>"
/>
 </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more
SelectListGroup objects.

The CountryViewModelGroup groups the SelectListItem elements into the "North America" and
"Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup

public class CountryViewModelGroup
{
 public CountryViewModelGroup()
 {
 var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
 var EuropeGroup = new SelectListGroup { Name = "Europe" };

 Countries = new List<SelectListItem>
 {
 new SelectListItem
 {
 Value = "MEX",
 Text = "Mexico",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "CAN",
 Text = "Canada",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "US",
 Text = "USA",
 Group = NorthAmericaGroup
 },
 new SelectListItem
 {
 Value = "FR",
 Text = "France",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "ES",
 Text = "Spain",
 Group = EuropeGroup
 },
 new SelectListItem
 {
 Value = "DE",
 Text = "Germany",
 Group = EuropeGroup
 }
 };
 }

 public string Country { get; set; }

 public List<SelectListItem> Countries { get; }

The two groups are shown below:

 <form method="post" action="/Home/IndexGroup">
 <select id="Country" name="Country">
 <optgroup label="North America">
 <option value="MEX">Mexico</option>
 <option value="CAN">Canada</option>
 <option value="US">USA</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="FR">France</option>
 <option value="ES">Spain</option>
 <option value="DE">Germany</option>
 </optgroup>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
 public class CountryViewModelIEnumerable
 {
 public IEnumerable<string> CountryCodes { get; set; }

 public List<SelectListItem> Countries { get; } = new List<SelectListItem>
 {
 new SelectListItem { Value = "MX", Text = "Mexico" },
 new SelectListItem { Value = "CA", Text = "Canada" },
 new SelectListItem { Value = "US", Text = "USA" },
 new SelectListItem { Value = "FR", Text = "France" },
 new SelectListItem { Value = "ES", Text = "Spain" },
 new SelectListItem { Value = "DE", Text = "Germany"}
 };
 }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the
property specified in the asp-for attribute is an IEnumerable . For example, given the following
model:

http://w3c.github.io/html-reference/select.html

@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
 <select asp-for="CountryCodes" asp-items="Model.Countries"></select>

<button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
 <select id="CountryCodes"
 multiple="multiple"
 name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 @Html.EditorForModel()

<button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
 <option value="">--none--</option>
</select>

public IActionResult IndexOption(int id)
{
 var model = new CountryViewModel();
 model.Country = "CA";
 return View(model);
}

With the following view:

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to
eliminate repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the
following view and action method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
 <select asp-for="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
</form>

 <form method="post" action="/Home/IndexEmpty">
 <select id="Country" name="Country">
 <option value=""><none></option>
 <option value="MX">Mexico</option>
 <option value="CA" selected="selected">Canada</option>
 <option value="US">USA</option>
 </select>

<button type="submit">Register</button>
 <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>" />
 </form>

Additional resources

The correct <option> element will be selected (contain the selected="selected" attribute)
depending on the current Country value.

Tag Helpers
HTML Form element
Request Verification Token
Model Binding
Model Validation
IAttributeAdapter Interface
Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.DataAnnotations.IAttributeAdapter
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final

Partial Views in ASP.NET Core
3/19/2018 • 4 minutes to read • Edit Online

What are Partial Views?

When Should I Use Partial Views?

Declaring Partial Views

Referencing a Partial View

@await Html.PartialAsync("AuthorPartial")

@{
 await Html.RenderPartialAsync("AuthorPartial");
}

By Steve Smith, Maher JENDOUBI, Rick Anderson, and Scott Sauber

ASP.NET Core MVC supports partial views, which are useful when you have reusable parts of web pages you
want to share between different views.

View or download sample code (how to download)

A partial view is a view that's rendered within another view. The HTML output generated by executing the partial
view is rendered into the calling (or parent) view. Like views, partial views use the .cshtml file extension.

Partial views are an effective way of breaking up large views into smaller components. They can reduce
duplication of view content and allow view elements to be reused. Common layout elements should be specified
in _Layout.cshtml. Non-layout reusable content can be encapsulated into partial views.

If you have a complex page made up of several logical pieces, it can be helpful to work with each piece as its own
partial view. Each piece of the page can be viewed in isolation from the rest of the page, and the view for the
page itself becomes much simpler since it only contains the overall page structure and calls to render the partial
views.

Tip: Follow the Don't Repeat Yourself Principle in your views.

Partial views are created like any other view: you create a .cshtml file within the Views folder. There's no semantic
difference between a partial view and a regular view - they're just rendered differently. You can have a view that's
returned directly from a controller's ViewResult , and the same view can be used as a partial view. The main
difference between how a view and a partial view are rendered is that partial views don't run _ViewStart.cshtml
(while views do - learn more about _ViewStart.cshtml in Layout).

From within a view page, there are several ways in which you can render a partial view. The best practice is to
use Html.PartialAsync , which returns an IHtmlString and can be referenced by prefixing the call with @ :

You can render a partial view with RenderPartialAsync . This method doesn't return a result; it streams the
rendered output directly to the response. Because it doesn't return a result, it must be called within a Razor code
block:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/partial.md
https://ardalis.com/
https://twitter.com/maherjend
https://twitter.com/RickAndMSFT
https://twitter.com/scottsauber
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/partial/sample
http://deviq.com/don-t-repeat-yourself/

NOTENOTE

Partial View DiscoveryPartial View Discovery

// Uses a view in current folder with this name
// If none is found, searches the Shared folder
@await Html.PartialAsync("ViewName")

// A view with this name must be in the same folder
@await Html.PartialAsync("ViewName.cshtml")

// Locate the view based on the application root
// Paths that start with "/" or "~/" refer to the application root
@await Html.PartialAsync("~/Views/Folder/ViewName.cshtml")
@await Html.PartialAsync("/Views/Folder/ViewName.cshtml")

// Locate the view using relative paths
@await Html.PartialAsync("../Account/LoginPartial.cshtml")

NOTENOTE

Accessing Data From Partial Views

@await Html.PartialAsync("PartialName", customViewData)

Because it streams the result directly, RenderPartialAsync may perform better in some scenarios. However, it's
recommended you use PartialAsync .

While there are synchronous equivalents of Html.PartialAsync (Html.Partial) and Html.RenderPartialAsync (
Html.RenderPartial), use of the synchronous equivalents isn't recommended because there are scenarios where

they deadlock. The synchronous methods will be unavailable in future versions.

If your views need to execute code, the recommended pattern is to use a view component instead of a partial view.

When referencing a partial view, you can refer to its location in several ways:

You can have different partial views with the same name in different view folders. When referencing the views by
name (without file extension), views in each folder will use the partial view in the same folder with them. You can
also specify a default partial view to use, placing it in the Shared folder. The shared partial view will be used by
any views that don't have their own version of the partial view. You can have a default partial view (in Shared),
which is overridden by a partial view with the same name in the same folder as the parent view.

Partial views can be chained. That is, a partial view can call another partial view (as long as you don't create a
loop). Within each view or partial view, relative paths are always relative to that view, not the root or parent view.

If you declare a Razor section in a partial view, it will not be visible to its parent(s); it will be limited to the partial view.

When a partial view is instantiated, it gets a copy of the parent view's ViewData dictionary. Updates made to the
data within the partial view are not persisted to the parent view. ViewData changed in a partial view is lost when
the partial view returns.

You can pass an instance of ViewDataDictionary to the partial view:

You can also pass a model into a partial view. This can be the page's view model or a custom object. You can pass
a model to PartialAsync or RenderPartialAsync :

@await Html.PartialAsync("PartialName", viewModel)

@await Html.PartialAsync("ArticleSection", section,
 new ViewDataDictionary(this.ViewData) { { "index", index } })

@using Microsoft.AspNetCore.Mvc.ViewFeatures
@using PartialViewsSample.ViewModels
@model Article

<h2>@Model.Title</h2>
@*Pass the authors name to Views\Shared\AuthorPartial.cshtml*@
@await Html.PartialAsync("AuthorPartial", Model.AuthorName)
@Model.PublicationDate

@*Loop over the Sections and pass in a section and additional ViewData
 to the strongly typed Views\Articles\ArticleSection.cshtml partial view.*@
@{ var index = 0;
 @foreach (var section in Model.Sections)
 {
 @await Html.PartialAsync("ArticleSection", section,
 new ViewDataDictionary(this.ViewData) { { "index", index } })
 index++;
 }
}

@model string
<div>
 <h3>@Model</h3>
 This partial view came from /Views/Shared/AuthorPartial.cshtml.

</div>

@using PartialViewsSample.ViewModels
@model ArticleSection

<h3>@Model.Title Index: @ViewData["index"] </h3>
<div>
 @Model.Content
</div>

You can pass an instance of ViewDataDictionary and a view model to a partial view:

The markup below shows the Views/Articles/Read.cshtml view which contains two partial views. The second
partial view passes in a model and ViewData to the partial view. You can pass new ViewData dictionary while
retaining the existing ViewData if you use the constructor overload of the ViewDataDictionary highlighted below:

Views/Shared/AuthorPartial:

The ArticleSection partial:

At runtime, the partials are rendered into the parent view, which itself is rendered within the shared
_Layout.cshtml

Dependency injection into views in ASP.NET Core
6/14/2018 • 4 minutes to read • Edit Online

A Simple Example

@using System.Threading.Tasks
@using ViewInjectSample.Model
@using ViewInjectSample.Model.Services
@model IEnumerable<ToDoItem>
@inject StatisticsService StatsService
<!DOCTYPE html>
<html>
<head>
 <title>To Do Items</title>
</head>
<body>
 <div>
 <h1>To Do Items</h1>

 Total Items: @StatsService.GetCount()
 Completed: @StatsService.GetCompletedCount()
 Avg. Priority: @StatsService.GetAveragePriority()

 <table>
 <tr>
 <th>Name</th>
 <th>Priority</th>
 <th>Is Done?</th>
 </tr>
 @foreach (var item in Model)
 {
 <tr>
 <td>@item.Name</td>
 <td>@item.Priority</td>
 <td>@item.IsDone</td>
 </tr>
 }
 </table>
 </div>
</body>
</html>

By Steve Smith

ASP.NET Core supports dependency injection into views. This can be useful for view-specific services, such as
localization or data required only for populating view elements. You should try to maintain separation of concerns
between your controllers and views. Most of the data your views display should be passed in from the controller.

View or download sample code (how to download)

You can inject a service into a view using the @inject directive. You can think of @inject as adding a property to
your view, and populating the property using DI.

The syntax for @inject : @inject <type> <name>

An example of @inject in action:

This view displays a list of ToDoItem instances, along with a summary showing overall statistics. The summary is

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/dependency-injection.md
https://ardalis.com/
http://deviq.com/separation-of-concerns/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/dependency-injection/sample

// For more information on how to configure your application, visit http://go.microsoft.com/fwlink/?
LinkID=398940
public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddTransient<IToDoItemRepository, ToDoItemRepository>();
 services.AddTransient<StatisticsService>();
 services.AddTransient<ProfileOptionsService>();

using System.Linq;
using ViewInjectSample.Interfaces;

namespace ViewInjectSample.Model.Services
{
 public class StatisticsService
 {
 private readonly IToDoItemRepository _toDoItemRepository;

 public StatisticsService(IToDoItemRepository toDoItemRepository)
 {
 _toDoItemRepository = toDoItemRepository;
 }

 public int GetCount()
 {
 return _toDoItemRepository.List().Count();
 }

 public int GetCompletedCount()
 {
 return _toDoItemRepository.List().Count(x => x.IsDone);
 }

 public double GetAveragePriority()
 {
 if (_toDoItemRepository.List().Count() == 0)
 {
 return 0.0;
 }

 return _toDoItemRepository.List().Average(x => x.Priority);
 }
 }
}

populated from the injected StatisticsService . This service is registered for dependency injection in
ConfigureServices in Startup.cs:

The StatisticsService performs some calculations on the set of ToDoItem instances, which it accesses via a
repository:

The sample repository uses an in-memory collection. The implementation shown above (which operates on all of
the data in memory) isn't recommended for large, remotely accessed data sets.

The sample displays data from the model bound to the view and the service injected into the view:

Populating Lookup Data

using Microsoft.AspNetCore.Mvc;
using ViewInjectSample.Model;

namespace ViewInjectSample.Controllers
{
 public class ProfileController : Controller
 {
 [Route("Profile")]
 public IActionResult Index()
 {
 // TODO: look up profile based on logged-in user
 var profile = new Profile()
 {
 Name = "Steve",
 FavColor = "Blue",
 Gender = "Male",
 State = new State("Ohio","OH")
 };
 return View(profile);
 }
 }
}

View injection can be useful to populate options in UI elements, such as dropdown lists. Consider a user profile
form that includes options for specifying gender, state, and other preferences. Rendering such a form using a
standard MVC approach would require the controller to request data access services for each of these sets of
options, and then populate a model or ViewBag with each set of options to be bound.

An alternative approach injects services directly into the view to obtain the options. This minimizes the amount of
code required by the controller, moving this view element construction logic into the view itself. The controller
action to display a profile editing form only needs to pass the form the profile instance:

The HTML form used to update these preferences includes dropdown lists for three of the properties:

@using System.Threading.Tasks
@using ViewInjectSample.Model.Services
@model ViewInjectSample.Model.Profile
@inject ProfileOptionsService Options
<!DOCTYPE html>
<html>
<head>
 <title>Update Profile</title>
</head>
<body>
<div>
 <h1>Update Profile</h1>
 Name: @Html.TextBoxFor(m => m.Name)

 Gender: @Html.DropDownList("Gender",
 Options.ListGenders().Select(g =>
 new SelectListItem() { Text = g, Value = g }))

 State: @Html.DropDownListFor(m => m.State.Code,
 Options.ListStates().Select(s =>
 new SelectListItem() { Text = s.Name, Value = s.Code}))

 Fav. Color: @Html.DropDownList("FavColor",
 Options.ListColors().Select(c =>
 new SelectListItem() { Text = c, Value = c }))
 </div>
</body>
</html>

These lists are populated by a service that has been injected into the view:

The ProfileOptionsService is a UI-level service designed to provide just the data needed for this form:

using System.Collections.Generic;

namespace ViewInjectSample.Model.Services
{
 public class ProfileOptionsService
 {
 public List<string> ListGenders()
 {
 // keeping this simple
 return new List<string>() {"Female", "Male"};
 }

 public List<State> ListStates()
 {
 // a few states from USA
 return new List<State>()
 {
 new State("Alabama", "AL"),
 new State("Alaska", "AK"),
 new State("Ohio", "OH")
 };
 }

 public List<string> ListColors()
 {
 return new List<string>() { "Blue","Green","Red","Yellow" };
 }
 }
}

IMPORTANTIMPORTANT

Overriding Services

Don't forget to register types you request through dependency injection in Startup.ConfigureServices . An unregistered
type throws an exception at runtime because the service provider is internally queried via GetRequiredService.

In addition to injecting new services, this technique can also be used to override previously injected services on a
page. The figure below shows all of the fields available on the page used in the first example:

As you can see, the default fields include Html , Component , and Url (as well as the StatsService that we
injected). If for instance you wanted to replace the default HTML Helpers with your own, you could easily do so
using @inject :

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.serviceproviderserviceextensions.getrequiredservice

@using System.Threading.Tasks
@using ViewInjectSample.Helpers
@inject MyHtmlHelper Html
<!DOCTYPE html>
<html>
<head>
 <title>My Helper</title>
</head>
<body>
 <div>
 Test: @Html.Value
 </div>
</body>
</html>

See Also

If you want to extend existing services, you can simply use this technique while inheriting from or wrapping the
existing implementation with your own.

Simon Timms Blog: Getting Lookup Data Into Your View

http://blog.simontimms.com/2015/06/09/getting-lookup-data-into-you-view/

View components in ASP.NET Core
5/9/2018 • 9 minutes to read • Edit Online

View components

Creating a view component

The view component classThe view component class

By Rick Anderson

View or download sample code (how to download)

View components are similar to partial views, but they're much more powerful. View components don't use
model binding, and only depend on the data provided when calling into it. This article was written using ASP.NET
Core MVC, but view components also work with Razor Pages.

A view component:

Renders a chunk rather than a whole response.
Includes the same separation-of-concerns and testability benefits found between a controller and view.
Can have parameters and business logic.
Is typically invoked from a layout page.

View components are intended anywhere you have reusable rendering logic that's too complex for a partial view,
such as:

Dynamic navigation menus
Tag cloud (where it queries the database)
Login panel
Shopping cart
Recently published articles
Sidebar content on a typical blog
A login panel that would be rendered on every page and show either the links to log out or log in, depending
on the log in state of the user

A view component consists of two parts: the class (typically derived from ViewComponent) and the result it
returns (typically a view). Like controllers, a view component can be a POCO, but most developers will want to
take advantage of the methods and properties available by deriving from ViewComponent .

This section contains the high-level requirements to create a view component. Later in the article, we'll examine
each step in detail and create a view component.

A view component class can be created by any of the following:

Deriving from ViewComponent

Decorating a class with the [ViewComponent] attribute, or deriving from a class with the [ViewComponent]

attribute
Creating a class where the name ends with the suffix ViewComponent

Like controllers, view components must be public, non-nested, and non-abstract classes. The view component
name is the class name with the "ViewComponent" suffix removed. It can also be explicitly specified using the

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/views/view-components.md
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/view-components/sample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewcomponent

View component methodsView component methods

View search pathView search path

Invoking a view component

@Component.InvokeAsync("Name of view component", <anonymous type containing parameters>)

@await Component.InvokeAsync("PriorityList", new { maxPriority = 4, isDone = true })

Invoking a view component as a Tag Helper

<vc:priority-list max-priority="2" is-done="false">
</vc:priority-list>

ViewComponentAttribute.Name property.

A view component class:

Fully supports constructor dependency injection

Doesn't take part in the controller lifecycle, which means you can't use filters in a view component

A view component defines its logic in an InvokeAsync method that returns an IViewComponentResult . Parameters
come directly from invocation of the view component, not from model binding. A view component never directly
handles a request. Typically, a view component initializes a model and passes it to a view by calling the View

method. In summary, view component methods:

Define an InvokeAsync method that returns an IViewComponentResult

Typically initializes a model and passes it to a view by calling the ViewComponent View method
Parameters come from the calling method, not HTTP, there's no model binding
Are not reachable directly as an HTTP endpoint, they're invoked from your code (usually in a view). A view
component never handles a request
Are overloaded on the signature rather than any details from the current HTTP request

The runtime searches for the view in the following paths:

Views/<controller_name>/Components/<view_component_name>/<view_name>
Views/Shared/Components/<view_component_name>/<view_name>

The default view name for a view component is Default, which means your view file will typically be named
Default.cshtml. You can specify a different view name when creating the view component result or when calling
the View method.

We recommend you name the view file Default.cshtml and use the
Views/Shared/Components/<view_component_name>/<view_name> path. The PriorityList view component
used in this sample uses Views/Shared/Components/PriorityList/Default.cshtml for the view component view.

To use the view component, call the following inside a view:

The parameters will be passed to the InvokeAsync method. The PriorityList view component developed in the
article is invoked from the Views/Todo/Index.cshtml view file. In the following, the InvokeAsync method is called
with two parameters:

For ASP.NET Core 1.1 and higher, you can invoke a view component as a Tag Helper:

<vc:[view-component-name]
 parameter1="parameter1 value"
 parameter2="parameter2 value">
</vc:[view-component-name]>

@addTagHelper *, MyWebApp

@await Component.InvokeAsync("PriorityList", new { maxPriority = 4, isDone = true })

<vc:priority-list max-priority="2" is-done="false">
</vc:priority-list>

Invoking a view component directly from a controllerInvoking a view component directly from a controller

public IActionResult IndexVC()
{
 return ViewComponent("PriorityList", new { maxPriority = 3, isDone = false });
}

Walkthrough: Creating a simple view component

Pascal-cased class and method parameters for Tag Helpers are translated into their lower kebab case. The Tag
Helper to invoke a view component uses the <vc></vc> element. The view component is specified as follows:

Note: In order to use a View Component as a Tag Helper, you must register the assembly containing the View
Component using the @addTagHelper directive. For example, if your View Component is in an assembly called
"MyWebApp", add the following directive to the _ViewImports.cshtml file:

You can register a View Component as a Tag Helper to any file that references the View Component. See
Managing Tag Helper Scope for more information on how to register Tag Helpers.

The InvokeAsync method used in this tutorial:

In Tag Helper markup:

In the sample above, the PriorityList view component becomes priority-list . The parameters to the view
component are passed as attributes in lower kebab case.

View components are typically invoked from a view, but you can invoke them directly from a controller method.
While view components don't define endpoints like controllers, you can easily implement a controller action that
returns the content of a ViewComponentResult .

In this example, the view component is called directly from the controller :

Download, build and test the starter code. It's a simple project with a Todo controller that displays a list of Todo

items.

https://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/views/view-components/sample

Add a ViewComponent classAdd a ViewComponent class

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using ViewComponentSample.Models;

namespace ViewComponentSample.ViewComponents
{
 public class PriorityListViewComponent : ViewComponent
 {
 private readonly ToDoContext db;

 public PriorityListViewComponent(ToDoContext context)
 {
 db = context;
 }

 public async Task<IViewComponentResult> InvokeAsync(
 int maxPriority, bool isDone)
 {
 var items = await GetItemsAsync(maxPriority, isDone);
 return View(items);
 }
 private Task<List<TodoItem>> GetItemsAsync(int maxPriority, bool isDone)
 {
 return db.ToDo.Where(x => x.IsDone == isDone &&
 x.Priority <= maxPriority).ToListAsync();
 }
 }
}

Create a ViewComponents folder and add the following PriorityListViewComponent class:

Notes on the code:

View component classes can be contained in any folder in the project.

Because the class name PriorityListViewComponent ends with the suffix ViewComponent, the runtime
will use the string "PriorityList" when referencing the class component from a view. I'll explain that in more
detail later.

Create the view component Razor viewCreate the view component Razor view

[ViewComponent(Name = "PriorityList")]
 public class XYZ : ViewComponent

The [ViewComponent] attribute can change the name used to reference a view component. For example, we
could've named the class XYZ and applied the ViewComponent attribute:

The [ViewComponent] attribute above tells the view component selector to use the name PriorityList

when looking for the views associated with the component, and to use the string "PriorityList" when
referencing the class component from a view. I'll explain that in more detail later.

The component uses dependency injection to make the data context available.

InvokeAsync exposes a method which can be called from a view, and it can take an arbitrary number of
arguments.

The InvokeAsync method returns the set of ToDo items that satisfy the isDone and maxPriority

parameters.

@model IEnumerable<ViewComponentSample.Models.TodoItem>

<h3>Priority Items</h3>

 @foreach (var todo in Model)
 {
 @todo.Name
 }

</table>
<div>
 @await Component.InvokeAsync("PriorityList", new { maxPriority = 2, isDone = false })
</div>

Create the Views/Shared/Components folder. This folder must be named Components.

Create the Views/Shared/Components/PriorityList folder. This folder name must match the name of the
view component class, or the name of the class minus the suffix (if we followed convention and used the
ViewComponent suffix in the class name). If you used the ViewComponent attribute, the class name would
need to match the attribute designation.

Create a Views/Shared/Components/PriorityList/Default.cshtml Razor view:

The Razor view takes a list of TodoItem and displays them. If the view component InvokeAsync method
doesn't pass the name of the view (as in our sample), Default is used for the view name by convention.
Later in the tutorial, I'll show you how to pass the name of the view. To override the default styling for a
specific controller, add a view to the controller-specific view folder (for example
Views/Todo/Components/PriorityList/Default.cshtml).

If the view component is controller-specific, you can add it to the controller-specific folder
(Views/Todo/Components/PriorityList/Default.cshtml).

Add a div containing a call to the priority list component to the bottom of the Views/Todo/index.cshtml

file:

The markup @await Component.InvokeAsync shows the syntax for calling view components. The first argument is

public IActionResult IndexVC()
{
 return ViewComponent("PriorityList", new { maxPriority = 3, isDone = false });
}

Specifying a view nameSpecifying a view name

the name of the component we want to invoke or call. Subsequent parameters are passed to the component.
InvokeAsync can take an arbitrary number of arguments.

Test the app. The following image shows the ToDo list and the priority items:

You can also call the view component directly from the controller :

A complex view component might need to specify a non-default view under some conditions. The following code
shows how to specify the "PVC" view from the InvokeAsync method. Update the InvokeAsync method in the
PriorityListViewComponent class.

public async Task<IViewComponentResult> InvokeAsync(
 int maxPriority, bool isDone)
{
 string MyView = "Default";
 // If asking for all completed tasks, render with the "PVC" view.
 if (maxPriority > 3 && isDone == true)
 {
 MyView = "PVC";
 }
 var items = await GetItemsAsync(maxPriority, isDone);
 return View(MyView, items);
}

@model IEnumerable<ViewComponentSample.Models.TodoItem>

<h2> PVC Named Priority Component View</h2>
<h4>@ViewBag.PriorityMessage</h4>

 @foreach (var todo in Model)
 {
 @todo.Name
 }

@await Component.InvokeAsync("PriorityList", new { maxPriority = 4, isDone = true })

Copy the Views/Shared/Components/PriorityList/Default.cshtml file to a view named
Views/Shared/Components/PriorityList/PVC.cshtml. Add a heading to indicate the PVC view is being used.

Update Views/TodoList/Index.cshtml:

Run the app and verify PVC view.

Examine the view pathExamine the view path

If the PVC view isn't rendered, verify you are calling the view component with a priority of 4 or higher.

An unhandled exception occurred while processing the request.
InvalidOperationException: The view 'Components/PriorityList/Default' wasn't found. The following
locations were searched:
/Views/ToDo/Components/PriorityList/Default.cshtml
/Views/Shared/Components/PriorityList/Default.cshtml
EnsureSuccessful

Change the priority parameter to three or less so the priority view isn't returned.

Temporarily rename the Views/Todo/Components/PriorityList/Default.cshtml to 1Default.cshtml.

Test the app, you'll get the following error :

Copy Views/Todo/Components/PriorityList/1Default.cshtml to
Views/Shared/Components/PriorityList/Default.cshtml.

Add some markup to the Shared Todo view component view to indicate the view is from the Shared folder.

Test the Shared component view.

Avoiding magic stringsAvoiding magic strings

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using ViewComponentSample.Models;

namespace ViewComponentSample.ViewComponents
{
 public class PriorityList : ViewComponent
 {
 private readonly ToDoContext db;

 public PriorityList(ToDoContext context)
 {
 db = context;
 }

 public async Task<IViewComponentResult> InvokeAsync(
 int maxPriority, bool isDone)
 {
 var items = await GetItemsAsync(maxPriority, isDone);
 return View(items);
 }
 private Task<List<TodoItem>> GetItemsAsync(int maxPriority, bool isDone)
 {
 return db.ToDo.Where(x => x.IsDone == isDone &&
 x.Priority <= maxPriority).ToListAsync();
 }
 }
}

If you want compile time safety, you can replace the hard-coded view component name with the class name.
Create the view component without the "ViewComponent" suffix:

Add a using statement to your Razor view file, and use the nameof operator :

@using ViewComponentSample.Models
@using ViewComponentSample.ViewComponents
@model IEnumerable<TodoItem>

<h2>ToDo nameof</h2>
<!-- Markup removed for brevity. -->

<div>

 @await Component.InvokeAsync(nameof(PriorityList), new { maxPriority = 4, isDone = true })
</div>

Additional resources
Dependency injection into views

Handle requests with controllers in ASP.NET Core
MVC
5/2/2018 • 5 minutes to read • Edit Online

What is a Controller?

Defining Actions

By Steve Smith and Scott Addie

Controllers, actions, and action results are a fundamental part of how developers build apps using ASP.NET Core
MVC.

A controller is used to define and group a set of actions. An action (or action method) is a method on a controller
which handles requests. Controllers logically group similar actions together. This aggregation of actions allows
common sets of rules, such as routing, caching, and authorization, to be applied collectively. Requests are mapped
to actions through routing.

By convention, controller classes:

Reside in the project's root-level Controllers folder
Inherit from Microsoft.AspNetCore.Mvc.Controller

A controller is an instantiable class in which at least one of the following conditions is true:

The class name is suffixed with "Controller"
The class inherits from a class whose name is suffixed with "Controller"
The class is decorated with the [Controller] attribute

A controller class must not have an associated [NonController] attribute.

Controllers should follow the Explicit Dependencies Principle. There are a couple of approaches to implementing
this principle. If multiple controller actions require the same service, consider using constructor injection to
request those dependencies. If the service is needed by only a single action method, consider using Action
Injection to request the dependency.

Within the Model-V iew-Controller pattern, a controller is responsible for the initial processing of the request and
instantiation of the model. Generally, business decisions should be performed within the model.

The controller takes the result of the model's processing (if any) and returns either the proper view and its
associated view data or the result of the API call. Learn more at Overview of ASP.NET Core MVC and Get started
with ASP.NET Core MVC and Visual Studio.

The controller is a UI-level abstraction. Its responsibilities are to ensure request data is valid and to choose which
view (or result for an API) should be returned. In well-factored apps, it doesn't directly include data access or
business logic. Instead, the controller delegates to services handling these responsibilities.

Public methods on a controller, except those decorated with the [NonAction] attribute, are actions. Parameters on
actions are bound to request data and are validated using model binding. Model validation occurs for everything
that's model-bound. The ModelState.IsValid property value indicates whether model binding and validation
succeeded.

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/controllers/actions.md
https://ardalis.com/
https://github.com/scottaddie
http://deviq.com/explicit-dependencies-principle/

Controller Helper MethodsController Helper Methods

1. Methods resulting in an empty response body1. Methods resulting in an empty response body

2. Methods resulting in a non-empty response body with a predefined content type2. Methods resulting in a non-empty response body with a predefined content type

3. Methods resulting in a non-empty response body formatted in a content type negotiated with the client3. Methods resulting in a non-empty response body formatted in a content type negotiated with the client

Action methods should contain logic for mapping a request to a business concern. Business concerns should
typically be represented as services that the controller accesses through dependency injection. Actions then map
the result of the business action to an application state.

Actions can return anything, but frequently return an instance of IActionResult (or Task<IActionResult> for async
methods) that produces a response. The action method is responsible for choosing what kind of response. The
action result does the responding.

Controllers usually inherit from Controller, although this isn't required. Deriving from Controller provides access
to three categories of helper methods:

No Content-Type HTTP response header is included, since the response body lacks content to describe.

There are two result types within this category: Redirect and HTTP Status Code.

HTTP Status Code

This type returns an HTTP status code. A couple of helper methods of this type are BadRequest , NotFound ,
and Ok . For example, return BadRequest(); produces a 400 status code when executed. When methods
such as BadRequest , NotFound , and Ok are overloaded, they no longer qualify as HTTP Status Code
responders, since content negotiation is taking place.

Redirect

This type returns a redirect to an action or destination (using Redirect , LocalRedirect , RedirectToAction ,
or RedirectToRoute). For example, return RedirectToAction("Complete", new {id = 123}); redirects to
Complete , passing an anonymous object.

The Redirect result type differs from the HTTP Status Code type primarily in the addition of a Location

HTTP response header.

Most helper methods in this category include a ContentType property, allowing you to set the Content-Type

response header to describe the response body.

There are two result types within this category: View and Formatted Response.

View

This type returns a view which uses a model to render HTML. For example, return View(customer); passes
a model to the view for data-binding.

Formatted Response

This type returns JSON or a similar data exchange format to represent an object in a specific manner. For
example, return Json(customer); serializes the provided object into JSON format.

Other common methods of this type include File , PhysicalFile , and VirtualFile . For example,
return PhysicalFile(customerFilePath, "text/xml"); returns an XML file described by a Content-Type

response header value of "text/xml".

This category is better known as Content Negotiation. Content negotiation applies whenever an action returns
an ObjectResult type or something other than an IActionResult implementation. An action that returns a non-
IActionResult implementation (for example, object) also returns a Formatted Response.

Some helper methods of this type include BadRequest , CreatedAtRoute , and Ok . Examples of these methods

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.objectresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.iactionresult

Cross-Cutting ConcernsCross-Cutting Concerns

include return BadRequest(modelState); , return CreatedAtRoute("routename", values, newobject); , and
return Ok(value); , respectively. Note that BadRequest and Ok perform content negotiation only when passed a

value; without being passed a value, they instead serve as HTTP Status Code result types. The CreatedAtRoute

method, on the other hand, always performs content negotiation since its overloads all require that a value be
passed.

Applications typically share parts of their workflow. Examples include an app that requires authentication to access
the shopping cart, or an app that caches data on some pages. To perform logic before or after an action method,
use a filter. Using Filters on cross-cutting concerns can reduce duplication, allowing them to follow the Don't
Repeat Yourself (DRY) principle.

Most filter attributes, such as [Authorize] , can be applied at the controller or action level depending upon the
desired level of granularity.

Error handling and response caching are often cross-cutting concerns:

Handle errors
Response Caching

Many cross-cutting concerns can be handled using filters or custom middleware.

http://deviq.com/don-t-repeat-yourself/

Routing to controller actions in ASP.NET Core
3/15/2018 • 30 minutes to read • Edit Online

Setting up Routing Middleware

app.UseMvc(routes =>
{
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

public class ProductsController : Controller
{
 public IActionResult Details(int id) { ... }
}

routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");

By Ryan Nowak and Rick Anderson

ASP.NET Core MVC uses the Routing middleware to match the URLs of incoming requests and map them
to actions. Routes are defined in startup code or attributes. Routes describe how URL paths should be
matched to actions. Routes are also used to generate URLs (for links) sent out in responses.

Actions are either conventionally routed or attribute routed. Placing a route on the controller or the action
makes it attribute routed. See Mixed routing for more information.

This document will explain the interactions between MVC and routing, and how typical MVC apps make use
of routing features. See Routing for details on advanced routing.

In your Configure method you may see code similar to:

Inside the call to UseMvc , MapRoute is used to create a single route, which we'll refer to as the default

route. Most MVC apps will use a route with a template similar to the default route.

The route template "{controller=Home}/{action=Index}/{id?}" can match a URL path like
/Products/Details/5 and will extract the route values { controller = Products, action = Details, id = 5 }

by tokenizing the path. MVC will attempt to locate a controller named ProductsController and run the
action Details :

Note that in this example, model binding would use the value of id = 5 to set the id parameter to 5

when invoking this action. See the Model Binding for more details.

Using the default route:

The route template:

{controller=Home} defines Home as the default controller

{action=Index} defines Index as the default action

{id?} defines id as optional

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/controllers/routing.md
https://github.com/rynowak
https://twitter.com/RickAndMSFT

public class HomeController : Controller
{
 public IActionResult Index() { ... }
}

app.UseMvcWithDefaultRoute();

app.UseMvc(routes =>
{
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

var routes = new RouteBuilder(app);

// Add connection to MVC, will be hooked up by calls to MapRoute.
routes.DefaultHandler = new MvcRouteHandler(...);

// Execute callback to register routes.
// routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");

// Create route collection and add the middleware.
app.UseRouter(routes.Build());

Default and optional route parameters don't need to be present in the URL path for a match. See Route
Template Reference for a detailed description of route template syntax.

"{controller=Home}/{action=Index}/{id?}" can match the URL path / and will produce the route values
{ controller = Home, action = Index } . The values for controller and action make use of the default

values, id doesn't produce a value since there's no corresponding segment in the URL path. MVC would
use these route values to select the HomeController and Index action:

Using this controller definition and route template, the HomeController.Index action would be executed for
any of the following URL paths:

/Home/Index/17

/Home/Index

/Home

/

The convenience method UseMvcWithDefaultRoute :

Can be used to replace:

UseMvc and UseMvcWithDefaultRoute add an instance of RouterMiddleware to the middleware pipeline. MVC
doesn't interact directly with middleware, and uses routing to handle requests. MVC is connected to the
routes through an instance of MvcRouteHandler . The code inside of UseMvc is similar to the following:

UseMvc doesn't directly define any routes, it adds a placeholder to the route collection for the attribute

route. The overload UseMvc(Action<IRouteBuilder>) lets you add your own routes and also supports attribute
routing. UseMvc and all of its variations adds a placeholder for the attribute route - attribute routing is
always available regardless of how you configure UseMvc . UseMvcWithDefaultRoute defines a default route
and supports attribute routing. The Attribute Routing section includes more details on attribute routing.

 Conventional routing

routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");

TIPTIP

WARNINGWARNING

Multiple routes

app.UseMvc(routes =>
{
 routes.MapRoute("blog", "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

The default route:

is an example of a conventional routing. We call this style conventional routing because it establishes a
convention for URL paths:

the first path segment maps to the controller name

the second maps to the action name.

the third segment is used for an optional id used to map to a model entity

Using this default route, the URL path /Products/List maps to the ProductsController.List action, and
/Blog/Article/17 maps to BlogController.Article . This mapping is based on the controller and action

names only and isn't based on namespaces, source file locations, or method parameters.

Using conventional routing with the default route allows you to build the application quickly without having to come
up with a new URL pattern for each action you define. For an application with CRUD style actions, having consistency
for the URLs across your controllers can help simplify your code and make your UI more predictable.

The id is defined as optional by the route template, meaning that your actions can execute without the ID provided
as part of the URL. Usually what will happen if id is omitted from the URL is that it will be set to 0 by model
binding, and as a result no entity will be found in the database matching id == 0 . Attribute routing can give you
fine-grained control to make the ID required for some actions and not for others. By convention the documentation
will include optional parameters like id when they're likely to appear in correct usage.

You can add multiple routes inside UseMvc by adding more calls to MapRoute . Doing so allows you to define
multiple conventions, or to add conventional routes that are dedicated to a specific action, such as:

The blog route here is a dedicated conventional route, meaning that it uses the conventional routing
system, but is dedicated to a specific action. Since controller and action don't appear in the route
template as parameters, they can only have the default values, and thus this route will always map to the
action BlogController.Article .

Routes in the route collection are ordered, and will be processed in the order they're added. So in this
example, the blog route will be tried before the default route.

NOTENOTE

FallbackFallback

Disambiguating actionsDisambiguating actions

public class ProductsController : Controller
{
 public IActionResult Edit(int id) { ... }

 [HttpPost]
 public IActionResult Edit(int id, Product product) { ... }
}

Route namesRoute names

app.UseMvc(routes =>
{
 routes.MapRoute("blog", "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

Dedicated conventional routes often use catch-all route parameters like {*article} to capture the remaining
portion of the URL path. This can make a route 'too greedy' meaning that it matches URLs that you intended to be
matched by other routes. Put the 'greedy' routes later in the route table to solve this.

As part of request processing, MVC will verify that the route values can be used to find a controller and
action in your application. If the route values don't match an action then the route isn't considered a match,
and the next route will be tried. This is called fallback, and it's intended to simplify cases where conventional
routes overlap.

When two actions match through routing, MVC must disambiguate to choose the 'best' candidate or else
throw an exception. For example:

This controller defines two actions that would match the URL path /Products/Edit/17 and route data
{ controller = Products, action = Edit, id = 17 } . This is a typical pattern for MVC controllers where
Edit(int) shows a form to edit a product, and Edit(int, Product) processes the posted form. To make this

possible MVC would need to choose Edit(int, Product) when the request is an HTTP POST and
Edit(int) when the HTTP verb is anything else.

The HttpPostAttribute ([HttpPost]) is an implementation of IActionConstraint that will only allow the
action to be selected when the HTTP verb is POST . The presence of an IActionConstraint makes the
Edit(int, Product) a 'better' match than Edit(int) , so Edit(int, Product) will be tried first.

You will only need to write custom IActionConstraint implementations in specialized scenarios, but it's
important to understand the role of attributes like HttpPostAttribute - similar attributes are defined for
other HTTP verbs. In conventional routing it's common for actions to use the same action name when
they're part of a show form -> submit form workflow. The convenience of this pattern will become more
apparent after reviewing the Understanding IActionConstraint section.

If multiple routes match, and MVC can't find a 'best' route, it will throw an AmbiguousActionException .

The strings "blog" and "default" in the following examples are route names:

The route names give the route a logical name so that the named route can be used for URL generation.
This greatly simplifies URL creation when the ordering of routes could make URL generation complicated.

 Attribute routing

public class HomeController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("Home/Index")]
 public IActionResult Index()
 {
 return View();
 }
 [Route("Home/About")]
 public IActionResult About()
 {
 return View();
 }
 [Route("Home/Contact")]
 public IActionResult Contact()
 {
 return View();
 }
}

NOTENOTE

Route names must be unique application-wide.

Route names have no impact on URL matching or handling of requests; they're used only for URL
generation. Routing has more detailed information on URL generation including URL generation in MVC-
specific helpers.

Attribute routing uses a set of attributes to map actions directly to route templates. In the following example,
app.UseMvc(); is used in the Configure method and no route is passed. The HomeController will match a

set of URLs similar to what the default route {controller=Home}/{action=Index}/{id?} would match:

The HomeController.Index() action will be executed for any of the URL paths / , /Home , or /Home/Index .

This example highlights a key programming difference between attribute routing and conventional routing. Attribute
routing requires more input to specify a route; the conventional default route handles routes more succinctly.
However, attribute routing allows (and requires) precise control of which route templates apply to each action.

With attribute routing the controller name and action names play no role in which action is selected. This
example will match the same URLs as the previous example.

public class MyDemoController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("Home/Index")]
 public IActionResult MyIndex()
 {
 return View("Index");
 }
 [Route("Home/About")]
 public IActionResult MyAbout()
 {
 return View("About");
 }
 [Route("Home/Contact")]
 public IActionResult MyContact()
 {
 return View("Contact");
 }
}

NOTENOTE

Attribute routing with Http[Verb] attributes

[HttpGet("/products")]
public IActionResult ListProducts()
{
 // ...
}

[HttpPost("/products")]
public IActionResult CreateProduct(...)
{
 // ...
}

TIPTIP

The route templates above don't define route parameters for action , area , and controller . In fact, these route
parameters are not allowed in attribute routes. Since the route template is already associated with an action, it
wouldn't make sense to parse the action name from the URL.

Attribute routing can also make use of the Http[Verb] attributes such as HttpPostAttribute . All of these
attributes can accept a route template. This example shows two actions that match the same route template:

For a URL path like /products the ProductsApi.ListProducts action will be executed when the HTTP verb is
GET and ProductsApi.CreateProduct will be executed when the HTTP verb is POST . Attribute routing first

matches the URL against the set of route templates defined by route attributes. Once a route template
matches, IActionConstraint constraints are applied to determine which actions can be executed.

When building a REST API, it's rare that you will want to use [Route(...)] on an action method. It's better to use
the more specific Http*Verb*Attributes to be precise about what your API supports. Clients of REST APIs are
expected to know what paths and HTTP verbs map to specific logical operations.

Since an attribute route applies to a specific action, it's easy to make parameters required as part of the route
template definition. In this example, id is required as part of the URL path.

public class ProductsApiController : Controller
{
 [HttpGet("/products/{id}", Name = "Products_List")]
 public IActionResult GetProduct(int id) { ... }
}

Route Name

public class ProductsApiController : Controller
{
 [HttpGet("/products/{id}", Name = "Products_List")]
 public IActionResult GetProduct(int id) { ... }
}

NOTENOTE

Combining routesCombining routes

[Route("products")]
public class ProductsApiController : Controller
{
 [HttpGet]
 public IActionResult ListProducts() { ... }

 [HttpGet("{id}")]
 public ActionResult GetProduct(int id) { ... }
}

The ProductsApi.GetProduct(int) action will be executed for a URL path like /products/3 but not for a URL
path like /products . See Routing for a full description of route templates and related options.

The following code defines a route name of Products_List :

Route names can be used to generate a URL based on a specific route. Route names have no impact on the
URL matching behavior of routing and are only used for URL generation. Route names must be unique
application-wide.

Contrast this with the conventional default route, which defines the id parameter as optional ({id?}). This ability
to precisely specify APIs has advantages, such as allowing /products and /products/5 to be dispatched to
different actions.

To make attribute routing less repetitive, route attributes on the controller are combined with route
attributes on the individual actions. Any route templates defined on the controller are prepended to route
templates on the actions. Placing a route attribute on the controller makes all actions in the controller use
attribute routing.

In this example the URL path /products can match ProductsApi.ListProducts , and the URL path
/products/5 can match ProductsApi.GetProduct(int) . Both of these actions only match HTTP GET because

they're decorated with the HttpGetAttribute .

Route templates applied to an action that begin with a / don't get combined with route templates applied
to the controller. This example matches a set of URL paths similar to the default route.

[Route("Home")]
public class HomeController : Controller
{
 [Route("")] // Combines to define the route template "Home"
 [Route("Index")] // Combines to define the route template "Home/Index"
 [Route("/")] // Doesn't combine, defines the route template ""
 public IActionResult Index()
 {
 ViewData["Message"] = "Home index";
 var url = Url.Action("Index", "Home");
 ViewData["Message"] = "Home index" + "var url = Url.Action; = " + url;
 return View();
 }

 [Route("About")] // Combines to define the route template "Home/About"
 public IActionResult About()
 {
 return View();
 }
}

Ordering attribute routesOrdering attribute routes

TIPTIP

Token replacement in route templates ([controller], [action], [area])

In contrast to conventional routes which execute in a defined order, attribute routing builds a tree and
matches all routes simultaneously. This behaves as-if the route entries were placed in an ideal ordering; the
most specific routes have a chance to execute before the more general routes.

For example, a route like blog/search/{topic} is more specific than a route like blog/{*article} . Logically
speaking the blog/search/{topic} route 'runs' first, by default, because that's the only sensible ordering.
Using conventional routing, the developer is responsible for placing routes in the desired order.

Attribute routes can configure an order, using the Order property of all of the framework provided route
attributes. Routes are processed according to an ascending sort of the Order property. The default order is
0 . Setting a route using Order = -1 will run before routes that don't set an order. Setting a route using
Order = 1 will run after default route ordering.

Avoid depending on Order . If your URL-space requires explicit order values to route correctly, then it's likely
confusing to clients as well. In general attribute routing will select the correct route with URL matching. If the default
order used for URL generation isn't working, using route name as an override is usually simpler than applying the
Order property.

For convenience, attribute routes support token replacement by enclosing a token in square-braces ([,]).
The tokens [action] , [area] , and [controller] will be replaced with the values of the action name, area
name, and controller name from the action where the route is defined. In this example the actions can match
URL paths as described in the comments:

[Route("[controller]/[action]")]
public class ProductsController : Controller
{
 [HttpGet] // Matches '/Products/List'
 public IActionResult List() {
 // ...
 }

 [HttpGet("{id}")] // Matches '/Products/Edit/{id}'
 public IActionResult Edit(int id) {
 // ...
 }
}

public class ProductsController : Controller
{
 [HttpGet("[controller]/[action]")] // Matches '/Products/List'
 public IActionResult List() {
 // ...
 }

 [HttpGet("[controller]/[action]/{id}")] // Matches '/Products/Edit/{id}'
 public IActionResult Edit(int id) {
 // ...
 }
}

[Route("api/[controller]")]
public abstract class MyBaseController : Controller { ... }

public class ProductsController : MyBaseController
{
 [HttpGet] // Matches '/api/Products'
 public IActionResult List() { ... }

 [HttpPut("{id}")] // Matches '/api/Products/{id}'
 public IActionResult Edit(int id) { ... }
}

Multiple RoutesMultiple Routes

Token replacement occurs as the last step of building the attribute routes. The above example will behave the
same as the following code:

Attribute routes can also be combined with inheritance. This is particularly powerful combined with token
replacement.

Token replacement also applies to route names defined by attribute routes.
[Route("[controller]/[action]", Name="[controller]_[action]")] will generate a unique route name for each

action.

To match the literal token replacement delimiter [or] , escape it by repeating the character ([[or]]).

Attribute routing supports defining multiple routes that reach the same action. The most common usage of
this is to mimic the behavior of the default conventional route as shown in the following example:

[Route("[controller]")]
public class ProductsController : Controller
{
 [Route("")] // Matches 'Products'
 [Route("Index")] // Matches 'Products/Index'
 public IActionResult Index()
}

[Route("Store")]
[Route("[controller]")]
public class ProductsController : Controller
{
 [HttpPost("Buy")] // Matches 'Products/Buy' and 'Store/Buy'
 [HttpPost("Checkout")] // Matches 'Products/Checkout' and 'Store/Checkout'
 public IActionResult Buy()
}

[Route("api/[controller]")]
public class ProductsController : Controller
{
 [HttpPut("Buy")] // Matches PUT 'api/Products/Buy'
 [HttpPost("Checkout")] // Matches POST 'api/Products/Checkout'
 public IActionResult Buy()
}

TIPTIP

Specifying attribute route optional parameters, default values, and constraintsSpecifying attribute route optional parameters, default values, and constraints

[HttpPost("product/{id:int}")]
public IActionResult ShowProduct(int id)
{
 // ...
}

Custom route attributes using Custom route attributes using IRouteTemplateProvider

Putting multiple route attributes on the controller means that each one will combine with each of the route
attributes on the action methods.

When multiple route attributes (that implement IActionConstraint) are placed on an action, then each
action constraint combines with the route template from the attribute that defined it.

While using multiple routes on actions can seem powerful, it's better to keep your application's URL space simple and
well-defined. Use multiple routes on actions only where needed, for example to support existing clients.

Attribute routes support the same inline syntax as conventional routes to specify optional parameters,
default values, and constraints.

See Route Template Reference for a detailed description of route template syntax.

All of the route attributes provided in the framework ([Route(...)] , [HttpGet(...)] , etc.) implement the
IRouteTemplateProvider interface. MVC looks for attributes on controller classes and action methods when

the app starts and uses the ones that implement IRouteTemplateProvider to build the initial set of routes.

You can implement IRouteTemplateProvider to define your own route attributes. Each
IRouteTemplateProvider allows you to define a single route with a custom route template, order, and name:

public class MyApiControllerAttribute : Attribute, IRouteTemplateProvider
{
 public string Template => "api/[controller]";

 public int? Order { get; set; }

 public string Name { get; set; }
}

Using Application Model to customize attribute routesUsing Application Model to customize attribute routes

The attribute from the above example automatically sets the Template to "api/[controller]" when
[MyApiController] is applied.

The application model is an object model created at startup with all of the metadata used by MVC to route
and execute your actions. The application model includes all of the data gathered from route attributes
(through IRouteTemplateProvider). You can write conventions to modify the application model at startup
time to customize how routing behaves. This section shows a simple example of customizing routing using
application model.

using Microsoft.AspNetCore.Mvc.ApplicationModels;
using System.Linq;
using System.Text;
public class NamespaceRoutingConvention : IControllerModelConvention
{
 private readonly string _baseNamespace;

 public NamespaceRoutingConvention(string baseNamespace)
 {
 _baseNamespace = baseNamespace;
 }

 public void Apply(ControllerModel controller)
 {
 var hasRouteAttributes = controller.Selectors.Any(selector =>
 selector.AttributeRouteModel != null);
 if (hasRouteAttributes)
 {
 // This controller manually defined some routes, so treat this
 // as an override and not apply the convention here.
 return;
 }

 // Use the namespace and controller name to infer a route for the controller.
 //
 // Example:
 //
 // controller.ControllerTypeInfo -> "My.Application.Admin.UsersController"
 // baseNamespace -> "My.Application"
 //
 // template => "Admin/[controller]"
 //
 // This makes your routes roughly line up with the folder structure of your project.
 //
 var namespc = controller.ControllerType.Namespace;
 if (namespc == null)
 return;
 var template = new StringBuilder();
 template.Append(namespc, _baseNamespace.Length + 1,
 namespc.Length - _baseNamespace.Length - 1);
 template.Replace('.', '/');
 template.Append("/[controller]");

 foreach (var selector in controller.Selectors)
 {
 selector.AttributeRouteModel = new AttributeRouteModel()
 {
 Template = template.ToString()
 };
 }
 }
}

Mixed routing: Attribute routing vs conventional routing

MVC applications can mix the use of conventional routing and attribute routing. It's typical to use
conventional routes for controllers serving HTML pages for browsers, and attribute routing for controllers
serving REST APIs.

Actions are either conventionally routed or attribute routed. Placing a route on the controller or the action
makes it attribute routed. Actions that define attribute routes cannot be reached through the conventional
routes and vice-versa. Any route attribute on the controller makes all actions in the controller attribute
routed.

NOTENOTE

URL Generation

using Microsoft.AspNetCore.Mvc;

public class UrlGenerationController : Controller
{
 public IActionResult Source()
 {
 // Generates /UrlGeneration/Destination
 var url = Url.Action("Destination");
 return Content($"Go check out {url}, it's really great.");
 }

 public IActionResult Destination()
 {
 return View();
 }
}

ambient values: { controller = "UrlGeneration", action = "Source" }
values passed to Url.Action: { controller = "UrlGeneration", action = "Destination" }
route template: {controller}/{action}/{id?}

result: /UrlGeneration/Destination

What distinguishes the two types of routing systems is the process applied after a URL matches a route template. In
conventional routing, the route values from the match are used to choose the action and controller from a lookup
table of all conventional routed actions. In attribute routing, each template is already associated with an action, and
no further lookup is needed.

MVC applications can use routing's URL generation features to generate URL links to actions. Generating
URLs eliminates hardcoding URLs, making your code more robust and maintainable. This section focuses
on the URL generation features provided by MVC and will only cover basics of how URL generation works.
See Routing for a detailed description of URL generation.

The IUrlHelper interface is the underlying piece of infrastructure between MVC and routing for URL
generation. You'll find an instance of IUrlHelper available through the Url property in controllers, views,
and view components.

In this example, the IUrlHelper interface is used through the Controller.Url property to generate a URL to
another action.

If the application is using the default conventional route, the value of the url variable will be the URL path
string /UrlGeneration/Destination . This URL path is created by routing by combining the route values from
the current request (ambient values), with the values passed to Url.Action and substituting those values
into the route template:

Each route parameter in the route template has its value substituted by matching names with the values and
ambient values. A route parameter that doesn't have a value can use a default value if it has one, or be
skipped if it's optional (as in the case of id in this example). URL generation will fail if any required route
parameter doesn't have a corresponding value. If URL generation fails for a route, the next route is tried until
all routes have been tried or a match is found.

The example of Url.Action above assumes conventional routing, but URL generation works similarly with

// In Startup class
public void Configure(IApplicationBuilder app)
{
 app.UseMvc();
}

using Microsoft.AspNetCore.Mvc;

public class UrlGenerationController : Controller
{
 [HttpGet("")]
 public IActionResult Source()
 {
 var url = Url.Action("Destination"); // Generates /custom/url/to/destination
 return Content($"Go check out {url}, it's really great.");
 }

 [HttpGet("custom/url/to/destination")]
 public IActionResult Destination() {
 return View();
 }
}

Generating URLs by action nameGenerating URLs by action name

NOTENOTE

attribute routing, though the concepts are different. With conventional routing, the route values are used to
expand a template, and the route values for controller and action usually appear in that template - this
works because the URLs matched by routing adhere to a convention. In attribute routing, the route values
for controller and action are not allowed to appear in the template - they're instead used to look up
which template to use.

This example uses attribute routing:

MVC builds a lookup table of all attribute routed actions and will match the controller and action values
to select the route template to use for URL generation. In the sample above, custom/url/to/destination is
generated.

Url.Action (IUrlHelper . Action) and all related overloads all are based on that idea that you want to
specify what you're linking to by specifying a controller name and action name.

When using Url.Action , the current route values for controller and action are specified for you - the value of
controller and action are part of both ambient values and values. The method Url.Action , always uses the

current values of action and controller and will generate a URL path that routes to the current action.

Routing attempts to use the values in ambient values to fill in information that you didn't provide when
generating a URL. Using a route like {a}/{b}/{c}/{d} and ambient values
{ a = Alice, b = Bob, c = Carol, d = David } , routing has enough information to generate a URL without

any additional values - since all route parameters have a value. If you added the value { d = Donovan } , the
value { d = David } would be ignored, and the generated URL path would be Alice/Bob/Carol/Donovan .

WARNINGWARNING

using Microsoft.AspNetCore.Mvc;

public class TestController : Controller
{
 public IActionResult Index()
 {
 // Generates /Products/Buy/17?color=red
 var url = Url.Action("Buy", "Products", new { id = 17, color = "red" });
 return Content(url);
 }
}

TIPTIP

Generating URLs by routeGenerating URLs by route

using Microsoft.AspNetCore.Mvc;

public class UrlGenerationController : Controller
{
 [HttpGet("")]
 public IActionResult Source()
 {
 var url = Url.RouteUrl("Destination_Route"); // Generates /custom/url/to/destination
 return Content($"See {url}, it's really great.");
 }

 [HttpGet("custom/url/to/destination", Name = "Destination_Route")]
 public IActionResult Destination() {
 return View();
 }
}

Generating URLs in HTMLGenerating URLs in HTML

URL paths are hierarchical. In the example above, if you added the value { c = Cheryl } , both of the values
{ c = Carol, d = David } would be ignored. In this case we no longer have a value for d and URL generation

will fail. You would need to specify the desired value of c and d . You might expect to hit this problem with the
default route ({controller}/{action}/{id?}) - but you will rarely encounter this behavior in practice as
Url.Action will always explicitly specify a controller and action value.

Longer overloads of Url.Action also take an additional route values object to provide values for route
parameters other than controller and action . You will most commonly see this used with id like
Url.Action("Buy", "Products", new { id = 17 }) . By convention the route values object is usually an object

of anonymous type, but it can also be an IDictionary<> or a plain old .NET object. Any additional route
values that don't match route parameters are put in the query string.

To create an absolute URL, use an overload that accepts a protocol :
Url.Action("Buy", "Products", new { id = 17 }, protocol: Request.Scheme)

The code above demonstrated generating a URL by passing in the controller and action name. IUrlHelper

also provides the Url.RouteUrl family of methods. These methods are similar to Url.Action , but they don't
copy the current values of action and controller to the route values. The most common usage is to
specify a route name to use a specific route to generate the URL, generally without specifying a controller or
action name.

Generating URLS in Action ResultsGenerating URLS in Action Results

public Task<IActionResult> Edit(int id, Customer customer)
{
 if (ModelState.IsValid)
 {
 // Update DB with new details.
 return RedirectToAction("Index");
 }
}

Special case for dedicated conventional routesSpecial case for dedicated conventional routes

app.UseMvc(routes =>
{
 routes.MapRoute("blog", "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

Areas

IHtmlHelper provides the HtmlHelper methods Html.BeginForm and Html.ActionLink to generate <form>

and <a> elements respectively. These methods use the Url.Action method to generate a URL and they
accept similar arguments. The Url.RouteUrl companions for HtmlHelper are Html.BeginRouteForm and
Html.RouteLink which have similar functionality.

TagHelpers generate URLs through the form TagHelper and the <a> TagHelper. Both of these use
IUrlHelper for their implementation. See Working with Forms for more information.

Inside views, the IUrlHelper is available through the Url property for any ad-hoc URL generation not
covered by the above.

The examples above have shown using IUrlHelper in a controller, while the most common usage in a
controller is to generate a URL as part of an action result.

The ControllerBase and Controller base classes provide convenience methods for action results that
reference another action. One typical usage is to redirect after accepting user input.

The action results factory methods follow a similar pattern to the methods on IUrlHelper .

Conventional routing can use a special kind of route definition called a dedicated conventional route. In the
example below, the route named blog is a dedicated conventional route.

Using these route definitions, Url.Action("Index", "Home") will generate the URL path / with the default

route, but why? You might guess the route values { controller = Home, action = Index } would be enough
to generate a URL using blog , and the result would be /blog?action=Index&controller=Home .

Dedicated conventional routes rely on a special behavior of default values that don't have a corresponding
route parameter that prevents the route from being "too greedy" with URL generation. In this case the
default values are { controller = Blog, action = Article } , and neither controller nor action appears as
a route parameter. When routing performs URL generation, the values provided must match the default
values. URL generation using blog will fail because the values { controller = Home, action = Index } don't
match { controller = Blog, action = Article } . Routing then falls back to try default , which succeeds.

Areas are an MVC feature used to organize related functionality into a group as a separate routing-
namespace (for controller actions) and folder structure (for views). Using areas allows an application to have
multiple controllers with the same name - as long as they have different areas. Using areas creates a

app.UseMvc(routes =>
{
 routes.MapAreaRoute("blog_route", "Blog",
 "Manage/{controller}/{action}/{id?}");
 routes.MapRoute("default_route", "{controller}/{action}/{id?}");
});

app.UseMvc(routes =>
{
 routes.MapRoute("blog_route", "Manage/{controller}/{action}/{id?}",
 defaults: new { area = "Blog" }, constraints: new { area = "Blog" });
 routes.MapRoute("default_route", "{controller}/{action}/{id?}");
});

TIPTIP

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace1
{
 [Area("Blog")]
 public class UsersController : Controller
 {
 public IActionResult AddUser()
 {
 return View();
 }
 }
}

hierarchy for the purpose of routing by adding another route parameter, area to controller and action .
This section will discuss how routing interacts with areas - see Areas for details about how areas are used
with views.

The following example configures MVC to use the default conventional route and an area route for an area
named Blog :

When matching a URL path like /Manage/Users/AddUser , the first route will produce the route values
{ area = Blog, controller = Users, action = AddUser } . The area route value is produced by a default

value for area , in fact the route created by MapAreaRoute is equivalent to the following:

MapAreaRoute creates a route using both a default value and constraint for area using the provided area
name, in this case Blog . The default value ensures that the route always produces { area = Blog, ... } ,
the constraint requires the value { area = Blog, ... } for URL generation.

Conventional routing is order-dependent. In general, routes with areas should be placed earlier in the route table as
they're more specific than routes without an area.

Using the above example, the route values would match the following action:

The AreaAttribute is what denotes a controller as part of an area, we say that this controller is in the Blog

area. Controllers without an [Area] attribute are not members of any area, and will not match when the
area route value is provided by routing. In the following example, only the first controller listed can match

the route values { area = Blog, controller = Users, action = AddUser } .

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace1
{
 [Area("Blog")]
 public class UsersController : Controller
 {
 public IActionResult AddUser()
 {
 return View();
 }
 }
}

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace2
{
 // Matches { area = Zebra, controller = Users, action = AddUser }
 [Area("Zebra")]
 public class UsersController : Controller
 {
 public IActionResult AddUser()
 {
 return View();
 }
 }
}

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace3
{
 // Matches { area = string.Empty, controller = Users, action = AddUser }
 // Matches { area = null, controller = Users, action = AddUser }
 // Matches { controller = Users, action = AddUser }
 public class UsersController : Controller
 {
 public IActionResult AddUser()
 {
 return View();

 }
 }
}

NOTENOTE
The namespace of each controller is shown here for completeness - otherwise the controllers would have a naming
conflict and generate a compiler error. Class namespaces have no effect on MVC's routing.

The first two controllers are members of areas, and only match when their respective area name is provided
by the area route value. The third controller isn't a member of any area, and can only match when no value
for area is provided by routing.

NOTENOTE

app.UseMvc(routes =>
{
 routes.MapAreaRoute("duck_route", "Duck",
 "Manage/{controller}/{action}/{id?}");
 routes.MapRoute("default", "Manage/{controller=Home}/{action=Index}/{id?}");
});

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace4
{
 [Area("Duck")]
 public class UsersController : Controller
 {
 public IActionResult GenerateURLInArea()
 {
 // Uses the 'ambient' value of area
 var url = Url.Action("Index", "Home");
 // returns /Manage
 return Content(url);
 }

 public IActionResult GenerateURLOutsideOfArea()
 {
 // Uses the empty value for area
 var url = Url.Action("Index", "Home", new { area = "" });
 // returns /Manage/Home/Index
 return Content(url);
 }
 }
}

Understanding IActionConstraint

NOTENOTE

In terms of matching no value, the absence of the area value is the same as if the value for area were null or the
empty string.

When executing an action inside an area, the route value for area will be available as an ambient value for
routing to use for URL generation. This means that by default areas act sticky for URL generation as
demonstrated by the following sample.

This section is a deep-dive on framework internals and how MVC chooses an action to execute. A typical application
won't need a custom IActionConstraint

You have likely already used IActionConstraint even if you're not familiar with the interface. The [HttpGet]

Attribute and similar [Http-VERB] attributes implement IActionConstraint in order to limit the execution of
an action method.

public class ProductsController : Controller
{
 [HttpGet]
 public IActionResult Edit() { }

 public IActionResult Edit(...) { }
}

Implementing IActionConstraintImplementing IActionConstraint

public class CountrySpecificAttribute : Attribute, IActionConstraint
{
 private readonly string _countryCode;

 public CountrySpecificAttribute(string countryCode)
 {
 _countryCode = countryCode;
 }

 public int Order
 {
 get
 {
 return 0;
 }
 }

 public bool Accept(ActionConstraintContext context)
 {
 return string.Equals(
 context.RouteContext.RouteData.Values["country"].ToString(),
 _countryCode,
 StringComparison.OrdinalIgnoreCase);
 }
}

Assuming the default conventional route, the URL path /Products/Edit would produce the values
{ controller = Products, action = Edit } , which would match both of the actions shown here. In
IActionConstraint terminology we would say that both of these actions are considered candidates - as they

both match the route data.

When the HttpGetAttribute executes, it will say that Edit() is a match for GET and isn't a match for any other
HTTP verb. The Edit(...) action doesn't have any constraints defined, and so will match any HTTP verb. So
assuming a POST - only Edit(...) matches. But, for a GET both actions can still match - however, an action
with an IActionConstraint is always considered better than an action without. So because Edit() has
[HttpGet] it's considered more specific, and will be selected if both actions can match.

Conceptually, IActionConstraint is a form of overloading, but instead of overloading methods with the
same name, it's overloading between actions that match the same URL. Attribute routing also uses
IActionConstraint and can result in actions from different controllers both being considered candidates.

The simplest way to implement an IActionConstraint is to create a class derived from System.Attribute

and place it on your actions and controllers. MVC will automatically discover any IActionConstraint that are
applied as attributes. You can use the application model to apply constraints, and this is probably the most
flexible approach as it allows you to metaprogram how they're applied.

In the following example a constraint chooses an action based on a country code from the route data. The
full sample on GitHub.

You are responsible for implementing the Accept method and choosing an 'Order' for the constraint to

https://github.com/aspnet/Entropy/blob/dev/samples/Mvc.ActionConstraintSample.Web/CountrySpecificAttribute.cs

TIPTIP

execute. In this case, the Accept method returns true to denote the action is a match when the country

route value matches. This is different from a RouteValueAttribute in that it allows fallback to a non-
attributed action. The sample shows that if you define an en-US action then a country code like fr-FR will
fall back to a more generic controller that doesn't have [CountrySpecific(...)] applied.

The Order property decides which stage the constraint is part of. Action constraints run in groups based on
the Order . For example, all of the framework provided HTTP method attributes use the same Order value
so that they run in the same stage. You can have as many stages as you need to implement your desired
policies.

To decide on a value for Order think about whether or not your constraint should be applied before HTTP methods.
Lower numbers run first.

File uploads in ASP.NET Core
5/2/2018 • 8 minutes to read • Edit Online

Uploading small files with model binding

<form method="post" enctype="multipart/form-data" asp-controller="UploadFiles" asp-action="Index">
 <div class="form-group">
 <div class="col-md-10">
 <p>Upload one or more files using this form:</p>
 <input type="file" name="files" multiple />
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-10">
 <input type="submit" value="Upload" />
 </div>
 </div>
</form>

By Steve Smith

ASP.NET MVC actions support uploading of one or more files using simple model binding for smaller files or
streaming for larger files.

View or download sample from GitHub

To upload small files, you can use a multi-part HTML form or construct a POST request using JavaScript. An
example form using Razor, which supports multiple uploaded files, is shown below:

In order to support file uploads, HTML forms must specify an enctype of multipart/form-data . The files input
element shown above supports uploading multiple files. Omit the multiple attribute on this input element to
allow just a single file to be uploaded. The above markup renders in a browser as:

The individual files uploaded to the server can be accessed through Model Binding using the IFormFile interface.
IFormFile has the following structure:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/models/file-uploads.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/models/file-uploads/sample/FileUploadSample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformfile

public interface IFormFile
{
 string ContentType { get; }
 string ContentDisposition { get; }
 IHeaderDictionary Headers { get; }
 long Length { get; }
 string Name { get; }
 string FileName { get; }
 Stream OpenReadStream();
 void CopyTo(Stream target);
 Task CopyToAsync(Stream target, CancellationToken cancellationToken = null);
}

WARNINGWARNING

[HttpPost("UploadFiles")]
public async Task<IActionResult> Post(List<IFormFile> files)
{
 long size = files.Sum(f => f.Length);

 // full path to file in temp location
 var filePath = Path.GetTempFileName();

 foreach (var formFile in files)
 {
 if (formFile.Length > 0)
 {
 using (var stream = new FileStream(filePath, FileMode.Create))
 {
 await formFile.CopyToAsync(stream);
 }
 }
 }

 // process uploaded files
 // Don't rely on or trust the FileName property without validation.

 return Ok(new { count = files.Count, size, filePath});
}

Don't rely on or trust the FileName property without validation. The FileName property should only be used for display
purposes.

When uploading files using model binding and the IFormFile interface, the action method can accept either a
single IFormFile or an IEnumerable<IFormFile> (or List<IFormFile>) representing several files. The following
example loops through one or more uploaded files, saves them to the local file system, and returns the total
number and size of files uploaded.

Warning: The following code uses GetTempFileName , which throws an IOException if more than 65535 files are
created without deleting previous temporary files. A real app should either delete temporary files or use
GetTempPath and GetRandomFileName to create temporary file names. The 65535 files limit is per server, so another

app on the server can use up all 65535 files.

Files uploaded using the IFormFile technique are buffered in memory or on disk on the web server before being
processed. Inside the action method, the IFormFile contents are accessible as a stream. In addition to the local file
system, files can be streamed to Azure Blob storage or Entity Framework.

To store binary file data in a database using Entity Framework, define a property of type byte[] on the entity:

https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-blobs/
https://docs.microsoft.com/ef/core/index

public class ApplicationUser : IdentityUser
{
 public byte[] AvatarImage { get; set; }
}

public class RegisterViewModel
{
 // other properties omitted

 public IFormFile AvatarImage { get; set; }
}

NOTENOTE

// POST: /Account/Register
[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Register(RegisterViewModel model)
{
 ViewData["ReturnUrl"] = returnUrl;
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser {
 UserName = model.Email,
 Email = model.Email
 };
 using (var memoryStream = new MemoryStream())
 {
 await model.AvatarImage.CopyToAsync(memoryStream);
 user.AvatarImage = memoryStream.ToArray();
 }
 // additional logic omitted

 // Don't rely on or trust the model.AvatarImage.FileName property
 // without validation.
}

NOTENOTE

Uploading large files with streaming

Specify a viewmodel property of type IFormFile :

IFormFile can be used directly as an action method parameter or as a viewmodel property, as shown above.

Copy the IFormFile to a stream and save it to the byte array:

Use caution when storing binary data in relational databases, as it can adversely impact performance.

If the size or frequency of file uploads is causing resource problems for the app, consider streaming the file upload
rather than buffering it in its entirety, as the model binding approach shown above does. While using IFormFile

and model binding is a much simpler solution, streaming requires a number of steps to implement properly.

NOTENOTE

[HttpGet]
[GenerateAntiforgeryTokenCookieForAjax]
public IActionResult Index()
{
 return View();
}

public class GenerateAntiforgeryTokenCookieForAjaxAttribute : ActionFilterAttribute
{
 public override void OnActionExecuted(ActionExecutedContext context)
 {
 var antiforgery = context.HttpContext.RequestServices.GetService<IAntiforgery>();

 // We can send the request token as a JavaScript-readable cookie,
 // and Angular will use it by default.
 var tokens = antiforgery.GetAndStoreTokens(context.HttpContext);
 context.HttpContext.Response.Cookies.Append(
 "XSRF-TOKEN",
 tokens.RequestToken,
 new CookieOptions() { HttpOnly = false });
 }
}

public void ConfigureServices(IServiceCollection services)
{
 // Angular's default header name for sending the XSRF token.
 services.AddAntiforgery(options => options.HeaderName = "X-XSRF-TOKEN");

 services.AddMvc();
}

Any single buffered file exceeding 64KB will be moved from RAM to a temp file on disk on the server. The resources (disk,
RAM) used by file uploads depend on the number and size of concurrent file uploads. Streaming isn't so much about perf, it's
about scale. If you try to buffer too many uploads, your site will crash when it runs out of memory or disk space.

The following example demonstrates using JavaScript/Angular to stream to a controller action. The file's
antiforgery token is generated using a custom filter attribute and passed in HTTP headers instead of in the request
body. Because the action method processes the uploaded data directly, model binding is disabled by another filter.
Within the action, the form's contents are read using a MultipartReader , which reads each individual
MultipartSection , processing the file or storing the contents as appropriate. Once all sections have been read, the

action performs its own model binding.

The initial action loads the form and saves an antiforgery token in a cookie (via the
GenerateAntiforgeryTokenCookieForAjax attribute):

The attribute uses ASP.NET Core's built-in Antiforgery support to set a cookie with a request token:

Angular automatically passes an antiforgery token in a request header named X-XSRF-TOKEN . The ASP.NET Core
MVC app is configured to refer to this header in its configuration in Startup.cs:

The DisableFormValueModelBinding attribute, shown below, is used to disable model binding for the Upload action
method.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class DisableFormValueModelBindingAttribute : Attribute, IResourceFilter
{
 public void OnResourceExecuting(ResourceExecutingContext context)
 {
 var factories = context.ValueProviderFactories;
 factories.RemoveType<FormValueProviderFactory>();
 factories.RemoveType<JQueryFormValueProviderFactory>();
 }

 public void OnResourceExecuted(ResourceExecutedContext context)
 {
 }
}

// 1. Disable the form value model binding here to take control of handling
// potentially large files.
// 2. Typically antiforgery tokens are sent in request body, but since we
// do not want to read the request body early, the tokens are made to be
// sent via headers. The antiforgery token filter first looks for tokens
// in the request header and then falls back to reading the body.
[HttpPost]
[DisableFormValueModelBinding]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Upload()
{
 if (!MultipartRequestHelper.IsMultipartContentType(Request.ContentType))
 {
 return BadRequest($"Expected a multipart request, but got {Request.ContentType}");
 }

 // Used to accumulate all the form url encoded key value pairs in the
 // request.
 var formAccumulator = new KeyValueAccumulator();
 string targetFilePath = null;

 var boundary = MultipartRequestHelper.GetBoundary(
 MediaTypeHeaderValue.Parse(Request.ContentType),
 _defaultFormOptions.MultipartBoundaryLengthLimit);
 var reader = new MultipartReader(boundary, HttpContext.Request.Body);

 var section = await reader.ReadNextSectionAsync();
 while (section != null)
 {
 ContentDispositionHeaderValue contentDisposition;
 var hasContentDispositionHeader = ContentDispositionHeaderValue.TryParse(section.ContentDisposition,
out contentDisposition);

 if (hasContentDispositionHeader)
 {
 if (MultipartRequestHelper.HasFileContentDisposition(contentDisposition))
 {

Since model binding is disabled, the Upload action method doesn't accept parameters. It works directly with the
Request property of ControllerBase . A MultipartReader is used to read each section. The file is saved with a

GUID filename and the key/value data is stored in a KeyValueAccumulator . Once all sections have been read, the
contents of the KeyValueAccumulator are used to bind the form data to a model type.

The complete Upload method is shown below:

Warning: The following code uses GetTempFileName , which throws an IOException if more than 65535 files are
created without deleting previous temporary files. A real app should either delete temporary files or use
GetTempPath and GetRandomFileName to create temporary file names. The 65535 files limit is per server, so another

app on the server can use up all 65535 files.

 {
 targetFilePath = Path.GetTempFileName();
 using (var targetStream = System.IO.File.Create(targetFilePath))
 {
 await section.Body.CopyToAsync(targetStream);

 _logger.LogInformation($"Copied the uploaded file '{targetFilePath}'");
 }
 }
 else if (MultipartRequestHelper.HasFormDataContentDisposition(contentDisposition))
 {
 // Content-Disposition: form-data; name="key"
 //
 // value

 // Do not limit the key name length here because the
 // multipart headers length limit is already in effect.
 var key = HeaderUtilities.RemoveQuotes(contentDisposition.Name);
 var encoding = GetEncoding(section);
 using (var streamReader = new StreamReader(
 section.Body,
 encoding,
 detectEncodingFromByteOrderMarks: true,
 bufferSize: 1024,
 leaveOpen: true))
 {
 // The value length limit is enforced by MultipartBodyLengthLimit
 var value = await streamReader.ReadToEndAsync();
 if (String.Equals(value, "undefined", StringComparison.OrdinalIgnoreCase))
 {
 value = String.Empty;
 }
 formAccumulator.Append(key, value);

 if (formAccumulator.ValueCount > _defaultFormOptions.ValueCountLimit)
 {
 throw new InvalidDataException($"Form key count limit
{_defaultFormOptions.ValueCountLimit} exceeded.");
 }
 }
 }
 }

 // Drains any remaining section body that has not been consumed and
 // reads the headers for the next section.
 section = await reader.ReadNextSectionAsync();
 }

 // Bind form data to a model
 var user = new User();
 var formValueProvider = new FormValueProvider(
 BindingSource.Form,
 new FormCollection(formAccumulator.GetResults()),
 CultureInfo.CurrentCulture);

 var bindingSuccessful = await TryUpdateModelAsync(user, prefix: "",
 valueProvider: formValueProvider);
 if (!bindingSuccessful)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 }

 var uploadedData = new UploadedData()
 {
 Name = user.Name,
 Age = user.Age,
 Zipcode = user.Zipcode,

 Zipcode = user.Zipcode,
 FilePath = targetFilePath
 };
 return Json(uploadedData);
}

Troubleshooting

Unexpected Not Found error with IISUnexpected Not Found error with IIS

HTTP 404.13 - Not Found
The request filtering module is configured to deny a request that exceeds the request content length.

<system.webServer>
 <security>
 <requestFiltering>
 <!-- This will handle requests up to 50MB -->
 <requestLimits maxAllowedContentLength="52428800" />
 </requestFiltering>
 </security>
</system.webServer>

Null Reference Exception with IFormFileNull Reference Exception with IFormFile

Below are some common problems encountered when working with uploading files and their possible solutions.

The following error indicates your file upload exceeds the server's configured maxAllowedContentLength :

The default setting is 30000000 , which is approximately 28.6MB. The value can be customized by editing
web.config:

This setting only applies to IIS. The behavior doesn't occur by default when hosting on Kestrel. For more
information, see Request Limits <requestLimits>.

If your controller is accepting uploaded files using IFormFile but you find that the value is always null, confirm
that your HTML form is specifying an enctype value of multipart/form-data . If this attribute isn't set on the
<form> element, the file upload won't occur and any bound IFormFile arguments will be null.

https://docs.microsoft.com/iis/configuration/system.webServer/security/requestFiltering/requestLimits/

Dependency injection into controllers in ASP.NET
Core
3/22/2018 • 5 minutes to read • Edit Online

Dependency Injection

Constructor Injection

using System;

namespace ControllerDI.Interfaces
{
 public interface IDateTime
 {
 DateTime Now { get; }
 }
}

using System;
using ControllerDI.Interfaces;

namespace ControllerDI.Services
{
 public class SystemDateTime : IDateTime
 {
 public DateTime Now
 {
 get { return DateTime.Now; }
 }
 }
}

 By Steve Smith

ASP.NET Core MVC controllers should request their dependencies explicitly via their constructors. In some
instances, individual controller actions may require a service, and it may not make sense to request at the
controller level. In this case, you can also choose to inject a service as a parameter on the action method.

View or download sample code (how to download)

Dependency injection is a technique that follows the Dependency Inversion Principle, allowing for applications to
be composed of loosely coupled modules. ASP.NET Core has built-in support for dependency injection, which
makes applications easier to test and maintain.

ASP.NET Core's built-in support for constructor-based dependency injection extends to MVC controllers. By
simply adding a service type to your controller as a constructor parameter, ASP.NET Core will attempt to resolve
that type using its built in service container. Services are typically, but not always, defined using interfaces. For
example, if your application has business logic that depends on the current time, you can inject a service that
retrieves the time (rather than hard-coding it), which would allow your tests to pass in implementations that use a
set time.

Implementing an interface like this one so that it uses the system clock at runtime is trivial:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/controllers/dependency-injection.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/controllers/dependency-injection/sample
http://deviq.com/dependency-inversion-principle/

using ControllerDI.Interfaces;
using Microsoft.AspNetCore.Mvc;

namespace ControllerDI.Controllers
{
 public class HomeController : Controller
 {
 private readonly IDateTime _dateTime;

 public HomeController(IDateTime dateTime)
 {
 _dateTime = dateTime;
 }

 public IActionResult Index()
 {
 var serverTime = _dateTime.Now;
 if (serverTime.Hour < 12)
 {
 ViewData["Message"] = "It's morning here - Good Morning!";
 }
 else if (serverTime.Hour < 17)
 {
 ViewData["Message"] = "It's afternoon here - Good Afternoon!";
 }
 else
 {
 ViewData["Message"] = "It's evening here - Good Evening!";
 }
 return View();
 }
 }
}

An unhandled exception occurred while processing the request.

InvalidOperationException: Unable to resolve service for type 'ControllerDI.Interfaces.IDateTime' while
attempting to activate 'ControllerDI.Controllers.HomeController'.
Microsoft.Extensions.DependencyInjection.ActivatorUtilities.GetService(IServiceProvider sp, Type type, Type
requiredBy, Boolean isDefaultParameterRequired)

public void ConfigureServices(IServiceCollection services)
{
 // Add application services.
 services.AddTransient<IDateTime, SystemDateTime>();
}

With this in place, we can use the service in our controller. In this case, we have added some logic to the
HomeController Index method to display a greeting to the user based on the time of day.

If we run the application now, we will most likely encounter an error :

This error occurs when we have not configured a service in the ConfigureServices method in our Startup class.
To specify that requests for IDateTime should be resolved using an instance of SystemDateTime , add the
highlighted line in the listing below to your ConfigureServices method:

NOTENOTE

TIPTIP

An unhandled exception occurred while processing the request.

InvalidOperationException: Multiple constructors accepting all given argument types have been found in type
'ControllerDI.Controllers.HomeController'. There should only be one applicable constructor.
Microsoft.Extensions.DependencyInjection.ActivatorUtilities.FindApplicableConstructor(Type instanceType,
Type[] argumentTypes, ConstructorInfo& matchingConstructor, Nullable`1[]& parameterMap)

Action Injection with FromServices

public IActionResult About([FromServices] IDateTime dateTime)
{
 ViewData["Message"] = "Currently on the server the time is " + dateTime.Now;

 return View();
}

Accessing Settings from a Controller

This particular service could be implemented using any of several different lifetime options (Transient , Scoped , or
Singleton). See Dependency Injection to understand how each of these scope options will affect the behavior of your

service.

Once the service has been configured, running the application and navigating to the home page should display
the time-based message as expected:

See Test controller logic to learn how to explicitly request dependencies http://deviq.com/explicit-dependencies-principle/ in
controllers makes code easier to test.

ASP.NET Core's built-in dependency injection supports having only a single constructor for classes requesting
services. If you have more than one constructor, you may get an exception stating:

As the error message states, you can correct this problem having just a single constructor. You can also replace the
default dependency injection support with a third party implementation, many of which support multiple
constructors.

Sometimes you don't need a service for more than one action within your controller. In this case, it may make
sense to inject the service as a parameter to the action method. This is done by marking the parameter with the
attribute [FromServices] as shown here:

Accessing application or configuration settings from within a controller is a common pattern. This access should
use the Options pattern described in configuration. You generally shouldn't request settings directly from your
controller using dependency injection. A better approach is to request an IOptions<T> instance, where T is the

http://deviq.com/explicit-dependencies-principle/

namespace ControllerDI.Model
{
 public class SampleWebSettings
 {
 public string Title { get; set; }
 public int Updates { get; set; }
 }
}

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("samplewebsettings.json");
 Configuration = builder.Build();
}

public IConfigurationRoot Configuration { get; set; }

// This method gets called by the runtime. Use this method to add services to the container.
// For more information on how to configure your application, visit http://go.microsoft.com/fwlink/?
LinkID=398940
public void ConfigureServices(IServiceCollection services)
{
 // Required to use the Options<T> pattern
 services.AddOptions();

 // Add settings from configuration
 services.Configure<SampleWebSettings>(Configuration);

 // Uncomment to add settings from code
 //services.Configure<SampleWebSettings>(settings =>
 //{
 // settings.Updates = 17;
 //});

 services.AddMvc();

 // Add application services.
 services.AddTransient<IDateTime, SystemDateTime>();
}

NOTENOTE

configuration class you need.

To work with the options pattern, you need to create a class that represents the options, such as this one:

Then you need to configure the application to use the options model and add your configuration class to the
services collection in ConfigureServices :

In the above listing, we are configuring the application to read the settings from a JSON-formatted file. You can also
configure the settings entirely in code, as is shown in the commented code above. See Configuration for further
configuration options.

Once you've specified a strongly-typed configuration object (in this case, SampleWebSettings) and added it to the
services collection, you can request it from any Controller or Action method by requesting an instance of
IOptions<T> (in this case, IOptions<SampleWebSettings>). The following code shows how one would request the

settings from a controller :

public class SettingsController : Controller
{
 private readonly SampleWebSettings _settings;

 public SettingsController(IOptions<SampleWebSettings> settingsOptions)
 {
 _settings = settingsOptions.Value;
 }

 public IActionResult Index()
 {
 ViewData["Title"] = _settings.Title;
 ViewData["Updates"] = _settings.Updates;
 return View();
 }
}

Following the Options pattern allows settings and configuration to be decoupled from one another, and ensures
the controller is following separation of concerns, since it doesn't need to know how or where to find the settings
information. It also makes the controller easier to unit test Test controller logic, since there's no static cling or
direct instantiation of settings classes within the controller class.

http://deviq.com/separation-of-concerns/
http://deviq.com/static-cling/

Test controller logic in ASP.NET Core
5/30/2018 • 17 minutes to read • Edit Online

Testing controllers

Unit testing

TIPTIP

By Steve Smith

Controllers in ASP.NET MVC apps should be small and focused on user-interface concerns. Large controllers that
deal with non-UI concerns are more difficult to test and maintain.

View or download sample from GitHub

Controllers are a central part of any ASP.NET Core MVC application. As such, you should have confidence they
behave as intended for your app. Automated tests can provide you with this confidence and can detect errors
before they reach production. It's important to avoid placing unnecessary responsibilities within your controllers
and ensure your tests focus only on controller responsibilities.

Controller logic should be minimal and not be focused on business logic or infrastructure concerns (for example,
data access). Test controller logic, not the framework. Test how the controller behaves based on valid or invalid
inputs. Test controller responses based on the result of the business operation it performs.

Typical controller responsibilities:

Verify ModelState.IsValid .
Return an error response if ModelState is invalid.
Retrieve a business entity from persistence.
Perform an action on the business entity.
Save the business entity to persistence.
Return an appropriate IActionResult .

Unit testing involves testing a part of an app in isolation from its infrastructure and dependencies. When unit
testing controller logic, only the contents of a single action is tested, not the behavior of its dependencies or of the
framework itself. As you unit test your controller actions, make sure you focus only on its behavior. A controller unit
test avoids things like filters, routing, or model binding. By focusing on testing just one thing, unit tests are
generally simple to write and quick to run. A well-written set of unit tests can be run frequently without much
overhead. However, unit tests don't detect issues in the interaction between components, which is the purpose of
integration tests.

If you're writing custom filters, routes, etc, you should unit test them, but not as part of your tests on a particular
controller action. They should be tested in isolation.

Create and run unit tests with Visual Studio.

To demonstrate unit testing, review the following controller. It displays a list of brainstorming sessions and allows
new brainstorming sessions to be created with a POST:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/controllers/testing.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/controllers/testing/sample
https://docs.microsoft.com/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/visualstudio/test/unit-test-your-code

using System;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using TestingControllersSample.ViewModels;

namespace TestingControllersSample.Controllers
{
 public class HomeController : Controller
 {
 private readonly IBrainstormSessionRepository _sessionRepository;

 public HomeController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 public async Task<IActionResult> Index()
 {
 var sessionList = await _sessionRepository.ListAsync();

 var model = sessionList.Select(session => new StormSessionViewModel()
 {
 Id = session.Id,
 DateCreated = session.DateCreated,
 Name = session.Name,
 IdeaCount = session.Ideas.Count
 });

 return View(model);
 }

 public class NewSessionModel
 {
 [Required]
 public string SessionName { get; set; }
 }

 [HttpPost]
 public async Task<IActionResult> Index(NewSessionModel model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 else
 {
 await _sessionRepository.AddAsync(new BrainstormSession()
 {
 DateCreated = DateTimeOffset.Now,
 Name = model.SessionName
 });
 }

 return RedirectToAction(actionName: nameof(Index));
 }
 }
}

The controller is following the explicit dependencies principle, expecting dependency injection to provide it with an
instance of IBrainstormSessionRepository . This makes it fairly easy to test using a mock object framework, like
Moq. The HTTP GET Index method has no looping or branching and only calls one method. To test this Index

http://deviq.com/explicit-dependencies-principle/
https://www.nuget.org/packages/Moq/

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Moq;
using TestingControllersSample.Controllers;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using TestingControllersSample.ViewModels;
using Xunit;

namespace TestingControllersSample.Tests.UnitTests
{
 public class HomeControllerTests
 {
 [Fact]
 public async Task Index_ReturnsAViewResult_WithAListOfBrainstormSessions()
 {
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.ListAsync()).Returns(Task.FromResult(GetTestSessions()));
 var controller = new HomeController(mockRepo.Object);

 // Act
 var result = await controller.Index();

 // Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsAssignableFrom<IEnumerable<StormSessionViewModel>>(
 viewResult.ViewData.Model);
 Assert.Equal(2, model.Count());
 }

 private List<BrainstormSession> GetTestSessions()
 {
 var sessions = new List<BrainstormSession>();
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 2),
 Id = 1,
 Name = "Test One"
 });
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 1),
 Id = 2,
 Name = "Test Two"
 });
 return sessions;
 }
 }
}

method, we need to verify that a ViewResult is returned, with a ViewModel from the repository's List method.

The HomeController HTTP POST Index method (shown above) should verify:

The action method returns a Bad Request ViewResult with the appropriate data when ModelState.IsValid is
false

The Add method on the repository is called and a RedirectToActionResult is returned with the correct
arguments when ModelState.IsValid is true.

Invalid model state can be tested by adding errors using AddModelError as shown in the first test below.

[Fact]
public async Task IndexPost_ReturnsBadRequestResult_WhenModelStateIsInvalid()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.ListAsync()).Returns(Task.FromResult(GetTestSessions()));
 var controller = new HomeController(mockRepo.Object);
 controller.ModelState.AddModelError("SessionName", "Required");
 var newSession = new HomeController.NewSessionModel();

 // Act
 var result = await controller.Index(newSession);

 // Assert
 var badRequestResult = Assert.IsType<BadRequestObjectResult>(result);
 Assert.IsType<SerializableError>(badRequestResult.Value);
}

[Fact]
public async Task IndexPost_ReturnsARedirectAndAddsSession_WhenModelStateIsValid()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.AddAsync(It.IsAny<BrainstormSession>()))
 .Returns(Task.CompletedTask)
 .Verifiable();
 var controller = new HomeController(mockRepo.Object);
 var newSession = new HomeController.NewSessionModel()
 {
 SessionName = "Test Name"
 };

 // Act
 var result = await controller.Index(newSession);

 // Assert
 var redirectToActionResult = Assert.IsType<RedirectToActionResult>(result);
 Assert.Null(redirectToActionResult.ControllerName);
 Assert.Equal("Index", redirectToActionResult.ActionName);
 mockRepo.Verify();
}

NOTENOTE

The first test confirms when ModelState isn't valid, the same ViewResult is returned as for a GET request. Note
that the test doesn't attempt to pass in an invalid model. That wouldn't work anyway since model binding isn't
running (though an integration test would use exercise model binding). In this case, model binding isn't being
tested. These unit tests are only testing what the code in the action method does.

The second test verifies that when ModelState is valid, a new BrainstormSession is added (via the repository), and
the method returns a RedirectToActionResult with the expected properties. Mocked calls that aren't called are
normally ignored, but calling Verifiable at the end of the setup call allows it to be verified in the test. This is done
with the call to mockRepo.Verify , which will fail the test if the expected method wasn't called.

The Moq library used in this sample makes it easy to mix verifiable, or "strict", mocks with non-verifiable mocks (also called
"loose" mocks or stubs). Learn more about customizing Mock behavior with Moq.

Another controller in the app displays information related to a particular brainstorming session. It includes some
logic to deal with invalid id values:

https://github.com/Moq/moq4/wiki/Quickstart#customizing-mock-behavior

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.ViewModels;

namespace TestingControllersSample.Controllers
{
 public class SessionController : Controller
 {
 private readonly IBrainstormSessionRepository _sessionRepository;

 public SessionController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 public async Task<IActionResult> Index(int? id)
 {
 if (!id.HasValue)
 {
 return RedirectToAction(actionName: nameof(Index), controllerName: "Home");
 }

 var session = await _sessionRepository.GetByIdAsync(id.Value);
 if (session == null)
 {
 return Content("Session not found.");
 }

 var viewModel = new StormSessionViewModel()
 {
 DateCreated = session.DateCreated,
 Name = session.Name,
 Id = session.Id
 };

 return View(viewModel);
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Moq;
using TestingControllersSample.Controllers;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using TestingControllersSample.ViewModels;
using Xunit;

namespace TestingControllersSample.Tests.UnitTests
{
 public class SessionControllerTests
 {
 [Fact]
 public async Task IndexReturnsARedirectToIndexHomeWhenIdIsNull()
 {
 // Arrange
 var controller = new SessionController(sessionRepository: null);

 // Act

The controller action has three cases to test, one for each return statement:

 var result = await controller.Index(id: null);

 // Assert
 var redirectToActionResult = Assert.IsType<RedirectToActionResult>(result);
 Assert.Equal("Home", redirectToActionResult.ControllerName);
 Assert.Equal("Index", redirectToActionResult.ActionName);
 }

 [Fact]
 public async Task IndexReturnsContentWithSessionNotFoundWhenSessionNotFound()
 {
 // Arrange
 int testSessionId = 1;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .Returns(Task.FromResult((BrainstormSession)null));
 var controller = new SessionController(mockRepo.Object);

 // Act
 var result = await controller.Index(testSessionId);

 // Assert
 var contentResult = Assert.IsType<ContentResult>(result);
 Assert.Equal("Session not found.", contentResult.Content);
 }

 [Fact]
 public async Task IndexReturnsViewResultWithStormSessionViewModel()
 {
 // Arrange
 int testSessionId = 1;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .Returns(Task.FromResult(GetTestSessions().FirstOrDefault(s => s.Id == testSessionId)));
 var controller = new SessionController(mockRepo.Object);

 // Act
 var result = await controller.Index(testSessionId);

 // Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsType<StormSessionViewModel>(viewResult.ViewData.Model);
 Assert.Equal("Test One", model.Name);
 Assert.Equal(2, model.DateCreated.Day);
 Assert.Equal(testSessionId, model.Id);
 }

 private List<BrainstormSession> GetTestSessions()
 {
 var sessions = new List<BrainstormSession>();
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 2),
 Id = 1,
 Name = "Test One"
 });
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 1),
 Id = 2,
 Name = "Test Two"
 });
 return sessions;
 }
 }
}

using System;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using TestingControllersSample.ClientModels;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;

namespace TestingControllersSample.Api
{
 [Route("api/ideas")]
 public class IdeasController : Controller
 {
 private readonly IBrainstormSessionRepository _sessionRepository;

 public IdeasController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 [HttpGet("forsession/{sessionId}")]
 public async Task<IActionResult> ForSession(int sessionId)
 {
 var session = await _sessionRepository.GetByIdAsync(sessionId);
 if (session == null)
 {
 return NotFound(sessionId);
 }

 var result = session.Ideas.Select(idea => new IdeaDTO()
 {
 Id = idea.Id,
 Name = idea.Name,
 Description = idea.Description,
 DateCreated = idea.DateCreated
 }).ToList();

 return Ok(result);
 }

 [HttpPost("create")]
 public async Task<IActionResult> Create([FromBody]NewIdeaModel model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var session = await _sessionRepository.GetByIdAsync(model.SessionId);
 if (session == null)
 {
 return NotFound(model.SessionId);
 }

 var idea = new Idea()
 {
 DateCreated = DateTimeOffset.Now,
 Description = model.Description,
 Name = model.Name
 };
 session.AddIdea(idea);

 await _sessionRepository.UpdateAsync(session);

 return Ok(session);

The app exposes functionality as a web API (a list of ideas associated with a brainstorming session and a method
for adding new ideas to a session):

 return Ok(session);
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Moq;
using TestingControllersSample.Api;
using TestingControllersSample.ClientModels;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using Xunit;

namespace TestingControllersSample.Tests.UnitTests
{
 public class ApiIdeasControllerTests
 {
 [Fact]
 public async Task Create_ReturnsBadRequest_GivenInvalidModel()
 {
 // Arrange & Act
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);
 controller.ModelState.AddModelError("error","some error");

 // Act
 var result = await controller.Create(model: null);

 // Assert
 Assert.IsType<BadRequestObjectResult>(result);
 }

 [Fact]
 public async Task Create_ReturnsHttpNotFound_ForInvalidSession()
 {
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .Returns(Task.FromResult((BrainstormSession)null));
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.Create(new NewIdeaModel());

 // Assert
 Assert.IsType<NotFoundObjectResult>(result);
 }

 [Fact]
 public async Task Create_ReturnsNewlyCreatedIdeaForSession()
 {
 // Arrange
 int testSessionId = 123;

The ForSession method returns a list of IdeaDTO types. Avoid returning your business domain entities directly via
API calls, since frequently they include more data than the API client requires, and they unnecessarily couple your
app's internal domain model with the API you expose externally. Mapping between domain entities and the types
you will return over the wire can be done manually (using a L INQ Select as shown here) or using a library like
AutoMapper

The unit tests for the Create and ForSession API methods:

https://github.com/AutoMapper/AutoMapper

 string testName = "test name";
 string testDescription = "test description";
 var testSession = GetTestSession();
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .Returns(Task.FromResult(testSession));
 var controller = new IdeasController(mockRepo.Object);

 var newIdea = new NewIdeaModel()
 {
 Description = testDescription,
 Name = testName,
 SessionId = testSessionId
 };
 mockRepo.Setup(repo => repo.UpdateAsync(testSession))
 .Returns(Task.CompletedTask)
 .Verifiable();

 // Act
 var result = await controller.Create(newIdea);

 // Assert
 var okResult = Assert.IsType<OkObjectResult>(result);
 var returnSession = Assert.IsType<BrainstormSession>(okResult.Value);
 mockRepo.Verify();
 Assert.Equal(2, returnSession.Ideas.Count());
 Assert.Equal(testName, returnSession.Ideas.LastOrDefault().Name);
 Assert.Equal(testDescription, returnSession.Ideas.LastOrDefault().Description);
 }

 private BrainstormSession GetTestSession()
 {
 var session = new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 2),
 Id = 1,
 Name = "Test One"
 };

 var idea = new Idea() { Name = "One" };
 session.AddIdea(idea);
 return session;
 }
 }
}

Integration testing

As stated previously, to test the behavior of the method when ModelState is invalid, add a model error to the
controller as part of the test. Don't try to test model validation or model binding in your unit tests - just test your
action method's behavior when confronted with a particular ModelState value.

The second test depends on the repository returning null, so the mock repository is configured to return null.
There's no need to create a test database (in memory or otherwise) and construct a query that will return this result
- it can be done in a single statement as shown.

The last test verifies that the repository's Update method is called. As we did previously, the mock is called with
Verifiable and then the mocked repository's Verify method is called to confirm the verifiable method was

executed. It's not a unit test responsibility to ensure that the Update method saved the data; that can be done with
an integration test.

Integration tests is done to ensure separate modules within your app work correctly together. Generally, anything
you can test with a unit test, you can also test with an integration test, but the reverse isn't true. However,

Application stateApplication state

using System;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using TestingControllersSample.Infrastructure;

namespace TestingControllersSample
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<AppDbContext>(
 optionsBuilder => optionsBuilder.UseInMemoryDatabase("InMemoryDb"));

 services.AddMvc();

 services.AddScoped<IBrainstormSessionRepository,
 EFStormSessionRepository>();
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 if (env.IsDevelopment())
 {
 var repository = app.ApplicationServices.GetService<IBrainstormSessionRepository>();
 InitializeDatabaseAsync(repository).Wait();
 }

 app.UseStaticFiles();

integration tests tend to be much slower than unit tests. Thus, it's best to test whatever you can with unit tests, and
use integration tests for scenarios that involve multiple collaborators.

Although they may still be useful, mock objects are rarely used in integration tests. In unit testing, mock objects are
an effective way to control how collaborators outside of the unit being tested should behave for the purposes of the
test. In an integration test, real collaborators are used to confirm the whole subsystem works together correctly.

One important consideration when performing integration testing is how to set your app's state. Tests need to run
independent of one another, and so each test should start with the app in a known state. If your app doesn't use a
database or have any persistence, this may not be an issue. However, most real-world apps persist their state to
some kind of data store, so any modifications made by one test could impact another test unless the data store is
reset. Using the built-in TestServer , it's very straightforward to host ASP.NET Core apps within our integration
tests, but that doesn't necessarily grant access to the data it will use. If you're using an actual database, one
approach is to have the app connect to a test database, which your tests can access and ensure is reset to a known
state before each test executes.

In this sample application, I'm using Entity Framework Core's InMemoryDatabase support, so I can't just connect
to it from my test project. Instead, I expose an InitializeDatabase method from the app's Startup class, which I
call when the app starts up if it's in the Development environment. My integration tests automatically benefit from
this as long as they set the environment to Development . I don't have to worry about resetting the database, since
the InMemoryDatabase is reset each time the app restarts.

The Startup class:

 app.UseStaticFiles();

 app.UseMvcWithDefaultRoute();
 }

 public async Task InitializeDatabaseAsync(IBrainstormSessionRepository repo)
 {
 var sessionList = await repo.ListAsync();
 if (!sessionList.Any())
 {
 await repo.AddAsync(GetTestSession());
 }
 }

 public static BrainstormSession GetTestSession()
 {
 var session = new BrainstormSession()
 {
 Name = "Test Session 1",
 DateCreated = new DateTime(2016, 8, 1)
 };
 var idea = new Idea()
 {
 DateCreated = new DateTime(2016, 8, 1),
 Description = "Totally awesome idea",
 Name = "Awesome idea"
 };
 session.AddIdea(idea);
 return session;
 }
 }
}

Accessing viewsAccessing views

The view 'Index' wasn't found. The following locations were searched:
(list of locations)

using System;
using System.IO;
using System.Net.Http;
using System.Reflection;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Mvc.ApplicationParts;
using Microsoft.AspNetCore.Mvc.Controllers;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.TestHost;
using Microsoft.Extensions.DependencyInjection;

namespace TestingControllersSample.Tests.IntegrationTests
{
 /// <summary>
 /// A test fixture which hosts the target project (project we wish to test) in an in-memory server.
 /// </summary>
 /// <typeparam name="TStartup">Target project's startup type</typeparam>
 public class TestFixture<TStartup> : IDisposable

You'll see the GetTestSession method used frequently in the integration tests below.

Each integration test class configures the TestServer that will run the ASP.NET Core app. By default, TestServer

hosts the web app in the folder where it's running - in this case, the test project folder. Thus, when you attempt to
test controller actions that return ViewResult , you may see this error :

To correct this issue, you need to configure the server's content root, so it can locate the views for the project being
tested. This is done by a call to UseContentRoot in the TestFixture class, shown below:

 public class TestFixture<TStartup> : IDisposable
 {
 private readonly TestServer _server;

 public TestFixture()
 : this(Path.Combine("src"))
 {
 }

 protected TestFixture(string relativeTargetProjectParentDir)
 {
 var startupAssembly = typeof(TStartup).GetTypeInfo().Assembly;
 var contentRoot = GetProjectPath(relativeTargetProjectParentDir, startupAssembly);

 var builder = new WebHostBuilder()
 .UseContentRoot(contentRoot)
 .ConfigureServices(InitializeServices)
 .UseEnvironment("Development")
 .UseStartup(typeof(TStartup));

 _server = new TestServer(builder);

 Client = _server.CreateClient();
 Client.BaseAddress = new Uri("http://localhost");
 }

 public HttpClient Client { get; }

 public void Dispose()
 {
 Client.Dispose();
 _server.Dispose();
 }

 protected virtual void InitializeServices(IServiceCollection services)
 {
 var startupAssembly = typeof(TStartup).GetTypeInfo().Assembly;

 // Inject a custom application part manager.
 // Overrides AddMvcCore() because it uses TryAdd().
 var manager = new ApplicationPartManager();
 manager.ApplicationParts.Add(new AssemblyPart(startupAssembly));
 manager.FeatureProviders.Add(new ControllerFeatureProvider());
 manager.FeatureProviders.Add(new ViewComponentFeatureProvider());

 services.AddSingleton(manager);
 }

 /// <summary>
 /// Gets the full path to the target project that we wish to test
 /// </summary>
 /// <param name="projectRelativePath">
 /// The parent directory of the target project.
 /// e.g. src, samples, test, or test/Websites
 /// </param>
 /// <param name="startupAssembly">The target project's assembly.</param>
 /// <returns>The full path to the target project.</returns>
 private static string GetProjectPath(string projectRelativePath, Assembly startupAssembly)
 {
 // Get name of the target project which we want to test
 var projectName = startupAssembly.GetName().Name;

 // Get currently executing test project path
 var applicationBasePath = System.AppContext.BaseDirectory;

 // Find the path to the target project
 var directoryInfo = new DirectoryInfo(applicationBasePath);
 do
 {
 directoryInfo = directoryInfo.Parent;

 directoryInfo = directoryInfo.Parent;

 var projectDirectoryInfo = new DirectoryInfo(Path.Combine(directoryInfo.FullName,
projectRelativePath));
 if (projectDirectoryInfo.Exists)
 {
 var projectFileInfo = new FileInfo(Path.Combine(projectDirectoryInfo.FullName, projectName,
$"{projectName}.csproj"));
 if (projectFileInfo.Exists)
 {
 return Path.Combine(projectDirectoryInfo.FullName, projectName);
 }
 }
 }
 while (directoryInfo.Parent != null);

 throw new Exception($"Project root could not be located using the application root
{applicationBasePath}.");
 }
 }
}

The TestFixture class is responsible for configuring and creating the TestServer , setting up an HttpClient to
communicate with the TestServer . Each of the integration tests uses the Client property to connect to the test
server and make a request.

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
using Xunit;

namespace TestingControllersSample.Tests.IntegrationTests
{
 public class HomeControllerTests : IClassFixture<TestFixture<TestingControllersSample.Startup>>
 {
 private readonly HttpClient _client;

 public HomeControllerTests(TestFixture<TestingControllersSample.Startup> fixture)
 {
 _client = fixture.Client;
 }

 [Fact]
 public async Task ReturnsInitialListOfBrainstormSessions()
 {
 // Arrange - get a session known to exist
 var testSession = Startup.GetTestSession();

 // Act
 var response = await _client.GetAsync("/");

 // Assert
 response.EnsureSuccessStatusCode();
 var responseString = await response.Content.ReadAsStringAsync();
 Assert.Contains(testSession.Name, responseString);
 }

 [Fact]
 public async Task PostAddsNewBrainstormSession()
 {
 // Arrange
 string testSessionName = Guid.NewGuid().ToString();
 var data = new Dictionary<string, string>();
 data.Add("SessionName", testSessionName);
 var content = new FormUrlEncodedContent(data);

 // Act
 var response = await _client.PostAsync("/", content);

 // Assert
 Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
 Assert.Equal("/", response.Headers.Location.ToString());
 }
 }
}

API methodsAPI methods

In the first test above, the responseString holds the actual rendered HTML from the View, which can be inspected
to confirm it contains expected results.

The second test constructs a form POST with a unique session name and POSTs it to the app, then verifies that the
expected redirect is returned.

If your app exposes web APIs, it's a good idea to have automated tests confirm they execute as expected. The built-
in TestServer makes it easy to test web APIs. If your API methods are using model binding, you should always
check ModelState.IsValid , and integration tests are the right place to confirm that your model validation is working
properly.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
using Newtonsoft.Json;
using TestingControllersSample.ClientModels;
using TestingControllersSample.Core.Model;
using Xunit;

namespace TestingControllersSample.Tests.IntegrationTests
{
 public class ApiIdeasControllerTests : IClassFixture<TestFixture<TestingControllersSample.Startup>>
 {
 internal class NewIdeaDto
 {
 public NewIdeaDto(string name, string description, int sessionId)
 {
 Name = name;
 Description = description;
 SessionId = sessionId;
 }

 public string Name { get; set; }
 public string Description { get; set; }
 public int SessionId { get; set; }
 }

 private readonly HttpClient _client;

 public ApiIdeasControllerTests(TestFixture<TestingControllersSample.Startup> fixture)
 {
 _client = fixture.Client;
 }

 [Fact]
 public async Task CreatePostReturnsBadRequestForMissingNameValue()
 {
 // Arrange
 var newIdea = new NewIdeaDto("", "Description", 1);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.BadRequest, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsBadRequestForMissingDescriptionValue()
 {
 // Arrange
 var newIdea = new NewIdeaDto("Name", "", 1);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.BadRequest, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsBadRequestForSessionIdValueTooSmall()
 {
 // Arrange

The following set of tests target the Create method in the IdeasController class shown above:

 // Arrange
 var newIdea = new NewIdeaDto("Name", "Description", 0);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.BadRequest, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsBadRequestForSessionIdValueTooLarge()
 {
 // Arrange
 var newIdea = new NewIdeaDto("Name", "Description", 1000001);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.BadRequest, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsNotFoundForInvalidSession()
 {
 // Arrange
 var newIdea = new NewIdeaDto("Name", "Description", 123);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.NotFound, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsCreatedIdeaWithCorrectInputs()
 {
 // Arrange
 var testIdeaName = Guid.NewGuid().ToString();
 var newIdea = new NewIdeaDto(testIdeaName, "Description", 1);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 response.EnsureSuccessStatusCode();
 var returnedSession = await response.Content.ReadAsJsonAsync<BrainstormSession>();
 Assert.Equal(2, returnedSession.Ideas.Count);
 Assert.Contains(testIdeaName, returnedSession.Ideas.Select(i => i.Name).ToList());
 }

 [Fact]
 public async Task ForSessionReturnsNotFoundForBadSessionId()
 {
 // Arrange & Act
 var response = await _client.GetAsync("/api/ideas/forsession/500");

 // Assert
 Assert.Equal(HttpStatusCode.NotFound, response.StatusCode);
 }

 [Fact]
 public async Task ForSessionReturnsIdeasForValidSessionId()
 {
 // Arrange
 var testSession = Startup.GetTestSession();

 // Act

 // Act
 var response = await _client.GetAsync("/api/ideas/forsession/1");

 // Assert
 response.EnsureSuccessStatusCode();
 var ideaList = JsonConvert.DeserializeObject<List<IdeaDTO>>(
 await response.Content.ReadAsStringAsync());
 var firstIdea = ideaList.First();
 Assert.Equal(testSession.Ideas.First().Name, firstIdea.Name);
 }
 }
}

Unlike integration tests of actions that returns HTML views, web API methods that return results can usually be
deserialized as strongly typed objects, as the last test above shows. In this case, the test deserializes the result to a
BrainstormSession instance, and confirms that the idea was correctly added to its collection of ideas.

You'll find additional examples of integration tests in this article's sample project.

https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/controllers/testing/sample

Advanced topics for ASP.NET Core MVC
4/10/2018 • 2 minutes to read • Edit Online

Work with the application model
Filters
Areas
Application parts
Custom Model Binding

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/advanced/index.md

Work with the application model in ASP.NET Core
5/26/2018 • 10 minutes to read • Edit Online

Models and Providers

NOTENOTE

IApplicationModelProviderIApplicationModelProvider

By Steve Smith

ASP.NET Core MVC defines an application model representing the components of an MVC app. You can read and
manipulate this model to modify how MVC elements behave. By default, MVC follows certain conventions to
determine which classes are considered to be controllers, which methods on those classes are actions, and how
parameters and routing behave. You can customize this behavior to suit your app's needs by creating your own
conventions and applying them globally or as attributes.

The ASP.NET Core MVC application model include both abstract interfaces and concrete implementation classes
that describe an MVC application. This model is the result of MVC discovering the app's controllers, actions, action
parameters, routes, and filters according to default conventions. By working with the application model, you can
modify your app to follow different conventions from the default MVC behavior. The parameters, names, routes,
and filters are all used as configuration data for actions and controllers.

The ASP.NET Core MVC Application Model has the following structure:

ApplicationModel
Controllers (ControllerModel)

Actions (ActionModel)
Parameters (ParameterModel)

Each level of the model has access to a common Properties collection, and lower levels can access and overwrite
property values set by higher levels in the hierarchy. The properties are persisted to the
ActionDescriptor.Properties when the actions are created. Then when a request is being handled, any properties a

convention added or modified can be accessed through ActionContext.ActionDescriptor.Properties . Using
properties is a great way to configure your filters, model binders, etc. on a per-action basis.

The ActionDescriptor.Properties collection isn't thread safe (for writes) once app startup has finished. Conventions are
the best way to safely add data to this collection.

ASP.NET Core MVC loads the application model using a provider pattern, defined by the
IApplicationModelProvider interface. This section covers some of the internal implementation details of how this
provider functions. This is an advanced topic - most apps that leverage the application model should do so by
working with conventions.

Implementations of the IApplicationModelProvider interface "wrap" one another, with each implementation calling
OnProvidersExecuting in ascending order based on its Order property. The OnProvidersExecuted method is then

called in reverse order. The framework defines several providers:

First (Order=-1000):

DefaultApplicationModelProvider

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/controllers/application-model.md
https://ardalis.com/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.iapplicationmodelprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.internal.defaultapplicationmodelprovider

NOTENOTE

NOTENOTE

Conventions

Then (Order=-990):

AuthorizationApplicationModelProvider

CorsApplicationModelProvider

The order in which two providers with the same value for Order are called is undefined, and therefore shouldn't be relied
upon.

IApplicationModelProvider is an advanced concept for framework authors to extend. In general, apps should use
conventions and frameworks should use providers. The key distinction is that providers always run before conventions.

The DefaultApplicationModelProvider establishes many of the default behaviors used by ASP.NET Core MVC. Its
responsibilities include:

Adding global filters to the context
Adding controllers to the context
Adding public controller methods as actions
Adding action method parameters to the context
Applying route and other attributes

Some built-in behaviors are implemented by the DefaultApplicationModelProvider . This provider is responsible for
constructing the ControllerModel , which in turn references ActionModel , PropertyModel , and ParameterModel

instances. The DefaultApplicationModelProvider class is an internal framework implementation detail that can and
will change in the future.

The AuthorizationApplicationModelProvider is responsible for applying the behavior associated with the
AuthorizeFilter and AllowAnonymousFilter attributes. Learn more about these attributes.

The CorsApplicationModelProvider implements behavior associated with the IEnableCorsAttribute and
IDisableCorsAttribute , and the DisableCorsAuthorizationFilter . Learn more about CORS.

The application model defines convention abstractions that provide a simpler way to customize the behavior of the
models than overriding the entire model or provider. These abstractions are the recommended way to modify your
app's behavior. Conventions provide a way for you to write code that will dynamically apply customizations. While
filters provide a means of modifying the framework's behavior, customizations let you control how the whole app
is wired together.

The following conventions are available:

IApplicationModelConvention

IControllerModelConvention

IActionModelConvention

IParameterModelConvention

Conventions are applied by adding them to MVC options or by implementing Attribute s and applying them to
controllers, actions, or action parameters (similar to Filters). Unlike filters, conventions are only executed when
the app is starting, not as part of each request.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.internal.authorizationapplicationmodelprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.cors.internal.corsapplicationmodelprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.controllermodel
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.actionmodel#Microsoft_AspNetCore_Mvc_ApplicationModels_ActionModel
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.propertymodel
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.parametermodel#Microsoft_AspNetCore_Mvc_ApplicationModels_ParameterModel
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.iapplicationmodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.icontrollermodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.iactionmodelconvention
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.iparametermodelconvention

Sample: Modifying the ApplicationModelSample: Modifying the ApplicationModel

using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
 public class ApplicationDescription : IApplicationModelConvention
 {
 private readonly string _description;

 public ApplicationDescription(string description)
 {
 _description = description;
 }

 public void Apply(ApplicationModel application)
 {
 application.Properties["description"] = _description;
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Conventions.Add(new ApplicationDescription("My Application Description"));
 options.Conventions.Add(new NamespaceRoutingConvention());
 //options.Conventions.Add(new IdsMustBeInRouteParameterModelConvention());
 });
}

public class AppModelController : Controller
{
 public string Description()
 {
 return "Description: " + ControllerContext.ActionDescriptor.Properties["description"];
 }
}

Sample: Modifying the ControllerModel DescriptionSample: Modifying the ControllerModel Description

The following convention is used to add a property to the application model.

Application model conventions are applied as options when MVC is added in ConfigureServices in Startup .

Properties are accessible from the ActionDescriptor properties collection within controller actions:

As in the previous example, the controller model can also be modified to include custom properties. These will
override existing properties with the same name specified in the application model. The following convention
attribute adds a description at the controller level:

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
 public class ControllerDescriptionAttribute : Attribute, IControllerModelConvention
 {
 private readonly string _description;

 public ControllerDescriptionAttribute(string description)
 {
 _description = description;
 }

 public void Apply(ControllerModel controllerModel)
 {
 controllerModel.Properties["description"] = _description;
 }
 }
}

[ControllerDescription("Controller Description")]
public class DescriptionAttributesController : Controller
{
 public string Index()
 {
 return "Description: " + ControllerContext.ActionDescriptor.Properties["description"];
 }

Sample: Modifying the ActionModel DescriptionSample: Modifying the ActionModel Description

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
 public class ActionDescriptionAttribute : Attribute, IActionModelConvention
 {
 private readonly string _description;

 public ActionDescriptionAttribute(string description)
 {
 _description = description;
 }

 public void Apply(ActionModel actionModel)
 {
 actionModel.Properties["description"] = _description;
 }
 }
}

This convention is applied as an attribute on a controller.

The "description" property is accessed in the same manner as in previous examples.

A separate attribute convention can be applied to individual actions, overriding behavior already applied at the
application or controller level.

Applying this to an action within the previous example's controller demonstrates how it overrides the controller-
level convention:

[ControllerDescription("Controller Description")]
public class DescriptionAttributesController : Controller
{
 public string Index()
 {
 return "Description: " + ControllerContext.ActionDescriptor.Properties["description"];
 }

 [ActionDescription("Action Description")]
 public string UseActionDescriptionAttribute()
 {
 return "Description: " + ControllerContext.ActionDescriptor.Properties["description"];
 }
}

Sample: Modifying the ParameterModelSample: Modifying the ParameterModel

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace AppModelSample.Conventions
{
 public class MustBeInRouteParameterModelConvention : Attribute, IParameterModelConvention
 {
 public void Apply(ParameterModel model)
 {
 if (model.BindingInfo == null)
 {
 model.BindingInfo = new BindingInfo();
 }
 model.BindingInfo.BindingSource = BindingSource.Path;
 }
 }
}

public class ParameterModelController : Controller
{
 // Will bind: /ParameterModel/GetById/123
 // WON'T bind: /ParameterModel/GetById?id=123
 public string GetById([MustBeInRouteParameterModelConvention]int id)
 {
 return $"Bound to id: {id}";
 }
}

Sample: Modifying the ActionModel NameSample: Modifying the ActionModel Name

The following convention can be applied to action parameters to modify their BindingInfo . The following
convention requires that the parameter be a route parameter ; other potential binding sources (such as query string
values) are ignored.

The attribute may be applied to any action parameter :

The following convention modifies the ActionModel to update the name of the action to which it's applied. The
new name is provided as a parameter to the attribute. This new name is used by routing, so it will affect the route
used to reach this action method.

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
 public class CustomActionNameAttribute : Attribute, IActionModelConvention
 {
 private readonly string _actionName;

 public CustomActionNameAttribute(string actionName)
 {
 _actionName = actionName;
 }

 public void Apply(ActionModel actionModel)
 {
 // this name will be used by routing
 actionModel.ActionName = _actionName;
 }
 }
}

// Route: /Home/MyCoolAction
[CustomActionName("MyCoolAction")]
public string SomeName()
{
 return ControllerContext.ActionDescriptor.ActionName;
}

NOTENOTE

Sample: Custom Routing ConventionSample: Custom Routing Convention

This attribute is applied to an action method in the HomeController :

Even though the method name is SomeName , the attribute overrides the MVC convention of using the method
name and replaces the action name with MyCoolAction . Thus, the route used to reach this action is
/Home/MyCoolAction .

This example is essentially the same as using the built-in ActionName attribute.

You can use an IApplicationModelConvention to customize how routing works. For example, the following
convention will incorporate Controllers' namespaces into their routes, replacing . in the namespace with / in
the route:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.actionnameattribute

using Microsoft.AspNetCore.Mvc.ApplicationModels;
using System.Linq;

namespace AppModelSample.Conventions
{
 public class NamespaceRoutingConvention : IApplicationModelConvention
 {
 public void Apply(ApplicationModel application)
 {
 foreach (var controller in application.Controllers)
 {
 var hasAttributeRouteModels = controller.Selectors
 .Any(selector => selector.AttributeRouteModel != null);

 if (!hasAttributeRouteModels
 && controller.ControllerName.Contains("Namespace")) // affect one controller in this
sample
 {
 // Replace the . in the namespace with a / to create the attribute route
 // Ex: MySite.Admin namespace will correspond to MySite/Admin attribute route
 // Then attach [controller], [action] and optional {id?} token.
 // [Controller] and [action] is replaced with the controller and action
 // name to generate the final template
 controller.Selectors[0].AttributeRouteModel = new AttributeRouteModel()
 {
 Template = controller.ControllerType.Namespace.Replace('.', '/') +
"/[controller]/[action]/{id?}"
 };
 }
 }

 // You can continue to put attribute route templates for the controller actions depending on the
way you want them to behave
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Conventions.Add(new ApplicationDescription("My Application Description"));
 options.Conventions.Add(new NamespaceRoutingConvention());
 //options.Conventions.Add(new IdsMustBeInRouteParameterModelConvention());
 });
}

TIPTIP

The convention is added as an option in Startup.

You can add conventions to your middleware by accessing MvcOptions using
services.Configure<MvcOptions>(c => c.Conventions.Add(YOURCONVENTION));

This sample applies this convention to routes that are not using attribute routing where the controller has
"Namespace" in its name. The following controller demonstrates this convention:

using Microsoft.AspNetCore.Mvc;

namespace AppModelSample.Controllers
{
 public class NamespaceRoutingController : Controller
 {
 // using NamespaceRoutingConvention
 // route: /AppModelSample/Controllers/NamespaceRouting/Index
 public string Index()
 {
 return "This demonstrates namespace routing.";
 }
 }
}

Application Model Usage in WebApiCompatShim

NOTENOTE

services.AddMvc().AddWebApiConventions();

Action ConventionsAction Conventions

OverloadingOverloading

Parameter ConventionsParameter Conventions

ASP.NET Core MVC uses a different set of conventions from ASP.NET Web API 2. Using custom conventions, you
can modify an ASP.NET Core MVC app's behavior to be consistent with that of a Web API app. Microsoft ships the
WebApiCompatShim specifically for this purpose.

Learn more about migration from ASP.NET Web API.

To use the Web API Compatibility Shim, you need to add the package to your project and then add the
conventions to MVC by calling AddWebApiConventions in Startup :

The conventions provided by the shim are only applied to parts of the app that have had certain attributes applied
to them. The following four attributes are used to control which controllers should have their conventions modified
by the shim's conventions:

UseWebApiActionConventionsAttribute
UseWebApiOverloadingAttribute
UseWebApiParameterConventionsAttribute
UseWebApiRoutesAttribute

The UseWebApiActionConventionsAttribute is used to map the HTTP method to actions based on their name (for
instance, Get would map to HttpGet). It only applies to actions that don't use attribute routing.

The UseWebApiOverloadingAttribute is used to apply the WebApiOverloadingApplicationModelConvention convention.
This convention adds an OverloadActionConstraint to the action selection process, which limits candidate actions
to those for which the request satisfies all non-optional parameters.

The UseWebApiParameterConventionsAttribute is used to apply the
WebApiParameterConventionsApplicationModelConvention action convention. This convention specifies that simple

types used as action parameters are bound from the URI by default, while complex types are bound from the
request body.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.WebApiCompatShim/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.webapicompatshim.usewebapiactionconventionsattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.webapicompatshim.usewebapioverloadingattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.webapicompatshim.usewebapiparameterconventionsattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.webapicompatshim.usewebapiroutesattribute

RoutesRoutes

Using ApiExplorer to Document Your App

using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
 public class EnableApiExplorerApplicationConvention : IApplicationModelConvention
 {
 public void Apply(ApplicationModel application)
 {
 application.ApiExplorer.IsVisible = true;
 }
 }
}

The UseWebApiRoutesAttribute controls whether the WebApiApplicationModelConvention controller convention is
applied. When enabled, this convention is used to add support for areas to the route.

In addition to a set of conventions, the compatibility package includes a System.Web.Http.ApiController base class
that replaces the one provided by Web API. This allows your controllers written for Web API and inheriting from
its ApiController to work as they were designed, while running on ASP.NET Core MVC. This base controller class
is decorated with all of the UseWebApi* attributes listed above. The ApiController exposes properties, methods,
and result types that are compatible with those found in Web API.

The application model exposes an ApiExplorer property at each level that can be used to traverse the app's
structure. This can be used to generate help pages for your Web APIs using tools like Swagger. The ApiExplorer

property exposes an IsVisible property that can be set to specify which parts of your app's model should be
exposed. You can configure this setting using a convention:

Using this approach (and additional conventions if required), you can enable or disable API visibility at any level
within your app.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.apiexplorermodel

Filters in ASP.NET Core
6/10/2018 • 19 minutes to read • Edit Online

IMPORTANTIMPORTANT

How do filters work?

By Rick Anderson, Tom Dykstra, and Steve Smith

Filters in ASP.NET Core MVC allow you to run code before or after specific stages in the request processing
pipeline.

This topic does not apply to Razor Pages. ASP.NET Core 2.1 and later supports IPageFilter and IAsyncPageFilter for Razor
Pages. For more information, see Filter methods for Razor Pages.

Built-in filters handle tasks such as:

Authorization (preventing access to resources a user isn't authorized for).
Ensuring that all requests use HTTPS.
Response caching (short-circuiting the request pipeline to return a cached response).

Custom filters can be created to handle cross-cutting concerns. Filters can avoid duplicating code across
actions. For example, an error handling exception filter could consolidate error handling.

View or download sample from GitHub.

Filters run within the MVC action invocation pipeline, sometimes referred to as the filter pipeline. The filter
pipeline runs after MVC selects the action to execute.

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/controllers/filters.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra/
https://ardalis.com/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter?view=aspnetcore-2.0
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/controllers/filters/sample

Filter typesFilter types
Each filter type is executed at a different stage in the filter pipeline.

Authorization filters run first and are used to determine whether the current user is authorized for the
current request. They can short-circuit the pipeline if a request is unauthorized.

Resource filters are the first to handle a request after authorization. They can run code before the rest of
the filter pipeline, and after the rest of the pipeline has completed. They're useful to implement caching
or otherwise short-circuit the filter pipeline for performance reasons. They run before model binding, so
they can influence model binding.

Action filters can run code immediately before and after an individual action method is called. They can
be used to manipulate the arguments passed into an action and the result returned from the action.

Exception filters are used to apply global policies to unhandled exceptions that occur before anything
has been written to the response body.

Result filters can run code immediately before and after the execution of individual action results. They
run only when the action method has executed successfully. They are useful for logic that must surround
view or formatter execution.

The following diagram shows how these filter types interact in the filter pipeline.

Implementation

using FiltersSample.Helper;
using Microsoft.AspNetCore.Mvc.Filters;

namespace FiltersSample.Filters
{
 public class SampleActionFilter : IActionFilter
 {
 public void OnActionExecuting(ActionExecutingContext context)
 {
 // do something before the action executes
 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 // do something after the action executes
 }
 }
}

Filters support both synchronous and asynchronous implementations through different interface definitions.

Synchronous filters that can run code both before and after their pipeline stage define OnStageExecuting and
OnStageExecuted methods. For example, OnActionExecuting is called before the action method is called, and
OnActionExecuted is called after the action method returns.

Asynchronous filters define a single OnStageExecutionAsync method. This method takes a
FilterTypeExecutionDelegate delegate which executes the filter's pipeline stage. For example,
ActionExecutionDelegate calls the action method or next action filter, and you can execute code before and after

you call it.

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

namespace FiltersSample.Filters
{
 public class SampleAsyncActionFilter : IAsyncActionFilter
 {
 public async Task OnActionExecutionAsync(
 ActionExecutingContext context,
 ActionExecutionDelegate next)
 {
 // do something before the action executes
 var resultContext = await next();
 // do something after the action executes; resultContext.Result will be set
 }
 }
}

NOTENOTE

IFilterFactoryIFilterFactory

You can implement interfaces for multiple filter stages in a single class. For example, the ActionFilterAttribute
class implements IActionFilter , IResultFilter , and their async equivalents.

Implement either the synchronous or the async version of a filter interface, not both. The framework checks first to see if
the filter implements the async interface, and if so, it calls that. If not, it calls the synchronous interface's method(s). If you
were to implement both interfaces on one class, only the async method would be called. When using abstract classes like
ActionFilterAttribute you would override only the synchronous methods or the async method for each filter type.

IFilterFactory implements IFilterMetadata. Therefore, an IFilterFactory instance can be used as an
IFilterMetadata instance anywhere in the filter pipeline. When the framework prepares to invoke the filter, it

attempts to cast it to an IFilterFactory . If that cast succeeds, the CreateInstance method is called to create the
IFilterMetadata instance that will be invoked. This provides a flexible design, since the precise filter pipeline

doesn't need to be set explicitly when the app starts.

You can implement IFilterFactory on your own attribute implementations as another approach to creating
filters:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ifiltermetadata
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory.createinstance

public class AddHeaderWithFactoryAttribute : Attribute, IFilterFactory
{
 // Implement IFilterFactory
 public IFilterMetadata CreateInstance(IServiceProvider serviceProvider)
 {
 return new InternalAddHeaderFilter();
 }

 private class InternalAddHeaderFilter : IResultFilter
 {
 public void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(
 "Internal", new string[] { "Header Added" });
 }

 public void OnResultExecuted(ResultExecutedContext context)
 {
 }
 }

 public bool IsReusable
 {
 get
 {
 return false;
 }
 }
}

Built-in filter attributesBuilt-in filter attributes

using Microsoft.AspNetCore.Mvc.Filters;

namespace FiltersSample.Filters
{
 public class AddHeaderAttribute : ResultFilterAttribute
 {
 private readonly string _name;
 private readonly string _value;

 public AddHeaderAttribute(string name, string value)
 {
 _name = name;
 _value = value;
 }

 public override void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(
 _name, new string[] { _value });
 base.OnResultExecuting(context);
 }
 }
}

The framework includes built-in attribute-based filters that you can subclass and customize. For example, the
following Result filter adds a header to the response.

Attributes allow filters to accept arguments, as shown in the example above. You would add this attribute to a
controller or action method and specify the name and value of the HTTP header :

[AddHeader("Author", "Steve Smith @ardalis")]
public class SampleController : Controller
{
 public IActionResult Index()
 {
 return Content("Examine the headers using developer tools.");
 }

 [ShortCircuitingResourceFilter]
 public IActionResult SomeResource()
 {
 return Content("Successful access to resource - header should be set.");
 }

Filter scopes and order of execution

The result of the Index action is shown below - the response headers are displayed on the bottom right.

Several of the filter interfaces have corresponding attributes that can be used as base classes for custom
implementations.

Filter attributes:

ActionFilterAttribute

ExceptionFilterAttribute

ResultFilterAttribute

FormatFilterAttribute

ServiceFilterAttribute

TypeFilterAttribute

TypeFilterAttribute and ServiceFilterAttribute are explained later in this article.

A filter can be added to the pipeline at one of three scopes. You can add a filter to a particular action method or
to a controller class by using an attribute. Or you can register a filter globally for all controllers and actions.
Filters are added globally by adding it to the MvcOptions.Filters collection in ConfigureServices :

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Filters.Add(new AddHeaderAttribute("GlobalAddHeader",
 "Result filter added to MvcOptions.Filters")); // an instance
 options.Filters.Add(typeof(SampleActionFilter)); // by type
 options.Filters.Add(new SampleGlobalActionFilter()); // an instance
 });

 services.AddScoped<AddHeaderFilterWithDi>();
}

Default order of executionDefault order of execution

SEQUENCE FILTER SCOPE FILTER METHOD

1 Global OnActionExecuting

2 Controller OnActionExecuting

3 Method OnActionExecuting

4 Method OnActionExecuted

5 Controller OnActionExecuted

6 Global OnActionExecuted

When there are multiple filters for a particular stage of the pipeline, scope determines the default order of filter
execution. Global filters surround class filters, which in turn surround method filters. This is sometimes referred
to as "Russian doll" nesting, as each increase in scope is wrapped around the previous scope, like a nesting doll.
You generally get the desired overriding behavior without having to explicitly determine ordering.

As a result of this nesting, the after code of filters runs in the reverse order of the before code. The sequence
looks like this:

The before code of filters applied globally

The after code of filters applied globally

The before code of filters applied to controllers

The after code of filters applied to controllers

The before code of filters applied to action methods
The after code of filters applied to action methods

Here's an example that illustrates the order in which filter methods are called for synchronous Action filters.

This sequence shows:

The method filter is nested within the controller filter.
The controller filter is nested within the global filter.

To put it another way, if you're inside an async filter's OnStageExecutionAsync method, all of the filters with a
tighter scope run while your code is on the stack.

https://wikipedia.org/wiki/Matryoshka_doll

NOTENOTE

Overriding the default orderOverriding the default order

[MyFilter(Name = "Controller Level Attribute", Order=1)]

SEQUENCE FILTER SCOPE ORDER PROPERTY FILTER METHOD

1 Method 0 OnActionExecuting

2 Controller 1 OnActionExecuting

3 Global 2 OnActionExecuting

4 Global 2 OnActionExecuted

5 Controller 1 OnActionExecuted

6 Method 0 OnActionExecuted

Cancellation and short circuiting

Every controller that inherits from the Controller base class includes OnActionExecuting and OnActionExecuted

methods. These methods wrap the filters that run for a given action: OnActionExecuting is called before any of the
filters, and OnActionExecuted is called after all of the filters.

You can override the default sequence of execution by implementing IOrderedFilter . This interface exposes an
Order property that takes precedence over scope to determine the order of execution. A filter with a lower
Order value will have its before code executed before that of a filter with a higher value of Order . A filter with

a lower Order value will have its after code executed after that of a filter with a higher Order value. You can
set the Order property by using a constructor parameter :

If you have the same 3 Action filters shown in the preceding example but set the Order property of the
controller and global filters to 1 and 2 respectively, the order of execution would be reversed.

The Order property trumps scope when determining the order in which filters will run. Filters are sorted first
by order, then scope is used to break ties. All of the built-in filters implement IOrderedFilter and set the
default Order value to 0. For built-in filters, scope determines order unless you set Order to a non-zero value.

You can short-circuit the filter pipeline at any point by setting the Result property on the context parameter
provided to the filter method. For instance, the following Resource filter prevents the rest of the pipeline from
executing.

using System;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;

namespace FiltersSample.Filters
{
 public class ShortCircuitingResourceFilterAttribute : Attribute,
 IResourceFilter
 {
 public void OnResourceExecuting(ResourceExecutingContext context)
 {
 context.Result = new ContentResult()
 {
 Content = "Resource unavailable - header should not be set"
 };
 }

 public void OnResourceExecuted(ResourceExecutedContext context)
 {
 }
 }
}

[AddHeader("Author", "Steve Smith @ardalis")]
public class SampleController : Controller
{
 public IActionResult Index()
 {
 return Content("Examine the headers using developer tools.");
 }

 [ShortCircuitingResourceFilter]
 public IActionResult SomeResource()
 {
 return Content("Successful access to resource - header should be set.");
 }

Dependency injection

In the following code, both the ShortCircuitingResourceFilter and the AddHeader filter target the
SomeResource action method. The ShortCircuitingResourceFilter :

Runs first, because it's a Resource Filter and AddHeader is an Action Filter.
Short-circuits the rest of the pipeline.

Therefore the AddHeader filter never runs for the SomeResource action. This behavior would be the same if both
filters were applied at the action method level, provided the ShortCircuitingResourceFilter ran first. The
ShortCircuitingResourceFilter runs first because of its filter type, or by explicit use of Order property.

Filters can be added by type or by instance. If you add an instance, that instance will be used for every request.
If you add a type, it will be type-activated, meaning an instance will be created for each request and any
constructor dependencies will be populated by dependency injection (DI). Adding a filter by type is equivalent
to filters.Add(new TypeFilterAttribute(typeof(MyFilter))) .

Filters that are implemented as attributes and added directly to controller classes or action methods cannot
have constructor dependencies provided by dependency injection (DI). This is because attributes must have
their constructor parameters supplied where they're applied. This is a limitation of how attributes work.

If your filters have dependencies that you need to access from DI, there are several supported approaches. You
can apply your filter to a class or action method using one of the following:

NOTENOTE

ServiceFilterAttributeServiceFilterAttribute

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Filters.Add(new AddHeaderAttribute("GlobalAddHeader",
 "Result filter added to MvcOptions.Filters")); // an instance
 options.Filters.Add(typeof(SampleActionFilter)); // by type
 options.Filters.Add(new SampleGlobalActionFilter()); // an instance
 });

 services.AddScoped<AddHeaderFilterWithDi>();
}

[ServiceFilter(typeof(AddHeaderFilterWithDi))]
public IActionResult Index()
{
 return View();
}

System.InvalidOperationException: No service for type
'FiltersSample.Filters.AddHeaderFilterWithDI' has been registered.

TypeFilterAttributeTypeFilterAttribute

ServiceFilterAttribute

TypeFilterAttribute

IFilterFactory implemented on your attribute

One dependency you might want to get from DI is a logger. However, avoid creating and using filters purely for logging
purposes, since the built-in framework logging features may already provide what you need. If you're going to add
logging to your filters, it should focus on business domain concerns or behavior specific to your filter, rather than MVC
actions or other framework events.

A ServiceFilter retrieves an instance of the filter from DI. You add the filter to the container in
ConfigureServices , and reference it in a ServiceFilter attribute

Using ServiceFilter without registering the filter type results in an exception:

ServiceFilterAttribute implements IFilterFactory . IFilterFactory exposes the CreateInstance method for
creating an IFilterMetadata instance. The CreateInstance method loads the specified type from the services
container (DI).

TypeFilterAttribute is similar to ServiceFilterAttribute , but its type isn't resolved directly from the DI
container. It instantiates the type by using Microsoft.Extensions.DependencyInjection.ObjectFactory .

Because of this difference:

Types that are referenced using the TypeFilterAttribute don't need to be registered with the container first.
They do have their dependencies fulfilled by the container.
TypeFilterAttribute can optionally accept constructor arguments for the type.

The following example demonstrates how to pass arguments to a type using TypeFilterAttribute :

[TypeFilter(typeof(AddHeaderAttribute),
 Arguments = new object[] { "Author", "Steve Smith (@ardalis)" })]
public IActionResult Hi(string name)
{
 return Content($"Hi {name}");
}

public class SampleActionFilterAttribute : TypeFilterAttribute
{
 public SampleActionFilterAttribute():base(typeof(SampleActionFilterImpl))
 {
 }

 private class SampleActionFilterImpl : IActionFilter
 {
 private readonly ILogger _logger;
 public SampleActionFilterImpl(ILoggerFactory loggerFactory)
 {
 _logger = loggerFactory.CreateLogger<SampleActionFilterAttribute>();
 }

 public void OnActionExecuting(ActionExecutingContext context)
 {
 _logger.LogInformation("Business action starting...");
 // perform some business logic work

 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 // perform some business logic work
 _logger.LogInformation("Business action completed.");
 }
 }
}

Authorization filters

If you have a filter that:

Doesn't require any arguments.
Has constructor dependencies that need to be filled by DI.

You can use your own named attribute on classes and methods instead of [TypeFilter(typeof(FilterType))]).
The following filter shows how this can be implemented:

This filter can be applied to classes or methods using the [SampleActionFilter] syntax, instead of having to use
[TypeFilter] or [ServiceFilter] .

*Authorization filters:

Control access to action methods.
Are the first filters to be executed within the filter pipeline.
Have a before method, but no after method.

You should only write a custom authorization filter if you are writing your own authorization framework. Prefer
configuring your authorization policies or writing a custom authorization policy over writing a custom filter.
The built-in filter implementation is just responsible for calling the authorization system.

You shouldn't throw exceptions within authorization filters, since nothing will handle the exception (exception

Resource filters

Action filters

public class SampleActionFilter : IActionFilter
{
 public void OnActionExecuting(ActionExecutingContext context)
 {
 // do something before the action executes
 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 // do something after the action executes
 }
}

filters won't handle them). Consider issuing a challenge when an exception occurs.

Learn more about Authorization.

Implement either the IResourceFilter or IAsyncResourceFilter interface,
Their execution wraps most of the filter pipeline.
Only Authorization filters run before Resource filters.

Resource filters are useful to short-circuit most of the work a request is doing. For example, a caching filter can
avoid the rest of the pipeline if the response is in the cache.

The short circuiting resource filter shown earlier is one example of a resource filter. Another example is
DisableFormValueModelBindingAttribute:

It prevents model binding from accessing the form data.
It's useful for large file uploads and want to prevent the form from being read into memory.

Action filters:

Implement either the IActionFilter or IAsyncActionFilter interface.
Their execution surrounds the execution of action methods.

Here's a sample action filter :

The ActionExecutingContext provides the following properties:

ActionArguments - lets you manipulate the inputs to the action.
Controller - lets you manipulate the controller instance.
Result - setting this short-circuits execution of the action method and subsequent action filters. Throwing

an exception also prevents execution of the action method and subsequent filters, but is treated as a failure
instead of a successful result.

The ActionExecutedContext provides Controller and Result plus the following properties:

Canceled - will be true if the action execution was short-circuited by another filter.
Exception - will be non-null if the action or a subsequent action filter threw an exception. Setting this

property to null effectively 'handles' an exception, and Result will be executed as if it were returned from
the action method normally.

For an IAsyncActionFilter , a call to the ActionExecutionDelegate :

https://github.com/aspnet/Entropy/blob/rel/1.1.1/samples/Mvc.FileUpload/Filters/DisableFormValueModelBindingAttribute.cs
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutingcontext
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;

namespace FiltersSample.Filters
{
 public class ValidateModelAttribute : ActionFilterAttribute
 {
 public override void OnActionExecuting(ActionExecutingContext context)
 {
 if (!context.ModelState.IsValid)
 {
 context.Result = new BadRequestObjectResult(context.ModelState);
 }
 }
 }
}

Exception filters

Executes any subsequent action filters and the action method.
returns ActionExecutedContext .

To short-circuit, assign ActionExecutingContext.Result to some result instance and don't call the
ActionExecutionDelegate .

The framework provides an abstract ActionFilterAttribute that you can subclass.

You can use an action filter to validate model state and return any errors if the state is invalid:

The OnActionExecuted method runs after the action method and can see and manipulate the results of the
action through the ActionExecutedContext.Result property. ActionExecutedContext.Canceled will be set to true
if the action execution was short-circuited by another filter. ActionExecutedContext.Exception will be set to a
non-null value if the action or a subsequent action filter threw an exception. Setting
ActionExecutedContext.Exception to null:

Effectively 'handles' an exception.
ActionExectedContext.Result is executed as if it were returned normally from the action method.

Exception filters implement either the IExceptionFilter or IAsyncExceptionFilter interface. They can be used
to implement common error handling policies for an app.

The following sample exception filter uses a custom developer error view to display details about exceptions
that occur when the app is in development:

public class CustomExceptionFilterAttribute : ExceptionFilterAttribute
{
 private readonly IHostingEnvironment _hostingEnvironment;
 private readonly IModelMetadataProvider _modelMetadataProvider;

 public CustomExceptionFilterAttribute(
 IHostingEnvironment hostingEnvironment,
 IModelMetadataProvider modelMetadataProvider)
 {
 _hostingEnvironment = hostingEnvironment;
 _modelMetadataProvider = modelMetadataProvider;
 }

 public override void OnException(ExceptionContext context)
 {
 if (!_hostingEnvironment.IsDevelopment())
 {
 // do nothing
 return;
 }
 var result = new ViewResult {ViewName = "CustomError"};
 result.ViewData = new ViewDataDictionary(_modelMetadataProvider,context.ModelState);
 result.ViewData.Add("Exception", context.Exception);
 // TODO: Pass additional detailed data via ViewData
 context.Result = result;
 }
}

NOTENOTE

Exception filters:

Don't have before and after events.
Implement OnException or OnExceptionAsync .
Handle unhandled exceptions that occur in controller creation, model binding, action filters, or action
methods.
Do not catch exceptions that occur in Resource filters, Result filters, or MVC Result execution.

To handle an exception, set the ExceptionContext.ExceptionHandled property to true or write a response. This
stops propagation of the exception. An Exception filter can't turn an exception into a "success". Only an Action
filter can do that.

In ASP.NET Core 1.1, the response isn't sent if you set ExceptionHandled to true and write a response. In that scenario,
ASP.NET Core 1.0 does send the response, and ASP.NET Core 1.1.2 will return to the 1.0 behavior. For more information,
see issue #5594 in the GitHub repository.

Exception filters:

Are good for trapping exceptions that occur within MVC actions.
Are not as flexible as error handling middleware.

Prefer middleware for exception handling. Use exception filters only where you need to do error handling
differently based on which MVC action was chosen. For example, your app might have action methods for
both API endpoints and for views/HTML. The API endpoints could return error information as JSON, while
the view-based actions could return an error page as HTML.

The ExceptionFilterAttribute can be subclassed.

https://github.com/aspnet/Mvc/issues/5594

 Result filters

public class AddHeaderFilterWithDi : IResultFilter
{
 private ILogger _logger;
 public AddHeaderFilterWithDi(ILoggerFactory loggerFactory)
 {
 _logger = loggerFactory.CreateLogger<AddHeaderFilterWithDi>();
 }

 public void OnResultExecuting(ResultExecutingContext context)
 {
 var headerName = "OnResultExecuting";
 context.HttpContext.Response.Headers.Add(
 headerName, new string[] { "ResultExecutingSuccessfully" });
 _logger.LogInformation($"Header added: {headerName}");
 }

 public void OnResultExecuted(ResultExecutedContext context)
 {
 // Can't add to headers here because response has already begun.
 }
}

Implement either the IResultFilter or IAsyncResultFilter interface.
Their execution surrounds the execution of action results.

Here's an example of a Result filter that adds an HTTP header.

The kind of result being executed depends on the action in question. An MVC action returning a view would
include all razor processing as part of the ViewResult being executed. An API method might perform some
serialization as part of the execution of the result. Learn more about action results

Result filters are only executed for successful results - when the action or action filters produce an action result.
Result filters are not executed when exception filters handle an exception.

The OnResultExecuting method can short-circuit execution of the action result and subsequent result filters by
setting ResultExecutingContext.Cancel to true. You should generally write to the response object when short-
circuiting to avoid generating an empty response. Throwing an exception will:

Prevent execution of the action result and subsequent filters.
Be treated as a failure instead of a successful result.

When the OnResultExecuted method runs, the response has likely been sent to the client and cannot be
changed further (unless an exception was thrown). ResultExecutedContext.Canceled will be set to true if the
action result execution was short-circuited by another filter.

ResultExecutedContext.Exception will be set to a non-null value if the action result or a subsequent result filter
threw an exception. Setting Exception to null effectively 'handles' an exception and prevents the exception
from being rethrown by MVC later in the pipeline. When you're handling an exception in a result filter, you
might not be able to write any data to the response. If the action result throws partway through its execution,
and the headers have already been flushed to the client, there's no reliable mechanism to send a failure code.

For an IAsyncResultFilter a call to await next on the ResultExecutionDelegate executes any subsequent
result filters and the action result. To short-circuit, set ResultExecutingContext.Cancel to true and don't call the
ResultExectionDelegate .

The framework provides an abstract ResultFilterAttribute that you can subclass. The AddHeaderAttribute
class shown earlier is an example of a result filter attribute.

 Using middleware in the filter pipeline

public class LocalizationPipeline
{
 public void Configure(IApplicationBuilder applicationBuilder)
 {
 var supportedCultures = new[]
 {
 new CultureInfo("en-US"),
 new CultureInfo("fr")
 };

 var options = new RequestLocalizationOptions
 {

 DefaultRequestCulture = new RequestCulture(culture: "en-US", uiCulture: "en-US"),
 SupportedCultures = supportedCultures,
 SupportedUICultures = supportedCultures
 };
 options.RequestCultureProviders = new[]
 { new RouteDataRequestCultureProvider() { Options = options } };

 applicationBuilder.UseRequestLocalization(options);
 }
}

[Route("{culture}/[controller]/[action]")]
[MiddlewareFilter(typeof(LocalizationPipeline))]
public IActionResult CultureFromRouteData()
{
 return Content($"CurrentCulture:{CultureInfo.CurrentCulture.Name},"
 + $"CurrentUICulture:{CultureInfo.CurrentUICulture.Name}");
}

Next actions

Resource filters work like middleware in that they surround the execution of everything that comes later in the
pipeline. But filters differ from middleware in that they're part of MVC, which means that they have access to
MVC context and constructs.

In ASP.NET Core 1.1, you can use middleware in the filter pipeline. You might want to do that if you have a
middleware component that needs access to MVC route data, or one that should run only for certain
controllers or actions.

To use middleware as a filter, create a type with a Configure method that specifies the middleware that you
want to inject into the filter pipeline. Here's an example that uses the localization middleware to establish the
current culture for a request:

You can then use the MiddlewareFilterAttribute to run the middleware for a selected controller or action or
globally:

Middleware filters run at the same stage of the filter pipeline as Resource filters, before model binding and
after the rest of the pipeline.

To experiment with filters, download, test and modify the sample.

https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/controllers/filters/sample

Areas in ASP.NET Core
3/22/2018 • 4 minutes to read • Edit Online

By Dhananjay Kumar and Rick Anderson

Areas are an ASP.NET MVC feature used to organize related functionality into a group as a separate namespace
(for routing) and folder structure (for views). Using areas creates a hierarchy for the purpose of routing by adding
another route parameter, area , to controller and action .

Areas provide a way to partition a large ASP.NET Core MVC Web app into smaller functional groupings. An area
is effectively an MVC structure inside an application. In an MVC project, logical components like Model,
Controller, and View are kept in different folders, and MVC uses naming conventions to create the relationship
between these components. For a large app, it may be advantageous to partition the app into separate high level
areas of functionality. For instance, an e-commerce app with multiple business units, such as checkout, billing,
and search etc. Each of these units have their own logical component views, controllers, and models. In this
scenario, you can use Areas to physically partition the business components in the same project.

An area can be defined as smaller functional units in an ASP.NET Core MVC project with its own set of
controllers, views, and models.

Consider using Areas in an MVC project when:

Your application is made of multiple high-level functional components that should be logically separated

You want to partition your MVC project so that each functional area can be worked on independently

Area features:

An ASP.NET Core MVC app can have any number of areas

Each area has its own controllers, models, and views

Allows you to organize large MVC projects into multiple high-level components that can be worked on
independently

Supports multiple controllers with the same name - as long as they have different areas

Let's take a look at an example to illustrate how Areas are created and used. Let's say you have a store app that
has two distinct groupings of controllers and views: Products and Services. A typical folder structure for that
using MVC areas looks like below:

Project name

Areas

Products

Controllers

HomeController.cs

ManageController.cs

Views

Home

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/controllers/areas.md
https://twitter.com/debug_mode
https://twitter.com/RickAndMSFT

/Areas/<Area-Name>/Views/<Controller-Name>/<Action-Name>.cshtml
 /Areas/<Area-Name>/Views/Shared/<Action-Name>.cshtml
 /Views/Shared/<Action-Name>.cshtml

services.Configure<RazorViewEngineOptions>(options =>
 {
 options.AreaViewLocationFormats.Clear();
 options.AreaViewLocationFormats.Add("/Categories/{2}/Views/{1}/{0}.cshtml");
 options.AreaViewLocationFormats.Add("/Categories/{2}/Views/Shared/{0}.cshtml");
 options.AreaViewLocationFormats.Add("/Views/Shared/{0}.cshtml");
 });

Index.cshtml
Manage

Index.cshtml
Services

Controllers

HomeController.cs
Views

Home

Index.cshtml

When MVC tries to render a view in an Area, by default, it tries to look in the following locations:

These are the default locations which can be changed via the AreaViewLocationFormats on the
Microsoft.AspNetCore.Mvc.Razor.RazorViewEngineOptions .

For example, in the below code instead of having the folder name as 'Areas', it has been changed to 'Categories'.

One thing to note is that the structure of the Views folder is the only one which is considered important here and
the content of the rest of the folders like Controllers and Models does not matter. For example, you need not have
a Controllers and Models folder at all. This works because the content of Controllers and Models is just code
which gets compiled into a .dll where as the content of the Views isn't until a request to that view has been made.

Once you've defined the folder hierarchy, you need to tell MVC that each controller is associated with an area.
You do that by decorating the controller name with the [Area] attribute.

...
 namespace MyStore.Areas.Products.Controllers
 {
 [Area("Products")]
 public class HomeController : Controller
 {
 // GET: /Products/Home/Index
 public IActionResult Index()
 {
 return View();
 }

 // GET: /Products/Home/Create
 public IActionResult Create()
 {
 return View();
 }
 }
 }

...
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "areaRoute",
 template: "{area:exists}/{controller=Home}/{action=Index}/{id?}");

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

Link Generation

Set up a route definition that works with your newly created areas. The Route to controller actions article goes
into detail about how to create route definitions, including using conventional routes versus attribute routes. In
this example, we'll use a conventional route. To do so, open the Startup.cs file and modify it by adding the
areaRoute named route definition below.

Browsing to http://<yourApp>/products , the Index action method of the HomeController in the Products area
will be invoked.

Generating links from an action within an area based controller to another action within the same
controller.

Let's say the current request's path is like /Products/Home/Create

HtmlHelper syntax: @Html.ActionLink("Go to Product's Home Page", "Index")

TagHelper syntax: <a asp-action="Index">Go to Product's Home Page

Note that we need not supply the 'area' and 'controller' values here as they're already available in the
context of the current request. These kind of values are called ambient values.

Generating links from an action within an area based controller to another action on a different controller

Let's say the current request's path is like /Products/Home/Create

HtmlHelper syntax: @Html.ActionLink("Go to Manage Products Home Page", "Index", "Manage")

TagHelper syntax: <a asp-controller="Manage" asp-action="Index">Go to Manage Products Home Page

Publishing Areas

Note that here the ambient value of an 'area' is used but the 'controller' value is specified explicitly above.

Generating links from an action within an area based controller to another action on a different controller
and a different area.

Let's say the current request's path is like /Products/Home/Create

HtmlHelper syntax:
@Html.ActionLink("Go to Services Home Page", "Index", "Home", new { area = "Services" })

TagHelper syntax:
<a asp-area="Services" asp-controller="Home" asp-action="Index">Go to Services Home Page

Note that here no ambient values are used.

Generating links from an action within an area based controller to another action on a different controller
and not in an area.

HtmlHelper syntax:
@Html.ActionLink("Go to Manage Products Home Page", "Index", "Home", new { area = "" })

TagHelper syntax:
<a asp-area="" asp-controller="Manage" asp-action="Index">Go to Manage Products Home Page

Since we want to generate links to a non-area based controller action, we empty the ambient value for
'area' here.

All *.cshtml and wwwroot/** files are published to output when <Project Sdk="Microsoft.NET.Sdk.Web"> is
included in the .csproj file.

Application Parts in ASP.NET Core
5/2/2018 • 4 minutes to read • Edit Online

Introducing Application Parts

// create an assembly part from a class's assembly
var assembly = typeof(Startup).GetTypeInfo().Assembly;
services.AddMvc()
 .AddApplicationPart(assembly);

// OR
var assembly = typeof(Startup).GetTypeInfo().Assembly;
var part = new AssemblyPart(assembly);
services.AddMvc()
 .ConfigureApplicationPartManager(apm => apm.ApplicationParts.Add(part));

View or download sample code (how to download)

An Application Part is an abstraction over the resources of an application, from which MVC features like
controllers, view components, or tag helpers may be discovered. One example of an application part is an
AssemblyPart, which encapsulates an assembly reference and exposes types and compilation references. Feature
providers work with application parts to populate the features of an ASP.NET Core MVC app. The main use case
for application parts is to allow you to configure your app to discover (or avoid loading) MVC features from an
assembly.

MVC apps load their features from application parts. In particular, the AssemblyPart class represents an
application part that's backed by an assembly. You can use these classes to discover and load MVC features, such
as controllers, view components, tag helpers, and razor compilation sources. The ApplicationPartManager is
responsible for tracking the application parts and feature providers available to the MVC app. You can interact with
the ApplicationPartManager in Startup when you configure MVC:

By default MVC will search the dependency tree and find controllers (even in other assemblies). To load an
arbitrary assembly (for instance, from a plugin that isn't referenced at compile time), you can use an application
part.

You can use application parts to avoid looking for controllers in a particular assembly or location. You can control
which parts (or assemblies) are available to the app by modifying the ApplicationParts collection of the
ApplicationPartManager . The order of the entries in the ApplicationParts collection isn't important. It's important

to fully configure the ApplicationPartManager before using it to configure services in the container. For example,
you should fully configure the ApplicationPartManager before invoking AddControllersAsServices . Failing to do so,
will mean that controllers in application parts added after that method call won't be affected (won't get registered
as services) which might result in incorrect bevavior of your application.

If you have an assembly that contains controllers you don't want to be used, remove it from the
ApplicationPartManager :

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/advanced/app-parts.md
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/advanced/app-parts/sample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.applicationpart
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.assemblypart#Microsoft_AspNetCore_Mvc_ApplicationParts_AssemblyPart
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.applicationpartmanager

services.AddMvc()
 .ConfigureApplicationPartManager(apm =>
 {
 var dependentLibrary = apm.ApplicationParts
 .FirstOrDefault(part => part.Name == "DependentLibrary");

 if (dependentLibrary != null)
 {
 p.ApplicationParts.Remove(dependentLibrary);
 }
 })

Application Feature Providers

Sample: Generic controller featureSample: Generic controller feature

public class GenericControllerFeatureProvider : IApplicationFeatureProvider<ControllerFeature>
{
 public void PopulateFeature(IEnumerable<ApplicationPart> parts, ControllerFeature feature)
 {
 // This is designed to run after the default ControllerTypeProvider,
 // so the list of 'real' controllers has already been populated.
 foreach (var entityType in EntityTypes.Types)
 {
 var typeName = entityType.Name + "Controller";
 if (!feature.Controllers.Any(t => t.Name == typeName))
 {
 // There's no 'real' controller for this entity, so add the generic version.
 var controllerType = typeof(GenericController<>)
 .MakeGenericType(entityType.AsType()).GetTypeInfo();
 feature.Controllers.Add(controllerType);
 }
 }
 }
}

In addition to your project's assembly and its dependent assemblies, the ApplicationPartManager will include parts
for Microsoft.AspNetCore.Mvc.TagHelpers and Microsoft.AspNetCore.Mvc.Razor by default.

Application Feature Providers examine application parts and provide features for those parts. There are built-in
feature providers for the following MVC features:

Controllers
Metadata Reference
Tag Helpers
View Components

Feature providers inherit from IApplicationFeatureProvider<T> , where T is the type of the feature. You can
implement your own feature providers for any of MVC's feature types listed above. The order of feature providers
in the ApplicationPartManager.FeatureProviders collection can be important, since later providers can react to
actions taken by previous providers.

By default, ASP.NET Core MVC ignores generic controllers (for example, SomeController<T>). This sample uses a
controller feature provider that runs after the default provider and adds generic controller instances for a specified
list of types (defined in EntityTypes.Types):

The entity types:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllers.controllerfeatureprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razor.compilation.metadatareferencefeatureprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.razor.taghelpers.taghelperfeatureprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewcomponents.viewcomponentfeatureprovider

public static class EntityTypes
{
 public static IReadOnlyList<TypeInfo> Types => new List<TypeInfo>()
 {
 typeof(Sprocket).GetTypeInfo(),
 typeof(Widget).GetTypeInfo(),
 };

 public class Sprocket { }
 public class Widget { }
}

services.AddMvc()
 .ConfigureApplicationPartManager(apm =>
 apm.FeatureProviders.Add(new GenericControllerFeatureProvider()));

using Microsoft.AspNetCore.Mvc.ApplicationModels;
using System;

namespace AppPartsSample
{
 // Used to set the controller name for routing purposes. Without this convention the
 // names would be like 'GenericController`1[Widget]' instead of 'Widget'.
 //
 // Conventions can be applied as attributes or added to MvcOptions.Conventions.
 [AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = true)]
 public class GenericControllerNameConvention : Attribute, IControllerModelConvention
 {
 public void Apply(ControllerModel controller)
 {
 if (controller.ControllerType.GetGenericTypeDefinition() !=
 typeof(GenericController<>))
 {
 // Not a GenericController, ignore.
 return;
 }

 var entityType = controller.ControllerType.GenericTypeArguments[0];
 controller.ControllerName = entityType.Name;
 }
 }
}

The feature provider is added in Startup :

By default, the generic controller names used for routing would be of the form GenericController`1[Widget]

instead of Widget. The following attribute is used to modify the name to correspond to the generic type used by
the controller :

The GenericController class:

using Microsoft.AspNetCore.Mvc;

namespace AppPartsSample
{
 [GenericControllerNameConvention] // Sets the controller name based on typeof(T).Name
 public class GenericController<T> : Controller
 {
 public IActionResult Index()
 {
 return Content($"Hello from a generic {typeof(T).Name} controller.");
 }
 }
}

Sample: Display available featuresSample: Display available features

The result, when a matching route is requested:

You can iterate through the populated features available to your app by requesting an ApplicationPartManager

through dependency injection and using it to populate instances of the appropriate features:

using AppPartsSample.ViewModels;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ApplicationParts;
using Microsoft.AspNetCore.Mvc.Controllers;
using System.Linq;
using Microsoft.AspNetCore.Mvc.Razor.Compilation;
using Microsoft.AspNetCore.Mvc.Razor.TagHelpers;
using Microsoft.AspNetCore.Mvc.ViewComponents;

namespace AppPartsSample.Controllers
{
 public class FeaturesController : Controller
 {
 private readonly ApplicationPartManager _partManager;

 public FeaturesController(ApplicationPartManager partManager)
 {
 _partManager = partManager;
 }

 public IActionResult Index()
 {
 var viewModel = new FeaturesViewModel();

 var controllerFeature = new ControllerFeature();
 _partManager.PopulateFeature(controllerFeature);
 viewModel.Controllers = controllerFeature.Controllers.ToList();

 var metaDataReferenceFeature = new MetadataReferenceFeature();
 _partManager.PopulateFeature(metaDataReferenceFeature);
 viewModel.MetadataReferences = metaDataReferenceFeature.MetadataReferences
 .ToList();

 var tagHelperFeature = new TagHelperFeature();
 _partManager.PopulateFeature(tagHelperFeature);
 viewModel.TagHelpers = tagHelperFeature.TagHelpers.ToList();

 var viewComponentFeature = new ViewComponentFeature();
 _partManager.PopulateFeature(viewComponentFeature);
 viewModel.ViewComponents = viewComponentFeature.ViewComponents.ToList();

 return View(viewModel);
 }
 }
}

Example output:

Custom Model Binding in ASP.NET Core
5/2/2018 • 6 minutes to read • Edit Online

Default model binder limitations

Model binding review

Working with the ByteArrayModelBinderWorking with the ByteArrayModelBinder

By Steve Smith

Model binding allows controller actions to work directly with model types (passed in as method arguments), rather
than HTTP requests. Mapping between incoming request data and application models is handled by model
binders. Developers can extend the built-in model binding functionality by implementing custom model binders
(though typically, you don't need to write your own provider).

View or download sample from GitHub

The default model binders support most of the common .NET Core data types and should meet most developers`
needs. They expect to bind text-based input from the request directly to model types. You might need to transform
the input prior to binding it. For example, when you have a key that can be used to look up model data. You can
use a custom model binder to fetch data based on the key.

Model binding uses specific definitions for the types it operates on. A simple type is converted from a single string
in the input. A complex type is converted from multiple input values. The framework determines the difference
based on the existence of a TypeConverter . We recommended you create a type converter if you have a simple
string -> SomeType mapping that doesn't require external resources.

Before creating your own custom model binder, it's worth reviewing how existing model binders are implemented.
Consider the ByteArrayModelBinder which can be used to convert base64-encoded strings into byte arrays. The
byte arrays are often stored as files or database BLOB fields.

Base64-encoded strings can be used to represent binary data. For example, the following image can be encoded as
a string.

A small portion of the encoded string is shown in the following image:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/advanced/custom-model-binding.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/advanced/custom-model-binding/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.binders.bytearraymodelbinder

public IModelBinder GetBinder(ModelBinderProviderContext context)
{
 if (context == null)
 {
 throw new ArgumentNullException(nameof(context));
 }

 if (context.Metadata.ModelType == typeof(byte[]))
 {
 return new ByteArrayModelBinder();
 }

 return null;
}

Follow the instructions in the sample's README to convert the base64-encoded string into a file.

ASP.NET Core MVC can take a base64-encoded strings and use a ByteArrayModelBinder to convert it into a byte
array. The ByteArrayModelBinderProvider which implements IModelBinderProvider maps byte[] arguments to
ByteArrayModelBinder :

When creating your own custom model binder, you can implement your own IModelBinderProvider type, or use
the ModelBinderAttribute.

The following example shows how to use ByteArrayModelBinder to convert a base64-encoded string to a byte[]

and save the result to a file:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/advanced/custom-model-binding/sample/CustomModelBindingSample/README.md
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.binders.bytearraymodelbinderprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.imodelbinderprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.modelbinderattribute

// POST: api/image
[HttpPost]
public void Post(byte[] file, string filename)
{
 string filePath = Path.Combine(_env.ContentRootPath, "wwwroot/images/upload", filename);
 if (System.IO.File.Exists(filePath)) return;
 System.IO.File.WriteAllBytes(filePath, file);
}

[HttpPost("Profile")]
public void SaveProfile(ProfileViewModel model)
{
 string filePath = Path.Combine(_env.ContentRootPath, "wwwroot/images/upload", model.FileName);
 if (System.IO.File.Exists(model.FileName)) return;
 System.IO.File.WriteAllBytes(filePath, model.File);
}

public class ProfileViewModel
{
 public byte[] File { get; set; }
 public string FileName { get; set; }
}

Custom model binder sample

You can POST a base64-encoded string to this api method using a tool like Postman:

As long as the binder can bind request data to appropriately named properties or arguments, model binding will
succeed. The following example shows how to use ByteArrayModelBinder with a view model:

In this section we'll implement a custom model binder that:

Converts incoming request data into strongly typed key arguments.
Uses Entity Framework Core to fetch the associated entity.
Passes the associated entity as an argument to the action method.

https://www.getpostman.com/

using CustomModelBindingSample.Binders;
using Microsoft.AspNetCore.Mvc;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace CustomModelBindingSample.Data
{
 [ModelBinder(BinderType = typeof(AuthorEntityBinder))]
 public class Author
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string GitHub { get; set; }
 public string Twitter { get; set; }
 public string BlogUrl { get; set; }
 }
}

The following sample uses the ModelBinder attribute on the Author model:

In the preceding code, the ModelBinder attribute specifies the type of IModelBinder that should be used to bind
Author action parameters.

The AuthorEntityBinder is used to bind an Author parameter by fetching the entity from a data source using
Entity Framework Core and an authorId :

public class AuthorEntityBinder : IModelBinder
{
 private readonly AppDbContext _db;
 public AuthorEntityBinder(AppDbContext db)
 {
 _db = db;
 }

 public Task BindModelAsync(ModelBindingContext bindingContext)
 {
 if (bindingContext == null)
 {
 throw new ArgumentNullException(nameof(bindingContext));
 }

 // Specify a default argument name if none is set by ModelBinderAttribute
 var modelName = bindingContext.BinderModelName;
 if (string.IsNullOrEmpty(modelName))
 {
 modelName = "authorId";
 }

 // Try to fetch the value of the argument by name
 var valueProviderResult =
 bindingContext.ValueProvider.GetValue(modelName);

 if (valueProviderResult == ValueProviderResult.None)
 {
 return Task.CompletedTask;
 }

 bindingContext.ModelState.SetModelValue(modelName,
 valueProviderResult);

 var value = valueProviderResult.FirstValue;

 // Check if the argument value is null or empty
 if (string.IsNullOrEmpty(value))
 {
 return Task.CompletedTask;
 }

 int id = 0;
 if (!int.TryParse(value, out id))
 {
 // Non-integer arguments result in model state errors
 bindingContext.ModelState.TryAddModelError(
 bindingContext.ModelName,
 "Author Id must be an integer.");
 return Task.CompletedTask;
 }

 // Model will be null if not found, including for
 // out of range id values (0, -3, etc.)
 var model = _db.Authors.Find(id);
 bindingContext.Result = ModelBindingResult.Success(model);
 return Task.CompletedTask;
 }
}

The following code shows how to use the AuthorEntityBinder in an action method:

[HttpGet("get/{authorId}")]
public IActionResult Get(Author author)
{
 return Ok(author);
}

[HttpGet("{id}")]
public IActionResult GetById([ModelBinder(Name = "id")]Author author)
{
 if (author == null)
 {
 return NotFound();
 }
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 return Ok(author);
}

Implementing a ModelBinderProviderImplementing a ModelBinderProvider

The ModelBinder attribute can be used to apply the AuthorEntityBinder to parameters that don't use default
conventions:

In this example, since the name of the argument isn't the default authorId , it's specified on the parameter using
ModelBinder attribute. Note that both the controller and action method are simplified compared to looking up the

entity in the action method. The logic to fetch the author using Entity Framework Core is moved to the model
binder. This can be considerable simplification when you have several methods that bind to the author model, and
can help you to follow the DRY principle.

You can apply the ModelBinder attribute to individual model properties (such as on a viewmodel) or to action
method parameters to specify a certain model binder or model name for just that type or action.

Instead of applying an attribute, you can implement IModelBinderProvider . This is how the built-in framework
binders are implemented. When you specify the type your binder operates on, you specify the type of argument it
produces, not the input your binder accepts. The following binder provider works with the AuthorEntityBinder .
When it's added to MVC's collection of providers, you don't need to use the ModelBinder attribute on Author or
Author typed parameters.

http://deviq.com/don-t-repeat-yourself/

using CustomModelBindingSample.Data;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ModelBinding.Binders;
using System;

namespace CustomModelBindingSample.Binders
{
 public class AuthorEntityBinderProvider : IModelBinderProvider
 {
 public IModelBinder GetBinder(ModelBinderProviderContext context)
 {
 if (context == null)
 {
 throw new ArgumentNullException(nameof(context));
 }

 if (context.Metadata.ModelType == typeof(Author))
 {
 return new BinderTypeModelBinder(typeof(AuthorEntityBinder));
 }

 return null;
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<AppDbContext>(options => options.UseInMemoryDatabase());

 services.AddMvc(options =>
 {
 // add custom binder to beginning of collection
 options.ModelBinderProviders.Insert(0, new AuthorEntityBinderProvider());
 });
}

Note: The preceding code returns a BinderTypeModelBinder . BinderTypeModelBinder acts as a factory for model
binders and provides dependency injection (DI). The AuthorEntityBinder requires DI to access EF Core. Use
BinderTypeModelBinder if your model binder requires services from DI.

To use a custom model binder provider, add it in ConfigureServices :

When evaluating model binders, the collection of providers is examined in order. The first provider that returns a
binder is used.

The following image shows the default model binders from the debugger.

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<AppDbContext>(options => options.UseInMemoryDatabase());

 services.AddMvc(options =>
 {
 // add custom binder to beginning of collection
 options.ModelBinderProviders.Insert(0, new AuthorEntityBinderProvider());
 });
}

Recommendations and best practices

Adding your provider to the end of the collection may result in a built-in model binder being called before your
custom binder has a chance. In this example, the custom provider is added to the beginning of the collection to
ensure it's used for Author action arguments.

Custom model binders:

Shouldn't attempt to set status codes or return results (for example, 404 Not Found). If model binding fails, an
action filter or logic within the action method itself should handle the failure.
Are most useful for eliminating repetitive code and cross-cutting concerns from action methods.
Typically shouldn't be used to convert a string into a custom type, a TypeConverter is usually a better option.

https://docs.microsoft.com/dotnet/api/system.componentmodel.typeconverter

Build web APIs with ASP.NET Core
5/9/2018 • 4 minutes to read • Edit Online

Derive class from ControllerBase

[Produces("application/json")]
[Route("api/[controller]")]
public class PetsController : ControllerBase
{
 private readonly PetsRepository _repository;

 public PetsController(PetsRepository repository)
 {
 _repository = repository;
 }

 [HttpGet]
 public ActionResult<List<Pet>> Get()
 {
 return _repository.GetPets();
 }

 [HttpGet("{id}")]
 [ProducesResponseType(404)]
 public ActionResult<Pet> GetById(int id)
 {
 if (!_repository.TryGetPet(id, out var pet))
 {
 return NotFound();
 }

 return pet;
 }

 [HttpPost]
 [ProducesResponseType(400)]
 public async Task<ActionResult<Pet>> CreateAsync(Pet pet)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 await _repository.AddPetAsync(pet);

 return CreatedAtAction(nameof(GetById),
 new { id = pet.Id }, pet);
 }
}

By Scott Addie

View or download sample code (how to download)

This document explains how to build a web API in ASP.NET Core and when it's most appropriate to use each
feature.

Inherit from the ControllerBase class in a controller that's intended to serve as a web API. For example:

https://github.com/aspnet/Docs/blob/master/aspnetcore/web-api/index.md
https://github.com/scottaddie
https://github.com/aspnet/Docs/tree/master/aspnetcore/web-api/define-controller/samples
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase

[Produces("application/json")]
[Route("api/[controller]")]
public class PetsController : ControllerBase
{
 private readonly PetsRepository _repository;

 public PetsController(PetsRepository repository)
 {
 _repository = repository;
 }

 [HttpGet]
 [ProducesResponseType(typeof(IEnumerable<Pet>), 200)]
 public IActionResult Get()
 {
 return Ok(_repository.GetPets());
 }

 [HttpGet("{id}")]
 [ProducesResponseType(typeof(Pet), 200)]
 [ProducesResponseType(404)]
 public IActionResult GetById(int id)
 {
 if (!_repository.TryGetPet(id, out var pet))
 {
 return NotFound();
 }

 return Ok(pet);
 }

 [HttpPost]
 [ProducesResponseType(typeof(Pet), 201)]
 [ProducesResponseType(400)]
 public async Task<IActionResult> CreateAsync([FromBody] Pet pet)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 await _repository.AddPetAsync(pet);

 return CreatedAtAction(nameof(GetById),
 new { id = pet.Id }, pet);
 }
}

Annotate class with ApiControllerAttribute

[Route("api/[controller]")]
[ApiController]
public class ProductsController : ControllerBase

The ControllerBase class provides access to numerous properties and methods. In the preceding example, some
such methods include BadRequest and CreatedAtAction. These methods are invoked within action methods to
return HTTP 400 and 201 status codes, respectively. The ModelState property, also provided by ControllerBase ,
is accessed to perform request model validation.

ASP.NET Core 2.1 introduces the [ApiController] attribute to denote a web API controller class. For example:

This attribute is commonly coupled with ControllerBase to gain access to useful methods and properties.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.modelstate
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute

[ApiController]
public class MyBaseController
{
}

Automatic HTTP 400 responsesAutomatic HTTP 400 responses

if (!ModelState.IsValid)
{
 return BadRequest(ModelState);
}

services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressConsumesConstraintForFormFileParameters = true;
 options.SuppressInferBindingSourcesForParameters = true;
 options.SuppressModelStateInvalidFilter = true;
});

Binding source parameter inferenceBinding source parameter inference

ATTRIBUTE BINDING SOURCE

[FromBody] Request body

[FromForm] Form data in the request body

[FromHeader] Request header

[FromQuery] Request query string parameter

[FromRoute] Route data from the current request

[FromServices] The request service injected as an action parameter

NOTENOTE

ControllerBase provides access to methods such as NotFound and File.

Another approach is to create a custom base controller class annotated with the [ApiController] attribute:

The following sections describe convenience features added by the attribute.

Validation errors automatically trigger an HTTP 400 response. The following code becomes unnecessary in your
actions:

This default behavior is disabled with the following code in Startup.ConfigureServices:

A binding source attribute defines the location at which an action parameter's value is found. The following
binding source attributes exist:

Do not use [FromRoute] when values might contain %2f (that is /) because %2f won't be unescaped to / . Use
[FromQuery] if the value might contain %2f .

Without the [ApiController] attribute, binding source attributes are explicitly defined. In the following example,

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.file
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromformattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromheaderattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromqueryattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromrouteattribute

[HttpGet]
public ActionResult<List<Product>> Get([FromQuery] bool discontinuedOnly = false)
{
 List<Product> products = null;

 if (discontinuedOnly)
 {
 products = _repository.GetDiscontinuedProducts();
 }
 else
 {
 products = _repository.GetProducts();
 }

 return products;
}

// Don't do this. All of the following actions result in an exception.
[HttpPost]
public IActionResult Action1(Product product,
 Order order) => null;

[HttpPost]
public IActionResult Action2(Product product,
 [FromBody] Order order) => null;

[HttpPost]
public IActionResult Action3([FromBody] Product product,
 [FromBody] Order order) => null;

services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressConsumesConstraintForFormFileParameters = true;
 options.SuppressInferBindingSourcesForParameters = true;
 options.SuppressModelStateInvalidFilter = true;
});

Multipart/form-data request inferenceMultipart/form-data request inference

the [FromQuery] attribute indicates that the discontinuedOnly parameter value is provided in the request URL's
query string:

Inference rules are applied for the default data sources of action parameters. These rules configure the binding
sources you're otherwise likely to manually apply to the action parameters. The binding source attributes behave
as follows:

[FromBody] is inferred for complex type parameters. An exception to this rule is any complex, built-in type
with a special meaning, such as IFormCollection and CancellationToken. The binding source inference code
ignores those special types. When an action has more than one parameter explicitly specified (via [FromBody]

) or inferred as bound from the request body, an exception is thrown. For example, the following action
signatures cause an exception:

[FromForm] is inferred for action parameters of type IFormFile and IFormFileCollection. It's not inferred for
any simple or user-defined types.
[FromRoute] is inferred for any action parameter name matching a parameter in the route template. When
multiple routes match an action parameter, any route value is considered [FromRoute] .
[FromQuery] is inferred for any other action parameters.

The default inference rules are disabled with the following code in Startup.ConfigureServices:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformcollection
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtoken
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.iformfilecollection

services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressConsumesConstraintForFormFileParameters = true;
 options.SuppressInferBindingSourcesForParameters = true;
 options.SuppressModelStateInvalidFilter = true;
});

Attribute routing requirementAttribute routing requirement

[Route("api/[controller]")]
[ApiController]
public class ProductsController : ControllerBase

Additional resources

When an action parameter is annotated with the [FromForm] attribute, the multipart/form-data request content
type is inferred.

The default behavior is disabled with the following code in Startup.ConfigureServices:

Attribute routing becomes a requirement. For example:

Actions are inaccessible via conventional routes defined in UseMvc or by UseMvcWithDefaultRoute in
Startup.Configure.

Controller action return types
Custom formatters
Format response data
Help pages using Swagger
Routing to controller actions

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromformattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvc#Microsoft_AspNetCore_Builder_MvcApplicationBuilderExtensions_UseMvc_Microsoft_AspNetCore_Builder_IApplicationBuilder_System_Action_Microsoft_AspNetCore_Routing_IRouteBuilder__
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvcwithdefaultroute#Microsoft_AspNetCore_Builder_MvcApplicationBuilderExtensions_UseMvcWithDefaultRoute_Microsoft_AspNetCore_Builder_IApplicationBuilder_

Controller action return types in ASP.NET Core Web
API
5/9/2018 • 4 minutes to read • Edit Online

Specific type

[HttpGet]
public IEnumerable<Product> Get()
{
 return _repository.GetProducts();
}

IActionResult type

Synchronous actionSynchronous action

By Scott Addie

View or download sample code (how to download)

ASP.NET Core offers the following options for Web API controller action return types:

Specific type
IActionResult

Specific type
IActionResult
ActionResult<T>

This document explains when it's most appropriate to use each return type.

The simplest action returns a primitive or complex data type (for example, string or a custom object type).
Consider the following action, which returns a collection of custom Product objects:

Without known conditions to safeguard against during action execution, returning a specific type could suffice.
The preceding action accepts no parameters, so parameter constraints validation isn't needed.

When known conditions need to be accounted for in an action, multiple return paths are introduced. In such a
case, it's common to mix an ActionResult return type with the primitive or complex return type. Either
IActionResult or ActionResult<T> are necessary to accommodate this type of action.

The IActionResult return type is appropriate when multiple ActionResult return types are possible in an action.
The ActionResult types represent various HTTP status codes. Some common return types falling into this
category are BadRequestResult (400), NotFoundResult (404), and OkObjectResult (200).

Because there are multiple return types and paths in the action, liberal use of the [ProducesResponseType]
attribute is necessary. This attribute produces more descriptive response details for API help pages generated by
tools like Swagger. [ProducesResponseType] indicates the known types and HTTP status codes to be returned by
the action.

Consider the following synchronous action in which there are two possible return types:

https://github.com/aspnet/Docs/blob/master/aspnetcore/web-api/action-return-types.md
https://github.com/scottaddie
https://github.com/aspnet/Docs/tree/master/aspnetcore/web-api/action-return-types/samples
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.actionresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.actionresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.badrequestresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.notfoundresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.okobjectresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.producesresponsetypeattribute.-ctor
https://docs.microsoft.com/aspnet/core/tutorials/web-api-help-pages-using-swagger

[HttpGet("{id}")]
[ProducesResponseType(200, Type = typeof(Product))]
[ProducesResponseType(404)]
public IActionResult GetById(int id)
{
 if (!_repository.TryGetProduct(id, out var product))
 {
 return NotFound();
 }

 return Ok(product);
}

Asynchronous actionAsynchronous action

[HttpPost]
[ProducesResponseType(201, Type = typeof(Product))]
[ProducesResponseType(400)]
public async Task<IActionResult> CreateAsync([FromBody] Product product)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 await _repository.AddProductAsync(product);

 return CreatedAtAction(nameof(GetById), new { id = product.Id }, product);
}

public class Product
{
 public int Id { get; set; }

 [Required]
 public string Name { get; set; }

 public string Description { get; set; }
}

ActionResult<T> type

In the preceding action, a 404 status code is returned when the product represented by id doesn't exist in the
underlying data store. The NotFound helper method is invoked as a shortcut to return new NotFoundResult(); . If
the product does exist, a Product object representing the payload is returned with a 200 status code. The Ok
helper method is invoked as the shorthand form of return new OkObjectResult(product); .

Consider the following asynchronous action in which there are two possible return types:

In the preceding action, a 400 status code is returned when model validation fails and the BadRequest helper
method is invoked. For example, the following model indicates that requests must provide the Name property
and a value. Therefore, failure to provide a proper Name in the request causes model validation to fail.

The preceding action's other known return code is a 201, which is generated by the CreatedAtAction helper
method. In this path, the Product object is returned.

ASP.NET Core 2.1 introduces the ActionResult<T> return type for Web API controller actions. It enables you to
return a type deriving from ActionResult or return a specific type. ActionResult<T> offers the following benefits
over the IActionResult type:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.actionresult

Synchronous actionSynchronous action

[HttpGet("{id}")]
[ProducesResponseType(200)]
[ProducesResponseType(404)]
public ActionResult<Product> GetById(int id)
{
 if (!_repository.TryGetProduct(id, out var product))
 {
 return NotFound();
 }

 return product;
}

TIPTIP

Asynchronous actionAsynchronous action

[HttpPost]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
public async Task<ActionResult<Product>> CreateAsync(Product product)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 await _repository.AddProductAsync(product);

 return CreatedAtAction(nameof(GetById), new { id = product.Id }, product);
}

The [ProducesResponseType] attribute's Type property can be excluded.
Implicit cast operators support the conversion of both T and ActionResult to ActionResult<T> . T converts
to ObjectResult, which means return new ObjectResult(T); is simplified to return T; .

Most actions have a specific return type. Unexpected conditions can occur during action execution, in which case
the specific type isn't returned. For example, an action's input parameter may fail model validation. In such a case,
it's common to return the appropriate ActionResult type instead of the specific type.

Consider a synchronous action in which there are two possible return types:

In the preceding code, a 404 status code is returned when the product doesn't exist in the database. If the product
does exist, the corresponding Product object is returned. Before ASP.NET Core 2.1, the return product; line
would have been return Ok(product); .

As of ASP.NET Core 2.1, action parameter binding source inference is enabled when a controller class is decorated with the
[ApiController] attribute. A parameter name matching a name in the route template is automatically bound using the

request route data. Consequently, the preceding action's id parameter isn't explicitly annotated with the [FromRoute]
attribute.

Consider an asynchronous action in which there are two possible return types:

If model validation fails, the BadRequest method is invoked to return a 400 status code. The ModelState property
containing the specific validation errors is passed to it. If model validation succeeds, the product is created in the
database. A 201 status code is returned.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.producesresponsetypeattribute
https://docs.microsoft.com/dotnet/csharp/language-reference/keywords/implicit
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.objectresult
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.fromrouteattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest#Microsoft_AspNetCore_Mvc_ControllerBase_BadRequest_Microsoft_AspNetCore_Mvc_ModelBinding_ModelStateDictionary_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.modelstate

TIPTIP

Additional resources

As of ASP.NET Core 2.1, action parameter binding source inference is enabled when a controller class is decorated with the
[ApiController] attribute. Complex type parameters are automatically bound using the request body. Consequently, the

preceding action's product parameter isn't explicitly annotated with the [FromBody] attribute.

Controller actions
Model validation
Web API help pages using Swagger

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute

Advanced topics for ASP.NET Core Web API
4/27/2018 • 2 minutes to read • Edit Online

Custom formatters
Format response data

https://github.com/aspnet/Docs/blob/master/aspnetcore/web-api/advanced/index.md

Custom formatters in ASP.NET Core Web API
5/22/2018 • 4 minutes to read • Edit Online

When to use custom formatters

Overview of how to use a custom formatter

How to create a custom formatter class

Derive from the appropriate base classDerive from the appropriate base class

public class VcardOutputFormatter : TextOutputFormatter

Specify valid media types and encodingsSpecify valid media types and encodings

By Tom Dykstra

ASP.NET Core MVC has built-in support for data exchange in web APIs by using JSON, XML, or plain text
formats. This article shows how to add support for additional formats by creating custom formatters.

View or download sample code (how to download)

Use a custom formatter when you want the content negotiation process to support a content type that isn't
supported by the built-in formatters (JSON, XML, and plain text).

For example, if some of the clients for your web API can handle the Protobuf format, you might want to use
Protobuf with those clients because it's more efficient. Or you might want your web API to send contact names
and addresses in vCard format, a commonly used format for exchanging contact data. The sample app provided
with this article implements a simple vCard formatter.

Here are the steps to create and use a custom formatter :

Create an output formatter class if you want to serialize data to send to the client.
Create an input formatter class if you want to deserialize data received from the client.
Add instances of your formatters to the InputFormatters and OutputFormatters collections in MvcOptions.

The following sections provide guidance and code examples for each of these steps.

To create a formatter :

Derive the class from the appropriate base class.
Specify valid media types and encodings in the constructor.
Override CanReadType / CanWriteType methods
Override ReadRequestBodyAsync / WriteResponseBodyAsync methods

For text media types (for example, vCard), derive from the TextInputFormatter or TextOutputFormatter base class.

For binary types, derive from the InputFormatter or OutputFormatter base class.

In the constructor, specify valid media types and encodings by adding to the SupportedMediaTypes and
SupportedEncodings collections.

https://github.com/aspnet/Docs/blob/master/aspnetcore/web-api/advanced/custom-formatters.md
https://github.com/tdykstra
https://github.com/aspnet/Docs/tree/master/aspnetcore/web-api/advanced/custom-formatters/sample
https://github.com/google/protobuf
https://wikipedia.org/wiki/VCard
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.formatters.textinputformatter
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.formatters.textoutputformatter
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.formatters.inputformatter
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.formatters.outputformatter

public VcardOutputFormatter()
{
 SupportedMediaTypes.Add(MediaTypeHeaderValue.Parse("text/vcard"));

 SupportedEncodings.Add(Encoding.UTF8);
 SupportedEncodings.Add(Encoding.Unicode);
}

NOTENOTE

Override CanReadType/CanWriteTypeOverride CanReadType/CanWriteType

protected override bool CanWriteType(Type type)
{
 if (typeof(Contact).IsAssignableFrom(type)
 || typeof(IEnumerable<Contact>).IsAssignableFrom(type))
 {
 return base.CanWriteType(type);
 }
 return false;
}

The CanWriteResult methodThe CanWriteResult method

Override ReadRequestBodyAsync/WriteResponseBodyAsyncOverride ReadRequestBodyAsync/WriteResponseBodyAsync

You can't do constructor dependency injection in a formatter class. For example, you can't get a logger by adding a logger
parameter to the constructor. To access services, you have to use the context object that gets passed in to your methods. A
code example below shows how to do this.

Specify the type you can deserialize into or serialize from by overriding the CanReadType or CanWriteType

methods. For example, you might only be able to create vCard text from a Contact type and vice versa.

In some scenarios you have to override CanWriteResult instead of CanWriteType . Use CanWriteResult if the
following conditions are true:

Your action method returns a model class.
There are derived classes which might be returned at runtime.
You need to know at runtime which derived class was returned by the action.

For example, suppose your action method signature returns a Person type, but it may return a Student or
Instructor type that derives from Person . If you want your formatter to handle only Student objects, check the

type of Object in the context object provided to the CanWriteResult method. Note that it's not necessary to use
CanWriteResult when the action method returns IActionResult ; in that case, the CanWriteType method receives

the runtime type.

You do the actual work of deserializing or serializing in ReadRequestBodyAsync or WriteResponseBodyAsync . The
highlighted lines in the following example show how to get services from the dependency injection container (you
can't get them from constructor parameters).

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.formatters.outputformattercanwritecontext#Microsoft_AspNetCore_Mvc_Formatters_OutputFormatterCanWriteContext_Object

public override Task WriteResponseBodyAsync(OutputFormatterWriteContext context, Encoding selectedEncoding)
{
 IServiceProvider serviceProvider = context.HttpContext.RequestServices;
 var logger = serviceProvider.GetService(typeof(ILogger<VcardOutputFormatter>)) as ILogger;

 var response = context.HttpContext.Response;

 var buffer = new StringBuilder();
 if (context.Object is IEnumerable<Contact>)
 {
 foreach (Contact contact in context.Object as IEnumerable<Contact>)
 {
 FormatVcard(buffer, contact, logger);
 }
 }
 else
 {
 var contact = context.Object as Contact;
 FormatVcard(buffer, contact, logger);
 }
 return response.WriteAsync(buffer.ToString());
}

private static void FormatVcard(StringBuilder buffer, Contact contact, ILogger logger)
{
 buffer.AppendLine("BEGIN:VCARD");
 buffer.AppendLine("VERSION:2.1");
 buffer.AppendFormat($"N:{contact.LastName};{contact.FirstName}\r\n");
 buffer.AppendFormat($"FN:{contact.FirstName} {contact.LastName}\r\n");
 buffer.AppendFormat($"UID:{contact.ID}\r\n");
 buffer.AppendLine("END:VCARD");
 logger.LogInformation($"Writing {contact.FirstName} {contact.LastName}");
}

How to configure MVC to use a custom formatter

services.AddMvc(options =>
{
 options.InputFormatters.Insert(0, new VcardInputFormatter());
 options.OutputFormatters.Insert(0, new VcardOutputFormatter());
});

Next steps

BEGIN:VCARD
VERSION:2.1
N:Davolio;Nancy
FN:Nancy Davolio
UID:20293482-9240-4d68-b475-325df4a83728
END:VCARD

To use a custom formatter, add an instance of the formatter class to the InputFormatters or OutputFormatters

collection.

Formatters are evaluated in the order you insert them. The first one takes precedence.

See the sample application, which implements simple vCard input and output formatters. The application reads
and writes vCards that look like the following example:

To see vCard output, run the application and send a Get request with Accept header "text/vcard" to

https://github.com/aspnet/Docs/tree/master/aspnetcore/web-api/advanced/custom-formatters/sample

http://localhost:63313/api/contacts/ (when running from Visual Studio) or http://localhost:5000/api/contacts/

(when running from the command line).

To add a vCard to the in-memory collection of contacts, send a Post request to the same URL, with Content-Type
header "text/vcard" and with vCard text in the body, formatted like the example above.

Format response data in ASP.NET Core Web API
4/27/2018 • 8 minutes to read • Edit Online

Format-Specific Action Results

NOTENOTE

// GET: api/authors
[HttpGet]
public JsonResult Get()
{
 return Json(_authorRepository.List());
}

By Steve Smith

ASP.NET Core MVC has built-in support for formatting response data, using fixed formats or in response to client
specifications.

View or download sample code (how to download)

Some action result types are specific to a particular format, such as JsonResult and ContentResult . Actions can
return specific results that are always formatted in a particular manner. For example, returning a JsonResult will
return JSON-formatted data, regardless of client preferences. Likewise, returning a ContentResult will return
plain-text-formatted string data (as will simply returning a string).

An action isn't required to return any particular type; MVC supports any object return value. If an action returns an
IActionResult implementation and the controller inherits from Controller , developers have many helper methods

corresponding to many of the choices. Results from actions that return objects that are not IActionResult types will be
serialized using the appropriate IOutputFormatter implementation.

To return data in a specific format from a controller that inherits from the Controller base class, use the built-in
helper method Json to return JSON and Content for plain text. Your action method should return either the
specific result type (for instance, JsonResult) or IActionResult .

Returning JSON-formatted data:

Sample response from this action:

https://github.com/aspnet/Docs/blob/master/aspnetcore/web-api/advanced/formatting.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/web-api/advanced/formatting/sample

// GET api/authors/about
[HttpGet("About")]
public ContentResult About()
{
 return Content("An API listing authors of docs.asp.net.");
}

Note that the content type of the response is application/json , shown both in the list of network requests and in
the Response Headers section. Also note the list of options presented by the browser (in this case, Microsoft
Edge) in the Accept header in the Request Headers section. The current technique is ignoring this header ; obeying
it is discussed below.

To return plain text formatted data, use ContentResult and the Content helper :

A response from this action:

// GET api/authors/version
[HttpGet("version")]
public string Version()
{
 return "Version 1.0.0";
}

TIPTIP

Content Negotiation

Note in this case the Content-Type returned is text/plain . You can also achieve this same behavior using just a
string response type:

For non-trivial actions with multiple return types or options (for example, different HTTP status codes based on the result of
operations performed), prefer IActionResult as the return type.

Content negotiation (conneg for short) occurs when the client specifies an Accept header. The default format
used by ASP.NET Core MVC is JSON. Content negotiation is implemented by ObjectResult . It's also built into
the status code specific action results returned from the helper methods (which are all based on ObjectResult).
You can also return a model type (a class you've defined as your data transfer type) and the framework will
automatically wrap it in an ObjectResult for you.

The following action method uses the Ok and NotFound helper methods:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

// GET: api/authors/search?namelike=th
[HttpGet("Search")]
public IActionResult Search(string namelike)
{
 var result = _authorRepository.GetByNameSubstring(namelike);
 if (!result.Any())
 {
 return NotFound(namelike);
 }
 return Ok(result);
}

// GET api/authors/ardalis
[HttpGet("{alias}")]
public Author Get(string alias)
{
 return _authorRepository.GetByAlias(alias);
}

Content Negotiation ProcessContent Negotiation Process

A JSON-formatted response will be returned unless another format was requested and the server can return the
requested format. You can use a tool like Fiddler to create a request that includes an Accept header and specify
another format. In that case, if the server has a formatter that can produce a response in the requested format,
the result will be returned in the client-preferred format.

In the above screenshot, the Fiddler Composer has been used to generate a request, specifying
Accept: application/xml . By default, ASP.NET Core MVC only supports JSON, so even when another format is

specified, the result returned is still JSON-formatted. You'll see how to add additional formatters in the next
section.

Controller actions can return POCOs (Plain Old CLR Objects), in which case ASP.NET Core MVC automatically
creates an ObjectResult for you that wraps the object. The client will get the formatted serialized object (JSON
format is the default; you can configure XML or other formats). If the object being returned is null , then the
framework will return a 204 No Content response.

Returning an object type:

In the sample, a request for a valid author alias will receive a 200 OK response with the author's data. A request
for an invalid alias will receive a 204 No Content response. Screenshots showing the response in XML and JSON
formats are shown below.

Content negotiation only takes place if an Accept header appears in the request. When a request contains an
accept header, the framework will enumerate the media types in the accept header in preference order and will try
to find a formatter that can produce a response in one of the formats specified by the accept header. In case no
formatter is found that can satisfy the client's request, the framework will try to find the first formatter that can
produce a response (unless the developer has configured the option on MvcOptions to return 406 Not Acceptable
instead). If the request specifies XML, but the XML formatter has not been configured, then the JSON formatter

http://www.telerik.com/fiddler

NOTENOTE

Browsers and Content NegotiationBrowsers and Content Negotiation

services.AddMvc(options =>
{
 options.RespectBrowserAcceptHeader = true; // false by default
});

Configuring Formatters

Adding XML Format SupportAdding XML Format Support

services.AddMvc()
 .AddXmlSerializerFormatters();

services.AddMvc(options =>
{
 options.OutputFormatters.Add(new XmlSerializerOutputFormatter());
});

will be used. More generally, if no formatter is configured that can provide the requested format, then the first
formatter that can format the object is used. If no header is given, the first formatter that can handle the object to
be returned will be used to serialize the response. In this case, there isn't any negotiation taking place - the server
is determining what format it will use.

If the Accept header contains */* , the Header will be ignored unless RespectBrowserAcceptHeader is set to true on
MvcOptions .

Unlike typical API clients, web browsers tend to supply Accept headers that include a wide array of formats,
including wildcards. By default, when the framework detects that the request is coming from a browser, it will
ignore the Accept header and instead return the content in the application's configured default format (JSON
unless otherwise configured). This provides a more consistent experience when using different browsers to
consume APIs.

If you would prefer your application honor browser accept headers, you can configure this as part of MVC's
configuration by setting RespectBrowserAcceptHeader to true in the ConfigureServices method in Startup.cs.

If your application needs to support additional formats beyond the default of JSON, you can add NuGet
packages and configure MVC to support them. There are separate formatters for input and output. Input
formatters are used by Model Binding; output formatters are used to format responses. You can also configure
Custom Formatters.

To add support for XML formatting, install the Microsoft.AspNetCore.Mvc.Formatters.Xml NuGet package.

Add the XmlSerializerFormatters to MVC's configuration in Startup.cs:

Alternately, you can add just the output formatter :

These two approaches will serialize results using System.Xml.Serialization.XmlSerializer . If you prefer, you can
use the System.Runtime.Serialization.DataContractSerializer by adding its associated formatter :

services.AddMvc(options =>
{
 options.OutputFormatters.Add(new XmlDataContractSerializerOutputFormatter());
});

Forcing a Particular FormatForcing a Particular Format

Once you've added support for XML formatting, your controller methods should return the appropriate format
based on the request's Accept header, as this Fiddler example demonstrates:

You can see in the Inspectors tab that the Raw GET request was made with an Accept: application/xml header
set. The response pane shows the Content-Type: application/xml header, and the Author object has been
serialized to XML.

Use the Composer tab to modify the request to specify application/json in the Accept header. Execute the
request, and the response will be formatted as JSON:

In this screenshot, you can see the request sets a header of Accept: application/json and the response specifies
the same as its Content-Type . The Author object is shown in the body of the response, in JSON format.

If you would like to restrict the response formats for a specific action you can, you can apply the [Produces] filter.
The [Produces] filter specifies the response formats for a specific action (or controller). Like most Filters, this can
be applied at the action, controller, or global scope.

[Produces("application/json")]
public class AuthorsController

Special Case FormattersSpecial Case Formatters

services.AddMvc(options =>
{
 options.OutputFormatters.RemoveType<TextOutputFormatter>();
 options.OutputFormatters.RemoveType<HttpNoContentOutputFormatter>();
});

Response Format URL Mappings

[FormatFilter]
public class ProductsController
{
 [Route("[controller]/[action]/{id}.{format?}")]
 public Product GetById(int id)

ROUTE FORMATTER

/products/GetById/5 The default output formatter

/products/GetById/5.json The JSON formatter (if configured)

/products/GetById/5.xml The XML formatter (if configured)

The [Produces] filter will force all actions within the AuthorsController to return JSON-formatted responses,
even if other formatters were configured for the application and the client provided an Accept header requesting
a different, available format. See Filters to learn more, including how to apply filters globally.

Some special cases are implemented using built-in formatters. By default, string return types will be formatted
as text/plain (text/html if requested via Accept header). This behavior can be removed by removing the
TextOutputFormatter . You remove formatters in the Configure method in Startup.cs (shown below). Actions that

have a model object return type will return a 204 No Content response when returning null . This behavior can
be removed by removing the HttpNoContentOutputFormatter . The following code removes the
TextOutputFormatter and HttpNoContentOutputFormatter .

Without the TextOutputFormatter , string return types return 406 Not Acceptable, for example. Note that if an
XML formatter exists, it will format string return types if the TextOutputFormatter is removed.

Without the HttpNoContentOutputFormatter , null objects are formatted using the configured formatter. For
example, the JSON formatter will simply return a response with a body of null , while the XML formatter will
return an empty XML element with the attribute xsi:nil="true" set.

Clients can request a particular format as part of the URL, such as in the query string or part of the path, or by
using a format-specific file extension such as .xml or .json. The mapping from request path should be specified in
the route the API is using. For example:

This route would allow the requested format to be specified as an optional file extension. The [FormatFilter]

attribute checks for the existence of the format value in the RouteData and will map the response format to the
appropriate formatter when the response is created.

Test, debug, and troubleshoot in ASP.NET Core
6/14/2018 • 2 minutes to read • Edit Online

Test

Debug

Troubleshoot

Unit Testing in .NET Core and .NET Standard
See how to use unit testing in .NET Core and .NET Standard projects.

Integration tests
Learn how integration tests ensure that an app's components function correctly at the infrastructure level,
including the database, file system, and network.

Razor Pages unit tests
Discover how to create unit tests for Razor Pages apps.

Test controllers
Learn how to test controller logic in ASP.NET Core with Moq and xUnit.

Debug ASP.NET Core 2.x source
Learn how to debug .NET Core and ASP.NET Core sources.

Remote debugging
Discover how to set up and configure a Visual Studio 2017 ASP.NET Core app, deploy it to IIS using Azure, and
attach the remote debugger from Visual Studio.

Snapshot debugging
Learn how to collect snapshots on your top-throwing exceptions so that you have the information you need to
diagnose issues in production.

Troubleshoot
Understand and troubleshoot warnings and errors with ASP.NET Core projects.

https://github.com/aspnet/Docs/blob/master/aspnetcore/test/index.md
https://docs.microsoft.com/dotnet/articles/core/testing/
https://github.com/aspnet/Docs/issues/4155
https://docs.microsoft.com/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/azure/application-insights/app-insights-snapshot-debugger

Integration tests in ASP.NET Core
6/4/2018 • 15 minutes to read • Edit Online

Introduction to integration tests

By Luke Latham and Steve Smith

Integration tests ensure that an app's components function correctly at a level that includes the app's supporting
infrastructure, such as the database, file system, and network. ASP.NET Core supports integration tests using a
unit test framework with a test web host and an in-memory test server.

This topic assumes a basic understanding of unit tests. If unfamiliar with test concepts, see the Unit Testing in
.NET Core and .NET Standard topic and its linked content.

View or download sample code (how to download)

The sample app is a Razor Pages app and assumes a basic understanding of Razor Pages. If unfamiliar with Razor
Pages, see the following topics:

Introduction to Razor Pages
Get started with Razor Pages
Razor Pages unit tests

Integration tests evaluate an app's components on a broader level than unit tests. Unit tests are used to test
isolated software components, such as individual class methods. Integration tests confirm that two or more app
components work together to produce an expected result, possibly including every component required to fully
process a request.

These broader tests are used to test the app's infrastructure and whole framework, often including the following
components:

Database
File system
Network appliances
Request-response pipeline

Unit tests use fabricated components, known as fakes or mock objects, in place of infrastructure components.

In contrast to unit tests, integration tests:

Use the actual components that the app uses in production.
Require more code and data processing.
Take longer to run.

Therefore, limit the use of integration tests to the most important infrastructure scenarios. If a behavior can be
tested using either a unit test or an integration test, choose the unit test.

https://github.com/aspnet/Docs/blob/master/aspnetcore/test/integration-tests.md
https://github.com/guardrex
https://ardalis.com/
https://docs.microsoft.com/dotnet/core/testing/
https://github.com/aspnet/Docs/tree/master/aspnetcore/test/integration-tests/samples
https://docs.microsoft.com/dotnet/core/testing/

TIPTIP

NOTENOTE

ASP.NET Core integration tests

Don't write integration tests for every possible permutation of data and file access with databases and file systems.
Regardless of how many places across an app interact with databases and file systems, a focused set of read, write, update,
and delete integration tests are usually capable of adequately testing database and file system components. Use unit tests
for routine tests of method logic that interact with these components. In unit tests, the use of infrastructure fakes/mocks
result in faster test execution.

In discussions of integration tests, the tested project is frequently called the system under test, or "SUT" for short.

Integration tests in ASP.NET Core require the following:

A test project is used to contain and execute the tests. The test project has a reference to the tested ASP.NET
Core project, called the system under test (SUT). "SUT" is used throughout this topic to refer to the tested app.

The test project creates a test web host for the SUT and uses a test server client to handle requests and
responses to the SUT.
A test runner is used to execute the tests and report the test results.

Integration tests follow a sequence of events that include the usual Arrange, Act, and Assert test steps:

1. The SUT's web host is configured.
2. A test server client is created to submit requests to the app.
3. The Arrange test step is executed: The test app prepares a request.
4. The Act test step is executed: The client submits the request and receives the response.
5. The Assert test step is executed: The actual response is validated as a pass or fail based on an expected

response.
6. The process continues until all of the tests are executed.
7. The test results are reported.

Usually, the test web host is configured differently than the app's normal web host for the test runs. For example,
a different database or different app settings might be used for the tests.

Infrastructure components, such as the test web host and in-memory test server (TestServer), are provided or
managed by the Microsoft.AspNetCore.Mvc.Testing package. Use of this package streamlines test creation and
execution.

The Microsoft.AspNetCore.Mvc.Testing package handles the following tasks:

Copies the dependencies file (*.deps) from the SUT into the test project's bin folder.
Sets the content root to the SUT's project root so that static files and pages/views are found when the tests are
executed.
Provides the WebApplicationFactory class to streamline bootstrapping the SUT with TestServer .

The unit tests documentation describes how to set up a test project and test runner, along with detailed
instructions on how to run tests and recommendations for how to name tests and test classes.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/dotnet/articles/core/testing/unit-testing-with-dotnet-test

NOTENOTE

Test app prerequisites

Basic tests with the default WebApplicationFactory

Basic test of app endpointsBasic test of app endpoints

When creating a test project for an app, separate the unit tests from the integration tests into different projects. This helps
ensure that infrastructure testing components aren't accidently included in the unit tests. Separation of unit and integration
tests also allows control over which set of tests are run.

There's virtually no difference between the configuration for tests of Razor Pages apps and MVC apps. The only
difference is in how the tests are named. In a Razor Pages app, tests of page endpoints are usually named after
the page model class (for example, IndexPageTests to test component integration for the Index page). In an MVC
app, tests are usually organized by controller classes and named after the controllers they test (for example,
HomeControllerTests to test component integration for the Home controller).

The test project must:

Have a package reference for Microsoft.AspNetCore.App.
Use the Web SDK in the project file (<Project Sdk="Microsoft.NET.Sdk.Web">).

These prerequesities can be seen in the sample app. Inspect the
tests/RazorPagesProject.Tests/RazorPagesProject.Tests.csproj file.

WebApplicationFactory<TEntryPoint> is used to create a TestServer for the integration tests. TEntryPoint is the
entry point class of the SUT, usually the Startup class.

Test classes implement a class fixture interface (IClassFixture) to indicate the class contains tests and provide
shared object instances across the tests in the class.

The following test class, BasicTests , uses the WebApplicationFactory to bootstrap the SUT and provide an
HttpClient to a test method, Get_EndpointsReturnSuccessAndCorrectContentType . The method checks if the response
status code is successful (status codes in the range 200-299) and the Content-Type header is
text/html; charset=utf-8 for several app pages.

CreateClient creates an instance of HttpClient that automatically follows redirects and handles cookies.

https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://github.com/aspnet/Docs/tree/master/aspnetcore/test/integration-tests/samples/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.createclient

public class BasicTests
 : IClassFixture<WebApplicationFactory<RazorPagesProject.Startup>>
{
 private readonly WebApplicationFactory<RazorPagesProject.Startup> _factory;

 public BasicTests(WebApplicationFactory<RazorPagesProject.Startup> factory)
 {
 _factory = factory;
 }

 [Theory]
 [InlineData("/")]
 [InlineData("/Index")]
 [InlineData("/About")]
 [InlineData("/Privacy")]
 [InlineData("/Contact")]
 public async Task Get_EndpointsReturnSuccessAndCorrectContentType(string url)
 {
 // Arrange
 var client = _factory.CreateClient();

 // Act
 var response = await client.GetAsync(url);

 // Assert
 response.EnsureSuccessStatusCode(); // Status Code 200-299
 Assert.Equal("text/html; charset=utf-8",
 response.Content.Headers.ContentType.ToString());
 }

Test a secure endpointTest a secure endpoint

services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1)
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AuthorizePage("/SecurePage");
 });

Another test in the BasicTests class checks that a secure endpoint redirects an unauthenticated user to the app's
Login page.

In the SUT, the /SecurePage page uses an AuthorizePage convention to apply an AuthorizeFilter to the page. For
more information, see Razor Pages authorization conventions.

In the Get_SecurePageRequiresAnAuthenticatedUser test, a WebApplicationFactoryClientOptions is set to disallow
redirects by setting AllowAutoRedirect to false :

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.allowautoredirect

[Fact]
public async Task Get_SecurePageRequiresAnAuthenticatedUser()
{
 // Arrange
 var client = _factory.CreateClient(
 new WebApplicationFactoryClientOptions
 {
 AllowAutoRedirect = false
 });

 // Act
 var response = await client.GetAsync("/SecurePage");

 // Assert
 Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
 Assert.StartsWith("http://localhost/Identity/Account/Login",
 response.Headers.Location.OriginalString);
}

Customize WebApplicationFactory

By disallowing the client to follow the redirect, the following checks can be made:

The status code returned by the SUT can be checked against the expected HttpStatusCode.Redirect result, not
the final status code after the redirect to the Login page, which would be HttpStatusCode.OK.
The Location header value in the response headers is checked to confirm that it starts with
http://localhost/Identity/Account/Login , not the final Login page response, where the Location header

wouldn't be present.

For more information on WebApplicationFactoryClientOptions , see the Client options section.

Web host configuration can be created independently of the test classes by inheriting from
WebApplicationFactory to create one or more custom factories:

1. Inherit from WebApplicationFactory and override ConfigureWebHost. The IWebHostBuilder allows the
configuration of the service collection with ConfigureServices:

https://docs.microsoft.com/dotnet/api/system.net.httpstatuscode
https://docs.microsoft.com/dotnet/api/system.net.httpstatuscode
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.configurewebhost
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices

public class CustomWebApplicationFactory<TStartup>
 : WebApplicationFactory<RazorPagesProject.Startup>
{
 protected override void ConfigureWebHost(IWebHostBuilder builder)
 {
 builder.ConfigureServices(services =>
 {
 // Create a new service provider.
 var serviceProvider = new ServiceCollection()
 .AddEntityFrameworkInMemoryDatabase()
 .BuildServiceProvider();

 // Add a database context (ApplicationDbContext) using an in-memory
 // database for testing.
 services.AddDbContext<ApplicationDbContext>(options =>
 {
 options.UseInMemoryDatabase("InMemoryDbForTesting");
 options.UseInternalServiceProvider(serviceProvider);
 });

 // Build the service provider.
 var sp = services.BuildServiceProvider();

 // Create a scope to obtain a reference to the database
 // context (ApplicationDbContext).
 using (var scope = sp.CreateScope())
 {
 var scopedServices = scope.ServiceProvider;
 var db = scopedServices.GetRequiredService<ApplicationDbContext>();
 var logger = scopedServices
 .GetRequiredService<ILogger<CustomWebApplicationFactory<TStartup>>>();

 // Ensure the database is created.
 db.Database.EnsureCreated();

 try
 {
 // Seed the database with test data.
 Utilities.InitializeDbForTests(db);
 }
 catch (Exception ex)
 {
 logger.LogError(ex, $"An error occurred seeding the " +
 "database with test messages. Error: {ex.Message}");
 }
 }
 });
 }
}

Database seeding in the sample app is performed by the InitializeDbForTests method. The method is
described in the Integration tests sample: Test app organization section.

2. Use the custom CustomWebApplicationFactory in test classes. The following example uses the factory in the
IndexPageTests class:

https://github.com/aspnet/Docs/tree/master/aspnetcore/test/integration-tests/samples

public class IndexPageTests : IClassFixture<CustomWebApplicationFactory<RazorPagesProject.Startup>>
{
 private readonly HttpClient _client;
 private readonly CustomWebApplicationFactory<RazorPagesProject.Startup> _factory;

 public IndexPageTests(
 CustomWebApplicationFactory<RazorPagesProject.Startup> factory)
 {
 _client = factory.CreateClient(new WebApplicationFactoryClientOptions
 {
 AllowAutoRedirect = false
 });
 _factory = factory;
 }

[Fact]
public async Task Post_DeleteAllMessagesHandler_ReturnsRedirectToRoot()
{
 // Arrange
 var defaultPage = await _client.GetAsync("/");
 var content = await HtmlHelpers.GetDocumentAsync(defaultPage);

 //Act
 var response = await _client.SendAsync(
 (IHtmlFormElement)content.QuerySelector("form[id='messages']"),
 (IHtmlButtonElement)content.QuerySelector("button[id='deleteAllBtn']"));

 // Assert
 Assert.Equal(HttpStatusCode.OK, defaultPage.StatusCode);
 Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
 Assert.Equal("/", response.Headers.Location.OriginalString);
}

The sample app's client is configured to prevent the HttpClient from following redirects. As explained in
the Test a secure endpoint section, this permits tests to check the result of the app's first response. The first
response is a redirect in many of these tests with a Location header.

3. A typical test uses the HttpClient and helper methods to process the request and the response:

Any POST request to the SUT must satisfy the antiforgery check that's automatically made by the app's data
protection antiforgery system. In order to arrange for a test's POST request, the test app must:

1. Make a request for the page.
2. Parse the antiforgery cookie and request validation token from the response.
3. Make the POST request with the antiforgery cookie and request validation token in place.

The SendAsync helper extension methods (Helpers/HttpClientExtensions.cs) and the GetDocumentAsync helper
method (Helpers/HtmlHelpers.cs) in the sample app use the AngleSharp parser to handle the antiforgery check
with the following methods:

GetDocumentAsync – Receives the HttpResponseMessage and returns an IHtmlDocument . GetDocumentAsync

uses a factory that prepares a virtual response based on the original HttpResponseMessage . For more
information, see the AngleSharp documentation.
SendAsync extension methods for the HttpClient compose an HttpRequestMessage and call

SendAsync(HttpRequestMessage) to submit requests to the SUT. Overloads for SendAsync accept the HTML
form (IHtmlFormElement) and the following:

Submit button of the form (IHtmlElement)
Form values collection (IEnumerable<KeyValuePair<string, string>>)

https://github.com/aspnet/Docs/tree/master/aspnetcore/test/integration-tests/samples/
https://anglesharp.github.io/
https://docs.microsoft.com/dotnet/api/system.net.http.httpresponsemessage
https://github.com/AngleSharp/AngleSharp#documentation
https://docs.microsoft.com/dotnet/api/system.net.http.httprequestmessage
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.sendasync#System_Net_Http_HttpClient_SendAsync_System_Net_Http_HttpRequestMessage_

NOTENOTE

Customize the client with WithWebHostBuilder

Submit button (IHtmlElement) and form values (IEnumerable<KeyValuePair<string, string>>)

AngleSharp is a third-party parsing library used for demonstration purposes in this topic and the sample app. AngleSharp
isn't supported or required for integration testing of ASP.NET Core apps. Other parsers can be used, such as the Html Agility
Pack (HAP). Another approach is to write code to handle the antiforgery system's request verification token and antiforgery
cookie directly.

When additional configuration is required within a test method, WithWebHostBuilder creates a new
WebApplicationFactory with an IWebHostBuilder that is further customized by configuration.

The Post_DeleteMessageHandler_ReturnsRedirectToRoot test method of the sample app demonstrates the use of
WithWebHostBuilder . This test performs a record delete in the database by triggering a form submission in the

SUT.

Because another test in the IndexPageTests class performs an operation that deletes all of the records in the
database and may run before the Post_DeleteMessageHandler_ReturnsRedirectToRoot method, the database is
seeded in this test method to ensure that a record is present for the SUT to delete. Selecting the deleteBtn1

button of the messages form in the SUT is simulated in the request to the SUT:

https://anglesharp.github.io/
http://html-agility-pack.net/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.withwebhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://github.com/aspnet/Docs/tree/master/aspnetcore/test/integration-tests/samples

[Fact]
public async Task Post_DeleteMessageHandler_ReturnsRedirectToRoot()
{
 // Arrange
 var client = _factory.WithWebHostBuilder(builder =>
 {
 builder.ConfigureServices(services =>
 {
 var serviceProvider = services.BuildServiceProvider();

 using (var scope = serviceProvider.CreateScope())
 {
 var scopedServices = scope.ServiceProvider;
 var db = scopedServices
 .GetRequiredService<ApplicationDbContext>();
 var logger = scopedServices
 .GetRequiredService<ILogger<IndexPageTests>>();

 try
 {
 Utilities.InitializeDbForTests(db);
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "An error occurred seeding " +
 "the database with test messages. Error: " +
 ex.Message);
 }
 }
 });
 })
 .CreateClient(new WebApplicationFactoryClientOptions
 {
 AllowAutoRedirect = false
 });
 var defaultPage = await client.GetAsync("/");
 var content = await HtmlHelpers.GetDocumentAsync(defaultPage);

 //Act
 var response = await client.SendAsync(
 (IHtmlFormElement)content.QuerySelector("form[id='messages']"),
 (IHtmlButtonElement)content.QuerySelector("button[id='deleteBtn1']"));

 // Assert
 Assert.Equal(HttpStatusCode.OK, defaultPage.StatusCode);
 Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
 Assert.Equal("/", response.Headers.Location.OriginalString);
}

Client options

OPTION DESCRIPTION DEFAULT

AllowAutoRedirect Gets or sets whether or not
HttpClient instances should

automatically follow redirect responses.

true

BaseAddress Gets or sets the base address of
HttpClient instances.

http://localhost

The following table shows the default WebApplicationFactoryClientOptions available when creating HttpClient

instances.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.allowautoredirect
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.baseaddress

HandleCookies Gets or sets whether HttpClient

instances should handle cookies.
true

MaxAutomaticRedirections Gets or sets the maximum number of
redirect responses that HttpClient

instances should follow.

7

OPTION DESCRIPTION DEFAULT

// Default client option values are shown
var clientOptions = new WebApplicationFactoryClientOptions();
clientOptions.AllowAutoRedirect = true;
clientOptions.BaseAddress = new Uri("http://localhost");
clientOptions.HandleCookies = true;
clientOptions.MaxAutomaticRedirections = 7;

_client = _factory.CreateClient(clientOptions);

How the test infrastructure infers the app content root path

Create the WebApplicationFactoryClientOptions class and pass it to the CreateClient method (default values are
shown in the code example):

The WebApplicationFactory constructor infers the app content root path by searching for a
WebApplicationFactoryContentRootAttribute on the assembly containing the integration tests with a key equal to
the TEntryPoint assembly System.Reflection.Assembly.FullName . In case an attribute with the correct key isn't
found, WebApplicationFactory falls back to searching for a solution file (*.sln) and appends the TEntryPoint

assembly name to the solution directory. The app root directory (the content root path) is used to discover views
and content files.

In most cases, it isn't necessary to explicitly set the app content root, as the search logic usually finds the correct
content root at runtime. In special scenarios where the content root isn't found using the built-in search algorithm,
the app content root can be specified explicitly or by using custom logic. To set the app content root in those
scenarios, call the UseSolutionRelativeContentRoot extension method from the Microsoft.AspNetCore.TestHost
package. Supply the solution's relative path and optional solution file name or glob pattern (default = *.sln).

Call the UseSolutionRelativeContentRoot extension method using ONE of the following approaches:

public IndexPageTests(
 WebApplicationFactory<RazorPagesProject.Startup> factory)
{
 var _factory = factory.WithWebHostBuilder(builder =>
 {
 builder.UseSolutionRelativeContentRoot("<SOLUTION-RELATIVE-PATH>");

 ...
 });
}

When configuring test classes with WebApplicationFactory , provide a custom configuration with the
IWebHostBuilder:

When configuring test classes with a custom WebApplicationFactory , inherit from WebApplicationFactory

and override ConfigureWebHost:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.handlecookies
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.maxautomaticredirections
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.createclient
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactorycontentrootattribute
https://www.nuget.org/packages/Microsoft.AspNetCore.TestHost
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.testhost.webhostbuilderextensions.usesolutionrelativecontentroot
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.configurewebhost

Disable shadow copying

{
 "shadowCopy": false
}

Integration tests sample

APP PROJECT FOLDER DESCRIPTION

Message app (the SUT) src/RazorPagesProject Allows a user to add, delete one, delete
all, and analyze messages.

Test app tests/RazorPagesProject.Tests Used to integration test the SUT.

dotnet test

Message app (SUT) organizationMessage app (SUT) organization

public class CustomWebApplicationFactory<TStartup>
 : WebApplicationFactory<RazorPagesProject.Startup>
{
 protected override void ConfigureWebHost(IWebHostBuilder builder)
 {
 builder.ConfigureServices(services =>
 {
 builder.UseSolutionRelativeContentRoot("<SOLUTION-RELATIVE-PATH>");

 ...
 });
 }
}

Shadow copying causes the tests to execute in a different folder than the output folder. For tests to work properly,
shadow copying must be disabled. The sample app uses xUnit and disables shadow copying for xUnit by
including an xunit.runner.json file with the correct configuration setting. For more information, see Configuring
xUnit.net with JSON.

Add the xunit.runner.json file to root of the test project with the following content:

The sample app is composed of two apps:

The tests can be run using the built-in test features of an IDE, such as Visual Studio. If using Visual Studio Code or
the command line, execute the following command at a command prompt in the tests/RazorPagesProject.Tests
folder :

The SUT is a Razor Pages message system with the following characteristics:

The Index page of the app (Pages/Index.cshtml and Pages/Index.cshtml.cs) provides a UI and page model
methods to control the addition, deletion, and analysis of messages (average words per message).
A message is described by the Message class (Data/Message.cs) with two properties: Id (key) and Text

(message). The Text property is required and limited to 200 characters.
Messages are stored using Entity Framework's in-memory database†.
The app contains a data access layer (DAL) in its database context class, AppDbContext

(Data/AppDbContext.cs).

https://github.com/aspnet/Docs/tree/master/aspnetcore/test/integration-tests/samples
https://xunit.github.io/docs/configuring-with-json.html
https://github.com/aspnet/Docs/tree/master/aspnetcore/test/integration-tests/samples
https://www.visualstudio.com/vs/
https://code.visualstudio.com/
https://docs.microsoft.com/ef/core/providers/in-memory/

 Test app organizationTest app organization

TEST APP FOLDER DESCRIPTION

BasicTests BasicTests.cs contains test methods for routing, accessing a
secure page by an unauthenticated user, and obtaining a
GitHub user profile and checking the profile's user login.

IntegrationTests IndexPageTests.cs contains the integration tests for the Index
page using custom WebApplicationFactory class.

Helpers/Utilities

If the database is empty on app startup, the message store is initialized with three messages.
The app includes a /SecurePage that can only be accessed by an authenticated user.

†The EF topic, Test with InMemory, explains how to use an in-memory database for tests with MSTest. This topic
uses the xUnit test framework. Test concepts and test implementations across different test frameworks are
similar but not identical.

Although the app doesn't use the repository pattern and isn't an effective example of the Unit of Work (UoW)
pattern, Razor Pages supports these patterns of development. For more information, see Designing the
infrastructure persistence layer, Implementing the Repository and Unit of Work Patterns in an ASP.NET MVC
Application, and Test controller logic (the sample implements the repository pattern).

The test app is a console app inside the tests/RazorPagesProject.Tests folder.

Utilities.cs contains the InitializeDbForTests

method used to seed the database with test data.
HtmlHelpers.cs provides a method to return an
AngleSharp IHtmlDocument for use by the test
methods.
HttpClientExtensions.cs provide overloads for
SendAsync to submit requests to the SUT.

The test framework is xUnit. Integration tests are conducted using the Microsoft.AspNetCore.TestHost, which
includes the TestServer. Because the Microsoft.AspNetCore.Mvc.Testing package is used to configure the test host
and test server, the TestHost and TestServer packages don't require direct package references in the test app's
project file or developer configuration in the test app.

Seeding the database for testing

Integration tests usually require a small dataset in the database prior to the test execution. For example, a delete
test calls for a database record deletion, so the database must have at least one record for the delete request to
succeed.

The sample app seeds the database with three messages in Utilities.cs that tests can use when they execute:

https://docs.microsoft.com/ef/core/miscellaneous/testing/in-memory
https://xunit.github.io/
http://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://docs.microsoft.com/aspnet/core/mvc/controllers/testing
https://xunit.github.io/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.testhost
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing

public static void InitializeDbForTests(ApplicationDbContext db)
{
 db.Messages.AddRange(GetSeedingMessages());
 db.SaveChanges();
}

public static List<Message> GetSeedingMessages()
{
 return new List<Message>()
 {
 new Message(){ Text = "TEST RECORD: You're standing on my scarf." },
 new Message(){ Text = "TEST RECORD: Would you like a jelly baby?" },
 new Message(){ Text = "TEST RECORD: To the rational mind, " +
 "nothing is inexplicable; only unexplained." }
 };
}

Additional resources
Unit tests
Razor Pages unit tests
Middleware
Test controllers

https://docs.microsoft.com/dotnet/articles/core/testing/unit-testing-with-dotnet-test

Razor Pages unit tests in ASP.NET Core
6/10/2018 • 9 minutes to read • Edit Online

APP PROJECT FOLDER DESCRIPTION

Message app src/RazorPagesTestSample Allows a user to add, delete one, delete
all, and analyze messages.

Test app tests/RazorPagesTestSample.Tests Used to unit test the message app:
Data access layer (DAL) and Index page
model.

dotnet test

Message app organization

By Luke Latham

ASP.NET Core supports unit tests of Razor Pages apps. Tests of the data access layer (DAL) and page models
help ensure:

Parts of a Razor Pages app work independently and together as a unit during app construction.
Classes and methods have limited scopes of responsibility.
Additional documentation exists on how the app should behave.
Regressions, which are errors brought about by updates to the code, are found during automated building
and deployment.

This topic assumes that you have a basic understanding of Razor Pages apps and unit tests. If you're unfamiliar
with Razor Pages apps or test concepts, see the following topics:

Introduction to Razor Pages
Get started with Razor Pages
Unit testing C# in .NET Core using dotnet test and xUnit

View or download sample code (how to download)

The sample project is composed of two apps:

The tests can be run using the built-in test features of an IDE, such as Visual Studio. If using Visual Studio Code
or the command line, execute the following command at a command prompt in the
tests/RazorPagesTestSample.Tests folder :

The message app is a simple Razor Pages message system with the following characteristics:

The Index page of the app (Pages/Index.cshtml and Pages/Index.cshtml.cs) provides a UI and page model
methods to control the addition, deletion, and analysis of messages (average words per message).
A message is described by the Message class (Data/Message.cs) with two properties: Id (key) and Text

(message). The Text property is required and limited to 200 characters.
Messages are stored using Entity Framework's in-memory database†.
The app contains a data access layer (DAL) in its database context class, AppDbContext

https://github.com/aspnet/Docs/blob/master/aspnetcore/test/razor-pages-tests.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://github.com/aspnet/Docs/tree/master/aspnetcore/test/razor-pages-tests/samples
https://www.visualstudio.com/vs/
https://code.visualstudio.com/
https://docs.microsoft.com/ef/core/providers/in-memory/

Test app organization

TEST APP FOLDER DESCRIPTION

UnitTests

Utilities Contains the TestingDbContextOptions method used to
create new database context options for each DAL unit test
so that the database is reset to its baseline condition for each
test.

Unit tests of the data access layer (DAL)

DAL METHOD FUNCTION

GetMessagesAsync Obtains a List<Message> from the database sorted by the
Text property.

AddMessageAsync Adds a Message to the database.

DeleteAllMessagesAsync Deletes all Message entries from the database.

DeleteMessageAsync Deletes a single Message from the database by Id .

(Data/AppDbContext.cs). The DAL methods are marked virtual , which allows mocking the methods for use
in the tests.
If the database is empty on app startup, the message store is initialized with three messages. These seeded
messages are also used in tests.

†The EF topic, Test with InMemory, explains how to use an in-memory database for tests with MSTest. This topic
uses the xUnit test framework. Test concepts and test implementations across different test frameworks are
similar but not identical.

Although the app doesn't use the repository pattern and isn't an effective example of the Unit of Work (UoW)
pattern, Razor Pages supports these patterns of development. For more information, see Designing the
infrastructure persistence layer, Implementing the Repository and Unit of Work Patterns in an ASP.NET MVC
Application, and Test controller logic (the sample implements the repository pattern).

The test app is a console app inside the tests/RazorPagesTestSample.Tests folder.

DataAccessLayerTest.cs contains the unit tests for the
DAL.
IndexPageTests.cs contains the unit tests for the Index
page model.

The test framework is xUnit. The object mocking framework is Moq.

The message app has a DAL with four methods contained in the AppDbContext class
(src/RazorPagesTestSample/Data/AppDbContext.cs). Each method has one or two unit tests in the test app.

Unit tests of the DAL require DbContextOptions when creating a new AppDbContext for each test. One approach
to creating the DbContextOptions for each test is to use a DbContextOptionsBuilder:

https://docs.microsoft.com/ef/core/miscellaneous/testing/in-memory
https://xunit.github.io/
http://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://docs.microsoft.com/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://docs.microsoft.com/aspnet/core/mvc/controllers/testing
https://xunit.github.io/
https://github.com/moq/moq4
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontextoptionsbuilder

var optionsBuilder = new DbContextOptionsBuilder<AppDbContext>()
 .UseInMemoryDatabase("InMemoryDb");

using (var db = new AppDbContext(optionsBuilder.Options))
{
 // Use the db here in the unit test.
}

public static DbContextOptions<AppDbContext> TestDbContextOptions()
{
 // Create a new service provider to create a new in-memory database.
 var serviceProvider = new ServiceCollection()
 .AddEntityFrameworkInMemoryDatabase()
 .BuildServiceProvider();

 // Create a new options instance using an in-memory database and
 // IServiceProvider that the context should resolve all of its
 // services from.
 var builder = new DbContextOptionsBuilder<AppDbContext>()
 .UseInMemoryDatabase("InMemoryDb")
 .UseInternalServiceProvider(serviceProvider);

 return builder.Options;
}

using (var db = new AppDbContext(Utilities.TestingDbContextOptions()))
{
 // Use the db here in the unit test.
}

The problem with this approach is that each test receives the database in whatever state the previous test left it.
This can be problematic when trying to write atomic unit tests that don't interfere with each other. To force the
AppDbContext to use a new database context for each test, supply a DbContextOptions instance that's based on a

new service provider. The test app shows how to do this using its Utilities class method
TestingDbContextOptions (tests/RazorPagesTestSample.Tests/Utilities/Utilities.cs):

Using the DbContextOptions in the DAL unit tests allows each test to run atomically with a fresh database
instance:

Each test method in the DataAccessLayerTest class (UnitTests/DataAccessLayerTest.cs) follows a similar Arrange-
Act-Assert pattern:

1. Arrange: The database is configured for the test and/or the expected outcome is defined.
2. Act: The test is executed.
3. Assert: Assertions are made to determine if the test result is a success.

For example, the DeleteMessageAsync method is responsible for removing a single message identified by its Id

(src/RazorPagesTestSample/Data/AppDbContext.cs):

public async virtual Task DeleteMessageAsync(int id)
{
 var message = await Messages.FindAsync(id);

 if (message != null)
 {
 Messages.Remove(message);
 await SaveChangesAsync();
 }
}

[Fact]
public async Task DeleteMessageAsync_MessageIsDeleted_WhenMessageIsFound()
{
 using (var db = new AppDbContext(Utilities.TestDbContextOptions()))
 {
 // Arrange
 var seedMessages = AppDbContext.GetSeedingMessages();
 await db.AddRangeAsync(seedMessages);
 await db.SaveChangesAsync();
 var recId = 1;
 var expectedMessages =
 seedMessages.Where(message => message.Id != recId).ToList();

 // Act
 await db.DeleteMessageAsync(recId);

 // Assert
 var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
 Assert.Equal(
 expectedMessages.OrderBy(x => x.Id),
 actualMessages.OrderBy(x => x.Id),
 new Utilities.MessageComparer());
 }
}

// Arrange
var seedMessages = AppDbContext.GetSeedingMessages();
await db.AddRangeAsync(seedMessages);
await db.SaveChangesAsync();
var recId = 1;
var expectedMessages =
 seedMessages.Where(message => message.Id != recId).ToList();

// Act
await db.DeleteMessageAsync(recId);

There are two tests for this method. One test checks that the method deletes a message when the message is
present in the database. The other method tests that the database doesn't change if the message Id for deletion
doesn't exist. The DeleteMessageAsync_MessageIsDeleted_WhenMessageIsFound method is shown below:

First, the method performs the Arrange step, where preparation for the Act step takes place. The seeding
messages are obtained and held in seedMessages . The seeding messages are saved into the database. The
message with an Id of 1 is set for deletion. When the DeleteMessageAsync method is executed, the expected
messages should have all of the messages except for the one with an Id of 1 . The expectedMessages variable
represents this expected outcome.

The method acts: The DeleteMessageAsync method is executed passing in the recId of 1 :

// Assert
var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
Assert.Equal(
 expectedMessages.OrderBy(m => m.Id).Select(m => m.Text),
 actualMessages.OrderBy(m => m.Id).Select(m => m.Text));

[Fact]
public async Task DeleteMessageAsync_NoMessageIsDeleted_WhenMessageIsNotFound()
{
 using (var db = new AppDbContext(Utilities.TestDbContextOptions()))
 {
 // Arrange
 var expectedMessages = AppDbContext.GetSeedingMessages();
 await db.AddRangeAsync(expectedMessages);
 await db.SaveChangesAsync();
 var recId = 4;

 // Act
 await db.DeleteMessageAsync(recId);

 // Assert
 var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
 Assert.Equal(
 expectedMessages.OrderBy(m => m.Id).Select(m => m.Text),
 actualMessages.OrderBy(m => m.Id).Select(m => m.Text));
 }
}

Unit tests of the page model methods

PAGE MODEL METHOD FUNCTION

OnGetAsync Obtains the messages from the DAL for the UI using the
GetMessagesAsync method.

OnPostAddMessageAsync If the ModelState is valid, calls AddMessageAsync to add a
message to the database.

OnPostDeleteAllMessagesAsync Calls DeleteAllMessagesAsync to delete all of the messages
in the database.

Finally, the method obtains the Messages from the context and compares it to the expectedMessages asserting
that the two are equal:

In order to compare that the two List<Message> are the same:

The messages are ordered by Id .
Message pairs are compared on the Text property.

A similar test method, DeleteMessageAsync_NoMessageIsDeleted_WhenMessageIsNotFound checks the result of
attempting to delete a message that doesn't exist. In this case, the expected messages in the database should be
equal to the actual messages after the DeleteMessageAsync method is executed. There should be no change to the
database's content:

Another set of unit tests is responsible for tests of page model methods. In the message app, the Index page
models are found in the IndexModel class in src/RazorPagesTestSample/Pages/Index.cshtml.cs.

OnPostDeleteMessageAsync Executes DeleteMessageAsync to delete a message with the
Id specified.

OnPostAnalyzeMessagesAsync If one or more messages are in the database, calculates the
average number of words per message.

PAGE MODEL METHOD FUNCTION

var mockAppDbContext = new Mock<AppDbContext>(optionsBuilder.Options);
var expectedMessages = AppDbContext.GetSeedingMessages();
mockAppDbContext.Setup(
 db => db.GetMessagesAsync()).Returns(Task.FromResult(expectedMessages));
var pageModel = new IndexModel(mockAppDbContext.Object);

// Act
await pageModel.OnGetAsync();

public async Task OnGetAsync()
{
 Messages = await _db.GetMessagesAsync();
}

The page model methods are tested using seven tests in the IndexPageTests class
(tests/RazorPagesTestSample.Tests/UnitTests/IndexPageTests.cs). The tests use the familiar Arrange-Assert-Act
pattern. These tests focus on:

Determining if the methods follow the correct behavior when the ModelState is invalid.
Confirming the methods produce the correct IActionResult .
Checking that property value assignments are made correctly.

This group of tests often mock the methods of the DAL to produce expected data for the Act step where a page
model method is executed. For example, the GetMessagesAsync method of the AppDbContext is mocked to
produce output. When a page model method executes this method, the mock returns the result. The data doesn't
come from the database. This creates predictable, reliable test conditions for using the DAL in the page model
tests.

The OnGetAsync_PopulatesThePageModel_WithAListOfMessages test shows how the GetMessagesAsync method is
mocked for the page model:

When the OnGetAsync method is executed in the Act step, it calls the page model's GetMessagesAsync method.

Unit test Act step (tests/RazorPagesTestSample.Tests/UnitTests/IndexPageTests.cs):

IndexPage page model's OnGetAsync method (src/RazorPagesTestSample/Pages/Index.cshtml.cs):

The GetMessagesAsync method in the DAL doesn't return the result for this method call. The mocked version of
the method returns the result.

In the Assert step, the actual messages (actualMessages) are assigned from the Messages property of the page
model. A type check is also performed when the messages are assigned. The expected and actual messages are
compared by their Text properties. The test asserts that the two List<Message> instances contain the same
messages.

// Assert
var actualMessages = Assert.IsAssignableFrom<List<Message>>(pageModel.Messages);
Assert.Equal(
 expectedMessages.OrderBy(m => m.Id).Select(m => m.Text),
 actualMessages.OrderBy(m => m.Id).Select(m => m.Text));

[Fact]
public async Task OnPostAddMessageAsync_ReturnsAPageResult_WhenModelStateIsInvalid()
{
 // Arrange
 var optionsBuilder = new DbContextOptionsBuilder<AppDbContext>()
 .UseInMemoryDatabase("InMemoryDb");
 var mockAppDbContext = new Mock<AppDbContext>(optionsBuilder.Options);
 var expectedMessages = AppDbContext.GetSeedingMessages();
 mockAppDbContext.Setup(db => db.GetMessagesAsync()).Returns(Task.FromResult(expectedMessages));
 var httpContext = new DefaultHttpContext();
 var modelState = new ModelStateDictionary();
 var actionContext = new ActionContext(httpContext, new RouteData(), new PageActionDescriptor(),
modelState);
 var modelMetadataProvider = new EmptyModelMetadataProvider();
 var viewData = new ViewDataDictionary(modelMetadataProvider, modelState);
 var tempData = new TempDataDictionary(httpContext, Mock.Of<ITempDataProvider>());
 var pageContext = new PageContext(actionContext)
 {
 ViewData = viewData
 };
 var pageModel = new IndexModel(mockAppDbContext.Object)
 {
 PageContext = pageContext,
 TempData = tempData,
 Url = new UrlHelper(actionContext)
 };
 pageModel.ModelState.AddModelError("Message.Text", "The Text field is required.");

 // Act
 var result = await pageModel.OnPostAddMessageAsync();

 // Assert
 Assert.IsType<PageResult>(result);
}

Additional resources

Other tests in this group create page model objects that include the DefaultHttpContext , the
ModelStateDictionary , an ActionContext to establish the PageContext , a ViewDataDictionary , and a PageContext .

These are useful in conducting tests. For example, the message app establishes a ModelState error with
AddModelError to check that a valid PageResult is returned when OnPostAddMessageAsync is executed:

Unit testing C# in .NET Core using dotnet test and xUnit
Test controllers
Unit Test Your Code (Visual Studio)
Integration tests
xUnit.net
Getting started with xUnit.net (.NET Core/ASP.NET Core)
Moq
Moq Quickstart

https://docs.microsoft.com/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/visualstudio/test/unit-test-your-code
https://xunit.github.io/
https://xunit.github.io/docs/getting-started-dotnet-core
https://github.com/moq/moq4
https://github.com/Moq/moq4/wiki/Quickstart

Test controller logic in ASP.NET Core
5/30/2018 • 17 minutes to read • Edit Online

Testing controllers

Unit testing

TIPTIP

By Steve Smith

Controllers in ASP.NET MVC apps should be small and focused on user-interface concerns. Large controllers
that deal with non-UI concerns are more difficult to test and maintain.

View or download sample from GitHub

Controllers are a central part of any ASP.NET Core MVC application. As such, you should have confidence they
behave as intended for your app. Automated tests can provide you with this confidence and can detect errors
before they reach production. It's important to avoid placing unnecessary responsibilities within your controllers
and ensure your tests focus only on controller responsibilities.

Controller logic should be minimal and not be focused on business logic or infrastructure concerns (for example,
data access). Test controller logic, not the framework. Test how the controller behaves based on valid or invalid
inputs. Test controller responses based on the result of the business operation it performs.

Typical controller responsibilities:

Verify ModelState.IsValid .
Return an error response if ModelState is invalid.
Retrieve a business entity from persistence.
Perform an action on the business entity.
Save the business entity to persistence.
Return an appropriate IActionResult .

Unit testing involves testing a part of an app in isolation from its infrastructure and dependencies. When unit
testing controller logic, only the contents of a single action is tested, not the behavior of its dependencies or of
the framework itself. As you unit test your controller actions, make sure you focus only on its behavior. A
controller unit test avoids things like filters, routing, or model binding. By focusing on testing just one thing, unit
tests are generally simple to write and quick to run. A well-written set of unit tests can be run frequently without
much overhead. However, unit tests don't detect issues in the interaction between components, which is the
purpose of integration tests.

If you're writing custom filters, routes, etc, you should unit test them, but not as part of your tests on a particular
controller action. They should be tested in isolation.

Create and run unit tests with Visual Studio.

To demonstrate unit testing, review the following controller. It displays a list of brainstorming sessions and allows
new brainstorming sessions to be created with a POST:

https://github.com/aspnet/Docs/blob/master/aspnetcore/mvc/controllers/testing.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/controllers/testing/sample
https://docs.microsoft.com/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/visualstudio/test/unit-test-your-code

using System;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using TestingControllersSample.ViewModels;

namespace TestingControllersSample.Controllers
{
 public class HomeController : Controller
 {
 private readonly IBrainstormSessionRepository _sessionRepository;

 public HomeController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 public async Task<IActionResult> Index()
 {
 var sessionList = await _sessionRepository.ListAsync();

 var model = sessionList.Select(session => new StormSessionViewModel()
 {
 Id = session.Id,
 DateCreated = session.DateCreated,
 Name = session.Name,
 IdeaCount = session.Ideas.Count
 });

 return View(model);
 }

 public class NewSessionModel
 {
 [Required]
 public string SessionName { get; set; }
 }

 [HttpPost]
 public async Task<IActionResult> Index(NewSessionModel model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 else
 {
 await _sessionRepository.AddAsync(new BrainstormSession()
 {
 DateCreated = DateTimeOffset.Now,
 Name = model.SessionName
 });
 }

 return RedirectToAction(actionName: nameof(Index));
 }
 }
}

The controller is following the explicit dependencies principle, expecting dependency injection to provide it with
an instance of IBrainstormSessionRepository . This makes it fairly easy to test using a mock object framework, like
Moq. The HTTP GET Index method has no looping or branching and only calls one method. To test this Index

http://deviq.com/explicit-dependencies-principle/
https://www.nuget.org/packages/Moq/

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Moq;
using TestingControllersSample.Controllers;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using TestingControllersSample.ViewModels;
using Xunit;

namespace TestingControllersSample.Tests.UnitTests
{
 public class HomeControllerTests
 {
 [Fact]
 public async Task Index_ReturnsAViewResult_WithAListOfBrainstormSessions()
 {
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.ListAsync()).Returns(Task.FromResult(GetTestSessions()));
 var controller = new HomeController(mockRepo.Object);

 // Act
 var result = await controller.Index();

 // Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsAssignableFrom<IEnumerable<StormSessionViewModel>>(
 viewResult.ViewData.Model);
 Assert.Equal(2, model.Count());
 }

 private List<BrainstormSession> GetTestSessions()
 {
 var sessions = new List<BrainstormSession>();
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 2),
 Id = 1,
 Name = "Test One"
 });
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 1),
 Id = 2,
 Name = "Test Two"
 });
 return sessions;
 }
 }
}

method, we need to verify that a ViewResult is returned, with a ViewModel from the repository's List method.

The HomeController HTTP POST Index method (shown above) should verify:

The action method returns a Bad Request ViewResult with the appropriate data when
ModelState.IsValid is false

The Add method on the repository is called and a RedirectToActionResult is returned with the correct
arguments when ModelState.IsValid is true.

Invalid model state can be tested by adding errors using AddModelError as shown in the first test below.

[Fact]
public async Task IndexPost_ReturnsBadRequestResult_WhenModelStateIsInvalid()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.ListAsync()).Returns(Task.FromResult(GetTestSessions()));
 var controller = new HomeController(mockRepo.Object);
 controller.ModelState.AddModelError("SessionName", "Required");
 var newSession = new HomeController.NewSessionModel();

 // Act
 var result = await controller.Index(newSession);

 // Assert
 var badRequestResult = Assert.IsType<BadRequestObjectResult>(result);
 Assert.IsType<SerializableError>(badRequestResult.Value);
}

[Fact]
public async Task IndexPost_ReturnsARedirectAndAddsSession_WhenModelStateIsValid()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.AddAsync(It.IsAny<BrainstormSession>()))
 .Returns(Task.CompletedTask)
 .Verifiable();
 var controller = new HomeController(mockRepo.Object);
 var newSession = new HomeController.NewSessionModel()
 {
 SessionName = "Test Name"
 };

 // Act
 var result = await controller.Index(newSession);

 // Assert
 var redirectToActionResult = Assert.IsType<RedirectToActionResult>(result);
 Assert.Null(redirectToActionResult.ControllerName);
 Assert.Equal("Index", redirectToActionResult.ActionName);
 mockRepo.Verify();
}

NOTENOTE

The first test confirms when ModelState isn't valid, the same ViewResult is returned as for a GET request. Note
that the test doesn't attempt to pass in an invalid model. That wouldn't work anyway since model binding isn't
running (though an integration test would use exercise model binding). In this case, model binding isn't being
tested. These unit tests are only testing what the code in the action method does.

The second test verifies that when ModelState is valid, a new BrainstormSession is added (via the repository),
and the method returns a RedirectToActionResult with the expected properties. Mocked calls that aren't called
are normally ignored, but calling Verifiable at the end of the setup call allows it to be verified in the test. This is
done with the call to mockRepo.Verify , which will fail the test if the expected method wasn't called.

The Moq library used in this sample makes it easy to mix verifiable, or "strict", mocks with non-verifiable mocks (also called
"loose" mocks or stubs). Learn more about customizing Mock behavior with Moq.

Another controller in the app displays information related to a particular brainstorming session. It includes some
logic to deal with invalid id values:

https://github.com/Moq/moq4/wiki/Quickstart#customizing-mock-behavior

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.ViewModels;

namespace TestingControllersSample.Controllers
{
 public class SessionController : Controller
 {
 private readonly IBrainstormSessionRepository _sessionRepository;

 public SessionController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 public async Task<IActionResult> Index(int? id)
 {
 if (!id.HasValue)
 {
 return RedirectToAction(actionName: nameof(Index), controllerName: "Home");
 }

 var session = await _sessionRepository.GetByIdAsync(id.Value);
 if (session == null)
 {
 return Content("Session not found.");
 }

 var viewModel = new StormSessionViewModel()
 {
 DateCreated = session.DateCreated,
 Name = session.Name,
 Id = session.Id
 };

 return View(viewModel);
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Moq;
using TestingControllersSample.Controllers;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using TestingControllersSample.ViewModels;
using Xunit;

namespace TestingControllersSample.Tests.UnitTests
{
 public class SessionControllerTests
 {
 [Fact]
 public async Task IndexReturnsARedirectToIndexHomeWhenIdIsNull()
 {
 // Arrange
 var controller = new SessionController(sessionRepository: null);

 // Act

The controller action has three cases to test, one for each return statement:

 var result = await controller.Index(id: null);

 // Assert
 var redirectToActionResult = Assert.IsType<RedirectToActionResult>(result);
 Assert.Equal("Home", redirectToActionResult.ControllerName);
 Assert.Equal("Index", redirectToActionResult.ActionName);
 }

 [Fact]
 public async Task IndexReturnsContentWithSessionNotFoundWhenSessionNotFound()
 {
 // Arrange
 int testSessionId = 1;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .Returns(Task.FromResult((BrainstormSession)null));
 var controller = new SessionController(mockRepo.Object);

 // Act
 var result = await controller.Index(testSessionId);

 // Assert
 var contentResult = Assert.IsType<ContentResult>(result);
 Assert.Equal("Session not found.", contentResult.Content);
 }

 [Fact]
 public async Task IndexReturnsViewResultWithStormSessionViewModel()
 {
 // Arrange
 int testSessionId = 1;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .Returns(Task.FromResult(GetTestSessions().FirstOrDefault(s => s.Id == testSessionId)));
 var controller = new SessionController(mockRepo.Object);

 // Act
 var result = await controller.Index(testSessionId);

 // Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsType<StormSessionViewModel>(viewResult.ViewData.Model);
 Assert.Equal("Test One", model.Name);
 Assert.Equal(2, model.DateCreated.Day);
 Assert.Equal(testSessionId, model.Id);
 }

 private List<BrainstormSession> GetTestSessions()
 {
 var sessions = new List<BrainstormSession>();
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 2),
 Id = 1,
 Name = "Test One"
 });
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 1),
 Id = 2,
 Name = "Test Two"
 });
 return sessions;
 }
 }
}

using System;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using TestingControllersSample.ClientModels;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;

namespace TestingControllersSample.Api
{
 [Route("api/ideas")]
 public class IdeasController : Controller
 {
 private readonly IBrainstormSessionRepository _sessionRepository;

 public IdeasController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 [HttpGet("forsession/{sessionId}")]
 public async Task<IActionResult> ForSession(int sessionId)
 {
 var session = await _sessionRepository.GetByIdAsync(sessionId);
 if (session == null)
 {
 return NotFound(sessionId);
 }

 var result = session.Ideas.Select(idea => new IdeaDTO()
 {
 Id = idea.Id,
 Name = idea.Name,
 Description = idea.Description,
 DateCreated = idea.DateCreated
 }).ToList();

 return Ok(result);
 }

 [HttpPost("create")]
 public async Task<IActionResult> Create([FromBody]NewIdeaModel model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var session = await _sessionRepository.GetByIdAsync(model.SessionId);
 if (session == null)
 {
 return NotFound(model.SessionId);
 }

 var idea = new Idea()
 {
 DateCreated = DateTimeOffset.Now,
 Description = model.Description,
 Name = model.Name
 };
 session.AddIdea(idea);

 await _sessionRepository.UpdateAsync(session);

 return Ok(session);

The app exposes functionality as a web API (a list of ideas associated with a brainstorming session and a method
for adding new ideas to a session):

 return Ok(session);
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Moq;
using TestingControllersSample.Api;
using TestingControllersSample.ClientModels;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using Xunit;

namespace TestingControllersSample.Tests.UnitTests
{
 public class ApiIdeasControllerTests
 {
 [Fact]
 public async Task Create_ReturnsBadRequest_GivenInvalidModel()
 {
 // Arrange & Act
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);
 controller.ModelState.AddModelError("error","some error");

 // Act
 var result = await controller.Create(model: null);

 // Assert
 Assert.IsType<BadRequestObjectResult>(result);
 }

 [Fact]
 public async Task Create_ReturnsHttpNotFound_ForInvalidSession()
 {
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .Returns(Task.FromResult((BrainstormSession)null));
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.Create(new NewIdeaModel());

 // Assert
 Assert.IsType<NotFoundObjectResult>(result);
 }

 [Fact]
 public async Task Create_ReturnsNewlyCreatedIdeaForSession()
 {
 // Arrange
 int testSessionId = 123;

The ForSession method returns a list of IdeaDTO types. Avoid returning your business domain entities directly
via API calls, since frequently they include more data than the API client requires, and they unnecessarily couple
your app's internal domain model with the API you expose externally. Mapping between domain entities and the
types you will return over the wire can be done manually (using a L INQ Select as shown here) or using a
library like AutoMapper

The unit tests for the Create and ForSession API methods:

https://github.com/AutoMapper/AutoMapper

 string testName = "test name";
 string testDescription = "test description";
 var testSession = GetTestSession();
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .Returns(Task.FromResult(testSession));
 var controller = new IdeasController(mockRepo.Object);

 var newIdea = new NewIdeaModel()
 {
 Description = testDescription,
 Name = testName,
 SessionId = testSessionId
 };
 mockRepo.Setup(repo => repo.UpdateAsync(testSession))
 .Returns(Task.CompletedTask)
 .Verifiable();

 // Act
 var result = await controller.Create(newIdea);

 // Assert
 var okResult = Assert.IsType<OkObjectResult>(result);
 var returnSession = Assert.IsType<BrainstormSession>(okResult.Value);
 mockRepo.Verify();
 Assert.Equal(2, returnSession.Ideas.Count());
 Assert.Equal(testName, returnSession.Ideas.LastOrDefault().Name);
 Assert.Equal(testDescription, returnSession.Ideas.LastOrDefault().Description);
 }

 private BrainstormSession GetTestSession()
 {
 var session = new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 2),
 Id = 1,
 Name = "Test One"
 };

 var idea = new Idea() { Name = "One" };
 session.AddIdea(idea);
 return session;
 }
 }
}

Integration testing

As stated previously, to test the behavior of the method when ModelState is invalid, add a model error to the
controller as part of the test. Don't try to test model validation or model binding in your unit tests - just test your
action method's behavior when confronted with a particular ModelState value.

The second test depends on the repository returning null, so the mock repository is configured to return null.
There's no need to create a test database (in memory or otherwise) and construct a query that will return this
result - it can be done in a single statement as shown.

The last test verifies that the repository's Update method is called. As we did previously, the mock is called with
Verifiable and then the mocked repository's Verify method is called to confirm the verifiable method was

executed. It's not a unit test responsibility to ensure that the Update method saved the data; that can be done
with an integration test.

Integration tests is done to ensure separate modules within your app work correctly together. Generally, anything
you can test with a unit test, you can also test with an integration test, but the reverse isn't true. However,

Application stateApplication state

using System;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using TestingControllersSample.Core.Interfaces;
using TestingControllersSample.Core.Model;
using TestingControllersSample.Infrastructure;

namespace TestingControllersSample
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<AppDbContext>(
 optionsBuilder => optionsBuilder.UseInMemoryDatabase("InMemoryDb"));

 services.AddMvc();

 services.AddScoped<IBrainstormSessionRepository,
 EFStormSessionRepository>();
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 if (env.IsDevelopment())
 {
 var repository = app.ApplicationServices.GetService<IBrainstormSessionRepository>();
 InitializeDatabaseAsync(repository).Wait();
 }

integration tests tend to be much slower than unit tests. Thus, it's best to test whatever you can with unit tests,
and use integration tests for scenarios that involve multiple collaborators.

Although they may still be useful, mock objects are rarely used in integration tests. In unit testing, mock objects
are an effective way to control how collaborators outside of the unit being tested should behave for the purposes
of the test. In an integration test, real collaborators are used to confirm the whole subsystem works together
correctly.

One important consideration when performing integration testing is how to set your app's state. Tests need to
run independent of one another, and so each test should start with the app in a known state. If your app doesn't
use a database or have any persistence, this may not be an issue. However, most real-world apps persist their
state to some kind of data store, so any modifications made by one test could impact another test unless the data
store is reset. Using the built-in TestServer , it's very straightforward to host ASP.NET Core apps within our
integration tests, but that doesn't necessarily grant access to the data it will use. If you're using an actual
database, one approach is to have the app connect to a test database, which your tests can access and ensure is
reset to a known state before each test executes.

In this sample application, I'm using Entity Framework Core's InMemoryDatabase support, so I can't just connect
to it from my test project. Instead, I expose an InitializeDatabase method from the app's Startup class, which I
call when the app starts up if it's in the Development environment. My integration tests automatically benefit
from this as long as they set the environment to Development . I don't have to worry about resetting the database,
since the InMemoryDatabase is reset each time the app restarts.

The Startup class:

 app.UseStaticFiles();

 app.UseMvcWithDefaultRoute();
 }

 public async Task InitializeDatabaseAsync(IBrainstormSessionRepository repo)
 {
 var sessionList = await repo.ListAsync();
 if (!sessionList.Any())
 {
 await repo.AddAsync(GetTestSession());
 }
 }

 public static BrainstormSession GetTestSession()
 {
 var session = new BrainstormSession()
 {
 Name = "Test Session 1",
 DateCreated = new DateTime(2016, 8, 1)
 };
 var idea = new Idea()
 {
 DateCreated = new DateTime(2016, 8, 1),
 Description = "Totally awesome idea",
 Name = "Awesome idea"
 };
 session.AddIdea(idea);
 return session;
 }
 }
}

Accessing viewsAccessing views

The view 'Index' wasn't found. The following locations were searched:
(list of locations)

using System;
using System.IO;
using System.Net.Http;
using System.Reflection;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Mvc.ApplicationParts;
using Microsoft.AspNetCore.Mvc.Controllers;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.TestHost;
using Microsoft.Extensions.DependencyInjection;

namespace TestingControllersSample.Tests.IntegrationTests
{
 /// <summary>
 /// A test fixture which hosts the target project (project we wish to test) in an in-memory server.
 /// </summary>
 /// <typeparam name="TStartup">Target project's startup type</typeparam>

You'll see the GetTestSession method used frequently in the integration tests below.

Each integration test class configures the TestServer that will run the ASP.NET Core app. By default, TestServer

hosts the web app in the folder where it's running - in this case, the test project folder. Thus, when you attempt to
test controller actions that return ViewResult , you may see this error :

To correct this issue, you need to configure the server's content root, so it can locate the views for the project
being tested. This is done by a call to UseContentRoot in the TestFixture class, shown below:

 /// <typeparam name="TStartup">Target project's startup type</typeparam>
 public class TestFixture<TStartup> : IDisposable
 {
 private readonly TestServer _server;

 public TestFixture()
 : this(Path.Combine("src"))
 {
 }

 protected TestFixture(string relativeTargetProjectParentDir)
 {
 var startupAssembly = typeof(TStartup).GetTypeInfo().Assembly;
 var contentRoot = GetProjectPath(relativeTargetProjectParentDir, startupAssembly);

 var builder = new WebHostBuilder()
 .UseContentRoot(contentRoot)
 .ConfigureServices(InitializeServices)
 .UseEnvironment("Development")
 .UseStartup(typeof(TStartup));

 _server = new TestServer(builder);

 Client = _server.CreateClient();
 Client.BaseAddress = new Uri("http://localhost");
 }

 public HttpClient Client { get; }

 public void Dispose()
 {
 Client.Dispose();
 _server.Dispose();
 }

 protected virtual void InitializeServices(IServiceCollection services)
 {
 var startupAssembly = typeof(TStartup).GetTypeInfo().Assembly;

 // Inject a custom application part manager.
 // Overrides AddMvcCore() because it uses TryAdd().
 var manager = new ApplicationPartManager();
 manager.ApplicationParts.Add(new AssemblyPart(startupAssembly));
 manager.FeatureProviders.Add(new ControllerFeatureProvider());
 manager.FeatureProviders.Add(new ViewComponentFeatureProvider());

 services.AddSingleton(manager);
 }

 /// <summary>
 /// Gets the full path to the target project that we wish to test
 /// </summary>
 /// <param name="projectRelativePath">
 /// The parent directory of the target project.
 /// e.g. src, samples, test, or test/Websites
 /// </param>
 /// <param name="startupAssembly">The target project's assembly.</param>
 /// <returns>The full path to the target project.</returns>
 private static string GetProjectPath(string projectRelativePath, Assembly startupAssembly)
 {
 // Get name of the target project which we want to test
 var projectName = startupAssembly.GetName().Name;

 // Get currently executing test project path
 var applicationBasePath = System.AppContext.BaseDirectory;

 // Find the path to the target project
 var directoryInfo = new DirectoryInfo(applicationBasePath);
 do
 {

 {
 directoryInfo = directoryInfo.Parent;

 var projectDirectoryInfo = new DirectoryInfo(Path.Combine(directoryInfo.FullName,
projectRelativePath));
 if (projectDirectoryInfo.Exists)
 {
 var projectFileInfo = new FileInfo(Path.Combine(projectDirectoryInfo.FullName,
projectName, $"{projectName}.csproj"));
 if (projectFileInfo.Exists)
 {
 return Path.Combine(projectDirectoryInfo.FullName, projectName);
 }
 }
 }
 while (directoryInfo.Parent != null);

 throw new Exception($"Project root could not be located using the application root
{applicationBasePath}.");
 }
 }
}

The TestFixture class is responsible for configuring and creating the TestServer , setting up an HttpClient to
communicate with the TestServer . Each of the integration tests uses the Client property to connect to the test
server and make a request.

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
using Xunit;

namespace TestingControllersSample.Tests.IntegrationTests
{
 public class HomeControllerTests : IClassFixture<TestFixture<TestingControllersSample.Startup>>
 {
 private readonly HttpClient _client;

 public HomeControllerTests(TestFixture<TestingControllersSample.Startup> fixture)
 {
 _client = fixture.Client;
 }

 [Fact]
 public async Task ReturnsInitialListOfBrainstormSessions()
 {
 // Arrange - get a session known to exist
 var testSession = Startup.GetTestSession();

 // Act
 var response = await _client.GetAsync("/");

 // Assert
 response.EnsureSuccessStatusCode();
 var responseString = await response.Content.ReadAsStringAsync();
 Assert.Contains(testSession.Name, responseString);
 }

 [Fact]
 public async Task PostAddsNewBrainstormSession()
 {
 // Arrange
 string testSessionName = Guid.NewGuid().ToString();
 var data = new Dictionary<string, string>();
 data.Add("SessionName", testSessionName);
 var content = new FormUrlEncodedContent(data);

 // Act
 var response = await _client.PostAsync("/", content);

 // Assert
 Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
 Assert.Equal("/", response.Headers.Location.ToString());
 }
 }
}

API methodsAPI methods

In the first test above, the responseString holds the actual rendered HTML from the View, which can be
inspected to confirm it contains expected results.

The second test constructs a form POST with a unique session name and POSTs it to the app, then verifies that
the expected redirect is returned.

If your app exposes web APIs, it's a good idea to have automated tests confirm they execute as expected. The
built-in TestServer makes it easy to test web APIs. If your API methods are using model binding, you should
always check ModelState.IsValid , and integration tests are the right place to confirm that your model validation
is working properly.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
using Newtonsoft.Json;
using TestingControllersSample.ClientModels;
using TestingControllersSample.Core.Model;
using Xunit;

namespace TestingControllersSample.Tests.IntegrationTests
{
 public class ApiIdeasControllerTests : IClassFixture<TestFixture<TestingControllersSample.Startup>>
 {
 internal class NewIdeaDto
 {
 public NewIdeaDto(string name, string description, int sessionId)
 {
 Name = name;
 Description = description;
 SessionId = sessionId;
 }

 public string Name { get; set; }
 public string Description { get; set; }
 public int SessionId { get; set; }
 }

 private readonly HttpClient _client;

 public ApiIdeasControllerTests(TestFixture<TestingControllersSample.Startup> fixture)
 {
 _client = fixture.Client;
 }

 [Fact]
 public async Task CreatePostReturnsBadRequestForMissingNameValue()
 {
 // Arrange
 var newIdea = new NewIdeaDto("", "Description", 1);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.BadRequest, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsBadRequestForMissingDescriptionValue()
 {
 // Arrange
 var newIdea = new NewIdeaDto("Name", "", 1);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.BadRequest, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsBadRequestForSessionIdValueTooSmall()
 {
 // Arrange

The following set of tests target the Create method in the IdeasController class shown above:

 // Arrange
 var newIdea = new NewIdeaDto("Name", "Description", 0);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.BadRequest, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsBadRequestForSessionIdValueTooLarge()
 {
 // Arrange
 var newIdea = new NewIdeaDto("Name", "Description", 1000001);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.BadRequest, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsNotFoundForInvalidSession()
 {
 // Arrange
 var newIdea = new NewIdeaDto("Name", "Description", 123);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 Assert.Equal(HttpStatusCode.NotFound, response.StatusCode);
 }

 [Fact]
 public async Task CreatePostReturnsCreatedIdeaWithCorrectInputs()
 {
 // Arrange
 var testIdeaName = Guid.NewGuid().ToString();
 var newIdea = new NewIdeaDto(testIdeaName, "Description", 1);

 // Act
 var response = await _client.PostAsJsonAsync("/api/ideas/create", newIdea);

 // Assert
 response.EnsureSuccessStatusCode();
 var returnedSession = await response.Content.ReadAsJsonAsync<BrainstormSession>();
 Assert.Equal(2, returnedSession.Ideas.Count);
 Assert.Contains(testIdeaName, returnedSession.Ideas.Select(i => i.Name).ToList());
 }

 [Fact]
 public async Task ForSessionReturnsNotFoundForBadSessionId()
 {
 // Arrange & Act
 var response = await _client.GetAsync("/api/ideas/forsession/500");

 // Assert
 Assert.Equal(HttpStatusCode.NotFound, response.StatusCode);
 }

 [Fact]
 public async Task ForSessionReturnsIdeasForValidSessionId()
 {
 // Arrange
 var testSession = Startup.GetTestSession();

 // Act

 // Act
 var response = await _client.GetAsync("/api/ideas/forsession/1");

 // Assert
 response.EnsureSuccessStatusCode();
 var ideaList = JsonConvert.DeserializeObject<List<IdeaDTO>>(
 await response.Content.ReadAsStringAsync());
 var firstIdea = ideaList.First();
 Assert.Equal(testSession.Ideas.First().Name, firstIdea.Name);
 }
 }
}

Unlike integration tests of actions that returns HTML views, web API methods that return results can usually be
deserialized as strongly typed objects, as the last test above shows. In this case, the test deserializes the result to a
BrainstormSession instance, and confirms that the idea was correctly added to its collection of ideas.

You'll find additional examples of integration tests in this article's sample project.

https://github.com/aspnet/Docs/tree/master/aspnetcore/mvc/controllers/testing/sample

Troubleshoot ASP.NET Core projects
6/14/2018 • 2 minutes to read • Edit Online

.NET Core SDK warnings
Both the 32 bit and 64 bit versions of the .NET Core SDK are installedBoth the 32 bit and 64 bit versions of the .NET Core SDK are installed

By Rick Anderson

The following links provide troubleshooting guidance:

Troubleshoot ASP.NET Core on Azure App Service
Troubleshoot ASP.NET Core on IIS
Common errors reference for Azure App Service and IIS with ASP.NET Core
NDC Conference (London, 2018): Diagnosing issues in ASP.NET Core Applications
ASP.NET Blog: Troubleshooting ASP.NET Core Performance Problems

In the New Project dialog for ASP.NET Core, you may see the following warning:

Both 32 and 64 bit versions of the .NET Core SDK are installed. Only templates from the 64 bit version(s)
installed at 'C:\Program Files\dotnet\sdk\' will be displayed.

This warning appears when both 32-bit (x86) and 64-bit (x64) versions of the .NET Core SDK are installed.
Common reasons both versions may be installed include:

You originally downloaded the .NET Core SDK installer using a 32-bit machine but then copied it across and
installed it on a 64-bit machine.
The 32-bit .NET Core SDK was installed by another application.

https://github.com/aspnet/Docs/blob/master/aspnetcore/test/troubleshoot.md
https://twitter.com/RickAndMSFT
https://www.youtube.com/watch?v=RYI0DHoIVaA
https://blogs.msdn.microsoft.com/webdev/2018/05/23/asp-net-core-performance-improvements/
https://www.microsoft.com/net/download/all

The .NET Core SDK is installed in multiple locationsThe .NET Core SDK is installed in multiple locations

No .NET Core SDKs were detectedNo .NET Core SDKs were detected

The wrong version was downloaded and installed.

Uninstall the 32-bit .NET Core SDK to prevent this warning. Uninstall from Control Panel > Programs and
Features > Uninstall or change a program. If you understand why the warning occurs and its implications, you
can ignore the warning.

In the New Project dialog for ASP.NET Core, you may see the following warning:

The .NET Core SDK is installed in multiple locations. Only templates from the SDK(s) installed at 'C:\Program
Files\dotnet\sdk\' will be displayed.

You see this message when you have at least one installation of the .NET Core SDK in a directory outside of
C:\Program Files\dotnet\sdk\. Usually this happens when the .NET Core SDK has been deployed on a machine
using copy/paste instead of the MSI installer.

Uninstall the 32-bit .NET Core SDK to prevent this warning. Uninstall from Control Panel > Programs and
Features > Uninstall or change a program. If you understand why the warning occurs and its implications, you
can ignore the warning.

In the New Project dialog for ASP.NET Core, you may see the following warning:

No .NET Core SDKs were detected, ensure they are included in the environment variable 'PATH'.

Use of IHtmlHelper.Partial may result in app deadlocksUse of IHtmlHelper.Partial may result in app deadlocks

This warning appears when the environment variable PATH doesn't point to any .NET Core SDKs on the machine.
To resolve this problem:

Install or verify the .NET Core SDK is installed.
Verify the PATH environment variable points to the location the SDK is installed. The installer normally sets the
PATH .

In ASP.NET Core 2.1 and later, calling Html.Partial results in an analyzer warning due to the potential for
deadlocks. The warning message is:

Use of IHtmlHelper.Partial may result in application deadlocks. Consider using <partial> Tag Helper or
IHtmlHelper.PartialAsync .

Calls to @Html.Partial should be replaced by @await Html.PartialAsync or the partial tag helper
<partial name="_Partial" /> .

Work with data in ASP.NET Core
4/10/2018 • 2 minutes to read • Edit Online

Get started with Razor Pages and Entity Framework Core using Visual Studio

Get started with Razor Pages and EF
Create, Read, Update, and Delete operations
Sort, filter, page, and group
Migrations
Create a complex data model
Read related data
Update related data
Handle concurrency conflicts

Get started with ASP.NET Core MVC and Entity Framework Core using Visual Studio

Get started
Create, Read, Update, and Delete operations
Sort, filter, page, and group
Migrations
Create a complex data model
Read related data
Update related data
Handle concurrency conflicts
Inheritance
Advanced topics

ASP.NET Core with EF Core - new database (Entity Framework Core documentation site)

ASP.NET Core with EF Core - existing database (Entity Framework Core documentation site)

Get started with ASP.NET Core and Entity Framework 6

Azure Storage

Add Azure Storage by using Visual Studio Connected Services
Get started with Azure Blob storage and Visual Studio Connected Services
Get started with Queue Storage and Visual Studio Connected Services
Get started with Azure Table Storage and Visual Studio Connected Services

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/index.md
https://docs.microsoft.com/ef/core/get-started/aspnetcore/new-db
https://docs.microsoft.com/ef/core/get-started/aspnetcore/existing-db
https://azure.microsoft.com/documentation/articles/vs-azure-tools-connected-services-storage/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-blobs/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-queues/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-tables/

Razor Pages with Entity Framework Core in
ASP.NET Core - Tutorial 1 of 8
6/18/2018 • 17 minutes to read • Edit Online

Prerequisites

Troubleshooting

TIPTIP

The Contoso University web app

By Tom Dykstra and Rick Anderson

The Contoso University sample web app demonstrates how to create ASP.NET Core 2.0 MVC web
applications using Entity Framework (EF) Core 2.0 and Visual Studio 2017.

The sample app is a web site for a fictional Contoso University. It includes functionality such as student
admission, course creation, and instructor assignments. This page is the first in a series of tutorials that explain
how to build the Contoso University sample app.

Download or view the completed app. Download instructions.

Install one of the following:

CLI tooling: Windows, Linux, or macOS: .NET Core SDK 2.0 or later
IDE/editor tooling

Windows: Visual Studio for Windows

Linux: Visual Studio Code
macOS: Visual Studio for Mac

ASP.NET and web development workload
.NET Core cross-platform development workload

Familiarity with Razor Pages. New programmers should complete Get started with Razor Pages before
starting this series.

If you run into a problem you can't resolve, you can generally find the solution by comparing your code to the
completed stage. For a list of common errors and how to solve them, see the Troubleshooting section of the
last tutorial in the series. If you don't find what you need there, you can post a question to StackOverflow.com
for ASP.NET Core or EF Core.

This series of tutorials builds on what is done in earlier tutorials. Consider saving a copy of the project after each
successful tutorial completion. If you run into problems, you can start over from the previous tutorial instead of going
back to the beginning. Alternatively, you can download a completed stage and start over using the completed stage.

The app built in these tutorials is a basic university web site.

Users can view and update student, course, and instructor information. Here are a few of the screens created
in the tutorial.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-rp/intro.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/linux
https://www.microsoft.com/net/download/macos
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots

The UI style of this site is close to what's generated by the built-in templates. The tutorial focus is on EF Core

Create a Razor Pages web app

Set up the site style

with Razor Pages, not the UI.

From the Visual Studio File menu, select New > Project.
Create a new ASP.NET Core Web Application. Name the project ContosoUniversity. It's important to
name the project ContosoUniversity so the namespaces match when code is copy/pasted.

Select ASP.NET Core 2.0 in the dropdown, and then select Web Application.

Press F5 to run the app in debug mode or Ctrl-F5 to run without attaching the debugger

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Contoso University</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet"
href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-page="/Index" class="navbar-brand">Contoso University
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-page="/Index">Home
 <a asp-page="/About">About
 <a asp-page="/Students/Index">Students
 <a asp-page="/Courses/Index">Courses
 <a asp-page="/Instructors/Index">Instructors
 <a asp-page="/Departments/Index">Departments

 </div>
 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - Contoso University</p>
 </footer>
 </div>

A few changes set up the site menu, layout, and home page.

Open Pages/_Layout.cshtml and make the following changes:

Change each occurrence of "ContosoUniversity" to "Contoso University." There are three occurrences.

Add menu entries for Students, Courses, Instructors, and Departments, and delete the Contact
menu entry.

The changes are highlighted. (All the markup is not displayed.)

In Pages/Index.cshtml, replace the contents of the file with the following code to replace the text about

@page
@model IndexModel
@{
 ViewData["Title"] = "Home page";
}

<div class="jumbotron">
 <h1>Contoso University</h1>
</div>
<div class="row">
 <div class="col-md-4">
 <h2>Welcome to Contoso University</h2>
 <p>
 Contoso University is a sample application that
 demonstrates how to use Entity Framework Core in an
 ASP.NET Core Razor Pages web app.
 </p>
 </div>
 <div class="col-md-4">
 <h2>Build it from scratch</h2>
 <p>You can build the application by following the steps in a series of tutorials.</p>
 <p><a class="btn btn-default"
 href="https://docs.microsoft.com/aspnet/core/data/ef-rp/intro">
 See the tutorial »</p>
 </div>
 <div class="col-md-4">
 <h2>Download it</h2>
 <p>You can download the completed project from GitHub.</p>
 <p><a class="btn btn-default"
 href="https://github.com/aspnet/Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu-
final">
 See project source code »</p>
 </div>
</div>

ASP.NET and MVC with text about this app:

Press CTRL+F5 to run the project. The home page is displayed with tabs created in the following tutorials:

Create the data model
Create entity classes for the Contoso University app. Start with the following three entities:

There's a one-to-many relationship between Student and Enrollment entities. There's a one-to-many
relationship between Course and Enrollment entities. A student can enroll in any number of courses. A
course can have any number of students enrolled in it.

In the following sections, a class for each one of these entities is created.

The Student entityThe Student entity

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
public class Student
{
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
}
}

The Enrollment entityThe Enrollment entity

Create a Models folder. In the Models folder, create a class file named Student.cs with the following code:

The ID property becomes the primary key column of the database (DB) table that corresponds to this class.
By default, EF Core interprets a property that's named ID or classnameID as the primary key. In classnameID

, classname is the name of the class, such as Student in the preceding example.

The Enrollments property is a navigation property. Navigation properties link to other entities that are
related to this entity. In this case, the Enrollments property of a Student entity holds all of the Enrollment

entities that are related to that Student . For example, if a Student row in the DB has two related Enrollment
rows, the Enrollments navigation property contains those two Enrollment entities. A related Enrollment row
is a row that contains that student's primary key value in the StudentID column. For example, suppose the
student with ID=1 has two rows in the Enrollment table. The Enrollment table has two rows with StudentID

= 1. StudentID is a foreign key in the Enrollment table that specifies the student in the Student table.

If a navigation property can hold multiple entities, the navigation property must be a list type, such as
ICollection<T> . ICollection<T> can be specified, or a type such as List<T> or HashSet<T> . When
ICollection<T> is used, EF Core creates a HashSet<T> collection by default. Navigation properties that hold

multiple entities come from many-to-many and one-to-many relationships.

In the Models folder, create Enrollment.cs with the following code:

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

The Course entityThe Course entity

The EnrollmentID property is the primary key. This entity uses the classnameID pattern instead of ID like the
Student entity. Typically developers choose one pattern and use it throughout the data model. In a later

tutorial, using ID without classname is shown to make it easier to implement inheritance in the data model.

The Grade property is an enum . The question mark after the Grade type declaration indicates that the Grade

property is nullable. A grade that's null is different from a zero grade -- null means a grade isn't known or
hasn't been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student . An
Enrollment entity is associated with one Student entity, so the property contains a single Student entity. The
Student entity differs from the Student.Enrollments navigation property, which contains multiple
Enrollment entities.

The CourseID property is a foreign key, and the corresponding navigation property is Course . An
Enrollment entity is associated with one Course entity.

EF Core interprets a property as a foreign key if it's named
<navigation property name><primary key property name> . For example, StudentID for the Student navigation

property, since the Student entity's primary key is ID . Foreign key properties can also be named
<primary key property name> . For example, CourseID since the Course entity's primary key is CourseID .

In the Models folder, create Course.cs with the following code:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Create the SchoolContext DB context

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 }
}

The Enrollments property is a navigation property. A Course entity can be related to any number of
Enrollment entities.

The DatabaseGenerated attribute allows the app to specify the primary key rather than having the DB generate
it.

The main class that coordinates EF Core functionality for a given data model is the DB context class. The data
context is derived from Microsoft.EntityFrameworkCore.DbContext . The data context specifies which entities are
included in the data model. In this project, the class is named SchoolContext .

In the project folder, create a folder named Data.

In the Data folder create SchoolContext.cs with the following code:

This code creates a DbSet property for each entity set. In EF Core terminology:

An entity set typically corresponds to a DB table.
An entity corresponds to a row in the table.

DbSet<Enrollment> and DbSet<Course> can be omitted. EF Core includes them implicitly because the Student

entity references the Enrollment entity, and the Enrollment entity references the Course entity. For this
tutorial, keep DbSet<Enrollment> and DbSet<Course> in the SchoolContext .

When the DB is created, EF Core creates tables that have names the same as the DbSet property names.
Property names for collections are typically plural (Students rather than Student). Developers disagree about

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 }
 }
}

Register the context with dependency injection

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<SchoolContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddMvc();
}

using ContosoUniversity.Data;
using Microsoft.EntityFrameworkCore;

whether table names should be plural. For these tutorials, the default behavior is overridden by specifying
singular table names in the DbContext. To specify singular table names, add the following highlighted code:

ASP.NET Core includes dependency injection. Services (such as the EF Core DB context) are registered with
dependency injection during application startup. Components that require these services (such as Razor
Pages) are provided these services via constructor parameters. The constructor code that gets a db context
instance is shown later in the tutorial.

To register SchoolContext as a service, open Startup.cs, and add the highlighted lines to the
ConfigureServices method.

The name of the connection string is passed in to the context by calling a method on a
DbContextOptionsBuilder object. For local development, the ASP.NET Core configuration system reads the

connection string from the appsettings.json file.

Add using statements for ContosoUniversity.Data and Microsoft.EntityFrameworkCore namespaces. Build the
project.

Open the appsettings.json file and add a connection string as shown in the following code:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity1;ConnectRetryCount=0;Trusted_Connection=True;MultipleAc
tiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

SQL Server Express LocalDBSQL Server Express LocalDB

Add code to initialize the DB with test data

using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2005-09-
01")},
 new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2002-09-
01")},
 new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2003-09-
01")},
 new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2002-09-
01")},
 new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2001-09-
01")},
 new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2003-09-
01")},
 new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2005-09-
01")}
 };

The preceding connection string uses ConnectRetryCount=0 to prevent SQLClient from hanging.

The connection string specifies a SQL Server LocalDB DB. LocalDB is a lightweight version of the SQL Server
Express Database Engine and is intended for app development, not production use. LocalDB starts on
demand and runs in user mode, so there's no complex configuration. By default, LocalDB creates .mdf DB files
in the C:/Users/<user> directory.

EF Core creates an empty DB. In this section, a Seed method is written to populate it with test data.

In the Data folder, create a new class file named DbInitializer.cs and add the following code:

https://docs.microsoft.com/dotnet/framework/data/adonet/ef/sqlclient-for-the-entity-framework

 };
 foreach (Student s in students)
 {
 context.Students.Add(s);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course{CourseID=1050,Title="Chemistry",Credits=3},
 new Course{CourseID=4022,Title="Microeconomics",Credits=3},
 new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
 new Course{CourseID=1045,Title="Calculus",Credits=4},
 new Course{CourseID=3141,Title="Trigonometry",Credits=4},
 new Course{CourseID=2021,Title="Composition",Credits=3},
 new Course{CourseID=2042,Title="Literature",Credits=4}
 };
 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
 new Enrollment{StudentID=3,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
 new Enrollment{StudentID=6,CourseID=1045},
 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
 };
 foreach (Enrollment e in enrollments)
 {
 context.Enrollments.Add(e);
 }
 context.SaveChanges();
 }
 }
}

The code checks if there are any students in the DB. If there are no students in the DB, the DB is seeded with
test data. It loads test data into arrays rather than List<T> collections to optimize performance.

The EnsureCreated method automatically creates the DB for the DB context. If the DB exists, EnsureCreated

returns without modifying the DB.

In Program.cs, modify the Main method to do the following:

Get a DB context instance from the dependency injection container.
Call the seed method, passing to it the context.
Dispose the context when the seed method completes.

The following code shows the updated Program.cs file.

// Unused usings removed
using System;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Data;

namespace ContosoUniversity
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 DbInitializer.Initialize(context);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred while seeding the database.");
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Add scaffold tooling

Install-Package Microsoft.VisualStudio.Web.CodeGeneration.Design
Install-Package Microsoft.VisualStudio.Web.CodeGeneration.Utils

The first time the app is run, the DB is created and seeded with test data. When the data model is updated:

Delete the DB.
Update the seed method.
Run the app and a new seeded DB is created.

In later tutorials, the DB is updated when the data model changes, without deleting and re-creating the DB.

In this section, the Package Manager Console (PMC) is used to add the Visual Studio web code generation
package. This package is required to run the scaffolding engine.

From the Tools menu, select NuGet Package Manager > Package Manager Console.

In the Package Manager Console (PMC), enter the following commands:

The previous command adds the NuGet packages to the *.csproj file:

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Utils" Version="2.0.0" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />
 </ItemGroup>
</Project>

Scaffold the model

dotnet restore
dotnet tool install --global dotnet-aspnet-codegenerator --version 2.1.0
dotnet aspnet-codegenerator razorpage -m Student -dc SchoolContext -udl -outDir Pages\Students --
referenceScriptLibraries

No executable found matching command "dotnet-aspnet-codegenerator"

PARAMETER DESCRIPTION

-m The name of the model.

-dc The data context.

-udl Use the default layout.

-outDir The relative output folder path to create the views.

--referenceScriptLibraries Adds _ValidationScriptsPartial to Edit and Create
pages

Open a command window in the project directory (The directory that contains the Program.cs, Startup.cs,
and .csproj files).
Run the following commands:

If you get the error :

Open a command window in the project directory (The directory that contains the Program.cs, Startup.cs, and
.csproj files).

Build the project. The build generates errors like the following:

1>Pages\Students\Index.cshtml.cs(26,38,26,45): error CS1061: 'SchoolContext' does not contain a definition
for 'Student'

Globally change _context.Student to _context.Students (that is, add an "s" to Student). 7 occurrences are
found and updated. We hope to fix this bug in the next release.

 The following table details the ASP.NET Core code generators` parameters:

Use the h switch to get help on the aspnet-codegenerator razorpage command:

https://github.com/aspnet/Scaffolding/issues/633

dotnet aspnet-codegenerator razorpage -h

Test the appTest the app

View the DB

Conventions

Run the app and select the Students link. Depending on the browser width, the Students link appears at the
top of the page. If the Students link isn't visible, click the navigation icon in the upper right corner.

Test the Create, Edit, and Details links.

When the app is started, DbInitializer.Initialize calls EnsureCreated . EnsureCreated detects if the DB
exists, and creates one if necessary. If there are no Students in the DB, the Initialize method adds students.

Open SQL Server Object Explorer (SSOX) from the View menu in Visual Studio. In SSOX, click
(localdb)\MSSQLLocalDB > Databases > ContosoUniversity1.

Expand the Tables node.

Right-click the Student table and click View Data to see the columns created and the rows inserted into the
table.

The .mdf and .ldf DB files are in the C:\Users\ folder.

EnsureCreated is called on app start, which allows the following work flow:

Delete the DB.
Change the DB schema (for example, add an EmailAddress field).
Run the app.

EnsureCreated creates a DB with the EmailAddress column.

The amount of code written in order for EF Core to create a complete DB is minimal because of the use of
conventions, or assumptions that EF Core makes.

The names of DbSet properties are used as table names. For entities not referenced by a DbSet

property, entity class names are used as table names.

Entity property names are used for column names.

 Asynchronous code

public async Task OnGetAsync()
{
 Student = await _context.Students.ToListAsync();
}

Entity properties that are named ID or classnameID are recognized as primary key properties.

A property is interpreted as a foreign key property if it's named (for example, StudentID for the
Student navigation property since the Student entity's primary key is ID). Foreign key properties

can be named (for example, EnrollmentID since the Enrollment entity's primary key is EnrollmentID).

Conventional behavior can be overridden. For example, the table names can be explicitly specified, as shown
earlier in this tutorial. The column names can be explicitly set. Primary keys and foreign keys can be explicitly
set.

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available threads
might be in use. When that happens, the server can't process new requests until the threads are freed up. With
synchronous code, many threads may be tied up while they aren't actually doing any work because they're
waiting for I/O to complete. With asynchronous code, when a process is waiting for I/O to complete, its thread
is freed up for the server to use for processing other requests. As a result, asynchronous code enables server
resources to be used more efficiently, and the server is enabled to handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time. For low traffic situations, the
performance hit is negligible, while for high traffic situations, the potential performance improvement is
substantial.

In the following code, the async keyword, Task<T> return value, await keyword, and ToListAsync method
make the code execute asynchronously.

The async keyword tells the compiler to:

Generate callbacks for parts of the method body.
Automatically create the Task object that's returned. For more information, see Task Return Type.

The implicit return type Task represents ongoing work.

The await keyword causes the compiler to split the method into two parts. The first part ends with the
operation that's started asynchronously. The second part is put into a callback method that's called
when the operation completes.

ToListAsync is the asynchronous version of the ToList extension method.

Some things to be aware of when writing asynchronous code that uses EF Core:

Only statements that cause queries or commands to be sent to the DB are executed asynchronously.
That includes, ToListAsync , SingleOrDefaultAsync , FirstOrDefaultAsync , and SaveChangesAsync . It
doesn't include statements that just change an IQueryable , such as
var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF Core context isn't thread safe: don't try to do multiple operations in parallel.

To take advantage of the performance benefits of async code, verify that library packages (such as for
paging) use async if they call EF Core methods that send queries to the DB.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task?view=netframework-4.7
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/async/async-return-types#BKMK_TaskReturnType

For more information about asynchronous programming in .NET, see Async Overview.

In the next tutorial, basic CRUD (create, read, update, delete) operations are examined.

N E X T

https://docs.microsoft.com/dotnet/articles/standard/async

ASP.NET Core MVC with EF Core - tutorial series
5/14/2018 • 2 minutes to read • Edit Online

This tutorial teaches ASP.NET Core MVC and Entity Framework Core with controllers and views. Razor Pages is a
new alternative in ASP.NET Core 2.0, a page-based programming model that makes building web UI easier and
more productive. We recommend the Razor Pages tutorial over the MVC version. The Razor Pages tutorial:

Is easier to follow.
Provides more EF Core best practices.
Uses more efficient queries.
Is more current with the latest API.
Covers more features.
Is the preferred approach for new application development.

If you choose this tutorial over the Razor Pages version, let us know why in this GitHub issue.

1. Get started
2. Create, Read, Update, and Delete operations
3. Sorting, filtering, paging, and grouping
4. Migrations
5. Create a complex data model
6. Reading related data
7. Updating related data
8. Handle concurrency conflicts
9. Inheritance

10. Advanced topics

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/ef-mvc/index.md
https://github.com/aspnet/Docs/issues/6146

Get Started with ASP.NET Core and Entity Framework
6
5/14/2018 • 3 minutes to read • Edit Online

Overview

Reference full framework and EF6 in the ASP.NET Core project

<PropertyGroup>
 <TargetFramework>net452</TargetFramework>
 <PreserveCompilationContext>true</PreserveCompilationContext>
 <AssemblyName>MVCCore</AssemblyName>
 <OutputType>Exe</OutputType>
 <PackageId>MVCCore</PackageId>
</PropertyGroup>

Handle connection strings

public class SchoolContext : DbContext
{
 public SchoolContext(string connString) : base(connString)
 {
 }

By Paweł Grudzień, Damien Pontifex, and Tom Dykstra

This article shows how to use Entity Framework 6 in an ASP.NET Core application.

To use Entity Framework 6, your project has to compile against .NET Framework, as Entity Framework 6 doesn't
support .NET Core. If you need cross-platform features you will need to upgrade to Entity Framework Core.

The recommended way to use Entity Framework 6 in an ASP.NET Core application is to put the EF6 context and
model classes in a class library project that targets the full framework. Add a reference to the class library from the
ASP.NET Core project. See the sample Visual Studio solution with EF6 and ASP.NET Core projects.

You can't put an EF6 context in an ASP.NET Core project because .NET Core projects don't support all of the
functionality that EF6 commands such as Enable-Migrations require.

Regardless of project type in which you locate your EF6 context, only EF6 command-line tools work with an EF6
context. For example, Scaffold-DbContext is only available in Entity Framework Core. If you need to do reverse
engineering of a database into an EF6 model, see Code First to an Existing Database.

Your ASP.NET Core project needs to reference .NET framework and EF6. For example, the .csproj file of your
ASP.NET Core project will look similar to the following example (only relevant parts of the file are shown).

When creating a new project, use the ASP.NET Core Web Application (.NET Framework) template.

The EF6 command-line tools that you'll use in the EF6 class library project require a default constructor so they
can instantiate the context. But you'll probably want to specify the connection string to use in the ASP.NET Core
project, in which case your context constructor must have a parameter that lets you pass in the connection string.
Here's an example.

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/entity-framework-6.md
https://github.com/pgrudzien12
https://github.com/DamienPontifex
https://github.com/tdykstra
https://docs.microsoft.com/ef/
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/entity-framework-6/sample/
https://msdn.microsoft.com/jj200620

public class SchoolContextFactory : IDbContextFactory<SchoolContext>
{
 public SchoolContext Create()
 {
 return new EF6.SchoolContext("Server=
(localdb)\\mssqllocaldb;Database=EF6MVCCore;Trusted_Connection=True;MultipleActiveResultSets=true");
 }
}

Set up dependency injection in the ASP.NET Core project

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();
 services.AddScoped<SchoolContext>(_ => new
SchoolContext(Configuration.GetConnectionString("DefaultConnection")));
}

public class StudentsController : Controller
{
 private readonly SchoolContext _context;

 public StudentsController(SchoolContext context)
 {
 _context = context;
 }

Sample application

Since your EF6 context doesn't have a parameterless constructor, your EF6 project has to provide an
implementation of IDbContextFactory. The EF6 command-line tools will find and use that implementation so they
can instantiate the context. Here's an example.

In this sample code, the IDbContextFactory implementation passes in a hard-coded connection string. This is the
connection string that the command-line tools will use. You'll want to implement a strategy to ensure that the class
library uses the same connection string that the calling application uses. For example, you could get the value from
an environment variable in both projects.

In the Core project's Startup.cs file, set up the EF6 context for dependency injection (DI) in ConfigureServices . EF
context objects should be scoped for a per-request lifetime.

You can then get an instance of the context in your controllers by using DI. The code is similar to what you'd write
for an EF Core context:

For a working sample application, see the sample Visual Studio solution that accompanies this article.

This sample can be created from scratch by the following steps in Visual Studio:

Create a solution.

Add New Project > Web > ASP.NET Core Web Application (.NET Framework)

Add New Project > Windows Classic Desktop > Class Library (.NET Framework)

In Package Manager Console (PMC) for both projects, run the command
Install-Package Entityframework .

https://msdn.microsoft.com/library/hh506876
https://github.com/aspnet/Docs/tree/master/aspnetcore/data/entity-framework-6/sample/

Summary

Additional resources

In the class library project, create data model classes and a context class, and an implementation of
IDbContextFactory .

In PMC for the class library project, run the commands Enable-Migrations and Add-Migration Initial . If
you have set the ASP.NET Core project as the startup project, add -StartupProjectName EF6 to these
commands.

In the Core project, add a project reference to the class library project.

In the Core project, in Startup.cs, register the context for DI.

In the Core project, in appsettings.json, add the connection string.

In the Core project, add a controller and view(s) to verify that you can read and write data. (Note that
ASP.NET Core MVC scaffolding won't work with the EF6 context referenced from the class library.)

This article has provided basic guidance for using Entity Framework 6 in an ASP.NET Core application.

Entity Framework - Code-Based Configuration

https://msdn.microsoft.com/data/jj680699.aspx

Azure Storage in ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

Adding Azure Storage by using Visual Studio Connected Services
Get Started with Blob storage and Visual Studio Connected Services
Get Started with Queue Storage and Visual Studio Connected Services
Get Started with Table Storage and Visual Studio Connected Services

https://github.com/aspnet/Docs/blob/master/aspnetcore/data/azure-storage/index.md
https://azure.microsoft.com/documentation/articles/vs-azure-tools-connected-services-storage/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-blobs/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-queues/
https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-tables/

Client-side development in ASP.NET Core
2/22/2018 • 2 minutes to read • Edit Online

Use Gulp
Use Grunt
Manage client-side packages with Bower
Build responsive sites with Bootstrap
Style apps with LESS, Sass, and Font Awesome
Bundle and minify
TypeScript
Use Browser Link
Use JavaScriptServices for SPAs
Use the SPA project templates

Angular project template
React project template
React with Redux project template

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/index.md
https://www.typescriptlang.org/docs/handbook/asp-net-core.html

Use Gulp in ASP.NET Core
5/4/2018 • 9 minutes to read • Edit Online

Gulp

/// <binding Clean='clean' />
"use strict";

var gulp = require("gulp"),
 rimraf = require("rimraf"),
 concat = require("gulp-concat"),
 cssmin = require("gulp-cssmin"),
 uglify = require("gulp-uglify");

var paths = {
 webroot: "./wwwroot/"
};

paths.js = paths.webroot + "js/**/*.js";
paths.minJs = paths.webroot + "js/**/*.min.js";
paths.css = paths.webroot + "css/**/*.css";
paths.minCss = paths.webroot + "css/**/*.min.css";
paths.concatJsDest = paths.webroot + "js/site.min.js";
paths.concatCssDest = paths.webroot + "css/site.min.css";

By Erik Reitan, Scott Addie, Daniel Roth, and Shayne Boyer

In a typical modern web app, the build process might:

Bundle and minify JavaScript and CSS files.
Run tools to call the bundling and minification tasks before each build.
Compile LESS or SASS files to CSS.
Compile CoffeeScript or TypeScript files to JavaScript.

A task runner is a tool which automates these routine development tasks and more. Visual Studio provides built-in
support for two popular JavaScript-based task runners: Gulp and Grunt.

Gulp is a JavaScript-based streaming build toolkit for client-side code. It's commonly used to stream client-side
files through a series of processes when a specific event is triggered in a build environment. For instance, Gulp can
be used to automate bundling and minification or the cleansing of a development environment before a new
build.

A set of Gulp tasks is defined in gulpfile.js. The following JavaScript includes Gulp modules and specifies file paths
to be referenced within the forthcoming tasks:

The above code specifies which Node modules are required. The require function imports each module so that
the dependent tasks can utilize their features. Each of the imported modules is assigned to a variable. The
modules can be located either by name or path. In this example, the modules named gulp , rimraf , gulp-concat ,
gulp-cssmin , and gulp-uglify are retrieved by name. Additionally, a series of paths are created so that the

locations of CSS and JavaScript files can be reused and referenced within the tasks. The following table provides
descriptions of the modules included in gulpfile.js.

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/using-gulp.md
https://github.com/Erikre
https://scottaddie.com
https://github.com/danroth27
https://twitter.com/spboyer
https://gulpjs.com/

MODULE NAME DESCRIPTION

gulp The Gulp streaming build system. For more information, see
gulp.

rimraf A Node deletion module. For more information, see rimraf.

gulp-concat A module that concatenates files based on the operating
system's newline character. For more information, see gulp-
concat.

gulp-cssmin A module that minifies CSS files. For more information, see
gulp-cssmin.

gulp-uglify A module that minifies .js files. For more information, see
gulp-uglify.

gulp.task("clean:js", function (cb) {
 rimraf(paths.concatJsDest, cb);
});

gulp.task("clean:css", function (cb) {
 rimraf(paths.concatCssDest, cb);
});

gulp.task("clean", ["clean:js", "clean:css"]);

gulp.task("min:js", function () {
 return gulp.src([paths.js, "!" + paths.minJs], { base: "." })
 .pipe(concat(paths.concatJsDest))
 .pipe(uglify())
 .pipe(gulp.dest("."));
});

gulp.task("min:css", function () {
 return gulp.src([paths.css, "!" + paths.minCss])
 .pipe(concat(paths.concatCssDest))
 .pipe(cssmin())
 .pipe(gulp.dest("."));
});

gulp.task("min", ["min:js", "min:css"]);

TASK NAME DESCRIPTION

clean:js A task that uses the rimraf Node deletion module to remove
the minified version of the site.js file.

clean:css A task that uses the rimraf Node deletion module to remove
the minified version of the site.css file.

clean A task that calls the clean:js task, followed by the
clean:css task.

Once the requisite modules are imported, the tasks can be specified. Here there are six tasks registered,
represented by the following code:

The following table provides an explanation of the tasks specified in the code above:

https://www.npmjs.com/package/gulp
https://www.npmjs.com/package/rimraf
https://www.npmjs.com/package/gulp-concat
https://www.npmjs.com/package/gulp-cssmin
https://www.npmjs.com/package/gulp-uglify

min:js A task that minifies and concatenates all .js files within the js
folder. The .min.js files are excluded.

min:css A task that minifies and concatenates all .css files within the
css folder. The .min.css files are excluded.

min A task that calls the min:js task, followed by the min:css

task.

TASK NAME DESCRIPTION

Running default tasks
If you haven't already created a new Web app, create a new ASP.NET Web Application project in Visual Studio.

/// <binding Clean='clean' />
"use strict";

var gulp = require("gulp"),
 rimraf = require("rimraf"),
 concat = require("gulp-concat"),
 cssmin = require("gulp-cssmin"),
 uglify = require("gulp-uglify");

var paths = {
 webroot: "./wwwroot/"
};

paths.js = paths.webroot + "js/**/*.js";
paths.minJs = paths.webroot + "js/**/*.min.js";
paths.css = paths.webroot + "css/**/*.css";
paths.minCss = paths.webroot + "css/**/*.min.css";
paths.concatJsDest = paths.webroot + "js/site.min.js";
paths.concatCssDest = paths.webroot + "css/site.min.css";

gulp.task("clean:js", function (cb) {
 rimraf(paths.concatJsDest, cb);
});

gulp.task("clean:css", function (cb) {
 rimraf(paths.concatCssDest, cb);
});

gulp.task("clean", ["clean:js", "clean:css"]);

gulp.task("min:js", function () {
 return gulp.src([paths.js, "!" + paths.minJs], { base: "." })
 .pipe(concat(paths.concatJsDest))
 .pipe(uglify())
 .pipe(gulp.dest("."));
});

gulp.task("min:css", function () {
 return gulp.src([paths.css, "!" + paths.minCss])
 .pipe(concat(paths.concatCssDest))
 .pipe(cssmin())
 .pipe(gulp.dest("."));
});

gulp.task("min", ["min:js", "min:css"]);

1. Add a new JavaScript file to your project and name it gulpfile.js, then copy the following code.

{
 "devDependencies": {
 "gulp": "3.9.1",
 "gulp-concat": "2.6.1",
 "gulp-cssmin": "0.1.7",
 "gulp-uglify": "2.0.1",
 "rimraf": "2.6.1"
 }
}

IMPORTANTIMPORTANT

2. Open the package.json file (add if not there) and add the following.

3. In Solution Explorer, right-click gulpfile.js, and select Task Runner Explorer.

Task Runner Explorer shows the list of Gulp tasks. (You might have to click the Refresh button that
appears to the left of the project name.)

The Task Runner Explorer context menu item appears only if gulpfile.js is in the root project directory.

4. Underneath Tasks in Task Runner Explorer, right-click clean, and select Run from the pop-up menu.

<Target Name="MyPreCompileTarget" BeforeTargets="Build">
 <Exec Command="gulp clean" />
</Target>

Defining and running a new task

Task Runner Explorer will create a new tab named clean and execute the clean task as it's defined in
gulpfile.js.

5. Right-click the clean task, then select Bindings > Before Build.

The Before Build binding configures the clean task to run automatically before each build of the project.

The bindings you set up with Task Runner Explorer are stored in the form of a comment at the top of your
gulpfile.js and are effective only in Visual Studio. An alternative that doesn't require Visual Studio is to configure
automatic execution of gulp tasks in your .csproj file. For example, put this in your .csproj file:

Now the clean task is executed when you run the project in Visual Studio or from a command prompt using the
dotnet run command (run npm install first).

To define a new Gulp task, modify gulpfile.js.

gulp.task("first", function () {
 console.log('first task! <-----');
});

1. Add the following JavaScript to the end of gulpfile.js:

This task is named first , and it simply displays a string.

2. Save gulpfile.js.

3. In Solution Explorer, right-click gulpfile.js, and select Task Runner Explorer.

https://docs.microsoft.com/dotnet/core/tools/dotnet-run

Defining and running tasks in a series

4. In Task Runner Explorer, right-click first, and select Run.

The output text is displayed. To see examples based on common scenarios, see Gulp Recipes.

When you run multiple tasks, the tasks run concurrently by default. However, if you need to run tasks in a specific
order, you must specify when each task is complete, as well as which tasks depend on the completion of another
task.

gulp.task("series:first", function () {
 console.log('first task! <-----');
});

gulp.task("series:second", ["series:first"], function () {
 console.log('second task! <-----');
});

gulp.task("series", ["series:first", "series:second"], function () {});

1. To define a series of tasks to run in order, replace the first task that you added above in gulpfile.js with
the following:

You now have three tasks: series:first , series:second , and series . The series:second task includes a
second parameter which specifies an array of tasks to be run and completed before the series:second task
will run. As specified in the code above, only the series:first task must be completed before the
series:second task will run.

2. Save gulpfile.js.

3. In Solution Explorer, right-click gulpfile.js and select Task Runner Explorer if it isn't already open.

4. In Task Runner Explorer, right-click series and select Run.

IntelliSense

Development, staging, and production environments

IntelliSense provides code completion, parameter descriptions, and other features to boost productivity and to
decrease errors. Gulp tasks are written in JavaScript; therefore, IntelliSense can provide assistance while
developing. As you work with JavaScript, IntelliSense lists the objects, functions, properties, and parameters that
are available based on your current context. Select a coding option from the pop-up list provided by IntelliSense
to complete the code.

For more information about IntelliSense, see JavaScript IntelliSense.

When Gulp is used to optimize client-side files for staging and production, the processed files are saved to a local
staging and production location. The _Layout.cshtml file uses the environment tag helper to provide two
different versions of CSS files. One version of CSS files is for development and the other version is optimized for
both staging and production. In Visual Studio 2017, when you change the ASPNETCORE_ENVIRONMENT
environment variable to Production , Visual Studio will build the Web app and link to the minimized CSS files.
The following markup shows the environment tag helpers containing link tags to the Development CSS files and
the minified Staging, Production CSS files.

https://docs.microsoft.com/visualstudio/ide/javascript-intellisense

<environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
</environment>
<environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
</environment>

Switching between environments

Task and module details

To switch between compiling for different environments, modify the ASPNETCORE_ENVIRONMENT
environment variable's value.

1. In Task Runner Explorer, verify that the min task has been set to run Before Build.

2. In Solution Explorer, right-click the project name and select Properties.

The property sheet for the Web app is displayed.

3. Click the Debug tab.

4. Set the value of the Hosting:Environment environment variable to Production .

5. Press F5 to run the application in a browser.

6. In the browser window, right-click the page and select View Source to view the HTML for the page.

Notice that the stylesheet links point to the minified CSS files.

7. Close the browser to stop the Web app.

8. In Visual Studio, return to the property sheet for the Web app and change the Hosting:Environment
environment variable back to Development .

9. Press F5 to run the application in a browser again.

10. In the browser window, right-click the page and select View Source to see the HTML for the page.

Notice that the stylesheet links point to the unminified versions of the CSS files.

For more information related to environments in ASP.NET Core, see Use multiple environments.

A Gulp task is registered with a function name. You can specify dependencies if other tasks must run before the
current task. Additional functions allow you to run and watch the Gulp tasks, as well as set the source (src) and
destination (dest) of the files being modified. The following are the primary Gulp API functions:

GULP FUNCTION SYNTAX DESCRIPTION

task gulp.task(name[, deps], fn) { } The task function creates a task. The
name parameter defines the name of

the task. The deps parameter
contains an array of tasks to be
completed before this task runs. The
fn parameter represents a callback

function which performs the operations
of the task.

watch gulp.watch(glob [, opts], tasks)
{ }

The watch function monitors files and
runs tasks when a file change occurs.
The glob parameter is a string or
array that determines which files to

watch. The opts parameter provides
additional file watching options.

src gulp.src(globs[, options]) { } The src function provides files that
match the glob value(s). The glob

parameter is a string or array that
determines which files to read. The
options parameter provides

additional file options.

dest gulp.dest(path[, options]) { } The dest function defines a location
to which files can be written. The path

parameter is a string or function that
determines the destination folder. The
options parameter is an object that

specifies output folder options.

Gulp recipes

Additional resources

For additional Gulp API reference information, see Gulp Docs API.

The Gulp community provides Gulp Recipes. These recipes consist of Gulp tasks to address common scenarios.

Gulp documentation
Bundling and minification in ASP.NET Core
Use Grunt in ASP.NET Core

https://github.com/gulpjs/gulp/blob/master/docs/API.md
https://github.com/gulpjs/gulp/blob/master/docs/recipes/README.md
https://github.com/gulpjs/gulp/blob/master/docs/README.md

Use Grunt in ASP.NET Core
4/10/2018 • 8 minutes to read • Edit Online

Preparing the application

By Noel Rice

Grunt is a JavaScript task runner that automates script minification, TypeScript compilation, code quality "lint"
tools, CSS pre-processors, and just about any repetitive chore that needs doing to support client development.
Grunt is fully supported in Visual Studio, though the ASP.NET project templates use Gulp by default (see Use
Gulp).

This example uses an empty ASP.NET Core project as its starting point, to show how to automate the client build
process from scratch.

The finished example cleans the target deployment directory, combines JavaScript files, checks code quality,
condenses JavaScript file content and deploys to the root of your web application. We will use the following
packages:

grunt: The Grunt task runner package.

grunt-contrib-clean: A plugin that removes files or directories.

grunt-contrib-jshint: A plugin that reviews JavaScript code quality.

grunt-contrib-concat: A plugin that joins files into a single file.

grunt-contrib-uglify: A plugin that minifies JavaScript to reduce size.

grunt-contrib-watch: A plugin that watches file activity.

To begin, set up a new empty web application and add TypeScript example files. TypeScript files are automatically
compiled into JavaScript using default Visual Studio settings and will be our raw material to process using Grunt.

1. In Visual Studio, create a new ASP.NET Web Application .

2. In the New ASP.NET Project dialog, select the ASP.NET Core Empty template and click the OK button.

3. In the Solution Explorer, review the project structure. The \src folder includes empty wwwroot and
Dependencies nodes.

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/using-grunt.md
https://blog.falafel.com/falafel-software-recognized-sitefinity-website-year/

Configuring NPM

enum Tastes { Sweet, Sour, Salty, Bitter }

class Food {
 constructor(name: string, calories: number) {
 this._name = name;
 this._calories = calories;
 }

 private _name: string;
 get Name() {
 return this._name;
 }

 private _calories: number;
 get Calories() {
 return this._calories;
 }

 private _taste: Tastes;
 get Taste(): Tastes { return this._taste }
 set Taste(value: Tastes) {
 this._taste = value;
 }
}

4. Add a new folder named TypeScript to your project directory.

5. Before adding any files, make sure that Visual Studio has the option 'compile on save' for TypeScript files
checked. Navigate to Tools > Options > Text Editor > Typescript > Project:

6. Right-click the TypeScript directory and select Add > New Item from the context menu. Select the
JavaScript file item and name the file Tastes.ts (note the *.ts extension). Copy the line of TypeScript code
below into the file (when you save, a new Tastes.js file will appear with the JavaScript source).

7. Add a second file to the TypeScript directory and name it Food.ts . Copy the code below into the file.

Next, configure NPM to download grunt and grunt-tasks.

1. In the Solution Explorer, right-click the project and select Add > New Item from the context menu. Select
the NPM configuration file item, leave the default name, package.json, and click the Add button.

2. In the package.json file, inside the devDependencies object braces, enter "grunt". Select grunt from the
Intellisense list and press the Enter key. Visual Studio will quote the grunt package name, and add a colon.
To the right of the colon, select the latest stable version of the package from the top of the Intellisense list
(press Ctrl-Space if Intellisense doesn't appear).

NOTENOTE

Configuring Grunt

NOTENOTE

"devDependencies": {
 "grunt": "0.4.5",
 "grunt-contrib-clean": "0.6.0",
 "grunt-contrib-jshint": "0.11.0",
 "grunt-contrib-concat": "0.5.1",
 "grunt-contrib-uglify": "0.8.0",
 "grunt-contrib-watch": "0.6.1"
}

NPM uses semantic versioning to organize dependencies. Semantic versioning, also known as SemVer, identifies
packages with the numbering scheme ... Intellisense simplifies semantic versioning by showing only a few common
choices. The top item in the Intellisense list (0.4.5 in the example above) is considered the latest stable version of the
package. The caret (^) symbol matches the most recent major version and the tilde (~) matches the most recent
minor version. See the NPM semver version parser reference as a guide to the full expressivity that SemVer provides.

3. Add more dependencies to load grunt-contrib-* packages for clean, jshint, concat, uglify, and watch as
shown in the example below. The versions don't need to match the example.

4. Save the package.json file.

The packages for each devDependencies item will download, along with any files that each package requires. You
can find the package files in the node_modules directory by enabling the Show All Files button in the Solution
Explorer.

If you need to, you can manually restore dependencies in Solution Explorer by right-clicking on Dependencies\NPM and
selecting the Restore Packages menu option.

http://semver.org/
https://www.npmjs.com/package/semver

Grunt is configured using a manifest named Gruntfile.js that defines, loads and registers tasks that can be run
manually or configured to run automatically based on events in Visual Studio.

module.exports = function (grunt) {
 grunt.initConfig({
 });
};

module.exports = function (grunt) {
 grunt.initConfig({
 clean: ["wwwroot/lib/*", "temp/"],
 });
};

grunt.loadNpmTasks("grunt-contrib-clean");

1. Right-click the project and select Add > New Item. Select the Grunt Configuration file option, leave the
default name, Gruntfile.js, and click the Add button.

The initial code includes a module definition and the grunt.initConfig() method. The initConfig() is
used to set options for each package, and the remainder of the module will load and register tasks.

2. Inside the initConfig() method, add options for the clean task as shown in the example Gruntfile.js

below. The clean task accepts an array of directory strings. This task removes files from wwwroot/lib and
removes the entire /temp directory.

3. Below the initConfig() method, add a call to grunt.loadNpmTasks() . This will make the task runnable from
Visual Studio.

4. Save Gruntfile.js. The file should look something like the screenshot below.

5. Right-click Gruntfile.js and select Task Runner Explorer from the context menu. The Task Runner Explorer
window will open.

6. Verify that clean shows under Tasks in the Task Runner Explorer.

NOTENOTE

concat: {
 all: {
 src: ['TypeScript/Tastes.js', 'TypeScript/Food.js'],
 dest: 'temp/combined.js'
 }
},

NOTENOTE

jshint: {
 files: ['temp/*.js'],
 options: {
 '-W069': false,
 }
},

7. Right-click the clean task and select Run from the context menu. A command window displays progress of
the task.

There are no files or directories to clean yet. If you like, you can manually create them in the Solution Explorer and
then run the clean task as a test.

8. In the initConfig() method, add an entry for concat using the code below.

The src property array lists files to combine, in the order that they should be combined. The dest

property assigns the path to the combined file that's produced.

The all property in the code above is the name of a target. Targets are used in some Grunt tasks to allow multiple
build environments. You can view the built-in targets using Intellisense or assign your own.

9. Add the jshint task using the code below.

The jshint code-quality utility is run against every JavaScript file found in the temp directory.

NOTENOTE

uglify: {
 all: {
 src: ['temp/combined.js'],
 dest: 'wwwroot/lib/combined.min.js'
 }
},

grunt.loadNpmTasks('grunt-contrib-jshint');
grunt.loadNpmTasks('grunt-contrib-concat');
grunt.loadNpmTasks('grunt-contrib-uglify');

The option "-W069" is an error produced by jshint when JavaScript uses bracket syntax to assign a property instead
of dot notation, i.e. Tastes["Sweet"] instead of Tastes.Sweet . The option turns off the warning to allow the rest
of the process to continue.

10. Add the uglify task using the code below.

The task minifies the combined.js file found in the temp directory and creates the result file in wwwroot/lib
following the standard naming convention <file name>.min.js.

11. Under the call grunt.loadNpmTasks() that loads grunt-contrib-clean, include the same call for jshint, concat
and uglify using the code below.

12. Save Gruntfile.js. The file should look something like the example below.

13. Notice that the Task Runner Explorer Tasks list includes clean , concat , jshint and uglify tasks. Run
each task in order and observe the results in Solution Explorer. Each task should run without errors.

All together nowAll together now

grunt.registerTask("all", ['clean', 'concat', 'jshint', 'uglify']);

NOTENOTE

The concat task creates a new combined.js file and places it into the temp directory. The jshint task simply
runs and doesn't produce output. The uglify task creates a new combined.min.js file and places it into
wwwroot/lib. On completion, the solution should look something like the screenshot below:

For more information on the options for each package, visit https://www.npmjs.com/ and lookup the package name
in the search box on the main page. For example, you can look up the grunt-contrib-clean package to get a
documentation link that explains all of its parameters.

Use the Grunt registerTask() method to run a series of tasks in a particular sequence. For example, to run the
example steps above in the order clean -> concat -> jshint -> uglify, add the code below to the module. The code
should be added to the same level as the loadNpmTasks() calls, outside initConfig.

The new task shows up in Task Runner Explorer under Alias Tasks. You can right-click and run it just as you would
other tasks. The all task will run clean , concat , jshint and uglify , in order.

https://www.npmjs.com/

Watching for changes

watch: {
 files: ["TypeScript/*.js"],
 tasks: ["all"]
}

grunt.loadNpmTasks('grunt-contrib-watch');

Binding to Visual Studio events

A watch task keeps an eye on files and directories. The watch triggers tasks automatically if it detects changes.
Add the code below to initConfig to watch for changes to *.js files in the TypeScript directory. If a JavaScript file is
changed, watch will run the all task.

Add a call to loadNpmTasks() to show the watch task in Task Runner Explorer.

Right-click the watch task in Task Runner Explorer and select Run from the context menu. The command window
that shows the watch task running will display a "Waiting…" message. Open one of the TypeScript files, add a
space, and then save the file. This will trigger the watch task and trigger the other tasks to run in order. The
screenshot below shows a sample run.

Unless you want to manually start your tasks every time you work in Visual Studio, you can bind tasks to Before
Build, After Build, Clean, and Project Open events.

Let’s bind watch so that it runs every time Visual Studio opens. In Task Runner Explorer, right-click the watch task
and select Bindings > Project Open from the context menu.

Unload and reload the project. When the project loads again, the watch task will start running automatically.

Summary

Additional resources

Grunt is a powerful task runner that can be used to automate most client-build tasks. Grunt leverages NPM to
deliver its packages, and features tooling integration with Visual Studio. Visual Studio's Task Runner Explorer
detects changes to configuration files and provides a convenient interface to run tasks, view running tasks, and
bind tasks to Visual Studio events.

Use Gulp

Manage client-side packages with Bower in ASP.NET
Core
5/4/2018 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Installation via Manage Bower Packages UIInstallation via Manage Bower Packages UI

By Rick Anderson, Noel Rice, and Scott Addie

While Bower is maintained, its maintainers recommend using a different solution. Library Manager (LibMan for short) is
Visual Studio's new client-side static content management system. Yarn with Webpack is one popular alternative for which
migration instructions are available.

Bower calls itself "A package manager for the web". Within the .NET ecosystem, it fills the void left by NuGet's
inability to deliver static content files. For ASP.NET Core projects, these static files are inherent to client-side
libraries like jQuery and Bootstrap. For .NET libraries, you still use NuGet package manager.

New projects created with the ASP.NET Core project templates set up the client-side build process. jQuery and
Bootstrap are installed, and Bower is supported.

Client-side packages are listed in the bower.json file. The ASP.NET Core project templates configures bower.json
with jQuery, jQuery validation, and Bootstrap.

In this tutorial, we'll add support for Font Awesome. Bower packages can be installed with the Manage Bower
Packages UI or manually in the bower.json file.

Create a new ASP.NET Core Web app with the ASP.NET Core Web Application (.NET Core) template.
Select Web Application and No Authentication.

Right-click the project in Solution Explorer and select Manage Bower Packages (alternatively from the
main menu, Project > Manage Bower Packages).

In the Bower: <project name> window, click the "Browse" tab, and then filter the packages list by entering
font-awesome in the search box:

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/bower.md
https://twitter.com/RickAndMSFT
https://blog.falafel.com/falafel-software-recognized-sitefinity-website-year/
https://scottaddie.com
https://blogs.msdn.microsoft.com/webdev/2018/04/18/what-happened-to-bower/
https://bower.io/blog/2017/how-to-migrate-away-from-bower/
https://bower.io/
http://jquery.com/
http://getbootstrap.com/
https://www.nuget.org/
http://jquery.com/
http://getbootstrap.com/
http://fontawesome.io

Manual installation in bower.jsonManual installation in bower.json

Confirm that the "Save changes to bower.json" checkbox is checked. Select a version from the drop-down
list and click the Install button. The Output window shows the installation details.

Open the bower.json file and add "font-awesome" to the dependencies. IntelliSense shows the available packages.
When a package is selected, the available versions are displayed. The images below are older and won't match
what you see.

Bower uses semantic versioning to organize dependencies. Semantic versioning, also known as SemVer, identifies
packages with the numbering scheme <major>.<minor>.<patch>. IntelliSense simplifies semantic versioning by
showing only a few common choices. The top item in the IntelliSense list (4.6.3 in the example above) is
considered the latest stable version of the package. The caret (^) symbol matches the most recent major version
and the tilde (~) matches the most recent minor version.

Save the bower.json file. Visual Studio watches the bower.json file for changes. Upon saving, the bower install
command is executed. See the Output window's Bower/npm view for the exact command executed.

Open the .bowerrc file under bower.json. The directory property is set to wwwroot/lib which indicates the
location Bower will install the package assets.

http://semver.org/

{
 "directory": "wwwroot/lib"
}

<environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 <link href="~/lib/font-awesome/css/font-awesome.css" rel="stylesheet" />
</environment>

@{
 ViewData["Title"] = "About";
}

<div class="list-group">
 <i class="fa fa-home fa-fw" aria-hidden="true"></i> Home
 <i class="fa fa-book fa-fw" aria-hidden="true"></i> Library
 <i class="fa fa-pencil fa-fw" aria-hidden="true"></i>
Applications
 <i class="fa fa-cog fa-fw" aria-hidden="true"></i> Settings
</div>

Exploring the client-side build process

Define packagesDefine packages

You can use the search box in Solution Explorer to find and display the font-awesome package.

Open the Views\Shared_Layout.cshtml file and add the font-awesome CSS file to the environment Tag Helper for
Development . From Solution Explorer, drag and drop font-awesome.css inside the
<environment names="Development"> element.

In a production app you would add font-awesome.min.css to the environment tag helper for Staging,Production .

Replace the contents of the Views\Home\About.cshtml Razor file with the following markup:

Run the app and navigate to the About view to verify the font-awesome package works.

Most ASP.NET Core project templates are already configured to use Bower. This next walkthrough starts with an
empty ASP.NET Core project and adds each piece manually, so you can get a feel for how Bower is used in a
project. You can see what happens to the project structure and the runtime output as each configuration change is
made.

The general steps to use the client-side build process with Bower are:

Define packages used in your project.
Reference packages from your web pages.

Once you list packages in the bower.json file, Visual Studio will download them. The following example uses Bower
to load jQuery and Bootstrap to the wwwroot folder.

Create a new ASP.NET Core Web app with the ASP.NET Core Web Application (.NET Core) template.
Select the Empty project template and click OK.

In Solution Explorer, right-click the project > Add New Item and select Bower Configuration File. Note:
A .bowerrc file is also added.

Open bower.json, and add jquery and bootstrap to the dependencies section. The resulting bower.json file

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "jquery": "3.1.1",
 "bootstrap": "3.3.7"
 }
}

Enable static filesEnable static files

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.UseStaticFiles();

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }
}

Reference packagesReference packages

will look like the following example. The versions will change over time and may not match the image
below.

Save the bower.json file.

Verify the project includes the bootstrap and jQuery directories in wwwroot/lib. Bower uses the .bowerrc
file to install the assets in wwwroot/lib.

Note: The "Manage Bower Packages" UI provides an alternative to manual file editing.

Add the Microsoft.AspNetCore.StaticFiles NuGet package to the project.
Enable static files to be served with the Static file middleware. Add a call to UseStaticFiles to the Configure

method of Startup .

In this section, you will create an HTML page to verify it can access the deployed packages.

Add a new HTML page named Index.html to the wwwroot folder. Note: You must add the HTML file to the
wwwroot folder. By default, static content cannot be served outside wwwroot. See Static files for more
information.

Replace the contents of Index.html with the following markup:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Bower Example</title>
 <link href="lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body>
 <div class="jumbotron">
 <h1>Using the jumbotron style</h1>
 <p>
 Stateful button
 </p>
 </div>
 <script src="lib/jquery/dist/jquery.js"></script>
 <script src="lib/bootstrap/dist/js/bootstrap.js"></script>
 <script>
 $(".btn").click(function () {
 $(this).text('loading')
 .delay(1000)
 .queue(function () {
 $(this).text('reset');
 $(this).dequeue();
 });
 });
 </script>
</body>

</html>

Run the app and navigate to http://localhost:<port>/Index.html . Alternatively, with Index.html opened,
press Ctrl+Shift+W . Verify that the jumbotron styling is applied, the jQuery code responds when the button
is clicked, and that the Bootstrap button changes state.

Build beautiful, responsive sites with Bootstrap and
ASP.NET Core
4/13/2018 • 11 minutes to read • Edit Online

Get started

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.6",
 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

BowerBower

 By Steve Smith

Bootstrap is currently the most popular web framework for developing responsive web applications. It offers a
number of features and benefits that can improve your users' experience with your web site, whether you're a
novice at front-end design and development or an expert. Bootstrap is deployed as a set of CSS and JavaScript
files, and is designed to help your website or application scale efficiently from phones to tablets to desktops.

There are several ways to get started with Bootstrap. If you're starting a new web application in Visual Studio, you
can choose the default starter template for ASP.NET Core, in which case Bootstrap will come pre-installed:

Adding Bootstrap to an ASP.NET Core project is simply a matter of adding it to bower.json as a dependency:

This is the recommended way to add Bootstrap to an ASP.NET Core project.

You can also install bootstrap using one of several package managers, such as Bower, npm, or NuGet. In each case,
the process is essentially the same:

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/bootstrap.md
https://ardalis.com/

bower install bootstrap

npmnpm

npm install bootstrap

NuGetNuGet

Install-Package bootstrap

NOTENOTE

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - WebApplication1</title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Home" asp-action="Index" class="navbar-
brand">WebApplication1
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 @await Html.PartialAsync("_LoginPartial")

The recommended way to install client-side dependencies like Bootstrap in ASP.NET Core is via Bower (using bower.json, as
shown above). The use of npm/NuGet are shown to demonstrate how easily Bootstrap can be added to other kinds of web
applications, including earlier versions of ASP.NET.

If you're referencing your own local versions of Bootstrap, you'll need to reference them in any pages that will use
it. In production you should reference bootstrap using a CDN. In the default ASP.NET site template, the
_Layout.cshtml file does so like this:

 @await Html.PartialAsync("_LoginPartial")
 </div>
 </div>
 </div>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2016 - WebApplication1</p>
 </footer>
 </div>

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("scripts", required: false)
</body>
</html>

NOTENOTE

Basic templates and features

Basic navigationBasic navigation

<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">

</button>

If you're going to be using any of Bootstrap's jQuery plugins, you will also need to reference jQuery.

The most basic Bootstrap template looks very much like the _Layout.cshtml file shown above, and simply includes
a basic menu for navigation and a place to render the rest of the page.

The default template uses a set of <div> elements to render a top navbar and the main body of the page. If you're
using HTML5, you can replace the first <div> tag with a <nav> tag to get the same effect, but with more precise
semantics. Within this first <div> you can see there are several others. First, a <div> with a class of "container",
and then within that, two more <div> elements: "navbar-header" and "navbar-collapse". The navbar-header div
includes a button that will appear when the screen is below a certain minimum width, showing 3 horizontal lines
(a so-called "hamburger icon"). The icon is rendered using pure HTML and CSS; no image is required. This is the
code that displays the icon, with each of the tags rendering one of the white bars:

It also includes the application name, which appears in the top left. The main navigation menu is rendered by the
 element within the second div, and includes links to Home, About, and Contact. Below the navigation, the

main body of each page is rendered in another <div> , marked with the "container" and "body-content" classes. In

the simple default _Layout file shown here, the contents of the page are rendered by the specific View associated
with the page, and then a simple <footer> is added to the end of the <div> element. You can see how the built-in
About page appears using this template:

The collapsed navbar, with "hamburger" button in the top right, appears when the window drops below a certain
width:

Clicking the icon reveals the menu items in a vertical drawer that slides down from the top of the page:

Typography and linksTypography and links

GridsGrids

<div class="container">
 <div class="row">
 ...
 </div>
</div>

Bootstrap sets up the site's basic typography, colors, and link formatting in its CSS file. This CSS file includes
default styles for tables, buttons, form elements, images, and more (learn more). One particularly useful feature is
the grid layout system, covered next.

One of the most popular features of Bootstrap is its grid layout system. Modern web applications should avoid
using the <table> tag for layout, instead restricting the use of this element to actual tabular data. Instead,
columns and rows can be laid out using a series of <div> elements and the appropriate CSS classes. There are
several advantages to this approach, including the ability to adjust the layout of grids to display vertically on
narrow screens, such as on phones.

Bootstrap's grid layout system is based on twelve columns. This number was chosen because it can be divided
evenly into 1, 2, 3, or 4 columns, and column widths can vary to within 1/12th of the vertical width of the screen.
To start using the grid layout system, you should begin with a container <div> and then add a row <div> , as
shown here:

Next, add additional <div> elements for each column, and specify the number of columns that <div> should
occupy (out of 12) as part of a CSS class starting with "col-md-". For instance, if you want to simply have two
columns of equal size, you would use a class of "col-md-6" for each one. In this case "md" is short for "medium"
and refers to standard-sized desktop computer display sizes. There are four different options you can choose from,
and each will be used for higher widths unless overridden (so if you want the layout to be fixed regardless of
screen width, you can just specify xs classes).

http://getbootstrap.com/css/
http://getbootstrap.com/css/#grid

CSS CLASS PREFIX DEVICE TIER WIDTH

col-xs- Phones < 768px

col-sm- Tablets >= 768px

col-md- Desktops >= 992px

col-lg- Larger Desktop Displays >= 1200px

When specifying two columns both with "col-md-6" the resulting layout will be two columns at desktop
resolutions, but these two columns will stack vertically when rendered on smaller devices (or a narrower browser
window on a desktop), allowing users to easily view content without the need to scroll horizontally.

Bootstrap will always default to a single-column layout, so you only need to specify columns when you want more
than one column. The only time you would want to explicitly specify that a <div> take up all 12 columns would be
to override the behavior of a larger device tier. When specifying multiple device tier classes, you may need to reset
the column rendering at certain points. Adding a clearfix div that's only visible within a certain viewport can
achieve this, as shown here:

In the above example, One and Two share a row in the "md" layout, while Two and Three share a row in the "xs"
layout. Without the clearfix <div> , Two and Three are not shown correctly in the "xs" view (note that only One,
Four, and Five are shown):

JumbotronJumbotron

ButtonsButtons

In this example, only a single row <div> was used, and Bootstrap still mostly did the right thing with regard to the
layout and stacking of the columns. Typically, you should specify a row <div> for each horizontal row your layout
requires, and of course you can nest Bootstrap grids within one another. When you do, each nested grid will
occupy 100% of the width of the element in which it's placed, which can then be subdivided using column classes.

If you've used the default ASP.NET MVC templates in Visual Studio 2012 or 2013, you've probably seen the
Jumbotron in action. It refers to a large full-width section of a page that can be used to display a large background
image, a call to action, a rotator, or similar elements. To add a jumbotron to a page, simply add a <div> and give it
a class of "jumbotron", then place a container <div> inside and add your content. We can easily adjust the
standard About page to use a jumbotron for the main headings it displays:

The default button classes and their colors are shown in the figure below.

BadgesBadges

AlertsAlerts

Badges refer to small, usually numeric callouts next to a navigation item. They can indicate a number of messages
or notifications waiting, or the presence of updates. Specifying such badges is as simple as adding a

containing the text, with a class of "badge":

You may need to display some kind of notification, alert, or error message to your application's users. That's where
the standard alert classes are useful. There are four different severity levels with associated color schemes:

Navbars and menusNavbars and menus
Our layout already includes a standard navbar, but the Bootstrap theme supports additional styling options. We
can also easily opt to display the navbar vertically rather than horizontally if that's preferred, as well as adding
sub-navigation items in flyout menus. Simple navigation menus, like tab strips, are built on top of elements.
These can be created very simply by just providing them with the CSS classes "nav" and "nav-tabs":

Additional elementsAdditional elements

Navbars are built similarly, but are a bit more complex. They start with a <nav> or <div> with a class of "navbar",
within which a container div holds the rest of the elements. Our page includes a navbar in its header already – the
one shown below simply expands on this, adding support for a dropdown menu:

The default theme can also be used to present HTML tables in a nicely formatted style, including support for
striped views. There are labels with styles that are similar to those of the buttons. You can create custom
Dropdown menus that support additional styling options beyond the standard HTML <select> element, along
with Navbars like the one our default starter site is already using. If you need a progress bar, there are several
styles to choose from, as well as List Groups and panels that include a title and content. Explore additional options

More themes

<environment names="Development">
 <link rel="stylesheet" href="~/css/bootstrap.css" />

<environment names="Staging,Production">
 <link rel="stylesheet" href="~/css/bootstrap.min.css" />

Components

GlyphiconsGlyphicons

within the standard Bootstrap Theme here:

http://getbootstrap.com/examples/theme/

You can extend the standard Bootstrap theme by overriding some or all of its CSS, adjusting the colors and styles
to suit your own application's needs. If you'd like to start from a ready-made theme, there are several theme
galleries available online that specialize in Bootstrap themes, such as WrapBootstrap.com (which has a variety of
commercial themes) and Bootswatch.com (which offers free themes). Some of the paid templates available
provide a great deal of functionality on top of the basic Bootstrap theme, such as rich support for administrative
menus, and dashboards with rich charts and gauges. An example of a popular paid template is Inspinia, currently
for sale for $18, which includes an ASP.NET MVC5 template in addition to AngularJS and static HTML versions. A
sample screenshot is shown below.

If you want to change your Bootstrap theme, put the bootstrap.css file for the theme you want in the
wwwroot/css folder and change the references in _Layout.cshtml to point it. Change the links for all
environments:

If you want to build your own dashboard, you can start from the free example available here:
http://getbootstrap.com/examples/dashboard/.

In addition to those elements already discussed, Bootstrap includes support for a variety of built-in UI
components.

Bootstrap includes icon sets from Glyphicons (http://glyphicons.com), with over 200 icons freely available for use
within your Bootstrap-enabled web application. Here's just a small sample:

http://getbootstrap.com/examples/theme/
http://getbootstrap.com/examples/dashboard/
http://getbootstrap.com/components/
http://glyphicons.com

Input groupsInput groups

BreadcrumbsBreadcrumbs

JavaScript support

Summary

Input groups allow bundling of additional text or buttons with an input element, providing the user with a more
intuitive experience:

Breadcrumbs are a common UI component used to show a user their recent history or depth within a site's
navigation hierarchy. Add them easily by applying the "breadcrumb" class to any list element. Include built-
in support for pagination by using the "pagination" class on a element within a <nav> . Add responsive
embedded slideshows and video by using <iframe> , <embed> , <video> , or <object> elements, which Bootstrap
will style automatically. Specify a particular aspect ratio by using specific classes like "embed-responsive-16by9".

Bootstrap's JavaScript library includes API support for the included components, allowing you to control their
behavior programmatically within your application. In addition, bootstrap.js includes over a dozen custom jQuery
plugins, providing additional features like transitions, modal dialogs, scroll detection (updating styles based on
where the user has scrolled in the document), collapse behavior, carousels, and affixing menus to the window so
they don't scroll off the screen. There's not sufficient room to cover all of the JavaScript add-ons built into
Bootstrap – to learn more please visit http://getbootstrap.com/javascript/.

Bootstrap provides a web framework that can be used to quickly and productively lay out and style a wide variety
of websites and applications. Its basic typography and styles provide a pleasant look and feel that can easily be
manipulated through custom theme support, which can be hand-crafted or purchased commercially. It supports a
host of web components that in the past would've required expensive third-party controls to accomplish, while
supporting modern and open web standards.

http://getbootstrap.com/javascript/

Less, Sass, and Font Awesome in ASP.NET Core
3/22/2018 • 12 minutes to read • Edit Online

CSS preprocessor languages

.header {
 color: black;
 font-weight: bold;
 font-size: 18px;
 font-family: Helvetica, Arial, sans-serif;
}

.small-header {
 color: black;
 font-weight: bold;
 font-size: 14px;
 font-family: Helvetica, Arial, sans-serif;
}

By Steve Smith

Users of web applications have increasingly high expectations when it comes to style and overall experience.
Modern web applications frequently leverage rich tools and frameworks for defining and managing their look and
feel in a consistent manner. Frameworks like Bootstrap can go a long way toward defining a common set of styles
and layout options for web sites. However, most non-trivial sites also benefit from being able to effectively define
and maintain styles and cascading style sheet (CSS) files, as well as having easy access to non-image icons that
help make the site's interface more intuitive. That's where languages and tools that support Less and Sass, and
libraries like Font Awesome, come in.

Languages that are compiled into other languages, in order to improve the experience of working with the
underlying language, are referred to as preprocessors. There are two popular preprocessors for CSS: Less and
Sass. These preprocessors add features to CSS, such as support for variables and nested rules, which improve the
maintainability of large, complex stylesheets. CSS as a language is very basic, lacking support even for something
as simple as variables, and this tends to make CSS files repetitive and bloated. Adding real programming language
features via preprocessors can help reduce duplication and provide better organization of styling rules. Visual
Studio provides built-in support for both Less and Sass, as well as extensions that can further improve the
development experience when working with these languages.

As a quick example of how preprocessors can improve readability and maintainability of style information,
consider this CSS:

Using Less, this can be rewritten to eliminate all of the duplication, using a mixin (so named because it allows you
to "mix in" properties from one class or rule-set into another):

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/less-sass-fa.md
https://ardalis.com/
http://getbootstrap.com/
http://lesscss.org/
http://sass-lang.com/
http://fontawesome.io/

.header {
 color: black;
 font-weight: bold;
 font-size: 18px;
 font-family: Helvetica, Arial, sans-serif;
}

.small-header {
 .header;
 font-size: 14px;
}

Less

npm install -g less

The Less CSS preprocessor runs using Node.js. To install Less, use Node Package Manager (npm) from a
command prompt (-g means "global"):

If you're using Visual Studio, you can get started with Less by adding one or more Less files to your project, and
then configuring Gulp (or Grunt) to process them at compile-time. Add a Styles folder to your project, and then
add a new Less file named main.less to this folder.

Once added, your folder structure should look something like this:

@base: #663333;
@background: spin(@base, 180);
@lighter: lighten(spin(@base, 5), 10%);
@lighter2: lighten(spin(@base, 10), 20%);
@darker: darken(spin(@base, -5), 10%);
@darker2: darken(spin(@base, -10), 20%);

body {
 background-color:@background;
}
.baseColor {color:@base}
.bgLight {color:@lighter}
.bgLight2 {color:@lighter2}
.bgDark {color:@darker}
.bgDark2 {color:@darker2}

Get startedGet started

{
 "version": "1.0.0",
 "name": "asp.net",
 "private": true,
 "devDependencies": {
 "gulp": "3.9.1",
 "gulp-less": "3.3.0"
 }
}

Now you can add some basic styling to the file, which will be compiled into CSS and deployed to the wwwroot
folder by Gulp.

Modify main.less to include the following content, which creates a simple color palette from a single base color.

@base and the other @-prefixed items are variables. Each of them represents a color. Except for @base , they're set
using color functions: lighten, darken, and spin. Lighten and darken do pretty much what you would expect; spin
adjusts the hue of a color by a number of degrees (around the color wheel). The Less processor is smart enough to
ignore variables that aren't used, so to demonstrate how these variables work, we need to use them somewhere.
The classes .baseColor , etc. will demonstrate the calculated values of each of the variables in the CSS file that's
produced.

Create an npm Configuration File (package.json) in your project folder and edit it to reference gulp and
gulp-less :

Install the dependencies either at a command prompt in your project folder, or in Visual Studio Solution Explorer
(Dependencies > npm > Restore packages).

npm install

var gulp = require("gulp"),
 fs = require("fs"),
 less = require("gulp-less");

gulp.task("less", function () {
 return gulp.src('Styles/main.less')
 .pipe(less())
 .pipe(gulp.dest('wwwroot/css'));
});

In the project folder, create a Gulp Configuration File (gulpfile.js) to define the automated process. Add a variable
at the top of the file to represent Less, and a task to run Less:

Open the Task Runner Explorer (View > Other Windows > Task Runner Explorer). Among the tasks, you
should see a new task named less . You might have to refresh the window.

Run the less task, and you see output similar to what is shown here:

The wwwroot/css folder now contains a new file, main.css:

body {
 background-color: #336666;
}
.baseColor {
 color: #663333;
}
.bgLight {
 color: #884a44;
}
.bgLight2 {
 color: #aa6355;
}
.bgDark {
 color: #442225;
}
.bgDark2 {
 color: #221114;
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <link href="css/main.css" rel="stylesheet" />
 <title></title>
</head>
<body>
 <div>
 <div class="baseColor">BaseColor</div>
 <div class="bgLight">Light</div>
 <div class="bgLight2">Light2</div>
 <div class="bgDark">Dark</div>
 <div class="bgDark2">Dark2</div>
 </div>
</body>
</html>

Open main.css and you see something like the following:

Add a simple HTML page to the wwwroot folder, and reference main.css to see the color palette in action.

You can see that the 180 degree spin on @base used to produce @background resulted in the color wheel opposing
color of @base :

nav {
 height: 40px;
 width: 100%;
}
nav li {
 height: 38px;
 width: 100px;
}
nav li a:link {
 color: #000;
 text-decoration: none;
}
nav li a:visited {
 text-decoration: none;
 color: #CC3333;
}
nav li a:hover {
 text-decoration: underline;
 font-weight: bold;
}
nav li a:active {
 text-decoration: underline;
}

nav {
 height: 40px;
 width: 100%;
 li {
 height: 38px;
 width: 100px;
 a {
 color: #000;
 &:link { text-decoration:none}
 &:visited { color: #CC3333; text-decoration:none}
 &:hover { text-decoration:underline; font-weight:bold}
 &:active {text-decoration:underline}
 }
 }
}

Less also provides support for nested rules, as well as nested media queries. For example, defining nested
hierarchies like menus can result in verbose CSS rules like these:

Ideally all of the related style rules will be placed together within the CSS file, but in practice there's nothing
enforcing this rule except convention and perhaps block comments.

Defining these same rules using Less looks like this:

Note that in this case, all of the subordinate elements of nav are contained within its scope. There's no longer any
repetition of parent elements (nav , li , a), and the total line count has dropped as well (though some of that's a
result of putting values on the same lines in the second example). It can be very helpful, organizationally, to see all

.navigation {
 margin-top: 30%;
 width: 100%;
}
@media screen and (min-width: 40em) {
 .navigation {
 margin: 0;
 }
}
@media screen and (min-width: 62em) {
 .navigation {
 width: 960px;
 margin: 0;
 }
}

.navigation {
 margin-top: 30%;
 width: 100%;
 @media screen and (min-width: 40em) {
 margin: 0;
 }
 @media screen and (min-width: 62em) {
 width: 960px;
 margin: 0;
 }
}

of the rules for a given UI element within an explicitly bounded scope, in this case set off from the rest of the file by
curly braces.

The & syntax is a Less selector feature, with & representing the current selector parent. So, within the a {...} block,
& represents an a tag, and thus &:link is equivalent to a:link .

Media queries, extremely useful in creating responsive designs, can also contribute heavily to repetition and
complexity in CSS. Less allows media queries to be nested within classes, so that the entire class definition doesn't
need to be repeated within different top-level @media elements. For example, here is CSS for a responsive menu:

This can be better defined in Less as:

Another feature of Less that we have already seen is its support for mathematical operations, allowing style
attributes to be constructed from pre-defined variables. This makes updating related styles much easier, since the
base variable can be modified and all dependent values change automatically.

CSS files, especially for large sites (and especially if media queries are being used), tend to get quite large over
time, making working with them unwieldy. Less files can be defined separately, then pulled together using @import

directives. Less can also be used to import individual CSS files, as well, if desired.

Mixins can accept parameters, and Less supports conditional logic in the form of mixin guards, which provide a
declarative way to define when certain mixins take effect. A common use for mixin guards is to adjust colors based
on how light or dark the source color is. Given a mixin that accepts a parameter for color, a mixin guard can be
used to modify the mixin based on that color :

.box (@color) when (lightness(@color) >= 50%) {
 background-color: #000;
}
.box (@color) when (lightness(@color) < 50%) {
 background-color: #FFF;
}
.box (@color) {
 color: @color;
}

.feature {
 .box (@base);
}

.feature {
 background-color: #FFF;
 color: #663333;
}

Sass

gem install sass

"devDependencies": {
 "gulp": "3.9.1",
 "gulp-less": "3.3.0",
 "gulp-sass": "3.1.0"
}

Given our current @base value of #663333 , this Less script will produce the following CSS:

Less provides a number of additional features, but this should give you some idea of the power of this
preprocessing language.

Sass is similar to Less, providing support for many of the same features, but with slightly different syntax. It's built
using Ruby, rather than JavaScript, and so has different setup requirements. The original Sass language didn't use
curly braces or semicolons, but instead defined scope using white space and indentation. In version 3 of Sass, a
new syntax was introduced, SCSS ("Sassy CSS"). SCSS is similar to CSS in that it ignores indentation levels and
whitespace, and instead uses semicolons and curly braces.

To install Sass, typically you would first install Ruby (pre-installed on macOS), and then run:

However, if you're running Visual Studio, you can get started with Sass in much the same way as you would with
Less. Open package.json and add the "gulp-sass" package to devDependencies :

Next, modify gulpfile.js to add a sass variable and a task to compile your Sass files and place the results in the
wwwroot folder :

var gulp = require("gulp"),
 fs = require("fs"),
 less = require("gulp-less"),
 sass = require("gulp-sass");

// other content removed

gulp.task("sass", function () {
 return gulp.src('Styles/main2.scss')
 .pipe(sass())
 .pipe(gulp.dest('wwwroot/css'));
});

$base: #CC0000;
body {
 background-color: $base;
}

body {
 background-color: #CC0000;
}

@import 'anotherfile';

Now you can add the Sass file main2.scss to the Styles folder in the root of the project:

Open main2.scss and add the following:

Save all of your files. Now when you refresh Task Runner Explorer, you see a sass task. Run it, and look in the
/wwwroot/css folder. There's now a main2.css file, with these contents:

Sass supports nesting in much the same was that Less does, providing similar benefits. Files can be split up by
function and included using the @import directive:

Sass supports mixins as well, using the @mixin keyword to define them and @include to include them, as in this

@mixin border-radius($radius) {
 -webkit-border-radius: $radius;
 -moz-border-radius: $radius;
 -ms-border-radius: $radius;
 border-radius: $radius;
}

.box { @include border-radius(10px); }

@mixin alert {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
}

.success {
 @include alert;
 border-color: green;
}

.error {
 @include alert;
 color: red;
 border-color: red;
 font-weight:bold;
}

.success {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
 border-color: green;
 }

.error {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
 color: red;
 border-color: red;
 font-weight: bold;
}

example from sass-lang.com:

In addition to mixins, Sass also supports the concept of inheritance, allowing one class to extend another. It's
conceptually similar to a mixin, but results in less CSS code. It's accomplished using the @extend keyword. To try
out mixins, add the following to your main2.scss file:

Examine the output in main2.css after running the sass task in Task Runner Explorer:

Notice that all of the common properties of the alert mixin are repeated in each class. The mixin did a good job of
helping eliminate duplication at development time, but it's still creating CSS with a lot of duplication in it, resulting
in larger than necessary CSS files - a potential performance issue.

Now replace the alert mixin with a .alert class, and change @include to @extend (remembering to extend
.alert , not alert):

http://sass-lang.com

.alert {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
}

.success {
 @extend .alert;
 border-color: green;
}

.error {
 @extend .alert;
 color: red;
 border-color: red;
 font-weight:bold;
}

.alert, .success, .error {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
}

.success {
 border-color: green;
}

.error {
 color: red;
 border-color: red;
 font-weight: bold;
}

Less or Sass?

Font Awesome

Run Sass once more, and examine the resulting CSS:

Now the properties are defined only as many times as needed, and better CSS is generated.

Sass also includes functions and conditional logic operations, similar to Less. In fact, the two languages' capabilities
are very similar.

There's still no consensus as to whether it's generally better to use Less or Sass (or even whether to prefer the
original Sass or the newer SCSS syntax within Sass). Probably the most important decision is to use one of these
tools, as opposed to just hand-coding your CSS files. Once you've made that decision, both Less and Sass are
good choices.

In addition to CSS preprocessors, another great resource for styling modern web applications is Font Awesome.
Font Awesome is a toolkit that provides over 500 scalable vector icons that can be freely used in your web
applications. It was originally designed to work with Bootstrap, but it has no dependency on that framework or on
any JavaScript libraries.

The easiest way to get started with Font Awesome is to add a reference to it, using its public content delivery
network (CDN) location:

<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css">

{
 "name": "ASP.NET",
 "private": true,
 "dependencies": {
 "bootstrap": "3.0.0",
 "jquery": "1.10.2",
 "jquery-validation": "1.11.1",
 "jquery-validation-unobtrusive": "3.2.2",
 "hammer.js": "2.0.4",
 "bootstrap-touch-carousel": "0.8.0",
 "Font-Awesome": "4.3.0"
 }
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title></title>
 <link href="lib/font-awesome/css/font-awesome.css" rel="stylesheet" />
</head>
<body>
 <ul class="fa-ul">
 <i class="fa fa-li fa-home"></i> Home
 <i class="fa fa-li fa-cog"></i> Settings

</body>
</html>

Summary

You can also add it to your Visual Studio project by adding it to the "dependencies" in bower.json:

Once you have a reference to Font Awesome on a page, you can add icons to your application by applying Font
Awesome classes, typically prefixed with "fa-", to your inline HTML elements (such as or <i>). For
example, you can add icons to simple lists and menus using code like this:

This produces the following in the browser - note the icon beside each item:

You can view a complete list of the available icons here:

http://fontawesome.io/icons/

Modern web applications increasingly demand responsive, fluid designs that are clean, intuitive, and easy to use
from a variety of devices. Managing the complexity of the CSS stylesheets required to achieve these goals is best
done using a preprocessor like Less or Sass. In addition, toolkits like Font Awesome quickly provide well-known
icons to textual navigation menus and buttons, improving the overall user experience of your application.

http://fontawesome.io/icons/

Bundle and minifiy static assets in ASP.NET Core
5/12/2018 • 10 minutes to read • Edit Online

What is bundling and minification?

BundlingBundling

MinificationMinification

AddAltToImg = function (imageTagAndImageID, imageContext) {
 ///<signature>
 ///<summary> Adds an alt tab to the image
 // </summary>
 //<param name="imgElement" type="String">The image selector.</param>
 //<param name="ContextForImage" type="String">The image context.</param>
 ///</signature>
 var imageElement = $(imageTagAndImageID, imageContext);
 imageElement.attr('alt', imageElement.attr('id').replace(/ID/, ''));
}

AddAltToImg=function(n,t){var i=$(n,t);i.attr("alt",i.attr("id").replace(/ID/,""))};

By Scott Addie

This article explains the benefits of applying bundling and minification, including how these features can be used
with ASP.NET Core web apps.

Bundling and minification are two distinct performance optimizations you can apply in a web app. Used together,
bundling and minification improve performance by reducing the number of server requests and reducing the size
of the requested static assets.

Bundling and minification primarily improve the first page request load time. Once a web page has been
requested, the browser caches the static assets (JavaScript, CSS, and images). Consequently, bundling and
minification don't improve performance when requesting the same page, or pages, on the same site requesting
the same assets. If the expires header isn't set correctly on the assets and if bundling and minification isn't used,
the browser's freshness heuristics mark the assets stale after a few days. Additionally, the browser requires a
validation request for each asset. In this case, bundling and minification provide a performance improvement even
after the first page request.

Bundling combines multiple files into a single file. Bundling reduces the number of server requests which are
necessary to render a web asset, such as a web page. You can create any number of individual bundles specifically
for CSS, JavaScript, etc. Fewer files means fewer HTTP requests from the browser to the server or from the
service providing your application. This results in improved first page load performance.

Minification removes unnecessary characters from code without altering functionality. The result is a significant
size reduction in requested assets (such as CSS, images, and JavaScript files). Common side effects of minification
include shortening variable names to one character and removing comments and unnecessary whitespace.

Consider the following JavaScript function:

Minification reduces the function to the following:

In addition to removing the comments and unnecessary whitespace, the following parameter and variable names
were renamed as follows:

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/bundling-and-minification.md
https://twitter.com/Scott_Addie

ORIGINAL RENAMED

imageTagAndImageID t

imageContext a

imageElement r

Impact of bundling and minification

ACTION WITH B/M WITHOUT B/M CHANGE

File Requests 7 18 157%

KB Transferred 156 264.68 70%

Load Time (ms) 885 2360 167%

Choose a bundling and minification strategy

Configure bundling and minification

The following table outlines differences between individually loading assets and using bundling and minification:

Browsers are fairly verbose with regard to HTTP request headers. The total bytes sent metric saw a significant
reduction when bundling. The load time shows a significant improvement, however this example ran locally.
Greater performance gains are realized when using bundling and minification with assets transferred over a
network.

The MVC and Razor Pages project templates provide an out-of-the-box solution for bundling and minification
consisting of a JSON configuration file. Third-party tools, such as the Gulp and Grunt task runners, accomplish
the same tasks with a bit more complexity. A third-party tool is a great fit when your development workflow
requires processing beyond bundling and minification—such as linting and image optimization. By using design-
time bundling and minification, the minified files are created prior to the app's deployment. Bundling and
minifying before deployment provides the advantage of reduced server load. However, it's important to recognize
that design-time bundling and minification increases build complexity and only works with static files.

The MVC and Razor Pages project templates provide a bundleconfig.json configuration file which defines the
options for each bundle. By default, a single bundle configuration is defined for the custom JavaScript
(wwwroot/js/site.js) and stylesheet (wwwroot/css/site.css) files:

[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css"
]
 },
 {
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
],
 "minify": {
 "enabled": true,
 "renameLocals": true
 },
 "sourceMap": false
 }
]

Build-time execution of bundling and minification

NOTENOTE

Configuration options include:

outputFileName : The name of the bundle file to output. Can contain a relative path from the bundleconfig.json

file. required
inputFiles : An array of files to bundle together. These are relative paths to the configuration file. optional,

*an empty value results in an empty output file. globbing patterns are supported.
minify : The minification options for the output type. optional, default - minify: { enabled: true }

includeInProject : Flag indicating whether to add generated files to project file. optional, default - false

sourceMap : Flag indicating whether to generate a source map for the bundled file. optional, default - false

sourceMapRootPath : The root path for storing the generated source map file.

Configuration options are available per output file type.
CSS Minifier
JavaScript Minifier
HTML Minifier

The BuildBundlerMinifier NuGet package enables the execution of bundling and minification at build time. The
package injects MSBuild Targets which run at build and clean time. The bundleconfig.json file is analyzed by the
build process to produce the output files based on the defined configuration.

BuildBundlerMinifier belongs to a community-driven project on GitHub for which Microsoft provides no support. Issues
should be filed here.

Visual Studio
.NET Core CLI

Add the BuildBundlerMinifier package to your project.

Build the project. The following appears in the Output window:

http://www.tldp.org/LDP/abs/html/globbingref.html
https://github.com/madskristensen/BundlerMinifier/wiki/cssminifier
https://github.com/madskristensen/BundlerMinifier/wiki/JavaScript-Minifier-settings
https://github.com/madskristensen/BundlerMinifier/wiki
https://www.nuget.org/packages/BuildBundlerMinifier/
https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets
https://github.com/madskristensen/BundlerMinifier/issues

1>------ Build started: Project: BuildBundlerMinifierApp, Configuration: Debug Any CPU ------
1>
1>Bundler: Begin processing bundleconfig.json
1> Minified wwwroot/css/site.min.css
1> Minified wwwroot/js/site.min.js
1>Bundler: Done processing bundleconfig.json
1>BuildBundlerMinifierApp -> C:\BuildBundlerMinifierApp\bin\Debug\netcoreapp2.0\BuildBundlerMinifierApp.dll
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

1>------ Clean started: Project: BuildBundlerMinifierApp, Configuration: Debug Any CPU ------
1>
1>Bundler: Cleaning output from bundleconfig.json
1>Bundler: Done cleaning output file from bundleconfig.json
========== Clean: 1 succeeded, 0 failed, 0 skipped ==========

Ad hoc execution of bundling and minification

<DotNetCliToolReference Include="BundlerMinifier.Core" Version="2.6.362" />

NOTENOTE

dotnet bundle

IMPORTANTIMPORTANT

Add files to workflow

.about, [role=main], [role=complementary] {
 margin-top: 60px;
}

footer {
 margin-top: 10px;
}

Clean the project. The following appears in the Output window:

It's possible to run the bundling and minification tasks on an ad hoc basis, without building the project. Add the
BundlerMinifier.Core NuGet package to your project:

BundlerMinifier.Core belongs to a community-driven project on GitHub for which Microsoft provides no support. Issues
should be filed here.

This package extends the .NET Core CLI to include the dotnet-bundle tool. The following command can be
executed in the Package Manager Console (PMC) window or in a command shell:

NuGet Package Manager adds dependencies to the *.csproj file as <PackageReference /> nodes. The dotnet bundle

command is registered with the .NET Core CLI only when a <DotNetCliToolReference /> node is used. Modify the *.csproj
file accordingly.

Consider an example in which an additional custom.css file is added resembling the following:

https://www.nuget.org/packages/BundlerMinifier.Core/
https://github.com/madskristensen/BundlerMinifier/issues

[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css",
 "wwwroot/css/custom.css"
]
 },
 {
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
],
 "minify": {
 "enabled": true,
 "renameLocals": true
 },
 "sourceMap": false
 }
]

NOTENOTE

"inputFiles": ["wwwroot/**/*(*.css|!(*.min.css)"]

Environment-based bundling and minification

<environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</environment>

To minify custom.css and bundle it with site.css into a site.min.css file, add the relative path to bundleconfig.json:

Alternatively, the following globbing pattern could be used:

This globbing pattern matches all CSS files and excludes the minified file pattern.

Build the application. Open site.min.css and notice the content of custom.css is appended to the end of the file.

As a best practice, the bundled and minified files of your app should be used in a production environment. During
development, the original files make for easier debugging of the app.

Specify which files to include in your pages by using the Environment Tag Helper in your views. The Environment
Tag Helper only renders its contents when running in specific environments.

The following environment tag renders the unprocessed CSS files when running in the Development environment:

ASP.NET Core 2.x
ASP.NET Core 1.x

The following environment tag renders the bundled and minified CSS files when running in an environment other
than Development . For example, running in Production or Staging triggers the rendering of these stylesheets:

ASP.NET Core 2.x
ASP.NET Core 1.x

<environment exclude="Development">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
</environment>

Consume bundleconfig.json from Gulp

Use the Bundler & Minifier extensionUse the Bundler & Minifier extension

NOTENOTE

npm i -g gulp-cli

"use strict";

var gulp = require("gulp"),
 concat = require("gulp-concat"),
 cssmin = require("gulp-cssmin"),
 htmlmin = require("gulp-htmlmin"),
 uglify = require("gulp-uglify"),
 merge = require("merge-stream"),
 del = require("del"),
 bundleconfig = require("./bundleconfig.json");

// Code omitted for brevity

There are cases in which an app's bundling and minification workflow requires additional processing. Examples
include image optimization, cache busting, and CDN asset processing. To satisfy these requirements, you can
convert the bundling and minification workflow to use Gulp.

The Visual Studio Bundler & Minifier extension handles the conversion to Gulp.

The Bundler & Minifier extension belongs to a community-driven project on GitHub for which Microsoft provides no
support. Issues should be filed here.

Right-click the bundleconfig.json file in Solution Explorer and select Bundler & Minifier > Convert To Gulp...:

The gulpfile.js and package.json files are added to the project. The supporting npm packages listed in the
package.json file's devDependencies section are installed.

Run the following command in the PMC window to install the Gulp CLI as a global dependency:

The gulpfile.js file reads the bundleconfig.json file for the inputs, outputs, and settings.

https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://github.com/madskristensen/BundlerMinifier/issues
https://www.npmjs.com/

Convert manuallyConvert manually

"devDependencies": {
 "del": "^3.0.0",
 "gulp": "^3.9.1",
 "gulp-concat": "^2.6.1",
 "gulp-cssmin": "^0.2.0",
 "gulp-htmlmin": "^3.0.0",
 "gulp-uglify": "^3.0.0",
 "merge-stream": "^1.0.1"
}

npm i

npm i -g gulp-cli

"use strict";

var gulp = require("gulp"),
 concat = require("gulp-concat"),
 cssmin = require("gulp-cssmin"),
 htmlmin = require("gulp-htmlmin"),
 uglify = require("gulp-uglify"),
 merge = require("merge-stream"),
 del = require("del"),
 bundleconfig = require("./bundleconfig.json");

var regex = {
 css: /\.css$/,
 html: /\.(html|htm)$/,
 js: /\.js$/
};

gulp.task("min", ["min:js", "min:css", "min:html"]);

gulp.task("min:js", function () {
 var tasks = getBundles(regex.js).map(function (bundle) {
 return gulp.src(bundle.inputFiles, { base: "." })
 .pipe(concat(bundle.outputFileName))
 .pipe(uglify())
 .pipe(gulp.dest("."));
 });
 return merge(tasks);
});

gulp.task("min:css", function () {
 var tasks = getBundles(regex.css).map(function (bundle) {
 return gulp.src(bundle.inputFiles, { base: "." })
 .pipe(concat(bundle.outputFileName))
 .pipe(cssmin())
 .pipe(gulp.dest("."));
 });
 return merge(tasks);

If Visual Studio and/or the Bundler & Minifier extension aren't available, convert manually.

Add a package.json file, with the following devDependencies , to the project root:

Install the dependencies by running the following command at the same level as package.json:

Install the Gulp CLI as a global dependency:

Copy the gulpfile.js file below to the project root:

 return merge(tasks);
});

gulp.task("min:html", function () {
 var tasks = getBundles(regex.html).map(function (bundle) {
 return gulp.src(bundle.inputFiles, { base: "." })
 .pipe(concat(bundle.outputFileName))
 .pipe(htmlmin({ collapseWhitespace: true, minifyCSS: true, minifyJS: true }))
 .pipe(gulp.dest("."));
 });
 return merge(tasks);
});

gulp.task("clean", function () {
 var files = bundleconfig.map(function (bundle) {
 return bundle.outputFileName;
 });

 return del(files);
});

gulp.task("watch", function () {
 getBundles(regex.js).forEach(function (bundle) {
 gulp.watch(bundle.inputFiles, ["min:js"]);
 });

 getBundles(regex.css).forEach(function (bundle) {
 gulp.watch(bundle.inputFiles, ["min:css"]);
 });

 getBundles(regex.html).forEach(function (bundle) {
 gulp.watch(bundle.inputFiles, ["min:html"]);
 });
});

function getBundles(regexPattern) {
 return bundleconfig.filter(function (bundle) {
 return regexPattern.test(bundle.outputFileName);
 });
}

Run Gulp tasksRun Gulp tasks

<Target Name="MyPreCompileTarget" BeforeTargets="Build">
 <Exec Command="gulp min" />
</Target>

1>------ Build started: Project: BuildBundlerMinifierApp, Configuration: Debug Any CPU ------
1>BuildBundlerMinifierApp -> C:\BuildBundlerMinifierApp\bin\Debug\netcoreapp2.0\BuildBundlerMinifierApp.dll
1>[14:17:49] Using gulpfile C:\BuildBundlerMinifierApp\gulpfile.js
1>[14:17:49] Starting 'min:js'...
1>[14:17:49] Starting 'min:css'...
1>[14:17:49] Starting 'min:html'...
1>[14:17:49] Finished 'min:js' after 83 ms
1>[14:17:49] Finished 'min:css' after 88 ms
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

To trigger the Gulp minification task before the project builds in Visual Studio, add the following MSBuild Target
to the *.csproj file:

In this example, any tasks defined within the MyPreCompileTarget target run before the predefined Build target.
Output similar to the following appears in Visual Studio's Output window:

Alternatively, Visual Studio's Task Runner Explorer may be used to bind Gulp tasks to specific Visual Studio events.

https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets

Additional resources

See Running default tasks for instructions on doing that.

Use Gulp
Use Grunt
Use multiple environments
Tag Helpers

Browser Link in ASP.NET Core
5/30/2018 • 3 minutes to read • Edit Online

Browser Link setup

ConfigurationConfiguration

app.UseBrowserLink();

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
}

How to use Browser Link

By Nicolò Carandini, Mike Wasson, and Tom Dykstra

Browser Link is a feature in Visual Studio that creates a communication channel between the development
environment and one or more web browsers. You can use Browser Link to refresh your web application in several
browsers at once, which is useful for cross-browser testing.

ASP.NET Core 2.x
ASP.NET Core 1.x

The ASP.NET Core 2.0 Web Application, Empty, and Web API template projects use the
Microsoft.AspNetCore.All metapackage, which contains a package reference for
Microsoft.VisualStudio.Web.BrowserLink. Therefore, using the Microsoft.AspNetCore.All metapackage requires no
further action to make Browser Link available for use.

When converting an ASP.NET Core 2.0 project to ASP.NET Core 2.1 and transitioning to the
Microsoft.AspNetCore.App metapackage, you must install the Microsoft.VisualStudio.Web.BrowserLink package
manually for BrowserLink functionality.

In the Configure method of the Startup.cs file:

Usually the code is inside an if block that only enables Browser Link in the Development environment, as shown
here:

For more information, see Use multiple environments.

When you have an ASP.NET Core project open, Visual Studio shows the Browser Link toolbar control next to the
Debug Target toolbar control:

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/using-browserlink.md
https://github.com/ncarandini
https://github.com/MikeWasson
https://github.com/tdykstra
https://www.nuget.org/packages/Microsoft.AspNetCore.All/
https://www.nuget.org/packages/Microsoft.VisualStudio.Web.BrowserLink/
https://www.nuget.org/packages/Microsoft.VisualStudio.Web.BrowserLink/

NOTENOTE

Refresh the web application in several browsers at once

From the Browser Link toolbar control, you can:

Refresh the web application in several browsers at once.
Open the Browser Link Dashboard.
Enable or disable Browser Link. Note: Browser Link is disabled by default in Visual Studio 2017 (15.3).
Enable or disable CSS Auto-Sync.

Some Visual Studio plug-ins, most notably Web Extension Pack 2015 and Web Extension Pack 2017, offer extended
functionality for Browser Link, but some of the additional features don't work with ASP.NET Core projects.

To choose a single web browser to launch when starting the project, use the drop-down menu in the Debug
Target toolbar control:

To open multiple browsers at once, choose Browse with... from the same drop-down. Hold down the CTRL key to
select the browsers you want, and then click Browse:

Here's a screenshot showing Visual Studio with the Index view open and two open browsers:

Hover over the Browser Link toolbar control to see the browsers that are connected to the project:

The Browser Link DashboardThe Browser Link Dashboard

Change the Index view, and all connected browsers are updated when you click the Browser Link refresh button:

Browser Link also works with browsers that you launch from outside Visual Studio and navigate to the application
URL.

Open the Browser Link Dashboard from the Browser Link drop down menu to manage the connection with open
browsers:

If no browser is connected, you can start a non-debugging session by selecting the View in Browser link:

Otherwise, the connected browsers are shown with the path to the page that each browser is showing:

Enable or disable Browser LinkEnable or disable Browser Link

Enable or disable CSS Auto-SyncEnable or disable CSS Auto-Sync

How does it work?

 <!-- Visual Studio Browser Link -->
 <script type="application/json" id="__browserLink_initializationData">
 {"requestId":"a717d5a07c1741949a7cefd6fa2bad08","requestMappingFromServer":false}
 </script>
 <script type="text/javascript" src="http://localhost:54139/b6e36e429d034f578ebccd6a79bf19bf/browserLink"
async="async"></script>
 <!-- End Browser Link -->
</body>

If you like, you can click on a listed browser name to refresh that single browser.

When you re-enable Browser Link after disabling it, you must refresh the browsers to reconnect them.

When CSS Auto-Sync is enabled, connected browsers are automatically refreshed when you make any change to
CSS files.

Browser Link uses SignalR to create a communication channel between Visual Studio and the browser. When
Browser Link is enabled, Visual Studio acts as a SignalR server that multiple clients (browsers) can connect to.
Browser Link also registers a middleware component in the ASP.NET request pipeline. This component injects
special <script> references into every page request from the server. You can see the script references by selecting
View source in the browser and scrolling to the end of the <body> tag content:

Your source files aren't modified. The middleware component injects the script references dynamically.

Because the browser-side code is all JavaScript, it works on all browsers that SignalR supports without requiring a
browser plug-in.

Use JavaScriptServices to Create Single Page
Applications in ASP.NET Core
4/16/2018 • 11 minutes to read • Edit Online

What is JavaScriptServices?

What is SpaServices?

Prerequisites for using SpaServices

By Scott Addie and Fiyaz Hasan

A Single Page Application (SPA) is a popular type of web application due to its inherent rich user experience.
Integrating client-side SPA frameworks or libraries, such as Angular or React, with server-side frameworks like
ASP.NET Core can be difficult. JavaScriptServices was developed to reduce friction in the integration process. It
enables seamless operation between the different client and server technology stacks.

View or download sample code (how to download)

JavaScriptServices is a collection of client-side technologies for ASP.NET Core. Its goal is to position ASP.NET
Core as developers' preferred server-side platform for building SPAs.

JavaScriptServices consists of three distinct NuGet packages:

Microsoft.AspNetCore.NodeServices (NodeServices)
Microsoft.AspNetCore.SpaServices (SpaServices)
Microsoft.AspNetCore.SpaTemplates (SpaTemplates)

These packages are useful if you:

Run JavaScript on the server
Use a SPA framework or library
Build client-side assets with Webpack

Much of the focus in this article is placed on using the SpaServices package.

SpaServices was created to position ASP.NET Core as developers' preferred server-side platform for building
SPAs. SpaServices isn't required to develop SPAs with ASP.NET Core, and it doesn't lock you into a particular
client framework.

SpaServices provides useful infrastructure such as:

Server-side prerendering
Webpack Dev Middleware
Hot Module Replacement
Routing helpers

Collectively, these infrastructure components enhance both the development workflow and the runtime
experience. The components can be adopted individually.

To work with SpaServices, install the following:

https://github.com/aspnet/Docs/blob/master/aspnetcore/client-side/spa-services.md
https://github.com/scottaddie
http://fiyazhasan.me/
https://angular.io/
https://facebook.github.io/react/
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/Docs/tree/master/aspnetcore/client-side/spa-services/sample
https://www.nuget.org/packages/Microsoft.AspNetCore.NodeServices/
https://www.nuget.org/packages/Microsoft.AspNetCore.SpaServices/
https://www.nuget.org/packages/Microsoft.AspNetCore.SpaTemplates/

Server-side prerendering

PrerequisitesPrerequisites

ConfigurationConfiguration

@using SpaServicesSampleApp
@addTagHelper "*, Microsoft.AspNetCore.Mvc.TagHelpers"
@addTagHelper "*, Microsoft.AspNetCore.SpaServices"

<app asp-prerender-module="ClientApp/dist/main-server">Loading...</app>

The The asp-prerender-module Tag Helper Tag Helper

entry: { 'main-server': './ClientApp/boot-server.ts' },

Node.js (version 6 or later) with npm

node -v && npm -v

To verify these components are installed and can be found, run the following from the command line:

Note: If you're deploying to an Azure web site, you don't need to do anything here — Node.js is installed and
available in the server environments.

.NET Core SDK 2.0 or later

If you're on Windows using Visual Studio 2017, the SDK is installed by selecting the .NET Core cross-
platform development workload.

Microsoft.AspNetCore.SpaServices NuGet package

A universal (also known as isomorphic) application is a JavaScript application capable of running both on the
server and the client. Angular, React, and other popular frameworks provide a universal platform for this
application development style. The idea is to first render the framework components on the server via Node.js, and
then delegate further execution to the client.

ASP.NET Core Tag Helpers provided by SpaServices simplify the implementation of server-side prerendering by
invoking the JavaScript functions on the server.

Install the following:

npm i -S aspnet-prerendering

aspnet-prerendering npm package:

The Tag Helpers are made discoverable via namespace registration in the project's _ViewImports.cshtml file:

These Tag Helpers abstract away the intricacies of communicating directly with low-level APIs by leveraging an
HTML-like syntax inside the Razor view:

The asp-prerender-module Tag Helper, used in the preceding code example, executes ClientApp/dist/main-server.js

on the server via Node.js. For clarity's sake, main-server.js file is an artifact of the TypeScript-to-JavaScript
transpilation task in the Webpack build process. Webpack defines an entry point alias of main-server ; and,
traversal of the dependency graph for this alias begins at the ClientApp/boot-server.ts file:

https://nodejs.org/
https://www.microsoft.com/net/download
https://www.nuget.org/packages/Microsoft.AspNetCore.SpaServices/
https://www.npmjs.com/package/aspnet-prerendering
http://webpack.github.io/

import { createServerRenderer, RenderResult } from 'aspnet-prerendering';

export default createServerRenderer(params => {
 const providers = [
 { provide: INITIAL_CONFIG, useValue: { document: '<app></app>', url: params.url } },
 { provide: 'ORIGIN_URL', useValue: params.origin }
];

 return platformDynamicServer(providers).bootstrapModule(AppModule).then(moduleRef => {
 const appRef = moduleRef.injector.get(ApplicationRef);
 const state = moduleRef.injector.get(PlatformState);
 const zone = moduleRef.injector.get(NgZone);

 return new Promise<RenderResult>((resolve, reject) => {
 zone.onError.subscribe(errorInfo => reject(errorInfo));
 appRef.isStable.first(isStable => isStable).subscribe(() => {
 // Because 'onStable' fires before 'onError', we have to delay slightly before
 // completing the request in case there's an error to report
 setImmediate(() => {
 resolve({
 html: state.renderToString()
 });
 moduleRef.destroy();
 });
 });
 });
 });
});

The The asp-prerender-data Tag Helper Tag Helper

<app asp-prerender-module="ClientApp/dist/main-server"
 asp-prerender-data='new {
 UserName = "John Doe"
 }'>Loading...</app>

In the following Angular example, the ClientApp/boot-server.ts file utilizes the createServerRenderer function and
RenderResult type of the aspnet-prerendering npm package to configure server rendering via Node.js. The HTML

markup destined for server-side rendering is passed to a resolve function call, which is wrapped in a strongly-
typed JavaScript Promise object. The Promise object's significance is that it asynchronously supplies the HTML
markup to the page for injection in the DOM's placeholder element.

When coupled with the asp-prerender-module Tag Helper, the asp-prerender-data Tag Helper can be used to pass
contextual information from the Razor view to the server-side JavaScript. For example, the following markup
passes user data to the main-server module:

The received UserName argument is serialized using the built-in JSON serializer and is stored in the params.data

object. In the following Angular example, the data is used to construct a personalized greeting within an h1

element:

import { createServerRenderer, RenderResult } from 'aspnet-prerendering';

export default createServerRenderer(params => {
 const providers = [
 { provide: INITIAL_CONFIG, useValue: { document: '<app></app>', url: params.url } },
 { provide: 'ORIGIN_URL', useValue: params.origin }
];

 return platformDynamicServer(providers).bootstrapModule(AppModule).then(moduleRef => {
 const appRef = moduleRef.injector.get(ApplicationRef);
 const state = moduleRef.injector.get(PlatformState);
 const zone = moduleRef.injector.get(NgZone);

 return new Promise<RenderResult>((resolve, reject) => {
 const result = `<h1>Hello, ${params.data.userName}</h1>`;

 zone.onError.subscribe(errorInfo => reject(errorInfo));
 appRef.isStable.first(isStable => isStable).subscribe(() => {
 // Because 'onStable' fires before 'onError', we have to delay slightly before
 // completing the request in case there's an error to report
 setImmediate(() => {
 resolve({
 html: result
 });
 moduleRef.destroy();
 });
 });
 });
 });
});

Note: Property names passed in Tag Helpers are represented with PascalCase notation. Contrast that to
JavaScript, where the same property names are represented with camelCase. The default JSON serialization
configuration is responsible for this difference.

To expand upon the preceding code example, data can be passed from the server to the view by hydrating the
globals property provided to the resolve function:

import { createServerRenderer, RenderResult } from 'aspnet-prerendering';

export default createServerRenderer(params => {
 const providers = [
 { provide: INITIAL_CONFIG, useValue: { document: '<app></app>', url: params.url } },
 { provide: 'ORIGIN_URL', useValue: params.origin }
];

 return platformDynamicServer(providers).bootstrapModule(AppModule).then(moduleRef => {
 const appRef = moduleRef.injector.get(ApplicationRef);
 const state = moduleRef.injector.get(PlatformState);
 const zone = moduleRef.injector.get(NgZone);

 return new Promise<RenderResult>((resolve, reject) => {
 const result = `<h1>Hello, ${params.data.userName}</h1>`;

 zone.onError.subscribe(errorInfo => reject(errorInfo));
 appRef.isStable.first(isStable => isStable).subscribe(() => {
 // Because 'onStable' fires before 'onError', we have to delay slightly before
 // completing the request in case there's an error to report
 setImmediate(() => {
 resolve({
 html: result,
 globals: {
 postList: [
 'Introduction to ASP.NET Core',
 'Making apps with Angular and ASP.NET Core'
]
 }
 });
 moduleRef.destroy();
 });
 });
 });
 });
});

Webpack Dev Middleware

The postList array defined inside the globals object is attached to the browser's global window object. This
variable hoisting to global scope eliminates duplication of effort, particularly as it pertains to loading the same
data once on the server and again on the client.

Webpack Dev Middleware introduces a streamlined development workflow whereby Webpack builds resources
on demand. The middleware automatically compiles and serves client-side resources when a page is reloaded in
the browser. The alternate approach is to manually invoke Webpack via the project's npm build script when a

https://webpack.github.io/docs/webpack-dev-middleware.html

"build": "npm run build:vendor && npm run build:custom",

PrerequisitesPrerequisites

ConfigurationConfiguration

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware();
}
else
{
 app.UseExceptionHandler("/Home/Error");
}

// Call UseWebpackDevMiddleware before UseStaticFiles
app.UseStaticFiles();

module.exports = (env) => {
 output: {
 filename: '[name].js',
 publicPath: '/dist/' // Webpack dev middleware, if enabled, handles requests for this URL prefix
 },

Hot Module Replacement

PrerequisitesPrerequisites

third-party dependency or the custom code changes. An npm build script in the package.json file is shown in the
following example:

Install the following:

npm i -D aspnet-webpack

aspnet-webpack npm package:

Webpack Dev Middleware is registered into the HTTP request pipeline via the following code in the Startup.cs
file's Configure method:

The UseWebpackDevMiddleware extension method must be called before registering static file hosting via the
UseStaticFiles extension method. For security reasons, register the middleware only when the app runs in

development mode.

The webpack.config.js file's output.publicPath property tells the middleware to watch the dist folder for
changes:

Think of Webpack's Hot Module Replacement (HMR) feature as an evolution of Webpack Dev Middleware. HMR
introduces all the same benefits, but it further streamlines the development workflow by automatically updating
page content after compiling the changes. Don't confuse this with a refresh of the browser, which would interfere
with the current in-memory state and debugging session of the SPA. There's a live link between the Webpack Dev
Middleware service and the browser, which means changes are pushed to the browser.

Install the following:

webpack-hot-middleware npm package:

https://www.npmjs.com/package/aspnet-webpack
https://webpack.js.org/concepts/hot-module-replacement/
https://www.npmjs.com/package/webpack-hot-middleware

ConfigurationConfiguration

app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
});

module.exports = (env) => {
 plugins: [new CheckerPlugin()]

Routing helpers

PrerequisitesPrerequisites

npm i -D webpack-hot-middleware

The HMR component must be registered into MVC's HTTP request pipeline in the Configure method:

As was true with Webpack Dev Middleware, the UseWebpackDevMiddleware extension method must be called before
the UseStaticFiles extension method. For security reasons, register the middleware only when the app runs in
development mode.

The webpack.config.js file must define a plugins array, even if it's left empty:

After loading the app in the browser, the developer tools' Console tab provides confirmation of HMR activation:

In most ASP.NET Core-based SPAs, you'll want client-side routing in addition to server-side routing. The SPA and
MVC routing systems can work independently without interference. There's, however, one edge case posing
challenges: identifying 404 HTTP responses.

Consider the scenario in which an extensionless route of /some/page is used. Assume the request doesn't pattern-
match a server-side route, but its pattern does match a client-side route. Now consider an incoming request for
/images/user-512.png , which generally expects to find an image file on the server. If that requested resource path

doesn't match any server-side route or static file, it's unlikely that the client-side application would handle it — you
generally want to return a 404 HTTP status code.

Install the following:

The client-side routing npm package. Using Angular as an example:

ConfigurationConfiguration

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute(
 name: "spa-fallback",
 defaults: new { controller = "Home", action = "Index" });
});

Creating a new project

dotnet new --install Microsoft.AspNetCore.SpaTemplates::*

TEMPLATES SHORT NAME LANGUAGE TAGS

MVC ASP.NET Core with
Angular

angular [C#] Web/MVC/SPA

MVC ASP.NET Core with
React.js

react [C#] Web/MVC/SPA

MVC ASP.NET Core with
React.js and Redux

reactredux [C#] Web/MVC/SPA

dotnet new angular

Set the runtime configuration modeSet the runtime configuration mode

npm i -S @angular/router

An extension method named MapSpaFallbackRoute is used in the Configure method:

Tip: Routes are evaluated in the order in which they're configured. Consequently, the default route in the
preceding code example is used first for pattern matching.

JavaScriptServices provides pre-configured application templates. SpaServices is used in these templates, in
conjunction with different frameworks and libraries such as Angular, React, and Redux.

These templates can be installed via the .NET Core CLI by running the following command:

A list of available SPA templates is displayed:

To create a new project using one of the SPA templates, include the Short Name of the template in the dotnet
new command. The following command creates an Angular application with ASP.NET Core MVC configured for
the server side:

Two primary runtime configuration modes exist:

Development:
Includes source maps to ease debugging.
Doesn't optimize the client-side code for performance.

https://docs.microsoft.com/dotnet/core/tools/dotnet-new

Running with .NET Core CLIRunning with .NET Core CLI

dotnet restore && npm i

dotnet run

Running with Visual Studio 2017Running with Visual Studio 2017

Testing the app

it('should display a title', async(() => {
 const titleText = fixture.nativeElement.querySelector('h1').textContent;
 expect(titleText).toEqual('Counter');
}));

it('should start with count 0, then increments by 1 when clicked', async(() => {
 const countElement = fixture.nativeElement.querySelector('strong');
 expect(countElement.textContent).toEqual('0');

 const incrementButton = fixture.nativeElement.querySelector('button');
 incrementButton.click();
 fixture.detectChanges();
 expect(countElement.textContent).toEqual('1');
}));

npm test

Production:
Excludes source maps.
Optimizes the client-side code via bundling & minification.

ASP.NET Core uses an environment variable named ASPNETCORE_ENVIRONMENT to store the configuration mode. See
Setting the environment for more information.

Restore the required NuGet and npm packages by running the following command at the project root:

Build and run the application:

The application starts on localhost according to the runtime configuration mode. Navigating to
http://localhost:5000 in the browser displays the landing page.

Open the .csproj file generated by the dotnet new command. The required NuGet and npm packages are restored
automatically upon project open. This restoration process may take up to a few minutes, and the application is
ready to run when it completes. Click the green run button or press Ctrl + F5 , and the browser opens to the
application's landing page. The application runs on localhost according to the runtime configuration mode.

SpaServices templates are pre-configured to run client-side tests using Karma and Jasmine. Jasmine is a popular
unit testing framework for JavaScript, whereas Karma is a test runner for those tests. Karma is configured to work
with the Webpack Dev Middleware such that the developer isn't required to stop and run the test every time
changes are made. Whether it's the code running against the test case or the test case itself, the test runs
automatically.

Using the Angular application as an example, two Jasmine test cases are already provided for the
CounterComponent in the counter.component.spec.ts file:

Open the command prompt in the ClientApp directory. Run the following command:

https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://karma-runner.github.io/1.0/index.html
https://jasmine.github.io/

module.exports = function (config) {
 config.set({
 files: [
 '../../wwwroot/dist/vendor.js',
 './boot-tests.ts'
],

Publishing the application

<Target Name="RunWebpack" AfterTargets="ComputeFilesToPublish">
 <!-- As part of publishing, ensure the JS resources are freshly built in production mode -->
 <Exec Command="npm install" />
 <Exec Command="node node_modules/webpack/bin/webpack.js --config webpack.config.vendor.js --env.prod" />
 <Exec Command="node node_modules/webpack/bin/webpack.js --env.prod" />

 <!-- Include the newly-built files in the publish output -->
 <ItemGroup>
 <DistFiles Include="wwwroot\dist**; ClientApp\dist**" />
 <ResolvedFileToPublish Include="@(DistFiles->'%(FullPath)')" Exclude="@(ResolvedFileToPublish)">
 <RelativePath>%(DistFiles.Identity)</RelativePath>
 <CopyToPublishDirectory>PreserveNewest</CopyToPublishDirectory>
 </ResolvedFileToPublish>
 </ItemGroup>
</Target>

dotnet publish -c Release

Additional resources

The script launches the Karma test runner, which reads the settings defined in the karma.conf.js file. Among other
settings, the karma.conf.js identifies the test files to be executed via its files array:

Combining the generated client-side assets and the published ASP.NET Core artifacts into a ready-to-deploy
package can be cumbersome. Thankfully, SpaServices orchestrates that entire publication process with a custom
MSBuild target named RunWebpack :

The MSBuild target has the following responsibilities:

1. Restore the npm packages
2. Create a production-grade build of the third-party, client-side assets
3. Create a production-grade build of the custom client-side assets
4. Copy the Webpack-generated assets to the publish folder

The MSBuild target is invoked when running:

Angular Docs

https://angular.io/docs

Use the Single Page Application templates with
ASP.NET Core
5/26/2018 • 2 minutes to read • Edit Online

NOTENOTE

Prerequisites

Installation

dotnet new --install Microsoft.DotNet.Web.Spa.ProjectTemplates::2.0.0

Use the templates

The released .NET Core 2.0.x SDK includes older project templates for Angular, React, and React with Redux. This
documentation isn't about those older project templates. This documentation is for the latest Angular, React, and React with
Redux templates, which can be installed manually into ASP.NET Core 2.0. The templates are included by default with ASP.NET
Core 2.1.

Node.js, version 6 or later

.NET Core SDK 2.0 or later

The templates are already installed with ASP.NET Core 2.1.

If you have ASP.NET Core 2.0, run the following command to install the updated ASP.NET Core templates for
Angular, React, and React with Redux:

Use the Angular project template
Use the React project template
Use the React with Redux project template

https://github.com/aspnet/Docs/blob/master/aspnetcore/spa/index.md
https://www.microsoft.com/net/download
https://nodejs.org

Use the Angular project template with ASP.NET Core
6/14/2018 • 10 minutes to read • Edit Online

NOTENOTE

Create a new app

dotnet new angular -o my-new-app
cd my-new-app

Add pages, images, styles, modules, etc.

Run ng commands

This documentation isn't about the Angular project template included in ASP.NET Core 2.0. It's about the newer Angular
template to which you can update manually. The template is included in ASP.NET Core 2.1 by default.

The updated Angular project template provides a convenient starting point for ASP.NET Core apps using Angular
and the Angular CLI to implement a rich, client-side user interface (UI).

The template is equivalent to creating an ASP.NET Core project to act as an API backend and an Angular CLI
project to act as a UI. The template offers the convenience of hosting both project types in a single app project.
Consequently, the app project can be built and published as a single unit.

If using ASP.NET Core 2.0, ensure you've installed the updated React project template.

If you have ASP.NET Core 2.1 installed, there's no need to install the Angular project template.

Create a new project from a command prompt using the command dotnet new angular in an empty directory. For
example, the following commands create the app in a my-new-app directory and switch to that directory:

Run the app from either Visual Studio or the .NET Core CLI:

Visual Studio
.NET Core CLI

Open the generated .csproj file, and run the app as normal from there.

The build process restores npm dependencies on the first run, which can take several minutes. Subsequent builds
are much faster.

The project template creates an ASP.NET Core app and an Angular app. The ASP.NET Core app is intended to be
used for data access, authorization, and other server-side concerns. The Angular app, residing in the ClientApp
subdirectory, is intended to be used for all UI concerns.

The ClientApp directory contains a standard Angular CLI app. See the official Angular documentation for more
information.

There are slight differences between the Angular app created by this template and the one created by Angular CLI
itself (via ng new); however, the app's capabilities are unchanged. The app created by the template contains a
Bootstrap-based layout and a basic routing example.

https://github.com/aspnet/Docs/blob/master/aspnetcore/spa/angular.md
https://github.com/angular/angular-cli/wiki
https://getbootstrap.com/

cd ClientApp

Install npm packages

cd ClientApp
npm install --save <package_name>

Publish and deploy

Run "ng serve" independently

In a command prompt, switch to the ClientApp subdirectory:

If you have the ng tool installed globally, you can run any of its commands. For example, you can run ng lint ,
ng test , or any of the other Angular CLI commands. There's no need to run ng serve though, because your

ASP.NET Core app deals with serving both server-side and client-side parts of your app. Internally, it uses
ng serve in development.

If you don't have the ng tool installed, run npm run ng instead. For example, you can run npm run ng lint or
npm run ng test .

To install third-party npm packages, use a command prompt in the ClientApp subdirectory. For example:

In development, the app runs in a mode optimized for developer convenience. For example, JavaScript bundles
include source maps (so that when debugging, you can see your original TypeScript code). The app watches for
TypeScript, HTML, and CSS file changes on disk and automatically recompiles and reloads when it sees those files
change.

In production, serve a version of your app that's optimized for performance. This is configured to happen
automatically. When you publish, the build configuration emits a minified, ahead-of-time (AoT) compiled build of
your client-side code. Unlike the development build, the production build doesn't require Node.js to be installed on
the server (unless you have enabled server-side prerendering).

You can use standard ASP.NET Core hosting and deployment methods.

The project is configured to start its own instance of the Angular CLI server in the background when the ASP.NET
Core app starts in development mode. This is convenient because you don't have to run a separate server
manually.

There's a drawback to this default setup. Each time you modify your C# code and your ASP.NET Core app needs to
restart, the Angular CLI server restarts. Around 10 seconds is required to start back up. If you're making frequent
C# code edits and don't want to wait for Angular CLI to restart, run the Angular CLI server externally,
independently of the ASP.NET Core process. To do so:

cd ClientApp
npm start

1. In a command prompt, switch to the ClientApp subdirectory, and launch the Angular CLI development
server :

https://github.com/angular/angular-cli/wiki#additional-commands

 Server-side rendering

TIPTIP

app.UseSpa(spa =>
{
 spa.Options.SourcePath = "ClientApp";

 spa.UseSpaPrerendering(options =>
 {
 options.BootModulePath = $"{spa.Options.SourcePath}/dist-server/main.bundle.js";
 options.BootModuleBuilder = env.IsDevelopment()
 ? new AngularCliBuilder(npmScript: "build:ssr")
 : null;
 options.ExcludeUrls = new[] { "/sockjs-node" };
 });

 if (env.IsDevelopment())
 {
 spa.UseAngularCliServer(npmScript: "start");
 }
});

IMPORTANTIMPORTANT

spa.UseProxyToSpaDevelopmentServer("http://localhost:4200");

Use npm start to launch the Angular CLI development server, not ng serve , so that the configuration in
package.json is respected. To pass additional parameters to the Angular CLI server, add them to the relevant
scripts line in your package.json file.

2. Modify your ASP.NET Core app to use the external Angular CLI instance instead of launching one of its
own. In your Startup class, replace the spa.UseAngularCliServer invocation with the following:

When you start your ASP.NET Core app, it won't launch an Angular CLI server. The instance you started manually
is used instead. This enables it to start and restart faster. It's no longer waiting for Angular CLI to rebuild your
client app each time.

As a performance feature, you can choose to pre-render your Angular app on the server as well as running it on
the client. This means that browsers receive HTML markup representing your app's initial UI, so they display it
even before downloading and executing your JavaScript bundles. Most of the implementation of this comes from
an Angular feature called Angular Universal.

Enabling server-side rendering (SSR) introduces a number of extra complications both during development and deployment.
Read drawbacks of SSR to determine if SSR is a good fit for your requirements.

To enable SSR, you need to make a number of additions to your project.

In the Startup class, after the line that configures spa.Options.SourcePath , and before the call to
UseAngularCliServer or UseProxyToSpaDevelopmentServer , add the following:

In development mode, this code attempts to build the SSR bundle by running the script build:ssr , which is
defined in ClientApp\package.json. This builds an Angular app named ssr , which isn't yet defined.

At the end of the apps array in ClientApp/.angular-cli.json, define an extra app with name ssr . Use the following

https://universal.angular.io/

{
 "name": "ssr",
 "root": "src",
 "outDir": "dist-server",
 "assets": [
 "assets"
],
 "main": "main.server.ts",
 "tsconfig": "tsconfig.server.json",
 "prefix": "app",
 "scripts": [],
 "environmentSource": "environments/environment.ts",
 "environments": {
 "dev": "environments/environment.ts",
 "prod": "environments/environment.prod.ts"
 },
 "platform": "server"
}

{
 "extends": "../tsconfig.json",
 "compilerOptions": {
 "baseUrl": "./",
 "module": "commonjs"
 },
 "angularCompilerOptions": {
 "entryModule": "app/app.server.module#AppServerModule"
 }
}

import { NgModule } from '@angular/core';
import { ServerModule } from '@angular/platform-server';
import { ModuleMapLoaderModule } from '@nguniversal/module-map-ngfactory-loader';
import { AppComponent } from './app.component';
import { AppModule } from './app.module';

@NgModule({
 imports: [AppModule, ServerModule, ModuleMapLoaderModule],
 bootstrap: [AppComponent]
})
export class AppServerModule { }

options:

This new SSR-enabled app configuration requires two further files: tsconfig.server.json and main.server.ts. The
tsconfig.server.json file specifies TypeScript compilation options. The main.server.ts file serves as the code entry
point during SSR.

Add a new file called tsconfig.server.json inside ClientApp/src (alongside the existing tsconfig.app.json), containing
the following:

This file configures Angular's AoT compiler to look for a module called app.server.module . Add this by creating a
new file at ClientApp/src/app/app.server.module.ts (alongside the existing app.module.ts) containing the following:

This module inherits from your client-side app.module and defines which extra Angular modules are available
during SSR.

Recall that the new ssr entry in .angular-cli.json referenced an entry point file called main.server.ts. You haven't
yet added that file, and now is time to do so. Create a new file at ClientApp/src/main.server.ts (alongside the
existing main.ts), containing the following:

import 'zone.js/dist/zone-node';
import 'reflect-metadata';
import { renderModule, renderModuleFactory } from '@angular/platform-server';
import { APP_BASE_HREF } from '@angular/common';
import { enableProdMode } from '@angular/core';
import { provideModuleMap } from '@nguniversal/module-map-ngfactory-loader';
import { createServerRenderer } from 'aspnet-prerendering';
export { AppServerModule } from './app/app.server.module';

enableProdMode();

export default createServerRenderer(params => {
 const { AppServerModule, AppServerModuleNgFactory, LAZY_MODULE_MAP } = (module as any).exports;

 const options = {
 document: params.data.originalHtml,
 url: params.url,
 extraProviders: [
 provideModuleMap(LAZY_MODULE_MAP),
 { provide: APP_BASE_HREF, useValue: params.baseUrl },
 { provide: 'BASE_URL', useValue: params.origin + params.baseUrl }
]
 };

 const renderPromise = AppServerModuleNgFactory
 ? /* AoT */ renderModuleFactory(AppServerModuleNgFactory, options)
 : /* dev */ renderModule(AppServerModule, options);

 return renderPromise.then(html => ({ html }));
});

<!-- Set this to true if you enable server-side prerendering -->
<BuildServerSideRenderer>true</BuildServerSideRenderer>

Pass data from .NET code into TypeScript codePass data from .NET code into TypeScript code

options.SupplyData = (context, data) =>
{
 // Creates a new value called isHttpsRequest that's passed to TypeScript code
 data["isHttpsRequest"] = context.Request.IsHttps;
};

This file's code is what ASP.NET Core executes for each request when it runs the UseSpaPrerendering middleware
that you added to the Startup class. It deals with receiving params from the .NET code (such as the URL being
requested), and making calls to Angular SSR APIs to get the resulting HTML.

Strictly-speaking, this is sufficient to enable SSR in development mode. It's essential to make one final change so
that your app works correctly when published. In your app's main .csproj file, set the BuildServerSideRenderer

property value to true :

This configures the build process to run build:ssr during publishing and deploy the SSR files to the server. If you
don't enable this, SSR fails in production.

When your app runs in either development or production mode, the Angular code pre-renders as HTML on the
server. The client-side code executes as normal.

During SSR, you might want to pass per-request data from your ASP.NET Core app into your Angular app. For
example, you could pass cookie information or something read from a database. To do this, edit your Startup class.
In the callback for UseSpaPrerendering , set a value for options.SupplyData such as the following:

 Drawbacks of SSRDrawbacks of SSR

The SupplyData callback lets you pass arbitrary, per-request, JSON-serializable data (for example, strings,
booleans, or numbers). Your main.server.ts code receives this as params.data . For example, the preceding code
sample passes a boolean value as params.data.isHttpsRequest into the createServerRenderer callback. You can
pass this to other parts of your app in any way supported by Angular. For example, see how main.server.ts passes
the BASE_URL value to any component whose constructor is declared to receive it.

Not all apps benefit from SSR. The primary benefit is perceived performance. Visitors reaching your app over a
slow network connection or on slow mobile devices see the initial UI quickly, even if it takes a while to fetch or
parse the JavaScript bundles. However, many SPAs are mainly used over fast, internal company networks on fast
computers where the app appears almost instantly.

At the same time, there are significant drawbacks to enabling SSR. It adds complexity to your development
process. Your code must run in two different environments: client-side and server-side (in a Node.js environment
invoked from ASP.NET Core). Here are some things to bear in mind:

if (typeof window !== 'undefined') {
 // Call browser-specific APIs here
}

SSR requires a Node.js installation on your production servers. This is automatically the case for some
deployment scenarios, such as Azure App Services, but not for others, such as Azure Service Fabric.

Enabling the BuildServerSideRenderer build flag causes your node_modules directory to publish. This
folder contains 20,000+ files, which increases deployment time.

To run your code in a Node.js environment, it can't rely on the existence of browser-specific JavaScript APIs
such as window or localStorage . If your code (or some third-party library you reference) tries to use these
APIs, you'll get an error during SSR. For example, don't use jQuery because it references browser-specific
APIs in many places. To prevent errors, you must either avoid SSR or avoid browser-specific APIs or
libraries. You can wrap any calls to such APIs in checks to ensure they aren't invoked during SSR. For
example, use a check such as the following in JavaScript or TypeScript code:

Use the React project template with ASP.NET Core
6/14/2018 • 3 minutes to read • Edit Online

NOTENOTE

Create a new app

dotnet new react -o my-new-app
cd my-new-app

Add pages, images, styles, modules, etc.

Install npm packages

This documentation isn't about the React project template included in ASP.NET Core 2.0. It's about the newer React template
to which you can update manually. The template is included in ASP.NET Core 2.1 by default.

The updated React project template provides a convenient starting point for ASP.NET Core apps using React and
create-react-app (CRA) conventions to implement a rich, client-side user interface (UI).

The template is equivalent to creating both an ASP.NET Core project to act as an API backend, and a standard
CRA React project to act as a UI, but with the convenience of hosting both in a single app project that can be built
and published as a single unit.

If using ASP.NET Core 2.0, ensure you've installed the updated React project template.

If you have ASP.NET Core 2.1 installed, there's no need to install the React project template.

Create a new project from a command prompt using the command dotnet new react in an empty directory. For
example, the following commands create the app in a my-new-app directory and switch to that directory:

Run the app from either Visual Studio or the .NET Core CLI:

Visual Studio
.NET Core CLI

Open the generated .csproj file, and run the app as normal from there.

The build process restores npm dependencies on the first run, which can take several minutes. Subsequent builds
are much faster.

The project template creates an ASP.NET Core app and a React app. The ASP.NET Core app is intended to be used
for data access, authorization, and other server-side concerns. The React app, residing in the ClientApp
subdirectory, is intended to be used for all UI concerns.

The ClientApp directory is a standard CRA React app. See the official CRA documentation for more information.

There are slight differences between the React app created by this template and the one created by CRA itself;
however, the app's capabilities are unchanged. The app created by the template contains a Bootstrap-based layout
and a basic routing example.

To install third-party npm packages, use a command prompt in the ClientApp subdirectory. For example:

https://github.com/aspnet/Docs/blob/master/aspnetcore/spa/react.md
https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app/blob/master/packages/react-scripts/template/README.md
https://getbootstrap.com/

cd ClientApp
npm install --save <package_name>

Publish and deploy

Run the CRA server independently

In development, the app runs in a mode optimized for developer convenience. For example, JavaScript bundles
include source maps (so that when debugging, you can see your original source code). The app watches
JavaScript, HTML, and CSS file changes on disk and automatically recompiles and reloads when it sees those files
change.

In production, serve a version of your app that's optimized for performance. This is configured to happen
automatically. When you publish, the build configuration emits a minified, transpiled build of your client-side code.
Unlike the development build, the production build doesn't require Node.js to be installed on the server.

You can use standard ASP.NET Core hosting and deployment methods.

The project is configured to start its own instance of the CRA development server in the background when the
ASP.NET Core app starts in development mode. This is convenient because it means you don't have to run a
separate server manually.

There's a drawback to this default setup. Each time you modify your C# code and your ASP.NET Core app needs to
restart, the CRA server restarts. A few seconds are required to start back up. If you're making frequent C# code
edits and don't want to wait for the CRA server to restart, run the CRA server externally, independently of the
ASP.NET Core process. To do so:

cd ClientApp
npm start

spa.UseProxyToSpaDevelopmentServer("http://localhost:3000");

1. In a command prompt, switch to the ClientApp subdirectory, and launch the CRA development server :

2. Modify your ASP.NET Core app to use the external CRA server instance instead of launching one of its
own. In your Startup class, replace the spa.UseReactDevelopmentServer invocation with the following:

When you start your ASP.NET Core app, it won't launch a CRA server. The instance you started manually is used
instead. This enables it to start and restart faster. It's no longer waiting for your React app to rebuild each time.

Use the React-with-Redux project template with
ASP.NET Core
5/26/2018 • 2 minutes to read • Edit Online

NOTENOTE
This documentation isn't about the React-with-Redux project template included in ASP.NET Core 2.0. It's about the newer
React-with-Redux template to which you can update manually. The template is included in ASP.NET Core 2.1 by default.

The updated React-with-Redux project template provides a convenient starting point for ASP.NET Core apps using
React, Redux, and create-react-app (CRA) conventions to implement a rich, client-side user interface (UI).

With the exception of the project creation command, all information about the React-with-Redux template is the
same as the React template. To create this project type, run dotnet new reactredux instead of dotnet new react .
For more information about the functionality common to both React-based templates, see React template
documentation.

https://github.com/aspnet/Docs/blob/master/aspnetcore/spa/react-with-redux.md
https://github.com/facebookincubator/create-react-app

ASP.NET Core SignalR
6/18/2018 • 2 minutes to read • Edit Online

Introduction
Get started
Hubs
JavaScript client
.NET client
HubContext
Users and Groups
MessagePack Hub Protocol
Publish to Azure
Streaming
Supported platforms

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/index.md

Introduction to ASP.NET Core SignalR
5/8/2018 • 2 minutes to read • Edit Online

What is SignalR?

Transports

Hubs

By Rachel Appel

ASP.NET Core SignalR is a library that simplifies adding real-time web functionality to apps. Real-time web
functionality enables server-side code to push content to clients instantly.

Good candidates for SignalR:

Apps that require high frequency updates from the server. Examples are gaming, social networks, voting,
auction, maps, and GPS apps.
Dashboards and monitoring apps. Examples include company dashboards, instant sales updates, or travel
alerts.
Collaborative apps. Whiteboard apps and team meeting software are examples of collaborative apps.
Apps that require notifications. Social networks, email, chat, games, travel alerts, and many other apps use
notifications.

SignalR provides an API for creating server-to-client remote procedure calls (RPC). The RPCs call JavaScript
functions on clients from server-side .NET Core code.

SignalR for ASP.NET Core:

Handles connection management automatically.
Enables broadcasting messages to all connected clients simultaneously. For example, a chat room.
Enables sending messages to specific clients or groups of clients.
Is open-sourced at GitHub.
Scalable.

The connection between the client and server is persistent, unlike an HTTP connection.

SignalR abstracts over a number of techniques for building real-time web applications. WebSockets is the optimal
transport, but other techniques like Server-Sent Events and Long Polling can be used when those aren't available.
SignalR will automatically detect and initialize the appropriate transport based on features supported on the
server and client.

SignalR uses hubs to communicate between clients and servers.

A hub is a high-level pipeline that allows your client and server to call methods on each other. SignalR handles the
dispatching across machine boundaries automatically, allowing clients to call methods on the server as easily as
local methods, and vice versa. Hubs allow passing strongly-typed parameters to methods, which enables model
binding. SignalR provides two built-in hub protocols: a text protocol based on JSON and a binary protocol based
on MessagePack. MessagePack generally creates smaller messages than when using JSON. Older browsers must
support XHR level 2 to provide MessagePack protocol support.

Hubs call client-side code by sending messages using the active transport. The messages contain the name and

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/introduction.md
https://twitter.com/rachelappel
https://wikipedia.org/wiki/Remote_procedure_call
https://github.com/aspnet/signalr
https://tools.ietf.org/html/rfc7118
https://msgpack.org/
https://caniuse.com/#feat=xhr2

Additional resources

parameters of the client-side method. Objects sent as method parameters are deserialized using the configured
protocol. The client tries to match the name to a method in the client-side code. When a match happens, the client
method runs using the deserialized parameter data.

Get started with SignalR for ASP.NET Core
Supported Platforms
Hubs
JavaScript client

Get started with SignalR on ASP.NET Core
6/10/2018 • 5 minutes to read • Edit Online

By Rachel Appel

This tutorial teaches the basics of building a real-time app using SignalR for ASP.NET Core.

This tutorial demonstrates the following SignalR development tasks:

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/get-started.md
https://twitter.com/rachelappel

Prerequisites

Create an ASP.NET Core project that hosts SignalR client and server

Create a SignalR on ASP.NET Core web app.
Create a SignalR hub to push content to clients.
Modify the Startup class and configure the app.

View or download sample code (how to download)

Install the following software:

Visual Studio
Visual Studio Code

.NET Core SDK 2.1 or later
Visual Studio 2017 version 15.7 or later with the ASP.NET and web development workload
npm

Visual Studio
Visual Studio Code

1. Use the File > New Project menu option and choose ASP.NET Core Web Application. Name the
project SignalRChat.

2. Select Web Application to create a project using Razor Pages. Then select OK. Be sure that ASP.NET
Core 2.1 is selected from the framework selector, though SignalR runs on older versions of .NET.

https://github.com/aspnet/Docs/tree/master/aspnetcore/signalr/get-started/sample/
https://www.microsoft.com/net/download/all
https://www.visualstudio.com/downloads/
https://www.npmjs.com/get-npm

Create the SignalR Hub

Visual Studio includes the Microsoft.AspNetCore.SignalR package containing its server libraries as part of its
ASP.NET Core Web Application template. However, the JavaScript client library for SignalR must be installed
using npm.

npm init -y
npm install @aspnet/signalr

3. Run the following commands in the Package Manager Console window, from the project root:

4. Create a new folder named "signalr" inside the lib folder in your project. Copy the signalr.js file from
node_modules\@aspnet\signalr\dist\browser to this folder.

A hub is a class that serves as a high-level pipeline that allows the client and server to call methods on each other.

Visual Studio
Visual Studio Code

1. Add a class to the project by choosing File > New > File and selecting Visual C# Class. Name the file
ChatHub.

2. Inherit from Microsoft.AspNetCore.SignalR.Hub . The Hub class contains properties and events for
managing connections and groups, as well as sending and receiving data.

3. Create the SendMessage method that sends a message to all connected chat clients. Notice it returns a Task,
because SignalR is asynchronous. Asynchronous code scales better.

https://msdn.microsoft.com/library/system.threading.tasks.task(v=vs.110).aspx

Configure the project to use SignalR

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRChat.Hubs
{
 public class ChatHub : Hub
 {
 public async Task SendMessage(string user, string message)
 {
 await Clients.All.SendAsync("ReceiveMessage", user,message);
 }
 }
}

The SignalR server must be configured so that it knows to pass requests to SignalR.

1. To configure a SignalR project, modify the project's Startup.ConfigureServices method.

services.AddSignalR adds SignalR as part of the middleware pipeline.

2. Configure routes to your hubs using UseSignalR .

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using SignalRChat.Hubs;

namespace SignalRChat
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc();

 services.AddCors(options => options.AddPolicy("CorsPolicy",
 builder =>
 {
 builder.AllowAnyMethod().AllowAnyHeader()
 .WithOrigins("http://localhost:55830")
 .AllowCredentials();
 }));

 services.AddSignalR();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {

 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();
 app.UseCors("CorsPolicy");
 app.UseSignalR(routes =>
 {
 routes.MapHub<ChatHub>("/chathub");
 });
 app.UseMvc();
 }
 }
}

Create the SignalR client code

// The following sample code uses modern ECMAScript 6 features
// that aren't supported in Internet Explorer 11.
// To convert the sample for environments that do not support ECMAScript 6,
// such as Internet Explorer 11, use a transpiler such as
// Babel at http://babeljs.io/.
//
// See Es5-chat.js for a Babel transpiled version of the following code:

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/chatHub")
 .build();

connection.on("ReceiveMessage", (user, message) => {
 const msg = message.replace(/&/g, "&").replace(/</g, "<").replace(/>/g, ">");
 const encodedMsg = user + " says " + msg;
 const li = document.createElement("li");
 li.textContent = encodedMsg;
 document.getElementById("messagesList").appendChild(li);
});

connection.start().catch(err => console.error(err.toString()));

document.getElementById("sendButton").addEventListener("click", event => {
 const user = document.getElementById("userInput").value;
 const message = document.getElementById("messageInput").value;
 connection.invoke("SendMessage", user, message).catch(err => console.error(err.toString()));
 event.preventDefault();
});

@page
 <div class="container">
 <div class="row"> </div>
 <div class="row">
 <div class="col-6"> </div>
 <div class="col-6">
 User..........<input type="text" id="userInput" />

 Message...<input type="text" id="messageInput" />
 <input type="button" id="sendButton" value="Send Message" />
 </div>
 </div>
 <div class="row">
 <div class="col-12">
 <hr />
 </div>
 </div>
 <div class="row">
 <div class="col-6"> </div>
 <div class="col-6">
 <ul id="messagesList">
 </div>
 </div>
 </div>
 <script src="~/lib/signalr/signalr.js"></script>
 <script src="~/js/chat.js"></script>
 @*<script src="~/js/es5-chat.js"></script>*@

1. Add a JavaScript file, named chat.js, to the wwwroot\js folder. Add the following code to it:

2. Replace the content in Pages\Index.cshtml with the following code:

Run the app

The preceding HTML displays name and message fields, and a submit button. Notice the script references
at the bottom: a reference to SignalR and chat.js.

Visual Studio
Visual Studio Code

1. Select Debug > Start without debugging to launch a browser and load the website locally. Copy the
URL from the address bar.

2. Open another browser instance (any browser) and paste the URL in the address bar.

3. Choose either browser, enter a name and message, and click the Send button. The name and message are
displayed on both pages instantly.

Related resources
Introduction to ASP.NET Core SignalR

Use hubs in SignalR for ASP.NET Core
6/6/2018 • 3 minutes to read • Edit Online

What is a SignalR hub

Configure SignalR hubs

services.AddSignalR();

app.UseSignalR(route =>
{
 route.MapHub<ChatHub>("/chathub");
});

Create and use hubs

By Rachel Appel and Kevin Griffin

View or download sample code (how to download)

The SignalR Hubs API enables you to call methods on connected clients from the server. In the server code, you
define methods that are called by client. In the client code, you define methods that are called from the server.
SignalR takes care of everything behind the scenes that makes real-time client-to-server and server-to-client
communications possible.

The SignalR middleware requires some services, which are configured by calling services.AddSignalR .

When adding SignalR functionality to an ASP.NET Core app, setup SignalR routes by calling app.UseSignalR in
the Startup.Configure method.

Create a hub by declaring a class that inherits from Hub , and add public methods to it. Clients can call methods
that are defined as public .

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/hubs.md
https://twitter.com/rachelappel
https://twitter.com/1kevgriff
https://github.com/aspnet/Docs/tree/master/aspnetcore/signalr/hubs/sample/

public class ChatHub : Hub
{
 public async Task SendMessage(string user, string message)
 {
 await Clients.All.SendAsync("ReceiveMessage", user,message);
 }

 public Task SendMessageToCaller(string message)
 {
 return Clients.Caller.SendAsync("ReceiveMessage", message);
 }

 public Task SendMessageToGroups(string message)
 {
 List<string> groups = new List<string>() { "SignalR Users" };
 return Clients.Groups(groups).SendAsync("ReceiveMessage", message);
 }

 public override async Task OnConnectedAsync()
 {
 await Groups.AddToGroupAsync(Context.ConnectionId, "SignalR Users");
 await base.OnConnectedAsync();
 }

 public override async Task OnDisconnectedAsync(Exception exception)
 {
 await Groups.RemoveFromGroupAsync(Context.ConnectionId, "SignalR Users");
 await base.OnDisconnectedAsync(exception);
 }
}

The Clients object

PROPERTY DESCRIPTION

All Calls a method on all connected clients

Caller Calls a method on the client that invoked the hub method

Others Calls a method on all connected clients except the client that
invoked the method

METHOD DESCRIPTION

AllExcept Calls a method on all connected clients except for the
specified connections

Client Calls a method on a specific connected client

You can specify a return type and parameters, including complex types and arrays, as you would in any C#
method. SignalR handles the serialization and deserialization of complex objects and arrays in your parameters
and return values.

Each instance of the Hub class has a property named Clients that contains the following members for
communication between server and client:

Additionally, Hub.Clients contains the following methods:

Clients Calls a method on specific connected clients

Group Calls a method to all connections in the specified group

GroupExcept Calls a method to all connections in the specified group,
except the specified connections

Groups Calls a method to multiple groups of connections

OthersInGroup Calls a method to a group of connections, excluding the client
that invoked the hub method

User Calls a method to all connections associated with a specific
user

Users Calls a method to all connections associated with the specified
users

METHOD DESCRIPTION

Send messages to clients

public Task SendMessageToCaller(string message)
{
 return Clients.Caller.SendAsync("ReceiveMessage", message);
}

public Task SendMessageToGroups(string message)
{
 List<string> groups = new List<string>() { "SignalR Users" };
 return Clients.Groups(groups).SendAsync("ReceiveMessage", message);
}

Handle events for a connection

Each property or method in the preceding tables returns an object with a SendAsync method. The SendAsync

method allows you to supply the name and parameters of the client method to call.

To make calls to specific clients, use the properties of the Clients object. In the following example, the
SendMessageToCaller method demonstrates sending a message to the connection that invoked the hub method.

The SendMessageToGroups method sends a message to the groups stored in a List named groups .

The SignalR Hubs API provides the OnConnectedAsync and OnDisconnectedAsync virtual methods to manage and
track connections. Override the OnConnectedAsync virtual method to perform actions when a client connects to the
Hub, such as adding it to a group.

public override async Task OnConnectedAsync()
{
 await Groups.AddToGroupAsync(Context.ConnectionId, "SignalR Users");
 await base.OnConnectedAsync();
}

public override async Task OnDisconnectedAsync(Exception exception)
{
 await Groups.RemoveFromGroupAsync(Context.ConnectionId, "SignalR Users");
 await base.OnDisconnectedAsync(exception);
}

Handle errors

connection.invoke("SendMessage", user, message).catch(err => console.error(err));

Related resources

Exceptions thrown in your hub methods are sent to the client that invoked the method. On the JavaScript client,
the invoke method returns a JavaScript Promise. When the client receives an error with a handler attached to the
promise using catch , it's invoked and passed as a JavaScript Error object.

Intro to ASP.NET Core SignalR
JavaScript client
Publish to Azure

https://developer.mozilla.org/docs/Web/JavaScript/Guide/Using_promises

ASP.NET Core SignalR JavaScript client
6/12/2018 • 3 minutes to read • Edit Online

Install the SignalR client package

 npm init -y
 npm install @aspnet/signalr

Use the SignalR JavaScript client

<script src="~/lib/signalr/signalr.js"></script>

Connect to a hub

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/chatHub")
 .configureLogging(signalR.LogLevel.Information)
 .build();
connection.start().catch(err => console.error(err.toString()));

Cross-origin connectionsCross-origin connections

By Rachel Appel

The ASP.NET Core SignalR JavaScript client library enables developers to call server-side hub code.

View or download sample code (how to download)

The SignalR JavaScript client library is delivered as an npm package. If you're using Visual Studio, run
npm install from the Package Manager Console while in the root folder. For Visual Studio Code, run the

command from the Integrated Terminal.

Npm installs the package contents in the node_modules\@aspnet\signalr\dist\browser folder. Create a new folder
named signalr under the wwwroot\lib folder. Copy the signalr.js file to the wwwroot\lib\signalr folder.

Reference the SignalR JavaScript client in the <script> element.

The following code creates and starts a connection. The hub's name is case insensitive.

Typically, browsers load connections from the same domain as the requested page. However, there are occasions
when a connection to another domain is required.

To prevent a malicious site from reading sensitive data from another site, cross-origin connections are disabled by
default. To allow a cross-origin request, enable it in the Startup class.

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/javascript-client.md
http://twitter.com/rachelappel
https://github.com/aspnet/Docs/tree/live/aspnetcore/signalr/javascript-client/sample
https://www.npmjs.com/

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using SignalRChat.Hubs;

namespace SignalRChat
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc();

 services.AddCors(options => options.AddPolicy("CorsPolicy",
 builder =>
 {
 builder.AllowAnyMethod().AllowAnyHeader()
 .WithOrigins("http://localhost:55830")
 .AllowCredentials();
 }));

 services.AddSignalR();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseBrowserLink();
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();
 app.UseCors("CorsPolicy");
 app.UseSignalR(routes =>
 {
 routes.MapHub<ChatHub>("/chathub");
 });
 app.UseMvc();
 }
 }
}

Call hub methods from client

connection.invoke("SendMessage", user, message).catch(err => console.error(err.toString()));

Call client methods from hub

connection.on("ReceiveMessage", (user, message) => {
 const encodedMsg = user + " says " + message;
 const li = document.createElement("li");
 li.textContent = encodedMsg;
 document.getElementById("messagesList").appendChild(li);
});

public async Task SendMessage(string user, string message)
{
 await Clients.All.SendAsync("ReceiveMessage", user, message);
}

NOTENOTE

Error handling and logging

connection.start().catch(err => console.error(err.toString()));

JavaScript clients call public methods on hubs by using connection.invoke . The invoke method accepts two
arguments:

The name of the hub method. In the following example, the hub name is SendMessage .
Any arguments defined in the hub method. In the following example, the argument name is message .

To receive messages from the hub, define a method using the connection.on method.

The name of the JavaScript client method. In the following example, the method name is ReceiveMessage .
Arguments the hub passes to the method. In the following example, the argument value is message .

The preceding code in connection.on runs when server-side code calls it using the SendAsync method.

SignalR determines which client method to call by matching the method name and arguments defined in
SendAsync and connection.on .

As a best practice, call connection.start after connection.on so your handlers are registered before any messages are
received.

Chain a catch method to the end of the connection.start method to handle client-side errors. Use
console.error to output errors to the browser's console.

Setup client-side log tracing by passing a logger and type of event to log when the connection is made. Messages
are logged with the specified log level and higher. Available log levels are as follows:

signalR.LogLevel.Error : Error messages. Logs Error messages only.
signalR.LogLevel.Warning : Warning messages about potential errors. Logs Warning , and Error messages.
signalR.LogLevel.Information : Status messages without errors. Logs Information , Warning , and Error

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/chatHub")
 .configureLogging(signalR.LogLevel.Information)
 .build();

Related resources

messages.
signalR.LogLevel.Trace : Trace messages. Logs everything, including data transported between hub and client.

Use the configureLogging method on HubConnectionBuilder to configure the log level. Messages are logged to
the browser console.

Hubs
.NET client
Publish to Azure
Enable Cross-Origin Requests (CORS) in ASP.NET Core

ASP.NET Core SignalR .NET Client
5/30/2018 • 2 minutes to read • Edit Online

Install the SignalR .NET client package

Install-Package Microsoft.AspNetCore.SignalR.Client

Connect to a hub

By Rachel Appel

The ASP.NET Core SignalR .NET client can be used by Xamarin, WPF, Windows Forms, Console, and .NET Core
apps. Like the JavaScript client, the .NET client enables you to receive and send and receive messages to a hub in
real time.

View or download sample code (how to download)

The code sample in this article is a WPF app that uses the ASP.NET Core SignalR .NET client.

The Microsoft.AspNetCore.SignalR.Client package is needed for .NET clients to connect to SignalR hubs. To install
the client library, run the following command in the Package Manager Console window:

To establish a connection, create a HubConnectionBuilder and call Build . The hub URL, protocol, transport type,
log level, headers, and other options can be configured while building a connection. Configure any required
options by inserting any of the HubConnectionBuilder methods into Build . Start the connection with StartAsync .

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/dotnet-client.md
http://twitter.com/rachelappel
https://github.com/aspnet/Docs/tree/live/aspnetcore/signalr/dotnet-client/sample

using Microsoft.AspNetCore.SignalR.Client;
using Microsoft.Extensions.Logging;
using System;
using System.Windows;

namespace SignalRChatClient
{
 public partial class MainWindow : Window
 {
 HubConnection connection;
 public MainWindow()
 {
 InitializeComponent();

 connection = new HubConnectionBuilder()
 .WithUrl("https://localhost:44317/ChatHub")
 .Build();
 }

 private async void connectButton_Click(object sender, RoutedEventArgs e)
 {
 connection.On<string, string>("ReceiveMessage", (user, message) =>
 {
 this.Dispatcher.Invoke(() =>
 {
 var newMessage = $"{user}: {message}";
 messagesList.Items.Add(newMessage);
 });
 });

 try
 {
 await connection.StartAsync();
 messagesList.Items.Add("Connection started");
 connectButton.IsEnabled = false;
 sendButton.IsEnabled = true;
 }
 catch (Exception ex)
 {
 messagesList.Items.Add(ex.Message);
 }
 }

 private async void sendButton_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 await connection.InvokeAsync("SendMessage",
 userTextBox.Text, messageTextBox.Text);
 }
 catch (Exception ex)
 {
 messagesList.Items.Add(ex.Message);
 }
 }
 }
}

Call hub methods from client
InvokeAsync calls methods on the hub. Pass the hub method name and any arguments defined in the hub method

to InvokeAsync . SignalR is asynchronous, so use async and await when making the calls.

await connection.InvokeAsync("SendMessage",
 userTextBox.Text, messageTextBox.Text);

Call client methods from hub

connection.On<string, string>("ReceiveMessage", (user, message) =>
{
 this.Dispatcher.Invoke(() =>
 {
 var newMessage = $"{user}: {message}";
 messagesList.Items.Add(newMessage);
 });
});

public async Task SendMessage(string user, string message)
{
 await Clients.All.SendAsync("ReceiveMessage", user,message);
}

Error handling and logging

try
{
 await connection.InvokeAsync("SendMessage",
 userTextBox.Text, messageTextBox.Text);
}
catch (Exception ex)
{
 messagesList.Items.Add(ex.Message);
}

Additional resources

Define methods the hub calls using connection.On after building, but before starting the connection.

The preceding code in connection.On runs when server-side code calls it using the SendAsync method.

Handle errors with a try-catch statement. Inspect the Exception object to determine the proper action to take
after an error occurs.

Hubs
JavaScript client
Publish to Azure

Send messages from outside a hub
6/18/2018 • 2 minutes to read • Edit Online

Get an instance of IHubContext

NOTENOTE

Inject an instance of Inject an instance of IHubContext in a controller in a controller

public class HomeController : Controller
{
 private readonly IHubContext<NotificationHub> _hubContext;

 public HomeController(IHubContext<NotificationHub> hubContext)
 {
 _hubContext = hubContext;
 }
}

public async Task<IActionResult> Index()
{
 await _hubContext.Clients.All.SendAsync("Notify", $"Home page loaded at: {DateTime.Now}");
 return View();
}

Get an instance of Get an instance of IHubContext in middleware in middleware

By Mikael Mengistu

The SignalR hub is the core abstraction for sending messages to clients connected to the SignalR server. It's also
possible to send messages from other places in your app using the IHubContext service. This article explains how
to access a SignalR IHubContext to send notifications to clients from outside a hub.

View or download sample code (how to download)

In ASP.NET Core SignalR, you can access an instance of IHubContext via dependency injection. You can inject an
instance of IHubContext into a controller, middleware, or other DI service. Use the instance to send messages to
clients.

This differs from ASP.NET SignalR which used GlobalHost to provide access to the IHubContext . ASP.NET Core has a
dependency injection framework that removes the need for this global singleton.

You can inject an instance of IHubContext into a controller by adding it to your constructor :

Now, with access to an instance of IHubContext , you can call hub methods as if you were in the hub itself.

Access the IHubContext within the middleware pipeline like so:

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/hubcontext.md
https://twitter.com/MikaelM_12
https://github.com/aspnet/Docs/tree/master/aspnetcore/signalr/hubcontext/sample/

app.Use(next => (context) =>
{
 var hubContext = (IHubContext<MyHub>)context
 .RequestServices
 .GetServices<IHubContext<MyHub>>();
 //...
});

NOTENOTE

Related resources

When hub methods are called from outside of the Hub class, there's no caller associated with the invocation. Therefore,
there's no access to the ConnectionId , Caller , and Others properties.

Get started
Hubs
Publish to Azure

Manage users and groups in SignalR
6/12/2018 • 2 minutes to read • Edit Online

Users in SignalR

NOTENOTE

public Task SendPrivateMessage(string user, string message)
{
 return Clients.User(user).SendAsync("ReceiveMessage", message);
}

public class CustomUserIdProvider : IUserIdProvider
{
 public virtual string GetUserId(HubConnectionContext connection)
 {
 return connection.User?.FindFirst(ClaimTypes.Email)?.Value;
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddSignalR();

 services.AddSingleton<IUserIdProvider, CustomUserIdProvider>();
}

NOTENOTE

By Brennan Conroy

SignalR allows messages to be sent to all connections associated with a specific user, as well as to named groups of
connections.

View or download sample code (how to download)

SignalR allows you to send messages to all connections associated with a specific user. By default SignalR uses the
ClaimTypes.NameIdentifier from the ClaimsPrincipal associated with the connection as the user identifier. A single

user can have multiple connections to a SignalR application. For example, a user could be connected on their
desktop as well as their phone. Each device has a separate SignalR connection, but they are all associated with the
same user. If a message is sent to the user, all of the connections associated with that user will receive the message.

Send a message to a specific user by passing the user identifier to the User function in your hub method as
shown in the following example:

The user identifier is case-sensitive.

The user identifier can be customized by creating an IUserIdProvider , and registering it in ConfigureServices .

AddSignalR must be called before registering your custom SignalR services.

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/groups.md
https://github.com/BrennanConroy
https://github.com/aspnet/Docs/tree/master/aspnetcore/signalr/groups/sample/

Groups in SignalR

public async Task AddToGroup(string groupName)
{
 await Groups.AddToGroupAsync(Context.ConnectionId, groupName);

 await Clients.Group(groupName).SendAsync("Send", $"{Context.ConnectionId} has joined the group
{groupName}.");
}

public async Task RemoveFromGroup(string groupName)
{
 await Groups.RemoveFromGroupAsync(Context.ConnectionId, groupName);

 await Clients.Group(groupName).SendAsync("Send", $"{Context.ConnectionId} has left the group
{groupName}.");
}

NOTENOTE

Related resources

A group is a collection of connections associated with a name. Messages can be sent to all connections in a group.
Groups are the recommended way to send to a connection or multiple connections because the groups are
managed by the application. A connection can be a member of multiple groups. This makes groups ideal for
something like a chat application, where each room can be represented as a group. Connections can be added to or
removed from groups via the AddToGroupAsync and RemoveFromGroupAsync methods.

Group membership isn't preserved when a connection reconnects. The connection needs to rejoin the group when
it's re-established. It's not possible to count the members of a group, since this information is not available if the
application is scaled to multiple servers.

Group names are case-sensitive.

Get started
Hubs
Publish to Azure

Use MessagePack Hub Protocol in SignalR for
ASP.NET Core
6/10/2018 • 2 minutes to read • Edit Online

What is MessagePack?

Configure MessagePack on the server

NOTENOTE

services.AddSignalR()
 .AddMessagePackProtocol();

services.AddSignalR()
 .AddMessagePackProtocol(options =>
 {
 options.FormatterResolvers = new List<MessagePack.IFormatterResolver>()
 {
 MessagePack.Resolvers.StandardResolver.Instance
 };
 });

Configure MessagePack on the client
.NET client.NET client

By Brennan Conroy

This article assumes the reader is familiar with the topics covered in Get Started.

MessagePack is a binary serialization format that is fast and compact. It's useful when performance and bandwidth
are a concern because it creates smaller messages compared to JSON. Because it's a binary format, messages are
unreadable when looking at network traces and logs unless the bytes are passed through a MessagePack parser.
SignalR has built-in support for the MessagePack format, and provides APIs for the client and server to use.

To enable the MessagePack Hub Protocol on the server, install the
Microsoft.AspNetCore.SignalR.Protocols.MessagePack package in your app. In the Startup.cs file add
AddMessagePackProtocol to the AddSignalR call to enable MessagePack support on the server.

JSON is enabled by default. Adding MessagePack enables support for both JSON and MessagePack clients.

To customize how MessagePack will format your data, AddMessagePackProtocol takes a delegate for configuring
options. In that delegate, the FormatterResolvers property can be used to configure MessagePack serialization
options. For more information on how the resolvers work, visit the MessagePack library at MessagePack-CSharp.
Attributes can be used on the objects you want to serialize to define how they should be handled.

To enable MessagePack in the .NET Client, install the Microsoft.AspNetCore.SignalR.Protocols.MessagePack package
and call AddMessagePackProtocol on HubConnectionBuilder .

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/messagepackhubprotocol.md
https://github.com/BrennanConroy
https://msgpack.org/index.html
https://www.json.org/
https://github.com/neuecc/MessagePack-CSharp

var hubConnection = new HubConnectionBuilder()
 .WithUrl("/chatHub")
 .AddMessagePackProtocol()
 .Build();

NOTENOTE

JavaScript clientJavaScript client

npm install @aspnet/signalr-protocol-msgpack

NOTENOTE

<script src="~/lib/signalr/signalr.js"></script>
<script src="~/lib/msgpack5/msgpack5.js"></script>
<script src="~/lib/signalr/signalr-protocol-msgpack.js"></script>

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/chatHub")
 .withHubProtocol(new signalR.protocols.msgpack.MessagePackHubProtocol())
 .build();

NOTENOTE

Related resources

This AddMessagePackProtocol call takes a delegate for configuring options just like the server.

MessagePack support for the Javascript client is provided by the @aspnet/signalr-protocol-msgpack NPM package.

After installing the npm package, the module can be used directly via a JavaScript module loader or imported into
the browser by referencing the node_modules\@aspnet\signalr-protocol-msgpack\dist\browser\signalr-protocol-

msgpack.js file. In a browser the msgpack5 library must also be referenced. Use a <script> tag to create a
reference. The library can be found at node_modules\msgpack5\dist\msgpack5.js.

When using the <script> element, the order is important. If signalr-protocol-msgpack.js is referenced before msgpack5.js,
an error occurs when trying to connect with MessagePack. signalr.js is also required before signalr-protocol-msgpack.js.

Adding .withHubProtocol(new signalR.protocols.msgpack.MessagePackHubProtocol()) to the HubConnectionBuilder

will configure the client to use the MessagePack protocol when connecting to a server.

At this time, there are no configuration options for the MessagePack protocol on the JavaScript client.

Get Started
.NET client
JavaScript client

Publish an ASP.NET Core SignalR app to an Azure
Web App
6/12/2018 • 2 minutes to read • Edit Online

NOTENOTE

Publish the app

Azure Web App is a Microsoft cloud computing platform service for hosting web apps, including ASP.NET Core.

This article refers to publishing an ASP.NET Core SignalR app from Visual Studio. Visit SignalR service for Azure for more
information about using SignalR on Azure.

Visual Studio provides built-in tools for publishing to an Azure Web App. Visual Studio Code user can use Azure
CLI commands to publish apps to Azure. This article covers publishing using the tools in Visual Studio. To publish
an app using Azure CLI, see Publish an ASP.NET Core app to Azure with command line tools.

Right-click on the project in Solution Explorer and select Publish. Confirm that Create new is checked in the
Pick a publish target dialog, and select Publish.

Enter the following information in the Create App Service dialog and select Create.

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/publish-to-azure-web-app.md
https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://azure.microsoft.com/
https://azure.microsoft.com/en-gb/services/signalr-service?
https://docs.microsoft.com/cli/azure

ITEM DESCRIPTION

App name A unique name of the app.

Subscription The Azure subscription that the app uses.

Resource Group The group of related resources to which the app belongs.

Hosting Plan The pricing plan for the web app.

Configure SignalR web app

Visual Studio completes the following tasks:

Creates a Publish Profile containing publish settings.
Creates or uses an existing Azure Web App with the provided details.
Publishes the app.
Launches a browser, with the published web app loaded.

Notice the format of the URL for the app is {app name}.azurewebsites.net. For example, an app named
SignalRChattR has a URL that looks like https://signalrchattr.azurewebsites.net .

If an HTTP 502.2 error occurs, see Deploy ASP.NET Core preview release to Azure App Service to resolve it.

ASP.NET Core SignalR apps that are published as an Azure Web App must have ARR Affinity enabled.
WebSockets should be enabled, to allow the WebSockets transport to function.

In the Azure portal, navigate to App Settings for your web app. Set WebSockets to On, and verify ARR
Affinity is On.

https://en.wikipedia.org/wiki/Application_Request_Routing

Related resources

WebSockets and other transports are limited based on the App Service Plan.

Publish an ASP.NET Core app to Azure with command line tools
Publish an ASP.NET Core app to Azure with Visual Studio
Host and deploy ASP.NET Core Preview apps on Azure

https://docs.microsoft.com/azure/azure-subscription-service-limits#app-service-limits

Use streaming in ASP.NET Core SignalR
6/12/2018 • 2 minutes to read • Edit Online

Set up the hub

NOTENOTE

public class StreamHub : Hub
{
 public ChannelReader<int> Counter(int count, int delay)
 {
 var channel = Channel.CreateUnbounded<int>();

 // We don't want to await WriteItems, otherwise we'd end up waiting
 // for all the items to be written before returning the channel back to
 // the client.
 _ = WriteItems(channel.Writer, count, delay);

 return channel.Reader;
 }

 private async Task WriteItems(ChannelWriter<int> writer, int count, int delay)
 {
 for (var i = 0; i < count; i++)
 {
 await channel.Writer.WriteAsync(i);
 await Task.Delay(delay);
 }

 channel.Writer.TryComplete();
 }
}

.NET client

By Brennan Conroy

ASP.NET Core SignalR supports streaming return values of server methods. This is useful for scenarios where
fragments of data will come in over time. When a return value is streamed to the client, each fragment is sent to
the client as soon as it becomes available, rather than waiting for all the data to become available.

View or download sample code (how to download)

A hub method automatically becomes a streaming hub method when it returns a ChannelReader<T> or a
Task<ChannelReader<T>> . Below is a sample that shows the basics of streaming data to the client. Whenever an

object is written to the ChannelReader that object is immediately sent to the client. At the end, the ChannelReader is
completed to tell the client the stream is closed.

Write to the ChannelReader on a background thread and return the ChannelReader as soon as possible. Other hub
invocations will be blocked until a ChannelReader is returned.

The StreamAsChannelAsync method on HubConnection is used to invoke a streaming method. Pass the hub method
name, and arguments defined in the hub method to StreamAsChannelAsync . The generic parameter on
StreamAsChannelAsync<T> specifies the type of objects returned by the streaming method. A ChannelReader<T> is

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/streaming.md
https://github.com/BrennanConroy
https://github.com/aspnet/Docs/tree/live/aspnetcore/signalr/streaming/sample

var channel = await hubConnection.StreamAsChannelAsync<int>("Counter", 10, 500, CancellationToken.None);

// Wait asynchronously for data to become available
while (await channel.WaitToReadAsync())
{
 // Read all currently available data synchronously, before waiting for more data
 while (channel.TryRead(out var count))
 {
 Console.WriteLine($"{count}");
 }
}

Console.WriteLine("Streaming completed");

JavaScript client

connection.stream("Counter", 10, 500)
 .subscribe({
 next: (item) => {
 var li = document.createElement("li");
 li.textContent = item;
 document.getElementById("messagesList").appendChild(li);
 },
 complete: () => {
 var li = document.createElement("li");
 li.textContent = "Stream completed";
 document.getElementById("messagesList").appendChild(li);
 },
 error: (err) => {
 var li = document.createElement("li");
 li.textContent = err;
 document.getElementById("messagesList").appendChild(li);
 },
});

Related resources

returned from the stream invocation, and represents the stream on the client. To read data, a common pattern is to
loop over WaitToReadAsync and call TryRead when data is available. The loop will end when the stream has been
closed by the server, or the cancellation token passed to StreamAsChannelAsync is canceled.

JavaScript clients call streaming methods on hubs by using connection.stream . The stream method accepts two
arguments:

The name of the hub method. In the following example, the hub method name is Counter .
Arguments defined in the hub method. In the following example, the arguments are: a count for the number of
stream items to receive, and the delay between stream items.

connection.stream returns an IStreamResult which contains a subscribe method. Pass an IStreamSubscriber to
subscribe and set the next , error , and complete callbacks to get notifications from the stream invocation.

To end the stream from the client call the dispose method on the ISubscription that is returned from the
subscribe method.

Hubs
.NET client
JavaScript client
Publish to Azure

ASP.NET Core SignalR supported platforms
4/19/2018 • 2 minutes to read • Edit Online

Server system requirements

Client system requirements
Browser supportBrowser support

BROWSER VERSION

Microsoft Internet Explorer 11

Microsoft Edge current

Mozilla Firefox current

Google Chrome; includes Android current

Safari; includes iOS current

.NET Client support.NET Client support

SignalR for ASP.NET Core supports any server platform ASP.NET Core supports.

The SignalR for ASP.NET Core JavaScript client supports the following browsers:

Any server platform supported by ASP.NET Core. When using IIS, the WebSockets transport requires IIS 8.0 or
higher, on Windows Server 2012 or higher. Other transports are supported on all platforms.

https://github.com/aspnet/Docs/blob/master/aspnetcore/signalr/supported-platforms.md

Mobile development with ASP.NET Core
3/15/2018 • 2 minutes to read • Edit Online

Create backend services for native mobile apps

https://github.com/aspnet/Docs/blob/master/aspnetcore/mobile/index.md

Create backend services for native mobile apps with
ASP.NET Core
3/22/2018 • 7 minutes to read • Edit Online

The Sample Native Mobile App

FeaturesFeatures

By Steve Smith

Mobile apps can easily communicate with ASP.NET Core backend services.

View or download sample backend services code

This tutorial demonstrates how to create backend services using ASP.NET Core MVC to support native mobile
apps. It uses the Xamarin Forms ToDoRest app as its native client, which includes separate native clients for
Android, iOS, Windows Universal, and Window Phone devices. You can follow the linked tutorial to create the
native app (and install the necessary free Xamarin tools), as well as download the Xamarin sample solution. The
Xamarin sample includes an ASP.NET Web API 2 services project, which this article's ASP.NET Core app replaces
(with no changes required by the client).

https://github.com/aspnet/Docs/blob/master/aspnetcore/mobile/native-mobile-backend.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/mobile/native-mobile-backend/sample
https://docs.microsoft.com/xamarin/xamarin-forms/data-cloud/consuming/rest

The ToDoRest app supports listing, adding, deleting, and updating To-Do items. Each item has an ID, a Name,
Notes, and a property indicating whether it's been Done yet.

The main view of the items, as shown above, lists each item's name and indicates if it's done with a checkmark.

Tapping the + icon opens an add item dialog:

Tapping an item on the main list screen opens up an edit dialog where the item's Name, Notes, and Done settings
can be modified, or the item can be deleted:

// URL of REST service (Xamarin ReadOnly Service)
//public static string RestUrl = "http://developer.xamarin.com:8081/api/todoitems{0}";

// use your machine's IP address
public static string RestUrl = "http://192.168.1.207:5000/api/todoitems/{0}";

Creating the ASP.NET Core Project

This sample is configured by default to use backend services hosted at developer.xamarin.com, which allow read-
only operations. To test it out yourself against the ASP.NET Core app created in the next section running on your
computer, you'll need to update the app's RestUrl constant. Navigate to the ToDoREST project and open the
Constants.cs file. Replace the RestUrl with a URL that includes your machine's IP address (not localhost or
127.0.0.1, since this address is used from the device emulator, not from your machine). Include the port number as
well (5000). In order to test that your services work with a device, ensure you don't have an active firewall
blocking access to this port.

Create a new ASP.NET Core Web Application in Visual Studio. Choose the Web API template and No
Authentication. Name the project ToDoApi.

var host = new WebHostBuilder()
 .UseKestrel()
 .UseUrls("http://*:5000")
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

NOTENOTE

The application should respond to all requests made to port 5000. Update Program.cs to include
.UseUrls("http://*:5000") to achieve this:

Make sure you run the application directly, rather than behind IIS Express, which ignores non-local requests by default. Run
dotnet run from a command prompt, or choose the application name profile from the Debug Target dropdown in the Visual
Studio toolbar.

Add a model class to represent To-Do items. Mark required fields using the [Required] attribute:

https://docs.microsoft.com/dotnet/core/tools/dotnet-run

using System.ComponentModel.DataAnnotations;

namespace ToDoApi.Models
{
 public class ToDoItem
 {
 [Required]
 public string ID { get; set; }

 [Required]
 public string Name { get; set; }

 [Required]
 public string Notes { get; set; }

 public bool Done { get; set; }
 }
}

using System.Collections.Generic;
using ToDoApi.Models;

namespace ToDoApi.Interfaces
{
 public interface IToDoRepository
 {
 bool DoesItemExist(string id);
 IEnumerable<ToDoItem> All { get; }
 ToDoItem Find(string id);
 void Insert(ToDoItem item);
 void Update(ToDoItem item);
 void Delete(string id);
 }
}

using System.Collections.Generic;
using System.Linq;
using ToDoApi.Interfaces;
using ToDoApi.Models;

namespace ToDoApi.Services
{
 public class ToDoRepository : IToDoRepository
 {
 private List<ToDoItem> _toDoList;

 public ToDoRepository()
 {
 InitializeData();
 }

 public IEnumerable<ToDoItem> All
 {
 get { return _toDoList; }
 }

 public bool DoesItemExist(string id)
 {
 return _toDoList.Any(item => item.ID == id);

The API methods require some way to work with data. Use the same IToDoRepository interface the original
Xamarin sample uses:

For this sample, the implementation just uses a private collection of items:

 return _toDoList.Any(item => item.ID == id);
 }

 public ToDoItem Find(string id)
 {
 return _toDoList.FirstOrDefault(item => item.ID == id);
 }

 public void Insert(ToDoItem item)
 {
 _toDoList.Add(item);
 }

 public void Update(ToDoItem item)
 {
 var todoItem = this.Find(item.ID);
 var index = _toDoList.IndexOf(todoItem);
 _toDoList.RemoveAt(index);
 _toDoList.Insert(index, item);
 }

 public void Delete(string id)
 {
 _toDoList.Remove(this.Find(id));
 }

 private void InitializeData()
 {
 _toDoList = new List<ToDoItem>();

 var todoItem1 = new ToDoItem
 {
 ID = "6bb8a868-dba1-4f1a-93b7-24ebce87e243",
 Name = "Learn app development",
 Notes = "Attend Xamarin University",
 Done = true
 };

 var todoItem2 = new ToDoItem
 {
 ID = "b94afb54-a1cb-4313-8af3-b7511551b33b",
 Name = "Develop apps",
 Notes = "Use Xamarin Studio/Visual Studio",
 Done = false
 };

 var todoItem3 = new ToDoItem
 {
 ID = "ecfa6f80-3671-4911-aabe-63cc442c1ecf",
 Name = "Publish apps",
 Notes = "All app stores",
 Done = false,
 };

 _toDoList.Add(todoItem1);
 _toDoList.Add(todoItem2);
 _toDoList.Add(todoItem3);
 }
 }
}

Configure the implementation in Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddSingleton<IToDoRepository,ToDoRepository>();
}

TIPTIP

Creating the Controller

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using ToDoApi.Interfaces;
using ToDoApi.Models;

namespace ToDoApi.Controllers
{
 [Route("api/[controller]")]
 public class ToDoItemsController : Controller
 {
 private readonly IToDoRepository _toDoRepository;

 public ToDoItemsController(IToDoRepository toDoRepository)
 {
 _toDoRepository = toDoRepository;
 }

Reading ItemsReading Items

At this point, you're ready to create the ToDoItemsController.

Learn more about creating web APIs in Build your first Web API with ASP.NET Core MVC and Visual Studio.

Add a new controller to the project, ToDoItemsController. It should inherit from
Microsoft.AspNetCore.Mvc.Controller. Add a Route attribute to indicate that the controller will handle requests
made to paths starting with api/todoitems . The [controller] token in the route is replaced by the name of the
controller (omitting the Controller suffix), and is especially helpful for global routes. Learn more about routing.

The controller requires an IToDoRepository to function; request an instance of this type through the controller's
constructor. At runtime, this instance will be provided using the framework's support for dependency injection.

This API supports four different HTTP verbs to perform CRUD (Create, Read, Update, Delete) operations on the
data source. The simplest of these is the Read operation, which corresponds to an HTTP GET request.

Requesting a list of items is done with a GET request to the List method. The [HttpGet] attribute on the List

method indicates that this action should only handle GET requests. The route for this action is the route specified
on the controller. You don't necessarily need to use the action name as part of the route. You just need to ensure
each action has a unique and unambiguous route. Routing attributes can be applied at both the controller and
method levels to build up specific routes.

[HttpGet]
public IActionResult List()
{
 return Ok(_toDoRepository.All);
}

Creating ItemsCreating Items

The List method returns a 200 OK response code and all of the ToDo items, serialized as JSON.

You can test your new API method using a variety of tools, such as Postman, shown here:

By convention, creating new data items is mapped to the HTTP POST verb. The Create method has an
[HttpPost] attribute applied to it, and accepts a ToDoItem instance. Since the item argument will be passed in

the body of the POST, this parameter is decorated with the [FromBody] attribute.

Inside the method, the item is checked for validity and prior existence in the data store, and if no issues occur, it's
added using the repository. Checking ModelState.IsValid performs model validation, and should be done in
every API method that accepts user input.

https://www.getpostman.com/docs/

[HttpPost]
public IActionResult Create([FromBody] ToDoItem item)
{
 try
 {
 if (item == null || !ModelState.IsValid)
 {
 return BadRequest(ErrorCode.TodoItemNameAndNotesRequired.ToString());
 }
 bool itemExists = _toDoRepository.DoesItemExist(item.ID);
 if (itemExists)
 {
 return StatusCode(StatusCodes.Status409Conflict, ErrorCode.TodoItemIDInUse.ToString());
 }
 _toDoRepository.Insert(item);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotCreateItem.ToString());
 }
 return Ok(item);
}

public enum ErrorCode
{
 TodoItemNameAndNotesRequired,
 TodoItemIDInUse,
 RecordNotFound,
 CouldNotCreateItem,
 CouldNotUpdateItem,
 CouldNotDeleteItem
}

The sample uses an enum containing error codes that are passed to the mobile client:

Test adding new items using Postman by choosing the POST verb providing the new object in JSON format in the
Body of the request. You should also add a request header specifying a Content-Type of application/json .

Updating ItemsUpdating Items

[HttpPut]
public IActionResult Edit([FromBody] ToDoItem item)
{
 try
 {
 if (item == null || !ModelState.IsValid)
 {
 return BadRequest(ErrorCode.TodoItemNameAndNotesRequired.ToString());
 }
 var existingItem = _toDoRepository.Find(item.ID);
 if (existingItem == null)
 {
 return NotFound(ErrorCode.RecordNotFound.ToString());
 }
 _toDoRepository.Update(item);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotUpdateItem.ToString());
 }
 return NoContent();
}

The method returns the newly created item in the response.

Modifying records is done using HTTP PUT requests. Other than this change, the Edit method is almost
identical to Create . Note that if the record isn't found, the Edit action will return a NotFound (404) response.

Deleting ItemsDeleting Items

[HttpDelete("{id}")]
public IActionResult Delete(string id)
{
 try
 {
 var item = _toDoRepository.Find(id);
 if (item == null)
 {
 return NotFound(ErrorCode.RecordNotFound.ToString());
 }
 _toDoRepository.Delete(id);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotDeleteItem.ToString());
 }
 return NoContent();
}

To test with Postman, change the verb to PUT. Specify the updated object data in the Body of the request.

This method returns a NoContent (204) response when successful, for consistency with the pre-existing API.

Deleting records is accomplished by making DELETE requests to the service, and passing the ID of the item to be
deleted. As with updates, requests for items that don't exist will receive NotFound responses. Otherwise, a
successful request will get a NoContent (204) response.

Common Web API Conventions

Note that when testing the delete functionality, nothing is required in the Body of the request.

As you develop the backend services for your app, you will want to come up with a consistent set of conventions
or policies for handling cross-cutting concerns. For example, in the service shown above, requests for specific
records that weren't found received a NotFound response, rather than a BadRequest response. Similarly,
commands made to this service that passed in model bound types always checked ModelState.IsValid and
returned a BadRequest for invalid model types.

Once you've identified a common policy for your APIs, you can usually encapsulate it in a filter. Learn more about
how to encapsulate common API policies in ASP.NET Core MVC applications.

https://msdn.microsoft.com/magazine/mt767699.aspx

Host and deploy ASP.NET Core
5/24/2018 • 3 minutes to read • Edit Online

Publish to a folder

Folder contentsFolder contents

Set up a process manager

Set up a reverse proxy

In general, to deploy an ASP.NET Core app to a hosting environment:

Publish the app to a folder on the hosting server.
Set up a process manager that starts the app when requests arrive and restarts the app after it crashes or the
server reboots.
If configuration of a reverse proxy is desired, set up a reverse proxy that forwards requests to the app.

The dotnet publish CLI command compiles app code and copies the files needed to run the app into a publish
folder. When deploying from Visual Studio, the dotnet publish step happens automatically before the files are
copied to the deployment destination.

The publish folder contains .exe and .dll files for the app, its dependencies, and optionally the .NET runtime.

A .NET Core app can be published as self-contained or framework-dependent app. If the app is self-contained,
the .dll files that contain the .NET runtime are included in the publish folder. If the app is framework-dependent,
the .NET runtime files aren't included because the app has a reference to a version of .NET that's installed on the
server. The default deployment model is framework-dependent. For more information, see .NET Core application
deployment.

In addition to .exe and .dll files, the publish folder for an ASP.NET Core app typically contains configuration files,
static assets, and MVC views. For more information, see Directory structure.

An ASP.NET Core app is a console app that must be started when a server boots and restarted if it crashes. To
automate starts and restarts, a process manager is required. The most common process managers for ASP.NET
Core are:

Linux

Windows

Nginx
Apache

IIS
Windows Service

ASP.NET Core 2.x
ASP.NET Core 1.x

If the app uses the Kestrel web server, Nginx, Apache, or IIS can be used as a reverse proxy server. A reverse
proxy server receives HTTP requests from the Internet and forwards them to Kestrel after some preliminary
handling.

Either configuration—with or without a reverse proxy server—is a valid and supported hosting configuration for

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/index.md
https://docs.microsoft.com/dotnet/articles/core/tools/dotnet-publish
https://docs.microsoft.com/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/dotnet/articles/core/deploying/index

Proxy server and load balancer scenarios

Using Visual Studio and MSBuild to automate deployment

Publishing to Azure

Additional resources

ASP.NET Core 2.0 or later apps. For more information, see When to use Kestrel with a reverse proxy.

Additional configuration might be required for apps hosted behind proxy servers and load balancers. Without
additional configuration, an app might not have access to the scheme (HTTP/HTTPS) and the remote IP address
where a request originated. For more information, see Configure ASP.NET Core to work with proxy servers and
load balancers.

Deployment often requires additional tasks besides copying the output from dotnet publish to a server. For
example, extra files might be required or excluded from the publish folder. Visual Studio uses MSBuild for web
deployment, and MSBuild can be customized to do many other tasks during deployment. For more information,
see Publish profiles in Visual Studio and the Using MSBuild and Team Foundation Build book.

By using the Publish Web feature or built-in Git support, apps can be deployed directly from Visual Studio to the
Azure App Service. Visual Studio Team Services supports continuous deployment to Azure App Service.

See Publish an ASP.NET Core web app to Azure App Service using Visual Studio for instructions on how to
publish an app to Azure using Visual Studio. The app can also be published to Azure from the command line.

For information on using Docker as a hosting environment, see Host ASP.NET Core apps in Docker.

https://docs.microsoft.com/dotnet/core/tools/dotnet-publish
http://msbuildbook.com/
https://docs.microsoft.com/vsts/build-release/apps/cd/azure/aspnet-core-to-azure-webapp?tabs=vsts

Host ASP.NET Core on Azure App Service
5/31/2018 • 5 minutes to read • Edit Online

Useful resources

Application configuration

Proxy server and load balancer scenarios

Azure App Service is a Microsoft cloud computing platform service for hosting web apps, including ASP.NET Core.

The Azure Web Apps Documentation is the home for Azure Apps documentation, tutorials, samples, how-to
guides, and other resources. Two notable tutorials that pertain to hosting ASP.NET Core apps are:

Quickstart: Create an ASP.NET Core web app in Azure
Use Visual Studio to create and deploy an ASP.NET Core web app to Azure App Service on Windows.

Quickstart: Create a .NET Core web app in App Service on Linux
Use the command line to create and deploy an ASP.NET Core web app to Azure App Service on Linux.

The following articles are available in ASP.NET Core documentation:

Publish to Azure with Visual Studio
Learn how to publish an ASP.NET Core app to Azure App Service using Visual Studio.

Publish to Azure with CLI tools
Learn how to publish an ASP.NET Core app to Azure App Service using the Git command-line client.

Continuous deployment to Azure with Visual Studio and Git
Learn how to create an ASP.NET Core web app using Visual Studio and deploy it to Azure App Service using Git
for continuous deployment.

Continuous deployment to Azure with VSTS
Set up a CI build for an ASP.NET Core app, then create a continuous deployment release to Azure App Service.

Azure Web App sandbox
Discover Azure App Service runtime execution limitations enforced by the Azure Apps platform.

With ASP.NET Core 2.0 and later, three packages in the Microsoft.AspNetCore.All metapackage provide automatic
logging features for apps deployed to Azure App Service:

Microsoft.AspNetCore.AzureAppServices.HostingStartup uses IHostingStartup to provide ASP.NET Core
lightup integration with Azure App Service. The added logging features are provided by the
Microsoft.AspNetCore.AzureAppServicesIntegration package.

Microsoft.AspNetCore.AzureAppServicesIntegration executes AddAzureWebAppDiagnostics to add Azure App
Service diagnostics logging providers in the Microsoft.Extensions.Logging.AzureAppServices package.
Microsoft.Extensions.Logging.AzureAppServices provides logger implementations to support Azure App
Service diagnostics logs and log streaming features.

The IIS Integration Middleware, which configures Forwarded Headers Middleware, and the ASP.NET Core Module
are configured to forward the scheme (HTTP/HTTPS) and the remote IP address where the request originated.
Additional configuration might be required for apps hosted behind additional proxy servers and load balancers.
For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/azure-apps/index.md
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/
https://docs.microsoft.com/azure/app-service/
https://docs.microsoft.com/azure/app-service/app-service-web-get-started-dotnet
https://docs.microsoft.com/azure/app-service/containers/quickstart-dotnetcore
https://www.visualstudio.com/docs/build/aspnet/core/quick-to-azure
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://www.nuget.org/packages/Microsoft.AspNetCore.AzureAppServices.HostingStartup/
https://www.nuget.org/packages/Microsoft.AspNetCore.AzureAppServicesIntegration/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.azureappservicesloggerfactoryextensions.addazurewebappdiagnostics
https://www.nuget.org/packages/Microsoft.Extensions.Logging.AzureAppServices/

Monitoring and logging

Data Protection key ring and deployment slots

Deploy ASP.NET Core preview release to Azure App Service

Install the preview site extensionInstall the preview site extension

For monitoring, logging, and troubleshooting information, see the following articles:

How to: Monitor Apps in Azure App Service
Learn how to review quotas and metrics for apps and App Service plans.

Enable diagnostics logging for web apps in Azure App Service
Discover how to enable and access diagnostic logging for HTTP status codes, failed requests, and web server
activity.

Introduction to Error Handling in ASP.NET Core
Understand common appoaches to handling errors in ASP.NET Core apps.

Troubleshoot ASP.NET Core on Azure App Service
Learn how to diagnose issues with Azure App Service deployments with ASP.NET Core apps.

Common errors reference for Azure App Service and IIS with ASP.NET Core
See the common deployment configuration errors for apps hosted by Azure App Service/IIS with troubleshooting
advice.

Data Protection keys are persisted to the %HOME%\ASP.NET\DataProtection-Keys folder. This folder is backed by
network storage and is synchronized across all machines hosting the app. Keys aren't protected at rest. This folder
supplies the key ring to all instances of an app in a single deployment slot. Separate deployment slots, such as
Staging and Production, don't share a key ring.

When swapping between deployment slots, any system using data protection won't be able to decrypt stored data
using the key ring inside the previous slot. ASP.NET Cookie Middleware uses data protection to protect its cookies.
This leads to users being signed out of an app that uses the standard ASP.NET Cookie Middleware. For a slot-
independent key ring solution, use an external key ring provider, such as:

Azure Blob Storage
Azure Key Vault
SQL store
Redis cache

For more information, see Key storage providers.

ASP.NET Core preview apps can be deployed to Azure App Service with the following approaches:

Install the preview site extension
Deploy the app self-contained
Use Docker with Web Apps for containers

If a problem occurs using the preview site extension, open an issue on GitHub.

1. From the Azure portal, navigate to the App Service blade.

2. Select the web app.

3. Enter "ex" in the search box or scroll down the list of management panes to DEVELOPMENT TOOLS.

4. Select DEVELOPMENT TOOLS > Extensions.

https://docs.microsoft.com/azure/app-service/web-sites-monitor
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log
https://github.com/aspnet/azureintegration/issues/new

5. Select Add.

6. Select ASP.NET Core Extensions.

7. Select OK to accept the legal terms.

8. Select OK to install the extension.

When the add operations complete, the latest .NET Core preview is installed. Verify the installation by running
dotnet --info in the console. From the App Service blade:

1. Enter "con" in the search box or scroll down the list of management panes to DEVELOPMENT TOOLS.
2. Select DEVELOPMENT TOOLS > Console.
3. Enter dotnet --info in the console.

If version 2.1.300-preview1-008174 is the latest preview release, the following output is obtained by running
dotnet --info at the command prompt:

{
 "type": "siteextensions",
 "name": "AspNetCoreRuntime",
 "apiVersion": "2015-04-01",
 "location": "[resourceGroup().location]",
 "properties": {
 "version": "[parameters('aspnetcoreVersion')]"
 },
 "dependsOn": [
 "[resourceId('Microsoft.Web/Sites', parameters('siteName'))]"
]
}

Deploy the app self-containedDeploy the app self-contained

Use Docker with Web Apps for containersUse Docker with Web Apps for containers

Additional resources

The version of ASP.NET Core shown in the preceding image, 2.1.300-preview1-008174 , is an example. The latest
preview version of ASP.NET Core at the time the site extension is configured appears when you execute
dotnet --info .

The dotnet --info displays the the path to the site extension where the Preview has been installed. It shows the
app is running from the site extension instead of from the default ProgramFiles location. If you see ProgramFiles,
restart the site and run dotnet --info .

Use the preview site extension with an ARM template

If an ARM template is used to create and deploy apps, the siteextensions resource type can be used to add the
site extension to a web app. For example:

A self-contained app can be deployed that carries the preview runtime in the deployment. When deploying a self-
contained app:

The site doesn't need to be prepared.
The app must be published differently than when publishing for a framework-dependent deployment with the
shared runtime and host on the server.

Self-contained apps are an option for all ASP.NET Core apps.

The Docker Hub contains the latest preview Docker images. The images can be used as a base image. Use the
image and deploy to Web Apps for Containers normally.

Web Apps overview (5-minute overview video)
Azure App Service: The Best Place to Host your .NET Apps (55-minute overview video)
Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)
Azure App Service diagnostics overview

Azure App Service on Windows Server uses Internet Information Services (IIS). The following topics pertain to
the underlying IIS technology:

Host ASP.NET Core on Windows with IIS
Introduction to ASP.NET Core Module
ASP.NET Core Module configuration reference
IIS Modules with ASP.NET Core
Microsoft TechNet Library: Windows Server

https://docs.microsoft.com/dotnet/core/deploying/#self-contained-deployments-scd
https://hub.docker.com/r/microsoft/aspnetcore/
https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://channel9.msdn.com/events/dotnetConf/2017/T222
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/azure/app-service/app-service-diagnostics
https://www.iis.net/
https://docs.microsoft.com/windows-server/windows-server-versions

Publish an ASP.NET Core app to Azure with Visual
Studio
4/10/2018 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Set up

Create a web app

By Rick Anderson, Cesar Blum Silveira, and Rachel Appel

ASP.NET Core preview releases with Azure App Service

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core
preview release, see Deploy ASP.NET Core preview release to Azure App Service.

See Publish to Azure from Visual Studio for Mac if you are working on macOS.

To troubleshoot an App Service deployment issue, see Troubleshoot ASP.NET Core on Azure App Service.

Open a free Azure account if you don't have one.

In the Visual Studio Start Page, select File > New > Project...

Complete the New Project dialog:

In the left pane, select .NET Core.
In the center pane, select ASP.NET Core Web Application.

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/publish-to-azure-webapp-using-vs.md
https://twitter.com/RickAndMSFT
https://github.com/cesarbs
https://twitter.com/rachelappel
https://blog.xamarin.com/publish-azure-visual-studio-mac/
https://aka.ms/K5y5yh

Select OK.

In the New ASP.NET Core Web Application dialog:

Select Web Application.
Select Change Authentication.

The Change Authentication dialog appears.

Select Individual User Accounts.

Run the app

Select OK to return to the New ASP.NET Core Web Application, then select OK again.

Visual Studio creates the solution.

Press CTRL+F5 to run the project.
Test the About and Contact links.

Register a userRegister a user
Select Register and register a new user. You can use a fictitious email address. When you submit, the
page displays the following error :

"Internal Server Error: A database operation failed while processing the request. SQL exception: Cannot
open the database. Applying existing migrations for Application DB context may resolve this issue."

Select Apply Migrations and, once the page updates, refresh the page.

The app displays the email used to register the new user and a Log out link.

Deploy the app to Azure
Right-click on the project in Solution Explorer and select Publish....

In the Publish dialog:

Select Microsoft Azure App Service.
Select the gear icon and then select Create Profile.
Select Create Profile.

Create Azure resourcesCreate Azure resources
The Create App Service dialog appears:

Enter your subscription.
The App Name, Resource Group, and App Service Plan entry fields are populated. You can keep these
names or change them.

Select the Services tab to create a new database.

Select the green + icon to create a new SQL Database

NOTENOTE

Select New... on the Configure SQL Database dialog to create a new database.

The Configure SQL Server dialog appears.

Enter an administrator user name and password, and then select OK. You can keep the default Server Name.

"admin" isn't allowed as the administrator user name.

Select OK.

Visual Studio returns to the Create App Service dialog.

Select Create on the Create App Service dialog.

Visual Studio creates the Web app and SQL Server on Azure. This step can take a few minutes. For information
on the resources created, see Additonal resources.

When deployment completes, select Settings:

On the Settings page of the Publish dialog:

Expand Databases and check Use this connection string at runtime.

Expand Entity Framework Migrations and check Apply this migration on publish.

Select Save. Visual Studio returns to the Publish dialog.

Test your app in AzureTest your app in Azure

Click Publish. Visual Studio publishs your app to Azure. When the deployment completes, the app is opened in
a browser.

Test the About and Contact links

Register a new user

Update the appUpdate the app

@page
@model AboutModel
@{
 ViewData["Title"] = "About";
}
<h2>@ViewData["Title"]</h2>
<h3>@Model.Message</h3>

<p>Hello ASP.NET Core!</p>

Edit the Pages/About.cshtml Razor page and change its contents. For example, you can modify the
paragraph to say "Hello ASP.NET Core!":

Right-click on the project and select Publish... again.

After the app is published, verify the changes you made are available on Azure.

Clean upClean up
When you have finished testing the app, go to the Azure portal and delete the app.

Select Resource groups, then select the resource group you created.

In the Resource groups page, select Delete.

https://portal.azure.com/

Next stepsNext steps

Additonal resources

Enter the name of the resource group and select Delete. Your app and all other resources created in this
tutorial are now deleted from Azure.

Continuous Deployment to Azure with Visual Studio and Git

Azure App Service
Azure resource groups
Azure SQL Database
Troubleshoot ASP.NET Core on Azure App Service

https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups
https://docs.microsoft.com/azure/sql-database/

Publish an ASP.NET Core app to Azure with
command line tools
6/10/2018 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Prerequisites

Create a web app

REM Create a new ASP.NET Core Razor Pages app
dotnet new webapp -o MyApplication

REM Change to the new directory that was just created
cd MyApplication

REM Run the app
dotnet run

By Cam Soper

ASP.NET Core preview releases with Azure App Service

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core
preview release, see Deploy ASP.NET Core preview release to Azure App Service.

This tutorial will show you how to build and deploy an ASP.NET Core app to Microsoft Azure App Service using
command line tools. When finished, you'll have a Razor Pages web app built in ASP.NET Core hosted as an
Azure App Service Web App. This tutorial is written using Windows command line tools, but can be applied to
macOS and Linux environments, as well.

In this tutorial, you learn how to:

Create an Azure App Service website using Azure CLI
Deploy an ASP.NET Core app to Azure App Service using the Git command line tool

To complete this tutorial, you'll need:

A Microsoft Azure subscription

Git command line client

.NET Core SDK 2.0 or later

Create a new directory for the web app, create a new ASP.NET Core Razor Pages app, and then run the website
locally.

Windows
Other

https://github.com/aspnet/Docs/blob/master/aspnetcore/tutorials/publish-to-azure-webapp-using-cli.md
https://twitter.com/camsoper
https://azure.microsoft.com/free/
https://www.microsoft.com/net/download
https://www.git-scm.com/

NOTENOTE

REM Create a new ASP.NET Core Razor Pages app
dotnet new razor -o MyApplication

REM Change to the new directory that was just created
cd MyApplication

REM Run the app
dotnet run

In ASP.NET Core 2.1 or later, webapp is an alias of the razor argument. If the dotnet new webapp <OPTIONS>

command loads the dotnet new command help instead of creating a new Razor Pages app, install the .NET Core 2.1 SDK.

Test the app by browsing to http://localhost:5000 .

https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

Create the Azure App Service instance

Generate a unique Web App name
let randomNum=$RANDOM*$RANDOM
webappname=tutorialApp$randomNum

Create the DotNetAzureTutorial resource group
az group create --name DotNetAzureTutorial --location EastUS

Create an App Service plan.
az appservice plan create --name $webappname --resource-group DotNetAzureTutorial --sku FREE

Create the Web App
az webapp create --name $webappname --resource-group DotNetAzureTutorial --plan $webappname

az webapp deployment user set --user-name <desired user name> --password <desired password>

az webapp deployment source config-local-git -n $webappname -g DotNetAzureTutorial --query [url] -o tsv

Using the Azure Cloud Shell, create a resource group, App Service plan, and an App Service web app.

Before deployment, set the account-level deployment credentials using the following command:

A deployment URL is needed to deploy the app using Git. Retrieve the URL like this.

https://docs.microsoft.com/azure/cloud-shell/quickstart

Deploy the app using Git

NOTENOTE

REM Initialize the local Git repository
git init

REM Add the contents of the working directory to the repo
git add --all

REM Commit the changes to the local repo
git commit -a -m "Initial commit"

REM Add the URL as a Git remote repository
git remote add azure <THE GIT URL YOU NOTED EARLIER>

REM Push the local repository to the remote
git push azure master

Test the app

Note the displayed URL ending in .git . It's used in the next step.

You're ready to deploy from your local machine using Git.

It's safe to ignore any warnings from Git about line endings.

Windows
Other

Git prompts for the deployment credentials that were set earlier. After authenticating, the app will be pushed to
the remote location, built, and deployed.

Test the app by browsing to https://<web app name>.azurewebsites.net . To display the address in the Cloud Shell
(or Azure CLI), use the following:

az webapp show -n $webappname -g DotNetAzureTutorial --query defaultHostName -o tsv

Clean up

az group delete -n DotNetAzureTutorial

Next steps

When finished testing the app and inspecting the code and resources, delete the web app and plan by deleting
the resource group.

In this tutorial, you learned how to:

Create an Azure App Service website using Azure CLI
Deploy an ASP.NET Core app to Azure App Service using the Git command line tool

Next, learn to use the command line to deploy an existing web app that uses CosmosDB.

Deploy to Azure from the command line with .NET Core

https://docs.microsoft.com/dotnet/azure/dotnet-quickstart-xplat

Continuous deployment to Azure with Visual Studio
and Git with ASP.NET Core
4/10/2018 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

Prerequisites

Create an ASP.NET Core web app

By Erik Reitan

ASP.NET Core preview releases with Azure App Service

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core
preview release, see Deploy ASP.NET Core preview release to Azure App Service.

This tutorial shows how to create an ASP.NET Core web app using Visual Studio and deploy it from Visual Studio
to Azure App Service using continuous deployment.

See also Use VSTS to Build and Publish to an Azure Web App with Continuous Deployment, which shows how to
configure a continuous delivery (CD) workflow for Azure App Service using Visual Studio Team Services. Azure
Continuous Delivery in Team Services simplifies setting up a robust deployment pipeline to publish updates for
apps hosted in Azure App Service. The pipeline can be configured from the Azure portal to build, run tests, deploy
to a staging slot, and then deploy to production.

To complete this tutorial, a Microsoft Azure account is required. To obtain an account, activate MSDN subscriber benefits or
sign up for a free trial.

This tutorial assumes the following software is installed:

Visual Studio

Git for Windows

.NET Core SDK 2.0 or later

1. Start Visual Studio.

2. From the File menu, select New > Project.

3. Select the ASP.NET Core Web Application project template. It appears under Installed > Templates >
Visual C# > .NET Core. Name the project SampleWebAppDemo . Select the Create new Git repository
option and click OK.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/azure-apps/azure-continuous-deployment.md
https://github.com/Erikre
https://docs.microsoft.com/vsts/build-release/archive/apps/aspnet/aspnet-4-ci-cd-azure-automatic
https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://azure.microsoft.com/pricing/member-offers/credit-for-visual-studio-subscribers/?WT.mc_id=A261C142F
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://www.visualstudio.com
https://www.microsoft.com/net/download
https://git-scm.com/downloads

NOTENOTE

Running the web app locallyRunning the web app locally

4. In the New ASP.NET Core Project dialog, select the ASP.NET Core Empty template, then click OK.

The most recent release of .NET Core is 2.0.

1. Once Visual Studio finishes creating the app, run the app by selecting Debug > Start Debugging. As an
alternative, press F5.

Create a web app in the Azure Portal

It may take time to initialize Visual Studio and the new app. Once it's complete, the browser shows the
running app.

2. After reviewing the running Web app, close the browser and select the "Stop Debugging" icon in the
toolbar of Visual Studio to stop the app.

The following steps create a web app in the Azure Portal:

1. Log in to the Azure Portal.

2. Select NEW at the top left of the portal interface.

3. Select Web + Mobile > Web App.

https://portal.azure.com

4. In the Web App blade, enter a unique value for the App Service Name.

NOTENOTE
The App Service Name name must be unique. The portal enforces this rule when the name is provided. If
providing a different value, substitute that value for each occurrence of SampleWebAppDemo in this tutorial.

Also in the Web App blade, select an existing App Service Plan/Location or create a new one. If creating
a new plan, select the pricing tier, location, and other options. For more information on App Service plans,
see Azure App Service plans in-depth overview.

5. Select Create. Azure will provision and start the web app.

https://docs.microsoft.com/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview

Enable Git publishing for the new web app
Git is a distributed version control system that can be used to deploy an Azure App Service web app. Web app
code is stored in a local Git repository, and the code is deployed to Azure by pushing to a remote repository.

1. Log into the Azure Portal.

2. Select App Services to view a list of the app services associated with the Azure subscription.

3. Select the web app created in the previous section of this tutorial.

4. In the Deployment blade, select Deployment options > Choose Source > Local Git Repository.

5. Select OK.

6. If deployment credentials for publishing a web app or other App Service app haven't previously been set
up, set them up now:

Select Settings > Deployment credentials. The Set deployment credentials blade is displayed.
Create a user name and password. Save the password for later use when setting up Git.
Select Save.

7. In the Web App blade, select Settings > Properties. The URL of the remote Git repository to deploy to is

https://portal.azure.com

Publish the web app to Azure App Service

shown under GIT URL.

8. Copy the GIT URL value for later use in the tutorial.

In this section, create a local Git repository using Visual Studio and push from that repository to Azure to deploy
the web app. The steps involved include the following:

Add the remote repository setting using the GIT URL value, so the local repository can be deployed to Azure.
Commit project changes.
Push project changes from the local repository to the remote repository on Azure.

NOTENOTE

1. In Solution Explorer right-click Solution 'SampleWebAppDemo' and select Commit. The Team
Explorer is displayed.

2. In Team Explorer, select the Home (home icon) > Settings > Repository Settings.

3. In the Remotes section of the Repository Settings, select Add. The Add Remote dialog box is displayed.

4. Set the Name of the remote to Azure-SampleApp.

5. Set the value for Fetch to the Git URL that copied from Azure earlier in this tutorial. Note that this is the
URL that ends with .git.

As an alternative, specify the remote repository from the Command Window by opening the Command Window,
changing to the project directory, and entering the command. Example:

git remote add Azure-SampleApp https://me@sampleapp.scm.azurewebsites.net:443/SampleApp.git

6. Select the Home (home icon) > Settings > Global Settings. Confirm that the name and email address
are set. Select Update if required.

7. Select Home > Changes to return to the Changes view.

8. Enter a commit message, such as Initial Push #1 and select Commit. This action creates a commit locally.

Verify the Active DeploymentVerify the Active Deployment

NOTENOTE

remote: Finished successfully.
remote: Running post deployment command(s)...
remote: Deployment successful.
To https://username@samplewebappdemo01.scm.azurewebsites.net:443/SampleWebAppDemo01.git
* [new branch] master -> master
Branch master set up to track remote branch master from Azure-SampleApp.

NOTENOTE

As an alternative, commit changes from the Command Window by opening the Command Window, changing to
the project directory, and entering the git commands. Example:

git add .

git commit -am "Initial Push #1"

9. Select Home > Sync > Actions > Open Command Prompt. The command prompt opens to the project
directory.

10. Enter the following command in the command window:

git push -u Azure-SampleApp master

11. Enter the Azure deployment credentials password created earlier in Azure.

This command starts the process of pushing the local project files to Azure. The output from the above
command ends with a message that the deployment was successful.

If collaboration on the project is required, consider pushing to GitHub before pushing to Azure.

Verify that the web app transfer from the local environment to Azure is successful.

In the Azure Portal, select the web app. Select Deployment > Deployment options.

https://github.com
https://portal.azure.com

Run the app in Azure

Update the web app and republish

NOTENOTE

Now that the web app is deployed to Azure, run the app.

This can be accomplished in two ways:

In the Azure Portal, locate the web app blade for the web app. Select Browse to view the app in the default
browser.
Open a browser and enter the URL for the web app. Example: http://SampleWebAppDemo.azurewebsites.net

After making changes to the local code, republish:

await context.Response.WriteAsync("Hello World! Deploy to Azure.");

1. In Solution Explorer of Visual Studio, open the Startup.cs file.

2. In the Configure method, modify the Response.WriteAsync method so that it appears as follows:

3. Save the changes to Startup.cs.

4. In Solution Explorer, right-click Solution 'SampleWebAppDemo' and select Commit. The Team
Explorer is displayed.

5. Enter a commit message, such as Update #2 .

6. Press the Commit button to commit the project changes.

7. Select Home > Sync > Actions > Push.

As an alternative, push the changes from the Command Window by opening the Command Window, changing to the
project directory, and entering a git command. Example:

git push -u Azure-SampleApp master

View the updated web app in Azure

Additional resources

View the updated web app by selecting Browse from the web app blade in the Azure Portal or by opening a
browser and entering the URL for the web app. Example: http://SampleWebAppDemo.azurewebsites.net

Use VSTS to Build and Publish to an Azure Web App with Continuous Deployment
Project Kudu

https://docs.microsoft.com/vsts/build-release/archive/apps/aspnet/aspnet-4-ci-cd-azure-automatic
https://github.com/projectkudu/kudu/wiki

Troubleshoot ASP.NET Core on Azure App Service
4/10/2018 • 8 minutes to read • Edit Online

IMPORTANTIMPORTANT

App startup errors

By Luke Latham

ASP.NET Core preview releases with Azure App Service

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core
preview release, see Deploy ASP.NET Core preview release to Azure App Service.

This article provides instructions on how to diagnose an ASP.NET Core app startup issue using Azure App
Service's diagnostic tools. For additional troubleshooting advice, see Azure App Service diagnostics overview and
How to: Monitor Apps in Azure App Service in the Azure documentation.

502.5 Process Failure
The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. Examining the Application
Event Log often helps troubleshoot this type of problem. Accessing the log is explained in the Application Event
Log section.

The 502.5 Process Failure error page is returned when a misconfigured app causes the worker process to fail:

500 Internal Server Error
The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response may contain no
content, or the response may appear as a 500 Internal Server Error in the browser. The Application Event Log
usually states that the app started normally. From the server's perspective, that's correct. The app did start, but it
can't generate a valid response. Run the app in the Kudu console or enable the ASP.NET Core Module stdout log
to troubleshoot the problem.

Connection reset

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/azure-apps/troubleshoot.md
https://github.com/guardrex
https://docs.microsoft.com/azure/app-service/app-service-diagnostics
https://docs.microsoft.com/azure/app-service/web-sites-monitor

Default startup limits

Troubleshoot app startup errors
Application Event LogApplication Event Log

Run the app in the Kudu consoleRun the app in the Kudu console

ASP.NET Core Module stdout logASP.NET Core Module stdout log

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal Server Error when
an error occurs. This often happens when an error occurs during the serialization of complex objects for a
response. This type of error appears as a connection reset error on the client. Application logging can help
troubleshoot these types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at the default
value, an app may take up to two minutes to start before the module logs a process failure. For information on
configuring the module, see Attributes of the aspNetCore element.

To access the Application Event Log, use the Diagnose and solve problems blade in the Azure portal :

1. In the Azure portal, open the app's blade in the App Services blade.
2. Select the Diagnose and solve problems blade.
3. Under SELECT PROBLEM CATEGORY , select the Web App Down button.
4. Under Suggested Solutions, open the pane for Open Application Event Logs. Select the Open

Application Event Logs button.
5. Examine the latest error provided by the IIS AspNetCoreModule in the Source column.

An alternative to using the Diagnose and solve problems blade is to examine the Application Event Log file
directly using Kudu:

1. Select the Advanced Tools blade in the DEVELOPMENT TOOLS area. Select the Go→ button. The Kudu
console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug console and select CMD .
3. Open the LogFiles folder.
4. Select the pencil icon next to the eventlog.xml file.
5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the app in the
Kudu Remote Execution Console to discover the error :

1. Select the Advanced Tools blade in the DEVELOPMENT TOOLS area. Select the Go→ button. The Kudu
console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug console and select CMD .
3. Open the folders to the path site > wwwroot.
4. In the console, run the app by executing the app's assembly.

5. The console output from the app, showing any errors, is piped to the Kudu console.

If the app is a framework-dependent deployment, run the app's assembly with dotnet.exe. In the
following command, substitute the name of the app's assembly for <assembly_name> :
dotnet .\<assembly_name>.dll

If the app is a self-contained deployment, run the app's executable. In the following command,
substitute the name of the app's assembly for <assembly_name> : <assembly_name>.exe

The ASP.NET Core Module stdout log often records useful error messages not found in the Application Event
Log. To enable and view stdout logs:

https://github.com/projectkudu/kudu/wiki
https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/dotnet/core/deploying/#self-contained-deployments-scd

WARNINGWARNING

Common startup errors

Slow or hanging app

Remote debugging

Application Insights

1. Navigate to the Diagnose and solve problems blade in the Azure portal.
2. Under SELECT PROBLEM CATEGORY , select the Web App Down button.
3. Under Suggested Solutions > Enable Stdout Log Redirection, select the button to Open Kudu Console

to edit Web.Config.
4. In the Kudu Diagnostic Console, open the folders to the path site > wwwroot. Scroll down to reveal the

web.config file at the bottom of the list.
5. Click the pencil icon next to the web.config file.
6. Set stdoutLogEnabled to true and change the stdoutLogFile path to: \\?\%home%\LogFiles\stdout .
7. Select Save to save the updated web.config file.
8. Make a request to the app.
9. Return to the Azure portal. Select the Advanced Tools blade in the DEVELOPMENT TOOLS area. Select the

Go→ button. The Kudu console opens in a new browser tab or window.
10. Using the navigation bar at the top of the page, open Debug console and select CMD .
11. Select the LogFiles folder.
12. Inspect the Modified column and select the pencil icon to edit the stdout log with the latest modification date.
13. When the log file opens, the error is displayed.

Important! Disable stdout logging when troubleshooting is complete.

1. In the Kudu Diagnostic Console, return to the path site > wwwroot to reveal the web.config file. Open the
web.config file again by selecting the pencil icon.

2. Set stdoutLogEnabled to false .
3. Select Save to save the file.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files
created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For
more information, see third-party logging providers.

See the ASP.NET Core common errors reference. Most of the common problems that prevent app startup are
covered in the reference topic.

When an app responds slowly or hangs on a request, see Troubleshoot slow web app performance issues in
Azure App Service for debugging guidance.

See the following topics:

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using Visual Studio
(Azure documentation)
Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017 (Visual Studio documentation)

https://docs.microsoft.com/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/visualstudio/debugger/remote-debugging-azure

Monitoring blades

Application Insights provides telemetry from apps hosted in the Azure App Service, including error logging and
reporting features. Application Insights can only report on errors that occur after the app starts when the app's
logging features become available. For more information, see Application Insights for ASP.NET Core.

Monitoring blades provide an alternative troubleshooting experience to the methods described earlier in the topic.
These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them manually:

1. In the DEVELOPMENT TOOLS blade section, select the Extensions blade.
2. The ASP.NET Core Extensions should appear in the list.
3. If the extensions aren't installed, select the Add button.
4. Choose the ASP.NET Core Extensions from the list.
5. Select OK to accept the legal terms.
6. Select OK on the Add extension blade.
7. An informational pop-up message indicates when the extensions are successfully installed.

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced Tools blade in the DEVELOPMENT TOOLS area. Select the Go→
button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug console and select CMD .
3. Open the folders to the path site > wwwroot and scroll down to reveal the web.config file at the bottom of

the list.
4. Click the pencil icon next to the web.config file.
5. Set stdoutLogEnabled to true and change the stdoutLogFile path to: \\?\%home%\LogFiles\stdout .
6. Select Save to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logs blade.
2. Select the On switch for Application Logging (Filesystem) and Detailed error messages. Select the Save

button at the top of the blade.
3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging, select the On

switch for Failed request tracing.
4. Select the Log stream blade, which is listed immediately under the Diagnostics logs blade in the portal.
5. Make a request to the app.
6. Within the log stream data, the cause of the error is indicated.

Important! Be sure to disable stdout logging when troubleshooting is complete. See the instructions in the
ASP.NET Core Module stdout log section.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problems blade in the Azure portal.
2. Select Failed Request Tracing Logs from the SUPPORT TOOLS area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App Service topic and
the Application performance FAQs for Web Apps in Azure: How do I turn on failed request tracing? for more
information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

https://azure.microsoft.com/services/application-insights/
https://docs.microsoft.com/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log

WARNINGWARNING

Additional resources

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files
created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more
information, see third-party logging providers.

Introduction to Error Handling in ASP.NET Core
Common errors reference for Azure App Service and IIS with ASP.NET Core
Troubleshoot a web app in Azure App Service using Visual Studio
Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web apps
Troubleshoot slow web app performance issues in Azure App Service
Application performance FAQs for Web Apps in Azure
Azure Web App sandbox (App Service runtime execution limitations)
Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience

Host ASP.NET Core on Windows with IIS
5/30/2018 • 18 minutes to read • Edit Online

Supported operating systems

Application configuration
Enable the IISIntegration componentsEnable the IISIntegration components

public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 ...

I IS optionsIIS options

services.Configure<IISOptions>(options =>
{
 options.ForwardClientCertificate = false;
});

OPTION DEFAULT SETTING

By Luke Latham and Rick Anderson

The following operating systems are supported:

Windows 7 or later
Windows Server 2008 R2 or later

HTTP.sys server (formerly called WebListener) doesn't work in a reverse proxy configuration with IIS. Use the
Kestrel server.

ASP.NET Core 2.x
ASP.NET Core 1.x

A typical Program.cs calls CreateDefaultBuilder to begin setting up a host. CreateDefaultBuilder configures
Kestrel as the web server and enables IIS integration by configuring the base path and port for the ASP.NET
Core Module:

The ASP.NET Core Module generates a dynamic port to assign to the back-end process. CreateDefaultBuilder

calls the UseIIS Integration method, which picks up the dynamic port and configures Kestrel to listen on
http://localhost:{dynamicPort}/ . This overrides other URL configurations, such as calls to UseUrls or Kestrel's

Listen API. Therefore, calls to UseUrls or Kestrel's Listen API aren't required when using the module. If
UseUrls or Listen is called, Kestrel listens on the port specified when running the app without IIS.

For more information on hosting, see Host in ASP.NET Core.

To configure IIS options, include a service configuration for IISOptions in ConfigureServices. In the following
example, forwarding client certificates to the app to populate HttpContext.Connection.ClientCertificate is
disabled:

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/iis/index.md
https://github.com/guardrex
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.iisoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices

AutomaticAuthentication true If true , IIS Integration Middleware
sets the HttpContext.User

authenticated by Windows
Authentication. If false , the
middleware only provides an identity
for HttpContext.User and responds
to challenges when explicitly requested
by the AuthenticationScheme .
Windows Authentication must be
enabled in IIS for
AutomaticAuthentication to

function. For more information, see the
Windows Authentication topic.

AuthenticationDisplayName null Sets the display name shown to users
on login pages.

ForwardClientCertificate true If true and the
MS-ASPNETCORE-CLIENTCERT request

header is present, the
HttpContext.Connection.ClientCertificate

is populated.

OPTION DEFAULT SETTING

Proxy server and load balancer scenariosProxy server and load balancer scenarios

web.config fileweb.config file

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
 <IsTransformWebConfigDisabled>true</IsTransformWebConfigDisabled>
</PropertyGroup>

The IIS Integration Middleware, which configures Forwarded Headers Middleware, and the ASP.NET Core
Module are configured to forward the scheme (HTTP/HTTPS) and the remote IP address where the request
originated. Additional configuration might be required for apps hosted behind additional proxy servers and load
balancers. For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

The web.config file configures the ASP.NET Core Module. Creating, transforming, and publishing the web.config
file is handled by an MSBuild target (_TransformWebConfig) when the project is published. This target is present
in the Web SDK targets (Microsoft.NET.Sdk.Web). The SDK is set at the top of the project file:

If a web.config file isn't present in the project, the file is created with the correct processPath and arguments to
configure the ASP.NET Core Module and moved to published output.

If a web.config file is present in the project, the file is transformed with the correct processPath and arguments to
configure the ASP.NET Core Module and moved to published output. The transformation doesn't modify IIS
configuration settings in the file.

The web.config file may provide additional IIS configuration settings that control active IIS modules. For
information on IIS modules that are capable of processing requests with ASP.NET Core apps, see the IIS
modules topic.

To prevent the Web SDK from transforming the web.config file, use the <IsTransformWebConfigDisabled>
property in the project file:

web.config file locationweb.config file location

IIS configuration

When disabling the Web SDK from transforming the file, the processPath and arguments should be manually
set by the developer. For more information, see the ASP.NET Core Module configuration reference.

In order to create the reverse proxy between IIS and the Kestrel server, the web.config file must be present at the
content root path (typically the app base path) of the deployed app. This is the same location as the website
physical path provided to IIS. The web.config file is required at the root of the app to enable the publishing of
multiple apps using Web Deploy.

Sensitive files exist on the app's physical path, such as <assembly>.runtimeconfig.json, <assembly>.xml (XML
Documentation comments), and <assembly>.deps.json. When the web.config file is present and and the site
starts normally, IIS doesn't serve these sensitive files if they're requested. If the web.config file is missing,
incorrectly named, or unable to configure the site for normal startup, IIS may serve sensitive files publicly.

The web.config file must be present in the deployment at all times, correctly named, and able to
configure the site for normal start up. Never remove the web.config file from a production
deployment.

Windows Server operating systems

Enable the Web Server (IIS) server role and establish role services.

1. Use the Add Roles and Features wizard from the Manage menu or the link in Server Manager. On
the Server Roles step, check the box for Web Server (IIS).

2. After the Features step, the Role services step loads for Web Server (IIS). Select the IIS role services
desired or accept the default role services provided.

Windows Authentication (Optional)
To enable Windows Authentication, expand the following nodes: Web Server > Security. Select the
Windows Authentication feature. For more information, see Windows Authentication
<windowsAuthentication> and Configure Windows authentication.

WebSockets (Optional)
WebSockets is supported with ASP.NET Core 1.1 or later. To enable WebSockets, expand the following
nodes: Web Server > Application Development. Select the WebSocket Protocol feature. For more
information, see WebSockets.

3. Proceed through the Confirmation step to install the web server role and services. A server/IIS restart
isn't required after installing the Web Server (IIS) role.

Windows desktop operating systems

Enable the IIS Management Console and World Wide Web Services.

1. Navigate to Control Panel > Programs > Programs and Features > Turn Windows features on or
off (left side of the screen).

2. Open the Internet Information Services node. Open the Web Management Tools node.

3. Check the box for IIS Management Console.

4. Check the box for World Wide Web Services.

5. Accept the default features for World Wide Web Services or customize the IIS features.

Windows Authentication (Optional)
To enable Windows Authentication, expand the following nodes: World Wide Web Services > Security.
Select the Windows Authentication feature. For more information, see Windows Authentication
<windowsAuthentication> and Configure Windows authentication.

WebSockets (Optional)
WebSockets is supported with ASP.NET Core 1.1 or later. To enable WebSockets, expand the following

https://docs.microsoft.com/iis/configuration/system.webServer/security/authentication/windowsAuthentication/
https://docs.microsoft.com/iis/configuration/system.webServer/security/authentication/windowsAuthentication/

 Install the .NET Core Hosting Bundle

NOTENOTE

nodes: World Wide Web Services > Application Development Features. Select the WebSocket
Protocol feature. For more information, see WebSockets.

6. If the IIS installation requires a restart, restart the system.

1. Install the .NET Core Hosting Bundle on the hosting system. The bundle installs the .NET Core Runtime,
.NET Core Library, and the ASP.NET Core Module. The module creates the reverse proxy between IIS and
the Kestrel server. If the system doesn't have an Internet connection, obtain and install the Microsoft
Visual C++ 2015 Redistributable before installing the .NET Core Hosting Bundle.

a. Navigate to the .NET All Downloads page.
b. In the Runtime column of the table, select the latest non-preview .NET Core runtime from the list (X.Y

Runtime (vX.Y.Z) downloads). The latest runtime has a Current label. Unless you intend to work
with preview software, avoid a runtime with the word "preview" or "rc" (Release Candidate) in its link
text.

c. On the .NET Core runtime download page under Windows, select the Hosting Bundle Installer link
to download the .NET Core Hosting Bundle installer.

d. Run the installer on the server.
Important! If the Hosting Bundle is installed before IIS, the bundle installation must be repaired. Run the
Hosting Bundle installer again after installing IIS.

To prevent the installer from installing x86 packages on an x64 OS, run the installer from an administrator
command prompt with the switch OPT_NO_X86=1 .

2. Restart the system or execute net stop was /y followed by net start w3svc from a command prompt.
Restarting IIS picks up a change to the system PATH made by the installer.

For information on IIS Shared Configuration, see ASP.NET Core Module with IIS Shared Configuration.

https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/net/download/all

Install Web Deploy when publishing with Visual Studio

Create the IIS site

When deploying apps to servers with Web Deploy, install the latest version of Web Deploy on the server. To
install Web Deploy, use the Web Platform Installer (WebPI) or obtain an installer directly from the Microsoft
Download Center. The preferred method is to use WebPI. WebPI offers a standalone setup and a configuration
for hosting providers.

IMPORTANTIMPORTANT

1. On the hosting system, create a folder to contain the app's published folders and files. An app's
deployment layout is described in the Directory Structure topic.

2. Within the new folder, create a logs folder to hold ASP.NET Core Module stdout logs when stdout logging
is enabled. If the app is deployed with a logs folder in the payload, skip this step. For instructions on how
to enable MSBuild to create the logs folder automatically when the project is built locally, see the
Directory structure topic.

Only use the stdout log to troubleshoot app startup failures. Never use stdout logging for routine app logging.
There's no limit on log file size or the number of log files created. The app pool must have write access to the
location where the logs are written. All of the folders on the path to the log location must exist. For more
information on the stdout log, see Log creation and redirection. For information on logging in an ASP.NET Core
app, see the Logging topic.

3. In IIS Manager, open the server's node in the Connections panel. Right-click the Sites folder. Select
Add Website from the contextual menu.

4. Provide a Site name and set the Physical path to the app's deployment folder. Provide the Binding
configuration and create the website by selecting OK:

https://docs.microsoft.com/iis/publish/using-web-deploy/introduction-to-web-deploy
https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/download/details.aspx?id=43717

WARNINGWARNING
Top-level wildcard bindings (http://*:80/ and http://+:80) should not be used. Top-level wildcard bindings
can open up your app to security vulnerabilities. This applies to both strong and weak wildcards. Use explicit host
names rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com) doesn't have this security
risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). See rfc7230 section-5.4
for more information.

5. Under the server's node, select Application Pools.

6. Right-click the site's app pool and select Basic Settings from the contextual menu.

7. In the Edit Application Pool window, set the .NET CLR version to No Managed Code:

ASP.NET Core runs in a separate process and manages the runtime. ASP.NET Core doesn't rely on
loading the desktop CLR. Setting the .NET CLR version to No Managed Code is optional.

https://tools.ietf.org/html/rfc7230#section-5.4

Deploy the app

Web Deploy with Visual StudioWeb Deploy with Visual Studio

Web Deploy outside of Visual StudioWeb Deploy outside of Visual Studio

Alternatives to Web DeployAlternatives to Web Deploy

Browse the website

8. Confirm the process model identity has the proper permissions.

If the default identity of the app pool (Process Model > Identity) is changed from
ApplicationPoolIdentity to another identity, verify that the new identity has the required permissions to
access the app's folder, database, and other required resources. For example, the app pool requires read
and write access to folders where the app reads and writes files.

Windows Authentication configuration (Optional)
For more information, see Configure Windows authentication.

Deploy the app to the folder created on the hosting system. Web Deploy is the recommended mechanism for
deployment.

See the Visual Studio publish profiles for ASP.NET Core app deployment topic to learn how to create a publish
profile for use with Web Deploy. If the hosting provider provides a Publish Profile or support for creating one,
download their profile and import it using the Visual Studio Publish dialog.

Web Deploy can also be used outside of Visual Studio from the command line. For more information, see Web
Deployment Tool.

Use any of several methods to move the app to the hosting system, such as manual copy, Xcopy, Robocopy, or
PowerShell.

For more information on ASP.NET Core deployment to IIS, see the Deployment resources for IIS administrators
section.

https://docs.microsoft.com/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/iis/publish/using-web-deploy/use-the-web-deployment-tool

Locked deployment files
Files in the deployment folder are locked when the app is running. Locked files can't be overwritten during
deployment. To release locked files in a deployment, stop the app pool using one of the following approaches:

Use Web Deploy and reference Microsoft.NET.Sdk.Web in the project file. An app_offline.htm file is placed
at the root of the web app directory. When the file is present, the ASP.NET Core Module gracefully shuts
down the app and serves the app_offline.htm file during the deployment. For more information, see the
ASP.NET Core Module configuration reference.

Manually stop the app pool in the IIS Manager on the server.

Use PowerShell to stop and restart the app pool (requires PowerShell 5 or later):

Data protection

$webAppPoolName = 'APP_POOL_NAME'

Stop the AppPool
if((Get-WebAppPoolState $webAppPoolName).Value -ne 'Stopped') {
 Stop-WebAppPool -Name $webAppPoolName
 while((Get-WebAppPoolState $webAppPoolName).Value -ne 'Stopped') {
 Start-Sleep -s 1
 }
 Write-Host `-AppPool Stopped
}

Provide script commands here to deploy the app

Restart the AppPool
if((Get-WebAppPoolState $webAppPoolName).Value -ne 'Started') {
 Start-WebAppPool -Name $webAppPoolName
 while((Get-WebAppPoolState $webAppPoolName).Value -ne 'Started') {
 Start-Sleep -s 1
 }
 Write-Host `-AppPool Started
}

The ASP.NET Core Data Protection stack is used by several ASP.NET Core middlewares, including middleware
used in authentication. Even if Data Protection APIs aren't called by user code, data protection should be
configured with a deployment script or in user code to create a persistent cryptographic key store. If data
protection isn't configured, the keys are held in memory and discarded when the app restarts.

If the key ring is stored in memory when the app restarts:

All cookie-based authentication tokens are invalidated.
Users are required to sign in again on their next request.
Any data protected with the key ring can no longer be decrypted. This may include CSRF tokens and
ASP.NET Core MVC TempData cookies.

To configure data protection under IIS to persist the key ring, use one of the following approaches:

Create Data Protection Registry Keys

Data protection keys used by ASP.NET Core apps are stored in the registry external to the apps. To persist
the keys for a given app, create registry keys for the app pool.

For standalone, non-webfarm IIS installations, the Data Protection Provision-AutoGenKeys.ps1
PowerShell script can be used for each app pool used with an ASP.NET Core app. This script creates a
registry key in the HKLM registry that's accessible only to the worker process account of the app's app
pool. Keys are encrypted at rest using DPAPI with a machine-wide key.

In web farm scenarios, an app can be configured to use a UNC path to store its data protection key ring.
By default, the data protection keys aren't encrypted. Ensure that the file permissions for the network
share are limited to the Windows account the app runs under. An X509 certificate can be used to protect
keys at rest. Consider a mechanism to allow users to upload certificates: Place certificates into the user's
trusted certificate store and ensure they're available on all machines where the user's app runs. See
Configure ASP.NET Core Data Protection for details.

Configure the IIS Application Pool to load the user profile

This setting is in the Process Model section under the Advanced Settings for the app pool. Set Load
User Profile to True . This stores keys under the user profile directory and protects them using DPAPI

https://github.com/aspnet/DataProtection/blob/dev/Provision-AutoGenKeys.ps1

 Sub-application configuration

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <aspNetCore processPath="dotnet"
 arguments=".\<assembly_name>.dll"
 stdoutLogEnabled="false"
 stdoutLogFile=".\logs\stdout" />
 </system.webServer>
</configuration>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <handlers>
 <remove name="aspNetCore" />
 </handlers>
 <aspNetCore processPath="dotnet"
 arguments=".\<assembly_name>.dll"
 stdoutLogEnabled="false"
 stdoutLogFile=".\logs\stdout" />
 </system.webServer>
</configuration>

Configuration of IIS with web.config

with a key specific to the user account used by the app pool.

Use the file system as a key ring store

Adjust the app code to use the file system as a key ring store. Use an X509 certificate to protect the key
ring and ensure the certificate is a trusted certificate. If the certificate is self-signed, place the certificate in
the Trusted Root store.

When using IIS in a web farm:

Use a file share that all machines can access.
Deploy an X509 certificate to each machine. Configure data protection in code.

Set a machine-wide policy for data protection

The data protection system has limited support for setting a default machine-wide policy for all apps that
consume the Data Protection APIs. See the data protection documentation for details.

Sub-apps added under the root app shouldn't include the ASP.NET Core Module as a handler. If the module is
added as a handler in a sub-app's web.config file, a 500.19 Internal Server Error referencing the faulty config file
is received when attempting to browse the sub-app.

The following example shows a published web.config file for an ASP.NET Core sub-app:

When hosting a non-ASP.NET Core sub-app underneath an ASP.NET Core app, explicitly remove the inherited
handler in the sub-app web.config file:

For more information on configuring the ASP.NET Core Module, see the Introduction to ASP.NET Core Module
topic and the ASP.NET Core Module configuration reference.

IIS configuration is influenced by the <system.webServer> section of web.config for those IIS features that
apply to a reverse proxy configuration. If IIS is configured at the server level to use dynamic compression, the
<urlCompression> element in the app's web.config file can disable it.

Configuration sections of web.config

Application Pools

Application Pool Identity

For more information, see the configuration reference for <system.webServer>, ASP.NET Core Module
Configuration Reference, and IIS Modules with ASP.NET Core. To set environment variables for individual apps
running in isolated app pools (supported for IIS 10.0 or later), see the AppCmd.exe command section of the
Environment Variables <environmentVariables> topic in the IIS reference documentation.

Configuration sections of ASP.NET 4.x apps in web.config aren't used by ASP.NET Core apps for configuration:

<system.web>
<appSettings>
<connectionStrings>
<location>

ASP.NET Core apps are configured using other configuration providers. For more information, see
Configuration.

When hosting multiple websites on a server, isolate the apps from each other by running each app in its own app
pool. The IIS Add Website dialog defaults to this configuration. When Site name is provided, the text is
automatically transferred to the Application pool textbox. A new app pool is created using the site name when
the site is added.

An app pool identity account allows an app to run under a unique account without having to create and manage
domains or local accounts. On IIS 8.0 or later, the IIS Admin Worker Process (WAS) creates a virtual account
with the name of the new app pool and runs the app pool's worker processes under this account by default. In
the IIS Management Console under Advanced Settings for the app pool, ensure that the Identity is set to use
ApplicationPoolIdentity:

https://docs.microsoft.com/iis/configuration/system.webServer/
https://docs.microsoft.com/iis/configuration/system.applicationHost/applicationPools/add/environmentVariables/#appcmdexe

ICACLS C:\sites\MyWebApp /grant "IIS AppPool\DefaultAppPool":F

Deployment resources for IIS administrators

The IIS management process creates a secure identifier with the name of the app pool in the Windows Security
System. Resources can be secured using this identity. However, this identity isn't a real user account and doesn't
show up in the Windows User Management Console.

If the IIS worker process requires elevated access to the app, modify the Access Control List (ACL) for the
directory containing the app:

1. Open Windows Explorer and navigate to the directory.

2. Right-click on the directory and select Properties.

3. Under the Security tab, select the Edit button and then the Add button.

4. Select the Locations button and make sure the system is selected.

5. Enter IIS AppPool\<app_pool_name> in Enter the object names to select area. Select the Check
Names button. For the DefaultAppPool check the names using IIS AppPool\DefaultAppPool. When
the Check Names button is selected, a value of DefaultAppPool is indicated in the object names area. It
isn't possible to enter the app pool name directly into the object names area. Use the IIS AppPool\
<app_pool_name> format when checking for the object name.

6. Select OK.

7. Read & execute permissions should be granted by default. Provide additional permissions as needed.

Access can also be granted at a command prompt using the ICACLS tool. Using the DefaultAppPool as an
example, the following command is used:

For more information, see the icacls topic.

https://docs.microsoft.com/windows-server/administration/windows-commands/icacls

Additional resources

Learn about IIS in-depth in the IIS documentation.
IIS documentation

Learn about .NET Core app deployment models.
.NET Core application deployment

Learn how the ASP.NET Core Module allows the Kestrel web server to use IIS or IIS Express as a reverse proxy
server.
ASP.NET Core Module

Learn how to configure the ASP.NET Core Module for hosting ASP.NET Core apps.
ASP.NET Core Module configuration reference

Learn about the directory structure of published ASP.NET Core apps.
Directory structure

Discover active and inactive IIS modules for ASP.NET Core apps and how to manage IIS modules.
IIS modules

Learn how to diagnose problems with IIS deployments of ASP.NET Core apps.
Troubleshoot

Distinguish common errors when hosting ASP.NET Core apps on IIS.
Common errors reference for Azure App Service and IIS

Introduction to ASP.NET Core
The Official Microsoft IIS Site
Windows Server technical content library

https://docs.microsoft.com/iis
https://docs.microsoft.com/dotnet/core/deploying/
https://www.iis.net/
https://docs.microsoft.com/windows-server/windows-server

Troubleshoot ASP.NET Core on IIS
3/22/2018 • 7 minutes to read • Edit Online

App startup errors

By Luke Latham

This article provides instructions on how to diagnose an ASP.NET Core app startup issue when hosting with
Internet Information Services (IIS). The information in this article applies to hosting in IIS on Windows Server
and Windows Desktop.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 Process
Failure that occurs when debugging locally can be troubleshooted using the advice in this topic.

Additional troubleshooting topics:

Troubleshoot ASP.NET Core on Azure App Service
Although App Service uses the ASP.NET Core Module and IIS to host apps, see the dedicated topic for
instructions specific to App Service.

Handle errors
Discover how to handle errors in ASP.NET Core apps during development on a local system.

Learn to debug using Visual Studio
This topic introduces the features of the Visual Studio debugger.

502.5 Process Failure
The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a process
startup failure can usually be determined from entries in the Application Event Log and the ASP.NET Core
Module stdout log.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the worker
process to fail:

500 Internal Server Error
The app starts, but an error prevents the server from fulfilling the request.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/iis/troubleshoot.md
https://github.com/guardrex
https://docs.microsoft.com/iis
https://docs.microsoft.com/iis/extensions/introduction-to-iis-express/iis-express-overview
https://docs.microsoft.com/visualstudio/debugger/getting-started-with-the-debugger

Default startup limits

Troubleshoot app startup errors
Application Event LogApplication Event Log

Run the app at a command promptRun the app at a command prompt

This error occurs within the app's code during startup or while creating a response. The response may contain no
content, or the response may appear as a 500 Internal Server Error in the browser. The Application Event Log
usually states that the app started normally. From the server's perspective, that's correct. The app did start, but it
can't generate a valid response. Run the app at a command prompt on the server or enable the ASP.NET Core
Module stdout log to troubleshoot the problem.

Connection reset

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal Server Error when
an error occurs. This often happens when an error occurs during the serialization of complex objects for a
response. This type of error appears as a connection reset error on the client. Application logging can help
troubleshoot these types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at the default
value, an app may take up to two minutes to start before the module logs a process failure. For information on
configuring the module, see Attributes of the aspNetCore element.

Access the Application Event Log:

1. Open the Start menu, search for Event Viewer, and then select the Event Viewer app.
2. In Event Viewer, open the Windows Logs node.
3. Select Application to open the Application Event Log.
4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or IIS Express

AspNetCore Module in the Source column.

Many startup errors don't produce useful information in the Application Event Log. You can find the cause of
some errors by running the app at a command prompt on the hosting system.

Framework-dependent deployment

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's assembly
with dotnet.exe. In the following command, substitute the name of the app's assembly for <assembly_name>:
dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.
3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel

listens. Using the default host and post, make a request to http://localhost:5000/ . If the app responds
normally at the Kestrel endpoint address, the problem is more likely related to the reverse proxy configuration
and less likely within the app.

Self-contained deployment

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the following
command, substitute the name of the app's assembly for <assembly_name>: <assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.
3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel

https://docs.microsoft.com/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/dotnet/core/deploying/#self-contained-deployments-scd

 ASP.NET Core Module stdout logASP.NET Core Module stdout log

WARNINGWARNING

Enabling the Developer Exception Page

<aspNetCore processPath="dotnet"
 arguments=".\MyApp.dll"
 stdoutLogEnabled="false"
 stdoutLogFile=".\logs\stdout">
 <environmentVariables>
 <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
 </environmentVariables>
</aspNetCore>

listens. Using the default host and post, make a request to http://localhost:5000/ . If the app responds
normally at the Kestrel endpoint address, the problem is more likely related to the reverse proxy configuration
and less likely within the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.
2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to create the logs

folder in the deployment automatically, see the Directory structure topic.
3. Edit the web.config file. Set stdoutLogEnabled to true and change the stdoutLogFile path to point to the

logs folder (for example, .\logs\stdout). stdout in the path is the log file name prefix. A timestamp, process
id, and file extension are added automatically when the log is created. Using stdout as the file name prefix, a
typical log file is named stdout_20180205184032_5412.log.

4. Save the updated web.config file.
5. Make a request to the app.
6. Navigate to the logs folder. Find and open the most recent stdout log.
7. Study the log for errors.

Important! Disable stdout logging when troubleshooting is complete.

1. Edit the web.config file.
2. Set stdoutLogEnabled to false .
3. Save the file.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files
created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more
information, see third-party logging providers.

The ASPNETCORE_ENVIRONMENT environment variable can be added to web.config to run the app in the Development
environment. As long as the environment isn't overridden in app startup by UseEnvironment on the host builder,
setting the environment variable allows the Developer Exception Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT is only recommended for use on staging and
testing servers that aren't exposed to the Internet. Remove the environment variable from the web.config file
after troubleshooting. For information on setting environment variables in web.config, see environmentVariables
child element of aspNetCore.

Common startup errors

Slow or hanging app

Remote debugging

Application Insights

Additional troubleshooting advice

TIPTIP

Additional resources

See the ASP.NET Core common errors reference. Most of the common problems that prevent app startup are
covered in the reference topic.

When an app responds slowly or hangs on a request, obtain and analyze a dump file. Dump files can be obtained
using any of the following tools:

ProcDump
DebugDiag
WinDbg: Download Debugging tools for Windows, Debugging Using WinDbg

See Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017 in the Visual Studio
documentation.

Application Insights provides telemetry from apps hosted by IIS, including error logging and reporting features.
Application Insights can only report on errors that occur after the app starts when the app's logging features
become available. For more information, see Application Insights for ASP.NET Core.

Sometimes a functioning app fails immediately after upgrading either the .NET Core SDK on the development
machine or package versions within the app. In some cases, incoherent packages may break an app when
performing major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.
2. Clear the package caches at %UserProfile%\.nuget\packages and %LocalAppData%\Nuget\v3-cache.
3. Restore and rebuild the project.
4. Confirm that the prior deployment on the server has been completely deleted prior to redeploying the app.

A convenient way to clear package caches is to execute dotnet nuget locals all --clear from a command prompt.

Clearing package caches can also be accomplished by using the nuget.exe tool and executing the command
nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and must be

obtained separately from the NuGet website.

Introduction to Error Handling in ASP.NET Core
Common errors reference for Azure App Service and IIS with ASP.NET Core
ASP.NET Core Module configuration reference
Troubleshoot ASP.NET Core on Azure App Service

https://docs.microsoft.com/visualstudio/debugger/using-dump-files
https://docs.microsoft.com/sysinternals/downloads/procdump
https://www.microsoft.com/download/details.aspx?id=49924
https://developer.microsoft.com/windows/hardware/download-windbg
https://docs.microsoft.com/windows-hardware/drivers/debugger/debugging-using-windbg
https://docs.microsoft.com/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/azure/application-insights/
https://docs.microsoft.com/azure/application-insights/app-insights-asp-net-core
https://www.nuget.org/downloads
https://www.nuget.org/downloads

ASP.NET Core Module configuration reference
4/13/2018 • 10 minutes to read • Edit Online

Configuration with web.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModule" resourceType="Unspecified" />
 </handlers>
 <aspNetCore processPath="dotnet"
 arguments=".\MyApp.dll"
 stdoutLogEnabled="false"
 stdoutLogFile=".\logs\stdout" />
 </system.webServer>
</configuration>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModule" resourceType="Unspecified" />
 </handlers>
 <aspNetCore processPath=".\MyApp.exe"
 stdoutLogEnabled="false"
 stdoutLogFile=".\logs\stdout" />
 </system.webServer>
</configuration>

Attributes of the aspNetCore elementAttributes of the aspNetCore element

By Luke Latham, Rick Anderson, and Sourabh Shirhatti

This document provides instructions on how to configure the ASP.NET Core Module for hosting ASP.NET Core
apps. For an introduction to the ASP.NET Core Module and installation instructions, see the ASP.NET Core
Module overview.

The ASP.NET Core Module is configured with the aspNetCore section of the system.webServer node in the site's
web.config file.

The following web.config file is published for a framework-dependent deployment and configures the ASP.NET
Core Module to handle site requests:

The following web.config is published for a self-contained deployment:

When an app is deployed to Azure App Service, the stdoutLogFile path is set to \\?\%home%\LogFiles\stdout .
The path saves stdout logs to the LogFiles folder, which is a location automatically created by the service.

See Sub-application configuration for an important note pertaining to the configuration of web.config files in
sub-apps.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/aspnet-core-module.md
https://github.com/guardrex
https://twitter.com/RickAndMSFT
https://twitter.com/sshirhatti
https://docs.microsoft.com/dotnet/articles/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/dotnet/articles/core/deploying/#self-contained-deployments-scd
https://azure.microsoft.com/services/app-service/

ATTRIBUTE DESCRIPTION DEFAULT

arguments

disableStartUpErrorPage true or false. false

forwardWindowsAuthToken true or false. true

processPath

rapidFailsPerMinute 10

requestTimeout 00:02:00

Optional string attribute.

Arguments to the executable
specified in processPath.

If true, the 502.5 - Process
Failure page is suppressed, and
the 502 status code page
configured in the web.config takes
precedence.

If true, the token is forwarded to
the child process listening on
%ASPNETCORE_PORT% as a
header 'MS-ASPNETCORE-
WINAUTHTOKEN' per request. It's
the responsibility of that process
to call CloseHandle on this token
per request.

Required string attribute.

Path to the executable that
launches a process listening for
HTTP requests. Relative paths are
supported. If the path begins with
. , the path is considered to be

relative to the site root.

Optional integer attribute.

Specifies the number of times the
process specified in processPath is
allowed to crash per minute. If this
limit is exceeded, the module stops
launching the process for the
remainder of the minute.

Optional timespan attribute.

Specifies the duration for which the
ASP.NET Core Module waits for a
response from the process
listening on
%ASPNETCORE_PORT%.

In versions of the ASP.NET Core
Module that shipped with the
release of ASP.NET Core 2.0 or
earlier, the requestTimeout must
be specified in whole minutes only,
otherwise it defaults to 2 minutes.

shutdownTimeLimit 10

startupTimeLimit 120

stdoutLogEnabled false

stdoutLogFile aspnetcore-stdout

ATTRIBUTE DESCRIPTION DEFAULT

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
gracefully shutdown when the
app_offline.htm file is detected.

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
start a process listening on the
port. If this time limit is exceeded,
the module kills the process. The
module attempts to relaunch the
process when it receives a new
request and continues to attempt
to restart the process on
subsequent incoming requests
unless the app fails to start
rapidFailsPerMinute number of
times in the last rolling minute.

Optional Boolean attribute.

If true, stdout and stderr for the
process specified in processPath
are redirected to the file specified
in stdoutLogFile.

Optional string attribute.

Specifies the relative or absolute
file path for which stdout and
stderr from the process specified
in processPath are logged.
Relative paths are relative to the
root of the site. Any path starting
with . are relative to the site
root and all other paths are
treated as absolute paths. Any
folders provided in the path must
exist in order for the module to
create the log file. Using
underscore delimiters, a
timestamp, process ID, and file
extension (.log) are added to the
last segment of the stdoutLogFile
path. If .\logs\stdout is
supplied as a value, an example
stdout log is saved as
stdout_20180205194132_1934.lo
g in the logs folder when saved on
2/5/2018 at 19:41:32 with a
process ID of 1934.

ATTRIBUTE DESCRIPTION DEFAULT

arguments

disableStartUpErrorPage true or false. false

forwardWindowsAuthToken true or false. true

processPath

rapidFailsPerMinute 10

requestTimeout 00:02:00

Optional string attribute.

Arguments to the executable
specified in processPath.

If true, the 502.5 - Process
Failure page is suppressed, and
the 502 status code page
configured in the web.config takes
precedence.

If true, the token is forwarded to
the child process listening on
%ASPNETCORE_PORT% as a
header 'MS-ASPNETCORE-
WINAUTHTOKEN' per request. It's
the responsibility of that process
to call CloseHandle on this token
per request.

Required string attribute.

Path to the executable that
launches a process listening for
HTTP requests. Relative paths are
supported. If the path begins with
. , the path is considered to be

relative to the site root.

Optional integer attribute.

Specifies the number of times the
process specified in processPath is
allowed to crash per minute. If this
limit is exceeded, the module stops
launching the process for the
remainder of the minute.

Optional timespan attribute.

Specifies the duration for which the
ASP.NET Core Module waits for a
response from the process
listening on
%ASPNETCORE_PORT%.

In versions of the ASP.NET Core
Module that shipped with the
release of ASP.NET Core 2.1 or
later, the requestTimeout is
specified in hours, minutes, and
seconds.

shutdownTimeLimit 10

startupTimeLimit 120

stdoutLogEnabled false

stdoutLogFile aspnetcore-stdout

ATTRIBUTE DESCRIPTION DEFAULT

Setting environment variablesSetting environment variables

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
gracefully shutdown when the
app_offline.htm file is detected.

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
start a process listening on the
port. If this time limit is exceeded,
the module kills the process. The
module attempts to relaunch the
process when it receives a new
request and continues to attempt
to restart the process on
subsequent incoming requests
unless the app fails to start
rapidFailsPerMinute number of
times in the last rolling minute.

Optional Boolean attribute.

If true, stdout and stderr for the
process specified in processPath
are redirected to the file specified
in stdoutLogFile.

Optional string attribute.

Specifies the relative or absolute
file path for which stdout and
stderr from the process specified
in processPath are logged.
Relative paths are relative to the
root of the site. Any path starting
with . are relative to the site
root and all other paths are
treated as absolute paths. Any
folders provided in the path must
exist in order for the module to
create the log file. Using
underscore delimiters, a
timestamp, process ID, and file
extension (.log) are added to the
last segment of the stdoutLogFile
path. If .\logs\stdout is
supplied as a value, an example
stdout log is saved as
stdout_20180205194132_1934.lo
g in the logs folder when saved on
2/5/2018 at 19:41:32 with a
process ID of 1934.

<aspNetCore processPath="dotnet"
 arguments=".\MyApp.dll"
 stdoutLogEnabled="false"
 stdoutLogFile="\\?\%home%\LogFiles\stdout">
 <environmentVariables>
 <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
 <environmentVariable name="CONFIG_DIR" value="f:\application_config" />
 </environmentVariables>
</aspNetCore>

WARNINGWARNING

app_offline.htm

Start-up error page

Environment variables can be specified for the process in the processPath attribute. Specify an environment
variable with the environmentVariable child element of an environmentVariables collection element.
Environment variables set in this section take precedence over system environment variables.

The following example sets two environment variables. ASPNETCORE_ENVIRONMENT configures the app's
environment to Development . A developer may temporarily set this value in the web.config file in order to force
the Developer Exception Page to load when debugging an app exception. CONFIG_DIR is an example of a user-
defined environment variable, where the developer has written code that reads the value on startup to form a
path for loading the app's configuration file.

Only set the ASPNETCORE_ENVIRONMENT envirnonment variable to Development on staging and testing servers that
aren't accessible to untrusted networks, such as the Internet.

If a file with the name app_offline.htm is detected in the root directory of an app, the ASP.NET Core Module
attempts to gracefully shutdown the app and stop processing incoming requests. If the app is still running after
the number of seconds defined in shutdownTimeLimit , the ASP.NET Core Module kills the running process.

While the app_offline.htm file is present, the ASP.NET Core Module responds to requests by sending back the
contents of the app_offline.htm file. When the app_offline.htm file is removed, the next request starts the app.

If the ASP.NET Core Module fails to launch the backend process or the backend process starts but fails to listen
on the configured port, a 502.5 Process Failure status code page appears. To suppress this page and revert to the
default IIS 502 status code page, use the disableStartUpErrorPage attribute. For more information on
configuring custom error messages, see HTTP Errors <httpErrors> .

https://docs.microsoft.com/iis/configuration/system.webServer/httpErrors/

 Log creation and redirection

<aspNetCore processPath="dotnet"
 arguments=".\MyApp.dll"
 stdoutLogEnabled="true"
 stdoutLogFile="\\?\%home%\LogFiles\stdout">
</aspNetCore>

Proxy configuration uses HTTP protocol and a pairing token

The ASP.NET Core Module redirects stdout and stderr logs to disk if the stdoutLogEnabled and stdoutLogFile

attributes of the aspNetCore element are set. Any folders in the stdoutLogFile path must exist in order for the
module to create the log file. The app pool must have write access to the location where the logs are written (use
IIS AppPool\<app_pool_name> to provide write permission).

Logs aren't rotated, unless process recycling/restart occurs. It's the responsibility of the hoster to limit the disk
space the logs consume.

Using the stdout log is only recommended for troubleshooting app startup issues. Don't use the stdout log for
general app logging purposes. For routine logging in an ASP.NET Core app, use a logging library that limits log
file size and rotates logs. For more information, see third-party logging providers.

A timestamp and file extension are added automatically when the log file is created. The log file name is
composed by appending the timestamp, process ID, and file extension (.log) to the last segment of the
stdoutLogFile path (typically stdout) delimited by underscores. If the stdoutLogFile path ends with stdout, a log

for an app with a PID of 1934 created on 2/5/2018 at 19:42:32 has the file name
stdout_20180205194132_1934.log.

The following sample aspNetCore element configures stdout logging for an app hosted in Azure App Service. A
local path or network share path is acceptable for local logging. Confirm that the AppPool user identity has
permission to write to the path provided.

See Configuration with web.config for an example of the aspNetCore element in the web.config file.

 ASP.NET Core Module with an IIS Shared Configuration

Module version and Hosting Bundle installer logs

Module, schema, and configuration file locations
ModuleModule

SchemaSchema

The proxy created between the ASP.NET Core Module and Kestrel uses the HTTP protocol. Using HTTP is a
performance optimization, where the traffic between the module and Kestrel takes place on a loopback address
off of the network interface. There's no risk of eavesdropping the traffic between the module and Kestrel from a
location off of the server.

A pairing token is used to guarantee that the requests received by Kestrel were proxied by IIS and didn't come
from some other source. The pairing token is created and set into an environment variable (ASPNETCORE_TOKEN)
by the module. The pairing token is also set into a header (MSAspNetCoreToken) on every proxied request. IIS
Middleware checks each request it receives to confirm that the pairing token header value matches the
environment variable value. If the token values are mismatched, the request is logged and rejected. The pairing
token environment variable and the traffic between the module and Kestrel aren't accessible from a location off
of the server. Without knowing the pairing token value, an attacker can't submit requests that bypass the check in
the IIS Middleware.

The ASP.NET Core Module installer runs with the privileges of the SYSTEM account. Because the local system
account doesn't have modify permission for the share path used by the IIS Shared Configuration, the installer
hits an access denied error when attempting to configure the module settings in applicationHost.config on the
share. When using an IIS Shared Configuration, follow these steps:

1. Disable the IIS Shared Configuration.
2. Run the installer.
3. Export the updated applicationHost.config file to the share.
4. Re-enable the IIS Shared Configuration.

To determine the version of the installed ASP.NET Core Module:

1. On the hosting system, navigate to %windir%\System32\inetsrv.
2. Locate the aspnetcore.dll file.
3. Right-click the file and select Properties from the contextual menu.
4. Select the Details tab. The File version and Product version represent the installed version of the module.

The Hosting Bundle installer logs for the module are found at C:\Users\%UserName%\AppData\Local\Temp.
The file is named dd_DotNetCoreWinSvrHosting__<timestamp>_000_AspNetCoreModule_x64.log.

IIS (x86/amd64):

%windir%\System32\inetsrv\aspnetcore.dll

%windir%\SysWOW64\inetsrv\aspnetcore.dll

IIS Express (x86/amd64):

%ProgramFiles%\IIS Express\aspnetcore.dll

%ProgramFiles(x86)%\IIS Express\aspnetcore.dll

IIS

ConfigurationConfiguration

%windir%\System32\inetsrv\config\schema\aspnetcore_schema.xml

IIS Express

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema.xml

IIS

%windir%\System32\inetsrv\config\applicationHost.config

IIS Express

.vs\config\applicationHost.config

The files can be found by searching for aspnetcore.dll in the applicationHost.config file. For IIS Express, the
applicationHost.config file won't exist by default. The file is created at <application_root>\.vs\config when
starting any web app project in the Visual Studio solution.

Development-time IIS support in Visual Studio for
ASP.NET Core
5/26/2018 • 2 minutes to read • Edit Online

Prerequisites

Enable IIS

Configure IIS

By Sourabh Shirhatti and Luke Latham

This article describes Visual Studio support for debugging ASP.NET Core apps running behind IIS on Windows
Server. This topic walks through enabling this feature and setting up a project.

Visual Studio for Windows
ASP.NET and web development workload
.NET Core cross-platform development workload
X.509 security certificate

1. Navigate to Control Panel > Programs > Programs and Features > Turn Windows features on or off (left
side of the screen).

2. Select the Internet Information Services check box.

The IIS installation may require a system restart.

IIS must have a website configured with the following:

A host name that matches the app's launch profile URL host name.
Binding for port 443 with an assigned certificate.

For example, the Host name for an added website is set to "localhost" (the launch profile will also use "localhost"
later in this topic). The port is set to "443" (HTTPS). The IIS Express Development Certificate is assigned to the
website, but any valid certificate works:

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/iis/development-time-iis-support.md
https://twitter.com/sshirhatti
https://github.com/guardrex
https://www.visualstudio.com/vs/
https://www.microsoft.com/net/download/windows

Enable development-time IIS support in Visual Studio

If the IIS installation already has a Default Web Site with a host name that matches the app's launch profile URL
host name:

Add a port binding for port 443 (HTTPS).
Assign a valid certificate to the website.

1. Launch the Visual Studio installer.
2. Select the Development time IIS support component. The component is listed as optional in the Summary

panel for the ASP.NET and web development workload. The component installs the ASP.NET Core Module,
which is a native IIS module required to run ASP.NET Core apps behind IIS in a reverse proxy configuration.

Configure the project
HTTPS redirectionHTTPS redirection
For a new project, select the check box to Configure for HTTPS in the New ASP.NET Core Web Application
window:

In an existing project, use HTTPS Redirection Middleware in Startup.Configure by calling the UseHttpsRedirection
extension method:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseMvc();
}

I IS launch profileIIS launch profile
Create a new launch profile to add development-time IIS support:

1. For Profile, select the New button. Name the profile "IIS" in the popup window. Select OK to create the profile.
2. For the Launch setting, select IIS from the list.
3. Select the check box for Launch browser and provide the endpoint URL. Use the HTTPS protocol. This

example uses https://localhost/WebApplication1 .
4. In the Environment variables section, select the Add button. Provide an environment variable with a key of

ASPNETCORE_ENVIRONMENT and a value of Development .
5. In the Web Server Settings area, set the App URL. This example uses https://localhost/WebApplication1 .
6. Save the profile.

Alternatively, manually add a launch profile to the launchSettings.json file in the app:

http://json.schemastore.org/launchsettings

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iis": {
 "applicationUrl": "https://localhost/WebApplication1",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS": {
 "commandName": "IIS",
 "launchBrowser": true,
 "launchUrl": "https://localhost/WebApplication1",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

Run the project

Additional resources

In the VS UI, set the Run button to the IIS profile and select the button to start the app:

Visual Studio may prompt a restart if not running as an administrator. If prompted, restart Visual Studio.

If an untrusted development certificate is used, the browser may require you to create an exception for the
untrusted certificate.

Host ASP.NET Core on Windows with IIS
Introduction to ASP.NET Core Module
ASP.NET Core Module configuration reference
Enforce HTTPS

IIS modules with ASP.NET Core
5/30/2018 • 5 minutes to read • Edit Online

Native modules

MODULE FUNCTIONAL WITH ASP.NET CORE APPS ASP.NET CORE OPTION

Anonymous Authentication
AnonymousAuthenticationModule

Yes

Basic Authentication
BasicAuthenticationModule

Yes

Client Certification Mapping
Authentication
CertificateMappingAuthenticationModule

Yes

CGI
CgiModule

No

Configuration Validation
ConfigurationValidationModule

Yes

HTTP Errors
CustomErrorModule

No Status Code Pages Middleware

Custom Logging
CustomLoggingModule

Yes

Default Document
DefaultDocumentModule

No Default Files Middleware

Digest Authentication
DigestAuthenticationModule

Yes

Directory Browsing
DirectoryListingModule

No Directory Browsing Middleware

Dynamic Compression
DynamicCompressionModule

Yes Response Compression Middleware

Tracing
FailedRequestsTracingModule

Yes ASP.NET Core Logging

By Luke Latham

ASP.NET Core apps are hosted by IIS in a reverse proxy configuration. Some of the native IIS modules and all of
the IIS managed modules aren't available to process requests for ASP.NET Core apps. In many cases, ASP.NET
Core offers an alternative to the features of IIS native and managed modules.

The table indicates native IIS modules that are functional on reverse proxy requests to ASP.NET Core apps.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/iis/modules.md
https://github.com/guardrex

File Caching
FileCacheModule

No Response Caching Middleware

HTTP Caching
HttpCacheModule

No Response Caching Middleware

HTTP Logging
HttpLoggingModule

Yes ASP.NET Core Logging
Implementations: elmah.io, Loggr,
NLog, Serilog

HTTP Redirection
HttpRedirectionModule

Yes URL Rewriting Middleware

IIS Client Certificate Mapping
Authentication
IISCertificateMappingAuthenticationModule

Yes

IP and Domain Restrictions
IpRestrictionModule

Yes

ISAPI Filters
IsapiFilterModule

Yes Middleware

ISAPI
IsapiModule

Yes Middleware

Protocol Support
ProtocolSupportModule

Yes

Request Filtering
RequestFilteringModule

Yes URL Rewriting Middleware IRule

Request Monitor
RequestMonitorModule

Yes

URL Rewriting
RewriteModule

Yes† URL Rewriting Middleware

Server-Side Includes
ServerSideIncludeModule

No

Static Compression
StaticCompressionModule

No Response Compression Middleware

Static Content
StaticFileModule

No Static File Middleware

Token Caching
TokenCacheModule

Yes

URI Caching
UriCacheModule

Yes

MODULE FUNCTIONAL WITH ASP.NET CORE APPS ASP.NET CORE OPTION

https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/NLog/NLog.Extensions.Logging
https://github.com/serilog/serilog-extensions-logging

URL Authorization
UrlAuthorizationModule

Yes ASP.NET Core Identity

Windows Authentication
WindowsAuthenticationModule

Yes

MODULE FUNCTIONAL WITH ASP.NET CORE APPS ASP.NET CORE OPTION

Managed modules

MODULE ASP.NET CORE OPTION

AnonymousIdentification

DefaultAuthentication

FileAuthorization

FormsAuthentication Cookie Authentication Middleware

OutputCache Response Caching Middleware

Profile

RoleManager

ScriptModule-4.0

Session Session Middleware

UrlAuthorization

UrlMappingsModule URL Rewriting Middleware

UrlRoutingModule-4.0 ASP.NET Core Identity

WindowsAuthentication

IIS Manager application changes

Disabling IIS modules

†The URL Rewrite Module's isFile and isDirectory match types don't work with ASP.NET Core apps due to the
changes in directory structure.

Managed modules are not functional with hosted ASP.NET Core apps when the app pool's .NET CLR version is
set to No Managed Code. ASP.NET Core offers middleware alternatives in several cases.

When using IIS Manager to configure settings, the web.config file of the app is changed. If deploying an app and
including web.config, any changes made with IIS Manager are overwritten by the deployed web.config file. If
changes are made to the server's web.config file, copy the updated web.config file on the server to the local
project immediately.

Module deactivationModule deactivation

<configuration>
 <system.webServer>
 <httpRedirect enabled="false" />
 </system.webServer>
</configuration>

Module removalModule removal

Appcmd.exe delete module MODULE_NAME /app.name:APPLICATION_NAME

If an IIS module is configured at the server level that must be disabled for an app, an addition to the app's
web.config file can disable the module. Either leave the module in place and deactivate it using a configuration
setting (if available) or remove the module from the app.

Many modules offer a configuration setting that allows them to be disabled without removing the module from
the app. This is the simplest and quickest way to deactivate a module. For example, the HTTP Redirection Module
can be disabled with the <httpRedirect> element in web.config:

For more information on disabling modules with configuration settings, follow the links in the Child Elements
section of IIS <system.webServer>.

If opting to remove a module with a setting in web.config, unlock the module and unlock the <modules> section
of web.config first:

<configuration>
 <system.webServer>
 <modules>
 <remove name="MODULE_NAME" />
 </modules>
 </system.webServer>
</configuration>

1. Unlock the module at the server level. Select the IIS server in the IIS Manager Connections sidebar. Open
the Modules in the IIS area. Select the module in the list. In the Actions sidebar on the right, select
Unlock. Unlock as many modules as you plan to remove from web.config later.

2. Deploy the app without a <modules> section in web.config. If an app is deployed with a web.config
containing the <modules> section without having unlocked the section first in the IIS Manager, the
Configuration Manager throws an exception when attempting to unlock the section. Therefore, deploy the
app without a <modules> section.

3. Unlock the <modules> section of web.config. In the Connections sidebar, select the website in Sites. In
the Management area, open the Configuration Editor. Use the navigation controls to select the
system.webServer/modules section. In the Actions sidebar on the right, select to Unlock the section.

4. At this point, a <modules> section can be added to the web.config file with a <remove> element to
remove the module from the app. Multiple <remove> elements can be added to remove multiple
modules. If web.config changes are made on the server, immediately make the same changes to the
project's web.config file locally. Removing a module this way won't affect the use of the module with other
apps on the server.

An IIS module can also be removed with Appcmd.exe. Provide the MODULE_NAME and APPLICATION_NAME in the
command:

For example, remove the DynamicCompressionModule from the Default Web Site:

https://docs.microsoft.com/iis/configuration/system.webServer/

%windir%\system32\inetsrv\appcmd.exe delete module DynamicCompressionModule /app.name:"Default Web Site"

Minimum module configuration

Additional resources

The only modules required to run an ASP.NET Core app are the Anonymous Authentication Module and the
ASP.NET Core Module.

The URI Caching Module (UriCacheModule) allows IIS to cache website configuration at the URL level. Without
this module, IIS must read and parse configuration on every request, even when the same URL is repeatedly
requested. Parsing the configuration every request results in a significant performance penalty. Although the URI
Caching Module isn't strictly required for a hosted ASP.NET Core app to run, we recommend that the URI Caching
Module be enabled for all ASP.NET Core deployments.

The HTTP Caching Module (HttpCacheModule) implements the IIS output cache and also the logic for caching
items in the HTTP.sys cache. Without this module, content is no longer cached in kernel mode, and cache profiles
are ignored. Removing the HTTP Caching Module usually has adverse effects on performance and resource
usage. Although the HTTP Caching Module isn't strictly required for a hosted ASP.NET Core app to run, we
recommend that the HTTP Caching Module be enabled for all ASP.NET Core deployments.

Host on Windows with IIS
Introduction to IIS Architectures: Modules in IIS
IIS Modules Overview
Customizing IIS 7.0 Roles and Modules
IIS <system.webServer>

https://docs.microsoft.com/iis/get-started/introduction-to-iis/introduction-to-iis-architecture#modules-in-iis
https://docs.microsoft.com/iis/get-started/introduction-to-iis/iis-modules-overview
https://technet.microsoft.com/library/cc627313.aspx
https://docs.microsoft.com/iis/configuration/system.webServer/

Host ASP.NET Core in a Windows Service
6/14/2018 • 5 minutes to read • Edit Online

Get started

By Luke Latham and Tom Dykstra

An ASP.NET Core app can be hosted on Windows without using IIS as a Windows Service. When hosted as a
Windows Service, the app can automatically start after reboots and crashes without requiring human intervention.

View or download sample code (how to download)

The following minimum changes are required to set up an existing ASP.NET Core project to run in a service:

1. In the project file:

a. Confirm the presence of the runtime identifier or add it to the <PropertyGroup> that contains the
target framework:

<PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 <RuntimeIdentifier>win7-x64</RuntimeIdentifier>
</PropertyGroup>

b. Add a package reference for Microsoft.AspNetCore.Hosting.WindowsServices.
2. Make the following changes in Program.Main :

public static void Main(string[] args)
{
 var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
 var pathToContentRoot = Path.GetDirectoryName(pathToExe);

 var host = WebHost.CreateDefaultBuilder(args)
 .UseContentRoot(pathToContentRoot)
 .UseStartup<Startup>()
 .Build();

 host.RunAsService();
}

Call host.RunAsService instead of host.Run .

If the code calls UseContentRoot , use a path to the app's published location instead of
Directory.GetCurrentDirectory() .

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/windows-service.md
https://github.com/guardrex
https://github.com/tdykstra
https://docs.microsoft.com/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://github.com/aspnet/Docs/tree/master/aspnetcore/host-and-deploy/windows-service/sample
https://www.nuget.org/packages/Microsoft.AspNetCore.Hosting.WindowsServices/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice

dotnet publish --configuration Release --output c:\svc

sc create MyService binPath= "c:\svc\aspnetcoreservice.exe"

sc start MyService

public static void Main(string[] args)
{
 var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
 var pathToContentRoot = Path.GetDirectoryName(pathToExe);

 var host = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(pathToContentRoot)
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

 host.RunAsService();
}

3. Publish the app to a folder. Use dotnet publish or a Visual Studio publish profile that publishes to a folder.

To publish the sample app from the command line, run the following command in a console window from
the project folder :

4. Use the sc.exe command-line tool to create the service (
sc create <SERVICE_NAME> binPath= "<PATH_TO_SERVICE_EXECUTABLE>"). The binPath value is the path to the

app's executable, which includes the executable file name. The space between the equal sign and the
quote character that starts the path is required.

For the sample app and command that follows, the service is:

Named MyService.
Published to c:\svc folder.
Has an app executable named AspNetCoreService.exe.

Open a command shell with administrative privileges and run the following command:

Make sure the space is present between the binPath= argument and its value.

5. Start the service with the sc start <SERVICE_NAME> command.

To start the sample app service, use the following command:

The command takes a few seconds to start the service.

6. The sc query <SERVICE_NAME> command can be used to check the status of the service to determine its
status:

START_PENDING

RUNNING

STOP_PENDING

STOPPED

Use the following command to check the status of the sample app service:

https://docs.microsoft.com/dotnet/articles/core/tools/dotnet-publish
https://technet.microsoft.com/library/bb490995

Provide a way to run outside of a service

sc query MyService

sc stop MyService

sc query MyService

sc delete MyService

7. When the service is in the RUNNING state and if the service is a web app, browse the app at its path (by
default, http://localhost:5000 , which redirects to https://localhost:5001 when using HTTPS Redirection
Middleware).

For the sample app service, browse the app at http://localhost:5000 .

8. Stop the service with the sc stop <SERVICE_NAME> command.

The following command stops the sample app service:

9. After a short delay to stop a service, uninstall the service with the sc delete <SERVICE_NAME> command.

Check the status of the sample app service:

When the sample app service is in the STOPPED state, use the following command to uninstall the sample
app service:

It's easier to test and debug when running outside of a service, so it's customary to add code that calls
RunAsService only under certain conditions. For example, the app can run as a console app with a --console

command-line argument or if the debugger is attached:

public static void Main(string[] args)
{
 var isService = true;

 if (Debugger.IsAttached || args.Contains("--console"))
 {
 isService = false;
 }

 var pathToContentRoot = Directory.GetCurrentDirectory();

 if (isService)
 {
 var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
 pathToContentRoot = Path.GetDirectoryName(pathToExe);
 }

 var webHostArgs = args.Where(arg => arg != "--console").ToArray();

 var host = WebHost.CreateDefaultBuilder(webHostArgs)
 .UseContentRoot(pathToContentRoot)
 .UseStartup<Startup>()
 .Build();

 if (isService)
 {
 host.RunAsService();
 }
 else
 {
 host.Run();
 }
}

Because ASP.NET Core configuration requires name-value pairs for command-line arguments, the --console

switch is removed before the arguments are passed to CreateDefaultBuilder.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder

public static void Main(string[] args)
{
 var isService = true;

 if (Debugger.IsAttached || args.Contains("--console"))
 {
 isService = false;
 }

 var pathToContentRoot = Directory.GetCurrentDirectory();

 if (isService)
 {
 var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
 pathToContentRoot = Path.GetDirectoryName(pathToExe);
 }

 var host = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(pathToContentRoot)
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

 if (isService)
 {
 host.RunAsService();
 }
 else
 {
 host.Run();
 }
}

Handle stopping and starting events
To handle OnStarting, OnStarted, and OnStopping events, make the following additional changes:

internal class CustomWebHostService : WebHostService
{
 public CustomWebHostService(IWebHost host) : base(host)
 {
 }

 protected override void OnStarting(string[] args)
 {
 base.OnStarting(args);
 }

 protected override void OnStarted()
 {
 base.OnStarted();
 }

 protected override void OnStopping()
 {
 base.OnStopping();
 }
}

1. Create a class that derives from WebHostService:

2. Create an extension method for IWebHost that passes the custom WebHostService to ServiceBase.Run:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstarting
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstarted
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstopping
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhost
https://docs.microsoft.com/dotnet/api/system.serviceprocess.servicebase.run

public static class WebHostServiceExtensions
{
 public static void RunAsCustomService(this IWebHost host)
 {
 var webHostService = new CustomWebHostService(host);
 ServiceBase.Run(webHostService);
 }
}

public static void Main(string[] args)
{
 var isService = true;

 if (Debugger.IsAttached || args.Contains("--console"))
 {
 isService = false;
 }

 var pathToContentRoot = Directory.GetCurrentDirectory();

 if (isService)
 {
 var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
 pathToContentRoot = Path.GetDirectoryName(pathToExe);
 }

 var webHostArgs = args.Where(arg => arg != "--console").ToArray();

 var host = WebHost.CreateDefaultBuilder(args)
 .UseContentRoot(pathToContentRoot)
 .UseStartup<Startup>()
 .Build();

 if (isService)
 {
 host.RunAsCustomService();
 }
 else
 {
 host.Run();
 }
}

3. In Program.Main , call the new extension method, RunAsCustomService , instead of RunAsService:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice

internal class CustomWebHostService : WebHostService
{
 private ILogger _logger;

 public CustomWebHostService(IWebHost host) : base(host)
 {
 _logger = host.Services.GetRequiredService<ILogger<CustomWebHostService>>();
 }

 protected override void OnStarting(string[] args)
 {
 _logger.LogDebug("OnStarting method called.");
 base.OnStarting(args);
 }

 protected override void OnStarted()
 {
 _logger.LogDebug("OnStarted method called.");
 base.OnStarted();
 }

 protected override void OnStopping()
 {
 _logger.LogDebug("OnStopping method called.");
 base.OnStopping();
 }
}

public static void Main(string[] args)
{
 var isService = true;

 if (Debugger.IsAttached || args.Contains("--console"))
 {
 isService = false;
 }

 var pathToContentRoot = Directory.GetCurrentDirectory();

 if (isService)
 {
 var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
 pathToContentRoot = Path.GetDirectoryName(pathToExe);
 }

 var host = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(pathToContentRoot)
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

 if (isService)
 {
 host.RunAsCustomService();
 }
 else
 {
 host.Run();
 }
}

If the custom WebHostService code requires a service from dependency injection (such as a logger), obtain it from
the IWebHost.Services property:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhost.services

Proxy server and load balancer scenarios

Kestrel endpoint configuration

Services that interact with requests from the Internet or a corporate network and are behind a proxy or load
balancer might require additional configuration. For more information, see Configure ASP.NET Core to work with
proxy servers and load balancers.

For information on Kestrel endpoint configuration, including HTTPS configuration and SNI support, see Kestrel
endpoint configuration.

Host ASP.NET Core on Linux with Nginx
5/30/2018 • 10 minutes to read • Edit Online

NOTENOTE

Prerequisites

Publish and copy over the app

dotnet publish --configuration Release

By Sourabh Shirhatti

This guide explains setting up a production-ready ASP.NET Core environment on an Ubuntu 16.04 server. These
instructions likely work with newer versions of Ubuntu, but the instructions haven't been tested with newer
versions.

For Ubuntu 14.04, supervisord is recommended as a solution for monitoring the Kestrel process. systemd isn't available on
Ubuntu 14.04. For Ubuntu 14.04 instructions, see the previous version of this topic.

This guide:

Places an existing ASP.NET Core app behind a reverse proxy server.
Sets up the reverse proxy server to forward requests to the Kestrel web server.
Ensures the web app runs on startup as a daemon.
Configures a process management tool to help restart the web app.

1. Access to an Ubuntu 16.04 server with a standard user account with sudo privilege.
2. Install the .NET Core runtime on the server.

3. An existing ASP.NET Core app.

a. Visit the .NET Core All Downloads page.
b. Select the latest non-preview runtime from the list under Runtime.
c. Select and follow the instructions for Ubuntu that match the Ubuntu version of the server.

Configure the app for a framework-dependent deployment.

Run dotnet publish from the development environment to package an app into a directory (for example,
bin/Release/<target_framework_moniker>/publish) that can run on the server :

The app can also be published as a self-contained deployment if you prefer not to maintain the .NET Core
runtime on the server.

Copy the ASP.NET Core app to the server using a tool that integrates into the organization's workflow (for
example, SCP, SFTP). It's common to locate web apps under the var directory (for example,
var/aspnetcore/hellomvc).

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/linux-nginx.md
https://twitter.com/sshirhatti
https://github.com/aspnet/Docs/blob/e9c1419175c4dd7e152df3746ba1df5935aaafd5/aspnetcore/publishing/linuxproduction.md
https://www.microsoft.com/net/download/all
https://docs.microsoft.com/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/dotnet/core/deploying/#self-contained-deployments-scd

NOTENOTE

Configure a reverse proxy server

NOTENOTE

Use a reverse proxy serverUse a reverse proxy server

app.UseForwardedHeaders(new ForwardedHeadersOptions
{
 ForwardedHeaders = ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto
});

app.UseAuthentication();

Under a production deployment scenario, a continuous integration workflow does the work of publishing the app and
copying the assets to the server.

Test the app:

1. From the command line, run the app: dotnet <app_assembly>.dll .
2. In a browser, navigate to http://<serveraddress>:<port> to verify the app works on Linux locally.

A reverse proxy is a common setup for serving dynamic web apps. A reverse proxy terminates the HTTP request
and forwards it to the ASP.NET Core app.

Either configuration—with or without a reverse proxy server—is a valid and supported hosting configuration for ASP.NET
Core 2.0 or later apps. For more information, see When to use Kestrel with a reverse proxy.

Kestrel is great for serving dynamic content from ASP.NET Core. However, the web serving capabilities aren't as
feature rich as servers such as IIS, Apache, or Nginx. A reverse proxy server can offload work such as serving
static content, caching requests, compressing requests, and SSL termination from the HTTP server. A reverse
proxy server may reside on a dedicated machine or may be deployed alongside an HTTP server.

For the purposes of this guide, a single instance of Nginx is used. It runs on the same server, alongside the HTTP
server. Based on requirements, a different setup may be chosen.

Because requests are forwarded by reverse proxy, use the Forwarded Headers Middleware from the
Microsoft.AspNetCore.HttpOverrides package. The middleware updates the Request.Scheme , using the
X-Forwarded-Proto header, so that redirect URIs and other security policies work correctly.

Any component that depends on the scheme, such as authentication, link generation, redirects, and geolocation,
must be placed after invoking the Forwarded Headers Middleware. As a general rule, Forwarded Headers
Middleware should run before other middleware except diagnostics and error handling middleware. This
ordering ensures that the middleware relying on forwarded headers information can consume the header values
for processing.

ASP.NET Core 2.x
ASP.NET Core 1.x

Invoke the UseForwardedHeaders method in Startup.Configure before calling UseAuthentication or similar
authentication scheme middleware. Configure the middleware to forward the X-Forwarded-For and
X-Forwarded-Proto headers:

If no ForwardedHeadersOptions are specified to the middleware, the default headers to forward are None .

https://www.nuget.org/packages/Microsoft.AspNetCore.HttpOverrides/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions

Install NginxInstall Nginx

sudo -s
nginx=stable # use nginx=development for latest development version
add-apt-repository ppa:nginx/$nginx
apt-get update
apt-get install nginx

NOTENOTE

sudo service nginx start

Configure NginxConfigure Nginx

server {
 listen 80;
 server_name example.com *.example.com;
 location / {
 proxy_pass http://localhost:5000;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection keep-alive;
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

server {
 listen 80 default_server;
 # listen [::]:80 default_server deferred;
 return 444;
}

Additional configuration might be required for apps hosted behind proxy servers and load balancers. For more
information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Use apt-get to install Nginx. The installer creates a systemd init script that runs Nginx as daemon on system
startup.

The Ubuntu Personal Package Archive (PPA) is maintained by volunteers and isn't distributed by nginx.org. For
more information, see Nginx: Binary Releases: Official Debian/Ubuntu packages.

If optional Nginx modules are required, building Nginx from source might be required.

Since Nginx was installed for the first time, explicitly start it by running:

Verify a browser displays the default landing page for Nginx. The landing page is reachable at
http://<server_IP_address>/index.nginx-debian.html .

To configure Nginx as a reverse proxy to forward requests to your ASP.NET Core app, modify /etc/nginx/sites-

available/default. Open it in a text editor, and replace the contents with the following:

When no server_name matches, Nginx uses the default server. If no default server is defined, the first server in
the configuration file is the default server. As a best practice, add a specific default server which returns a status
code of 444 in your configuration file. A default server configuration example is:

https://nginx.org/
https://www.nginx.com/resources/wiki/start/topics/tutorials/install/#official-debian-ubuntu-packages

WARNINGWARNING

chmod u+x <app_executable>

Monitoring the app

Create the service fileCreate the service file

sudo nano /etc/systemd/system/kestrel-hellomvc.service

With the preceding configuration file and default server, Nginx accepts public traffic on port 80 with host header
example.com or *.example.com . Requests not matching these hosts won't get forwarded to Kestrel. Nginx

forwards the matching requests to Kestrel at http://localhost:5000 . See How nginx processes a request for
more information.

Failure to specify a proper server_name directive exposes your app to security vulnerabilities. Subdomain wildcard binding
(for example, *.example.com) doesn't pose this security risk if you control the entire parent domain (as opposed to
*.com , which is vulnerable). See rfc7230 section-5.4 for more information.

Once the Nginx configuration is established, run sudo nginx -t to verify the syntax of the configuration files. If
the configuration file test is successful, force Nginx to pick up the changes by running sudo nginx -s reload .

To directly run the app on the server :

1. Navigate to the app's directory.
2. Run the app's executable: ./<app_executable> .

If a permissions error occurs, change the permissions:

If the app runs on the server but fails to respond over the Internet, check the server's firewall and confirm that
port 80 is open. If using an Azure Ubuntu VM, add a Network Security Group (NSG) rule that enables inbound
port 80 traffic. There's no need to enable an outbound port 80 rule, as the outbound traffic is automatically
granted when the inbound rule is enabled.

When done testing the app, shut the app down with Ctrl+C at the command prompt.

The server is setup to forward requests made to http://<serveraddress>:80 on to the ASP.NET Core app running
on Kestrel at http://127.0.0.1:5000 . However, Nginx isn't set up to manage the Kestrel process. systemd can be
used to create a service file to start and monitor the underlying web app. systemd is an init system that provides
many powerful features for starting, stopping, and managing processes.

Create the service definition file:

The following is an example service file for the app:

https://nginx.org/docs/http/request_processing.html
https://nginx.org/docs/http/server_names.html
https://tools.ietf.org/html/rfc7230#section-5.4

[Unit]
Description=Example .NET Web API App running on Ubuntu

[Service]
WorkingDirectory=/var/aspnetcore/hellomvc
ExecStart=/usr/bin/dotnet /var/aspnetcore/hellomvc/hellomvc.dll
Restart=always
RestartSec=10 # Restart service after 10 seconds if dotnet service crashes
SyslogIdentifier=dotnet-example
User=www-data
Environment=ASPNETCORE_ENVIRONMENT=Production
Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false

[Install]
WantedBy=multi-user.target

NOTENOTE

systemd-escape "<value-to-escape>"

systemctl enable kestrel-hellomvc.service

systemctl start kestrel-hellomvc.service
systemctl status kestrel-hellomvc.service

● kestrel-hellomvc.service - Example .NET Web API App running on Ubuntu
 Loaded: loaded (/etc/systemd/system/kestrel-hellomvc.service; enabled)
 Active: active (running) since Thu 2016-10-18 04:09:35 NZDT; 35s ago
Main PID: 9021 (dotnet)
 CGroup: /system.slice/kestrel-hellomvc.service
 └─9021 /usr/local/bin/dotnet /var/aspnetcore/hellomvc/hellomvc.dll

HTTP/1.1 200 OK
Date: Tue, 11 Oct 2016 16:22:23 GMT
Server: Kestrel
Keep-Alive: timeout=5, max=98
Connection: Keep-Alive
Transfer-Encoding: chunked

If the user www-data isn't used by the configuration, the user defined here must be created first and given proper
ownership for files.

Linux has a case-sensitive file system. Setting ASPNETCORE_ENVIRONMENT to "Production" results in
searching for the configuration file appsettings.Production.json, not appsettings.production.json.

Some values (for example, SQL connection strings) must be escaped for the configuration providers to read the
environment variables. Use the following command to generate a properly escaped value for use in the configuration file:

Save the file and enable the service.

Start the service and verify that it's running.

With the reverse proxy configured and Kestrel managed through systemd, the web app is fully configured and
can be accessed from a browser on the local machine at http://localhost . It's also accessible from a remote
machine, barring any firewall that might be blocking. Inspecting the response headers, the Server header shows
the ASP.NET Core app being served by Kestrel.

Viewing logsViewing logs

sudo journalctl -fu kestrel-hellomvc.service

sudo journalctl -fu kestrel-hellomvc.service --since "2016-10-18" --until "2016-10-18 04:00"

Securing the app
Enable AppArmorEnable AppArmor

Configuring the firewallConfiguring the firewall

sudo apt-get install ufw
sudo ufw enable

sudo ufw allow 80/tcp
sudo ufw allow 443/tcp

Securing NginxSecuring Nginx
Change the Nginx response nameChange the Nginx response name

static char ngx_http_server_string[] = "Server: Web Server" CRLF;
static char ngx_http_server_full_string[] = "Server: Web Server" CRLF;

Configure optionsConfigure options

Configure SSLConfigure SSL

Since the web app using Kestrel is managed using systemd , all events and processes are logged to a centralized
journal. However, this journal includes all entries for all services and processes managed by systemd . To view the
kestrel-hellomvc.service -specific items, use the following command:

For further filtering, time options such as --since today , --until 1 hour ago or a combination of these can
reduce the amount of entries returned.

Linux Security Modules (LSM) is a framework that's part of the Linux kernel since Linux 2.6. LSM supports
different implementations of security modules. AppArmor is a LSM that implements a Mandatory Access
Control system which allows confining the program to a limited set of resources. Ensure AppArmor is enabled
and properly configured.

Close off all external ports that are not in use. Uncomplicated firewall (ufw) provides a front end for iptables by
providing a command line interface for configuring the firewall. Verify that ufw is configured to allow traffic on
any ports needed.

Edit src/http/ngx_http_header_filter_module.c:

Configure the server with additional required modules. Consider using a web app firewall, such as ModSecurity,
to harden the app.

Configure the server to listen to HTTPS traffic on port 443 by specifying a valid certificate issued by a
trusted Certificate Authority (CA).

Harden the security by employing some of the practices depicted in the following /etc/nginx/nginx.conf
file. Examples include choosing a stronger cipher and redirecting all traffic over HTTP to HTTPS.

Adding an HTTP Strict-Transport-Security (HSTS) header ensures all subsequent requests made by the
client are over HTTPS only.

https://wiki.ubuntu.com/AppArmor
https://www.modsecurity.org/

proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
client_max_body_size 10m;
client_body_buffer_size 128k;
proxy_connect_timeout 90;
proxy_send_timeout 90;
proxy_read_timeout 90;
proxy_buffers 32 4k;

http {
 include /etc/nginx/proxy.conf;
 limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;
 server_tokens off;

 sendfile on;
 keepalive_timeout 29; # Adjust to the lowest possible value that makes sense for your use case.
 client_body_timeout 10; client_header_timeout 10; send_timeout 10;

 upstream hellomvc{
 server localhost:5000;
 }

 server {
 listen *:80;
 add_header Strict-Transport-Security max-age=15768000;
 return 301 https://$host$request_uri;
 }

 server {
 listen *:443 ssl;
 server_name example.com;
 ssl_certificate /etc/ssl/certs/testCert.crt;
 ssl_certificate_key /etc/ssl/certs/testCert.key;
 ssl_protocols TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;
 ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";
 ssl_ecdh_curve secp384r1;
 ssl_session_cache shared:SSL:10m;
 ssl_session_tickets off;
 ssl_stapling on; #ensure your cert is capable
 ssl_stapling_verify on; #ensure your cert is capable

 add_header Strict-Transport-Security "max-age=63072000; includeSubdomains; preload";
 add_header X-Frame-Options DENY;
 add_header X-Content-Type-Options nosniff;

 #Redirects all traffic
 location / {
 proxy_pass http://hellomvc;
 limit_req zone=one burst=10 nodelay;
 }
 }
}

Don't add the Strict-Transport-Security header or chose an appropriate max-age if SSL will be disabled in
the future.

Add the /etc/nginx/proxy.conf configuration file:

Edit the /etc/nginx/nginx.conf configuration file. The example contains both http and server sections in one
configuration file.

Secure Nginx from clickjackingSecure Nginx from clickjacking

sudo nano /etc/nginx/nginx.conf

MIME-type sniffingMIME-type sniffing

sudo nano /etc/nginx/nginx.conf

Additional resources

Clickjacking is a malicious technique to collect an infected user's clicks. Clickjacking tricks the victim (visitor) into
clicking on an infected site. Use X-FRAME-OPTIONS to secure the site.

Edit the nginx.conf file:

Add the line add_header X-Frame-Options "SAMEORIGIN"; and save the file, then restart Nginx.

This header prevents most browsers from MIME-sniffing a response away from the declared content type, as the
header instructs the browser not to override the response content type. With the nosniff option, if the server
says the content is "text/html", the browser renders it as "text/html".

Edit the nginx.conf file:

Add the line add_header X-Content-Type-Options "nosniff"; and save the file, then restart Nginx.

Nginx: Binary Releases: Official Debian/Ubuntu packages
Configure ASP.NET Core to work with proxy servers and load balancers
NGINX: Using the Forwarded header

https://www.nginx.com/resources/wiki/start/topics/tutorials/install/#official-debian-ubuntu-packages
https://www.nginx.com/resources/wiki/start/topics/examples/forwarded/

Host ASP.NET Core on Linux with Apache
6/15/2018 • 10 minutes to read • Edit Online

Prerequisites

Publish and copy over the app

dotnet publish --configuration Release

NOTENOTE

Configure a proxy server

By Shayne Boyer

Using this guide, learn how to set up Apache as a reverse proxy server on CentOS 7 to redirect HTTP traffic to an
ASP.NET Core web app running on Kestrel. The mod_proxy extension and related modules create the server's
reverse proxy.

1. Server running CentOS 7 with a standard user account with sudo privilege.
2. Install the .NET Core runtime on the server.

3. An existing ASP.NET Core app.

a. Visit the .NET Core All Downloads page.
b. Select the latest non-preview runtime from the list under Runtime.
c. Select and follow the instructions for CentOS/Oracle.

Configure the app for a framework-dependent deployment.

Run dotnet publish from the development environment to package an app into a directory (for example,
bin/Release/<target_framework_moniker>/publish) that can run on the server :

The app can also be published as a self-contained deployment if you prefer not to maintain the .NET Core
runtime on the server.

Copy the ASP.NET Core app to the server using a tool that integrates into the organization's workflow (for
example, SCP, SFTP). It's common to locate web apps under the var directory (for example,
var/aspnetcore/hellomvc).

Under a production deployment scenario, a continuous integration workflow does the work of publishing the app and
copying the assets to the server.

A reverse proxy is a common setup for serving dynamic web apps. The reverse proxy terminates the HTTP
request and forwards it to the ASP.NET app.

A proxy server is one which forwards client requests to another server instead of fulfilling requests itself. A
reverse proxy forwards to a fixed destination, typically on behalf of arbitrary clients. In this guide, Apache is
configured as the reverse proxy running on the same server that Kestrel is serving the ASP.NET Core app.

Because requests are forwarded by reverse proxy, use the Forwarded Headers Middleware from the
Microsoft.AspNetCore.HttpOverrides package. The middleware updates the Request.Scheme , using the

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/linux-apache.md
https://github.com/spboyer
https://httpd.apache.org/
https://www.centos.org/
http://httpd.apache.org/docs/2.4/mod/mod_proxy.html
https://www.microsoft.com/net/download/all
https://docs.microsoft.com/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/dotnet/core/deploying/#self-contained-deployments-scd
https://www.nuget.org/packages/Microsoft.AspNetCore.HttpOverrides/

NOTENOTE

app.UseForwardedHeaders(new ForwardedHeadersOptions
{
 ForwardedHeaders = ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto
});

app.UseAuthentication();

Install ApacheInstall Apache

sudo yum update -y

sudo yum -y install httpd mod_ssl

X-Forwarded-Proto header, so that redirect URIs and other security policies work correctly.

Any component that depends on the scheme, such as authentication, link generation, redirects, and geolocation,
must be placed after invoking the Forwarded Headers Middleware. As a general rule, Forwarded Headers
Middleware should run before other middleware except diagnostics and error handling middleware. This
ordering ensures that the middleware relying on forwarded headers information can consume the header values
for processing.

Either configuration—with or without a reverse proxy server—is a valid and supported hosting configuration for ASP.NET
Core 2.0 or later apps. For more information, see When to use Kestrel with a reverse proxy.

ASP.NET Core 2.x
ASP.NET Core 1.x

Invoke the UseForwardedHeaders method in Startup.Configure before calling UseAuthentication or similar
authentication scheme middleware. Configure the middleware to forward the X-Forwarded-For and
X-Forwarded-Proto headers:

If no ForwardedHeadersOptions are specified to the middleware, the default headers to forward are None .

Additional configuration might be required for apps hosted behind proxy servers and load balancers. For more
information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Update CentOS packages to their latest stable versions:

Install the Apache web server on CentOS with a single yum command:

Sample output after running the command:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions

Downloading packages:
httpd-2.4.6-40.el7.centos.4.x86_64.rpm | 2.7 MB 00:00:01
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : httpd-2.4.6-40.el7.centos.4.x86_64 1/1
Verifying : httpd-2.4.6-40.el7.centos.4.x86_64 1/1

Installed:
httpd.x86_64 0:2.4.6-40.el7.centos.4

Complete!

NOTENOTE

Configure ApacheConfigure Apache

<VirtualHost *:*>
 RequestHeader set "X-Forwarded-Proto" expr=%{REQUEST_SCHEME}
</VirtualHost>

<VirtualHost *:80>
 ProxyPreserveHost On
 ProxyPass / http://127.0.0.1:5000/
 ProxyPassReverse / http://127.0.0.1:5000/
 ServerName www.example.com
 ServerAlias *.example.com
 ErrorLog ${APACHE_LOG_DIR}hellomvc-error.log
 CustomLog ${APACHE_LOG_DIR}hellomvc-access.log common
</VirtualHost>

WARNINGWARNING

In this example, the output reflects httpd.86_64 since the CentOS 7 version is 64 bit. To verify where Apache is installed,
run whereis httpd from a command prompt.

Configuration files for Apache are located within the /etc/httpd/conf.d/ directory. Any file with the .conf

extension is processed in alphabetical order in addition to the module configuration files in
/etc/httpd/conf.modules.d/ , which contains any configuration files necessary to load modules.

Create a configuration file, named hellomvc.conf, for the app:

The VirtualHost block can appear multiple times, in one or more files on a server. In the preceding configuration
file, Apache accepts public traffic on port 80. The domain www.example.com is being served, and the
*.example.com alias resolves to the same website. See Name-based virtual host support for more information.

Requests are proxied at the root to port 5000 of the server at 127.0.0.1. For bi-directional communication,
ProxyPass and ProxyPassReverse are required.

Failure to specify a proper ServerName directive in the VirtualHost block exposes your app to security vulnerabilities.
Subdomain wildcard binding (for example, *.example.com) doesn't pose this security risk if you control the entire parent
domain (as opposed to *.com , which is vulnerable). See rfc7230 section-5.4 for more information.

Logging can be configured per VirtualHost using ErrorLog and CustomLog directives. ErrorLog is the location
where the server logs errors, and CustomLog sets the filename and format of log file. In this case, this is where
request information is logged. There's one line for each request.

https://httpd.apache.org/docs/current/vhosts/name-based.html
https://httpd.apache.org/docs/current/mod/core.html#servername
https://tools.ietf.org/html/rfc7230#section-5.4

sudo service httpd configtest

sudo systemctl restart httpd
sudo systemctl enable httpd

Monitoring the app

Create the service fileCreate the service file

sudo nano /etc/systemd/system/kestrel-hellomvc.service

[Unit]
Description=Example .NET Web API App running on CentOS 7

[Service]
WorkingDirectory=/var/aspnetcore/hellomvc
ExecStart=/usr/local/bin/dotnet /var/aspnetcore/hellomvc/hellomvc.dll
Restart=always
Restart service after 10 seconds if dotnet service crashes
RestartSec=10
SyslogIdentifier=dotnet-example
User=apache
Environment=ASPNETCORE_ENVIRONMENT=Production

[Install]
WantedBy=multi-user.target

NOTENOTE

NOTENOTE

systemd-escape "<value-to-escape>"

Save the file and test the configuration. If everything passes, the response should be Syntax [OK] .

Restart Apache:

Apache is now setup to forward requests made to http://localhost:80 to the ASP.NET Core app running on
Kestrel at http://127.0.0.1:5000 . However, Apache isn't set up to manage the Kestrel process. Use systemd and
create a service file to start and monitor the underlying web app. systemd is an init system that provides many
powerful features for starting, stopping, and managing processes.

Create the service definition file:

An example service file for the app:

User — If the user apache isn't used by the configuration, the user must be created first and given proper ownership for
files.

Some values (for example, SQL connection strings) must be escaped for the configuration providers to read the
environment variables. Use the following command to generate a properly escaped value for use in the configuration file:

Save the file and enable the service:

systemctl enable kestrel-hellomvc.service

systemctl start kestrel-hellomvc.service
systemctl status kestrel-hellomvc.service

● kestrel-hellomvc.service - Example .NET Web API App running on CentOS 7
 Loaded: loaded (/etc/systemd/system/kestrel-hellomvc.service; enabled)
 Active: active (running) since Thu 2016-10-18 04:09:35 NZDT; 35s ago
Main PID: 9021 (dotnet)
 CGroup: /system.slice/kestrel-hellomvc.service
 └─9021 /usr/local/bin/dotnet /var/aspnetcore/hellomvc/hellomvc.dll

HTTP/1.1 200 OK
Date: Tue, 11 Oct 2016 16:22:23 GMT
Server: Kestrel
Keep-Alive: timeout=5, max=98
Connection: Keep-Alive
Transfer-Encoding: chunked

Viewing logsViewing logs

sudo journalctl -fu kestrel-hellomvc.service

sudo journalctl -fu kestrel-hellomvc.service --since "2016-10-18" --until "2016-10-18 04:00"

Securing the app
Configure firewallConfigure firewall

sudo yum install firewalld -y

Start the service and verify that it's running:

With the reverse proxy configured and Kestrel managed through systemd, the web app is fully configured and
can be accessed from a browser on the local machine at http://localhost . Inspecting the response headers, the
Server header indicates that the ASP.NET Core app is served by Kestrel:

Since the web app using Kestrel is managed using systemd, events and processes are logged to a centralized
journal. However, this journal includes entries for all of the services and processes managed by systemd. To view
the kestrel-hellomvc.service -specific items, use the following command:

For time filtering, specify time options with the command. For example, use --since today to filter for the
current day or --until 1 hour ago to see the previous hour's entries. For more information, see the man page for
journalctl.

Firewalld is a dynamic daemon to manage the firewall with support for network zones. Ports and packet filtering
can still be managed by iptables. Firewalld should be installed by default. yum can be used to install the package
or verify it's installed.

Use firewalld to open only the ports needed for the app. In this case, port 80 and 443 are used. The following
commands permanently set ports 80 and 443 to open:

https://www.unix.com/man-page/centos/1/journalctl/

sudo firewall-cmd --add-port=80/tcp --permanent
sudo firewall-cmd --add-port=443/tcp --permanent

sudo firewall-cmd --reload
sudo firewall-cmd --list-all

public (default, active)
interfaces: eth0
sources:
services: dhcpv6-client
ports: 443/tcp 80/tcp
masquerade: no
forward-ports:
icmp-blocks:
rich rules:

SSL configurationSSL configuration

sudo yum install mod_ssl

sudo yum install mod_rewrite

<VirtualHost *:*>
 RequestHeader set "X-Forwarded-Proto" expr=%{REQUEST_SCHEME}
</VirtualHost>

<VirtualHost *:80>
 RewriteEngine On
 RewriteCond %{HTTPS} !=on
 RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 ProxyPreserveHost On
 ProxyPass / http://127.0.0.1:5000/
 ProxyPassReverse / http://127.0.0.1:5000/
 ErrorLog /var/log/httpd/hellomvc-error.log
 CustomLog /var/log/httpd/hellomvc-access.log common
 SSLEngine on
 SSLProtocol all -SSLv2
 SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:!RC4+RSA:+HIGH:+MEDIUM:!LOW:!RC4
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
</VirtualHost>

Reload the firewall settings. Check the available services and ports in the default zone. Options are available by
inspecting firewall-cmd -h .

To configure Apache for SSL, the mod_ssl module is used. When the httpd module was installed, the mod_ssl
module was also installed. If it wasn't installed, use yum to add it to the configuration.

To enforce SSL, install the mod_rewrite module to enable URL rewriting:

Modify the hellomvc.conf file to enable URL rewriting and secure communication on port 443:

NOTENOTE

sudo service httpd configtest

sudo systemctl restart httpd

Additional Apache suggestions
Additional headersAdditional headers

sudo yum install mod_headers

Secure Apache from clickjacking attacksSecure Apache from clickjacking attacks

sudo nano /etc/httpd/conf/httpd.conf

MIME-type sniffingMIME-type sniffing

sudo nano /etc/httpd/conf/httpd.conf

Load BalancingLoad Balancing

sudo yum install mod_proxy_balancer

This example is using a locally-generated certificate. SSLCertificateFile should be the primary certificate file for the domain
name. SSLCertificateKeyFile should be the key file generated when CSR is created. SSLCertificateChainFile should be
the intermediate certificate file (if any) that was supplied by the certificate authority.

Save the file and test the configuration:

Restart Apache:

In order to secure against malicious attacks, there are a few headers that should either be modified or added.
Ensure that the mod_headers module is installed:

Clickjacking, also known as a UI redress attack, is a malicious attack where a website visitor is tricked into clicking
a link or button on a different page than they're currently visiting. Use X-FRAME-OPTIONS to secure the site.

Edit the httpd.conf file:

Add the line Header append X-FRAME-OPTIONS "SAMEORIGIN" . Save the file. Restart Apache.

The X-Content-Type-Options header prevents Internet Explorer from MIME-sniffing (determining a file's
Content-Type from the file's content). If the server sets the Content-Type header to text/html with the nosniff

option set, Internet Explorer renders the content as text/html regardless of the file's content.

Edit the httpd.conf file:

Add the line Header set X-Content-Type-Options "nosniff" . Save the file. Restart Apache.

This example shows how to setup and configure Apache on CentOS 7 and Kestrel on the same instance machine.
In order to not have a single point of failure; using mod_proxy_balancer and modifying the VirtualHost would
allow for managing multiple instances of the web apps behind the Apache proxy server.

https://blog.qualys.com/securitylabs/2015/10/20/clickjacking-a-common-implementation-mistake-that-can-put-your-websites-in-danger

<VirtualHost *:*>
 RequestHeader set "X-Forwarded-Proto" expr=%{REQUEST_SCHEME}
</VirtualHost>

<VirtualHost *:80>
 RewriteEngine On
 RewriteCond %{HTTPS} !=on
 RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 ProxyPass / balancer://mycluster/

 ProxyPassReverse / http://127.0.0.1:5000/
 ProxyPassReverse / http://127.0.0.1:5001/

 <Proxy balancer://mycluster>
 BalancerMember http://127.0.0.1:5000
 BalancerMember http://127.0.0.1:5001
 ProxySet lbmethod=byrequests
 </Proxy>

 <Location />
 SetHandler balancer
 </Location>
 ErrorLog /var/log/httpd/hellomvc-error.log
 CustomLog /var/log/httpd/hellomvc-access.log common
 SSLEngine on
 SSLProtocol all -SSLv2
 SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:!RC4+RSA:+HIGH:+MEDIUM:!LOW:!RC4
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
</VirtualHost>

Rate LimitsRate Limits

sudo nano /etc/httpd/conf.d/ratelimit.conf

<IfModule mod_ratelimit.c>
 <Location />
 SetOutputFilter RATE_LIMIT
 SetEnv rate-limit 600
 </Location>
</IfModule>

Additional resources

In the configuration file shown below, an additional instance of the hellomvc app is setup to run on port 5001.
The Proxy section is set with a balancer configuration with two members to load balance byrequests.

Using mod_ratelimit, which is included in the httpd module, the bandwidth of clients can be limited:

The example file limits bandwidth as 600 KB/sec under the root location:

Configure ASP.NET Core to work with proxy servers and load balancers

Host ASP.NET Core in Docker containers
4/10/2018 • 2 minutes to read • Edit Online

The following articles are available for learning about hosting ASP.NET Core apps in Docker :

Introduction to Containers and Docker
See how containerization is an approach to software development in which an application or service, its
dependencies, and its configuration are packaged together as a container image. The image can be tested and then
deployed to a host.

What is Docker
Discover how Docker is an open-source project for automating the deployment of apps as portable, self-sufficient
containers that can run on the cloud or on-premises.

Docker Terminology
Learn terms and definitions for Docker technology.

Docker containers, images, and registries
Find out how Docker container images are stored in an image registry for consistent deployment across
environments.

Build Docker Images for .NET Core Applications
Learn how to build and dockerize an ASP.NET Core app. Explore Docker images maintained by Microsoft and
examine use cases.

Visual Studio Tools for Docker
Discover how Visual Studio 2017 supports building, debugging, and running ASP.NET Core apps targeting either
.NET Framework or .NET Core on Docker for Windows. Both Windows and Linux containers are supported.

Publish to a Docker Image
Find out how to use the Visual Studio Tools for Docker extension to deploy an ASP.NET Core app to a Docker host
on Azure using PowerShell.

Configure ASP.NET Core to work with proxy servers and load balancers
Additional configuration might be required for apps hosted behind proxy servers and load balancers. Passing
requests through a proxy often obscures information about the original request, such as the scheme and client IP.
It might be necessary to forwarded some information about the request manually to the app.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/docker/index.md
https://docs.microsoft.com/dotnet/standard/microservices-architecture/container-docker-introduction/index
https://docs.microsoft.com/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://docs.microsoft.com/dotnet/standard/microservices-architecture/container-docker-introduction/docker-terminology
https://docs.microsoft.com/dotnet/standard/microservices-architecture/container-docker-introduction/docker-containers-images-registries
https://docs.microsoft.com/dotnet/articles/core/docker/building-net-docker-images
https://docs.microsoft.com/azure/vs-azure-tools-docker-hosting-web-apps-in-docker

Visual Studio Tools for Docker with ASP.NET Core
3/8/2018 • 5 minutes to read • Edit Online

Prerequisites

Installation and setup

TIPTIP

Add Docker support to an app

Visual Studio 2017 supports building, debugging, and running containerized ASP.NET Core apps targeting .NET
Core. Both Windows and Linux containers are supported.

Visual Studio 2017 with the .NET Core cross-platform development workload
Docker for Windows

For Docker installation, review the information at Docker for Windows: What to know before you install and install
Docker For Windows.

Shared Drives in Docker for Windows must be configured to support volume mapping and debugging. Right-
click the System Tray's Docker icon, select Settings..., and select Shared Drives. Select the drive where Docker
stores files. Select Apply.

Visual Studio 2017 versions 15.6 and later prompt when Shared Drives aren't configured.

In order to add Docker support to an ASP.NET Core project, the project must target .NET Core. Both Linux and
Windows containers are supported.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/docker/visual-studio-tools-for-docker.md
https://www.visualstudio.com/
https://www.visualstudio.com/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/#what-to-know-before-you-install
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/#shared-drives

New appNew app

Existing appExisting app

Docker assets overview

When adding Docker support to a project, choose either a Windows or a Linux container. The Docker host must be
running the same container type. To change the container type in the running Docker instance, right-click the
System Tray's Docker icon and choose Switch to Windows containers... or Switch to Linux containers....

When creating a new app with the ASP.NET Core Web Application project templates, select the Enable Docker
Support checkbox:

If the target framework is .NET Core, the OS drop-down allows for the selection of a container type.

The Visual Studio Tools for Docker don't support adding Docker to an existing ASP.NET Core project targeting
.NET Framework. For ASP.NET Core projects targeting .NET Core, there are two options for adding Docker
support via the tooling. Open the project in Visual Studio, and choose one of the following options:

Select Docker Support from the Project menu.
Right-click the project in Solution Explorer and select Add > Docker Support.

The Visual Studio Tools for Docker add a docker-compose project to the solution, containing the following:

.dockerignore: Contains a list of file and directory patterns to exclude when generating a build context.
docker-compose.yml: The base Docker Compose file used to define the collection of images to be built and run
with docker-compose build and docker-compose run , respectively.
docker-compose.override.yml: An optional file, read by Docker Compose, containing configuration overrides for
services. Visual Studio executes docker-compose -f "docker-compose.yml" -f "docker-compose.override.yml" to
merge these files.

A Dockerfile, the recipe for creating a final Docker image, is added to the project root. Refer to Dockerfile reference
for an understanding of the commands within it. This particular Dockerfile uses a multi-stage build containing four
distinct, named build stages:

https://docs.docker.com/compose/overview/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/multistage-build/

FROM microsoft/aspnetcore:2.0-nanoserver-1709 AS base
WORKDIR /app
EXPOSE 80

FROM microsoft/aspnetcore-build:2.0-nanoserver-1709 AS build
WORKDIR /src
COPY *.sln ./
COPY HelloDockerTools/HelloDockerTools.csproj HelloDockerTools/
RUN dotnet restore
COPY . .
WORKDIR /src/HelloDockerTools
RUN dotnet build -c Release -o /app

FROM build AS publish
RUN dotnet publish -c Release -o /app

FROM base AS final
WORKDIR /app
COPY --from=publish /app .
ENTRYPOINT ["dotnet", "HelloDockerTools.dll"]

version: '3'

services:
 hellodockertools:
 image: hellodockertools
 build:
 context: .
 dockerfile: HelloDockerTools\Dockerfile

Debug

The Dockerfile is based on the microsoft/aspnetcore image. This base image includes the ASP.NET Core NuGet
packages, which have been pre-jitted to improve startup performance.

The docker-compose.yml file contains the name of the image that's created when the project runs:

In the preceding example, image: hellodockertools generates the image hellodockertools:dev when the app runs
in Debug mode. The hellodockertools:latest image is generated when the app runs in Release mode.

Prefix the image name with the Docker Hub username (for example, dockerhubusername/hellodockertools) if the
image will be pushed to the registry. Alternatively, change the image name to include the private registry URL (for
example, privateregistry.domain.com/hellodockertools) depending on the configuration.

Select Docker from the debug drop-down in the toolbar, and start debugging the app. The Docker view of the
Output window shows the following actions taking place:

The microsoft/aspnetcore runtime image is acquired (if not already in the cache).
The microsoft/aspnetcore-build compile/publish image is acquired (if not already in the cache).
The ASPNETCORE_ENVIRONMENT environment variable is set to Development within the container.
Port 80 is exposed and mapped to a dynamically-assigned port for localhost. The port is determined by the
Docker host and can be queried with the docker ps command.
The app is copied to the container.
The default browser is launched with the debugger attached to the container using the dynamically-assigned
port.

The resulting Docker image is the dev image of the app with the microsoft/aspnetcore images as the base image.
Run the docker images command in the Package Manager Console (PMC) window. The images on the machine

https://hub.docker.com/r/microsoft/aspnetcore
https://hub.docker.com/

REPOSITORY TAG IMAGE ID CREATED SIZE
hellodockertools latest f8f9d6c923e2 About an hour ago 391MB
hellodockertools dev 85c5ffee5258 About an hour ago 389MB
microsoft/aspnetcore-build 2.0-nanoserver-1709 d7cce94e3eb0 15 hours ago 1.86GB
microsoft/aspnetcore 2.0-nanoserver-1709 8872347d7e5d 40 hours ago 389MB

NOTENOTE

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
baf9a678c88d hellodockertools:dev "C:\\remote_debugge..." 21 seconds ago Up 19 seconds
0.0.0.0:37630->80/tcp dockercompose4642749010770307127_hellodockertools_1

Edit and continue

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
baf9a678c88d hellodockertools:dev "C:\\remote_debugge..." 10 minutes ago Up 10 minutes
0.0.0.0:37630->80/tcp dockercompose4642749010770307127_hellodockertools_1

Publish Docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
hellodockertools latest 4cb1fca533f0 19 seconds ago 391MB
hellodockertools dev 85c5ffee5258 About an hour ago 389MB
microsoft/aspnetcore-build 2.0-nanoserver-1709 d7cce94e3eb0 16 hours ago 1.86GB
microsoft/aspnetcore 2.0-nanoserver-1709 8872347d7e5d 40 hours ago 389MB

are displayed:

The dev image lacks the app contents, as Debug configurations use volume mounting to provide the iterative experience. To
push an image, use the Release configuration.

Run the docker ps command in PMC. Notice the app is running using the container :

Changes to static files and Razor views are automatically updated without the need for a compilation step. Make
the change, save, and refresh the browser to view the update.

Modifications to code files requires compiling and a restart of Kestrel within the container. After making the
change, use CTRL + F5 to perform the process and start the app within the container. The Docker container isn't
rebuilt or stopped. Run the docker ps command in PMC. Notice the original container is still running as of 10
minutes ago:

Once the develop and debug cycle of the app is completed, the Visual Studio Tools for Docker assist in creating the
production image of the app. Change the configuration drop-down to Release and build the app. The tooling
produces the image with the latest tag, which can be pushed to the private registry or Docker Hub.

Run the docker images command in PMC to see the list of images:

NOTENOTE
The docker images command returns intermediary images with repository names and tags identified as <none> (not
listed above). These unnamed images are produced by the multi-stage build Dockerfile. They improve the efficiency of
building the final image—only the necessary layers are rebuilt when changes occur. When the intermediary images are no
longer needed, delete them using the docker rmi command.

There may be an expectation for the production or release image to be smaller in size by comparison to the dev
image. Because of the volume mapping, the debugger and app were running from the local machine and not
within the container. The latest image has packaged the necessary app code to run the app on a host machine.
Therefore, the delta is the size of the app code.

https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://docs.docker.com/engine/reference/commandline/rmi/

Configure ASP.NET Core to work with proxy servers
and load balancers
5/30/2018 • 9 minutes to read • Edit Online

Forwarded headers

HEADER DESCRIPTION

X-Forwarded-For Holds information about the client that initiated the request
and subsequent proxies in a chain of proxies. This parameter
may contain IP addresses (and, optionally, port numbers). In
a chain of proxy servers, the first parameter indicates the
client where the request was first made. Subsequent proxy
identifiers follow. The last proxy in the chain isn't in the list of
parameters. The last proxy's IP address, and optionally a
port number, are available as the remote IP address at the
transport layer.

X-Forwarded-Proto The value of the originating scheme (HTTP/HTTPS). The
value may also be a list of schemes if the request has
traversed multiple proxies.

X-Forwarded-Host The original value of the Host header field. Usually, proxies
don't modify the Host header. See Microsoft Security
Advisory CVE-2018-0787 for information on an elevation-
of-privileges vulnerability that affects systems where the
proxy doesn't validate or restict Host headers to known
good values.

By Luke Latham and Chris Ross

In the recommended configuration for ASP.NET Core, the app is hosted using IIS/ASP.NET Core Module,
Nginx, or Apache. Proxy servers, load balancers, and other network appliances often obscure information
about the request before it reaches the app:

When HTTPS requests are proxied over HTTP, the original scheme (HTTPS) is lost and must be forwarded
in a header.
Because an app receives a request from the proxy and not its true source on the Internet or corporate
network, the originating client IP address must also be forwarded in a header.

This information may be important in request processing, for example in redirects, authentication, link
generation, policy evaluation, and client geolocation.

By convention, proxies forward information in HTTP headers.

The Forwarded Headers Middleware, from the Microsoft.AspNetCore.HttpOverrides package, reads these
headers and fills in the associated fields on HttpContext.

The middleware updates:

HttpContext.Connection.RemoteIpAddress – Set using the X-Forwarded-For header value. Additional
settings influence how the middleware sets RemoteIpAddress . For details, see the Forwarded Headers
Middleware options.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/proxy-load-balancer.md
https://github.com/guardrex
https://github.com/Tratcher
https://github.com/aspnet/Announcements/issues/295
https://www.nuget.org/packages/Microsoft.AspNetCore.HttpOverrides/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress

IIS/IIS Express and ASP.NET Core Module

Other proxy server and load balancer scenarios

HttpContext.Request.Scheme – Set using the X-Forwarded-Proto header value.
HttpContext.Request.Host – Set using the X-Forwarded-Host header value.

Note that not all network appliances add the X-Forwarded-For and X-Forwarded-Proto headers without
additional configuration. Consult your appliance manufacturer's guidance if the proxied requests don't contain
these headers when they reach the app.

Forwarded Headers Middleware default settings can be configured. The default settings are:

There is only one proxy between the app and the source of the requests.
Only loopback addresses are configured for known proxies and known networks.

Forwarded Headers Middleware is enabled by default by IIS Integration Middleware when the app is run
behind IIS and the ASP.NET Core Module. Forwarded Headers Middleware is activated to run first in the
middleware pipeline with a restricted configuration specific to the ASP.NET Core Module due to trust concerns
with forwarded headers (for example, IP spoofing). The middleware is configured to forward the
X-Forwarded-For and X-Forwarded-Proto headers and is restricted to a single localhost proxy. If additional

configuration is required, see the Forwarded Headers Middleware options.

Outside of using IIS Integration Middleware, Forwarded Headers Middleware isn't enabled by default.
Forwarded Headers Middleware must be enabled for an app to process forwarded headers with
UseForwardedHeaders. After enabling the middleware if no ForwardedHeadersOptions are specified to the
middleware, the default ForwardedHeadersOptions.ForwardedHeaders are ForwardedHeaders.None.

Configure the middleware with ForwardedHeadersOptions to forward the X-Forwarded-For and
X-Forwarded-Proto headers in Startup.ConfigureServices . Invoke the UseForwardedHeaders method in
Startup.Configure before calling other middleware:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httprequest.scheme
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httprequest.host
https://www.iplocation.net/ip-spoofing
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.Configure<ForwardedHeadersOptions>(options =>
 {
 options.ForwardedHeaders =
 ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto;
 });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseForwardedHeaders();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();
 // In ASP.NET Core 1.x, replace the following line with: app.UseIdentity();
 app.UseAuthentication();
 app.UseMvc();
}

NOTENOTE

Nginx configuration

Apache configuration

Forwarded Headers Middleware options

services.Configure<ForwardedHeadersOptions>(options =>
{
 options.ForwardLimit = 2;
 options.KnownProxies.Add(IPAddress.Parse("127.0.10.1"));
 options.ForwardedForHeaderName = "X-Forwarded-For-Custom-Header-Name";
});

If no ForwardedHeadersOptions are specified in Startup.ConfigureServices or directly to the extension method with
UseForwardedHeaders(IApplicationBuilder, ForwardedHeadersOptions), the default headers to forward are
ForwardedHeaders.None. The ForwardedHeadersOptions.ForwardedHeaders property must be configured with the
headers to forward.

To forward the X-Forwarded-For and X-Forwarded-Proto headers, see Host on Linux with Nginx: Configure
Nginx. For more information, see NGINX: Using the Forwarded header.

X-Forwarded-For is added automatically (see Apache Module mod_proxy: Reverse Proxy Request Headers). For
information on how to forward the X-Forwarded-Proto header, see Host on Linux with Apache: Configure
Apache.

ForwardedHeadersOptions control the behavior of the Forwarded Headers Middleware:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders?view=aspnetcore-2.0#Microsoft_AspNetCore_Builder_ForwardedHeadersExtensions_UseForwardedHeaders_Microsoft_AspNetCore_Builder_IApplicationBuilder_Microsoft_AspNetCore_Builder_ForwardedHeadersOptions_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders
https://www.nginx.com/resources/wiki/start/topics/examples/forwarded/
https://httpd.apache.org/docs/2.4/mod/mod_proxy.html#x-headers
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions

OPTION DESCRIPTION

ForwardedForHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XForwardedForHeaderName.

The default is X-Forwarded-For .

ForwardedHeaders Identifies which forwarders should be processed. See the
ForwardedHeaders Enum for the list of fields that apply.
Typical values assigned to this property are
ForwardedHeaders.XForwardedFor |
ForwardedHeaders.XForwardedProto

.

The default value is ForwardedHeaders.None.

ForwardedHostHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XForwardedHostHeaderName.

The default is X-Forwarded-Host .

ForwardedProtoHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XForwardedProtoHeaderName.

The default is X-Forwarded-Proto .

ForwardLimit Limits the number of entries in the headers that are
processed. Set to null to disable the limit, but this should
only be done if KnownProxies or KnownNetworks are
configured.

The default is 1.

KnownNetworks Address ranges of known proxies to accept forwarded
headers from. Provide IP ranges using Classless Interdomain
Routing (CIDR) notation.

The default is an IList<IPNetwork> containing a single entry
for IPAddress.Loopback .

KnownProxies Addresses of known proxies to accept forwarded headers
from. Use KnownProxies to specify exact IP address
matches.

The default is an IList<IPAddress> containing a single entry
for IPAddress.IPv6Loopback .

OriginalForHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XOriginalForHeaderName.

The default is X-Original-For .

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedforheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedforheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedhostheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedhostheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedprotoheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedprotoheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardlimit
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownnetworks
https://docs.microsoft.com/dotnet/api/system.collections.generic.ilist-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.ipnetwork
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownproxies
https://docs.microsoft.com/dotnet/api/system.collections.generic.ilist-1
https://docs.microsoft.com/dotnet/api/system.net.ipaddress
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalforheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalforheadername

OriginalHostHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XOriginalHostHeaderName.

The default is X-Original-Host .

OriginalProtoHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XOriginalProtoHeaderName.

The default is X-Original-Proto .

RequireHeaderSymmetry Require the number of header values to be in sync between
the ForwardedHeadersOptions.ForwardedHeaders being
processed.

The default in ASP.NET Core 1.x is true . The default in
ASP.NET Core 2.0 or later is false .

OPTION DESCRIPTION

OPTION DESCRIPTION

AllowedHosts Restricts hosts by the X-Forwarded-Host header to the
values provided.

The default value is an empty IList<string>.

ForwardedForHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XForwardedForHeaderName.

The default is X-Forwarded-For .

Values are compared using ordinal-ignore-case.
Port numbers must be excluded.
If the list is empty, all hosts are allowed.
A top-level wildcard * allows all non-empty hosts.
Subdomain wildcards are permitted but don't match
the root domain. For example, *.contoso.com

matches the subdomain foo.contoso.com but not
the root domain contoso.com .
Unicode host names are allowed but are converted
to Punycode for matching.
IPv6 addresses must include bounding brackets and
be in conventional form (for example,
[ABCD:EF01:2345:6789:ABCD:EF01:2345:6789]).

IPv6 addresses aren't special-cased to check for
logical equality between different formats, and no
canonicalization is performed.
Failure to restrict the allowed hosts may allow an
attacker to spoof links generated by the service.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalhostheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalhostheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalprotoheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalprotoheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.requireheadersymmetry
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders
https://tools.ietf.org/html/rfc3492
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291#section-2.2
https://docs.microsoft.com/dotnet/api/system.collections.generic.ilist-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedforheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedforheadername

ForwardedHeaders Identifies which forwarders should be processed. See the
ForwardedHeaders Enum for the list of fields that apply.
Typical values assigned to this property are
ForwardedHeaders.XForwardedFor |
ForwardedHeaders.XForwardedProto

.

The default value is ForwardedHeaders.None.

ForwardedHostHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XForwardedHostHeaderName.

The default is X-Forwarded-Host .

ForwardedProtoHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XForwardedProtoHeaderName.

The default is X-Forwarded-Proto .

ForwardLimit Limits the number of entries in the headers that are
processed. Set to null to disable the limit, but this should
only be done if KnownProxies or KnownNetworks are
configured.

The default is 1.

KnownNetworks Address ranges of known proxies to accept forwarded
headers from. Provide IP ranges using Classless Interdomain
Routing (CIDR) notation.

The default is an IList<IPNetwork> containing a single entry
for IPAddress.Loopback .

KnownProxies Addresses of known proxies to accept forwarded headers
from. Use KnownProxies to specify exact IP address
matches.

The default is an IList<IPAddress> containing a single entry
for IPAddress.IPv6Loopback .

OriginalForHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XOriginalForHeaderName.

The default is X-Original-For .

OriginalHostHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XOriginalHostHeaderName.

The default is X-Original-Host .

OPTION DESCRIPTION

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedhostheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedhostheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedprotoheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedprotoheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardlimit
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownnetworks
https://docs.microsoft.com/dotnet/api/system.collections.generic.ilist-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.ipnetwork
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownproxies
https://docs.microsoft.com/dotnet/api/system.collections.generic.ilist-1
https://docs.microsoft.com/dotnet/api/system.net.ipaddress
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalforheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalforheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalhostheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalhostheadername

OriginalProtoHeaderName Use the header specified by this property instead of the one
specified by
ForwardedHeadersDefaults.XOriginalProtoHeaderName.

The default is X-Original-Proto .

RequireHeaderSymmetry Require the number of header values to be in sync between
the ForwardedHeadersOptions.ForwardedHeaders being
processed.

The default in ASP.NET Core 1.x is true . The default in
ASP.NET Core 2.0 or later is false .

OPTION DESCRIPTION

Scenarios and use cases
When it isn't possible to add forwarded headers and all requests are secureWhen it isn't possible to add forwarded headers and all requests are secure

app.Use((context, next) =>
{
 context.Request.Scheme = "https";
 return next();
});

Deal with path base and proxies that change the request pathDeal with path base and proxies that change the request path

app.UsePathBase("/foo");

app.Use((context, next) =>
{
 context.Request.PathBase = new PathString("/foo");
 return next();
});

In some cases, it might not be possible to add forwarded headers to the requests proxied to the app. If the
proxy is enforcing that all public external requests are HTTPS, the scheme can be manually set in
Startup.Configure before using any type of middleware:

This code can be disabled with an environment variable or other configuration setting in a development or
staging environment.

Some proxies pass the path intact but with an app base path that should be removed so that routing works
properly. UsePathBaseExtensions.UsePathBase middleware splits the path into HttpRequest.Path and the app
base path into HttpRequest.PathBase.

If /foo is the app base path for a proxy path passed as /foo/api/1 , the middleware sets Request.PathBase to
/foo and Request.Path to /api/1 with the following command:

The original path and path base are reapplied when the middleware is called again in reverse. For more
information on middleware order processing, see Middleware.

If the proxy trims the path (for example, forwarding /foo/api/1 to /api/1), fix redirects and links by setting
the request's PathBase property:

If the proxy is adding path data, discard part of the path to fix redirects and links by using

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalprotoheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalprotoheadername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.requireheadersymmetry
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.usepathbaseextensions.usepathbase
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httprequest.path
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httprequest.pathbase
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httprequest.pathbase

app.Use((context, next) =>
{
 if (context.Request.Path.StartsWithSegments("/foo", out var remainder))
 {
 context.Request.Path = remainder;
 }

 return next();
});

Troubleshoot

public void Configure(IApplicationBuilder app, ILoggerFactory loggerfactory)
{
 app.Run(async (context) =>
 {
 context.Response.ContentType = "text/plain";

 // Request method, scheme, and path
 await context.Response.WriteAsync(
 $"Request Method: {context.Request.Method}{Environment.NewLine}");
 await context.Response.WriteAsync(
 $"Request Scheme: {context.Request.Scheme}{Environment.NewLine}");
 await context.Response.WriteAsync(
 $"Request Path: {context.Request.Path}{Environment.NewLine}");

 // Headers
 await context.Response.WriteAsync($"Request Headers:{Environment.NewLine}");

 foreach (var header in context.Request.Headers)
 {
 await context.Response.WriteAsync($"{header.Key}: " +
 $"{header.Value}{Environment.NewLine}");
 }

 await context.Response.WriteAsync(Environment.NewLine);

 // Connection: RemoteIp
 await context.Response.WriteAsync(
 $"Request RemoteIp: {context.Connection.RemoteIpAddress}");
 }
}

Additional resources

StartsWithSegments(PathString, PathString) and assigning to the Path property:

When headers aren't forwarded as expected, enable logging. If the logs don't provide sufficient information to
troubleshoot the problem, enumerate the request headers received by the server. The headers can be written to
an app response using inline middleware:

Ensure that the X-Forwarded-* headers are received by the server with the expected values. If there are
multiple values in a given header, note Forwarded Headers Middleware processes headers in reverse order
from right to left.

The request's original remote IP must match an entry in the KnownProxies or KnownNetworks lists before X-
Forwarded-For is processed. This limits header spoofing by not accepting forwarders from untrusted proxies.

Microsoft Security Advisory CVE-2018-0787: ASP.NET Core Elevation Of Privilege Vulnerability

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.pathstring.startswithsegments#Microsoft_AspNetCore_Http_PathString_StartsWithSegments_Microsoft_AspNetCore_Http_PathString_Microsoft_AspNetCore_Http_PathString__
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httprequest.path
https://github.com/aspnet/Announcements/issues/295

Visual Studio publish profiles for ASP.NET Core app
deployment
4/10/2018 • 11 minutes to read • Edit Online

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 </ItemGroup>

 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />
 </ItemGroup>

</Project>

By Sayed Ibrahim Hashimi and Rick Anderson

This document focuses on using Visual Studio 2017 to create and use publish profiles. The publish profiles created
with Visual Studio can be run from MSBuild and Visual Studio 2017. See Publish an ASP.NET Core web app to
Azure App Service using Visual Studio for instructions on publishing to Azure.

The following project file was created with the command dotnet new mvc :

ASP.NET Core 2.x
ASP.NET Core 1.x

The <Project> element's Sdk attribute accomplishes the following tasks:

Imports the properties file from $(MSBuildSDKsPath)\Microsoft.NET.Sdk.Web\Sdk\Sdk.Props at the
beginning.
Imports the targets file from $(MSBuildSDKsPath)\Microsoft.NET.Sdk.Web\Sdk\Sdk.targets at the end.

The default location for MSBuildSDKsPath (with Visual Studio 2017 Enterprise) is the
%programfiles(x86)%\Microsoft Visual Studio\2017\Enterprise\MSBuild\Sdks folder.

The Microsoft.NET.Sdk.Web SDK depends on:

Microsoft.NET.Sdk.Web.ProjectSystem

Microsoft.NET.Sdk.Publish

Which causes the following properties and targets to be imported:

$(MSBuildSDKsPath)\Microsoft.NET.Sdk.Web.ProjectSystem\Sdk\Sdk.Props

$(MSBuildSDKsPath)\Microsoft.NET.Sdk.Web.ProjectSystem\Sdk\Sdk.targets

$(MSBuildSDKsPath)\Microsoft.NET.Sdk.Publish\Sdk\Sdk.Props

$(MSBuildSDKsPath)\Microsoft.NET.Sdk.Publish\Sdk\Sdk.targets

Publish targets import the right set of targets based on the publish method used.

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/visual-studio-publish-profiles.md
https://github.com/sayedihashimi
https://twitter.com/RickAndMSFT

Compute project items

Basic command-line publishing

dotnet publish C:\Webs\Web1

dotnet new mvc
dotnet publish

When MSBuild or Visual Studio loads a project, the following high-level actions occur :

Build project
Compute files to publish
Publish files to destination

When the project is loaded, the project items (files) are computed. The item type attribute determines how the
file is processed. By default, .cs files are included in the Compile item list. Files in the Compile item list are
compiled.

The Content item list contains files that are published in addition to the build outputs. By default, files matching
the pattern wwwroot/** are included in the Content item. The wwwroot/** globbing pattern matches all files in
the wwwroot folder and subfolders. To explicitly add a file to the publish list, add the file directly in the .csproj file
as shown in Include Files.

When selecting the Publish button in Visual Studio or when publishing from the command line:

The properties/items are computed (the files that are needed to build).
Visual Studio only: NuGet packages are restored. (Restore needs to be explicit by the user on the CLI.)
The project builds.
The publish items are computed (the files that are needed to publish).
The project is published (the computed files are copied to the publish destination).

When an ASP.NET Core project references Microsoft.NET.Sdk.Web in the project file, an app_offline.htm file is
placed at the root of the web app directory. When the file is present, the ASP.NET Core Module gracefully shuts
down the app and serves the app_offline.htm file during the deployment. For more information, see the ASP.NET
Core Module configuration reference.

Command-line publishing works on all .NET Core-supported platforms and doesn't require Visual Studio. In the
samples below, the dotnet publish command is run from the project directory (which contains the .csproj file). If
not in the project folder, explicitly pass in the project file path. For example:

Run the following commands to create and publish a web app:

ASP.NET Core 2.x
ASP.NET Core 1.x

The dotnet publish command produces output similar to the following:

https://gruntjs.com/configuring-tasks#globbing-patterns
https://docs.microsoft.com/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/dotnet/core/tools/dotnet-publish

C:\Webs\Web1>dotnet publish
Microsoft (R) Build Engine version 15.3.409.57025 for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

 Web1 -> C:\Webs\Web1\bin\Debug\netcoreapp2.0\Web1.dll
 Web1 -> C:\Webs\Web1\bin\Debug\netcoreapp2.0\publish\

dotnet publish -c Release -o C:\MyWebs\test

Publish profiles

The default publish folder is bin\$(Configuration)\netcoreapp<version>\publish . The default for $(Configuration)

is Debug. In the preceding sample, the <TargetFramework> is netcoreapp2.0 .

dotnet publish -h displays help information for publish.

The following command specifies a Release build and the publishing directory:

The dotnet publish command calls MSBuild, which invokes the Publish target. Any parameters passed to
dotnet publish are passed to MSBuild. The -c parameter maps to the Configuration MSBuild property. The
-o parameter maps to OutputPath .

MSBuild properties can be passed using either of the following formats:

p:<NAME>=<VALUE>

/p:<NAME>=<VALUE>

The following command publishes a Release build to a network share:

dotnet publish -c Release /p:PublishDir=//r8/release/AdminWeb

The network share is specified with forward slashes (//r8/) and works on all .NET Core supported platforms.

Confirm that the published app for deployment isn't running. Files in the publish folder are locked when the app is
running. Deployment can't occur because locked files can't be copied.

This section uses Visual Studio 2017 to create a publishing profile. Once created, publishing from Visual Studio or
the command line is available.

Publish profiles can simplify the publishing process, and any number of profiles can exist. Create a publish profile
in Visual Studio by choosing one of the following paths:

Right-click the project in Solution Explorer and select Publish.
Select Publish <project_name> from the Build menu.

The Publish tab of the app capacities page is displayed. If the project lacks a publish profile, the following page is
displayed:

https://docs.microsoft.com/dotnet/core/tools/dotnet-publish

When Folder is selected, specify a folder path to store the published assets. The default folder is
bin\Release\PublishOutput. Click the Create Profile button to finish.

Once a publish profile is created, the Publish tab changes. The newly created profile appears in a drop-down list.
Click Create new profile to create another new profile.

The Publish wizard supports the following publish targets:

Azure App Service
Azure Virtual Machines
IIS, FTP, etc. (for any web server)
Folder
Import Profile

For more information, see What publishing options are right for me.

When creating a publish profile with Visual Studio, a Properties/PublishProfiles/<profile_name>.pubxml MSBuild
file is created. The .pubxml file is a MSBuild file and contains publish configuration settings. This file can be
changed to customize the build and publish process. This file is read by the publishing process.
<LastUsedBuildConfiguration> is special because it's a global property and shouldn't be in any file that's imported

in the build. See MSBuild: how to set the configuration property for more information.

When publishing to an Azure target, the .pubxml file contains your Azure subscription identifier. With that target
type, adding this file to source control is discouraged. When publishing to a non-Azure target, it's safe to check in
the .pubxml file.

Sensitive information (like the publish password) is encrypted on a per user/machine level. It's stored in the
Properties/PublishProfiles/<profile_name>.pubxml.user file. Because this file can store sensitive information, it
shouldn't be checked into source control.

For an overview of how to publish a web app on ASP.NET Core, see Host and deploy. The MSBuild tasks and
targets necessary to publish an ASP.NET Core app are open-source at https://github.com/aspnet/websdk.

dotnet publish can use folder, MSDeploy, and Kudu publish profiles:

Folder (works cross-platform):

https://docs.microsoft.com/visualstudio/ide/not-in-toc/web-publish-options
http://sedodream.com/2012/10/27/MSBuildHowToSetTheConfigurationProperty.aspx
https://github.com/aspnet/websdk
https://github.com/projectkudu/kudu/wiki

dotnet publish WebApplication.csproj /p:PublishProfile=<FolderProfileName>

dotnet publish WebApplication.csproj /p:PublishProfile=<MsDeployProfileName> /p:Password=<DeploymentPassword>

dotnet publish WebApplication.csproj /p:PublishProfile=<MsDeployPackageProfileName>

<Project>
 <PropertyGroup>
 <PublishProtocol>Kudu</PublishProtocol>
 <PublishSiteName>nodewebapp</PublishSiteName>
 <UserName>username</UserName>
 <Password>password</Password>
 </PropertyGroup>
</Project>

dotnet publish /p:PublishProfile=Azure /p:Configuration=Release

MSDeploy (currently this only works in Windows since MSDeploy isn't cross-platform):

MSDeploy package (currently this only works in Windows since MSDeploy isn't cross-platform):

In the preceding samples, don't pass deployonbuild to dotnet publish .

For more information, see Microsoft.NET.Sdk.Publish.

dotnet publish supports Kudu APIs to publish to Azure from any platform. Visual Studio publish supports the
Kudu APIs, but it's supported by WebSDK for cross-platform publish to Azure.

Add a publish profile to the Properties/PublishProfiles folder with the following content:

Run the following command to zip up the publish contents and publish it to Azure using the Kudu APIs:

Set the following MSBuild properties when using a publish profile:

DeployOnBuild=true

PublishProfile=<Publish profile name>

When publishing with a profile named FolderProfile, either of the commands below can be executed:

dotnet build /p:DeployOnBuild=true /p:PublishProfile=FolderProfile

msbuild /p:DeployOnBuild=true /p:PublishProfile=FolderProfile

When invoking dotnet build, it calls msbuild to run the build and publish process. Calling either dotnet build or
msbuild is equivalent when passing in a folder profile. When calling MSBuild directly on Windows, the .NET

Framework version of MSBuild is used. MSDeploy is currently limited to Windows machines for publishing.
Calling dotnet build on a non-folder profile invokes MSBuild, and MSBuild uses MSDeploy on non-folder
profiles. Calling dotnet build on a non-folder profile invokes MSBuild (using MSDeploy) and results in a failure
(even when running on a Windows platform). To publish with a non-folder profile, call MSBuild directly.

The following folder publish profile was created with Visual Studio and publishes to a network share:

https://github.com/aspnet/websdk#microsoftnetsdkpublish
https://docs.microsoft.com/dotnet/core/tools/dotnet-build

<?xml version="1.0" encoding="utf-8"?>
<!--
This file is used by the publish/package process of your Web project.
You can customize the behavior of this process by editing this
MSBuild file.
-->
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <WebPublishMethod>FileSystem</WebPublishMethod>
 <PublishProvider>FileSystem</PublishProvider>
 <LastUsedBuildConfiguration>Release</LastUsedBuildConfiguration>
 <LastUsedPlatform>Any CPU</LastUsedPlatform>
 <SiteUrlToLaunchAfterPublish />
 <LaunchSiteAfterPublish>True</LaunchSiteAfterPublish>
 <ExcludeApp_Data>False</ExcludeApp_Data>
 <PublishFramework>netcoreapp1.1</PublishFramework>
 <ProjectGuid>c30c453c-312e-40c4-aec9-394a145dee0b</ProjectGuid>
 <publishUrl>\\r8\Release\AdminWeb</publishUrl>
 <DeleteExistingFiles>False</DeleteExistingFiles>
 </PropertyGroup>
</Project>

dotnet build -c Release /p:DeployOnBuild=true /p:PublishProfile=FolderProfile

msbuild /p:Configuration=Release /p:DeployOnBuild=true /p:PublishProfile=FolderProfile

Publish to an MSDeploy endpoint from the command line

msbuild <path-to-project-file> /p:DeployOnBuild=true /p:PublishProfile=<Publish Profile> /p:Username=
<USERNAME> /p:Password=<PASSWORD>

Note <LastUsedBuildConfiguration> is set to Release . When publishing from Visual Studio, the
<LastUsedBuildConfiguration> configuration property value is set using the value when the publish process is

started. The <LastUsedBuildConfiguration> configuration property is special and shouldn't be overridden in an
imported MSBuild file. This property can be overridden from the command line.

Using the .NET Core CLI:

Using MSBuild:

Publishing can be accomplished using the .NET Core CLI or MSBuild. dotnet publish runs in the context of .NET
Core. The msbuild command requires .NET Framework, which limits it to Windows environments.

The easiest way to publish with MSDeploy is to first create a publish profile in Visual Studio 2017 and use the
profile from the command line.

In the following sample, an ASP.NET Core web app is created (using dotnet new mvc), and an Azure publish
profile is added with Visual Studio.

Run msbuild from a Developer Command Prompt for VS 2017. The Developer Command Prompt has the
correct msbuild.exe in its path with some MSBuild variables set.

MSBuild uses the following syntax:

Get the Password from the <Publish name>.PublishSettings file. Download the .PublishSettings file from either :

Solution Explorer : Right-click on the Web App and select Download Publish Profile.

msbuild "C:\Webs\Web1\Web1.csproj" /p:DeployOnBuild=true
 /p:PublishProfile="Web11112 - Web Deploy" /p:Username="$Web11112"
 /p:Password="<password removed>"

Exclude files

<ItemGroup>
 <Content Update="wwwroot/content/**/*.txt" CopyToPublishDirectory="Never" />
</ItemGroup>

<ItemGroup>
 <MsDeploySkipRules Include="CustomSkipFolder">
 <ObjectName>dirPath</ObjectName>
 <AbsolutePath>wwwroot\\content</AbsolutePath>
 </MsDeploySkipRules>
</ItemGroup>

<ItemGroup>
 <MsDeploySkipRules Include="CustomSkipFile">
 <ObjectName>filePath</ObjectName>
 <AbsolutePath>Views\\Home\\About1.cshtml</AbsolutePath>
 </MsDeploySkipRules>

 <MsDeploySkipRules Include="CustomSkipFile">
 <ObjectName>filePath</ObjectName>
 <AbsolutePath>Views\\Home\\About2.cshtml</AbsolutePath>
 </MsDeploySkipRules>

 <MsDeploySkipRules Include="CustomSkipFile">
 <ObjectName>filePath</ObjectName>
 <AbsolutePath>Views\\Home\\About3.cshtml</AbsolutePath>
 </MsDeploySkipRules>
</ItemGroup>

Azure portal: Click Get publish profile on the Web App's Overview panel.

Username can be found in the publish profile.

The following sample uses the Web11112 - Web Deploy publish profile:

When publishing ASP.NET Core web apps, the build artifacts and contents of the wwwroot folder are included.
msbuild supports globbing patterns. For example, the following <Content> element excludes all text (.txt) files

from the wwwroot/content folder and all its subfolders.

The preceding markup can be added to a publish profile or the .csproj file. When added to the .csproj file, the rule
is added to all publish profiles in the project.

The following <MsDeploySkipRules> element excludes all files from the wwwroot/content folder :

<MsDeploySkipRules> won't delete the skip targets from the deployment site. <Content> targeted files and folders
are deleted from the deployment site. For example, suppose a deployed web app had the following files:

Views/Home/About1.cshtml

Views/Home/About2.cshtml

Views/Home/About3.cshtml

If the following <MsDeploySkipRules> elements are added, those files wouldn't be deleted on the deployment site.

https://gruntjs.com/configuring-tasks#globbing-patterns

<ItemGroup>
 <Content Update="Views/Home/About?.cshtml" CopyToPublishDirectory="Never" />
</ItemGroup>

MSDeployPublish:
 Starting Web deployment task from source:
manifest(C:\Webs\Web1\obj\Release\netcoreapp1.1\PubTmp\Web1.SourceManifest.
 xml) to Destination: auto().
 Deleting file (Web11112\Views\Home\About1.cshtml).
 Deleting file (Web11112\Views\Home\About2.cshtml).
 Deleting file (Web11112\Views\Home\About3.cshtml).
 Updating file (Web11112\web.config).
 Updating file (Web11112\Web1.deps.json).
 Updating file (Web11112\Web1.dll).
 Updating file (Web11112\Web1.pdb).
 Updating file (Web11112\Web1.runtimeconfig.json).
 Successfully executed Web deployment task.
 Publish Succeeded.
Done Building Project "C:\Webs\Web1\Web1.csproj" (default targets).

Include files

<ItemGroup>
 <_CustomFiles Include="$(MSBuildProjectDirectory)/../images/**/*" />
 <DotnetPublishFiles Include="@(_CustomFiles)">
 <DestinationRelativePath>wwwroot/images/%(RecursiveDir)%(Filename)%(Extension)</DestinationRelativePath>
 </DotnetPublishFiles>
</ItemGroup>

The preceding <MsDeploySkipRules> elements prevent the skipped files from being deployed. It won't delete those
files once they're deployed.

The following <Content> element deletes the targeted files at the deployment site:

Using command-line deployment with the preceding <Content> element yields the following output:

The following markup includes an images folder outside the project directory to the wwwroot/images folder of
the publish site:

The markup can be added to the .csproj file or the publish profile. If it's added to the .csproj file, it's included in
each publish profile in the project.

The following highlighted markup shows how to:

Copy a file from outside the project into the wwwroot folder.
Exclude the wwwroot\Content folder.
Exclude Views\Home\About2.cshtml.

<?xml version="1.0" encoding="utf-8"?>
<!--
This file is used by the publish/package process of your Web project.
You can customize the behavior of this process by editing this
MSBuild file.
-->
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <WebPublishMethod>FileSystem</WebPublishMethod>
 <PublishProvider>FileSystem</PublishProvider>
 <LastUsedBuildConfiguration>Release</LastUsedBuildConfiguration>
 <LastUsedPlatform>Any CPU</LastUsedPlatform>
 <SiteUrlToLaunchAfterPublish />
 <LaunchSiteAfterPublish>True</LaunchSiteAfterPublish>
 <ExcludeApp_Data>False</ExcludeApp_Data>
 <PublishFramework />
 <ProjectGuid>afa9f185-7ce0-4935-9da1-ab676229d68a</ProjectGuid>
 <publishUrl>bin\Release\PublishOutput</publishUrl>
 <DeleteExistingFiles>False</DeleteExistingFiles>
 </PropertyGroup>
 <ItemGroup>
 <ResolvedFileToPublish Include="..\ReadMe2.MD">
 <RelativePath>wwwroot\ReadMe2.MD</RelativePath>
 </ResolvedFileToPublish>

 <Content Update="wwwroot\Content***" CopyToPublishDirectory="Never" />
 <Content Update="Views\Home\About2.cshtml" CopyToPublishDirectory="Never" />

 </ItemGroup>
</Project>

Run a target before or after publishing

<Target Name="CustomActionsBeforePublish" BeforeTargets="BeforePublish">
 <Message Text="Inside BeforePublish" Importance="high" />
 </Target>
 <Target Name="CustomActionsAfterPublish" AfterTargets="AfterPublish">
 <Message Text="Inside AfterPublish" Importance="high" />
</Target>

Publish to a server using an untrusted certificate

<PropertyGroup>
 <AllowUntrustedCertificate>True</AllowUntrustedCertificate>
</PropertyGroup>

The Kudu service

See the WebSDK Readme for more deployment samples.

The built-in BeforePublish and AfterPublish targets execute a target before or after the publish target. Add the
following elements to the publish profile to log console messages both before and after publishing:

Add the <AllowUntrustedCertificate> property with a value of True to the publish profile:

To view the files in an Azure App Service web app deployment, use the Kudu service. Append the scm token to
the web app name. For example:

https://github.com/aspnet/websdk
https://github.com/projectkudu/kudu/wiki/Accessing-the-kudu-service

URL RESULT

http://mysite.azurewebsites.net/ Web App

http://mysite.scm.azurewebsites.net/ Kudu service

Additional resources

Select the Debug Console menu item to view, edit, delete, or add files.

Web Deploy (MSDeploy) simplifies deployment of web apps and websites to IIS servers.
https://github.com/aspnet/websdk: File issues and request features for deployment.

https://github.com/projectkudu/kudu/wiki/Kudu-console
https://www.iis.net/downloads/microsoft/web-deploy
https://github.com/aspnet/websdk/issues

ASP.NET Core directory structure
5/7/2018 • 2 minutes to read • Edit Online

APP TYPE DIRECTORY STRUCTURE

Framework-dependent Deployment

Self-contained Deployment

By Luke Latham

In ASP.NET Core, the published application directory, publish, is comprised of application files, config files, static
assets, packages, and the runtime (for self-contained deployments).

publish†
logs† (optional unless required to receive
stdout logs)
Views† (MVC apps; if views aren't precompiled)
Pages† (MVC or Razor Pages apps; if pages
aren't precompiled)
wwwroot†
*.dll files
<assembly-name>.deps.json
<assembly-name>.dll
<assembly-name>.pdb
<assembly-name>.PrecompiledViews.dll
<assembly-name>.PrecompiledViews.pdb
<assembly-name>.runtimeconfig.json
web.config (IIS deployments)

publish†
logs† (optional unless required to receive
stdout logs)
refs†
Views† (MVC apps; if views aren't precompiled)
Pages† (MVC or Razor Pages apps; if pages
aren't precompiled)
wwwroot†
*.dll files
<assembly-name>.deps.json
<assembly-name>.exe
<assembly-name>.pdb
<assembly-name>.PrecompiledViews.dll
<assembly-name>.PrecompiledViews.pdb
<assembly-name>.runtimeconfig.json
web.config (IIS deployments)

†Indicates a directory

The publish directory represents the content root path, also called the application base path, of the deployment.
Whatever name is given to the publish directory of the deployed app on the server, its location serves as the
server's physical path to the hosted app.

The wwwroot directory, if present, only contains static assets.

The stdout logs directory can be created for the deployment using one of the following two approaches:

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/directory-structure.md
https://github.com/guardrex
https://docs.microsoft.com/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/dotnet/core/deploying/#self-contained-deployments-scd

<Target Name="CreateLogsFolder" AfterTargets="Publish">
 <MakeDir Directories="$(PublishDir)Logs"
 Condition="!Exists('$(PublishDir)Logs')" />
 <WriteLinesToFile File="$(PublishDir)Logs\.log"
 Lines="Generated file"
 Overwrite="True"
 Condition="!Exists('$(PublishDir)Logs\.log')" />
</Target>

Add the following <Target> element to the project file:

The <MakeDir> element creates an empty Logs folder in the published output. The element uses the
PublishDir property to determine the target location for creating the folder. Several deployment

methods, such as Web Deploy, skip empty folders during deployment. The <WriteLinesToFile> element
generates a file in the Logs folder, which guarantees deployment of the folder to the server. Note that
folder creation may still fail if the worker process doesn't have write access to the target folder.

Physically create the Logs directory on the server in the deployment.

The deployment directory requires Read/Execute permissions. The Logs directory requires Read/Write
permissions. Additional directories where files are written require Read/Write permissions.

Common errors reference for Azure App Service
and IIS with ASP.NET Core
5/16/2018 • 8 minutes to read • Edit Online

IMPORTANTIMPORTANT

Installer unable to obtain VC++ Redistributable

OS upgrade removed the 32-bit ASP.NET Core Module

By Luke Latham

The following isn't a complete list of errors. If you encounter an error not listed here, open a new issue with
detailed instructions to reproduce the error.

Collect the following information:

Browser behavior
Application Event Log entries
ASP.NET Core Module stdout log entries

Compare the information to the following common errors. If a match is found, follow the troubleshooting advice.

ASP.NET Core preview releases with Azure App Service

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core
preview release, see Deploy ASP.NET Core preview release to Azure App Service.

Installer Exception: 0x80072efd or 0x80072f76 - Unspecified error

Installer Log Exception†: Error 0x80072efd or 0x80072f76: Failed to execute EXE package

†The log is located at C:\Users\
{USER}\AppData\Local\Temp\dd_DotNetCoreWinSvrHosting__{timestamp}.log.

Troubleshooting:

If the system doesn't have Internet access while installing the Hosting Bundle, this exception occurs when the
installer is prevented from obtaining the Microsoft Visual C++ 2015 Redistributable. Obtain an installer from
the Microsoft Download Center. If the installer fails, the server may not receive the .NET Core runtime
required to host a framework-dependent deployment (FDD). If hosting an FDD, confirm that the runtime is
installed in Programs & Features. If needed, obtain a runtime installer from .NET All Downloads. After
installing the runtime, restart the system or restart IIS by executing net stop was /y followed by net start
w3svc from a command prompt.

Application Log: The Module DLL C:\WINDOWS\system32\inetsrv\aspnetcore.dll failed to load. The
data is the error.

Troubleshooting:

Non-OS files in the C:\Windows\SysWOW64\inetsrv directory aren't preserved during an OS upgrade. If
the ASP.NET Core Module is installed prior to an OS upgrade and then any AppPool is run in 32-bit mode

https://github.com/aspnet/Docs/blob/master/aspnetcore/host-and-deploy/azure-iis-errors-reference.md
https://github.com/guardrex
https://github.com/aspnet/Docs/issues/new
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/net/download/all

Platform conflicts with RID

URI endpoint wrong or stopped website

CoreWebEngine or W3SVC server features disabled

Incorrect website physical path or app missing

after an OS upgrade, this issue is encountered. After an OS upgrade, repair the ASP.NET Core Module. See
Install the .NET Core Hosting bundle. Select Repair when the installer is run.

Browser: HTTP Error 502.5 - Process Failure

Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:
{PATH}' failed to start process with commandline '"C:\{PATH}{assembly}.{exe|dll}" ', ErrorCode =
'0x80004005 : ff.

ASP.NET Core Module Log: Unhandled Exception: System.BadImageFormatException: Could not load
file or assembly '{assembly}.dll'. An attempt was made to load a program with an incorrect format.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the
app. For more information, see Troubleshooting.

Confirm that the <PlatformTarget> in the .csproj doesn't conflict with the RID. For example, don't specify a
<PlatformTarget> of x86 and publish with an RID of win10-x64 , either by using dotnet publish -c Release

-r win10-x64 or by setting the <RuntimeIdentifiers> in the .csproj to win10-x64 . The project publishes
without warning or error but fails with the above logged exceptions on the system.

If this exception occurs for an Azure Apps deployment when upgrading an app and deploying newer
assemblies, manually delete all files from the prior deployment. Lingering incompatible assemblies can
result in a System.BadImageFormatException exception when deploying an upgraded app.

Browser: ERR_CONNECTION_REFUSED

Application Log: No entry

ASP.NET Core Module Log: Log file not created

Troubleshooting:

Confirm the correct URI endpoint for the app is being used. Check the bindings.

Confirm that the IIS website isn't in the Stopped state.

OS Exception: The IIS 7.0 CoreWebEngine and W3SVC features must be installed to use the ASP.NET Core
Module.

Troubleshooting:

Confirm that the proper role and features are enabled. See IIS Configuration.

Browser: 403 Forbidden - Access is denied --OR-- 403.14 Forbidden - The Web server is configured to
not list the contents of this directory.

Application Log: No entry

ASP.NET Core Module Log: Log file not created

Incorrect role, module not installed, or incorrect permissions

Incorrect processPath, missing PATH variable, Hosting Bundle not
installed, system/IIS not restarted, VC++ Redistributable not installed,
or dotnet.exe access violation

Troubleshooting:

Check the IIS website Basic Settings and the physical app folder. Confirm that the app is in the folder at the
IIS website Physical path.

Browser: 500.19 Internal Server Error - The requested page cannot be accessed because the related
configuration data for the page is invalid.

Application Log: No entry

ASP.NET Core Module Log: Log file not created

Troubleshooting:

Confirm that the proper role is enabled. See IIS Configuration.

Check Programs & Features and confirm that the Microsoft ASP.NET Core Module has been
installed. If the Microsoft ASP.NET Core Module isn't present in the list of installed programs, install the
module. See Install the .NET Core Hosting Bundle.

Make sure that the Application Pool > Process Model > Identity is set to ApplicationPoolIdentity
or the custom identity has the correct permissions to access the app's deployment folder.

Browser: HTTP Error 502.5 - Process Failure

Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:\
{PATH}' failed to start process with commandline '".{assembly}.exe" ', ErrorCode = '0x80070002 : 0.

ASP.NET Core Module Log: Log file created but empty

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the
app. For more information, see Troubleshooting.

Check the processPath attribute on the <aspNetCore> element in web.config to confirm that it's dotnet for
a framework-dependent deployment (FDD) or .{assembly}.exe for a self-contained deployment (SCD).

For an FDD, dotnet.exe might not be accessible via the PATH settings. Confirm that *C:\Program
Files\dotnet* exists in the System PATH settings.

For an FDD, dotnet.exe might not be accessible for the user identity of the Application Pool. Confirm that
the AppPool user identity has access to the C:\Program Files\dotnet directory. Confirm that there are no
deny rules configured for the AppPool user identity on the C:\Program Files\dotnet and app directories.

An FDD may have been deployed and .NET Core installed without restarting IIS. Either restart the server
or restart IIS by executing net stop was /y followed by net start w3svc from a command prompt.

An FDD may have been deployed without installing the .NET Core runtime on the hosting system. If the
.NET Core runtime hasn't been installed, run the .NET Core Hosting Bundle installer on the system.
See Install the .NET Core Hosting Bundle. If attempting to install the .NET Core runtime on a system
without an Internet connection, obtain the runtime from .NET All Downloads and run the Hosting Bundle
installer to install the ASP.NET Core Module. Complete the installation by restarting the system or

https://www.microsoft.com/net/download/all

Incorrect arguments of <aspNetCore> element

Missing .NET Framework version

Stopped Application Pool

IIS Integration middleware not implemented

restarting IIS by executing net stop was /y followed by net start w3svc from a command prompt.

An FDD may have been deployed and the Microsoft Visual C++ 2015 Redistributable (x64) isn't installed
on the system. Obtain an installer from the Microsoft Download Center.

Browser: HTTP Error 502.5 - Process Failure

Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:\
{PATH}' failed to start process with commandline '"dotnet" .{assembly}.dll', ErrorCode = '0x80004005 :
80008081.

ASP.NET Core Module Log: The application to execute does not exist: 'PATH{assembly}.dll'

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the
app. For more information, see Troubleshooting.

Examine the arguments attribute on the <aspNetCore> element in web.config to confirm that it's either (a) .
{assembly}.dll for a framework-dependent deployment (FDD); or (b) not present, an empty string
(arguments=""), or a list of the app's arguments (arguments="arg1, arg2, ...") for a self-contained
deployment (SCD).

Browser: 502.3 Bad Gateway - There was a connection error while trying to route the request.

Application Log: ErrorCode = Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with
physical root 'C:\{PATH}' failed to start process with commandline '"dotnet" .{assembly}.dll', ErrorCode =
'0x80004005 : 80008081.

ASP.NET Core Module Log: Missing method, file, or assembly exception. The method, file, or assembly
specified in the exception is a .NET Framework method, file, or assembly.

Troubleshooting:

Install the .NET Framework version missing from the system.

For a framework-dependent deployment (FDD), confirm that the correct runtime installed on the system.
If the project is upgraded from 1.1 to 2.0, deployed to the hosting system, and this exception results,
ensure that the 2.0 framework is on the hosting system.

Browser: 503 Service Unavailable

Application Log: No entry

ASP.NET Core Module Log: Log file not created

Troubleshooting

Confirm that the Application Pool isn't in the Stopped state.

Browser: HTTP Error 502.5 - Process Failure

https://www.microsoft.com/download/details.aspx?id=53840

Sub-application includes a <handlers> section

stdout log path incorrect

Application configuration general issue

Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:\
{PATH}' created process with commandline '"C:\{PATH}{assembly}.{exe|dll}" ' but either crashed or did not
reponse or did not listen on the given port '{PORT}', ErrorCode = '0x800705b4'

ASP.NET Core Module Log: Log file created and shows normal operation.

Troubleshooting

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the
app. For more information, see Troubleshooting.

Confirm that either :

The IIS Integration middleware is referencedby calling the UseIISIntegration method on the app's
WebHostBuilder (ASP.NET Core 1.x)

The apps uses the CreateDefaultBuilder method (ASP.NET Core 2.x).
See Host in ASP.NET Core for details.

Browser: HTTP Error 500.19 - Internal Server Error

Application Log: No entry

ASP.NET Core Module Log: Log file created and shows normal operation for the root app. Log file not
created for the sub-app.

Troubleshooting

Confirm that the sub-app's web.config file doesn't include a <handlers> section.

Browser: The app responds normally.

Application Log: Warning: Could not create stdoutLogFile \?
\C:_apps\app_folder\bin\Release\netcoreapp2.0\win10-
x64\publish\logs\path_doesnt_exist\stdout_8748_201831835937.log, ErrorCode = -2147024893.

ASP.NET Core Module Log: Log file not created

Troubleshooting

The stdoutLogFile path specified in the <aspNetCore> element of web.config doesn't exist. For more
information, see the Log creation and redirection section of the ASP.NET Core Module configuration
reference topic.

Browser: HTTP Error 502.5 - Process Failure

Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:\
{PATH}' created process with commandline '"C:\{PATH}{assembly}.{exe|dll}" ' but either crashed or did not
reponse or did not listen on the given port '{PORT}', ErrorCode = '0x800705b4'

ASP.NET Core Module Log: Log file created but empty

Troubleshooting

This general exception indicates that the process failed to start, most likely due to an app configuration issue.
Referring to Directory Structure, confirm that the app's deployed files and folders are appropriate and that the
app's configuration files are present and contain the correct settings for the app and environment. For more
information, see Troubleshooting.

Overview of ASP.NET Core Security
3/22/2018 • 2 minutes to read • Edit Online

ASP.NET Core security features

Authentication vs. Authorization

Common Vulnerabilities in software

ASP.NET Security Documentation

ASP.NET Core enables developers to easily configure and manage security for their apps. ASP.NET Core contains
features for managing authentication, authorization, data protection, SSL enforcement, app secrets, anti-request
forgery protection, and CORS management. These security features allow you to build robust yet secure ASP.NET
Core apps.

ASP.NET Core provides many tools and libraries to secure your apps including built-in Identity providers but you
can use 3rd party identity services such as Facebook, Twitter, or LinkedIn. With ASP.NET Core, you can easily
manage app secrets, which are a way to store and use confidential information without having to expose it in the
code.

Authentication is a process in which a user provides credentials that are then compared to those stored in an
operating system, database, app or resource. If they match, users authenticate successfully, and can then perform
actions that they're authorized for, during an authorization process. The authorization refers to the process that
determines what a user is allowed to do.

Another way to think of authentication is to consider it as a way to enter a space, such as a server, database, app or
resource, while authorization is which actions the user can perform to which objects inside that space (server,
database, or app).

ASP.NET Core and EF contain features that help you secure your apps and prevent security breaches. The following
list of links takes you to documentation detailing techniques to avoid the most common security vulnerabilities in
web apps:

Cross-site scripting attacks
SQL injection attacks
Cross-Site Request Forgery (CSRF)
Open redirect attacks

There are more vulnerabilities that you should be aware of. For more information, see the section in this document
on ASP.NET Security Documentation.

Authentication
Introduction to Identity
Enable authentication using Facebook, Google, and other external providers
Enable authentication with WS-Federation
Configure Windows Authentication
Account confirmation and password recovery
Two-factor authentication with SMS

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/index.md
https://docs.microsoft.com/ef/core/querying/raw-sql

Authorization

Data protection

Use cookie authentication without Identity
Azure Active Directory

Secure ASP.NET Core apps with IdentityServer4

Integrate Azure AD into an ASP.NET Core web app
Call an ASP.NET Core Web API from a WPF app using Azure AD
Call a Web API in an ASP.NET Core web app using Azure AD
An ASP.NET Core web app with Azure AD B2C

Introduction
Create an app with user data protected by authorization
Simple authorization
Role-based authorization
Claims-based authorization
Policy-based authorization
Dependency injection in requirement handlers
Resource-based authorization
View-based authorization
Limit identity by scheme

Introduction to data protection
Get started with the Data Protection APIs
Consumer APIs

Configuration

Extensibility APIs

Implementation

Consumer APIs Overview
Purpose strings
Purpose hierarchy and multi-tenancy
Hash passwords
Limit the lifetime of protected payloads
Unprotect payloads whose keys have been revoked

Configure data protection
Default settings
Machine-wide policy
Non DI-aware scenarios

Core cryptography extensibility
Key management extensibility
Miscellaneous APIs

Authenticated encryption details
Subkey derivation and authenticated encryption
Context headers
Key management
Key storage providers
Key encryption at rest
Key immutability and settings
Key storage format

https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-native-aspnetcore/
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-webapi-openidconnect-aspnetcore/
https://azure.microsoft.com/resources/samples/active-directory-b2c-dotnetcore-webapp/
https://identityserver4.readthedocs.io

Create an app with user data protected by authorization
Safe storage of app secrets in development
Azure Key Vault configuration provider
Enforce SSL
Anti-Request Forgery
Prevent open redirect attacks
Prevent Cross-Site Scripting
Enable Cross-Origin Requests (CORS)
Share cookies among apps

Compatibility
Ephemeral data protection providers

Replace in ASP.NET

Authentication in ASP.NET Core
3/15/2018 • 2 minutes to read • Edit Online

Community OSS authentication options

Introduction to Identity

Enable authentication using Facebook, Google, and other external providers

Enable authentication with WS-Federation

Enable QR code generation in Identity

Configure Windows Authentication

Account confirmation and password recovery

Two-factor authentication with SMS

Use cookie authentication without Identity

Azure Active Directory

Integrate Azure AD into an ASP.NET Core web app

Integrate Azure AD B2C into a customer-facing ASP.NET Core web app

Integrate Azure AD B2C into an ASP.NET Core web API

Call an ASP.NET Core Web API from a WPF app using Azure AD

Call a Web API in an ASP.NET Core web app using Azure AD

Secure ASP.NET Core apps with IdentityServer4

Secure ASP.NET Core apps with Azure App Service Authentication (Easy Auth)

Articles based on projects created with individual user accounts

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/index.md
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-native-aspnetcore/
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-webapi-openidconnect-aspnetcore/
http://docs.identityserver.io/en/release/
https://docs.microsoft.com/azure/app-service/app-service-authentication-overview

Introduction to Identity on ASP.NET Core
5/12/2018 • 9 minutes to read • Edit Online

Overview of Identity

By Pranav Rastogi, Rick Anderson, Tom Dykstra, Jon Galloway, Erik Reitan, and Steve Smith

ASP.NET Core Identity is a membership system which allows you to add login functionality to your application.
Users can create an account and login with a user name and password or they can use an external login
provider such as Facebook, Google, Microsoft Account, Twitter or others.

You can configure ASP.NET Core Identity to use a SQL Server database to store user names, passwords, and
profile data. Alternatively, you can use your own persistent store, for example, an Azure Table Storage. This
document contains instructions for Visual Studio and for using the CLI.

View or download the sample code. (How to download)

In this topic, you'll learn how to use ASP.NET Core Identity to add functionality to register, log in, and log out a
user. For more detailed instructions about creating apps using ASP.NET Core Identity, see the Next Steps
section at the end of this article.

1. Create an ASP.NET Core Web Application project with Individual User Accounts.

Visual Studio
.NET Core CLI

In Visual Studio, select File > New > Project. Select ASP.NET Core Web Application and click OK.

Select an ASP.NET Core Web Application (Model-View-Controller) for ASP.NET Core 2.x, then
select Change Authentication.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/identity.md
https://github.com/rustd
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://github.com/Erikre
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authentication/identity/sample/src/ASPNETCore-IdentityDemoComplete/

A dialog appears offering authentication choices. Select Individual User Accounts and click OK to
return to the previous dialog.

Selecting Individual User Accounts directs Visual Studio to create Models, ViewModels, Views,
Controllers, and other assets required for authentication as part of the project template.

2. Configure Identity services and add middleware in Startup .

The Identity services are added to the application in the ConfigureServices method in the Startup

class:

ASP.NET Core 2.x
ASP.NET Core 1.x

// This method gets called by the runtime. Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.Configure<IdentityOptions>(options =>
 {
 // Password settings
 options.Password.RequireDigit = true;
 options.Password.RequiredLength = 8;
 options.Password.RequireNonAlphanumeric = false;
 options.Password.RequireUppercase = true;
 options.Password.RequireLowercase = false;
 options.Password.RequiredUniqueChars = 6;

 // Lockout settings
 options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(30);
 options.Lockout.MaxFailedAccessAttempts = 10;
 options.Lockout.AllowedForNewUsers = true;

 // User settings
 options.User.RequireUniqueEmail = true;
 });

 services.ConfigureApplicationCookie(options =>
 {
 // Cookie settings
 options.Cookie.HttpOnly = true;
 options.ExpireTimeSpan = TimeSpan.FromMinutes(30);
 // If the LoginPath isn't set, ASP.NET Core defaults
 // the path to /Account/Login.
 options.LoginPath = "/Account/Login";
 // If the AccessDeniedPath isn't set, ASP.NET Core defaults
 // the path to /Account/AccessDenied.
 options.AccessDeniedPath = "/Account/AccessDenied";
 options.SlidingExpiration = true;
 });

 // Add application services.
 services.AddTransient<IEmailSender, EmailSender>();

 services.AddMvc();
}

These services are made available to the application through dependency injection.

Identity is enabled for the application by calling UseAuthentication in the Configure method.
UseAuthentication adds authentication middleware to the request pipeline.

// This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseAuthentication();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

For more information about the application start up process, see Application Startup.

services.AddDbContext<ApplicationDbContext>(options =>
 options.UseInMemoryDatabase(Guid.NewGuid().ToString()));

3. Create a user.

Launch the application and then click on the Register link.

If this is the first time you're performing this action, you may be required to run migrations. The
application prompts you to Apply Migrations. Refresh the page if needed.

Alternately, you can test using ASP.NET Core Identity with your app without a persistent database by
using an in-memory database. To use an in-memory database, add the
Microsoft.EntityFrameworkCore.InMemory package to your app and modify your app's call to
AddDbContext in ConfigureServices as follows:

When the user clicks the Register link, the Register action is invoked on AccountController . The
Register action creates the user by calling CreateAsync on the _userManager object (provided to
AccountController by dependency injection):

//
// POST: /Account/Register
[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Register(RegisterViewModel model)
{
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser { UserName = model.Email, Email = model.Email };
 var result = await _userManager.CreateAsync(user, model.Password);
 if (result.Succeeded)
 {
 // For more information on how to enable account confirmation and password reset please
visit http://go.microsoft.com/fwlink/?LinkID=532713
 // Send an email with this link
 //var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
 //var callbackUrl = Url.Action("ConfirmEmail", "Account", new { userId = user.Id, code =
code }, protocol: HttpContext.Request.Scheme);
 //await _emailSender.SendEmailAsync(model.Email, "Confirm your account",
 // "Please confirm your account by clicking this link: <a href=\"" + callbackUrl +
"\">link");
 await _signInManager.SignInAsync(user, isPersistent: false);
 _logger.LogInformation(3, "User created a new account with password.");
 return RedirectToAction(nameof(HomeController.Index), "Home");
 }
 AddErrors(result);
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

If the user was created successfully, the user is logged in by the call to _signInManager.SignInAsync .

Note: See account confirmation for steps to prevent immediate login at registration.

4. Log in.

Users can sign in by clicking the Log in link at the top of the site, or they may be navigated to the Login
page if they attempt to access a part of the site that requires authorization. When the user submits the
form on the Login page, the AccountController Login action is called.

The Login action calls PasswordSignInAsync on the _signInManager object (provided to
AccountController by dependency injection).

//
// POST: /Account/Login
[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Login(LoginViewModel model, string returnUrl = null)
{
 ViewData["ReturnUrl"] = returnUrl;
 if (ModelState.IsValid)
 {
 // This doesn't count login failures towards account lockout
 // To enable password failures to trigger account lockout, set lockoutOnFailure: true
 var result = await _signInManager.PasswordSignInAsync(model.Email,
 model.Password, model.RememberMe, lockoutOnFailure: false);
 if (result.Succeeded)
 {
 _logger.LogInformation(1, "User logged in.");
 return RedirectToLocal(returnUrl);
 }
 if (result.RequiresTwoFactor)
 {
 return RedirectToAction(nameof(SendCode), new { ReturnUrl = returnUrl, RememberMe =
model.RememberMe });
 }
 if (result.IsLockedOut)
 {
 _logger.LogWarning(2, "User account locked out.");
 return View("Lockout");
 }
 else
 {
 ModelState.AddModelError(string.Empty, "Invalid login attempt.");
 return View(model);
 }
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

//
// POST: /Account/LogOut
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> LogOut()
{
 await _signInManager.SignOutAsync();
 _logger.LogInformation(4, "User logged out.");
 return RedirectToAction(nameof(HomeController.Index), "Home");
}

The base Controller class exposes a User property that you can access from controller methods. For
instance, you can enumerate User.Claims and make authorization decisions. For more information, see
Authorization.

5. Log out.

Clicking the Log out link calls the LogOut action.

The preceding code above calls the _signInManager.SignOutAsync method. The SignOutAsync method
clears the user's claims stored in a cookie.

 6. Configuration.

// This method gets called by the runtime. Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.Configure<IdentityOptions>(options =>
 {
 // Password settings
 options.Password.RequireDigit = true;
 options.Password.RequiredLength = 8;
 options.Password.RequireNonAlphanumeric = false;
 options.Password.RequireUppercase = true;
 options.Password.RequireLowercase = false;
 options.Password.RequiredUniqueChars = 6;

 // Lockout settings
 options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(30);
 options.Lockout.MaxFailedAccessAttempts = 10;
 options.Lockout.AllowedForNewUsers = true;

 // User settings
 options.User.RequireUniqueEmail = true;
 });

 services.ConfigureApplicationCookie(options =>
 {
 // Cookie settings
 options.Cookie.HttpOnly = true;
 options.ExpireTimeSpan = TimeSpan.FromMinutes(30);
 // If the LoginPath isn't set, ASP.NET Core defaults
 // the path to /Account/Login.
 options.LoginPath = "/Account/Login";
 // If the AccessDeniedPath isn't set, ASP.NET Core defaults
 // the path to /Account/AccessDenied.
 options.AccessDeniedPath = "/Account/AccessDenied";
 options.SlidingExpiration = true;
 });

 // Add application services.
 services.AddTransient<IEmailSender, EmailSender>();

 services.AddMvc();
}

Identity has some default behaviors that can be overridden in the app's startup class. IdentityOptions don't
need to be configured when using the default behaviors. The following code sets several password strength
options:

ASP.NET Core 2.x
ASP.NET Core 1.x

For more information about how to configure Identity, see Configure Identity.

You also can configure the data type of the primary key, see Configure Identity primary keys data type.

7. View the database.

If your app is using a SQL Server database (the default on Windows and for Visual Studio users), you
can view the database the app created. You can use SQL Server Management Studio. Alternatively,

Identity Components

Migrating to ASP.NET Core Identity

[Authorize]
public IActionResult About()
{
 ViewData["Message"] = "Your application description page.";
 return View();
}

from Visual Studio, select View > SQL Server Object Explorer. Connect to
(localdb)\MSSQLLocalDB. The database with a name matching aspnet-<name of your project>-
<date string> is displayed.

Expand the database and its Tables, then right-click the dbo.AspNetUsers table and select View Data.

8. Verify Identity works

The default ASP.NET Core Web Application project template allows users to access any action in the
application without having to login. To verify that ASP.NET Identity works, add an [Authorize] attribute
to the About action of the Home Controller.

Visual Studio
.NET Core CLI

Run the project using Ctrl + F5 and navigate to the About page. Only authenticated users may access
the About page now, so ASP.NET redirects you to the login page to login or register.

The primary reference assembly for the Identity system is Microsoft.AspNetCore.Identity . This package
contains the core set of interfaces for ASP.NET Core Identity, and is included by
Microsoft.AspNetCore.Identity.EntityFrameworkCore .

These dependencies are needed to use the Identity system in ASP.NET Core applications:

Microsoft.AspNetCore.Identity.EntityFrameworkCore - Contains the required types to use Identity with
Entity Framework Core.

Microsoft.EntityFrameworkCore.SqlServer - Entity Framework Core is Microsoft's recommended data
access technology for relational databases like SQL Server. For testing, you can use
Microsoft.EntityFrameworkCore.InMemory .

Microsoft.AspNetCore.Authentication.Cookies - Middleware that enables an app to use cookie-based
authentication.

For additional information and guidance on migrating your existing Identity store see Migrate Authentication
and Identity.

Setting password strength

Next Steps

See Configuration for a sample that sets the minimum password requirements.

Migrate Authentication and Identity
Account Confirmation and Password Recovery
Two-factor authentication with SMS
Facebook, Google, and external provider authentication

Scaffold Identity in ASP.NET Core projects
6/18/2018 • 12 minutes to read • Edit Online

Scaffold identity into an empty project

By Rick Anderson

ASP.NET Core 2.1 and later provides ASP.NET Core Identity as a Razor Class Library. Applications that include
Identity can apply the scaffolder to selectively add the source code contained in the Identity Razor Class Library
(RCL). You might want to generate source code so you can modify the code and change the behavior. For example,
you could instruct the scaffolder to generate the code used in registration. Generated code takes precedence over
the same code in the Identity RCL. To gain full control of the UI and not use the default RCL, see the section Create
full identity UI source.

Applications that do not include authentication can apply the scaffolder to add the RCL Identity package. You have
the option of selecting Identity code to be generated.

Although the scaffolder generates most of the necessary code, you'll have to update your project to complete the
process. This document explains the steps needed to complete an Identity scaffolding update.

When the Identity scaffolder is run, a ScaffoldingReadme.txt file is created in the project directory. The
ScaffoldingReadme.txt file contains general instructions on what's needed to complete the Identity scaffolding
update. This document contains more complete instructions than the ScaffoldingReadme.txt file.

We recommend using a source control system that shows file differences and allows you to back out of changes.
Inspect the changes after running the Identity scaffolder.

Run the Identity scaffolder :

Visual Studio
.NET Core CLI

From Solution Explorer, right-click on the project > Add > New Scaffolded Item.
From the left pane of the Add Scaffold dialog, select Identity > ADD .
In the ADD Identity dialog, select the options you want.

Select ADD .

Select your existing layout page, or your layout file will be overwritten with incorrect markup. For
example ~/Pages/Shared/_Layout.cshtml for Razor Pages ~/Views/Shared/_Layout.cshtml for MVC
projects
Select the + button to create a new Data context class.

Add the following highlighted calls to the Startup class:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/scaffold-identity.md
https://twitter.com/RickAndMSFT

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvc();
 }
}

Add-Migration CreateIdentitySchema
Update-Database

Scaffold identity into a Razor project without existing authorization

UseHsts is recommended but not required. See HTTP Strict Transport Security Protocol for more information.

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and update
the database. For example, run the following commands:

Visual Studio
.NET Core CLI

In the Visual Studio Package Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration command is arbitrary.
"CreateIdentitySchema" describes the migration.

Run the Identity scaffolder :

Visual Studio
.NET Core CLI

From Solution Explorer, right-click on the project > Add > New Scaffolded Item.
From the left pane of the Add Scaffold dialog, select Identity > ADD .
In the ADD Identity dialog, select the options you want.

Select ADD .

Select your existing layout page, or your layout file will be overwritten with incorrect markup. For
example ~/Pages/Shared/_Layout.cshtml for Razor Pages ~/Views/Shared/_Layout.cshtml for MVC
projects
Select the + button to create a new Data context class.

https://docs.microsoft.com/ef/core/managing-schemas/migrations/

Migrations, UseAuthentication, and layoutMigrations, UseAuthentication, and layout

Add-Migration CreateIdentitySchema
Update-Database

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseAuthentication();

 app.UseMvc();
 }
}

Layout changesLayout changes

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />

Identity is configured in Areas/Identity/IdentityHostingStartup.cs. for more information, see IHostingStartup.

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and update
the database. For example, run the following commands:

Visual Studio
.NET Core CLI

In the Visual Studio Package Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration command is arbitrary.
"CreateIdentitySchema" describes the migration.

In the Configure method of the Startup class, call UseAuthentication after UseStaticFiles :

UseHsts is recommended but not required. See HTTP Strict Transport Security Protocol for more information.

Optional: Add the login partial (_LoginPartial) to the layout file:

https://docs.microsoft.com/ef/core/managing-schemas/migrations/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication?view=aspnetcore-2.0#Microsoft_AspNetCore_Builder_AuthAppBuilderExtensions_UseAuthentication_Microsoft_AspNetCore_Builder_IApplicationBuilder_

 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - RazorNoAuth8</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-page="/Index" class="navbar-brand">RazorNoAuth8
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-page="/Index">Home
 <a asp-page="/About">About
 <a asp-page="/Contact">Contact

 <partial name="_LoginPartial" />
 </div>
 </div>
 </nav>

 <partial name="_CookieConsentPartial" />

 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2018 - RazorNoAuth8</p>
 </footer>
 </div>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment exclude="Development">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.3.1.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>

 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

Scaffold identity into a Razor project with authorization

Scaffold identity into an MVC project without existing authorization

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />

Run the Identity scaffolder :

Visual Studio
.NET Core CLI

From Solution Explorer, right-click on the project > Add > New Scaffolded Item.
From the left pane of the Add Scaffold dialog, select Identity > ADD .
In the ADD Identity dialog, select the options you want.

Select your existing layout page, or your layout file will be overwritten with incorrect markup. When an
existing _Layout.cshtml file is selected, it is not overwritten.

For example ~/Pages/Shared/_Layout.cshtml for Razor Pages ~/Views/Shared/_Layout.cshtml for MVC projects

To use your existing data context, select at least one file to override. You must select at least one file to add your
data context.

To create a new user context and possibly create a custom user class for Identity:

Select your data context class.
Select ADD .

Select the + button to create a new Data context class.
Select ADD .

Note: If you're creating a new user context, you don't have to select a file to override.

Some Identity options are configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see
IHostingStartup.

Run the Identity scaffolder :

Visual Studio
.NET Core CLI

From Solution Explorer, right-click on the project > Add > New Scaffolded Item.
From the left pane of the Add Scaffold dialog, select Identity > ADD .
In the ADD Identity dialog, select the options you want.

Select ADD .

Select your existing layout page, or your layout file will be overwritten with incorrect markup. For
example ~/Pages/Shared/_Layout.cshtml for Razor Pages ~/Views/Shared/_Layout.cshtml for MVC
projects
Select the + button to create a new Data context class.

Optional: Add the login partial (_LoginPartial) to the Views/Shared/_Layout.cshtml file:

 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - MvcNoAuth3</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Home" asp-action="Index" class="navbar-brand">MvcNoAuth3
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 <partial name="_LoginPartial" />
 </div>
 </div>
 </nav>

 <partial name="_CookieConsentPartial" />

 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2018 - MvcNoAuth3</p>
 </footer>
 </div>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment exclude="Development">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.3.1.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>

 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

Add-Migration CreateIdentitySchema
Update-Database

public class Startup
{

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 }
}

Scaffold identity into an MVC project with authorization

Move the Pages/Shared/_LoginPartial.cshtml file to Views/Shared/_LoginPartial.cshtml

Identity is configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see IHostingStartup.

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and update
the database. For example, run the following commands:

Visual Studio
.NET Core CLI

In the Visual Studio Package Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration command is arbitrary.
"CreateIdentitySchema" describes the migration.

Call UseAuthentication after UseStaticFiles :

UseHsts is recommended but not required. See HTTP Strict Transport Security Protocol for more information.

Run the Identity scaffolder :

Visual Studio
.NET Core CLI

https://docs.microsoft.com/ef/core/managing-schemas/migrations/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication?view=aspnetcore-2.0#Microsoft_AspNetCore_Builder_AuthAppBuilderExtensions_UseAuthentication_Microsoft_AspNetCore_Builder_IApplicationBuilder_

Create full identity UI source

From Solution Explorer, right-click on the project > Add > New Scaffolded Item.
From the left pane of the Add Scaffold dialog, select Identity > ADD .
In the ADD Identity dialog, select the options you want.

Select your existing layout page, or your layout file will be overwritten with incorrect markup. When an
existing _Layout.cshtml file is selected, it is not overwritten.

For example ~/Pages/Shared/_Layout.cshtml for Razor Pages ~/Views/Shared/_Layout.cshtml for MVC projects

To use your existing data context, select at least one file to override. You must select at least one file to add your
data context.

To create a new user context and possibly create a custom user class for Identity:

Select your data context class.
Select ADD .

Select the + button to create a new Data context class.
Select ADD .

Note: If you're creating a new user context, you don't have to select a file to override.

Delete the Pages/Shared folder and the files in that folder.

To maintain full control of the Identity UI, run the Identity scaffolder and select Override all files.

The following highlighted code shows the changes to replace the default Identity UI with Identity in an ASP.NET
Core 2.1 web app. You might want to do this to have full control of the Identity UI.

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<IdentityUser, IdentityRole>()
 // services.AddDefaultIdentity<IdentityUser>()
 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1)
 .AddRazorPagesOptions(options =>
 {
 options.AllowAreas = true;
 options.Conventions.AuthorizeAreaFolder("Identity", "/Account/Manage");
 options.Conventions.AuthorizeAreaPage("Identity", "/Account/Logout");
 });

 services.ConfigureApplicationCookie(options =>
 {
 options.LoginPath = $"/Identity/Account/Login";
 options.LogoutPath = $"/Identity/Account/Logout";
 options.AccessDeniedPath = $"/Identity/Account/AccessDenied";
 });

 // using Microsoft.AspNetCore.Identity.UI.Services;
 services.AddSingleton<IEmailSender, EmailSender>();
}

services.AddIdentity<IdentityUser, IdentityRole>()
 // services.AddDefaultIdentity<IdentityUser>()
 .AddEntityFrameworkStores<ApplicationDbContext>();

services.ConfigureApplicationCookie(options =>
{
 options.LoginPath = $"/Identity/Account/Login";
 options.LogoutPath = $"/Identity/Account/Logout";
 options.AccessDeniedPath = $"/Identity/Account/AccessDenied";
});

services.ConfigureApplicationCookie(options =>
{
 options.LoginPath = $"/Identity/Account/Login";
 options.LogoutPath = $"/Identity/Account/Logout";
 options.AccessDeniedPath = $"/Identity/Account/AccessDenied";
});

The default Identity is replaced in the following code:

The following code configures ASP.NET Core to authorize the Identity pages that require authorization:

The following the code sets the Identity cookie to use the correct Identity pages path.

Register an IEmailSender implementation, for example:

// using Microsoft.AspNetCore.Identity.UI.Services;
services.AddSingleton<IEmailSender, EmailSender>();

Add, download, and delete custom user data to
Identity in an ASP.NET Core project
6/13/2018 • 7 minutes to read • Edit Online

Prerequisites

Create a Razor web app

Run the Identity scaffolder

By Rick Anderson

This article shows how to:

Add custom user data to an ASP.NET Core web app.
Decorate the custom user data model with the PersonalData attribute so it's automatically available for
download and deletion. Making the data able to be downloaded and deleted helps meet GDPR requirements.

The project sample is created from a Razor Pages web app, but the instructions are similar for a ASP.NET Core
MVC web app.

View or download sample code (how to download)

.NET Core 2.1 SDK or later

Visual Studio
.NET Core CLI

From the Visual Studio File menu, select New > Project. Name the project WebApp1 if you want to it match
the namespace of the download sample code.
Select ASP.NET Core Web Application > OK
Select ASP.NET Core 2.1 in the dropdown
Select Web Application > OK
Build and run the project.

Visual Studio
.NET Core CLI

From Solution Explorer, right-click on the project > Add > New Scaffolded Item.
From the left pane of the Add Scaffold dialog, select Identity > ADD .
In the ADD Identity dialog, the following options:

Select your existing layout file ~/Pages/Shared/_Layout.cshtml

Select the following files to override:

Select the + button to create a new Data context class. Accept the type
(WebApp1.Models.WebApp1Context if you named the project WebApp1).
Select the + button to create a new User class. Accept the type (WebApp1User if you named the project
WebApp1) > Add.

Account/Register
Account/Manage/Index

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/add-user-data.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.personaldataattribute?view=aspnetcore-2.1
https://github.com/aspnet/Docs/tree/live/aspnetcore/security/authentication/add-user-data/sample
https://www.microsoft.com/net/download/all
https://github.com/aspnet/Docs/tree/live/aspnetcore/security/authentication/add-user-data/sample

Add custom user data to the Identity DB

using Microsoft.AspNetCore.Identity;
using System;

namespace WebApp1.Areas.Identity.Data
{
 public class WebApp1User : IdentityUser
 {
 [PersonalData]
 public string Name { get; set; }
 [PersonalData]
 public DateTime DOB { get; set; }
 }
}

Update the Account/Manage/Index.cshtml pageUpdate the Account/Manage/Index.cshtml page

public partial class IndexModel : PageModel
{
 private readonly UserManager<WebApp1User> _userManager;
 private readonly SignInManager<WebApp1User> _signInManager;
 private readonly IEmailSender _emailSender;

 public IndexModel(
 UserManager<WebApp1User> userManager,
 SignInManager<WebApp1User> signInManager,
 IEmailSender emailSender)
 {
 _userManager = userManager;
 _signInManager = signInManager;

Select ADD .

Follow the instruction in Migrations, UseAuthentication, and layout to perform the following steps:

Create a migration and update the database.
Add UseAuthentication to Startup.Configure .
Add <partial name="_LoginPartial" /> to the layout file.
Test the app:

Register a user
Select the new user name (next to the Logout link). You might need to expand the window or select the
navigation bar icon to show the user name and other links.
Select the Personal Data tab.
Select the Download button and examined the PersonalData.json file.
Test the Delete button, which deletes the logged on user.

Update the IdentityUser derived class with custom properties. If you named your project WebApp1, the file is
named Areas/Identity/Data/WebApp1User.cs. Update the file with the following code:

Properties decorated with the PersonalData attribute are:

Deleted when the Areas/Identity/Pages/Account/Manage/DeletePersonalData.cshtml Razor Page calls
UserManager.Delete .

Included in the downloaded data by the Areas/Identity/Pages/Account/Manage/DownloadPersonalData.cshtml
Razor Page.

Update the InputModel in Areas/Identity/Pages/Account/Manage/Index.cshtml.cs with the following highlighted
code:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.personaldataattribute?view=aspnetcore-2.1

 _emailSender = emailSender;
 }

 public string Username { get; set; }

 public bool IsEmailConfirmed { get; set; }

 [TempData]
 public string StatusMessage { get; set; }
 [BindProperty]
 public InputModel Input { get; set; }

 public class InputModel
 {
 [Required]
 [DataType(DataType.Text)]
 [Display(Name = "Full name")]
 public string Name { get; set; }

 [Required]
 [Display(Name = "Birth Date")]
 [DataType(DataType.Date)]
 public DateTime DOB { get; set; }

 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Phone]
 [Display(Name = "Phone number")]
 public string PhoneNumber { get; set; }
 }

 public async Task<IActionResult> OnGetAsync()
 {
 var user = await _userManager.GetUserAsync(User);
 if (user == null)
 {
 return NotFound($"Unable to load user with ID '{_userManager.GetUserId(User)}'.");
 }

 var userName = await _userManager.GetUserNameAsync(user);
 var email = await _userManager.GetEmailAsync(user);
 var phoneNumber = await _userManager.GetPhoneNumberAsync(user);

 Username = userName;

 Input = new InputModel
 {
 Name = user.Name,
 DOB = user.DOB,
 Email = email,
 PhoneNumber = phoneNumber
 };

 IsEmailConfirmed = await _userManager.IsEmailConfirmedAsync(user);

 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var user = await _userManager.GetUserAsync(User);
 if (user == null)

 {
 return NotFound($"Unable to load user with ID '{_userManager.GetUserId(User)}'.");
 }

 if (Input.Name != user.Name)
 {
 user.Name = Input.Name;
 }

 if (Input.DOB != user.DOB)
 {
 user.DOB = Input.DOB;
 }

 var email = await _userManager.GetEmailAsync(user);
 if (Input.Email != email)
 {
 var setEmailResult = await _userManager.SetEmailAsync(user, Input.Email);
 if (!setEmailResult.Succeeded)
 {
 var userId = await _userManager.GetUserIdAsync(user);
 throw new InvalidOperationException($"Unexpected error occurred setting email for user with ID
'{userId}'.");
 }
 }

 var phoneNumber = await _userManager.GetPhoneNumberAsync(user);
 if (Input.PhoneNumber != phoneNumber)
 {
 var setPhoneResult = await _userManager.SetPhoneNumberAsync(user, Input.PhoneNumber);
 if (!setPhoneResult.Succeeded)
 {
 var userId = await _userManager.GetUserIdAsync(user);
 throw new InvalidOperationException($"Unexpected error occurred setting phone number for user
with ID '{userId}'.");
 }
 }

 await _userManager.UpdateAsync(user);

 await _signInManager.RefreshSignInAsync(user);
 StatusMessage = "Your profile has been updated";
 return RedirectToPage();
 }

 public async Task<IActionResult> OnPostSendVerificationEmailAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var user = await _userManager.GetUserAsync(User);
 if (user == null)
 {
 return NotFound($"Unable to load user with ID '{_userManager.GetUserId(User)}'.");
 }

 var userId = await _userManager.GetUserIdAsync(user);
 var email = await _userManager.GetEmailAsync(user);
 var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
 var callbackUrl = Url.Page(
 "/Account/ConfirmEmail",
 pageHandler: null,
 values: new { userId = userId, code = code },
 protocol: Request.Scheme);
 await _emailSender.SendEmailAsync(

 await _emailSender.SendEmailAsync(
 email,
 "Confirm your email",
 $"Please confirm your account by clicking
here.");

 StatusMessage = "Verification email sent. Please check your email.";
 return RedirectToPage();
 }
}

Update the Areas/Identity/Pages/Account/Manage/Index.cshtml with the following highlighted markup:

@page
@model IndexModel
@{
 ViewData["Title"] = "Profile";
}

<h4>@ViewData["Title"]</h4>
@Html.Partial("_StatusMessage", Model.StatusMessage)
<div class="row">
 <div class="col-md-6">
 <form id="profile-form" method="post">
 <div asp-validation-summary="All" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Username"></label>
 <input asp-for="Username" class="form-control" disabled />
 </div>
 <div class="form-group">
 <label asp-for="Input.Email"></label>
 @if (Model.IsEmailConfirmed)
 {
 <div class="input-group">
 <input asp-for="Input.Email" class="form-control" />
 <span class="glyphicon glyphicon-ok
text-success">
 </div>
 }
 else
 {
 <input asp-for="Input.Email" class="form-control" />
 <button id="email-verification" type="submit" asp-page-handler="SendVerificationEmail"
class="btn btn-link">Send verification email</button>
 }

 </div>
 <div class="form-group">
 <div class="form-group">
 <label asp-for="Input.Name"></label>
 <input asp-for="Input.Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Input.DOB"></label>
 <input asp-for="Input.DOB" class="form-control" />
 </div>
 <label asp-for="Input.PhoneNumber"></label>
 <input asp-for="Input.PhoneNumber" class="form-control" />

 </div>
 <button type="submit" class="btn btn-default">Save</button>
 </form>
 </div>
</div>

@section Scripts {
 <partial name="_ValidationScriptsPartial" />
}

Update the Account/Register.cshtml pageUpdate the Account/Register.cshtml page

[BindProperty]
public InputModel Input { get; set; }

public string ReturnUrl { get; set; }

public class InputModel
{

Update the InputModel in Areas/Identity/Pages/Account/Register.cshtml.cs with the following highlighted code:

{
 [Required]
 [DataType(DataType.Text)]
 [Display(Name = "Full name")]
 public string Name { get; set; }

 [Required]
 [Display(Name = "Birth Date")]
 [DataType(DataType.Date)]
 public DateTime DOB { get; set; }

 [Required]
 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }

 [Required]
 [StringLength(100, ErrorMessage = "The {0} must be at least {2} and at max {1} characters long.",
MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm password")]
 [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
 public string ConfirmPassword { get; set; }
}

public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
 returnUrl = returnUrl ?? Url.Content("~/");
 if (ModelState.IsValid)
 {
 var user = new WebApp1User {
 UserName = Input.Email,
 Email = Input.Email,
 Name = Input.Name,
 DOB = Input.DOB
 };
 var result = await _userManager.CreateAsync(user, Input.Password);
 if (result.Succeeded)
 {
 _logger.LogInformation("User created a new account with password.");

 var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
 var callbackUrl = Url.Page(
 "/Account/ConfirmEmail",
 pageHandler: null,
 values: new { userId = user.Id, code = code },
 protocol: Request.Scheme);

 await _emailSender.SendEmailAsync(Input.Email, "Confirm your email",
 $"Please confirm your account by clicking
here.");

 await _signInManager.SignInAsync(user, isPersistent: false);
 return LocalRedirect(returnUrl);
 }
 foreach (var error in result.Errors)
 {
 ModelState.AddModelError(string.Empty, error.Description);
 }
 }

 // If we got this far, something failed, redisplay form
 return Page();
}

@page
@model RegisterModel
@{
 ViewData["Title"] = "Register";
}

<h2>@ViewData["Title"]</h2>

<div class="row">
 <div class="col-md-4">
 <form asp-route-returnUrl="@Model.ReturnUrl" method="post">
 <h4>Create a new account.</h4>
 <hr />
 <div asp-validation-summary="All" class="text-danger"></div>

 <div class="form-group">
 <label asp-for="Input.Name"></label>
 <input asp-for="Input.Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Input.DOB"></label>
 <input asp-for="Input.DOB" class="form-control" />

 </div>

 <div class="form-group">
 <label asp-for="Input.Name"></label>
 <input asp-for="Input.Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Input.DOB"></label>
 <input asp-for="Input.DOB" class="form-control" />

 </div>

 <div class="form-group">
 <label asp-for="Input.Email"></label>
 <input asp-for="Input.Email" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Input.Password"></label>
 <input asp-for="Input.Password" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Input.ConfirmPassword"></label>
 <input asp-for="Input.ConfirmPassword" class="form-control" />

 </div>
 <button type="submit" class="btn btn-default">Register</button>
 </form>
 </div>
</div>

@section Scripts {
 <partial name="_ValidationScriptsPartial" />
}

Add a migration for the custom user dataAdd a migration for the custom user data

Update the Areas/Identity/Pages/Account/Register.cshtml with the following highlighted markup:

Build the project.

Add-Migration CustomUserData
Update-Database

Test create, view, download, delete custom user data

Visual Studio
.NET Core CLI

In the Visual Studio Package Manager Console:

Test the app:

Register a new user.
View the custom user data on the /Identity/Account/Manage page.
Download and view the users personal data from the /Identity/Account/Manage/PersonalData page.

Community OSS authentication options for ASP.NET
Core
5/31/2018 • 2 minutes to read • Edit Online

OSS authentication providers

NAME DESCRIPTION

AspNet.Security.OpenIdConnect.Server (ASOS) ASOS is a low-level, protocol-first OpenID Connect server
framework for ASP.NET Core and OWIN/Katana.

Cierge Cierge is an OpenID Connect server that handles user signup,
login, profiles, management, and social logins.

Gluu Server Enterprise ready, open source software for identity, access
management (IAM), and single sign-on (SSO). For more
information, see the Gluu Product Documentation.

IdentityServer IdentityServer is an OpenID Connect and OAuth 2.0
framework for ASP.NET Core, officially certified by the OpenID
Foundation and under governance of the .NET Foundation.
For more information, see Welcome to IdentityServer4
(Documentation).

OpenIddict OpenIddict is an easy-to-use OpenID Connect server for
ASP.NET Core.

This page contains community-provided, open source authentication options for ASP.NET Core. This page is
periodically updated as new providers become available.

The list below is sorted alphabetically.

To add a provider, edit this page.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/community.md
https://github.com/aspnet-contrib/AspNet.Security.OpenIdConnect.Server
https://github.com/pwdless/Cierge
https://gluu.org/
https://gluu.org/docs/
https://identityserver.io/
https://identityserver4.readthedocs.io/en/release/
https://github.com/openiddict/openiddict-core
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faspnet%2FDocs%2Fedit%2Fmaster%2Faspnetcore%2Fsecurity%2Fauthentication%2Fcommunity.md

Configure ASP.NET Core Identity
5/12/2018 • 6 minutes to read • Edit Online

Identity options

Claims IdentityClaims Identity

PROPERTY DESCRIPTION DEFAULT

RoleClaimType Gets or sets the claim type used for a
role claim.

ClaimTypes.Role

SecurityStampClaimType Gets or sets the claim type used for the
security stamp claim.

AspNet.Identity.SecurityStamp

UserIdClaimType Gets or sets the claim type used for the
user identifier claim.

ClaimTypes.NameIdentifier

UserNameClaimType Gets or sets the claim type used for the
user name claim.

ClaimTypes.Name

LockoutLockout

services.AddIdentity<ApplicationUser, IdentityRole>(options =>
 {
 // Lockout settings
 options.Lockout.AllowedForNewUsers = true;
 options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(5);
 options.Lockout.MaxFailedAccessAttempts = 5;
 })
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

var result = await _signInManager.PasswordSignInAsync(
 Input.Email, Input.Password, Input.RememberMe, lockoutOnFailure: true);

ASP.NET Core Identity uses default configuration for settings such as password policy, lockout time, and cookie
settings. These settings can be overridden in the app's Startup class.

The IdentityOptions class represents the options that can be used to configure the Identity system.

IdentityOptions.ClaimsIdentity specifies the ClaimsIdentityOptions with the properties shown in the table.

Locks out the user for a period of time after a given number of failed access attempts (default: 5 minute lockout
after 5 failed access attempts). A successful authentication resets the failed access attempts count and resets the
clock.

The following example shows the default values:

Confirm that PasswordSignInAsync sets lockoutOnFailure to true :

IdentityOptions.Lockout specifies the LockoutOptions with the properties shown in the table.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/identity-configuration.md
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.identityoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.identityoptions.claimsidentity
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions.roleclaimtype
https://docs.microsoft.com/dotnet/api/system.security.claims.claimtypes.role
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions.securitystampclaimtype
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions.useridclaimtype
https://docs.microsoft.com/dotnet/api/system.security.claims.claimtypes.nameidentifier
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions.usernameclaimtype
https://docs.microsoft.com/dotnet/api/system.security.claims.claimtypes.name
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.passwordsigninasync
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.identityoptions.lockout
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions

PROPERTY DESCRIPTION DEFAULT

AllowedForNewUsers Determines if a new user can be locked
out.

true

DefaultLockoutTimeSpan The amount of time a user is locked out
when a lockout occurs.

5 minutes

MaxFailedAccessAttempts The number of failed access attempts
until a user is locked out, if lockout is
enabled.

5

PasswordPassword

services.AddIdentity<ApplicationUser, IdentityRole>(options =>
 {
 // Password settings
 options.Password.RequireDigit = true;
 options.Password.RequiredLength = 8;
 options.Password.RequiredUniqueChars = 2;
 options.Password.RequireLowercase = true;
 options.Password.RequireNonAlphanumeric = true;
 options.Password.RequireUppercase = true;
 })
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

PROPERTY DESCRIPTION DEFAULT

RequireDigit Requires a number between 0-9 in the
password.

true

RequiredLength The minimum length of the password. 6

RequiredUniqueChars Only applies to ASP.NET Core 2.0 or
later.

Requires the number of distinct
characters in the password.

1

RequireLowercase Requires a lowercase character in the
password.

true

RequireNonAlphanumeric Requires a non-alphanumeric character
in the password.

true

By default, Identity requires that passwords contain an uppercase character, lowercase character, a digit, and a non-
alphanumeric character. Passwords must be at least six characters long. PasswordOptions can be changed in
Startup.ConfigureServices .

ASP.NET Core 2.x
ASP.NET Core 1.x

ASP.NET Core 2.0 added the RequiredUniqueChars property. Otherwise, the options are the same as ASP.NET
Core 1.x.

IdentityOptions.Password specifies the PasswordOptions with the properties shown in the table.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.allowedfornewusers
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.defaultlockouttimespan
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.maxfailedaccessattempts
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requireduniquechars
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.identityoptions.password
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requiredigit
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requiredlength
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requireduniquechars
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requirelowercase
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requirenonalphanumeric

RequireUppercase Requires an uppercase character in the
password.

true

PROPERTY DESCRIPTION DEFAULT

Sign-inSign-in

services.AddIdentity<ApplicationUser, IdentityRole>(options =>
 {
 // Signin settings
 options.SignIn.RequireConfirmedEmail = true;
 options.SignIn.RequireConfirmedPhoneNumber = false;
 })
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

PROPERTY DESCRIPTION DEFAULT

RequireConfirmedEmail Requires a confirmed email to sign in. false

RequireConfirmedPhoneNumber Requires a confirmed phone number to
sign in.

false

TokensTokens

PROPERTY DESCRIPTION

AuthenticatorTokenProvider Gets or sets the AuthenticatorTokenProvider used to
validate two-factor sign-ins with an authenticator.

ChangeEmailTokenProvider Gets or sets the ChangeEmailTokenProvider used to
generate tokens used in email change confirmation emails.

ChangePhoneNumberTokenProvider Gets or sets the ChangePhoneNumberTokenProvider used to
generate tokens used when changing phone numbers.

EmailConfirmationTokenProvider Gets or sets the token provider used to generate tokens used
in account confirmation emails.

PasswordResetTokenProvider Gets or sets the IUserTwoFactorTokenProvider used to
generate tokens used in password reset emails.

ProviderMap Used to construct a User Token Provider with the key used as
the provider's name.

UserUser

IdentityOptions.SignIn specifies the SignInOptions with the properties shown in the table.

IdentityOptions.Tokens specifies the TokenOptions with the properties shown in the table.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requireuppercase
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.identityoptions.signin
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.signinoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.signinoptions.requireconfirmedemail
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.signinoptions.requireconfirmedphonenumber
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.identityoptions.tokens
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.tokenoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.authenticatortokenprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.changeemailtokenprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.changephonenumbertokenprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.emailconfirmationtokenprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.passwordresettokenprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iusertwofactortokenprovider-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.providermap
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.tokenproviderdescriptor

services.AddIdentity<ApplicationUser, IdentityRole>(options =>
 {
 // User settings
 options.User.RequireUniqueEmail = true;
 })
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

PROPERTY DESCRIPTION DEFAULT

AllowedUserNameCharacters Allowed characters in the username. abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
-._@+

RequireUniqueEmail Requires each user to have a unique
email.

false

Cookie settings

services.ConfigureApplicationCookie(options =>
{
 options.AccessDeniedPath = "/Account/AccessDenied";
 options.Cookie.Name = "YourAppCookieName";
 options.Cookie.HttpOnly = true;
 options.ExpireTimeSpan = TimeSpan.FromMinutes(60);
 options.LoginPath = "/Account/Login";
 // ReturnUrlParameter requires `using Microsoft.AspNetCore.Authentication.Cookies;`
 options.ReturnUrlParameter = CookieAuthenticationDefaults.ReturnUrlParameter;
 options.SlidingExpiration = true;
});

PROPERTY DESCRIPTION

AccessDeniedPath Informs the handler that it should change an outgoing 403
Forbidden status code into a 302 Redirect onto the given
path.

The default value is /Account/AccessDenied .

AuthenticationScheme Only applies to ASP.NET Core 1.x.

The logical name for a particular authentication scheme.

IdentityOptions.User specifies the UserOptions with the properties shown in the table.

Configure the app's cookie in Startup.ConfigureServices :

ASP.NET Core 2.x
ASP.NET Core 1.x

CookieAuthenticationOptions has the following properties:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.identityoptions.user
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.useroptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.useroptions.allowedusernamecharacters
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.useroptions.requireuniqueemail
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.accessdeniedpath
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions.authenticationscheme

AutomaticAuthenticate Only applies to ASP.NET Core 1.x.

When true, cookie authentication should run on every request
and attempt to validate and reconstruct any serialized
principal it created.

AutomaticChallenge Only applies to ASP.NET Core 1.x.

If true, the authentication middleware handles automatic
challenges. If false, the authentication middleware only alters
responses when explicitly indicated by the
AuthenticationScheme .

ClaimsIssuer Gets or sets the issuer that should be used for any claims that
are created (inherited from AuthenticationSchemeOptions).

Cookie.Domain The domain to associate the cookie with.

Cookie.Expiration Gets or sets the lifespan of the HTTP cookie (not the
authentication cookie). This property is overridden by
ExpireTimeSpan. It shouldn't be used in the context of
CookieAuthentication.

Cookie.HttpOnly Indicates whether a cookie is accessible by client-side script.

The default value is true .

Cookie.Name The name of the cookie.

The default value is .AspNetCore.Cookies .

Cookie.Path The cookie path.

Cookie.SameSite The SameSite attribute of the cookie.

The default value is SameSiteMode.Lax.

Cookie.SecurePolicy The CookieSecurePolicy configuration.

The default value is CookieSecurePolicy.SameAsRequest.

CookieDomain Only applies to ASP.NET Core 1.x.

The domain name where the cookie is served.

CookieHttpOnly Only applies to ASP.NET Core 1.x.

A flag indicating if the cookie should be accessible only to
servers.

The default value is true .

CookiePath Only applies to ASP.NET Core 1.x.

Used to isolate apps running on the same host name.

PROPERTY DESCRIPTION

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions.automaticauthenticate
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions.automaticchallenge
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationschemeoptions.claimsissuer
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationschemeoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.domain
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.expiration
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.expiretimespan
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.httponly
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.name
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.path
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.samesite
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.samesitemode
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.securepolicy
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiesecurepolicy
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiesecurepolicy
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookieauthenticationoptions.cookiedomain
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookieauthenticationoptions.cookiehttponly
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookieauthenticationoptions.cookiepath

CookieSecure Only applies to ASP.NET Core 1.x.

A flag indicating if the cookie created should be limited to
HTTPS (CookieSecurePolicy.Always), HTTP or HTTPS (
CookieSecurePolicy.None), or the same protocol as the

request (CookieSecurePolicy.SameAsRequest).

The default value is CookieSecurePolicy.SameAsRequest .

CookieManager The component used to get cookies from the request or set
them on the response.

DataProtectionProvider If set, the provider used by the CookieAuthenticationHandler
for data protection.

Description Only applies to ASP.NET Core 1.x.

Additional information about the authentication type which is
made available to the app.

Events The handler calls methods on the provider which give the app
control at certain points where processing is occurring.

EventsType If set, the service type to get the Events instance instead of
the property (inherited from AuthenticationSchemeOptions).

ExpireTimeSpan Controls how much time the authentication ticket stored in
the cookie remains valid from the point it's created.

The default value is 14 days.

LoginPath When a user is unauthorized, they're redirected to this path to
login.

The default value is /Account/Login .

LogoutPath When a user is logged out, they're redirected to this path.

The default value is /Account/Logout .

ReturnUrlParameter Determines the name of the query string parameter which is
appended by the middleware when a 401 Unauthorized
status code is changed to a 302 Redirect onto the login path.

The default value is ReturnUrl .

SessionStore An optional container in which to store the identity across
requests.

SlidingExpiration When true, a new cookie is issued with a new expiration time
when the current cookie is more than halfway through the
expiration window.

The default value is true .

PROPERTY DESCRIPTION

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookieauthenticationoptions.cookiesecure
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.cookiemanager
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.dataprotectionprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationhandler
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions.description
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.events
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationschemeoptions.eventstype
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationschemeoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.expiretimespan
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.loginpath
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.logoutpath
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.returnurlparameter
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.sessionstore
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.slidingexpiration

TicketDataFormat The TicketDataFormat is used to protect and unprotect the
identity and other properties which are stored in the cookie
value.

PROPERTY DESCRIPTION

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.ticketdataformat

Configure Windows authentication in ASP.NET Core
5/31/2018 • 4 minutes to read • Edit Online

What is Windows authentication?

Enable Windows authentication in an ASP.NET Core app

Use the Windows authentication app templateUse the Windows authentication app template

By Steve Smith and Scott Addie

Windows authentication can be configured for ASP.NET Core apps hosted with IIS, HTTP.sys, or WebListener.

Windows authentication relies on the operating system to authenticate users of ASP.NET Core apps. You can use
Windows authentication when your server runs on a corporate network using Active Directory domain identities
or other Windows accounts to identify users. Windows authentication is best suited to intranet environments in
which users, client applications, and web servers belong to the same Windows domain.

Learn more about Windows authentication and installing it for IIS.

The Visual Studio Web Application template can be configured to support Windows authentication.

In Visual Studio:

1. Create a new ASP.NET Core Web Application.
2. Select Web Application from the list of templates.
3. Select the Change Authentication button and select Windows Authentication.

Run the app. The username appears in the top right of the app.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/windowsauth.md
https://ardalis.com
https://twitter.com/Scott_Addie
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener
https://docs.microsoft.com/iis/configuration/system.webServer/security/authentication/windowsAuthentication/

Visual Studio settings for Windows and anonymous authenticationVisual Studio settings for Windows and anonymous authentication

{
 "iisSettings": {
 "windowsAuthentication": true,
 "anonymousAuthentication": false,
 "iisExpress": {
 "applicationUrl": "http://localhost:52171/",
 "sslPort": 0
 }
 } // additional options trimmed
}

Enable Windows authentication with IIS

Create a new IIS siteCreate a new IIS site

For development work using IIS Express, the template provides all the configuration necessary to use Windows
authentication. The following section shows how to manually configure an ASP.NET Core app for Windows
authentication.

The Visual Studio project Properties page's Debug tab provides check boxes for Windows authentication and
anonymous authentication.

Alternatively, these two properties can be configured in the launchSettings.json file:

IIS uses the ASP.NET Core Module to host ASP.NET Core apps. The module allows Windows authentication to
flow to IIS by default. Windows authentication is configured in IIS, not the app. The following sections show how
to use IIS Manager to configure an ASP.NET Core app to use Windows authentication.

Specify a name and folder and allow it to create a new application pool.

Customize authenticationCustomize authentication

Publish your project to the IIS site folderPublish your project to the IIS site folder

Open the Authentication menu for the site.

Disable Anonymous Authentication and enable Windows Authentication.

Using Visual Studio or the .NET Core CLI, publish the app to the destination folder.

Enable Windows authentication with HTTP.sys or WebListener

public class Program
{
 public static void Main(string[] args) =>
 BuildWebHost(args).Run();

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .UseHttpSys(options =>
 {
 options.Authentication.Schemes =
 AuthenticationSchemes.NTLM | AuthenticationSchemes.Negotiate;
 options.Authentication.AllowAnonymous = false;
 })
 .Build();
}

Work with Windows authentication

Learn more about publishing to IIS.

Launch the app to verify Windows authentication is working.

ASP.NET Core 2.x
ASP.NET Core 1.x

Although Kestrel doesn't support Windows authentication, you can use HTTP.sys to support self-hosted
scenarios on Windows. The following example configures the app's web host to use HTTP.sys with Windows
authentication:

The configuration state of anonymous access determines the way in which the [Authorize] and

Disallow anonymous accessDisallow anonymous access

Allow anonymous accessAllow anonymous access

NOTENOTE

IISIIS

// IISDefaults requires the following import:
// using Microsoft.AspNetCore.Server.IISIntegration;
services.AddAuthentication(IISDefaults.AuthenticationScheme);

HTTP.sysHTTP.sys

// HttpSysDefaults requires the following import:
// using Microsoft.AspNetCore.Server.HttpSys;
services.AddAuthentication(HttpSysDefaults.AuthenticationScheme);

ImpersonationImpersonation

[AllowAnonymous] attributes are used in the app. The following two sections explain how to handle the
disallowed and allowed configuration states of anonymous access.

When Windows authentication is enabled and anonymous access is disabled, the [Authorize] and
[AllowAnonymous] attributes have no effect. If the IIS site (or HTTP.sys or WebListener server) is configured to

disallow anonymous access, the request never reaches your app. For this reason, the [AllowAnonymous] attribute
isn't applicable.

When both Windows authentication and anonymous access are enabled, use the [Authorize] and
[AllowAnonymous] attributes. The [Authorize] attribute allows you to secure pieces of the app which truly do

require Windows authentication. The [AllowAnonymous] attribute overrides [Authorize] attribute usage within
apps which allow anonymous access. See Simple Authorization for attribute usage details.

In ASP.NET Core 2.x, the [Authorize] attribute requires additional configuration in Startup.cs to challenge
anonymous requests for Windows authentication. The recommended configuration varies slightly based on the
web server being used.

By default, users who lack authorization to access a page are presented with an empty HTTP 403 response. The
StatusCodePages middleware can be configured to provide users with a better "Access Denied" experience.

If using IIS, add the following to the ConfigureServices method:

If using HTTP.sys, add the following to the ConfigureServices method:

ASP.NET Core doesn't implement impersonation. Apps run with the application identity for all requests, using
app pool or process identity. If you need to explicitly perform an action on behalf of a user, use
WindowsIdentity.RunImpersonated . Run a single action in this context and then close the context.

app.Run(async (context) =>
{
 try
 {
 var user = (WindowsIdentity)context.User.Identity;

 await context.Response
 .WriteAsync($"User: {user.Name}\tState: {user.ImpersonationLevel}\n");

 WindowsIdentity.RunImpersonated(user.AccessToken, () =>
 {
 var impersonatedUser = WindowsIdentity.GetCurrent();
 var message =
 $"User: {impersonatedUser.Name}\tState: {impersonatedUser.ImpersonationLevel}";

 var bytes = Encoding.UTF8.GetBytes(message);
 context.Response.Body.Write(bytes, 0, bytes.Length);
 });
 }
 catch (Exception e)
 {
 await context.Response.WriteAsync(e.ToString());
 }
});

Note that RunImpersonated doesn't support asynchronous operations and shouldn't be used for complex
scenarios. For example, wrapping entire requests or middleware chains isn't supported or recommended.

Configure Identity primary key data type in ASP.NET
Core
5/12/2018 • 2 minutes to read • Edit Online

Customize the primary key data type

ASP.NET Core Identity allows you to configure the data type used to represent a primary key. Identity uses the
string data type by default. You can override this behavior.

namespace webapptemplate.Models
{
 // Add profile data for application users by adding properties to the ApplicationUser class
 public class ApplicationUser : IdentityUser<Guid>
 {
 }
}

namespace webapptemplate.Models
{
 public class ApplicationRole : IdentityRole<Guid>
 {
 }
}

namespace webapptemplate.Data
{
 public class ApplicationDbContext : IdentityDbContext<ApplicationUser, ApplicationRole, Guid>
 {
 public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder builder)
 {
 base.OnModelCreating(builder);
 // Customize the ASP.NET Identity model and override the defaults if needed.
 // For example, you can rename the ASP.NET Identity table names and more.
 // Add your customizations after calling base.OnModelCreating(builder);
 }
 }
}

1. Create a custom implementation of the IdentityUser class. It represents the type to be used for creating user
objects. In the following example, the default string type is replaced with Guid .

2. Create a custom implementation of the IdentityRole class. It represents the type to be used for creating role
objects. In the following example, the default string type is replaced with Guid .

3. Create a custom database context class. It inherits from the Entity Framework database context class used
for Identity. The TUser and TRole arguments reference the custom user and role classes created in the
previous step, respectively. The Guid data type is defined for the primary key.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/identity-primary-key-configuration.md
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityuser-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityrole-1

Test the changes

[HttpGet]
[AllowAnonymous]
public async Task<Guid> GetCurrentUserId()
{
 ApplicationUser user = await _userManager.GetUserAsync(HttpContext.User);
 return user.Id; // No need to cast here because user.Id is already a Guid, and not a string
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, ApplicationRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 // Add application services.
 services.AddTransient<IEmailSender, EmailSender>();

 services.AddMvc();

4. Register the custom database context class when adding the Identity service in the app's startup class.

ASP.NET Core 2.x
ASP.NET Core 1.x

The AddEntityFrameworkStores method doesn't accept a TKey argument as it did in ASP.NET Core 1.x. The
primary key's data type is inferred by analyzing the DbContext object.

Upon completion of the configuration changes, the property representing the primary key reflects the new data
type. The following example demonstrates accessing the property in an MVC controller.

Custom storage providers for ASP.NET Core Identity
5/30/2018 • 9 minutes to read • Edit Online

Introduction

dotnet new mvc -au Individual
dotnet new webapi -au Individual

The ASP.NET Core Identity architecture

By Steve Smith

ASP.NET Core Identity is an extensible system which enables you to create a custom storage provider and connect
it to your app. This topic describes how to create a customized storage provider for ASP.NET Core Identity. It
covers the important concepts for creating your own storage provider, but isn't a step-by-step walkthrough.

View or download sample from GitHub.

By default, the ASP.NET Core Identity system stores user information in a SQL Server database using Entity
Framework Core. For many apps, this approach works well. However, you may prefer to use a different persistence
mechanism or data schema. For example:

You use Azure Table Storage or another data store.
Your database tables have a different structure.
You may wish to use a different data access approach, such as Dapper.

In each of these cases, you can write a customized provider for your storage mechanism and plug that provider
into your app.

ASP.NET Core Identity is included in project templates in Visual Studio with the "Individual User Accounts" option.

When using the .NET Core CLI, add -au Individual :

ASP.NET Core Identity consists of classes called managers and stores. Managers are high-level classes which an
app developer uses to perform operations, such as creating an Identity user. Stores are lower-level classes that
specify how entities, such as users and roles, are persisted. Stores follow the repository pattern and are closely
coupled with the persistence mechanism. Managers are decoupled from stores, which means you can replace the
persistence mechanism without changing your application code (except for configuration).

The following diagram shows how a web app interacts with the managers, while stores interact with the data
access layer.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/identity-custom-storage-providers.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authentication/identity/sample
https://docs.microsoft.com/azure/storage/
https://github.com/StackExchange/Dapper
http://deviq.com/repository-pattern/

ASP.NET Core Identity stores data types

UsersUsers

User ClaimsUser Claims

User LoginsUser Logins

RolesRoles

To create a custom storage provider, create the data source, the data access layer, and the store classes that interact
with this data access layer (the green and grey boxes in the diagram above). You don't need to customize the
managers or your app code that interacts with them (the blue boxes above).

When creating a new instance of UserManager or RoleManager you provide the type of the user class and pass an
instance of the store class as an argument. This approach enables you to plug your customized classes into
ASP.NET Core.

Reconfigure app to use new storage provider shows how to instantiate UserManager and RoleManager with a
customized store.

ASP.NET Core Identity data types are detailed in the following sections:

Registered users of your web site. The IdentityUser type may be extended or used as an example for your own
custom type. You don't need to inherit from a particular type to implement your own custom identity storage
solution.

A set of statements (or Claims) about the user that represent the user's identity. Can enable greater expression of
the user's identity than can be achieved through roles.

Information about the external authentication provider (like Facebook or a Microsoft account) to use when logging
in a user. Example

https://github.com/aspnet/identity
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.identityuser
https://docs.microsoft.com/dotnet/api/system.security.claims.claim
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.identityuserlogin

The data access layer

Context classContext class

User StorageUser Storage

Role StorageRole Storage

UserClaims StorageUserClaims Storage

UserLogins StorageUserLogins Storage

UserRole StorageUserRole Storage

public async Task<IdentityResult> CreateAsync(ApplicationUser user,
 CancellationToken cancellationToken = default(CancellationToken))
{
 cancellationToken.ThrowIfCancellationRequested();
 if (user == null) throw new ArgumentNullException(nameof(user));

 return await _usersTable.CreateAsync(user);
}

Customize the user class

Authorization groups for your site. Includes the role Id and role name (like "Admin" or "Employee"). Example

This topic assumes you are familiar with the persistence mechanism that you are going to use and how to create
entities for that mechanism. This topic doesn't provide details about how to create the repositories or data access
classes; it provides some suggestions about design decisions when working with ASP.NET Core Identity.

You have a lot of freedom when designing the data access layer for a customized store provider. You only need to
create persistence mechanisms for features that you intend to use in your app. For example, if you are not using
roles in your app, you don't need to create storage for roles or user role associations. Your technology and existing
infrastructure may require a structure that's very different from the default implementation of ASP.NET Core
Identity. In your data access layer, you provide the logic to work with the structure of your storage implementation.

The data access layer provides the logic to save the data from ASP.NET Core Identity to a data source. The data
access layer for your customized storage provider might include the following classes to store user and role
information.

Encapsulates the information to connect to your persistence mechanism and execute queries. Several data classes
require an instance of this class, typically provided through dependency injection. Example.

Stores and retrieves user information (such as user name and password hash). Example

Stores and retrieves role information (such as the role name). Example

Stores and retrieves user claim information (such as the claim type and value). Example

Stores and retrieves user login information (such as an external authentication provider). Example

Stores and retrieves which roles are assigned to which users. Example

TIP: Only implement the classes you intend to use in your app.

In the data access classes, provide code to perform data operations for your persistence mechanism. For example,
within a custom provider, you might have the following code to create a new user in the store class:

The implementation logic for creating the user is in the _usersTable.CreateAsync method, shown below.

When implementing a storage provider, create a user class which is equivalent to the IdentityUser class.

https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.identityrole
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.identitydbcontext-1
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.userstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.rolestore-1
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.userstore-1
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.userstore-1
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.userstore-1
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.identityuser

Customize the user store

Optional interfacesOptional interfaces

public async Task<IdentityResult> CreateAsync(ApplicationUser user)
{
 string sql = "INSERT INTO dbo.CustomUser " +
 "VALUES (@id, @Email, @EmailConfirmed, @PasswordHash, @UserName)";

 int rows = await _connection.ExecuteAsync(sql, new { user.Id, user.Email, user.EmailConfirmed,
user.PasswordHash, user.UserName });

 if(rows > 0)
 {
 return IdentityResult.Success;
 }
 return IdentityResult.Failed(new IdentityError { Description = $"Could not insert user {user.Email}." });
}

Interfaces to implement when customizing user storeInterfaces to implement when customizing user store

At a minimum, your user class must include an Id and a UserName property.

The IdentityUser class defines the properties that the UserManager calls when performing requested operations.
The default type of the Id property is a string, but you can inherit from
IdentityUser<TKey, TUserClaim, TUserRole, TUserLogin, TUserToken> and specify a different type. The framework

expects the storage implementation to handle data type conversions.

Create a UserStore class that provides the methods for all data operations on the user. This class is equivalent to
the UserStore class. In your UserStore class, implement IUserStore<TUser> and the optional interfaces required.
You select which optional interfaces to implement based on the functionality provided in your app.

IUserRoleStore /dotnet/api/microsoft.aspnetcore.identity.iuserrolestore-1
IUserClaimStore /dotnet/api/microsoft.aspnetcore.identity.iuserclaimstore-1
IUserPasswordStore /dotnet/api/microsoft.aspnetcore.identity.iuserpasswordstore-1
IUserSecurityStampStore
IUserEmailStore
IPhoneNumberStore
IQueryableUserStore
IUserLoginStore
IUserTwoFactorStore
IUserLockoutStore

The optional interfaces inherit from IUserStore . You can see a partially implemented sample user store here.

Within the UserStore class, you use the data access classes that you created to perform operations. These are
passed in using dependency injection. For example, in the SQL Server with Dapper implementation, the UserStore

class has the CreateAsync method which uses an instance of DapperUsersTable to insert a new record:

IUserStore
The IUserStore<TUser> interface is the only interface you must implement in the user store. It defines methods
for creating, updating, deleting, and retrieving users.
IUserClaimStore
The IUserClaimStore<TUser> interface defines the methods you implement to enable user claims. It contains
methods for adding, removing and retrieving user claims.
IUserLoginStore

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.userstore-1
https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/identity-custom-storage-providers/sample/CustomIdentityProviderSample/CustomProvider/CustomUserStore.cs
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iuserstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iuserclaimstore-1

public class UserStore : IUserStore<IdentityUser>,
 IUserClaimStore<IdentityUser>,
 IUserLoginStore<IdentityUser>,
 IUserRoleStore<IdentityUser>,
 IUserPasswordStore<IdentityUser>,
 IUserSecurityStampStore<IdentityUser>
{
 // interface implementations not shown
}

IdentityUserClaim, IdentityUserLogin, and IdentityUserRoleIdentityUserClaim, IdentityUserLogin, and IdentityUserRole

The IUserLoginStore<TUser> defines the methods you implement to enable external authentication providers.
It contains methods for adding, removing and retrieving user logins, and a method for retrieving a user based
on the login information.
IUserRoleStore
The IUserRoleStore<TUser> interface defines the methods you implement to map a user to a role. It contains
methods to add, remove, and retrieve a user's roles, and a method to check if a user is assigned to a role.
IUserPasswordStore
The IUserPasswordStore<TUser> interface defines the methods you implement to persist hashed passwords. It
contains methods for getting and setting the hashed password, and a method that indicates whether the user
has set a password.
IUserSecurityStampStore
The IUserSecurityStampStore<TUser> interface defines the methods you implement to use a security stamp
for indicating whether the user's account information has changed. This stamp is updated when a user changes
the password, or adds or removes logins. It contains methods for getting and setting the security stamp.
IUserTwoFactorStore
The IUserTwoFactorStore<TUser> interface defines the methods you implement to support two factor
authentication. It contains methods for getting and setting whether two factor authentication is enabled for a
user.
IUserPhoneNumberStore
The IUserPhoneNumberStore<TUser> interface defines the methods you implement to store user phone
numbers. It contains methods for getting and setting the phone number and whether the phone number is
confirmed.
IUserEmailStore
The IUserEmailStore<TUser> interface defines the methods you implement to store user email addresses. It
contains methods for getting and setting the email address and whether the email is confirmed.
IUserLockoutStore
The IUserLockoutStore<TUser> interface defines the methods you implement to store information about
locking an account. It contains methods for tracking failed access attempts and lockouts.
IQueryableUserStore
The IQueryableUserStore<TUser> interface defines the members you implement to provide a queryable user
store.

You implement only the interfaces that are needed in your app. For example:

The Microsoft.AspNet.Identity.EntityFramework namespace contains implementations of the IdentityUserClaim,
IdentityUserLogin, and IdentityUserRole classes. If you are using these features, you may want to create your own
versions of these classes and define the properties for your app. However, sometimes it's more efficient to not load
these entities into memory when performing basic operations (such as adding or removing a user's claim). Instead,
the backend store classes can execute these operations directly on the data source. For example, the
UserStore.GetClaimsAsync method can call the userClaimTable.FindByUserId(user.Id) method to execute a query

on that table directly and return a list of claims.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iuserloginstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iuserrolestore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iuserpasswordstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iusersecuritystampstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iusertwofactorstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iuserphonenumberstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iuseremailstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iuserlockoutstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.iqueryableuserstore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityuserclaim-1
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnet.identity.corecompat.identityuserlogin
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityuserrole-1

Customize the role class

using System;

namespace CustomIdentityProviderSample.CustomProvider
{
 public class ApplicationRole
 {
 public Guid Id { get; set; } = Guid.NewGuid();
 public string Name { get; set; }
 }
}

Customize the role store

Reconfigure app to use new storage provider

When implementing a role storage provider, you can create a custom role type. It need not implement a particular
interface, but it must have an Id and typically it will have a Name property.

The following is an example role class:

You can create a RoleStore class that provides the methods for all data operations on roles. This class is equivalent
to the RoleStore class. In the RoleStore class, you implement the IRoleStore<TRole> and optionally the
IQueryableRoleStore<TRole> interface.

IRoleStore<TRole>
The IRoleStore interface defines the methods to implement in the role store class. It contains methods for
creating, updating, deleting and retrieving roles.
RoleStore<TRole>
To customize RoleStore , create a class that implements the IRoleStore interface.

Once you have implemented a storage provider, you configure your app to use it. If your app used the default
provider, replace it with your custom provider.

1. Remove the Microsoft.AspNetCore.EntityFramework.Identity NuGet package.
2. If the storage provider resides in a separate project or package, add a reference to it.
3. Replace all references to Microsoft.AspNetCore.EntityFramework.Identity with a using statement for the

namespace of your storage provider.
4. In the ConfigureServices method, change the AddIdentity method to use your custom types. You can create

your own extension methods for this purpose. See IdentityServiceCollectionExtensions for an example.
5. If you are using Roles, update the RoleManager to use your RoleStore class.
6. Update the connection string and credentials to your app's configuration.

Example:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.rolestore-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.irolestore-1
https://github.com/aspnet/Identity/blob/rel/1.1.0/src/Microsoft.AspNetCore.Identity/IdentityServiceCollectionExtensions.cs

public void ConfigureServices(IServiceCollection services)
{
 // Add identity types
 services.AddIdentity<ApplicationUser, ApplicationRole>()
 .AddDefaultTokenProviders();

 // Identity Services
 services.AddTransient<IUserStore<ApplicationUser>, CustomUserStore>();
 services.AddTransient<IRoleStore<ApplicationRole>, CustomRoleStore>();
 string connectionString = Configuration.GetConnectionString("DefaultConnection");
 services.AddTransient<SqlConnection>(e => new SqlConnection(connectionString));
 services.AddTransient<DapperUsersTable>();

 // additional configuration
}

References
Custom Storage Providers for ASP.NET Identity
ASP.NET Core Identity - This repository includes links to community maintained store providers.

https://docs.microsoft.com/aspnet/identity/overview/extensibility/overview-of-custom-storage-providers-for-aspnet-identity
https://github.com/aspnet/identity

Facebook, Google, and external provider
authentication in ASP.NET Core
5/31/2018 • 3 minutes to read • Edit Online

Create a New ASP.NET Core Project

By Valeriy Novytskyy and Rick Anderson

This tutorial demonstrates how to build an ASP.NET Core 2.x app that enables users to log in using OAuth 2.0
with credentials from external authentication providers.

Facebook, Twitter, Google, and Microsoft providers are covered in the following sections. Other providers are
available in third-party packages such as AspNet.Security.OAuth.Providers and
AspNet.Security.OpenId.Providers.

Enabling users to sign in with their existing credentials is convenient for the users and shifts many of the
complexities of managing the sign-in process onto a third party. For examples of how social logins can drive
traffic and customer conversions, see case studies by Facebook and Twitter.

Note: Packages presented here abstract a great deal of complexity of the OAuth authentication flow, but
understanding the details may become necessary when troubleshooting. Many resources are available; for
example, see Introduction to OAuth 2 or Understanding OAuth 2. Some issues can be resolved by looking at the
ASP.NET Core source code for the provider packages.

In Visual Studio 2017, create a new project from the Start Page, or via File > New > Project.

Select the ASP.NET Core Web Application template available in Visual C# > .NET Core category:

Tap Web Application and verify Authentication is set to Individual User Accounts:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/social/index.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers
https://github.com/aspnet-contrib/AspNet.Security.OpenId.Providers
https://www.facebook.com/unsupportedbrowser
https://dev.twitter.com/resources/case-studies
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
http://www.bubblecode.net/2016/01/22/understanding-oauth2/
https://github.com/aspnet/Security/tree/dev/src

Apply migrations

Require SSL

Use SecretManager to store tokens assigned by login providers

Setup login providers required by your application

Note: This tutorial applies to ASP.NET Core 2.0 SDK version which can be selected at the top of the wizard.

Run the app and select the Log in link.
Select the Register as a new user link.
Enter the email and password for the new account, and then select Register.
Follow the instructions to apply migrations.

OAuth 2.0 requires the use of SSL for authentication over the HTTPS protocol.

Note: Projects created using Web Application or Web API project templates for ASP.NET Core 2.x are
automatically configured to enable SSL and launch with https URL if the Individual User Accounts option was
selected on Change Authentication dialog in the project wizard as shown above.

Require SSL on your site by following the steps in Enforce SSL in an ASP.NET Core app topic.

Social login providers assign Application Id and Application Secret tokens during the registration process
(exact naming varies by provider).

These values are effectively the user name and password your application uses to access their API, and constitute
the "secrets" that can be linked to your application configuration with the help of Secret Manager instead of
storing them in configuration files directly or hard-coding them.

Follow the steps in Safe storage of app secrets in development in ASP.NET Core topic so that you can store
tokens assigned by each login provider below.

services.AddAuthentication()
 .AddMicrosoftAccount(microsoftOptions => { ... })
 .AddGoogle(googleOptions => { ... })
 .AddTwitter(twitterOptions => { ... })
 .AddFacebook(facebookOptions => { ... });

Optionally set password

Use the following topics to configure your application to use the respective providers:

Facebook instructions
Twitter instructions
Google instructions
Microsoft instructions
Other provider instructions

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

When you register with an external login provider, you don't have a password registered with the app. This
alleviates you from creating and remembering a password for the site, but it also makes you dependent on the
external login provider. If the external login provider is unavailable, you won't be able to log in to the web site.

To create a password and sign in using your email that you set during the sign in process with external providers:

Tap the Hello <email alias> link at the top right corner to navigate to the Manage view.

Tap Create

Set a valid password and you can use this to sign in with your email.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication

Next steps
This article introduced external authentication and explained the prerequisites required to add external
logins to your ASP.NET Core app.

Reference provider-specific pages to configure logins for the providers required by your app.

Facebook external login setup in ASP.NET Core
6/14/2018 • 4 minutes to read • Edit Online

Create the app in Facebook

By Valeriy Novytskyy and Rick Anderson

This tutorial shows you how to enable your users to sign in with their Facebook account using a sample ASP.NET
Core 2.0 project created on the previous page. Facebook authentication requires the
Microsoft.AspNetCore.Authentication.Facebook NuGet package. We start by creating a Facebook App ID by
following the official steps.

Navigate to the Facebook Developers app page and sign in. If you don't already have a Facebook account,
use the Sign up for Facebook link on the login page to create one.

Tap the Add a New App button in the upper right corner to create a new App ID.

Fill out the form and tap the Create App ID button.

On the Select a product page, click Set Up on the Facebook Login card.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/social/facebook-logins.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Facebook
https://developers.facebook.com
https://developers.facebook.com/apps/

The Quickstart wizard will launch with Choose a Platform as the first page. Bypass the wizard for now by
clicking the Settings link in the menu on the left:

You are presented with the Client OAuth Settings page:

NOTENOTE

Enter your development URI with /signin-facebook appended into the Valid OAuth Redirect URIs field (for
example: https://localhost:44320/signin-facebook). The Facebook authentication configured later in this
tutorial will automatically handle requests at /signin-facebook route to implement the OAuth flow.

The URI /signin-facebook is set as the default callback of the Facebook authentication provider. You can change the default
callback URI while configuring the Facebook authentication middleware via the inherited
RemoteAuthenticationOptions.CallbackPath property of the FacebookOptions class.

Click Save Changes.

Click the Dashboard link in the left navigation.

On this page, make a note of your App ID and your App Secret . You will add both into your ASP.NET Core
application in the next section:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.facebook.facebookoptions

Store Facebook App ID and App Secret

dotnet user-secrets set Authentication:Facebook:AppId <app-id>
dotnet user-secrets set Authentication:Facebook:AppSecret <app-secret>

Configure Facebook Authentication

services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

services.AddAuthentication().AddFacebook(facebookOptions =>
{
 facebookOptions.AppId = Configuration["Authentication:Facebook:AppId"];
 facebookOptions.AppSecret = Configuration["Authentication:Facebook:AppSecret"];
});

When deploying the site you need to revisit the Facebook Login setup page and register a new public
URI.

Link sensitive settings like Facebook App ID and App Secret to your application configuration using the Secret
Manager. For the purposes of this tutorial, name the tokens Authentication:Facebook:AppId and
Authentication:Facebook:AppSecret .

Execute the following commands to securely store App ID and App Secret using Secret Manager :

ASP.NET Core 2.x
ASP.NET Core 1.x

Add the Facebook service in the ConfigureServices method in the Startup.cs file:

The call to AddIdentity configures the default scheme settings. The AddAuthentication(String) overload sets the
DefaultScheme property. The AddAuthentication(Action<AuthenticationOptions>) overload allows configuring
authentication options, which can be used to set up default authentication schemes for different purposes.
Subsequent calls to AddAuthentication override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per
authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display
name.

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentity
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_Action_Microsoft_AspNetCore_Authentication_AuthenticationOptions__
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication

services.AddAuthentication()
 .AddMicrosoftAccount(microsoftOptions => { ... })
 .AddGoogle(googleOptions => { ... })
 .AddTwitter(twitterOptions => { ... })
 .AddFacebook(facebookOptions => { ... });

Sign in with Facebook

See the FacebookOptions API reference for more information on configuration options supported by Facebook
authentication. Configuration options can be used to:

Request different information about the user.
Add query string arguments to customize the login experience.

Run your application and click Log in. You see an option to sign in with Facebook.

When you click on Facebook, you are redirected to Facebook for authentication:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.facebookoptions

Facebook authentication requests public profile and email address by default:

Troubleshooting

Next steps

Once you enter your Facebook credentials you are redirected back to your site where you can set your email.

You are now logged in using your Facebook credentials:

ASP.NET Core 2.x only: If Identity isn't configured by calling services.AddIdentity in ConfigureServices ,
attempting to authenticate will result in ArgumentException: The 'SignInScheme' option must be provided. The
project template used in this tutorial ensures that this is done.
If the site database has not been created by applying the initial migration, you get A database operation failed
while processing the request error. Tap Apply Migrations to create the database and refresh to continue past
the error.

This article showed how you can authenticate with Facebook. You can follow a similar approach to
authenticate with other providers listed on the previous page.

Once you publish your web site to Azure web app, you should reset the AppSecret in the Facebook
developer portal.

Set the Authentication:Facebook:AppId and Authentication:Facebook:AppSecret as application settings in
the Azure portal. The configuration system is set up to read keys from environment variables.

Twitter external login setup with ASP.NET Core
6/18/2018 • 3 minutes to read • Edit Online

Create the app in Twitter

By Valeriy Novytskyy and Rick Anderson

This tutorial shows you how to enable your users to sign in with their Twitter account using a sample ASP.NET
Core 2.0 project created on the previous page.

Navigate to https://apps.twitter.com/ and sign in. If you don't already have a Twitter account, use the Sign up
now link to create one. After signing in, the Application Management page is shown:

Tap Create New App and fill out the application Name, Description and public Website URI (this can be
temporary until you register the domain name):

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/social/twitter-logins.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://dev.twitter.com/web/sign-in/desktop-browser
https://apps.twitter.com/
https://twitter.com/signup

NOTENOTE

Enter your development URI with /signin-twitter appended into the Valid OAuth Redirect URIs field (for
example: https://localhost:44320/signin-twitter). The Twitter authentication scheme configured later in this
tutorial will automatically handle requests at /signin-twitter route to implement the OAuth flow.

The URI segment /signin-twitter is set as the default callback of the Twitter authentication provider. You can change the
default callback URI while configuring the Twitter authentication middleware via the inherited
RemoteAuthenticationOptions.CallbackPath property of the TwitterOptions class.

Fill out the rest of the form and tap Create your Twitter application. New application details are displayed:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.twitter.twitteroptions

Storing Twitter ConsumerKey and ConsumerSecret

When deploying the site you'll need to revisit the Application Management page and register a new public
URI.

Link sensitive settings like Twitter Consumer Key and Consumer Secret to your application configuration using the
Secret Manager. For the purposes of this tutorial, name the tokens Authentication:Twitter:ConsumerKey and
Authentication:Twitter:ConsumerSecret .

These tokens can be found on the Keys and Access Tokens tab after creating your new Twitter application:

Configure Twitter Authentication

services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

services.AddAuthentication().AddTwitter(twitterOptions =>
{
 twitterOptions.ConsumerKey = Configuration["Authentication:Twitter:ConsumerKey"];
 twitterOptions.ConsumerSecret = Configuration["Authentication:Twitter:ConsumerSecret"];
});

The project template used in this tutorial ensures that Microsoft.AspNetCore.Authentication.Twitter package is
already installed.

To install this package with Visual Studio 2017, right-click on the project and select Manage NuGet
Packages.

To install with .NET Core CLI, execute the following in your project directory:

dotnet add package Microsoft.AspNetCore.Authentication.Twitter

ASP.NET Core 2.x
ASP.NET Core 1.x

Add the Twitter service in the ConfigureServices method in Startup.cs file:

The call to AddIdentity configures the default scheme settings. The AddAuthentication(String) overload sets the

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Twitter
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentity
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_String_

services.AddAuthentication()
 .AddMicrosoftAccount(microsoftOptions => { ... })
 .AddGoogle(googleOptions => { ... })
 .AddTwitter(twitterOptions => { ... })
 .AddFacebook(facebookOptions => { ... });

Sign in with Twitter

DefaultScheme property. The AddAuthentication(Action<AuthenticationOptions>) overload allows configuring
authentication options, which can be used to set up default authentication schemes for different purposes.
Subsequent calls to AddAuthentication override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per
authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display
name.

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

See the TwitterOptions API reference for more information on configuration options supported by Twitter
authentication. This can be used to request different information about the user.

Run your application and click Log in. An option to sign in with Twitter appears:

Clicking on Twitter redirects to Twitter for authentication:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_Action_Microsoft_AspNetCore_Authentication_AuthenticationOptions__
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.twitteroptions

Troubleshooting

After entering your Twitter credentials, you are redirected back to the web site where you can set your email.

You are now logged in using your Twitter credentials:

ASP.NET Core 2.x only: If Identity isn't configured by calling services.AddIdentity in ConfigureServices ,
attempting to authenticate will result in ArgumentException: The 'SignInScheme' option must be provided. The
project template used in this tutorial ensures that this is done.
If the site database has not been created by applying the initial migration, you will get A database operation
failed while processing the request error. Tap Apply Migrations to create the database and refresh to continue
past the error.

Next steps
This article showed how you can authenticate with Twitter. You can follow a similar approach to
authenticate with other providers listed on the previous page.

Once you publish your web site to Azure web app, you should reset the ConsumerSecret in the Twitter
developer portal.

Set the Authentication:Twitter:ConsumerKey and Authentication:Twitter:ConsumerSecret as application
settings in the Azure portal. The configuration system is set up to read keys from environment variables.

Google external login setup in ASP.NET Core
6/18/2018 • 4 minutes to read • Edit Online

Create the app in Google API Console

By Valeriy Novytskyy and Rick Anderson

This tutorial shows you how to enable your users to sign in with their Google+ account using a sample ASP.NET
Core 2.0 project created on the previous page. We start by following the official steps to create a new app in
Google API Console.

Navigate to https://console.developers.google.com/projectselector/apis/library and sign in. If you don't already
have a Google account, use More options > Create account link to create one:

You are redirected to API Manager Library page:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/social/google-logins.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://developers.google.com/identity/sign-in/web/devconsole-project
https://console.developers.google.com/projectselector/apis/library
https://accounts.google.com/SignUpWithoutGmail?service=cloudconsole&continue=https%3A%2F%2Fconsole.developers.google.com%2Fprojectselector%2Fapis%2Flibrary<mpl=api

Tap Create and enter your Project name:

After accepting the dialog, you are redirected back to the Library page allowing you to choose features for your
new app. Find Google+ API in the list and click on its link to add the API feature:

The page for the newly added API is displayed. Tap Enable to add Google+ sign in feature to your app:

After enabling the API, tap Create credentials to configure the secrets:

Choose:
Google+ API
Web server (e.g. node.js, Tomcat), and
User data:

Tap What credentials do I need? which takes you to the second step of app configuration, Create an OAuth
2.0 client ID :

NOTENOTE

Because we are creating a Google+ project with just one feature (sign in), we can enter the same Name for
the OAuth 2.0 client ID as the one we used for the project.

Enter your development URI with /signin-google appended into the Authorized redirect URIs field (for
example: https://localhost:44320/signin-google). The Google authentication configured later in this
tutorial will automatically handle requests at /signin-google route to implement the OAuth flow.

The URI segment /signin-google is set as the default callback of the Google authentication provider. You can change the
default callback URI while configuring the Google authentication middleware via the inherited
RemoteAuthenticationOptions.CallbackPath property of the GoogleOptions class.

Press TAB to add the Authorized redirect URIs entry.

Tap Create client ID , which takes you to the third step, Set up the OAuth 2.0 consent screen:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.google.googleoptions

Enter your public facing Email address and the Product name shown for your app when Google+
prompts the user to sign in. Additional options are available under More customization options.

Tap Continue to proceed to the last step, Download credentials:

Store Google ClientID and ClientSecret

Configure Google Authentication

services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

services.AddAuthentication().AddGoogle(googleOptions =>
{
 googleOptions.ClientId = Configuration["Authentication:Google:ClientId"];
 googleOptions.ClientSecret = Configuration["Authentication:Google:ClientSecret"];
});

Tap Download to save a JSON file with application secrets, and Done to complete creation of the new
app.

When deploying the site you'll need to revisit the Google Console and register a new public url.

Link sensitive settings like Google Client ID and Client Secret to your application configuration using the
Secret Manager. For the purposes of this tutorial, name the tokens Authentication:Google:ClientId and
Authentication:Google:ClientSecret .

The values for these tokens can be found in the JSON file downloaded in the previous step under web.client_id

and web.client_secret .

ASP.NET Core 2.x
ASP.NET Core 1.x

Add the Google service in the ConfigureServices method in Startup.cs file:

The call to AddIdentity configures the default scheme settings. The AddAuthentication(String) overload sets the
DefaultScheme property. The AddAuthentication(Action<AuthenticationOptions>) overload allows configuring
authentication options, which can be used to set up default authentication schemes for different purposes.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentity
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_Action_Microsoft_AspNetCore_Authentication_AuthenticationOptions__

services.AddAuthentication()
 .AddMicrosoftAccount(microsoftOptions => { ... })
 .AddGoogle(googleOptions => { ... })
 .AddTwitter(twitterOptions => { ... })
 .AddFacebook(facebookOptions => { ... });

Sign in with Google

Subsequent calls to AddAuthentication override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per
authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display
name.

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

See the GoogleOptions API reference for more information on configuration options supported by Google
authentication. This can be used to request different information about the user.

Run your application and click Log in. An option to sign in with Google appears:

When you click on Google, you are redirected to Google for authentication:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.googleoptions

Troubleshooting

After entering your Google credentials, then you are redirected back to the web site where you can set your email.

You are now logged in using your Google credentials:

If you receive a 403 (Forbidden) error page from your own app when running in development mode (or break
into the debugger with the same error), ensure that Google+ API has been enabled in the API Manager
Library by following the steps listed earlier on this page. If the sign in doesn't work and you aren't getting any
errors, switch to development mode to make the issue easier to debug.
ASP.NET Core 2.x only: If Identity isn't configured by calling services.AddIdentity in ConfigureServices ,
attempting to authenticate will result in ArgumentException: The 'SignInScheme' option must be provided. The
project template used in this tutorial ensures that this is done.
If the site database has not been created by applying the initial migration, you will get A database operation
failed while processing the request error. Tap Apply Migrations to create the database and refresh to continue
past the error.

Next steps
This article showed how you can authenticate with Google. You can follow a similar approach to
authenticate with other providers listed on the previous page.

Once you publish your web site to Azure web app, you should reset the ClientSecret in the Google API
Console.

Set the Authentication:Google:ClientId and Authentication:Google:ClientSecret as application settings in
the Azure portal. The configuration system is set up to read keys from environment variables.

Microsoft Account external login setup with ASP.NET
Core
6/18/2018 • 4 minutes to read • Edit Online

Create the app in Microsoft Developer Portal

By Valeriy Novytskyy and Rick Anderson

This tutorial shows you how to enable your users to sign in with their Microsoft account using a sample ASP.NET
Core 2.0 project created on the previous page.

Navigate to https://apps.dev.microsoft.com and create or sign into a Microsoft account:

If you don't already have a Microsoft account, tap Create one! After signing in you are redirected to My
applications page:

Tap Add an app in the upper right corner and enter your Application Name and Contact Email:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/social/microsoft-logins.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://apps.dev.microsoft.com
https://signup.live.com/signup?wa=wsignin1.0&rpsnv=13&ct=1478151035&rver=6.7.6643.0&wp=SAPI_LONG&wreply=https%3a%2f%2fapps.dev.microsoft.com%2fLoginPostBack&id=293053&aadredir=1&contextid=D70D4F21246BAB50&bk=1478151036&uiflavor=web&uaid=f0c3de863a914c358b8dc01b1ff49e85&mkt=EN-US&lc=1033&lic=1

For the purposes of this tutorial, clear the Guided Setup check box.

Tap Create to continue to the Registration page. Provide a Name and note the value of the Application
Id, which you use as ClientId later in the tutorial:

Tap Add Platform in the Platforms section and select the Web platform:

NOTENOTE

Store Microsoft Application Id and Password

In the new Web platform section, enter your development URL with /signin-microsoft appended into the
Redirect URLs field (for example: https://localhost:44320/signin-microsoft). The Microsoft authentication
scheme configured later in this tutorial will automatically handle requests at /signin-microsoft route to
implement the OAuth flow:

The URI segment /signin-microsoft is set as the default callback of the Microsoft authentication provider. You can
change the default callback URI while configuring the Microsoft authentication middleware via the inherited
RemoteAuthenticationOptions.CallbackPath property of the MicrosoftAccountOptions class.

Tap Add URL to ensure the URL was added.

Fill out any other application settings if necessary and tap Save at the bottom of the page to save changes
to app configuration.

When deploying the site you'll need to revisit the Registration page and set a new public URL.

Note the Application Id displayed on the Registration page.

Tap Generate New Password in the Application Secrets section. This displays a box where you can copy
the application password:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.microsoftaccount.microsoftaccountoptions

Configure Microsoft Account Authentication

services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

services.AddAuthentication().AddMicrosoftAccount(microsoftOptions =>
{
 microsoftOptions.ClientId = Configuration["Authentication:Microsoft:ApplicationId"];
 microsoftOptions.ClientSecret = Configuration["Authentication:Microsoft:Password"];
});

Link sensitive settings like Microsoft Application ID and Password to your application configuration using the
Secret Manager. For the purposes of this tutorial, name the tokens Authentication:Microsoft:ApplicationId and
Authentication:Microsoft:Password .

The project template used in this tutorial ensures that Microsoft.AspNetCore.Authentication.MicrosoftAccount
package is already installed.

To install this package with Visual Studio 2017, right-click on the project and select Manage NuGet
Packages.

To install with .NET Core CLI, execute the following in your project directory:

dotnet add package Microsoft.AspNetCore.Authentication.MicrosoftAccount

ASP.NET Core 2.x
ASP.NET Core 1.x

Add the Microsoft Account service in the ConfigureServices method in Startup.cs file:

The call to AddIdentity configures the default scheme settings. The AddAuthentication(String) overload sets the
DefaultScheme property. The AddAuthentication(Action<AuthenticationOptions>) overload allows configuring
authentication options, which can be used to set up default authentication schemes for different purposes.
Subsequent calls to AddAuthentication override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per
authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display
name.

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.MicrosoftAccount
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentity
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_Action_Microsoft_AspNetCore_Authentication_AuthenticationOptions__
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication

services.AddAuthentication()
 .AddMicrosoftAccount(microsoftOptions => { ... })
 .AddGoogle(googleOptions => { ... })
 .AddTwitter(twitterOptions => { ... })
 .AddFacebook(facebookOptions => { ... });

Sign in with Microsoft Account

Although the terminology used on Microsoft Developer Portal names these tokens ApplicationId and Password ,
they're exposed as ClientId and ClientSecret to the configuration API.

See the MicrosoftAccountOptions API reference for more information on configuration options supported by
Microsoft Account authentication. This can be used to request different information about the user.

Run your application and click Log in. An option to sign in with Microsoft appears:

When you click on Microsoft, you are redirected to Microsoft for authentication. After signing in with your
Microsoft Account (if not already signed in) you will be prompted to let the app access your info:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.microsoftaccountoptions

Troubleshooting

Next steps

Tap Yes and you will be redirected back to the web site where you can set your email.

You are now logged in using your Microsoft credentials:

If the Microsoft Account provider redirects you to a sign in error page, note the error title and description
query string parameters directly following the # (hashtag) in the Uri.

Although the error message seems to indicate a problem with Microsoft authentication, the most common
cause is your application Uri not matching any of the Redirect URIs specified for the Web platform.

ASP.NET Core 2.x only: If Identity isn't configured by calling services.AddIdentity in ConfigureServices ,
attempting to authenticate will result in ArgumentException: The 'SignInScheme' option must be provided.
The project template used in this tutorial ensures that this is done.

If the site database has not been created by applying the initial migration, you will get A database
operation failed while processing the request error. Tap Apply Migrations to create the database and
refresh to continue past the error.

This article showed how you can authenticate with Microsoft. You can follow a similar approach to
authenticate with other providers listed on the previous page.

Once you publish your web site to Azure web app, you should create a new Password in the Microsoft
Developer Portal.

Set the Authentication:Microsoft:ApplicationId and Authentication:Microsoft:Password as application
settings in the Azure portal. The configuration system is set up to read keys from environment variables.

Short survey of other authentication providers
5/31/2018 • 2 minutes to read • Edit Online

Multiple authentication providers

services.AddAuthentication()
 .AddMicrosoftAccount(microsoftOptions => { ... })
 .AddGoogle(googleOptions => { ... })
 .AddTwitter(twitterOptions => { ... })
 .AddFacebook(facebookOptions => { ... });

 By Rick Anderson, Pranav Rastogi, and Valeriy Novytskyy

Here are set up instructions for some other common OAuth providers. Third-party NuGet packages such as the
ones maintained by aspnet-contrib can be used to complement authentication providers implemented by the
ASP.NET Core team.

Set up LinkedIn sign in: https://www.linkedin.com/developer/apps. See official steps.

Set up Instagram sign in: https://www.instagram.com/developer/register/. See official steps.

Set up Reddit sign in: https://www.reddit.com/login?
dest=https%3A%2F%2Fwww.reddit.com%2Fprefs%2Fapps. See official steps.

Set up Github sign in: https://github.com/login?
return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Fapplications%2Fnew. See official steps.

Set up Yahoo sign in: https://login.yahoo.com/config/login?
src=devnet&.done=http%3A%2F%2Fdeveloper.yahoo.com%2Fapps%2Fcreate%2F. See official steps.

Set up Tumblr sign in: https://www.tumblr.com/oauth/apps. See official steps.

Set up Pinterest sign in: https://www.pinterest.com/login/?next=http%3A%2F%2Fdevsite%2Fapps%2F.
See official steps.

Set up Pocket sign in: https://getpocket.com/developer/apps/new. See official steps.

Set up Flickr sign in: https://www.flickr.com/services/apps/create. See official steps.

Set up Dribble sign in: https://dribbble.com/signup. See official steps.

Set up Vimeo sign in: https://vimeo.com/join. See official steps.

Set up SoundCloud sign in: https://soundcloud.com/you/apps/new. See official steps.

Set up VK sign in: https://vk.com/apps?act=manage. See official steps.

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/social/other-logins.md
https://twitter.com/RickAndMSFT
https://github.com/rustd
https://github.com/01binary
https://www.nuget.org/packages?q=owners%3Aaspnet-contrib+title%3AOAuth
https://www.linkedin.com/developer/apps
https://developer.linkedin.com/docs/oauth2
https://www.instagram.com/developer/register/
https://www.instagram.com/developer/authentication/
https://www.reddit.com/login?dest=https%3A%2F%2Fwww.reddit.com%2Fprefs%2Fapps
https://github.com/reddit/reddit/wiki/OAuth2-Quick-Start-Example
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Fapplications%2Fnew
https://developer.github.com/v3/oauth/
https://login.yahoo.com/config/login?src=devnet&.done=http%3A%2F%2Fdeveloper.yahoo.com%2Fapps%2Fcreate%2F
https://developer.yahoo.com/bbauth/user.html
https://www.tumblr.com/oauth/apps
https://www.tumblr.com/docs/api/v2#auth
https://www.pinterest.com/login/?next=http%3A%2F%2Fdevsite%2Fapps%2F
https://developers.pinterest.com/docs/api/overview/?
https://getpocket.com/developer/apps/new
https://getpocket.com/developer/docs/authentication
https://www.flickr.com/services/apps/create
https://www.flickr.com/services/api/auth.oauth.html
https://dribbble.com/signup
http://developer.dribbble.com/v1/oauth/
https://vimeo.com/join
https://developer.vimeo.com/api/authentication
https://soundcloud.com/you/apps/new
https://developers.soundcloud.com/blog/we-love-oauth-2
https://vk.com/apps?act=manage
https://vk.com/pages?oid=-17680044&p=Authorizing_Sites
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication

Authenticate users with WS-Federation in ASP.NET
Core
4/10/2018 • 3 minutes to read • Edit Online

Register the app with Active Directory
Active Directory Federation ServicesActive Directory Federation Services

This tutorial demonstrates how to enable users to sign in with a WS-Federation authentication provider like Active
Directory Federation Services (ADFS) or Azure Active Directory (AAD). It uses the ASP.NET Core 2.0 sample app
described in Facebook, Google, and external provider authentication.

For ASP.NET Core 2.0 apps, WS-Federation support is provided by
Microsoft.AspNetCore.Authentication.WsFederation. This component is ported from
Microsoft.Owin.Security.WsFederation and shares many of that component's mechanics. However, the
components differ in a couple of important ways.

By default, the new middleware:

Doesn't allow unsolicited logins. This feature of the WS-Federation protocol is vulnerable to XSRF attacks.
However, it can be enabled with the AllowUnsolicitedLogins option.
Doesn't check every form post for sign-in messages. Only requests to the CallbackPath are checked for sign-
ins. CallbackPath defaults to /signin-wsfed but can be changed. This path can be shared with other
authentication providers by enabling the SkipUnrecognizedRequests option.

Open the server's Add Relying Party Trust Wizard from the ADFS Management console:

Choose to enter data manually:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/ws-federation.md
https://docs.microsoft.com/azure/active-directory/
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.WsFederation
https://www.nuget.org/packages/Microsoft.Owin.Security.WsFederation

Enter a display name for the relying party. The name isn't important to the ASP.NET Core app.

Microsoft.AspNetCore.Authentication.WsFederation lacks support for token encryption, so don't configure
a token encryption certificate:

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.WsFederation

NOTENOTE

Enable support for WS-Federation Passive protocol, using the app's URL. Verify the port is correct for the app:

This must be an HTTPS URL. IIS Express can provide a self-signed certificate when hosting the app during development.
Kestrel requires manual certificate configuration. See the Kestrel documentation for more details.

Click Next through the rest of the wizard and Close at the end.

ASP.NET Core Identity requires a Name ID claim. Add one from the Edit Claim Rules dialog:

In the Add Transform Claim Rule Wizard, leave the default Send LDAP Attributes as Claims template
selected, and click Next. Add a rule mapping the SAM-Account-Name LDAP attribute to the Name ID
outgoing claim:

Azure Active DirectoryAzure Active Directory

Click Finish > OK in the Edit Claim Rules window.

Navigate to the AAD tenant's app registrations blade. Click New application registration:

Enter a name for the app registration. This isn't important to the ASP.NET Core app.
Enter the URL the app listens on as the Sign-on URL:

Click Endpoints and note the Federation Metadata Document URL. This is the WS-Federation
middleware's MetadataAddress :

Navigate to the new app registration. Click Settings > Properties and make note of the App ID URI. This is
the WS-Federation middleware's Wtrealm :

Add WS-Federation as an external login provider for ASP.NET Core
Identity

Log in with WS-FederationLog in with WS-Federation

services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

services.AddAuthentication()
 .AddWsFederation(options =>
 {
 // MetadataAddress represents the Active Directory instance used to authenticate users.
 options.MetadataAddress = "https://<ADFS FQDN or AAD tenant>/FederationMetadata/2007-
06/FederationMetadata.xml";

 // Wtrealm is the app's identifier in the Active Directory instance.
 // For ADFS, use the relying party's identifier, its WS-Federation Passive protocol URL:
 options.Wtrealm = "https://localhost:44307/";

 // For AAD, use the App ID URI from the app registration's Properties blade:
 options.Wtrealm = "https://wsfedsample.onmicrosoft.com/bf0e7e6d-056e-4e37-b9a6-2c36797b9f01";
 });

services.AddMvc()
 // ...

Add a dependency on Microsoft.AspNetCore.Authentication.WsFederation to the project.

Add WS-Federation to the Configure method in Startup.cs:

The call to AddIdentity configures the default scheme settings. The AddAuthentication(String) overload sets the
DefaultScheme property. The AddAuthentication(Action<AuthenticationOptions>) overload allows configuring
authentication options, which can be used to set up default authentication schemes for different purposes.
Subsequent calls to AddAuthentication override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per
authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display
name.

Browse to the app and click the Log in link in the nav header. There's an option to log in with WsFederation:

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.WsFederation
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentity
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#Microsoft_Extensions_DependencyInjection_AuthenticationServiceCollectionExtensions_AddAuthentication_Microsoft_Extensions_DependencyInjection_IServiceCollection_System_Action_Microsoft_AspNetCore_Authentication_AuthenticationOptions__
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder

With ADFS as the provider, the button redirects to an ADFS sign-in page:

With Azure Active Directory as the provider, the button redirects to an AAD sign-in page:

Use WS-Federation without ASP.NET Core Identity

A successful sign-in for a new user redirects to the app's user registration page:

The WS-Federation middleware can be used without Identity. For example:

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthentication(sharedOptions =>
 {
 sharedOptions.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
 sharedOptions.DefaultSignInScheme = CookieAuthenticationDefaults.AuthenticationScheme;
 sharedOptions.DefaultChallengeScheme = WsFederationDefaults.AuthenticationScheme;
 })
 .AddWsFederation(options =>
 {
 options.Wtrealm = Configuration["wsfed:realm"];
 options.MetadataAddress = Configuration["wsfed:metadata"];
 })
 .AddCookie();
}

public void Configure(IApplicationBuilder app)
{
 app.UseAuthentication();
 // …
}

Account confirmation and password recovery in
ASP.NET Core
6/10/2018 • 11 minutes to read • Edit Online

Prerequisites

Create a new ASP.NET Core project with the .NET Core CLI

dotnet new webapp --auth Individual -o WebPWrecover
cd WebPWrecover

NOTENOTE

dotnet new razor --auth Individual -o WebPWrecover
cd WebPWrecover

By Rick Anderson and Joe Audette

This tutorial shows you how to build an ASP.NET Core app with email confirmation and password reset. This
tutorial is not a beginning topic. You should be familiar with:

ASP.NET Core
Authentication
Account Confirmation and Password Recovery
Entity Framework Core

See this PDF file for the ASP.NET Core MVC 1.1 and 2.x versions.

Install one of the following:

CLI tooling: Windows, Linux, or macOS: .NET Core SDK 2.0 or later
IDE/editor tooling

Windows: Visual Studio for Windows

Linux: Visual Studio Code
macOS: Visual Studio for Mac

ASP.NET and web development workload
.NET Core cross-platform development workload

ASP.NET Core 2.x
ASP.NET Core 1.x

In ASP.NET Core 2.1 or later, webapp is an alias of the razor argument. If the dotnet new webapp <OPTIONS> command
loads the dotnet new command help instead of creating a new Razor Pages app, install the .NET Core 2.1 SDK.

--auth Individual specifies the Individual User Accounts project template.
On Windows, add the -uld option. It specifies LocalDB should be used instead of SQLite.
Run new mvc --help to get help on this command.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/accconfirm.md
https://twitter.com/RickAndMSFT
https://twitter.com/joeaudette
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authorization/secure-data/asp.net_repo_pdf_1-16-18.pdf
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/net/download/linux
https://www.microsoft.com/net/download/macos
https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

Test new user registration

View the Identity database

Alternatively, you can create a new ASP.NET Core project with Visual Studio:

In Visual Studio, create a new Web Application project.
Select ASP.NET Core 2.0. .NET Core is selected in the following image, but you can select .NET
Framework.
Select Change Authentication and set to Individual User Accounts.
Keep the default Store user accounts in-app.

Run the app, select the Register link, and register a user. Follow the instructions to run Entity Framework Core
migrations. At this point, the only validation on the email is with the [EmailAddress] attribute. After submitting
the registration, you are logged into the app. Later in the tutorial, the code is updated so new users can't log in
until their email has been validated.

See Work with SQLite in an ASP.NET Core MVC project for instructions on how to view the SQLite database.

For Visual Studio:

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.emailaddressattribute

Require HTTPS

Require email confirmation

From the View menu, select SQL Server Object Explorer (SSOX).
Navigate to (localdb)MSSQLLocalDB(SQL Server 13). Right-click on dbo.AspNetUsers > View Data:

Note the table's EmailConfirmed field is False .

You might want to use this email again in the next step when the app sends a confirmation email. Right-click on
the row and select Delete. Deleting the email alias makes it easier in the following steps.

See Require HTTPS.

It's a best practice to confirm the email of a new user registration. Email confirmation helps to verify they're not
impersonating someone else (that is, they haven't registered with someone else's email). Suppose you had a
discussion forum, and you wanted to prevent "yli@example.com" from registering as "nolivetto@contoso.com".
Without email confirmation, "nolivetto@contoso.com" could receive unwanted email from your app. Suppose the
user accidentally registered as "ylo@example.com" and hadn't noticed the misspelling of "yli". They wouldn't be
able to use password recovery because the app doesn't have their correct email. Email confirmation provides
only limited protection from bots. Email confirmation doesn't provide protection from malicious users with many
email accounts.

You generally want to prevent new users from posting any data to your web site before they have a confirmed
email.

Update ConfigureServices to require a confirmed email:

public void ConfigureServices(IServiceCollection services)
{
 // Requires using Microsoft.AspNetCore.Mvc;
 services.Configure<MvcOptions>(options =>
 {
 options.Filters.Add(new RequireHttpsAttribute());
 });

 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>(config =>
 {
 config.SignIn.RequireConfirmedEmail = true;
 })
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AuthorizeFolder("/Account/Manage");
 options.Conventions.AuthorizePage("/Account/Logout");
 });

Configure email providerConfigure email provider

public class AuthMessageSenderOptions
{
 public string SendGridUser { get; set; }
 public string SendGridKey { get; set; }
}

C:\WebAppl\src\WebApp1>dotnet user-secrets set SendGridUser RickAndMSFT
info: Successfully saved SendGridUser = RickAndMSFT to the secret store.

config.SignIn.RequireConfirmedEmail = true; prevents registered users from logging in until their email is
confirmed.

In this tutorial, SendGrid is used to send email. You need a SendGrid account and key to send email. You can use
other email providers. ASP.NET Core 2.x includes System.Net.Mail , which allows you to send email from your
app. We recommend you use SendGrid or another email service to send email. SMTP is difficult to secure and
set up correctly.

The Options pattern is used to access the user account and key settings. For more information, see configuration.

Create a class to fetch the secure email key. For this sample, the AuthMessageSenderOptions class is created in the
Services/AuthMessageSenderOptions.cs file:

Set the SendGridUser and SendGridKey with the secret-manager tool. For example:

On Windows, Secret Manager stores keys/value pairs in a secrets.json file in the
%APPDATA%/Microsoft/UserSecrets/<WebAppName-userSecretsId> directory.

The contents of the secrets.json file aren't encrypted. The secrets.json file is shown below (the SendGridKey value
has been removed.)

 {
 "SendGridUser": "RickAndMSFT",
 "SendGridKey": "<key removed>"
 }

Configure startup to use AuthMessageSenderOptionsConfigure startup to use AuthMessageSenderOptions

public void ConfigureServices(IServiceCollection services)
{
 // Requires using Microsoft.AspNetCore.Mvc;
 services.Configure<MvcOptions>(options =>
 {
 options.Filters.Add(new RequireHttpsAttribute());
 });

 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>(config =>
 {
 config.SignIn.RequireConfirmedEmail = true;
 })
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AuthorizeFolder("/Account/Manage");
 options.Conventions.AuthorizePage("/Account/Logout");
 });

 services.AddSingleton<IEmailSender, EmailSender>();

 services.Configure<AuthMessageSenderOptions>(Configuration);
}

Configure the AuthMessageSender classConfigure the AuthMessageSender class

Configure SendGridConfigure SendGrid

Add AuthMessageSenderOptions to the service container at the end of the ConfigureServices method in the
Startup.cs file:

ASP.NET Core 2.x
ASP.NET Core 1.x

This tutorial shows how to add email notifications through SendGrid, but you can send email using SMTP and
other mechanisms.

Install the SendGrid NuGet package:

From the command line:

dotnet add package SendGrid

From the Package Manager Console, enter the following command:

Install-Package SendGrid

See Get Started with SendGrid for Free to register for a free SendGrid account.

ASP.NET Core 2.x
ASP.NET Core 1.x

https://sendgrid.com/
https://sendgrid.com/free/

using Microsoft.Extensions.Options;
using SendGrid;
using SendGrid.Helpers.Mail;
using System.Threading.Tasks;

namespace WebPWrecover.Services
{
 public class EmailSender : IEmailSender
 {
 public EmailSender(IOptions<AuthMessageSenderOptions> optionsAccessor)
 {
 Options = optionsAccessor.Value;
 }

 public AuthMessageSenderOptions Options { get; } //set only via Secret Manager

 public Task SendEmailAsync(string email, string subject, string message)
 {
 return Execute(Options.SendGridKey, subject, message, email);
 }

 public Task Execute(string apiKey, string subject, string message, string email)
 {
 var client = new SendGridClient(apiKey);
 var msg = new SendGridMessage()
 {
 From = new EmailAddress("Joe@contoso.com", "Joe Smith"),
 Subject = subject,
 PlainTextContent = message,
 HtmlContent = message
 };
 msg.AddTo(new EmailAddress(email));
 return client.SendEmailAsync(msg);
 }
 }
}

Enable account confirmation and password recovery

await _signInManager.SignInAsync(user, isPersistent: false);

To configure SendGrid, add code similar to the following in Services/EmailSender.cs:

The template has the code for account confirmation and password recovery. Find the OnPostAsync method in
Pages/Account/Register.cshtml.cs.

ASP.NET Core 2.x
ASP.NET Core 1.x

Prevent newly registered users from being automatically logged on by commenting out the following line:

The complete method is shown with the changed line highlighted:

public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
 ReturnUrl = returnUrl;
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser { UserName = Input.Email, Email = Input.Email };
 var result = await _userManager.CreateAsync(user, Input.Password);
 if (result.Succeeded)
 {
 _logger.LogInformation("User created a new account with password.");

 var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
 var callbackUrl = Url.EmailConfirmationLink(user.Id, code, Request.Scheme);
 await _emailSender.SendEmailConfirmationAsync(Input.Email, callbackUrl);

 // await _signInManager.SignInAsync(user, isPersistent: false);
 return LocalRedirect(Url.GetLocalUrl(returnUrl));
 }
 foreach (var error in result.Errors)
 {
 ModelState.AddModelError(string.Empty, error.Description);
 }
 }

 // If we got this far, something failed, redisplay form
 return Page();
}

Register, confirm email, and reset password
Run the web app, and test the account confirmation and password recovery flow.

Run the app and register a new user

View the manage pageView the manage page

Check your email for the account confirmation link. See Debug email if you don't get the email.

Click the link to confirm your email.

Log in with your email and password.

Log off.

Select your user name in the browser :

You might need to expand the navbar to see user name.

ASP.NET Core 2.x
ASP.NET Core 1.x

The manage page is displayed with the Profile tab selected. The Email shows a check box indicating the email
has been confirmed.

Test password resetTest password reset

Debug emailDebug email

If you're logged in, select Logout.
Select the Log in link and select the Forgot your password? link.
Enter the email you used to register the account.
An email with a link to reset your password is sent. Check your email and click the link to reset your password.
After your password has been successfully reset, you can log in with your email and new password.

If you can't get email working:

Create a console app to send email.
Review the Email Activity page.
Check your spam folder.
Try another email alias on a different email provider (Microsoft, Yahoo, Gmail, etc.)
Try sending to different email accounts.

A security best practice is to not use production secrets in test and development. If you publish the app to
Azure, you can set the SendGrid secrets as application settings in the Azure Web App portal. The configuration
system is set up to read keys from environment variables.

https://sendgrid.com/docs/Integrate/Code_Examples/v2_Mail/csharp.html
https://sendgrid.com/docs/User_Guide/email_activity.html

Combine social and local login accounts
To complete this section, you must first enable an external authentication provider. See Facebook, Google, and
external provider authentication.

You can combine local and social accounts by clicking on your email link. In the following sequence,
"RickAndMSFT@gmail.com" is first created as a local login; however, you can create the account as a social login
first, then add a local login.

Click on the Manage link. Note the 0 external (social logins) associated with this account.

Click the link to another login service and accept the app requests. In the following image, Facebook is the
external authentication provider :

Enable account confirmation after a site has users

The two accounts have been combined. You are able to log on with either account. You might want your users to
add local accounts in case their social login authentication service is down, or more likely they've lost access to
their social account.

Enabling account confirmation on a site with users locks out all the existing users. Existing users are locked out
because their accounts aren't confirmed. To work around existing user lockout, use one of the following
approaches:

Update the database to mark all existing users as being confirmed.
Confirm exiting users. For example, batch-send emails with confirmation links.

Enable QR Code generation for authenticator apps
in ASP.NET Core
6/14/2018 • 2 minutes to read • Edit Online

Adding QR Codes to the 2FA configuration page

@section Scripts {
 @await Html.PartialAsync("_ValidationScriptsPartial")
}

@section Scripts {
 @await Html.PartialAsync("_ValidationScriptsPartial")

 <script type="text/javascript" src="~/lib/qrcode.js"></script>
 <script type="text/javascript">
 new QRCode(document.getElementById("qrCode"),
 {
 text: "@Html.Raw(Model.AuthenticatorUri)",
 width: 150,
 height: 150
 });
 </script>
}

Change the site name in the QR Code

Note: This topic applies to ASP.NET Core 2.x

ASP.NET Core ships with support for authenticator applications for individual authentication. Two factor
authentication (2FA) authenticator apps, using a Time-based One-time Password Algorithm (TOTP), are the
industry recommended approach for 2FA. 2FA using TOTP is preferred to SMS 2FA. An authenticator app
provides a 6 to 8 digit code which users must enter after confirming their username and password. Typically an
authenticator app is installed on a smart phone.

The ASP.NET Core web app templates support authenticators, but don't provide support for QRCode generation.
QRCode generators ease the setup of 2FA. This document will guide you through adding QR Code generation to
the 2FA configuration page.

These instructions use qrcode.js from the https://davidshimjs.github.io/qrcodejs/ repo.

Download the qrcode.js javascript library to the wwwroot\lib folder in your project.

In Pages\Account\Manage\EnableAuthenticator.cshtml (Razor Pages) or
Views\Manage\EnableAuthenticator.cshtml (MVC), locate the Scripts section at the end of the file:

Update the Scripts section to add a reference to the qrcodejs library you added and a call to generate the
QR Code. It should look as follows:

Delete the paragraph which links you to these instructions.

Run your app and ensure that you can scan the QR code and validate the code the authenticator proves.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/identity-enable-qrcodes.md
https://wikipedia.org/wiki/QR_code
https://davidshimjs.github.io/qrcodejs/
https://davidshimjs.github.io/qrcodejs/

private string GenerateQrCodeUri(string email, string unformattedKey)
{
 return string.Format(
 AuthenicatorUriFormat,
 _urlEncoder.Encode("Razor Pages"),
 _urlEncoder.Encode(email),
 unformattedKey);
}

Using a different QR Code library

TOTP client and server time skew

The site name in the QR Code is taken from the project name you choose when initially creating your project. You
can change it by looking for the GenerateQrCodeUri(string email, string unformattedKey) method in the
Pages\Account\Manage\EnableAuthenticator.cshtml.cs (Razor Pages) file or the Controllers\ManageController.cs
(MVC) file.

The default code from the template looks as follows:

The second parameter in the call to string.Format is your site name, taken from your solution name. It can be
changed to any value, but it must always be URL encoded.

You can replace the QR Code library with your preferred library. The HTML contains a qrCode element into which
you can place a QR Code by whatever mechanism your library provides.

The correctly formatted URL for the QR Code is available in the:

AuthenticatorUri property of the model.
data-url property in the qrCodeData element.

TOTP (Time-based One-Time Password) authentication depends on both the server and authenticator device
having an accurate time. Tokens only last for 30 seconds. If TOTP 2FA logins are failing, check that the server time
is accurate, and preferably synchronized to an accurate NTP service.

Two-factor authentication with SMS in ASP.NET Core
5/4/2018 • 5 minutes to read • Edit Online

Create a new ASP.NET Core project

Create an SMS accountCreate an SMS account

Figuring out SMS Provider credentialsFiguring out SMS Provider credentials

Specifying SenderID / OriginatorSpecifying SenderID / Originator

Provide credentials for the SMS serviceProvide credentials for the SMS service

By Rick Anderson and Swiss-Devs

See Enable QR Code generation for authenticator apps in ASP.NET Core for ASP.NET Core 2.0 and later.

This tutorial shows how to set up two-factor authentication (2FA) using SMS. Instructions are given for twilio and
ASPSMS, but you can use any other SMS provider. We recommend you complete Account Confirmation and
Password Recovery before starting this tutorial.

View the completed sample. How to download.

Create a new ASP.NET Core web app named Web2FA with individual user accounts. Follow the instructions in
Enforce SSL in an ASP.NET Core app to set up and require SSL.

Create an SMS account, for example, from twilio or ASPSMS. Record the authentication credentials (for twilio:
accountSid and authToken, for ASPSMS: Userkey and Password).

Twilio:
From the Dashboard tab of your Twilio account, copy the Account SID and Auth token.

ASPSMS:
From your account settings, navigate to Userkey and copy it together with your Password.

We will later store these values in with the secret-manager tool within the keys SMSAccountIdentification and
SMSAccountPassword .

Twilio:
From the Numbers tab, copy your Twilio phone number.

ASPSMS:
Within the Unlock Originators Menu, unlock one or more Originators or choose an alphanumeric Originator (Not
supported by all networks).

We will later store this value with the secret-manager tool within the key SMSAccountFrom .

We'll use the Options pattern to access the user account and key settings.

Create a class to fetch the secure SMS key. For this sample, the SMSoptions class is created in the
Services/SMSoptions.cs file.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/2fa.md
https://twitter.com/RickAndMSFT
https://github.com/Swiss-Devs
https://www.twilio.com/
https://www.aspsms.com/asp.net/identity/core/testcredits/
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authentication/2fa/sample/Web2FA
https://www.twilio.com/
https://www.aspsms.com/asp.net/identity/core/testcredits/

namespace Web2FA.Services
{
 public class SMSoptions
 {
 public string SMSAccountIdentification { get; set; }
 public string SMSAccountPassword { get; set; }
 public string SMSAccountFrom { get; set; }
 }
}

C:/Web2FA/src/WebApp1>dotnet user-secrets set SMSAccountIdentification 12345
info: Successfully saved SMSAccountIdentification = 12345 to the secret store.

Set the SMSAccountIdentification , SMSAccountPassword and SMSAccountFrom with the secret-manager tool. For
example:

Add the NuGet package for the SMS provider. From the Package Manager Console (PMC) run:

Twilio:
Install-Package Twilio

ASPSMS:
Install-Package ASPSMS

Add code in the Services/MessageServices.cs file to enable SMS. Use either the Twilio or the ASPSMS section:

Twilio:

using Microsoft.Extensions.Options;
using System.Threading.Tasks;
using Twilio;
using Twilio.Rest.Api.V2010.Account;
using Twilio.Types;

namespace Web2FA.Services
{
 // This class is used by the application to send Email and SMS
 // when you turn on two-factor authentication in ASP.NET Identity.
 // For more details see this link https://go.microsoft.com/fwlink/?LinkID=532713
 public class AuthMessageSender : IEmailSender, ISmsSender
 {
 public AuthMessageSender(IOptions<SMSoptions> optionsAccessor)
 {
 Options = optionsAccessor.Value;
 }

 public SMSoptions Options { get; } // set only via Secret Manager

 public Task SendEmailAsync(string email, string subject, string message)
 {
 // Plug in your email service here to send an email.
 return Task.FromResult(0);
 }

 public Task SendSmsAsync(string number, string message)
 {
 // Plug in your SMS service here to send a text message.
 // Your Account SID from twilio.com/console
 var accountSid = Options.SMSAccountIdentification;
 // Your Auth Token from twilio.com/console
 var authToken = Options.SMSAccountPassword;

 TwilioClient.Init(accountSid, authToken);

 return MessageResource.CreateAsync(
 to: new PhoneNumber(number),
 from: new PhoneNumber(Options.SMSAccountFrom),
 body: message);
 }
 }
}

ASPSMS:

using Microsoft.Extensions.Options;
using System.Threading.Tasks;

namespace Web2FA.Services
{
 // This class is used by the application to send Email and SMS
 // when you turn on two-factor authentication in ASP.NET Identity.
 // For more details see this link https://go.microsoft.com/fwlink/?LinkID=532713
 public class AuthMessageSender : IEmailSender, ISmsSender
 {
 public AuthMessageSender(IOptions<SMSoptions> optionsAccessor)
 {
 Options = optionsAccessor.Value;
 }

 public SMSoptions Options { get; } // set only via Secret Manager

 public Task SendEmailAsync(string email, string subject, string message)
 {
 // Plug in your email service here to send an email.
 return Task.FromResult(0);
 }

 public Task SendSmsAsync(string number, string message)
 {
 ASPSMS.SMS SMSSender = new ASPSMS.SMS();

 SMSSender.Userkey = Options.SMSAccountIdentification;
 SMSSender.Password = Options.SMSAccountPassword;
 SMSSender.Originator = Options.SMSAccountFrom;

 SMSSender.AddRecipient(number);
 SMSSender.MessageData = message;

 SMSSender.SendTextSMS();

 return Task.FromResult(0);
 }
 }
}

Configure startup to use Configure startup to use SMSoptions

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
 services.Configure<SMSoptions>(Configuration);
}

Enable two-factor authenticationEnable two-factor authentication

Log in with two-factor authentication

Add SMSoptions to the service container in the ConfigureServices method in the Startup.cs:

Open the Views/Manage/Index.cshtml Razor view file and remove the comment characters (so no markup is
commnted out).

Run the app and register a new user

Tap on your user name, which activates the Index action method in Manage controller. Then tap the phone
number Add link.

Add a phone number that will receive the verification code, and tap Send verification code.

You will get a text message with the verification code. Enter it and tap Submit

If you don't get a text message, see twilio log page.

The Manage view shows your phone number was added successfully.

Test two-factor authenticationTest two-factor authentication

Tap Enable to enable two-factor authentication.

Log off.

Log in.

The user account has enabled two-factor authentication, so you have to provide the second factor of
authentication . In this tutorial you have enabled phone verification. The built in templates also allow you to
set up email as the second factor. You can set up additional second factors for authentication such as QR

codes. Tap Submit.

Enter the code you get in the SMS message.

Clicking on the Remember this browser check box will exempt you from needing to use 2FA to log on
when using the same device and browser. Enabling 2FA and clicking on Remember this browser will
provide you with strong 2FA protection from malicious users trying to access your account, as long as they
don't have access to your device. You can do this on any private device you regularly use. By setting
Remember this browser, you get the added security of 2FA from devices you don't regularly use, and you
get the convenience on not having to go through 2FA on your own devices.

Account lockout for protecting against brute force attacks

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

 services.Configure<IdentityOptions>(options =>
 {
 options.Lockout.MaxFailedAccessAttempts = 10;
 options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(10);
 });

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
 services.Configure<SMSoptions>(Configuration);
}

var result = await _signInManager.PasswordSignInAsync(
 Input.Email, Input.Password, Input.RememberMe, lockoutOnFailure: true);

Account lockout is recommended with 2FA. Once a user signs in through a local account or social account, each
failed attempt at 2FA is stored. If the maximum failed access attempts is reached, the user is locked out (default: 5
minute lockout after 5 failed access attempts). A successful authentication resets the failed access attempts count
and resets the clock. The maximum failed access attempts and lockout time can be set with
MaxFailedAccessAttempts and DefaultLockoutTimeSpan. The following configures account lockout for 10
minutes after 10 failed access attempts:

Confirm that PasswordSignInAsync sets lockoutOnFailure to true :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.maxfailedaccessattempts
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.defaultlockouttimespan
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.passwordsigninasync

Use cookie authentication without ASP.NET Core
Identity
6/6/2018 • 15 minutes to read • Edit Online

Configuration

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
 .AddCookie();

app.UseAuthentication();

By Rick Anderson and Luke Latham

As you've seen in the earlier authentication topics, ASP.NET Core Identity is a complete, full-featured
authentication provider for creating and maintaining logins. However, you may want to use your own custom
authentication logic with cookie-based authentication at times. You can use cookie-based authentication as a
standalone authentication provider without ASP.NET Core Identity.

View or download sample code (how to download)

For demonstration purposes in the sample app, the user account for the hypothetical user, Maria Rodriguez, is
hardcoded into the app. Use the Email username "maria.rodriguez@contoso.com" and any password to sign in the
user. The user is authenticated in the AuthenticateUser method in the Pages/Account/Login.cshtml.cs file. In a
real-world example, the user would be authenticated against a database.

For information on migrating cookie-based authentication from ASP.NET Core 1.x to 2.0, see Migrate
Authentication and Identity to ASP.NET Core 2.0 topic (Cookie-based Authentication).

To use ASP.NET Core Identity, see the Introduction to Identity topic.

ASP.NET Core 2.x
ASP.NET Core 1.x

If the app doesn't use the Microsoft.AspNetCore.App metapackage, create a package reference in the project file
for the Microsoft.AspNetCore.Authentication.Cookies package (version 2.1.0 or later).

In the ConfigureServices method, create the Authentication Middleware service with the AddAuthentication and
AddCookie methods:

AuthenticationScheme passed to AddAuthentication sets the default authentication scheme for the app.
AuthenticationScheme is useful when there are multiple instances of cookie authentication and you want to

authorize with a specific scheme. Setting the AuthenticationScheme to
CookieAuthenticationDefaults.AuthenticationScheme provides a value of "Cookies" for the scheme. You can supply

any string value that distinguishes the scheme.

In the Configure method, use the UseAuthentication method to invoke the Authentication Middleware that sets
the HttpContext.User property. Call the UseAuthentication method before calling UseMvcWithDefaultRoute or
UseMvc :

AddCookie Options

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/cookie.md
https://twitter.com/RickAndMSFT
https://github.com/guardrex
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authentication/cookie/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Cookies/

OPTION DESCRIPTION

AccessDeniedPath Provides the path to supply with a 302 Found (URL redirect)
when triggered by HttpContext.ForbidAsync . The default
value is /Account/AccessDenied .

ClaimsIssuer The issuer to use for the Issuer property on any claims
created by the cookie authentication service.

Cookie.Domain The domain name where the cookie is served. By default, this
is the host name of the request. The browser only sends the
cookie in requests to a matching host name. You may wish to
adjust this to have cookies available to any host in your
domain. For example, setting the cookie domain to
.contoso.com makes it available to contoso.com ,
www.contoso.com , and staging.www.contoso.com .

Cookie.Expiration Gets or sets the lifespan of a cookie. Currently, this option no-
ops and will become obsolete in ASP.NET Core 2.1+. Use the
ExpireTimeSpan option to set cookie expiration. For more

information, see Clarify behavior of
CookieAuthenticationOptions.Cookie.Expiration.

Cookie.HttpOnly A flag indicating if the cookie should be accessible only to
servers. Changing this value to false permits client-side
scripts to access the cookie and may open your app to cookie
theft should your app have a Cross-site scripting (XSS)
vulnerability. The default value is true .

Cookie.Name Sets the name of the cookie.

Cookie.Path Used to isolate apps running on the same host name. If you
have an app running at /app1 and want to restrict cookies
to that app, set the CookiePath property to /app1 . By
doing so, the cookie is only available on requests to /app1

and any app underneath it.

Cookie.SameSite Indicates whether the browser should allow the cookie to be
attached to same-site requests only (SameSiteMode.Strict)
or cross-site requests using safe HTTP methods and same-site
requests (SameSiteMode.Lax). When set to
SameSiteMode.None , the cookie header value isn't set. Note

that Cookie Policy Middleware might overwrite the value that
you provide. To support OAuth authentication, the default
value is SameSiteMode.Lax . For more information, see
OAuth authentication broken due to SameSite cookie policy.

Cookie.SecurePolicy A flag indicating if the cookie created should be limited to
HTTPS (CookieSecurePolicy.Always), HTTP or HTTPS (
CookieSecurePolicy.None), or the same protocol as the

request (CookieSecurePolicy.SameAsRequest). The default
value is CookieSecurePolicy.SameAsRequest .

The CookieAuthenticationOptions class is used to configure the authentication provider options.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.accessdeniedpath?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationschemeoptions.claimsissuer?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/system.security.claims.claim.issuer
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.domain?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.expiration?view=aspnetcore-2.0
https://github.com/aspnet/Security/issues/1293
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.httponly?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.name?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.path?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.samesite?view=aspnetcore-2.0
https://github.com/aspnet/Security/issues/1231
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.securepolicy?view=aspnetcore-2.0

DataProtectionProvider Sets the DataProtectionProvider that's used to create the
default TicketDataFormat . If the TicketDataFormat

property is set, the DataProtectionProvider option isn't
used. If not provided, the app's default data protection
provider is used.

Events The handler calls methods on the provider that give the app
control at certain processing points. If Events aren't
provided, a default instance is supplied that does nothing
when the methods are called.

EventsType Used as the service type to get the Events instance instead
of the property.

ExpireTimeSpan The TimeSpan after which the authentication ticket stored
inside the cookie expires. ExpireTimeSpan is added to the
current time to create the expiration time for the ticket. The
ExpiredTimeSpan value always goes into the encrypted

AuthTicket verified by the server. It may also go into the Set-
Cookie header, but only if IsPersistent is set. To set
IsPersistent to true , configure the

AuthenticationProperties passed to SignInAsync . The
default value of ExpireTimeSpan is 14 days.

LoginPath Provides the path to supply with a 302 Found (URL redirect)
when triggered by HttpContext.ChallengeAsync . The
current URL that generated the 401 is added to the
LoginPath as a query string parameter named by the
ReturnUrlParameter . Once a request to the LoginPath

grants a new sign-in identity, the ReturnUrlParameter value
is used to redirect the browser back to the URL that caused
the original unauthorized status code. The default value is
/Account/Login .

LogoutPath If the LogoutPath is provided to the handler, then a request
to that path redirects based on the value of the
ReturnUrlParameter . The default value is
/Account/Logout .

ReturnUrlParameter Determines the name of the query string parameter that's
appended by the handler for a 302 Found (URL redirect)
response. ReturnUrlParameter is used when a request
arrives on the LoginPath or LogoutPath to return the
browser to the original URL after the login or logout action is
performed. The default value is ReturnUrl .

SessionStore An optional container used to store identity across requests.
When used, only a session identifier is sent to the client.
SessionStore can be used to mitigate potential problems

with large identities.

OPTION DESCRIPTION

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.dataprotectionprovider?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.events?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationschemeoptions.eventstype?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.expiretimespan?view=aspnetcore-2.0
https://tools.ietf.org/html/rfc6265#section-4.1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.loginpath?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.logoutpath?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.returnurlparameter?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.sessionstore?view=aspnetcore-2.0

SlidingExpiration A flag indicating if a new cookie with an updated expiration
time should be issued dynamically. This can happen on any
request where the current cookie expiration period is more
than 50% expired. The new expiration date is moved forward
to be the current date plus the ExpireTimespan . An
absolute cookie expiration time can be set by using the
AuthenticationProperties class when calling
SignInAsync . An absolute expiration time can improve the

security of your app by limiting the amount of time that the
authentication cookie is valid. The default value is true .

TicketDataFormat The TicketDataFormat is used to protect and unprotect the
identity and other properties that are stored in the cookie
value. If not provided, a TicketDataFormat is created using
the DataProtectionProvider.

Validate Method that checks that the options are valid.

OPTION DESCRIPTION

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
 .AddCookie(options =>
 {
 ...
 });

Cookie Policy Middleware

app.UseCookiePolicy(cookiePolicyOptions);

PROPERTY DESCRIPTION

HttpOnly Affects whether cookies must be HttpOnly, which is a flag
indicating if the cookie should be accessible only to servers.
The default value is HttpOnlyPolicy.None .

MinimumSameSitePolicy Affects the cookie's same-site attribute (see below). The
default value is SameSiteMode.Lax . This option is available
for ASP.NET Core 2.0+.

OnAppendCookie Called when a cookie is appended.

OnDeleteCookie Called when a cookie is deleted.

Secure Affects whether cookies must be Secure. The default value is
CookieSecurePolicy.None .

Set CookieAuthenticationOptions in the service configuration for authentication in the ConfigureServices method:

Cookie Policy Middleware enables cookie policy capabilities in an app. Adding the middleware to the app
processing pipeline is order sensitive; it only affects components registered after it in the pipeline.

The CookiePolicyOptions provided to the Cookie Policy Middleware allow you to control global characteristics of
cookie processing and hook into cookie processing handlers when cookies are appended or deleted.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.slidingexpiration?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.ticketdataformat?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.dataprotectionprovider?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationschemeoptions.validate?view=aspnetcore-2.0
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.cookiepolicy.cookiepolicymiddleware
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.httponly
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.minimumsamesitepolicy
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.onappendcookie
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.ondeletecookie
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.secure

var cookiePolicyOptions = new CookiePolicyOptions
{
 MinimumSameSitePolicy = SameSiteMode.Strict,
};

MINIMUMSAMESITEPOLICY COOKIE.SAMESITE RESULTANT COOKIE.SAMESITE SETTING

SameSiteMode.None SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Lax SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Lax
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Strict SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Strict
SameSiteMode.Strict
SameSiteMode.Strict

Create an authentication cookie

MinimumSameSitePolicy (ASP.NET Core 2.0+ only)

The default MinimumSameSitePolicy value is SameSiteMode.Lax to permit OAuth2 authentication. To strictly enforce
a same-site policy of SameSiteMode.Strict , set the MinimumSameSitePolicy . Although this setting breaks OAuth2
and other cross-origin authentication schemes, it elevates the level of cookie security for other types of apps that
don't rely on cross-origin request processing.

The Cookie Policy Middleware setting for MinimumSameSitePolicy can affect your setting of Cookie.SameSite in
CookieAuthenticationOptions settings according to the matrix below.

To create a cookie holding user information, you must construct a ClaimsPrincipal. The user information is
serialized and stored in the cookie.

ASP.NET Core 2.x
ASP.NET Core 1.x

Create a ClaimsIdentity with any required Claims and call SignInAsync to sign in the user :

https://docs.microsoft.com/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/dotnet/api/system.security.claims.claimsidentity
https://docs.microsoft.com/dotnet/api/system.security.claims.claim
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signinasync?view=aspnetcore-2.0

var claims = new List<Claim>
{
 new Claim(ClaimTypes.Name, user.Email),
 new Claim("FullName", user.FullName),
 new Claim(ClaimTypes.Role, "Administrator"),
};

var claimsIdentity = new ClaimsIdentity(
 claims, CookieAuthenticationDefaults.AuthenticationScheme);

var authProperties = new AuthenticationProperties
{
 //AllowRefresh = <bool>,
 // Refreshing the authentication session should be allowed.

 //ExpiresUtc = DateTimeOffset.UtcNow.AddMinutes(10),
 // The time at which the authentication ticket expires. A
 // value set here overrides the ExpireTimeSpan option of
 // CookieAuthenticationOptions set with AddCookie.

 //IsPersistent = true,
 // Whether the authentication session is persisted across
 // multiple requests. Required when setting the
 // ExpireTimeSpan option of CookieAuthenticationOptions
 // set with AddCookie. Also required when setting
 // ExpiresUtc.

 //IssuedUtc = <DateTimeOffset>,
 // The time at which the authentication ticket was issued.

 //RedirectUri = <string>
 // The full path or absolute URI to be used as an http
 // redirect response value.
};

await HttpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(claimsIdentity),
 authProperties);

Sign out

await HttpContext.SignOutAsync(
 CookieAuthenticationDefaults.AuthenticationScheme);

SignInAsync creates an encrypted cookie and adds it to the current response. If you don't specify an
AuthenticationScheme , the default scheme is used.

Under the covers, the encryption used is ASP.NET Core's Data Protection system. If you're hosting app on multiple
machines, load balancing across apps, or using a web farm, then you must configure data protection to use the
same key ring and app identifier.

ASP.NET Core 2.x
ASP.NET Core 1.x

To sign out the current user and delete their cookie, call SignOutAsync:

If you aren't using CookieAuthenticationDefaults.AuthenticationScheme (or "Cookies") as the scheme (for example,
"ContosoCookie"), supply the scheme you used when configuring the authentication provider. Otherwise, the
default scheme is used.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signoutasync?view=aspnetcore-2.0

React to back-end changes

var claims = new List<Claim>
{
 new Claim(ClaimTypes.Name, user.Email),
 new Claim("LastChanged", {Database Value})
};

var claimsIdentity = new ClaimsIdentity(
 claims,
 CookieAuthenticationDefaults.AuthenticationScheme);

await HttpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(claimsIdentity));

ValidatePrincipal(CookieValidatePrincipalContext)

Once a cookie is created, it becomes the single source of identity. Even if you disable a user in your back-end
systems, the cookie authentication system has no knowledge of this, and a user stays logged in as long as their
cookie is valid.

The ValidatePrincipal event in ASP.NET Core 2.x or the ValidateAsync method in ASP.NET Core 1.x can be used to
intercept and override validation of the cookie identity. This approach mitigates the risk of revoked users accessing
the app.

One approach to cookie validation is based on keeping track of when the user database has been changed. If the
database hasn't been changed since the user's cookie was issued, there's no need to re-authenticate the user if
their cookie is still valid. To implement this scenario, the database, which is implemented in IUserRepository for
this example, stores a LastChanged value. When any user is updated in the database, the LastChanged value is set
to the current time.

In order to invalidate a cookie when the database changes based on the LastChanged value, create the cookie with
a LastChanged claim containing the current LastChanged value from the database:

ASP.NET Core 2.x
ASP.NET Core 1.x

To implement an override for the ValidatePrincipal event, write a method with the following signature in a class
that you derive from CookieAuthenticationEvents:

An example looks like the following:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationevents.validateprincipal
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.identity.isecuritystampvalidator.validateasync?view=aspnetcore-1.1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationevents

using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authentication;
using Microsoft.AspNetCore.Authentication.Cookies;

public class CustomCookieAuthenticationEvents : CookieAuthenticationEvents
{
 private readonly IUserRepository _userRepository;

 public CustomCookieAuthenticationEvents(IUserRepository userRepository)
 {
 // Get the database from registered DI services.
 _userRepository = userRepository;
 }

 public override async Task ValidatePrincipal(CookieValidatePrincipalContext context)
 {
 var userPrincipal = context.Principal;

 // Look for the LastChanged claim.
 var lastChanged = (from c in userPrincipal.Claims
 where c.Type == "LastChanged"
 select c.Value).FirstOrDefault();

 if (string.IsNullOrEmpty(lastChanged) ||
 !_userRepository.ValidateLastChanged(lastChanged))
 {
 context.RejectPrincipal();

 await context.HttpContext.SignOutAsync(
 CookieAuthenticationDefaults.AuthenticationScheme);
 }
 }
}

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
 .AddCookie(options =>
 {
 options.EventsType = typeof(CustomCookieAuthenticationEvents);
 });

services.AddScoped<CustomCookieAuthenticationEvents>();

WARNINGWARNING

Persistent cookies

Register the events instance during cookie service registration in the ConfigureServices method. Provide a scoped
service registration for your CustomCookieAuthenticationEvents class:

Consider a situation in which the user's name is updated — a decision that doesn't affect security in any way. If
you want to non-destructively update the user principal, call context.ReplacePrincipal and set the
context.ShouldRenew property to true .

The approach described here is triggered on every request. This can result in a large performance penalty for the app.

You may want the cookie to persist across browser sessions. This persistence should only be enabled with explicit
user consent with a "Remember Me" checkbox on login or a similar mechanism.

The following code snippet creates an identity and corresponding cookie that survives through browser closures.

await HttpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(claimsIdentity),
 new AuthenticationProperties
 {
 IsPersistent = true
 });

Absolute cookie expiration

await HttpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(claimsIdentity),
 new AuthenticationProperties
 {
 IsPersistent = true,
 ExpiresUtc = DateTime.UtcNow.AddMinutes(20)
 });

Additional resources

Any sliding expiration settings previously configured are honored. If the cookie expires while the browser is
closed, the browser clears the cookie once it's restarted.

ASP.NET Core 2.x
ASP.NET Core 1.x

The AuthenticationProperties class resides in the Microsoft.AspNetCore.Authentication namespace.

You can set an absolute expiration time with ExpiresUtc . You must also set IsPersistent ; otherwise, ExpiresUtc

is ignored and a single-session cookie is created. When ExpiresUtc is set on SignInAsync , it overrides the value of
the ExpireTimeSpan option of CookieAuthenticationOptions , if set.

The following code snippet creates an identity and corresponding cookie that lasts for 20 minutes. This ignores
any sliding expiration settings previously configured.

ASP.NET Core 2.x
ASP.NET Core 1.x

Auth 2.0 Changes / Migration Announcement
Limit identity by scheme
Claims-Based Authorization
Policy-based role checks

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties?view=aspnetcore-2.0
https://github.com/aspnet/Announcements/issues/262

Azure Active Directory with ASP.NET Core
6/14/2018 • 2 minutes to read • Edit Online

Azure AD V1 samples

Azure AD V2 samples

Azure AD B2C sample

The following samples show how to integrate Azure AD V1, enabling users to sign-in with a work and school
account:

Integrating Azure AD Into an ASP.NET Core Web App
Calling a ASP.NET Core Web API From a WPF Application Using Azure AD
Calling a Web API in an ASP.NET Core Web Application Using Azure AD

The following samples show how to integrate Azure AD V2, enabling users to sign-in with a work and school
account or a Microsoft personal account (formely Live account):

Integrating Azure AD V2 into an ASP.NET Core 2.0 web app:

See this associated video
Calling a ASP.NET Core 2.0 Web API from a WPF application using Azure AD V2:

See this associated video

This sample shows how to integrate Azure AD B2C, enabling users to sign-in with social identities (like Facebook,
Google, ...)

An ASP.NET Core web API with Azure AD B2C

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/azure-active-directory/index.md
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore/
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-native-aspnetcore/
https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-webapi-openidconnect-aspnetcore/
https://github.com/Azure-Samples/active-directory-aspnetcore-webapp-openidconnect-v2
https://channel9.msdn.com/Events/Build/2018/THR5000
https://github.com/azure-samples/active-directory-dotnet-native-aspnetcore-v2
https://channel9.msdn.com/Events/Build/2018/THR5001
https://azure.microsoft.com/resources/samples/active-directory-b2c-dotnetcore-webapi/

Cloud authentication with Azure Active Directory
B2C in ASP.NET Core
3/15/2018 • 4 minutes to read • Edit Online

TIPTIP

Prerequisites

Create the Azure Active Directory B2C tenant

Register the app in Azure AD B2C

SETTING VALUE NOTES

Name <app name> Enter a Name for the app that
describes your app to consumers.

By Cam Soper

Azure Active Directory B2C (Azure AD B2C) is a cloud identity management solution for web and mobile apps.
The service provides authentication for apps hosted in the cloud and on-premises. Authentication types include
individual accounts, social network accounts, and federated enterprise accounts. Additionally, Azure AD B2C can
provide multi-factor authentication with minimal configuration.

Azure Active Directory (Azure AD) Azure AD B2C are separate product offerings. An Azure AD tenant represents an
organization, while an Azure AD B2C tenant represents a collection of identities to be used with relying party applications. To
learn more, see Azure AD B2C: Frequently asked questions (FAQ).

In this tutorial, learn how to:

Create an Azure Active Directory B2C tenant
Register an app in Azure AD B2C
Use Visual Studio to create an ASP.NET Core web app configured to use the Azure AD B2C tenant for
authentication
Configure policies controlling the behavior of the Azure AD B2C tenant

The following are required for this walkthrough:

Microsoft Azure subscription
Visual Studio 2017 (any edition)

Create an Azure Active Directory B2C tenant as described in the documentation. When prompted, associating the
tenant with an Azure subscription is optional for this tutorial.

In the newly created Azure AD B2C tenant, register your app using the steps in the documentation under the
Register a web app section. Stop at the Create a web app client secret section. A client secret isn't required for
this tutorial.

Use the following values:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/azure-ad-b2c.md
https://twitter.com/camsoper
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-overview
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-faqs
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-get-started
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-app-registration#register-a-web-app

Include web app / web API Yes

Allow implicit flow Yes

Reply URL https://localhost:44300 Reply URLs are endpoints where Azure
AD B2C returns any tokens that your
app requests. Visual Studio provides the
Reply URL to use. For now, enter
https://localhost:44300 to

complete the form.

App ID URI Leave blank Not required for this tutorial.

Include native client No

SETTING VALUE NOTES

WARNINGWARNING

Create an ASP.NET Core app in Visual Studio 2017

If setting up a non-localhost Reply URL, be aware of the constraints on what is allowed in the Reply URL list.

After the app is registered, the list of apps in the tenant is displayed. Select the app that was just registered. Select
the Copy icon to the right of the Application ID field to copy it to the clipboard.

Nothing more can be configured in the Azure AD B2C tenant at this time, but leave the browser window open.
There is more configuration after the ASP.NET Core app is created.

The Visual Studio Web Application template can be configured to use the Azure AD B2C tenant for authentication.

In Visual Studio:

1. Create a new ASP.NET Core Web Application.

2. Select Web Application from the list of templates.

3. Select the Change Authentication button.

https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-app-registration#choosing-a-web-app-or-api-reply-url

SETTING VALUE

Domain Name <the domain name of your B2C tenant>

Application ID <paste the Application ID from the clipboard>

4. In the Change Authentication dialog, select Individual User Accounts, and then select Connect to an
existing user store in the cloud in the dropdown.

5. Complete the form with the following values:

Finish the B2C app registration

TIPTIP

Configure policies

WARNINGWARNING

Run the app

Callback Path <use the default value>

Sign-up or sign-in policy B2C_1_SiUpIn

Reset password policy B2C_1_SSPR

Edit profile policy <leave blank>

SETTING VALUE

Select the Copy link next to Reply URI to copy the Reply URI to the clipboard. Select OK to close the
Change Authentication dialog. Select OK to create the web app.

Return to the browser window with the B2C app properties still open. Change the temporary Reply URL specified
earlier to the value copied from Visual Studio. Select Save at the top of the window.

If you didn't copy the Reply URL, use the SSL address from the Debug tab in the web project properties, and append the
CallbackPath value from appsettings.json.

Use the steps in the Azure AD B2C documentation to create a sign-up or sign-in policy, and then create a
password reset policy. Use the example values provided in the documentation for Identity providers, Sign-up
attributes, and Application claims. Using the Run now button to test the policies as described in the
documentation is optional.

Ensure the policy names are exactly as described in the documentation, as those policies were used in the Change
Authentication dialog in Visual Studio. The policy names can be verified in appsettings.json.

In Visual Studio, press F5 to build and run the app. After the web app launches, select Sign in.

https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-policies#create-a-sign-up-or-sign-in-policy
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-policies#create-a-password-reset-policy

The browser redirects to the Azure AD B2C tenant. Sign in with an existing account (if one was created testing the
policies) or select Sign up now to create a new account. The Forgot your password? link is used to reset a
forgotten password.

Next steps

After successfully signing in, the browser redirects to the web app.

In this tutorial, you learned how to:

Create an Azure Active Directory B2C tenant
Register an app in Azure AD B2C
Use Visual Studio to create an ASP.NET Core Web Application configured to use the Azure AD B2C tenant for
authentication
Configure policies controlling the behavior of the Azure AD B2C tenant

Now that the ASP.NET Core app is configured to use Azure AD B2C for authentication, the Authorize attribute can
be used to secure your app. Continue developing your app by learning to:

Customize the Azure AD B2C user interface.
Configure password complexity requirements.
Enable multi-factor authentication.
Configure additional identity providers, such as Microsoft, Facebook, Google, Amazon, Twitter, and others.
Use the Azure AD Graph API to retrieve additional user information, such as group membership, from the
Azure AD B2C tenant.
Secure an ASP.NET Core web API using Azure AD B2C.
Call a .NET web API from a .NET web app using Azure AD B2C.

https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-ui-customization
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-password-complexity
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-mfa
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-msa-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-fb-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-goog-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-amzn-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-twitter-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-devquickstarts-graph-dotnet
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-devquickstarts-web-api-dotnet

Cloud authentication in web APIs with Azure Active
Directory B2C in ASP.NET Core
4/10/2018 • 7 minutes to read • Edit Online

TIPTIP

Prerequisites

Create the Azure Active Directory B2C tenant

Configure a sign-up or sign-in policy

By Cam Soper

Azure Active Directory B2C (Azure AD B2C) is a cloud identity management solution for web and mobile apps.
The service provides authentication for apps hosted in the cloud and on-premises. Authentication types include
individual accounts, social network accounts, and federated enterprise accounts. Additionally, Azure AD B2C can
provide multi-factor authentication with minimal configuration.

Azure Active Directory (Azure AD) and Azure AD B2C are separate product offerings. An Azure AD tenant represents an
organization, while an Azure AD B2C tenant represents a collection of identities to be used with relying party applications. To
learn more, see Azure AD B2C: Frequently asked questions (FAQ).

Since web APIs have no user interface, they're unable to redirect the user to a secure token service like Azure AD
B2C. Instead, the API is passed a bearer token from the calling app, which has already authenticated the user with
Azure AD B2C. The API then validates the token without direct user interaction.

In this tutorial, learn how to:

Create an Azure Active Directory B2C tenant.
Register a Web API in Azure AD B2C.
Use Visual Studio to create a Web API configured to use the Azure AD B2C tenant for authentication.
Configure policies controlling the behavior of the Azure AD B2C tenant.
Use Postman to simulate a web app which presents a login dialog, retrieves a token, and uses it to make a
request against the web API.

The following are required for this walkthrough:

Microsoft Azure subscription
Visual Studio 2017 (any edition)
Postman

Create an Azure AD B2C tenant as described in the documentation. When prompted, associating the tenant with
an Azure subscription is optional for this tutorial.

Use the steps in the Azure AD B2C documentation to create a sign-up or sign-in policy. Name the policy SiUpIn.
Use the example values provided in the documentation for Identity providers, Sign-up attributes, and
Application claims. Using the Run now button to test the policy as described in the documentation is optional.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/azure-ad-b2c-webapi.md
https://twitter.com/camsoper
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-overview
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-faqs
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://www.getpostman.com/postman
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-get-started
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-policies#create-a-sign-up-or-sign-in-policy

Register the API in Azure AD B2C

SETTING VALUE NOTES

Name <API name> Enter a Name for the app that
describes your app to consumers.

Include web app / web API Yes

Allow implicit flow Yes

Reply URL https://localhost Reply URLs are endpoints where Azure
AD B2C returns any tokens that your
app requests.

App ID URI api The URI doesn't need to resolve to a
physical address. It only needs to be
unique.

Include native client No

Create an ASP.NET Core app in Visual Studio 2017

In the newly created Azure AD B2C tenant, register your API using the steps in the documentation under the
Register a web API section.

Use the following values:

After the API is registered, the list of apps and APIs in the tenant is displayed. Select the API that was just
registered. Select the Copy icon to the right of the Application ID field to copy it to the clipboard. Select
Published scopes and verify the default user_impersonation scope is present.

The Visual Studio Web Application template can be configured to use the Azure AD B2C tenant for authentication.

In Visual Studio:

1. Create a new ASP.NET Core Web Application.

2. Select Web API from the list of templates.

3. Select the Change Authentication button.

https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-app-registration#register-a-web-api

SETTING VALUE

Domain Name <the domain name of your B2C tenant>

Application ID <paste the Application ID from the clipboard>

Sign-up or sign-in policy B2C_1_SiUpIn

4. In the Change Authentication dialog, select Individual User Accounts, and then select Connect to an
existing user store in the cloud in the dropdown.

5. Complete the form with the following values:

Select OK to close the Change Authentication dialog. Select OK to create the web app.

Visual Studio creates the web API with a controller named ValuesController.cs that returns hard-coded values for
GET requests. The class is decorated with the Authorize attribute, so all requests require authentication.

Run the web API

NOTENOTE

Use Postman to get a token and test the API

Register Postman as a web appRegister Postman as a web app

SETTING VALUE NOTES

Name Postman

Include web app / web API Yes

Allow implicit flow Yes

Reply URL https://getpostman.com/postman

App ID URI <leave blank> Not required for this tutorial.

Include native client No

Create a Postman requestCreate a Postman request

In Visual Studio, run the API. Visual Studio launches a browser pointed at the API's root URL. Note the URL in the
address bar, and leave the API running in the background.

Since there is no controller defined for the root URL, the browser displays a 404 (page not found) error. This is expected
behavior.

Postman is a tool for testing web APIs. For this tutorial, Postman simulates a web app that accesses the web API
on the user's behalf.

Since Postman simulates a web app that can obtain tokens from the Azure AD B2C tenant, it must be registered in
the tenant as a web app. Register Postman using the steps in the documentation under the Register a web app
section. Stop at the Create a web app client secret section. A client secret isn't required for this tutorial.

Use the following values:

The newly registered web app needs permission to access the web API on the user's behalf.

1. Select Postman in the list of apps and then select API access from the menu on the left.
2. Select + Add.
3. In the Select API dropdown, select the name of the web API.
4. In the Select Scopes dropdown, ensure all scopes are selected.
5. Select Ok.

Note the Postman app's Application ID, as it's required to obtain a bearer token.

Launch Postman. By default, Postman displays the Create New dialog upon launching. If the dialog isn't
displayed, select the + New button in the upper left.

From the Create New dialog:

1. Select Request.

https://getpostman.com/postman
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-app-registration#register-a-web-app

2. Enter Get Values in the Request name box.

3. Select + Create Collection to create a new collection for storing the request. Name the collection ASP.NET
Core tutorials and then select the checkmark.

Test the web API without authenticationTest the web API without authentication

4. Select the Save to ASP.NET Core tutorials button.

To verify that the web API requires authentication, first make a request without authentication.

1. In the Enter request URL box, enter the URL for ValuesController . The URL is the same as displayed in
the browser with api/values appended. An example would be https://localhost:44375/api/values .

2. Select the Send button.

3. Note the status of the response is 401 Unauthorized.

Obtain a bearer tokenObtain a bearer token
To make an authenticated request to the web API, a bearer token is required. Postman makes it easy to sign in to
the Azure AD B2C tenant and obtain a token.

SETTING VALUE NOTES

Token Name <token name> Enter a descriptive name for the
token.

Grant Type Implicit

Callback URL https://getpostman.com/postman

Auth URL https://login.microsoftonline.com/<tenant
domain name>/oauth2/v2.0/authorize?
p=B2C_1_SiUpIn

Replace <tenant domain name>
with the tenant's domain name.

Client ID <enter the Postman app's
Application ID>

Client Secret <leave blank>

Scope https://<tenant domain
name>/<api>/user_impersonation
openid offline_access

Replace <tenant domain name>
with the tenant's domain name.
Replace <api> with the Web API
project name. You can also use
Application ID. The pattern for the
URL is:
https://{tenant}.onmicrosoft.com/{ap
p_name_or_id}/{scope name}.

Client Authentication Send client credentials in body

1. On the Authorization tab, in the TYPE dropdown, select OAuth 2.0. In the Add authorization data to
dropdown, select Request Headers. Select Get New Access Token.

2. Complete the GET NEW ACCESS TOKEN dialog as follows:

3. Select the Request Token button.

4. Postman opens a new window containing the Azure AD B2C tenant's sign in dialog. Sign in with an existing
account (if one was created testing the policies) or select Sign up now to create a new account. The Forgot
your password? link is used to reset a forgotten password.

Test the web API with authenticationTest the web API with authentication

Next steps

5. After successfully signing in, the window closes and the MANAGE ACCESS TOKENS dialog appears.
Scroll down to the bottom and select the Use Token button.

Select the Send button to send the request again. This time, the response status is 200 OK and the JSON payload
is visible on the response Body tab.

In this tutorial, you learned how to:

Create an Azure Active Directory B2C tenant.
Register a Web API in Azure AD B2C.
Use Visual Studio to create a Web API configured to use the Azure AD B2C tenant for authentication.
Configure policies controlling the behavior of the Azure AD B2C tenant.
Use Postman to simulate a web app which presents a login dialog, retrieves a token, and uses it to make a
request against the web API.

Continue developing your API by learning to:

Secure an ASP.NET Core web app using Azure AD B2C.
Call a .NET web API from a .NET web app using Azure AD B2C.
Customize the Azure AD B2C user interface.
Configure password complexity requirements.
Enable multi-factor authentication.
Configure additional identity providers, such as Microsoft, Facebook, Google, Amazon, Twitter, and others.
Use the Azure AD Graph API to retrieve additional user information, such as group membership, from the
Azure AD B2C tenant.

https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-devquickstarts-web-api-dotnet
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-ui-customization
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-password-complexity
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-reference-mfa
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-msa-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-fb-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-goog-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-amzn-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-setup-twitter-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-devquickstarts-graph-dotnet

Articles based on ASP.NET Core projects created with
individual user accounts
6/10/2018 • 2 minutes to read • Edit Online

dotnet new mvc -au Individual
dotnet new webapi -au Individual
dotnet new webapp -au Individual

NOTENOTE

dotnet new mvc -au Individual
dotnet new webapi -au Individual
dotnet new razor -au Individual

ASP.NET Core Identity is included in project templates in Visual Studio with the "Individual User Accounts" option.

The authentication templates are available in .NET Core CLI with -au Individual :

In ASP.NET Core 2.1 or later, webapp is an alias of the razor argument. If the dotnet new webapp <OPTIONS> command
loads the dotnet new command help instead of creating a new Razor Pages app, install the .NET Core 2.1 SDK.

The following articles show how to use the code generated in ASP.NET Core templates that use individual user
accounts:

Two-factor authentication with SMS
Account confirmation and password recovery in ASP.NET Core
Create an ASP.NET Core app with user data protected by authorization

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authentication/individual.md
https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

Authorization in ASP.NET Core
5/7/2018 • 2 minutes to read • Edit Online

Introduction

Create an app with user data protected by authorization

Razor Pages authorization

Simple authorization

Role-based authorization

Claims-based authorization

Policy-based authorization

Custom authorization policy providers

Dependency injection in requirement handlers

Resource-based authorization

View-based authorization

Authorize with a specific scheme

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/index.md
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/security/authorization/iauthorizationpolicyprovider

Introduction to authorization in ASP.NET Core
4/10/2018 • 2 minutes to read • Edit Online

Authorization types

Namespaces

 Authorization refers to the process that determines what a user is able to do. For example, an administrative user
is allowed to create a document library, add documents, edit documents, and delete them. A non-administrative
user working with the library is only authorized to read the documents.

Authorization is orthogonal and independent from authentication. However, authorization requires an
authentication mechanism. Authentication is the process of ascertaining who a user is. Authentication may create
one or more identities for the current user.

ASP.NET Core authorization provides a simple, declarative role and a rich policy-based model. Authorization is
expressed in requirements, and handlers evaluate a user's claims against requirements. Imperative checks can be
based on simple policies or policies which evaluate both the user identity and properties of the resource that the
user is attempting to access.

Authorization components, including the AuthorizeAttribute and AllowAnonymousAttribute attributes, are found in
the Microsoft.AspNetCore.Authorization namespace.

Consult the documentation on simple authorization.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/introduction.md

Create an ASP.NET Core app with user data
protected by authorization
6/18/2018 • 19 minutes to read • Edit Online

By Rick Anderson and Joe Audette

This tutorial shows how to create an ASP.NET Core web app with user data protected by authorization. It displays
a list of contacts that authenticated (registered) users have created. There are three security groups:

Registered users can view all the approved data and can edit/delete their own data.
Managers can approve or reject contact data. Only approved contacts are visible to users.
Administrators can approve/reject and edit/delete any data.

In the following image, user Rick (rick@example.com) is signed in. Rick can only view approved contacts and
Edit/Delete/Create New links for his contacts. Only the last record, created by Rick, displays Edit and Delete
links. Other users won't see the last record until a manager or administrator changes the status to "Approved".

In the following image, manager@contoso.com is signed in and in the managers role:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/secure-data.md
https://twitter.com/RickAndMSFT
https://twitter.com/joeaudette

The following image shows the managers details view of a contact:

The Approve and Reject buttons are only displayed for managers and administrators.

In the following image, admin@contoso.com is signed in and in the administrators role:

public class Contact
{
 public int ContactId { get; set; }
 public string Name { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; }
 [DataType(DataType.EmailAddress)]
 public string Email { get; set; }
}

Prerequisites

The administrator has all privileges. She can read/edit/delete any contact and change the status of contacts.

The app was created by scaffolding the following Contact model:

The sample contains the following authorization handlers:

ContactIsOwnerAuthorizationHandler : Ensures that a user can only edit their data.
ContactManagerAuthorizationHandler : Allows managers to approve or reject contacts.
ContactAdministratorsAuthorizationHandler : Allows administrators to approve or reject contacts and to

edit/delete contacts.

This tutorial is advanced. You should be familiar with:

ASP.NET Core
Authentication

The starter and completed app

The starter appThe starter app

Secure user data

Tie the contact data to the userTie the contact data to the user

public class Contact
{
 public int ContactId { get; set; }

 // user ID from AspNetUser table.
 public string OwnerID { get; set; }

 public string Name { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; }
 [DataType(DataType.EmailAddress)]
 public string Email { get; set; }

 public ContactStatus Status { get; set; }
}

public enum ContactStatus
{
 Submitted,
 Approved,
 Rejected
}

dotnet ef migrations add userID_Status
dotnet ef database update

Require HTTPS and authenticated usersRequire HTTPS and authenticated users

Account Confirmation and Password Recovery
Authorization
Entity Framework Core

See this PDF file for the ASP.NET Core MVC version. The ASP.NET Core 1.1 version of this tutorial is in this
folder. The 1.1 ASP.NET Core sample is in the samples.

Download the completed app. Test the completed app so you become familiar with its security features.

Download the starter app.

Run the app, tap the ContactManager link, and verify you can create, edit, and delete a contact.

The following sections have all the major steps to create the secure user data app. You may find it helpful to refer
to the completed project.

Use the ASP.NET Identity user ID to ensure users can edit their data, but not other users data. Add OwnerID and
ContactStatus to the Contact model:

OwnerID is the user's ID from the AspNetUser table in the Identity database. The Status field determines if a
contact is viewable by general users.

Create a new migration and update the database:

https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authorization/secure-data/asp.net_repo_pdf_1-16-18.pdf
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authorization/secure-data
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authorization/secure-data/samples/final2
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authorization/secure-data/samples/final2
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authorization/secure-data/samples/starter2

public class Startup
{
 public Startup(IConfiguration configuration, IHostingEnvironment env)
 {
 Configuration = configuration;
 Environment = env;
 }

 public IConfiguration Configuration { get; }
 private IHostingEnvironment Environment { get; }

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 var skipHTTPS = Configuration.GetValue<bool>("LocalTest:skipHTTPS");
 // requires using Microsoft.AspNetCore.Mvc;
 services.Configure<MvcOptions>(options =>
 {
 // Set LocalTest:skipHTTPS to true to skip SSL requrement in
 // debug mode. This is useful when not using Visual Studio.
 if (Environment.IsDevelopment() && !skipHTTPS)
 {
 options.Filters.Add(new RequireHttpsAttribute());
 }
 });

Require authenticated usersRequire authenticated users

Add IHostingEnvironment to Startup :

In the ConfigureServices method of the Startup.cs file, add the RequireHttpsAttribute authorization filter :

If you're using Visual Studio, enable HTTPS.

To redirect HTTP requests to HTTPS, see URL Rewriting Middleware. If you're using Visual Studio Code or testing
on a local platform that doesn't include a test certificate for HTTPS:

Set "LocalTest:skipHTTPS": true in the appsettings.Developement.json file.

Set the default authentication policy to require users to be authenticated. You can opt out of authentication at the
Razor Page, controller, or action method level with the [AllowAnonymous] attribute. Setting the default
authentication policy to require users to be authenticated protects newly added Razor Pages and controllers.
Having authentication required by default is safer than relying on new controllers and Razor Pages to include the
[Authorize] attribute.

With the requirement of all users authenticated, the AuthorizeFolder and AuthorizePage calls are not required.

Update ConfigureServices with the following changes:

Comment out AuthorizeFolder and AuthorizePage .
Set the default authentication policy to require users to be authenticated.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.requirehttpsattribute
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizefolder?view=aspnetcore-2.0#Microsoft_Extensions_DependencyInjection_PageConventionCollectionExtensions_AuthorizeFolder_Microsoft_AspNetCore_Mvc_ApplicationModels_PageConventionCollection_System_String_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage?view=aspnetcore-2.0

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 var skipHTTPS = Configuration.GetValue<bool>("LocalTest:skipHTTPS");
 // requires using Microsoft.AspNetCore.Mvc;
 services.Configure<MvcOptions>(options =>
 {
 // Set LocalTest:skipHTTPS to true to skip SSL requrement in
 // debug mode. This is useful when not using Visual Studio.
 if (Environment.IsDevelopment() && !skipHTTPS)
 {
 options.Filters.Add(new RequireHttpsAttribute());
 }
 });

 services.AddMvc();
 //.AddRazorPagesOptions(options =>
 //{
 // options.Conventions.AuthorizeFolder("/Account/Manage");
 // options.Conventions.AuthorizePage("/Account/Logout");
 //});

 services.AddSingleton<IEmailSender, EmailSender>();

 // requires: using Microsoft.AspNetCore.Authorization;
 // using Microsoft.AspNetCore.Mvc.Authorization;
 services.AddMvc(config =>
 {
 var policy = new AuthorizationPolicyBuilder()
 .RequireAuthenticatedUser()
 .Build();
 config.Filters.Add(new AuthorizeFilter(policy));
 });

// requires using Microsoft.AspNetCore.Mvc.RazorPages;
[AllowAnonymous]
public class IndexModel : PageModel
{
 public void OnGet()
 {

 }
}

Configure the test accountConfigure the test account

dotnet user-secrets set SeedUserPW <PW>

Add AllowAnonymous to the Index, About, and Contact pages so anonymous users can get information about the
site before they register.

Add [AllowAnonymous] to the LoginModel and RegisterModel.

The SeedData class creates two accounts: administrator and manager. Use the Secret Manager tool to set a
password for these accounts. Set the password from the project directory (the directory containing Program.cs):

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.allowanonymousattribute
https://github.com/aspnet/templating/issues/238

public class Program
{
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 var context = services.GetRequiredService<ApplicationDbContext>();
 context.Database.Migrate();

 // requires using Microsoft.Extensions.Configuration;
 var config = host.Services.GetRequiredService<IConfiguration>();
 // Set password with the Secret Manager tool.
 // dotnet user-secrets set SeedUserPW <pw>

 var testUserPw = config["SeedUserPW"];

 try
 {
 SeedData.Initialize(services, testUserPw).Wait();
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred while seeding the database.");
 throw ex;
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
}

Create the test accounts and update the contactsCreate the test accounts and update the contacts

If you don't use a strong password, an exception is thrown when SeedData.Initialize is called.

Update Main to use the test password:

Update the Initialize method in the SeedData class to create the test accounts:

 public static async Task Initialize(IServiceProvider serviceProvider, string testUserPw)
 {
 using (var context = new ApplicationDbContext(
 serviceProvider.GetRequiredService<DbContextOptions<ApplicationDbContext>>()))
 {
 // For sample purposes we are seeding 2 users both with the same password.
 // The password is set with the following command:
 // dotnet user-secrets set SeedUserPW <pw>
 // The admin user can do anything

 var adminID = await EnsureUser(serviceProvider, testUserPw, "admin@contoso.com");
 await EnsureRole(serviceProvider, adminID, Constants.ContactAdministratorsRole);

 // allowed user can create and edit contacts that they create
 var uid = await EnsureUser(serviceProvider, testUserPw, "manager@contoso.com");
 await EnsureRole(serviceProvider, uid, Constants.ContactManagersRole);

 SeedDB(context, adminID);
 }
 }

 private static async Task<string> EnsureUser(IServiceProvider serviceProvider,
 string testUserPw, string UserName)
 {
 var userManager = serviceProvider.GetService<UserManager<ApplicationUser>>();

 var user = await userManager.FindByNameAsync(UserName);
 if (user == null)
 {
 user = new ApplicationUser { UserName = UserName };
 await userManager.CreateAsync(user, testUserPw);
 }

 return user.Id;
 }

 private static async Task<IdentityResult> EnsureRole(IServiceProvider serviceProvider,
 string uid, string role)
 {
 IdentityResult IR = null;
 var roleManager = serviceProvider.GetService<RoleManager<IdentityRole>>();

 if (!await roleManager.RoleExistsAsync(role))
 {
 IR = await roleManager.CreateAsync(new IdentityRole(role));
 }

 var userManager = serviceProvider.GetService<UserManager<ApplicationUser>>();

 var user = await userManager.FindByIdAsync(uid);

 IR = await userManager.AddToRoleAsync(user, role);

 return IR;
 }

Add the administrator user ID and ContactStatus to the contacts. Make one of the contacts "Submitted" and one
"Rejected". Add the user ID and status to all the contacts. Only one contact is shown:

public static void SeedDB(ApplicationDbContext context, string adminID)
{
 if (context.Contact.Any())
 {
 return; // DB has been seeded
 }

 context.Contact.AddRange(
 new Contact
 {
 Name = "Debra Garcia",
 Address = "1234 Main St",
 City = "Redmond",
 State = "WA",
 Zip = "10999",
 Email = "debra@example.com",
 Status = ContactStatus.Approved,
 OwnerID = adminID
 },

Create owner, manager, and administrator authorization handlers
Create a ContactIsOwnerAuthorizationHandler class in the Authorization folder. The
ContactIsOwnerAuthorizationHandler verifies that the user acting on a resource owns the resource.

using System.Threading.Tasks;
using ContactManager.Data;
using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;
using Microsoft.AspNetCore.Identity;

namespace ContactManager.Authorization
{
 public class ContactIsOwnerAuthorizationHandler
 : AuthorizationHandler<OperationAuthorizationRequirement, Contact>
 {
 UserManager<ApplicationUser> _userManager;

 public ContactIsOwnerAuthorizationHandler(UserManager<ApplicationUser>
 userManager)
 {
 _userManager = userManager;
 }

 protected override Task
 HandleRequirementAsync(AuthorizationHandlerContext context,
 OperationAuthorizationRequirement requirement,
 Contact resource)
 {
 if (context.User == null || resource == null)
 {
 // Return Task.FromResult(0) if targeting a version of
 // .NET Framework older than 4.6:
 return Task.CompletedTask;
 }

 // If we're not asking for CRUD permission, return.

 if (requirement.Name != Constants.CreateOperationName &&
 requirement.Name != Constants.ReadOperationName &&
 requirement.Name != Constants.UpdateOperationName &&
 requirement.Name != Constants.DeleteOperationName)
 {
 return Task.CompletedTask;
 }

 if (resource.OwnerID == _userManager.GetUserId(context.User))
 {
 context.Succeed(requirement);
 }

 return Task.CompletedTask;
 }
 }
}

The ContactIsOwnerAuthorizationHandler calls context.Succeed if the current authenticated user is the contact
owner. Authorization handlers generally:

Return context.Succeed when the requirements are met.
Return Task.CompletedTask when requirements aren't met. Task.CompletedTask is neither success or failure—it
allows other authorization handlers to run.

If you need to explicitly fail, return context.Fail.

The app allows contact owners to edit/delete/create their own data. ContactIsOwnerAuthorizationHandler doesn't
need to check the operation passed in the requirement parameter.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.succeed#Microsoft_AspNetCore_Authorization_AuthorizationHandlerContext_Succeed_Microsoft_AspNetCore_Authorization_IAuthorizationRequirement_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.fail

Create a manager authorization handlerCreate a manager authorization handler

using System.Threading.Tasks;
using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;
using Microsoft.AspNetCore.Identity;

namespace ContactManager.Authorization
{
 public class ContactManagerAuthorizationHandler :
 AuthorizationHandler<OperationAuthorizationRequirement, Contact>
 {
 protected override Task
 HandleRequirementAsync(AuthorizationHandlerContext context,
 OperationAuthorizationRequirement requirement,
 Contact resource)
 {
 if (context.User == null || resource == null)
 {
 return Task.CompletedTask;
 }

 // If not asking for approval/reject, return.
 if (requirement.Name != Constants.ApproveOperationName &&
 requirement.Name != Constants.RejectOperationName)
 {
 return Task.CompletedTask;
 }

 // Managers can approve or reject.
 if (context.User.IsInRole(Constants.ContactManagersRole))
 {
 context.Succeed(requirement);
 }

 return Task.CompletedTask;
 }
 }
}

Create an administrator authorization handlerCreate an administrator authorization handler

Create a ContactManagerAuthorizationHandler class in the Authorization folder. The
ContactManagerAuthorizationHandler verifies the user acting on the resource is a manager. Only managers can

approve or reject content changes (new or changed).

Create a ContactAdministratorsAuthorizationHandler class in the Authorization folder. The
ContactAdministratorsAuthorizationHandler verifies the user acting on the resource is an administrator.

Administrator can do all operations.

using System.Threading.Tasks;
using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;

namespace ContactManager.Authorization
{
 public class ContactAdministratorsAuthorizationHandler
 : AuthorizationHandler<OperationAuthorizationRequirement, Contact>
 {
 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 OperationAuthorizationRequirement requirement,
 Contact resource)
 {
 if (context.User == null)
 {
 return Task.CompletedTask;
 }

 // Administrators can do anything.
 if (context.User.IsInRole(Constants.ContactAdministratorsRole))
 {
 context.Succeed(requirement);
 }

 return Task.CompletedTask;
 }
 }
}

Register the authorization handlers
Services using Entity Framework Core must be registered for dependency injection using AddScoped. The
ContactIsOwnerAuthorizationHandler uses ASP.NET Core Identity, which is built on Entity Framework Core.

Register the handlers with the service collection so they're available to the ContactsController through
dependency injection. Add the following code to the end of ConfigureServices :

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 var skipHTTPS = Configuration.GetValue<bool>("LocalTest:skipHTTPS");
 // requires using Microsoft.AspNetCore.Mvc;
 services.Configure<MvcOptions>(options =>
 {
 // Set LocalTest:skipHTTPS to true to skip SSL requrement in
 // debug mode. This is useful when not using Visual Studio.
 if (Environment.IsDevelopment() && !skipHTTPS)
 {
 options.Filters.Add(new RequireHttpsAttribute());
 }
 });

 services.AddMvc();
 //.AddRazorPagesOptions(options =>
 //{
 // options.Conventions.AuthorizeFolder("/Account/Manage");
 // options.Conventions.AuthorizePage("/Account/Logout");
 //});

 services.AddSingleton<IEmailSender, EmailSender>();

 // requires: using Microsoft.AspNetCore.Authorization;
 // using Microsoft.AspNetCore.Mvc.Authorization;
 services.AddMvc(config =>
 {
 var policy = new AuthorizationPolicyBuilder()
 .RequireAuthenticatedUser()
 .Build();
 config.Filters.Add(new AuthorizeFilter(policy));
 });

 // Authorization handlers.
 services.AddScoped<IAuthorizationHandler,
 ContactIsOwnerAuthorizationHandler>();

 services.AddSingleton<IAuthorizationHandler,
 ContactAdministratorsAuthorizationHandler>();

 services.AddSingleton<IAuthorizationHandler,
 ContactManagerAuthorizationHandler>();
}

Support authorization

Review the contact operations requirements classReview the contact operations requirements class

ContactAdministratorsAuthorizationHandler and ContactManagerAuthorizationHandler are added as singletons.
They're singletons because they don't use EF and all the information needed is in the Context parameter of the
HandleRequirementAsync method.

In this section, you update the Razor Pages and add an operations requirements class.

Review the ContactOperations class. This class contains the requirements the app supports:

using Microsoft.AspNetCore.Authorization.Infrastructure;

namespace ContactManager.Authorization
{
 public static class ContactOperations
 {
 public static OperationAuthorizationRequirement Create =
 new OperationAuthorizationRequirement {Name=Constants.CreateOperationName};
 public static OperationAuthorizationRequirement Read =
 new OperationAuthorizationRequirement {Name=Constants.ReadOperationName};
 public static OperationAuthorizationRequirement Update =
 new OperationAuthorizationRequirement {Name=Constants.UpdateOperationName};
 public static OperationAuthorizationRequirement Delete =
 new OperationAuthorizationRequirement {Name=Constants.DeleteOperationName};
 public static OperationAuthorizationRequirement Approve =
 new OperationAuthorizationRequirement {Name=Constants.ApproveOperationName};
 public static OperationAuthorizationRequirement Reject =
 new OperationAuthorizationRequirement {Name=Constants.RejectOperationName};
 }

 public class Constants
 {
 public static readonly string CreateOperationName = "Create";
 public static readonly string ReadOperationName = "Read";
 public static readonly string UpdateOperationName = "Update";
 public static readonly string DeleteOperationName = "Delete";
 public static readonly string ApproveOperationName = "Approve";
 public static readonly string RejectOperationName = "Reject";

 public static readonly string ContactAdministratorsRole =
 "ContactAdministrators";
 public static readonly string ContactManagersRole = "ContactManagers";
 }
}

Create a base class for the Razor PagesCreate a base class for the Razor Pages

using ContactManager.Data;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace ContactManager.Pages.Contacts
{
 public class DI_BasePageModel : PageModel
 {
 protected ApplicationDbContext Context { get; }
 protected IAuthorizationService AuthorizationService { get; }
 protected UserManager<ApplicationUser> UserManager { get; }

 public DI_BasePageModel(
 ApplicationDbContext context,
 IAuthorizationService authorizationService,
 UserManager<ApplicationUser> userManager) : base()
 {
 Context = context;
 UserManager = userManager;
 AuthorizationService = authorizationService;
 }
 }
}

Create a base class that contains the services used in the contacts Razor Pages. The base class puts that
initialization code in one location:

Update the CreateModelUpdate the CreateModel

public class CreateModel : DI_BasePageModel
{
 public CreateModel(
 ApplicationDbContext context,
 IAuthorizationService authorizationService,
 UserManager<ApplicationUser> userManager)
 : base(context, authorizationService, userManager)
 {
 }

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 Contact.OwnerID = UserManager.GetUserId(User);

 // requires using ContactManager.Authorization;
 var isAuthorized = await AuthorizationService.AuthorizeAsync(
 User, Contact,
 ContactOperations.Create);
 if (!isAuthorized.Succeeded)
 {
 return new ChallengeResult();
 }

 Context.Contact.Add(Contact);
 await Context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

Update the IndexModelUpdate the IndexModel

The preceding code:

Adds the IAuthorizationService service to access to the authorization handlers.
Adds the Identity UserManager service.
Add the ApplicationDbContext .

Update the create page model constructor to use the DI_BasePageModel base class:

Update the CreateModel.OnPostAsync method to:

Add the user ID to the Contact model.
Call the authorization handler to verify the user has permission to create contacts.

Update the OnGetAsync method so only approved contacts are shown to general users:

public class IndexModel : DI_BasePageModel
{
 public IndexModel(
 ApplicationDbContext context,
 IAuthorizationService authorizationService,
 UserManager<ApplicationUser> userManager)
 : base(context, authorizationService, userManager)
 {
 }

 public IList<Contact> Contact { get; set; }

 public async Task OnGetAsync()
 {
 var contacts = from c in Context.Contact
 select c;

 var isAuthorized = User.IsInRole(Constants.ContactManagersRole) ||
 User.IsInRole(Constants.ContactAdministratorsRole);

 var currentUserId = UserManager.GetUserId(User);

 // Only approved contacts are shown UNLESS you're authorized to see them
 // or you are the owner.
 if (!isAuthorized)
 {
 contacts = contacts.Where(c => c.Status == ContactStatus.Approved
 || c.OwnerID == currentUserId);
 }

 Contact = await contacts.ToListAsync();
 }
}

Update the EditModelUpdate the EditModel

public class EditModel : DI_BasePageModel
{
 public EditModel(
 ApplicationDbContext context,
 IAuthorizationService authorizationService,
 UserManager<ApplicationUser> userManager)
 : base(context, authorizationService, userManager)
 {
 }

 [BindProperty]
 public Contact Contact { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Contact = await Context.Contact.FirstOrDefaultAsync(
 m => m.ContactId == id);

 if (Contact == null)
 {
 return NotFound();
 }

Add an authorization handler to verify the user owns the contact. Because resource authorization is being
validated, the [Authorize] attribute is not enough. The app doesn't have access to the resource when attributes
are evaluated. Resource-based authorization must be imperative. Checks must be performed once the app has
access to the resource, either by loading it in the page model or by loading it within the handler itself. You
frequently access the resource by passing in the resource key.

 var isAuthorized = await AuthorizationService.AuthorizeAsync(
 User, Contact,
 ContactOperations.Update);
 if (!isAuthorized.Succeeded)
 {
 return new ChallengeResult();
 }

 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 // Fetch Contact from DB to get OwnerID.
 var contact = await Context
 .Contact.AsNoTracking()
 .FirstOrDefaultAsync(m => m.ContactId == id);

 if (contact == null)
 {
 return NotFound();
 }

 var isAuthorized = await AuthorizationService.AuthorizeAsync(
 User, contact,
 ContactOperations.Update);
 if (!isAuthorized.Succeeded)
 {
 return new ChallengeResult();
 }

 Contact.OwnerID = contact.OwnerID;

 Context.Attach(Contact).State = EntityState.Modified;

 if (contact.Status == ContactStatus.Approved)
 {
 // If the contact is updated after approval,
 // and the user cannot approve,
 // set the status back to submitted so the update can be
 // checked and approved.
 var canApprove = await AuthorizationService.AuthorizeAsync(User,
 contact,
 ContactOperations.Approve);

 if (!canApprove.Succeeded)
 {
 contact.Status = ContactStatus.Submitted;
 }
 }

 await Context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }

 private bool ContactExists(int id)
 {
 return Context.Contact.Any(e => e.ContactId == id);
 }
}

Update the DeleteModelUpdate the DeleteModel

public class DeleteModel : DI_BasePageModel
{
 public DeleteModel(
 ApplicationDbContext context,
 IAuthorizationService authorizationService,
 UserManager<ApplicationUser> userManager)
 : base(context, authorizationService, userManager)
 {
 }

 [BindProperty]
 public Contact Contact { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Contact = await Context.Contact.FirstOrDefaultAsync(
 m => m.ContactId == id);

 if (Contact == null)
 {
 return NotFound();
 }

 var isAuthorized = await AuthorizationService.AuthorizeAsync(
 User, Contact,
 ContactOperations.Delete);
 if (!isAuthorized.Succeeded)
 {
 return new ChallengeResult();
 }

 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 Contact = await Context.Contact.FindAsync(id);

 var contact = await Context
 .Contact.AsNoTracking()
 .FirstOrDefaultAsync(m => m.ContactId == id);

 if (contact == null)
 {
 return NotFound();
 }

 var isAuthorized = await AuthorizationService.AuthorizeAsync(
 User, contact,
 ContactOperations.Delete);
 if (!isAuthorized.Succeeded)
 {
 return new ChallengeResult();
 }

 Context.Contact.Remove(Contact);
 await Context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
}

Update the delete page model to use the authorization handler to verify the user has delete permission on the
contact.

Inject the authorization service into the views

@using Microsoft.AspNetCore.Identity
@using ContactManager
@using ContactManager.Data
@namespace ContactManager.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using ContactManager.Authorization;
@using Microsoft.AspNetCore.Authorization
@using ContactManager.Models
@inject IAuthorizationService AuthorizationService

@page
@model ContactManager.Pages.Contacts.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Contact[0].Name)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Contact[0].Address)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Contact[0].City)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Contact[0].State)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Contact[0].Zip)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Contact[0].Email)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Contact[0].Status)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Contact)
 {
 <tr>

Currently, the UI shows edit and delete links for data the user can't modify. The UI is fixed by applying the
authorization handler to the views.

Inject the authorization service in the Views/_ViewImports.cshtml file so it's available to all views:

The preceding markup adds several using statements.

Update the Edit and Delete links in Pages/Contacts/Index.cshtml so they're only rendered for users with the
appropriate permissions:

 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Address)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.City)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.State)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Zip)
 </td>

 <td>
 @Html.DisplayFor(modelItem => item.Email)
 </td>

 <td>
 @Html.DisplayFor(modelItem => item.Status)
 </td>
 <td>
 @if ((await AuthorizationService.AuthorizeAsync(
 User, item,
 ContactOperations.Update)).Succeeded)
 {
 <a asp-page="./Edit" asp-route-id="@item.ContactId">Edit
 <text> | </text>
 }

 <a asp-page="./Details" asp-route-id="@item.ContactId">Details

 @if ((await AuthorizationService.AuthorizeAsync(
 User, item,
 ContactOperations.Delete)).Succeeded)
 {
 <text> | </text>
 <a asp-page="./Delete" asp-route-id="@item.ContactId">Delete
 }
 </td>
 </tr>
 }
 </tbody>
</table>

WARNINGWARNING

Update DetailsUpdate Details

Hiding links from users that don't have permission to change data doesn't secure the app. Hiding links makes the app more
user-friendly by displaying only valid links. Users can hack the generated URLs to invoke edit and delete operations on data
they don't own. The Razor Page or controller must enforce access checks to secure the data.

Update the details view so managers can approve or reject contacts:

 @*Precedng markup omitted for brevity.*@

 <dd>
 @Html.DisplayFor(model => model.Contact.Email)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Contact.Status)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Contact.Status)
 </dd>
 </dl>
</div>

@if (Model.Contact.Status != ContactStatus.Approved)
{
 @if ((await AuthorizationService.AuthorizeAsync(
 User, Model.Contact, ContactOperations.Approve)).Succeeded)
 {
 <form style="display:inline;" method="post">
 <input type="hidden" name="id" value="@Model.Contact.ContactId" />
 <input type="hidden" name="status" value="@ContactStatus.Approved" />
 <button type="submit" class="btn btn-xs btn-success">Approve</button>
 </form>
 }
}

@if (Model.Contact.Status != ContactStatus.Rejected)
{
 @if ((await AuthorizationService.AuthorizeAsync(
 User, Model.Contact, ContactOperations.Reject)).Succeeded)
 {
 <form style="display:inline;" method="post">
 <input type="hidden" name="id" value="@Model.Contact.ContactId" />
 <input type="hidden" name="status" value="@ContactStatus.Rejected" />
 <button type="submit" class="btn btn-xs btn-success">Reject</button>
 </form>
 }
}

<div>
 @if ((await AuthorizationService.AuthorizeAsync(
 User, Model.Contact,
 ContactOperations.Update)).Succeeded)
 {
 <a asp-page="./Edit" asp-route-id="@Model.Contact.ContactId">Edit
 <text> | </text>
 }
 <a asp-page="./Index">Back to List
</div>

Update the details page model:

public class DetailsModel : DI_BasePageModel
{
 public DetailsModel(
 ApplicationDbContext context,
 IAuthorizationService authorizationService,
 UserManager<ApplicationUser> userManager)
 : base(context, authorizationService, userManager)
 {
 }

 public Contact Contact { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Contact = await Context.Contact.FirstOrDefaultAsync(m => m.ContactId == id);

 if (Contact == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id, ContactStatus status)
 {
 var contact = await Context.Contact.FirstOrDefaultAsync(
 m => m.ContactId == id);

 if (contact == null)
 {
 return NotFound();
 }

 var contactOperation = (status == ContactStatus.Approved)
 ? ContactOperations.Approve
 : ContactOperations.Reject;

 var isAuthorized = await AuthorizationService.AuthorizeAsync(User, contact,
 contactOperation);
 if (!isAuthorized.Succeeded)
 {
 return new ChallengeResult();
 }
 contact.Status = status;
 Context.Contact.Update(contact);
 await Context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
}

Test the completed app
If you're using Visual Studio Code or testing on a local platform that doesn't include a test certificate for HTTPS:

Set "LocalTest:skipHTTPS": true in the appsettings.Developement.json file to skip the HTTPS requirement.
Skip HTTPS only on a development machine.

If the app has contacts:

Delete all the records in the Contact table.
Restart the app to seed the database.

Register a user for browsing the contacts.

USER OPTIONS

test@example.com Can edit/delete own data

manager@contoso.com Can approve/reject and edit/delete own data

admin@contoso.com Can edit/delete and approve/reject all data

Create the starter app

dotnet new webapp -o ContactManager -au Individual -uld

NOTENOTE

dotnet new razor -o ContactManager -au Individual -uld

An easy way to test the completed app is to launch three different browsers (or incognito/InPrivate versions). In
one browser, register a new user (for example, test@example.com). Sign in to each browser with a different user.
Verify the following operations:

Registered users can view all the approved contact data.
Registered users can edit/delete their own data.
Managers can approve or reject contact data. The Details view shows Approve and Reject buttons.
Administrators can approve/reject and edit/delete any data.

Create a contact in the administrator's browser. Copy the URL for delete and edit from the administrator contact.
Paste these links into the test user's browser to verify the test user can't perform these operations.

Create a Razor Pages app named "ContactManager"

Create the app with Individual User Accounts.
Name it "ContactManager" so your namespace matches the namespace used in the sample.

In ASP.NET Core 2.1 or later, webapp is an alias of the razor argument. If the dotnet new webapp <OPTIONS> command
loads the dotnet new command help instead of creating a new Razor Pages app, install the .NET Core 2.1 SDK.

public class Contact
{
 public int ContactId { get; set; }
 public string Name { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; }
 [DataType(DataType.EmailAddress)]
 public string Email { get; set; }
}

-uld specifies LocalDB instead of SQLite

Add the following Contact model:

Scaffold the Contact model:

https://docs.microsoft.com/dotnet/core/tools/dotnet-new
https://www.microsoft.com/net/download/dotnet-core/sdk-2.1.300

dotnet aspnet-codegenerator razorpage -m Contact -udl -dc ApplicationDbContext -outDir Pages\Contacts --
referenceScriptLibraries

<a asp-page="/Contacts/Index" class="navbar-brand">ContactManager

dotnet ef migrations add initial
dotnet ef database update

Seed the databaseSeed the database

public class Program
{
 public static void Main(string[] args)
 {
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 var context = services.GetRequiredService<ApplicationDbContext>();
 context.Database.Migrate();

 try
 {
 SeedData.Initialize(services, "").Wait();
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred while seeding the database.");
 throw ex;
 }
 }

 host.Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
}

Additional resourcesAdditional resources

Update the ContactManager anchor in the Pages/_Layout.cshtml file:

Scaffold the initial migration and update the database:

Test the app by creating, editing, and deleting a contact

Add the SeedData class to the Data folder. If you've downloaded the sample, you can copy the SeedData.cs file to
the Data folder of the starter project.

Call SeedData.Initialize from Main :

Test that the app seeded the database. If there are any rows in the contact DB, the seed method doesn't run.

ASP.NET Core Authorization Lab. This lab goes into more detail on the security features introduced in this
tutorial.

https://github.com/blowdart/AspNetAuthorizationWorkshop

Authorization in ASP.NET Core: Simple, role, claims-based, and custom
Custom policy-based authorization

Razor Pages authorization conventions in ASP.NET
Core
6/12/2018 • 2 minutes to read • Edit Online

Require authorization to access a page

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AuthorizePage("/Contact");
 options.Conventions.AuthorizeFolder("/Private");
 options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
 options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
 })
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

NOTENOTE

Require authorization to access a folder of pages

By Luke Latham

One way to control access in your Razor Pages app is to use authorization conventions at startup. These
conventions allow you to authorize users and allow anonymous users to access individual pages or folders of
pages. The conventions described in this topic automatically apply authorization filters to control access.

View or download sample code (how to download)

The sample app uses Cookie authentication without ASP.NET Core Identity. The user account for the hypothetical
user, Maria Rodriguez, is hardcoded into the app. Use the Email username "maria.rodriguez@contoso.com" and
any password to sign in the user. The user is authenticated in the AuthenticateUser method in the
Pages/Account/Login.cshtml.cs file. In a real-world example, the user would be authenticated against a database.
To use ASP.NET Core Identity, follow the guidance in the Introduction to Identity on ASP.NET Core topic. The
concepts and examples shown in this topic apply equally to apps that use ASP.NET Core Identity.

Use the AuthorizePage convention via AddRazorPagesOptions to add an AuthorizeFilter to the page at the
specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path without an extension and
containing only forward slashes.

An AuthorizePage overload is available if you need to specify an authorization policy.

An AuthorizeFilter can be applied to a page model class with the [Authorize] filter attribute. For more information,
see Authorize filter attribute.

Use the AuthorizeFolder convention via AddRazorPagesOptions to add an AuthorizeFilter to all of the pages in a
folder at the specified path:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/razor-pages-authorization.md
https://github.com/guardrex
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authorization/razor-pages-authorization/samples
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage#Microsoft_Extensions_DependencyInjection_PageConventionCollectionExtensions_AuthorizePage_Microsoft_AspNetCore_Mvc_ApplicationModels_PageConventionCollection_System_String_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizefolder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AuthorizePage("/Contact");
 options.Conventions.AuthorizeFolder("/Private");
 options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
 options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
 })
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

Allow anonymous access to a page

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AuthorizePage("/Contact");
 options.Conventions.AuthorizeFolder("/Private");
 options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
 options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
 })
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

Allow anonymous access to a folder of pages

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AuthorizePage("/Contact");
 options.Conventions.AuthorizeFolder("/Private");
 options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
 options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
 })
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

Note on combining authorized and anonymous access

// This works.
.AuthorizeFolder("/Private").AllowAnonymousToPage("/Private/Public")

The specified path is the View Engine path, which is the Razor Pages root relative path.

An AuthorizeFolder overload is available if you need to specify an authorization policy.

Use the AllowAnonymousToPage convention via AddRazorPagesOptions to add an AllowAnonymousFilter to a
page at the specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path without an extension and
containing only forward slashes.

Use the AllowAnonymousToFolder convention via AddRazorPagesOptions to add an AllowAnonymousFilter to
all of the pages in a folder at the specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path.

It's perfectly valid to specify that a folder of pages require authorization and specify that a page within that folder
allows anonymous access:

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizefolder#Microsoft_Extensions_DependencyInjection_PageConventionCollectionExtensions_AuthorizeFolder_Microsoft_AspNetCore_Mvc_ApplicationModels_PageConventionCollection_System_String_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.allowanonymoustopage
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.allowanonymoustofolder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter

// This doesn't work!
.AllowAnonymousToFolder("/Public").AuthorizePage("/Public/Private")

Additional resources

The reverse, however, isn't true. You can't declare a folder of pages for anonymous access and specify a page
within for authorization:

Requiring authorization on the Private page won't work because when both the AllowAnonymousFilter and
AuthorizeFilter filters are applied to the page, the AllowAnonymousFilter wins and controls access.

Razor Pages custom route and page model providers
PageConventionCollection class

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection

Simple authorization in ASP.NET Core
3/21/2018 • 2 minutes to read • Edit Online

[Authorize]
public class AccountController : Controller
{
 public ActionResult Login()
 {
 }

 public ActionResult Logout()
 {
 }
}

public class AccountController : Controller
{
 public ActionResult Login()
 {
 }

 [Authorize]
 public ActionResult Logout()
 {
 }
}

[Authorize]
public class AccountController : Controller
{
 [AllowAnonymous]
 public ActionResult Login()
 {
 }

 public ActionResult Logout()
 {
 }
}

 Authorization in MVC is controlled through the AuthorizeAttribute attribute and its various parameters. At its
simplest, applying the AuthorizeAttribute attribute to a controller or action limits access to the controller or
action to any authenticated user.

For example, the following code limits access to the AccountController to any authenticated user.

If you want to apply authorization to an action rather than the controller, apply the AuthorizeAttribute attribute
to the action itself:

Now only authenticated users can access the Logout function.

You can also use the AllowAnonymous attribute to allow access by non-authenticated users to individual actions.
For example:

This would allow only authenticated users to the AccountController , except for the Login action, which is

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/simple.md

WARNINGWARNING

accessible by everyone, regardless of their authenticated or unauthenticated / anonymous status.

[AllowAnonymous] bypasses all authorization statements. If you apply combine [AllowAnonymous] and any
[Authorize] attribute then the Authorize attributes will always be ignored. For example if you apply [AllowAnonymous]

at the controller level any [Authorize] attributes on the same controller, or on any action within it will be ignored.

Role-based authorization in ASP.NET Core
5/2/2018 • 2 minutes to read • Edit Online

Adding role checks

[Authorize(Roles = "Administrator")]
public class AdministrationController : Controller
{
}

[Authorize(Roles = "HRManager,Finance")]
public class SalaryController : Controller
{
}

[Authorize(Roles = "PowerUser")]
[Authorize(Roles = "ControlPanelUser")]
public class ControlPanelController : Controller
{
}

 When an identity is created it may belong to one or more roles. For example, Tracy may belong to the
Administrator and User roles whilst Scott may only belong to the User role. How these roles are created and
managed depends on the backing store of the authorization process. Roles are exposed to the developer through
the IsInRole method on the ClaimsPrincipal class.

Role-based authorization checks are declarative—the developer embeds them within their code, against a
controller or an action within a controller, specifying roles which the current user must be a member of to access
the requested resource.

For example, the following code limits access to any actions on the AdministrationController to users who are a
member of the Administrator role:

You can specify multiple roles as a comma separated list:

This controller would be only accessible by users who are members of the HRManager role or the Finance role.

If you apply multiple attributes then an accessing user must be a member of all the roles specified; the following
sample requires that a user must be a member of both the PowerUser and ControlPanelUser role.

You can further limit access by applying additional role authorization attributes at the action level:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/roles.md
https://docs.microsoft.com/dotnet/api/system.security.principal.genericprincipal.isinrole
https://docs.microsoft.com/dotnet/api/system.security.claims.claimsprincipal

[Authorize(Roles = "Administrator, PowerUser")]
public class ControlPanelController : Controller
{
 public ActionResult SetTime()
 {
 }

 [Authorize(Roles = "Administrator")]
 public ActionResult ShutDown()
 {
 }
}

[Authorize]
public class ControlPanelController : Controller
{
 public ActionResult SetTime()
 {
 }

 [AllowAnonymous]
 public ActionResult Login()
 {
 }
}

Policy based role checks

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddAuthorization(options =>
 {
 options.AddPolicy("RequireAdministratorRole", policy => policy.RequireRole("Administrator"));
 });
}

[Authorize(Policy = "RequireAdministratorRole")]
public IActionResult Shutdown()
{
 return View();
}

In the previous code snippet members of the Administrator role or the PowerUser role can access the controller
and the SetTime action, but only members of the Administrator role can access the ShutDown action.

You can also lock down a controller but allow anonymous, unauthenticated access to individual actions.

Role requirements can also be expressed using the new Policy syntax, where a developer registers a policy at
startup as part of the Authorization service configuration. This normally occurs in ConfigureServices() in your
Startup.cs file.

Policies are applied using the Policy property on the AuthorizeAttribute attribute:

If you want to specify multiple allowed roles in a requirement then you can specify them as parameters to the
RequireRole method:

options.AddPolicy("ElevatedRights", policy =>
 policy.RequireRole("Administrator", "PowerUser", "BackupAdministrator"));

This example authorizes users who belong to the Administrator , PowerUser or BackupAdministrator roles.

Claims-based authorization in ASP.NET Core
5/18/2018 • 3 minutes to read • Edit Online

Adding claims checks

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddAuthorization(options =>
 {
 options.AddPolicy("EmployeeOnly", policy => policy.RequireClaim("EmployeeNumber"));
 });
}

[Authorize(Policy = "EmployeeOnly")]
public IActionResult VacationBalance()
{
 return View();
}

 When an identity is created it may be assigned one or more claims issued by a trusted party. A claim is a name
value pair that represents what the subject is, not what the subject can do. For example, you may have a driver's
license, issued by a local driving license authority. Your driver's license has your date of birth on it. In this case the
claim name would be DateOfBirth , the claim value would be your date of birth, for example 8th June 1970 and
the issuer would be the driving license authority. Claims based authorization, at its simplest, checks the value of a
claim and allows access to a resource based upon that value. For example if you want access to a night club the
authorization process might be:

The door security officer would evaluate the value of your date of birth claim and whether they trust the issuer
(the driving license authority) before granting you access.

An identity can contain multiple claims with multiple values and can contain multiple claims of the same type.

Claim based authorization checks are declarative - the developer embeds them within their code, against a
controller or an action within a controller, specifying claims which the current user must possess, and optionally
the value the claim must hold to access the requested resource. Claims requirements are policy based, the
developer must build and register a policy expressing the claims requirements.

The simplest type of claim policy looks for the presence of a claim and doesn't check the value.

First you need to build and register the policy. This takes place as part of the Authorization service configuration,
which normally takes part in ConfigureServices() in your Startup.cs file.

In this case the EmployeeOnly policy checks for the presence of an EmployeeNumber claim on the current identity.

You then apply the policy using the Policy property on the AuthorizeAttribute attribute to specify the policy
name;

The AuthorizeAttribute attribute can be applied to an entire controller, in this instance only identities matching
the policy will be allowed access to any Action on the controller.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/claims.md

[Authorize(Policy = "EmployeeOnly")]
public class VacationController : Controller
{
 public ActionResult VacationBalance()
 {
 }
}

[Authorize(Policy = "EmployeeOnly")]
public class VacationController : Controller
{
 public ActionResult VacationBalance()
 {
 }

 [AllowAnonymous]
 public ActionResult VacationPolicy()
 {
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddAuthorization(options =>
 {
 options.AddPolicy("Founders", policy =>
 policy.RequireClaim("EmployeeNumber", "1", "2", "3", "4", "5"));
 });
}

Add a generic claim checkAdd a generic claim check

Multiple Policy Evaluation

If you have a controller that's protected by the AuthorizeAttribute attribute, but want to allow anonymous access
to particular actions you apply the AllowAnonymousAttribute attribute.

Most claims come with a value. You can specify a list of allowed values when creating the policy. The following
example would only succeed for employees whose employee number was 1, 2, 3, 4 or 5.

If the claim value isn't a single value or a transformation is required, use RequireAssertion. For more information,
see Using a func to fulfill a policy.

If you apply multiple policies to a controller or action, then all policies must pass before access is granted. For
example:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationpolicybuilder.requireassertion

[Authorize(Policy = "EmployeeOnly")]
public class SalaryController : Controller
{
 public ActionResult Payslip()
 {
 }

 [Authorize(Policy = "HumanResources")]
 public ActionResult UpdateSalary()
 {
 }
}

In the above example any identity which fulfills the EmployeeOnly policy can access the Payslip action as that
policy is enforced on the controller. However in order to call the UpdateSalary action the identity must fulfill both

the EmployeeOnly policy and the HumanResources policy.

If you want more complicated policies, such as taking a date of birth claim, calculating an age from it then
checking the age is 21 or older then you need to write custom policy handlers.

Policy-based authorization in ASP.NET Core
3/22/2018 • 6 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddAuthorization(options =>
 {
 options.AddPolicy("AtLeast21", policy =>
 policy.Requirements.Add(new MinimumAgeRequirement(21)));
 });
}

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;

[Authorize(Policy = "AtLeast21")]
public class AlcoholPurchaseController : Controller
{
 public IActionResult Login() => View();

 public IActionResult Logout() => View();
}

Requirements

Underneath the covers, role-based authorization and claims-based authorization use a requirement, a
requirement handler, and a pre-configured policy. These building blocks support the expression of authorization
evaluations in code. The result is a richer, reusable, testable authorization structure.

An authorization policy consists of one or more requirements. It's registered as part of the authorization service
configuration, in the Startup.ConfigureServices method:

In the preceding example, an "AtLeast21" policy is created. It has a single requirement—that of a minimum age,
which is supplied as a parameter to the requirement.

Policies are applied by using the [Authorize] attribute with the policy name. For example:

An authorization requirement is a collection of data parameters that a policy can use to evaluate the current user
principal. In our "AtLeast21" policy, the requirement is a single parameter—the minimum age. A requirement
implements IAuthorizationRequirement, which is an empty marker interface. A parameterized minimum age
requirement could be implemented as follows:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/policies.md
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationrequirement

using Microsoft.AspNetCore.Authorization;

public class MinimumAgeRequirement : IAuthorizationRequirement
{
 public int MinimumAge { get; private set; }

 public MinimumAgeRequirement(int minimumAge)
 {
 MinimumAge = minimumAge;
 }
}

NOTENOTE

Authorization handlers

Use a handler for one requirementUse a handler for one requirement

A requirement doesn't need to have data or properties.

An authorization handler is responsible for the evaluation of a requirement's properties. The authorization
handler evaluates the requirements against a provided AuthorizationHandlerContext to determine if access is
allowed.

A requirement can have multiple handlers. A handler may inherit AuthorizationHandler<TRequirement>, where
TRequirement is the requirement to be handled. Alternatively, a handler may implement IAuthorizationHandler to

handle more than one type of requirement.

 The following is an example of a one-to-one relationship in which a minimum age handler utilizes a single
requirement:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandler-1
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationhandler

using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;
using System;
using System.Security.Claims;
using System.Threading.Tasks;

public class MinimumAgeHandler : AuthorizationHandler<MinimumAgeRequirement>
{
 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
 MinimumAgeRequirement requirement)
 {
 if (!context.User.HasClaim(c => c.Type == ClaimTypes.DateOfBirth &&
 c.Issuer == "http://contoso.com"))
 {
 //TODO: Use the following if targeting a version of
 //.NET Framework older than 4.6:
 // return Task.FromResult(0);
 return Task.CompletedTask;
 }

 var dateOfBirth = Convert.ToDateTime(
 context.User.FindFirst(c => c.Type == ClaimTypes.DateOfBirth &&
 c.Issuer == "http://contoso.com").Value);

 int calculatedAge = DateTime.Today.Year - dateOfBirth.Year;
 if (dateOfBirth > DateTime.Today.AddYears(-calculatedAge))
 {
 calculatedAge--;
 }

 if (calculatedAge >= requirement.MinimumAge)
 {
 context.Succeed(requirement);
 }

 //TODO: Use the following if targeting a version of
 //.NET Framework older than 4.6:
 // return Task.FromResult(0);
 return Task.CompletedTask;
 }
}

Use a handler for multiple requirementsUse a handler for multiple requirements

The preceding code determines if the current user principal has a date of birth claim which has been issued by a
known and trusted Issuer. Authorization can't occur when the claim is missing, in which case a completed task is
returned. When a claim is present, the user's age is calculated. If the user meets the minimum age defined by the
requirement, authorization is deemed successful. When authorization is successful, context.Succeed is invoked
with the satisfied requirement as its sole parameter.

The following is an example of a one-to-many relationship in which a permission handler utilizes three
requirements:

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class PermissionHandler : IAuthorizationHandler
{
 public Task HandleAsync(AuthorizationHandlerContext context)
 {
 var pendingRequirements = context.PendingRequirements.ToList();

 foreach (var requirement in pendingRequirements)
 {
 if (requirement is ReadPermission)
 {
 if (IsOwner(context.User, context.Resource) ||
 IsSponsor(context.User, context.Resource))
 {
 context.Succeed(requirement);
 }
 }
 else if (requirement is EditPermission ||
 requirement is DeletePermission)
 {
 if (IsOwner(context.User, context.Resource))
 {
 context.Succeed(requirement);
 }
 }
 }

 //TODO: Use the following if targeting a version of
 //.NET Framework older than 4.6:
 // return Task.FromResult(0);
 return Task.CompletedTask;
 }

 private bool IsOwner(ClaimsPrincipal user, object resource)
 {
 // Code omitted for brevity

 return true;
 }

 private bool IsSponsor(ClaimsPrincipal user, object resource)
 {
 // Code omitted for brevity

 return true;
 }
}

Handler registrationHandler registration

The preceding code traverses PendingRequirements—a property containing requirements not marked as
successful. If the user has read permission, he or she must be either an owner or a sponsor to access the
requested resource. If the user has edit or delete permission, he or she must be an owner to access the requested
resource. When authorization is successful, context.Succeed is invoked with the satisfied requirement as its sole
parameter.

Handlers are registered in the services collection during configuration. For example:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.pendingrequirements#Microsoft_AspNetCore_Authorization_AuthorizationHandlerContext_PendingRequirements

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddAuthorization(options =>
 {
 options.AddPolicy("AtLeast21", policy =>
 policy.Requirements.Add(new MinimumAgeRequirement(21)));
 });

 services.AddSingleton<IAuthorizationHandler, MinimumAgeHandler>();
}

What should a handler return?

Why would I want multiple handlers for a requirement?

using Microsoft.AspNetCore.Authorization;

public class BuildingEntryRequirement : IAuthorizationRequirement
{
}

Each handler is added to the services collection by invoking
services.AddSingleton<IAuthorizationHandler, YourHandlerClass>(); .

Note that the Handle method in the handler example returns no value. How is a status of either success or failure
indicated?

A handler indicates success by calling context.Succeed(IAuthorizationRequirement requirement) , passing the
requirement that has been successfully validated.

A handler doesn't need to handle failures generally, as other handlers for the same requirement may
succeed.

To guarantee failure, even if other requirement handlers succeed, call context.Fail .

When set to false , the InvokeHandlersAfterFailure property (available in ASP.NET Core 1.1 and later) short-
circuits the execution of handlers when context.Fail is called. InvokeHandlersAfterFailure defaults to true , in
which case all handlers are called. This allows requirements to produce side effects, such as logging, which always
take place even if context.Fail has been called in another handler.

In cases where you want evaluation to be on an OR basis, implement multiple handlers for a single requirement.
For example, Microsoft has doors which only open with key cards. If you leave your key card at home, the
receptionist prints a temporary sticker and opens the door for you. In this scenario, you'd have a single
requirement, BuildingEntry, but multiple handlers, each one examining a single requirement.

BuildingEntryRequirement.cs

BadgeEntryHandler.cs

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationoptions.invokehandlersafterfailure#Microsoft_AspNetCore_Authorization_AuthorizationOptions_InvokeHandlersAfterFailure

using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;
using System.Security.Claims;
using System.Threading.Tasks;

public class BadgeEntryHandler : AuthorizationHandler<BuildingEntryRequirement>
{
 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
 BuildingEntryRequirement requirement)
 {
 if (context.User.HasClaim(c => c.Type == ClaimTypes.BadgeId &&
 c.Issuer == "http://microsoftsecurity"))
 {
 context.Succeed(requirement);
 }

 //TODO: Use the following if targeting a version of
 //.NET Framework older than 4.6:
 // return Task.FromResult(0);
 return Task.CompletedTask;
 }
}

using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;
using System.Security.Claims;
using System.Threading.Tasks;

public class TemporaryStickerHandler : AuthorizationHandler<BuildingEntryRequirement>
{
 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
 BuildingEntryRequirement requirement)
 {
 if (context.User.HasClaim(c => c.Type == ClaimTypes.TemporaryBadgeId &&
 c.Issuer == "https://microsoftsecurity"))
 {
 // We'd also check the expiration date on the sticker.
 context.Succeed(requirement);
 }

 //TODO: Use the following if targeting a version of
 //.NET Framework older than 4.6:
 // return Task.FromResult(0);
 return Task.CompletedTask;
 }
}

Using a func to fulfill a policy

TemporaryStickerHandler.cs

Ensure that both handlers are registered. If either handler succeeds when a policy evaluates the
BuildingEntryRequirement , the policy evaluation succeeds.

There may be situations in which fulfilling a policy is simple to express in code. It's possible to supply a
Func<AuthorizationHandlerContext, bool> when configuring your policy with the RequireAssertion policy builder.

For example, the previous BadgeEntryHandler could be rewritten as follows:

services.AddAuthorization(options =>
{
 options.AddPolicy("BadgeEntry", policy =>
 policy.RequireAssertion(context =>
 context.User.HasClaim(c =>
 (c.Type == ClaimTypes.BadgeId ||
 c.Type == ClaimTypes.TemporaryBadgeId) &&
 c.Issuer == "https://microsoftsecurity")));
});

Accessing MVC request context in handlers

// Requires the following import:
// using Microsoft.AspNetCore.Mvc.Filters;
if (context.Resource is AuthorizationFilterContext mvcContext)
{
 // Examine MVC-specific things like routing data.
}

The HandleRequirementAsync method you implement in an authorization handler has two parameters: an
AuthorizationHandlerContext and the TRequirement you are handling. Frameworks such as MVC or Jabbr are

free to add any object to the Resource property on the AuthorizationHandlerContext to pass extra information.

For example, MVC passes an instance of AuthorizationFilterContext in the Resource property. This property
provides access to HttpContext , RouteData , and everything else provided by MVC and Razor Pages.

The use of the Resource property is framework specific. Using information in the Resource property limits your
authorization policies to particular frameworks. You should cast the Resource property using the as keyword,
and then confirm the cast has succeed to ensure your code doesn't crash with an InvalidCastException when run
on other frameworks:

https://docs.microsoft.com/dotnet/api/?term=AuthorizationFilterContext

Dependency injection in requirement handlers in
ASP.NET Core
3/21/2018 • 2 minutes to read • Edit Online

public class LoggingAuthorizationHandler : AuthorizationHandler<MyRequirement>
 {
 ILogger _logger;

 public LoggingAuthorizationHandler(ILoggerFactory loggerFactory)
 {
 _logger = loggerFactory.CreateLogger(this.GetType().FullName);
 }

 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context, MyRequirement
requirement)
 {
 _logger.LogInformation("Inside my handler");
 // Check if the requirement is fulfilled.
 return Task.CompletedTask;
 }
 }

services.AddSingleton<IAuthorizationHandler, LoggingAuthorizationHandler>();

NOTENOTE

 Authorization handlers must be registered in the service collection during configuration (using dependency
injection).

Suppose you had a repository of rules you wanted to evaluate inside an authorization handler and that repository
was registered in the service collection. Authorization will resolve and inject that into your constructor.

For example, if you wanted to use ASP.NET's logging infrastructure you would want to inject ILoggerFactory into
your handler. Such a handler might look like:

You would register the handler with services.AddSingleton() :

An instance of the handler will be created when your application starts, and DI will inject the registered
ILoggerFactory into your constructor.

Handlers that use Entity Framework shouldn't be registered as singletons.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/dependencyinjection.md

Resource-based authorization in ASP.NET Core
5/12/2018 • 5 minutes to read • Edit Online

Use imperative authorization

public class DocumentController : Controller
{
 private readonly IAuthorizationService _authorizationService;
 private readonly IDocumentRepository _documentRepository;

 public DocumentController(IAuthorizationService authorizationService,
 IDocumentRepository documentRepository)
 {
 _authorizationService = authorizationService;
 _documentRepository = documentRepository;
 }

Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user,
 object resource,
 IEnumerable<IAuthorizationRequirement> requirements);
Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user,
 object resource,
 string policyName);

Authorization strategy depends upon the resource being accessed. Consider a document which has an author
property. Only the author is allowed to update the document. Consequently, the document must be retrieved from
the data store before authorization evaluation can occur.

Attribute evaluation occurs before data binding and before execution of the page handler or action which loads the
document. For these reasons, declarative authorization with an [Authorize] attribute won't suffice. Instead, you
can invoke a custom authorization method—a style known as imperative authorization.

Use the sample apps (how to download) to explore the features described in this topic.

Create an ASP.NET Core app with user data protected by authorization contains a sample app that uses resource-
based authorization.

Authorization is implemented as an IAuthorizationService service and is registered in the service collection within
the Startup class. The service is made available via dependency injection to page handlers or actions.

IAuthorizationService has two AuthorizeAsync method overloads: one accepting the resource and the policy
name and the other accepting the resource and a list of requirements to evaluate.

ASP.NET Core 2.x
ASP.NET Core 1.x

 In the following example, the resource to be secured is loaded into a custom Document object. An AuthorizeAsync

overload is invoked to determine whether the current user is allowed to edit the provided document. A custom
"EditPolicy" authorization policy is factored into the decision. See Custom policy-based authorization for more on
creating authorization policies.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/resourcebased.md
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/authorization/resourcebased/samples
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationservice

NOTENOTE

public async Task<IActionResult> OnGetAsync(Guid documentId)
{
 Document = _documentRepository.Find(documentId);

 if (Document == null)
 {
 return new NotFoundResult();
 }

 var authorizationResult = await _authorizationService
 .AuthorizeAsync(User, Document, "EditPolicy");

 if (authorizationResult.Succeeded)
 {
 return Page();
 }
 else if (User.Identity.IsAuthenticated)
 {
 return new ForbidResult();
 }
 else
 {
 return new ChallengeResult();
 }
}

Write a resource-based handler

The following code samples assume authentication has run and set the User property.

ASP.NET Core 2.x
ASP.NET Core 1.x

Writing a handler for resource-based authorization isn't much different than writing a plain requirements handler.
Create a custom requirement class, and implement a requirement handler class. The handler class specifies both
the requirement and resource type. For example, a handler utilizing a SameAuthorRequirement requirement and a
Document resource looks as follows:

ASP.NET Core 2.x
ASP.NET Core 1.x

public class DocumentAuthorizationHandler :
 AuthorizationHandler<SameAuthorRequirement, Document>
{
 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
 SameAuthorRequirement requirement,
 Document resource)
 {
 if (context.User.Identity?.Name == resource.Author)
 {
 context.Succeed(requirement);
 }

 return Task.CompletedTask;
 }
}

public class SameAuthorRequirement : IAuthorizationRequirement { }

services.AddMvc();

services.AddAuthorization(options =>
{
 options.AddPolicy("EditPolicy", policy =>
 policy.Requirements.Add(new SameAuthorRequirement()));
});

services.AddSingleton<IAuthorizationHandler, DocumentAuthorizationHandler>();
services.AddSingleton<IAuthorizationHandler, DocumentAuthorizationCrudHandler>();
services.AddScoped<IDocumentRepository, DocumentRepository>();

Operational requirementsOperational requirements

public static class Operations
{
 public static OperationAuthorizationRequirement Create =
 new OperationAuthorizationRequirement { Name = nameof(Create) };
 public static OperationAuthorizationRequirement Read =
 new OperationAuthorizationRequirement { Name = nameof(Read) };
 public static OperationAuthorizationRequirement Update =
 new OperationAuthorizationRequirement { Name = nameof(Update) };
 public static OperationAuthorizationRequirement Delete =
 new OperationAuthorizationRequirement { Name = nameof(Delete) };
}

Register the requirement and handler in the Startup.ConfigureServices method:

If you're making decisions based on the outcomes of CRUD (Create, Read, Update, Delete) operations, use the
OperationAuthorizationRequirement helper class. This class enables you to write a single handler instead of an
individual class for each operation type. To use it, provide some operation names:

The handler is implemented as follows, using an OperationAuthorizationRequirement requirement and a Document

resource:

ASP.NET Core 2.x
ASP.NET Core 1.x

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.infrastructure.operationauthorizationrequirement

public class DocumentAuthorizationCrudHandler :
 AuthorizationHandler<OperationAuthorizationRequirement, Document>
{
 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
 OperationAuthorizationRequirement requirement,
 Document resource)
 {
 if (context.User.Identity?.Name == resource.Author &&
 requirement.Name == Operations.Read.Name)
 {
 context.Succeed(requirement);
 }

 return Task.CompletedTask;
 }
}

NOTENOTE

public async Task<IActionResult> OnGetAsync(Guid documentId)
{
 Document = _documentRepository.Find(documentId);

 if (Document == null)
 {
 return new NotFoundResult();
 }

 var authorizationResult = await _authorizationService
 .AuthorizeAsync(User, Document, Operations.Read);

 if (authorizationResult.Succeeded)
 {
 return Page();
 }
 else if (User.Identity.IsAuthenticated)
 {
 return new ForbidResult();
 }
 else
 {
 return new ChallengeResult();
 }
}

The preceding handler validates the operation using the resource, the user's identity, and the requirement's Name

property.

To call an operational resource handler, specify the operation when invoking AuthorizeAsync in your page handler
or action. The following example determines whether the authenticated user is permitted to view the provided
document.

The following code samples assume authentication has run and set the User property.

ASP.NET Core 2.x
ASP.NET Core 1.x

If authorization succeeds, the page for viewing the document is returned. If authorization fails but the user is
authenticated, returning ForbidResult informs any authentication middleware that authorization failed. A
ChallengeResult is returned when authentication must be performed. For interactive browser clients, it may be

appropriate to redirect the user to a login page.

View-based authorization in ASP.NET Core MVC
3/22/2018 • 2 minutes to read • Edit Online

@using Microsoft.AspNetCore.Authorization
@inject IAuthorizationService AuthorizationService

@if ((await AuthorizationService.AuthorizeAsync(User, "PolicyName")).Succeeded)
{
 <p>This paragraph is displayed because you fulfilled PolicyName.</p>
}

@if ((await AuthorizationService.AuthorizeAsync(User, Model, Operations.Edit)).Succeeded)
{
 <p><a class="btn btn-default" role="button"
 href="@Url.Action("Edit", "Document", new { id = Model.Id })">Edit</p>
}

WARNINGWARNING

A developer often wants to show, hide, or otherwise modify a UI based on the current user identity. You can access
the authorization service within MVC views via dependency injection. To inject the authorization service into a
Razor view, use the @inject directive:

If you want the authorization service in every view, place the @inject directive into the _ViewImports.cshtml file of
the Views directory. For more information, see Dependency injection into views.

Use the injected authorization service to invoke AuthorizeAsync in exactly the same way you would check during
resource-based authorization:

ASP.NET Core 2.x
ASP.NET Core 1.x

In some cases, the resource will be your view model. Invoke AuthorizeAsync in exactly the same way you would
check during resource-based authorization:

ASP.NET Core 2.x
ASP.NET Core 1.x

In the preceding code, the model is passed as a resource the policy evaluation should take into consideration.

Don't rely on toggling visibility of your app's UI elements as the sole authorization check. Hiding a UI element may not
completely prevent access to its associated controller action. For example, consider the button in the preceding code snippet.
A user can invoke the Edit action method if he or she knows the relative resource URL is /Document/Edit/1. For this
reason, the Edit action method should perform its own authorization check.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/views.md

Authorize with a specific scheme in ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 // Code omitted for brevity

 services.AddAuthentication()
 .AddCookie(options => {
 options.LoginPath = "/Account/Unauthorized/";
 options.AccessDeniedPath = "/Account/Forbidden/";
 })
 .AddJwtBearer(options => {
 options.Audience = "http://localhost:5001/";
 options.Authority = "http://localhost:5000/";
 });

NOTENOTE

Selecting the scheme with the Authorize attribute

In some scenarios, such as Single Page Applications (SPAs), it's common to use multiple authentication methods.
For example, the app may use cookie-based authentication to log in and JWT bearer authentication for JavaScript
requests. In some cases, the app may have multiple instances of an authentication handler. For example, two
cookie handlers where one contains a basic identity and one is created when a multi-factor authentication (MFA)
has been triggered. MFA may be triggered because the user requested an operation that requires extra security.

ASP.NET Core 2.x
ASP.NET Core 1.x

An authentication scheme is named when the authentication service is configured during authentication. For
example:

In the preceding code, two authentication handlers have been added: one for cookies and one for bearer.

Specifying the default scheme results in the HttpContext.User property being set to that identity. If that behavior isn't
desired, disable it by invoking the parameterless form of AddAuthentication .

At the point of authorization, the app indicates the handler to be used. Select the handler with which the app will
authorize by passing a comma-delimited list of authentication schemes to [Authorize] . The [Authorize]

attribute specifies the authentication scheme or schemes to use regardless of whether a default is configured. For
example:

ASP.NET Core 2.x
ASP.NET Core 1.x

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/authorization/limitingidentitybyscheme.md

[Authorize(AuthenticationSchemes = AuthSchemes)]
public class MixedController : Controller
 // Requires the following imports:
 // using Microsoft.AspNetCore.Authentication.Cookies;
 // using Microsoft.AspNetCore.Authentication.JwtBearer;
 private const string AuthSchemes =
 CookieAuthenticationDefaults.AuthenticationScheme + "," +
 JwtBearerDefaults.AuthenticationScheme;

[Authorize(AuthenticationSchemes =
 JwtBearerDefaults.AuthenticationScheme)]
public class MixedController : Controller

Selecting the scheme with policies

services.AddAuthorization(options =>
{
 options.AddPolicy("Over18", policy =>
 {
 policy.AuthenticationSchemes.Add(JwtBearerDefaults.AuthenticationScheme);
 policy.RequireAuthenticatedUser();
 policy.Requirements.Add(new MinimumAgeRequirement());
 });
});

[Authorize(Policy = "Over18")]
public class RegistrationController : Controller

In the preceding example, both the cookie and bearer handlers run and have a chance to create and append an
identity for the current user. By specifying a single scheme only, the corresponding handler runs.

ASP.NET Core 2.x
ASP.NET Core 1.x

In the preceding code, only the handler with the "Bearer" scheme runs. Any cookie-based identities are ignored.

If you prefer to specify the desired schemes in policy, you can set the AuthenticationSchemes collection when
adding your policy:

In the preceding example, the "Over18" policy only runs against the identity created by the "Bearer" handler. Use
the policy by setting the [Authorize] attribute's Policy property:

Data Protection in ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

Introduction to data protection

Get started with the Data Protection APIs

Consumer APIs

Consumer APIs overview

Purpose strings

Purpose hierarchy and multi-tenancy

Hash passwords

Limit the lifetime of protected payloads

Unprotect payloads whose keys have been revoked

Configuration

Configure ASP.NET Core Data Protection

Default settings

Machine-wide policy

Non DI-aware scenarios

Extensibility APIs

Core cryptography extensibility

Key management extensibility

Miscellaneous APIs

Implementation

Authenticated encryption details

Subkey derivation and authenticated encryption

Context headers

Key management

Key storage providers

Key encryption at rest

Key immutability and settings

Key storage format

Ephemeral data protection providers

Compatibility

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/index.md

Replacing ASP.NET in ASP.NET Core

ASP.NET Core Data Protection
6/18/2018 • 5 minutes to read • Edit Online

Problem statement

Design philosophy

Web applications often need to store security-sensitive data. Windows provides DPAPI for desktop applications
but this is unsuitable for web applications. The ASP.NET Core data protection stack provide a simple, easy to use
cryptographic API a developer can use to protect data, including key management and rotation.

The ASP.NET Core data protection stack is designed to serve as the long-term replacement for the <machineKey>
element in ASP.NET 1.x - 4.x. It was designed to address many of the shortcomings of the old cryptographic stack
while providing an out-of-the-box solution for the majority of use cases modern applications are likely to
encounter.

The overall problem statement can be succinctly stated in a single sentence: I need to persist trusted information
for later retrieval, but I don't trust the persistence mechanism. In web terms, this might be written as "I need to
round-trip trusted state via an untrusted client."

The canonical example of this is an authentication cookie or bearer token. The server generates an "I am Groot
and have xyz permissions" token and hands it to the client. At some future date the client will present that token
back to the server, but the server needs some kind of assurance that the client hasn't forged the token. Thus the
first requirement: authenticity (a.k.a. integrity, tamper-proofing).

Since the persisted state is trusted by the server, we anticipate that this state might contain information that's
specific to the operating environment. This could be in the form of a file path, a permission, a handle or other
indirect reference, or some other piece of server-specific data. Such information should generally not be disclosed
to an untrusted client. Thus the second requirement: confidentiality.

Finally, since modern applications are componentized, what we've seen is that individual components will want to
take advantage of this system without regard to other components in the system. For instance, if a bearer token
component is using this stack, it should operate without interference from an anti-CSRF mechanism that might
also be using the same stack. Thus the final requirement: isolation.

We can provide further constraints in order to narrow the scope of our requirements. We assume that all services
operating within the cryptosystem are equally trusted and that the data doesn't need to be generated or
consumed outside of the services under our direct control. Furthermore, we require that operations are as fast as
possible since each request to the web service might go through the cryptosystem one or more times. This makes
symmetric cryptography ideal for our scenario, and we can discount asymmetric cryptography until such a time
that it's needed.

We started by identifying problems with the existing stack. Once we had that, we surveyed the landscape of
existing solutions and concluded that no existing solution quite had the capabilities we sought. We then
engineered a solution based on several guiding principles.

The system should offer simplicity of configuration. Ideally the system would be zero-configuration and
developers could hit the ground running. In situations where developers need to configure a specific aspect
(such as the key repository), consideration should be given to making those specific configurations simple.

Offer a simple consumer-facing API. The APIs should be easy to use correctly and difficult to use
incorrectly.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/introduction.md

Audience

Package Layout

Developers shouldn't learn key management principles. The system should handle algorithm selection and
key lifetime on the developer's behalf. Ideally the developer should never even have access to the raw key
material.

Keys should be protected at rest when possible. The system should figure out an appropriate default
protection mechanism and apply it automatically.

With these principles in mind we developed a simple, easy to use data protection stack.

The ASP.NET Core data protection APIs are not primarily intended for indefinite persistence of confidential
payloads. Other technologies like Windows CNG DPAPI and Azure Rights Management are more suited to the
scenario of indefinite storage, and they have correspondingly strong key management capabilities. That said,
there's nothing prohibiting a developer from using the ASP.NET Core data protection APIs for long-term
protection of confidential data.

The data protection system is divided into five main packages. Various aspects of these APIs target three main
audiences;

1. The Consumer APIs Overview target application and framework developers.

"I don't want to learn about how the stack operates or about how it's configured. I simply want to perform
some operation in as simple a manner as possible with high probability of using the APIs successfully."

2. The configuration APIs target application developers and system administrators.

"I need to tell the data protection system that my environment requires non-default paths or settings."

3. The extensibility APIs target developers in charge of implementing custom policy. Usage of these APIs
would be limited to rare situations and experienced, security aware developers.

"I need to replace an entire component within the system because I have truly unique behavioral
requirements. I am willing to learn uncommonly-used parts of the API surface in order to build a plugin
that fulfills my requirements."

The data protection stack consists of five packages.

Microsoft.AspNetCore.DataProtection.Abstractions contains the basic IDataProtectionProvider and
IDataProtector interfaces. It also contains useful extension methods that can assist working with these types
(e.g., overloads of IDataProtector.Protect). See the consumer interfaces section for more information. If
somebody else is responsible for instantiating the data protection system and you are simply consuming
the APIs, you'll want to reference Microsoft.AspNetCore.DataProtection.Abstractions.

Microsoft.AspNetCore.DataProtection contains the core implementation of the data protection system,
including the core cryptographic operations, key management, configuration, and extensibility. If you're
responsible for instantiating the data protection system (e.g., adding it to an IServiceCollection) or
modifying or extending its behavior, you'll want to reference Microsoft.AspNetCore.DataProtection.

Microsoft.AspNetCore.DataProtection.Extensions contains additional APIs which developers might find
useful but which don't belong in the core package. For instance, this package contains a simple "instantiate
the system pointing at a specific key storage directory with no dependency injection setup" API (more info).
It also contains extension methods for limiting the lifetime of protected payloads (more info).

Microsoft.AspNetCore.DataProtection.SystemWeb can be installed into an existing ASP.NET 4.x application
to redirect its <machineKey> operations to instead use the new data protection stack. See compatibility for

https://msdn.microsoft.com/library/windows/desktop/hh706794%28v=vs.85%29.aspx
https://docs.microsoft.com/rights-management/

more information.

Microsoft.AspNetCore.Cryptography.KeyDerivation provides an implementation of the PBKDF2 password
hashing routine and can be used by systems which need to handle user passwords securely. See Hash
passwords for more information.

Get started with the Data Protection APIs in ASP.NET
Core
3/21/2018 • 2 minutes to read • Edit Online

 At its simplest, protecting data consists of the following steps:

1. Create a data protector from a data protection provider.

2. Call the Protect method with the data you want to protect.

3. Call the Unprotect method with the data you want to turn back into plain text.

Most frameworks and app models, such as ASP.NET or SignalR, already configure the data protection system and
add it to a service container you access via dependency injection. The following sample demonstrates configuring
a service container for dependency injection and registering the data protection stack, receiving the data
protection provider via DI, creating a protector and protecting then unprotecting data

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/using-data-protection.md

using System;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
 public static void Main(string[] args)
 {
 // add data protection services
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddDataProtection();
 var services = serviceCollection.BuildServiceProvider();

 // create an instance of MyClass using the service provider
 var instance = ActivatorUtilities.CreateInstance<MyClass>(services);
 instance.RunSample();
 }

 public class MyClass
 {
 IDataProtector _protector;

 // the 'provider' parameter is provided by DI
 public MyClass(IDataProtectionProvider provider)
 {
 _protector = provider.CreateProtector("Contoso.MyClass.v1");
 }

 public void RunSample()
 {
 Console.Write("Enter input: ");
 string input = Console.ReadLine();

 // protect the payload
 string protectedPayload = _protector.Protect(input);
 Console.WriteLine($"Protect returned: {protectedPayload}");

 // unprotect the payload
 string unprotectedPayload = _protector.Unprotect(protectedPayload);
 Console.WriteLine($"Unprotect returned: {unprotectedPayload}");
 }
 }
}

/*
 * SAMPLE OUTPUT
 *
 * Enter input: Hello world!
 * Protect returned: CfDJ8ICcgQwZZhlAlTZT...OdfH66i1PnGmpCR5e441xQ
 * Unprotect returned: Hello world!
 */

When you create a protector you must provide one or more Purpose Strings. A purpose string provides isolation
between consumers. For example, a protector created with a purpose string of "green" wouldn't be able to
unprotect data provided by a protector with a purpose of "purple".

TIPTIP
Instances of IDataProtectionProvider and IDataProtector are thread-safe for multiple callers. It's intended that once a
component gets a reference to an IDataProtector via a call to CreateProtector , it will use that reference for multiple
calls to Protect and Unprotect .

A call to Unprotect will throw CryptographicException if the protected payload cannot be verified or deciphered. Some
components may wish to ignore errors during unprotect operations; a component which reads authentication cookies might
handle this error and treat the request as if it had no cookie at all rather than fail the request outright. Components which
want this behavior should specifically catch CryptographicException instead of swallowing all exceptions.

Consumer APIs for ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

Consumer APIs Overview

Purpose Strings

Purpose hierarchy and multi-tenancy

Hash passwords

Limit the lifetime of protected payloads

Unprotect payloads whose keys have been revoked

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/index.md

Consumer APIs overview for ASP.NET Core
3/22/2018 • 3 minutes to read • Edit Online

IDataProtectionProvider

IDataProtector

Consuming these interfaces

NOTENOTE

The IDataProtectionProvider and IDataProtector interfaces are the basic interfaces through which consumers
use the data protection system. They're located in the Microsoft.AspNetCore.DataProtection.Abstractions
package.

The provider interface represents the root of the data protection system. It cannot directly be used to protect or
unprotect data. Instead, the consumer must get a reference to an IDataProtector by calling
IDataProtectionProvider.CreateProtector(purpose) , where purpose is a string that describes the intended

consumer use case. See Purpose Strings for much more information on the intent of this parameter and how to
choose an appropriate value.

The protector interface is returned by a call to CreateProtector , and it's this interface which consumers can use to
perform protect and unprotect operations.

To protect a piece of data, pass the data to the Protect method. The basic interface defines a method which
converts byte[] -> byte[], but there's also an overload (provided as an extension method) which converts string ->
string. The security offered by the two methods is identical; the developer should choose whichever overload is
most convenient for their use case. Irrespective of the overload chosen, the value returned by the Protect method
is now protected (enciphered and tamper-proofed), and the application can send it to an untrusted client.

To unprotect a previously-protected piece of data, pass the protected data to the Unprotect method. (There are
byte[]-based and string-based overloads for developer convenience.) If the protected payload was generated by
an earlier call to Protect on this same IDataProtector , the Unprotect method will return the original
unprotected payload. If the protected payload has been tampered with or was produced by a different
IDataProtector , the Unprotect method will throw CryptographicException.

The concept of same vs. different IDataProtector ties back to the concept of purpose. If two IDataProtector

instances were generated from the same root IDataProtectionProvider but via different purpose strings in the call
to IDataProtectionProvider.CreateProtector , then they're considered different protectors, and one won't be able to
unprotect payloads generated by the other.

For a DI-aware component, the intended usage is that the component take an IDataProtectionProvider

parameter in its constructor and that the DI system automatically provides this service when the component is
instantiated.

Some applications (such as console applications or ASP.NET 4.x applications) might not be DI-aware so cannot use the
mechanism described here. For these scenarios consult the Non DI Aware Scenarios document for more information on
getting an instance of an IDataProtection provider without going through DI.

The following sample demonstrates three concepts:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/overview.md
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Abstractions/

using System;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
 public static void Main(string[] args)
 {
 // add data protection services
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddDataProtection();
 var services = serviceCollection.BuildServiceProvider();

 // create an instance of MyClass using the service provider
 var instance = ActivatorUtilities.CreateInstance<MyClass>(services);
 instance.RunSample();
 }

 public class MyClass
 {
 IDataProtector _protector;

 // the 'provider' parameter is provided by DI
 public MyClass(IDataProtectionProvider provider)
 {
 _protector = provider.CreateProtector("Contoso.MyClass.v1");
 }

 public void RunSample()
 {
 Console.Write("Enter input: ");
 string input = Console.ReadLine();

 // protect the payload
 string protectedPayload = _protector.Protect(input);
 Console.WriteLine($"Protect returned: {protectedPayload}");

 // unprotect the payload
 string unprotectedPayload = _protector.Unprotect(protectedPayload);
 Console.WriteLine($"Unprotect returned: {unprotectedPayload}");
 }
 }
}

/*
 * SAMPLE OUTPUT
 *
 * Enter input: Hello world!
 * Protect returned: CfDJ8ICcgQwZZhlAlTZT...OdfH66i1PnGmpCR5e441xQ
 * Unprotect returned: Hello world!
 */

1. Add the data protection system to the service container,

2. Using DI to receive an instance of an IDataProtectionProvider , and

3. Creating an IDataProtector from an IDataProtectionProvider and using it to protect and unprotect data.

The package Microsoft.AspNetCore.DataProtection.Abstractions contains an extension method
IServiceProvider.GetDataProtector as a developer convenience. It encapsulates as a single operation both

retrieving an IDataProtectionProvider from the service provider and calling
IDataProtectionProvider.CreateProtector . The following sample demonstrates its usage.

using System;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
 public static void Main(string[] args)
 {
 // add data protection services
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddDataProtection();
 var services = serviceCollection.BuildServiceProvider();

 // get an IDataProtector from the IServiceProvider
 var protector = services.GetDataProtector("Contoso.Example.v2");
 Console.Write("Enter input: ");
 string input = Console.ReadLine();

 // protect the payload
 string protectedPayload = protector.Protect(input);
 Console.WriteLine($"Protect returned: {protectedPayload}");

 // unprotect the payload
 string unprotectedPayload = protector.Unprotect(protectedPayload);
 Console.WriteLine($"Unprotect returned: {unprotectedPayload}");
 }
}

TIPTIP
Instances of IDataProtectionProvider and IDataProtector are thread-safe for multiple callers. It's intended that once a
component gets a reference to an IDataProtector via a call to CreateProtector , it will use that reference for multiple
calls to Protect and Unprotect . A call to Unprotect will throw CryptographicException if the protected payload cannot
be verified or deciphered. Some components may wish to ignore errors during unprotect operations; a component which
reads authentication cookies might handle this error and treat the request as if it had no cookie at all rather than fail the
request outright. Components which want this behavior should specifically catch CryptographicException instead of
swallowing all exceptions.

Purpose strings in ASP.NET Core
3/21/2018 • 3 minutes to read • Edit Online

TIPTIP

 Components which consume IDataProtectionProvider must pass a unique purposes parameter to the
CreateProtector method. The purposes parameter is inherent to the security of the data protection system, as it

provides isolation between cryptographic consumers, even if the root cryptographic keys are the same.

When a consumer specifies a purpose, the purpose string is used along with the root cryptographic keys to
derive cryptographic subkeys unique to that consumer. This isolates the consumer from all other cryptographic
consumers in the application: no other component can read its payloads, and it cannot read any other
component's payloads. This isolation also renders infeasible entire categories of attack against the component.

In the diagram above, IDataProtector instances A and B cannot read each other's payloads, only their own.

The purpose string doesn't have to be secret. It should simply be unique in the sense that no other well-behaved
component will ever provide the same purpose string.

Using the namespace and type name of the component consuming the data protection APIs is a good rule of thumb, as in
practice this information will never conflict.

A Contoso-authored component which is responsible for minting bearer tokens might use Contoso.Security.BearerToken as
its purpose string. Or - even better - it might use Contoso.Security.BearerToken.v1 as its purpose string. Appending the
version number allows a future version to use Contoso.Security.BearerToken.v2 as its purpose, and the different versions
would be completely isolated from one another as far as payloads go.

Since the purposes parameter to CreateProtector is a string array, the above could've been instead specified as
["Contoso.Security.BearerToken", "v1"] . This allows establishing a hierarchy of purposes and opens up the

possibility of multi-tenancy scenarios with the data protection system.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/purpose-strings.md

WARNINGWARNING

NOTENOTE

Components shouldn't allow untrusted user input to be the sole source of input for the purposes chain.

For example, consider a component Contoso.Messaging.SecureMessage which is responsible for storing secure messages. If
the secure messaging component were to call CreateProtector([username]) , then a malicious user might create an
account with username "Contoso.Security.BearerToken" in an attempt to get the component to call
CreateProtector(["Contoso.Security.BearerToken"]) , thus inadvertently causing the secure messaging system to

mint payloads that could be perceived as authentication tokens.

A better purposes chain for the messaging component would be
CreateProtector(["Contoso.Messaging.SecureMessage", "User: username"]) , which provides proper isolation.

The isolation provided by and behaviors of IDataProtectionProvider , IDataProtector , and purposes are as
follows:

For a given IDataProtectionProvider object, the CreateProtector method will create an IDataProtector

object uniquely tied to both the IDataProtectionProvider object which created it and the purposes
parameter which was passed into the method.

The purpose parameter must not be null. (If purposes is specified as an array, this means that the array
must not be of zero length and all elements of the array must be non-null.) An empty string purpose is
technically allowed but is discouraged.

Two purposes arguments are equivalent if and only if they contain the same strings (using an ordinal
comparer) in the same order. A single purpose argument is equivalent to the corresponding single-
element purposes array.

Two IDataProtector objects are equivalent if and only if they're created from equivalent
IDataProtectionProvider objects with equivalent purposes parameters.

For a given IDataProtector object, a call to Unprotect(protectedData) will return the original
unprotectedData if and only if protectedData := Protect(unprotectedData) for an equivalent
IDataProtector object.

We're not considering the case where some component intentionally chooses a purpose string which is known to conflict
with another component. Such a component would essentially be considered malicious, and this system isn't intended to
provide security guarantees in the event that malicious code is already running inside of the worker process.

Purpose hierarchy and multi-tenancy in ASP.NET
Core
3/21/2018 • 2 minutes to read • Edit Online

WARNINGWARNING

Since an IDataProtector is also implicitly an IDataProtectionProvider , purposes can be chained together. In this
sense, provider.CreateProtector(["purpose1", "purpose2"]) is equivalent to
provider.CreateProtector("purpose1").CreateProtector("purpose2") .

This allows for some interesting hierarchical relationships through the data protection system. In the earlier
example of Contoso.Messaging.SecureMessage, the SecureMessage component can call
provider.CreateProtector("Contoso.Messaging.SecureMessage") once up-front and cache the result into a private
_myProvide field. Future protectors can then be created via calls to _myProvider.CreateProtector("User: username")

, and these protectors would be used for securing the individual messages.

This can also be flipped. Consider a single logical application which hosts multiple tenants (a CMS seems
reasonable), and each tenant can be configured with its own authentication and state management system. The
umbrella application has a single master provider, and it calls provider.CreateProtector("Tenant 1") and
provider.CreateProtector("Tenant 2") to give each tenant its own isolated slice of the data protection system. The

tenants could then derive their own individual protectors based on their own needs, but no matter how hard they
try they cannot create protectors which collide with any other tenant in the system. Graphically, this is represented
as below.

This assumes the umbrella application controls which APIs are available to individual tenants and that tenants cannot
execute arbitrary code on the server. If a tenant can execute arbitrary code, they could perform private reflection to break
the isolation guarantees, or they could just read the master keying material directly and derive whatever subkeys they
desire.

The data protection system actually uses a sort of multi-tenancy in its default out-of-the-box configuration. By
default master keying material is stored in the worker process account's user profile folder (or the registry, for IIS
application pool identities). But it's actually fairly common to use a single account to run multiple applications, and
thus all these applications would end up sharing the master keying material. To solve this, the data protection
system automatically inserts a unique-per-application identifier as the first element in the overall purpose chain.
This implicit purpose serves to isolate individual applications from one another by effectively treating each
application as a unique tenant within the system, and the protector creation process looks identical to the image
above.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/purpose-strings-multitenancy.md

Hash passwords in ASP.NET Core
5/2/2018 • 2 minutes to read • Edit Online

The data protection code base includes a package Microsoft.AspNetCore.Cryptography.KeyDerivation which
contains cryptographic key derivation functions. This package is a standalone component and has no
dependencies on the rest of the data protection system. It can be used completely independently. The source exists
alongside the data protection code base as a convenience.

The package currently offers a method KeyDerivation.Pbkdf2 which allows hashing a password using the PBKDF2
algorithm. This API is very similar to the .NET Framework's existing Rfc2898DeriveBytes type, but there are three
important distinctions:

1. The KeyDerivation.Pbkdf2 method supports consuming multiple PRFs (currently HMACSHA1 , HMACSHA256 ,
and HMACSHA512), whereas the Rfc2898DeriveBytes type only supports HMACSHA1 .

2. The KeyDerivation.Pbkdf2 method detects the current operating system and attempts to choose the most
optimized implementation of the routine, providing much better performance in certain cases. (On
Windows 8, it offers around 10x the throughput of Rfc2898DeriveBytes .)

3. The KeyDerivation.Pbkdf2 method requires the caller to specify all parameters (salt, PRF, and iteration
count). The Rfc2898DeriveBytes type provides default values for these.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/password-hashing.md
https://tools.ietf.org/html/rfc2898#section-5.2
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rfc2898derivebytes

using System;
using System.Security.Cryptography;
using Microsoft.AspNetCore.Cryptography.KeyDerivation;

public class Program
{
 public static void Main(string[] args)
 {
 Console.Write("Enter a password: ");
 string password = Console.ReadLine();

 // generate a 128-bit salt using a secure PRNG
 byte[] salt = new byte[128 / 8];
 using (var rng = RandomNumberGenerator.Create())
 {
 rng.GetBytes(salt);
 }
 Console.WriteLine($"Salt: {Convert.ToBase64String(salt)}");

 // derive a 256-bit subkey (use HMACSHA1 with 10,000 iterations)
 string hashed = Convert.ToBase64String(KeyDerivation.Pbkdf2(
 password: password,
 salt: salt,
 prf: KeyDerivationPrf.HMACSHA1,
 iterationCount: 10000,
 numBytesRequested: 256 / 8));
 Console.WriteLine($"Hashed: {hashed}");
 }
}

/*
 * SAMPLE OUTPUT
 *
 * Enter a password: Xtw9NMgx
 * Salt: NZsP6NnmfBuYeJrrAKNuVQ==
 * Hashed: /OOoOer10+tGwTRDTrQSoeCxVTFr6dtYly7d0cPxIak=
 */

See the source code for ASP.NET Core Identity's PasswordHasher type for a real-world use case.

Limit the lifetime of protected payloads in ASP.NET
Core
3/22/2018 • 2 minutes to read • Edit Online

API usage

There are scenarios where the application developer wants to create a protected payload that expires after a set
period of time. For instance, the protected payload might represent a password reset token that should only be
valid for one hour. It's certainly possible for the developer to create their own payload format that contains an
embedded expiration date, and advanced developers may wish to do this anyway, but for the majority of
developers managing these expirations can grow tedious.

To make this easier for our developer audience, the package Microsoft.AspNetCore.DataProtection.Extensions
contains utility APIs for creating payloads that automatically expire after a set period of time. These APIs hang off
of the ITimeLimitedDataProtector type.

The ITimeLimitedDataProtector interface is the core interface for protecting and unprotecting time-limited / self-
expiring payloads. To create an instance of an ITimeLimitedDataProtector , you'll first need an instance of a regular
IDataProtector constructed with a specific purpose. Once the IDataProtector instance is available, call the
IDataProtector.ToTimeLimitedDataProtector extension method to get back a protector with built-in expiration

capabilities.

ITimeLimitedDataProtector exposes the following API surface and extension methods:

CreateProtector(string purpose) : ITimeLimitedDataProtector - This API is similar to the existing
IDataProtectionProvider.CreateProtector in that it can be used to create purpose chains from a root time-

limited protector.

Protect(byte[] plaintext, DateTimeOffset expiration) : byte[]

Protect(byte[] plaintext, TimeSpan lifetime) : byte[]

Protect(byte[] plaintext) : byte[]

Protect(string plaintext, DateTimeOffset expiration) : string

Protect(string plaintext, TimeSpan lifetime) : string

Protect(string plaintext) : string

In addition to the core Protect methods which take only the plaintext, there are new overloads which allow
specifying the payload's expiration date. The expiration date can be specified as an absolute date (via a
DateTimeOffset) or as a relative time (from the current system time, via a TimeSpan). If an overload which doesn't

take an expiration is called, the payload is assumed never to expire.

Unprotect(byte[] protectedData, out DateTimeOffset expiration) : byte[]

Unprotect(byte[] protectedData) : byte[]

Unprotect(string protectedData, out DateTimeOffset expiration) : string

Unprotect(string protectedData) : string

The Unprotect methods return the original unprotected data. If the payload hasn't yet expired, the absolute

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/limited-lifetime-payloads.md
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Extensions/

WARNINGWARNING

using System;
using System.IO;
using System.Threading;
using Microsoft.AspNetCore.DataProtection;

public class Program
{
 public static void Main(string[] args)
 {
 // create a protector for my application

 var provider = DataProtectionProvider.Create(new DirectoryInfo(@"c:\myapp-keys\"));
 var baseProtector = provider.CreateProtector("Contoso.TimeLimitedSample");

 // convert the normal protector into a time-limited protector
 var timeLimitedProtector = baseProtector.ToTimeLimitedDataProtector();

 // get some input and protect it for five seconds
 Console.Write("Enter input: ");
 string input = Console.ReadLine();
 string protectedData = timeLimitedProtector.Protect(input, lifetime: TimeSpan.FromSeconds(5));
 Console.WriteLine($"Protected data: {protectedData}");

 // unprotect it to demonstrate that round-tripping works properly
 string roundtripped = timeLimitedProtector.Unprotect(protectedData);
 Console.WriteLine($"Round-tripped data: {roundtripped}");

 // wait 6 seconds and perform another unprotect, demonstrating that the payload self-expires
 Console.WriteLine("Waiting 6 seconds...");
 Thread.Sleep(6000);
 timeLimitedProtector.Unprotect(protectedData);
 }
}

/*
 * SAMPLE OUTPUT
 *
 * Enter input: Hello!
 * Protected data: CfDJ8Hu5z0zwxn...nLk7Ok
 * Round-tripped data: Hello!
 * Waiting 6 seconds...
 * <<throws CryptographicException with message 'The payload expired at ...'>>

 */

expiration is returned as an optional out parameter along with the original unprotected data. If the payload is
expired, all overloads of the Unprotect method will throw CryptographicException.

It's not advised to use these APIs to protect payloads which require long-term or indefinite persistence. "Can I afford for the
protected payloads to be permanently unrecoverable after a month?" can serve as a good rule of thumb; if the answer is no
then developers should consider alternative APIs.

The sample below uses the non-DI code paths for instantiating the data protection system. To run this sample,
ensure that you have first added a reference to the Microsoft.AspNetCore.DataProtection.Extensions package.

Unprotect payloads whose keys have been revoked
in ASP.NET Core
3/22/2018 • 3 minutes to read • Edit Online

IPersistedDataProtector

NOTENOTE

DangerousUnprotect(byte[] protectedData, bool ignoreRevocationErrors,
 out bool requiresMigration, out bool wasRevoked) : byte[]

 The ASP.NET Core data protection APIs are not primarily intended for indefinite persistence of confidential
payloads. Other technologies like Windows CNG DPAPI and Azure Rights Management are more suited to the
scenario of indefinite storage, and they have correspondingly strong key management capabilities. That said,
there's nothing prohibiting a developer from using the ASP.NET Core data protection APIs for long-term
protection of confidential data. Keys are never removed from the key ring, so IDataProtector.Unprotect can
always recover existing payloads as long as the keys are available and valid.

However, an issue arises when the developer tries to unprotect data that has been protected with a revoked key, as
IDataProtector.Unprotect will throw an exception in this case. This might be fine for short-lived or transient

payloads (like authentication tokens), as these kinds of payloads can easily be recreated by the system, and at
worst the site visitor might be required to log in again. But for persisted payloads, having Unprotect throw could
lead to unacceptable data loss.

To support the scenario of allowing payloads to be unprotected even in the face of revoked keys, the data
protection system contains an IPersistedDataProtector type. To get an instance of IPersistedDataProtector ,
simply get an instance of IDataProtector in the normal fashion and try casting the IDataProtector to
IPersistedDataProtector .

Not all IDataProtector instances can be cast to IPersistedDataProtector . Developers should use the C# as operator or
similar to avoid runtime exceptions caused by invalid casts, and they should be prepared to handle the failure case
appropriately.

IPersistedDataProtector exposes the following API surface:

This API takes the protected payload (as a byte array) and returns the unprotected payload. There's no string-
based overload. The two out parameters are as follows.

requiresMigration : will be set to true if the key used to protect this payload is no longer the active default
key, e.g., the key used to protect this payload is old and a key rolling operation has since taken place. The
caller may wish to consider reprotecting the payload depending on their business needs.

wasRevoked : will be set to true if the key used to protect this payload was revoked.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/dangerous-unprotect.md
https://msdn.microsoft.com/library/windows/desktop/hh706794%28v=vs.85%29.aspx
https://docs.microsoft.com/rights-management/

WARNINGWARNING

using System;
using System.IO;
using System.Text;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.AspNetCore.DataProtection.KeyManagement;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
 public static void Main(string[] args)
 {
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddDataProtection()
 // point at a specific folder and use DPAPI to encrypt keys
 .PersistKeysToFileSystem(new DirectoryInfo(@"c:\temp-keys"))
 .ProtectKeysWithDpapi();
 var services = serviceCollection.BuildServiceProvider();

 // get a protector and perform a protect operation
 var protector = services.GetDataProtector("Sample.DangerousUnprotect");
 Console.Write("Input: ");
 byte[] input = Encoding.UTF8.GetBytes(Console.ReadLine());
 var protectedData = protector.Protect(input);
 Console.WriteLine($"Protected payload: {Convert.ToBase64String(protectedData)}");

 // demonstrate that the payload round-trips properly
 var roundTripped = protector.Unprotect(protectedData);
 Console.WriteLine($"Round-tripped payload: {Encoding.UTF8.GetString(roundTripped)}");

 // get a reference to the key manager and revoke all keys in the key ring
 var keyManager = services.GetService<IKeyManager>();
 Console.WriteLine("Revoking all keys in the key ring...");
 keyManager.RevokeAllKeys(DateTimeOffset.Now, "Sample revocation.");

 // try calling Protect - this should throw
 Console.WriteLine("Calling Unprotect...");
 try
 {
 var unprotectedPayload = protector.Unprotect(protectedData);
 Console.WriteLine($"Unprotected payload: {Encoding.UTF8.GetString(unprotectedPayload)}");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType().Name}: {ex.Message}");
 }

 // try calling DangerousUnprotect
 Console.WriteLine("Calling DangerousUnprotect...");
 try
 {
 IPersistedDataProtector persistedProtector = protector as IPersistedDataProtector;
 if (persistedProtector == null)
 {
 throw new Exception("Can't call DangerousUnprotect.");
 }

 bool requiresMigration, wasRevoked;

Exercise extreme caution when passing ignoreRevocationErrors: true to the DangerousUnprotect method. If after
calling this method the wasRevoked value is true, then the key used to protect this payload was revoked, and the payload's
authenticity should be treated as suspect. In this case, only continue operating on the unprotected payload if you have
some separate assurance that it's authentic, e.g. that it's coming from a secure database rather than being sent by an
untrusted web client.

 bool requiresMigration, wasRevoked;
 var unprotectedPayload = persistedProtector.DangerousUnprotect(
 protectedData: protectedData,
 ignoreRevocationErrors: true,
 requiresMigration: out requiresMigration,
 wasRevoked: out wasRevoked);
 Console.WriteLine($"Unprotected payload: {Encoding.UTF8.GetString(unprotectedPayload)}");
 Console.WriteLine($"Requires migration = {requiresMigration}, was revoked = {wasRevoked}");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType().Name}: {ex.Message}");
 }
 }
}

/*
 * SAMPLE OUTPUT
 *
 * Input: Hello!
 * Protected payload: CfDJ8LHIzUCX1ZVBn2BZ...
 * Round-tripped payload: Hello!
 * Revoking all keys in the key ring...
 * Calling Unprotect...
 * CryptographicException: The key {...} has been revoked.
 * Calling DangerousUnprotect...
 * Unprotected payload: Hello!
 * Requires migration = True, was revoked = True
 */

Data Protection configuration in ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

Visit these topics to learn about Data Protection configuration in ASP.NET Core:

Configure ASP.NET Core Data Protection
An overview on configuring ASP.NET Core Data Protection.

Data Protection key management and lifetime
Information on Data Protection key management and lifetime.

Data Protection machine-wide policy support
Details on setting a default machine-wide policy for all apps that use Data Protection.

Non-DI aware scenarios for Data Protection in ASP.NET Core
How to use the DataProtectionProvider concrete type to use Data Protection without going through DI-
specific code paths.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/configuration/index.md
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.DataProtection.DataProtectionProvider

Configure ASP.NET Core Data Protection
5/26/2018 • 9 minutes to read • Edit Online

WARNINGWARNING

ProtectKeysWithAzureKeyVault

public void ConfigureServices(IServiceCollection services)
{
services.AddDataProtection()
.PersistKeysToAzureBlobStorage(new Uri("<blobUriWithSasToken>"))
.ProtectKeysWithAzureKeyVault("<keyIdentifier>", "<clientId>", "<clientSecret>");
}

By Rick Anderson

When the Data Protection system is initialized, it applies default settings based on the operational environment.
These settings are generally appropriate for apps running on a single machine. There are cases where a
developer may want to change the default settings:

The app is spread across multiple machines.
For compliance reasons.

For these scenarios, the Data Protection system offers a rich configuration API.

Similar to configuration files, the data protection key ring should be protected using appropriate permissions. You can
choose to encrypt keys at rest, but this doesn't prevent attackers from creating new keys. Consequently, your app's
security is impacted. The storage location configured with Data Protection should have its access limited to the app itself,
similar to the way you would protect configuration files. For example, if you choose to store your key ring on disk, use file
system permissions. Ensure only the identity under which your web app runs has read, write, and create access to that
directory. If you use Azure Table Storage, only the web app should have the ability to read, write, or create new entries in
the table store, etc.

The extension method AddDataProtection returns an IDataProtectionBuilder. IDataProtectionBuilder exposes
extension methods that you can chain together to configure Data Protection options.

To store keys in Azure Key Vault, configure the system with ProtectKeysWithAzureKeyVault in the Startup

class:

Set the key ring storage location (for example, PersistKeysToAzureBlobStorage). The location must be set
because calling ProtectKeysWithAzureKeyVault implements an IXmlEncryptor that disables automatic data
protection settings, including the key ring storage location. The preceding example uses Azure Blob Storage to
persist the key ring. For more information, see Key storage providers: Azure and Redis. You can also persist the
key ring locally with PersistKeysToFileSystem.

The keyIdentifier is the key vault key identifier used for key encryption (for example,
https://contosokeyvault.vault.azure.net/keys/dataprotection/).

ProtectKeysWithAzureKeyVault overloads:

ProtectKeysWithAzureKeyVault(IDataProtectionBuilder, KeyVaultClient, String) permits the use of a
KeyVaultClient to enable the data protection system to use the key vault.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/configuration/overview.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.dataprotectionservicecollectionextensions.adddataprotection
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotectionbuilder
https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.persistkeystoazureblobstorage
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.xmlencryption.ixmlencryptor
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault#Microsoft_AspNetCore_DataProtection_AzureDataProtectionBuilderExtensions_ProtectKeysWithAzureKeyVault_Microsoft_AspNetCore_DataProtection_IDataProtectionBuilder_Microsoft_Azure_KeyVault_KeyVaultClient_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.azure.keyvault.keyvaultclient

PersistKeysToFileSystem

public void ConfigureServices(IServiceCollection services)
{
 services.AddDataProtection()
 .PersistKeysToFileSystem(new DirectoryInfo(@"\\server\share\directory\"));
}

WARNINGWARNING

ProtectKeysWith*

public void ConfigureServices(IServiceCollection services)
{
 services.AddDataProtection()
 .PersistKeysToFileSystem(new DirectoryInfo(@"\\server\share\directory\"))
 .ProtectKeysWithCertificate("thumbprint");
}

SetDefaultKeyLifetime

public void ConfigureServices(IServiceCollection services)
{
 services.AddDataProtection()
 .SetDefaultKeyLifetime(TimeSpan.FromDays(14));
}

SetApplicationName

ProtectKeysWithAzureKeyVault(IDataProtectionBuilder, String, String, X509Certificate2) permits the use of a
ClientId and X509Certificate to enable the data protection system to use the key vault.

ProtectKeysWithAzureKeyVault(IDataProtectionBuilder, String, String, String) permits the use of a ClientId

and ClientSecret to enable the data protection system to use the key vault.

To store keys on a UNC share instead of at the %LOCALAPPDATA% default location, configure the system with
PersistKeysToFileSystem:

If you change the key persistence location, the system no longer automatically encrypts keys at rest, since it doesn't know
whether DPAPI is an appropriate encryption mechanism.

You can configure the system to protect keys at rest by calling any of the ProtectKeysWith* configuration APIs.
Consider the example below, which stores keys on a UNC share and encrypts those keys at rest with a specific
X.509 certificate:

See Key Encryption At Rest for more examples and discussion on the built-in key encryption mechanisms.

To configure the system to use a key lifetime of 14 days instead of the default 90 days, use
SetDefaultKeyLifetime:

By default, the Data Protection system isolates apps from one another, even if they're sharing the same physical
key repository. This prevents the apps from understanding each other's protected payloads. To share protected
payloads between two apps, use SetApplicationName with the same value for each app:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault#Microsoft_AspNetCore_DataProtection_AzureDataProtectionBuilderExtensions_ProtectKeysWithAzureKeyVault_Microsoft_AspNetCore_DataProtection_IDataProtectionBuilder_System_String_System_String_System_Security_Cryptography_X509Certificates_X509Certificate2_
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate2
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault#Microsoft_AspNetCore_DataProtection_AzureDataProtectionBuilderExtensions_ProtectKeysWithAzureKeyVault_Microsoft_AspNetCore_DataProtection_IDataProtectionBuilder_System_String_System_String_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystofilesystem
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setdefaultkeylifetime
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname

public void ConfigureServices(IServiceCollection services)
{
 services.AddDataProtection()
 .SetApplicationName("shared app name");
}

DisableAutomaticKeyGeneration

public void ConfigureServices(IServiceCollection services)
{
 services.AddDataProtection()
 .DisableAutomaticKeyGeneration();
}

Per-application isolation

Changing algorithms with UseCryptographicAlgorithms

You may have a scenario where you don't want an app to automatically roll keys (create new keys) as they
approach expiration. One example of this might be apps set up in a primary/secondary relationship, where only
the primary app is responsible for key management concerns and secondary apps simply have a read-only view
of the key ring. The secondary apps can be configured to treat the key ring as read-only by configuring the
system with DisableAutomaticKeyGeneration:

When the Data Protection system is provided by an ASP.NET Core host, it automatically isolates apps from one
another, even if those apps are running under the same worker process account and are using the same master
keying material. This is somewhat similar to the IsolateApps modifier from System.Web's <machineKey>
element.

The isolation mechanism works by considering each app on the local machine as a unique tenant, thus the
IDataProtector rooted for any given app automatically includes the app ID as a discriminator. The app's unique
ID comes from one of two places:

1. If the app is hosted in IIS, the unique identifier is the app's configuration path. If an app is deployed in a
web farm environment, this value should be stable assuming that the IIS environments are configured
similarly across all machines in the web farm.

2. If the app isn't hosted in IIS, the unique identifier is the physical path of the app.

The unique identifier is designed to survive resets — both of the individual app and of the machine itself.

This isolation mechanism assumes that the apps are not malicious. A malicious app can always impact any other
app running under the same worker process account. In a shared hosting environment where apps are mutually
untrusted, the hosting provider should take steps to ensure OS-level isolation between apps, including
separating the apps' underlying key repositories.

If the Data Protection system isn't provided by an ASP.NET Core host (for example, if you instantiate it via the
DataProtectionProvider concrete type) app isolation is disabled by default. When app isolation is disabled, all

apps backed by the same keying material can share payloads as long as they provide the appropriate purposes.
To provide app isolation in this environment, call the SetApplicationName method on the configuration object
and provide a unique name for each app.

The Data Protection stack allows you to change the default algorithm used by newly-generated keys. The
simplest way to do this is to call UseCryptographicAlgorithms from the configuration callback:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.disableautomatickeygeneration
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.usecryptographicalgorithms

services.AddDataProtection()
 .UseCryptographicAlgorithms(
 new AuthenticatedEncryptorConfiguration()
 {
 EncryptionAlgorithm = EncryptionAlgorithm.AES_256_CBC,
 ValidationAlgorithm = ValidationAlgorithm.HMACSHA256
 });

TIPTIP

Specifying custom managed algorithmsSpecifying custom managed algorithms

serviceCollection.AddDataProtection()
 .UseCustomCryptographicAlgorithms(
 new ManagedAuthenticatedEncryptorConfiguration()
 {
 // A type that subclasses SymmetricAlgorithm
 EncryptionAlgorithmType = typeof(Aes),

 // Specified in bits
 EncryptionAlgorithmKeySize = 256,

 // A type that subclasses KeyedHashAlgorithm
 ValidationAlgorithmType = typeof(HMACSHA256)
 });

ASP.NET Core 2.x
ASP.NET Core 1.x

The default EncryptionAlgorithm is AES-256-CBC, and the default ValidationAlgorithm is HMACSHA256. The
default policy can be set by a system administrator via a machine-wide policy, but an explicit call to
UseCryptographicAlgorithms overrides the default policy.

Calling UseCryptographicAlgorithms allows you to specify the desired algorithm from a predefined built-in list.
You don't need to worry about the implementation of the algorithm. In the scenario above, the Data Protection
system attempts to use the CNG implementation of AES if running on Windows. Otherwise, it falls back to the
managed System.Security.Cryptography.Aes class.

You can manually specify an implementation via a call to UseCustomCryptographicAlgorithms.

Changing algorithms doesn't affect existing keys in the key ring. It only affects newly-generated keys.

ASP.NET Core 2.x
ASP.NET Core 1.x

To specify custom managed algorithms, create a ManagedAuthenticatedEncryptorConfiguration instance that
points to the implementation types:

Generally the *Type properties must point to concrete, instantiable (via a public parameterless ctor)
implementations of SymmetricAlgorithm and KeyedHashAlgorithm, though the system special-cases some
values like typeof(Aes) for convenience.

https://docs.microsoft.com/dotnet/api/system.security.cryptography.aes
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.usecustomcryptographicalgorithms
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.configurationmodel.managedauthenticatedencryptorconfiguration
https://docs.microsoft.com/dotnet/api/system.security.cryptography.symmetricalgorithm
https://docs.microsoft.com/dotnet/api/system.security.cryptography.keyedhashalgorithm

NOTENOTE

Specifying custom Windows CNG algorithmsSpecifying custom Windows CNG algorithms

services.AddDataProtection()
 .UseCustomCryptographicAlgorithms(
 new CngCbcAuthenticatedEncryptorConfiguration()
 {
 // Passed to BCryptOpenAlgorithmProvider
 EncryptionAlgorithm = "AES",
 EncryptionAlgorithmProvider = null,

 // Specified in bits
 EncryptionAlgorithmKeySize = 256,

 // Passed to BCryptOpenAlgorithmProvider
 HashAlgorithm = "SHA256",
 HashAlgorithmProvider = null
 });

NOTENOTE

services.AddDataProtection()
 .UseCustomCryptographicAlgorithms(
 new CngGcmAuthenticatedEncryptorConfiguration()
 {
 // Passed to BCryptOpenAlgorithmProvider
 EncryptionAlgorithm = "AES",
 EncryptionAlgorithmProvider = null,

 // Specified in bits
 EncryptionAlgorithmKeySize = 256
 });

The SymmetricAlgorithm must have a key length of ≥ 128 bits and a block size of ≥ 64 bits, and it must support CBC-
mode encryption with PKCS #7 padding. The KeyedHashAlgorithm must have a digest size of >= 128 bits, and it must
support keys of length equal to the hash algorithm's digest length. The KeyedHashAlgorithm isn't strictly required to be
HMAC.

ASP.NET Core 2.x
ASP.NET Core 1.x

To specify a custom Windows CNG algorithm using CBC-mode encryption with HMAC validation, create a
CngCbcAuthenticatedEncryptorConfiguration instance that contains the algorithmic information:

The symmetric block cipher algorithm must have a key length of >= 128 bits, a block size of >= 64 bits, and it must
support CBC-mode encryption with PKCS #7 padding. The hash algorithm must have a digest size of >= 128 bits and
must support being opened with the BCRYPT_ALG_HANDLE_HMAC_FLAG flag. The *Provider properties can be set to
null to use the default provider for the specified algorithm. See the BCryptOpenAlgorithmProvider documentation for
more information.

ASP.NET Core 2.x
ASP.NET Core 1.x

To specify a custom Windows CNG algorithm using Galois/Counter Mode encryption with validation, create a
CngGcmAuthenticatedEncryptorConfiguration instance that contains the algorithmic information:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.configurationmodel.cngcbcauthenticatedencryptorconfiguration
https://msdn.microsoft.com/library/windows/desktop/aa375479(v=vs.85).aspx
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.configurationmodel.cnggcmauthenticatedencryptorconfiguration

NOTENOTE

Specifying other custom algorithmsSpecifying other custom algorithms

Persisting keys when hosting in a Docker container

See also

The symmetric block cipher algorithm must have a key length of >= 128 bits, a block size of exactly 128 bits, and it must
support GCM encryption. You can set the EncryptionAlgorithmProvider property to null to use the default provider for
the specified algorithm. See the BCryptOpenAlgorithmProvider documentation for more information.

Though not exposed as a first-class API, the Data Protection system is extensible enough to allow specifying
almost any kind of algorithm. For example, it's possible to keep all keys contained within a Hardware Security
Module (HSM) and to provide a custom implementation of the core encryption and decryption routines. See
IAuthenticatedEncryptor in Core cryptography extensibility for more information.

When hosting in a Docker container, keys should be maintained in either :

A folder that's a Docker volume that persists beyond the container's lifetime, such as a shared volume or a
host-mounted volume.
An external provider, such as Azure Key Vault or Redis.

Non DI Aware Scenarios
Machine Wide Policy

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.configurationmodel.cngcbcauthenticatedencryptorconfiguration.encryptionalgorithmprovider
https://msdn.microsoft.com/library/windows/desktop/aa375479(v=vs.85).aspx
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.iauthenticatedencryptor
https://docs.microsoft.com/dotnet/standard/microservices-architecture/container-docker-introduction/
https://azure.microsoft.com/services/key-vault/
https://redis.io/

Data Protection key management and lifetime in
ASP.NET Core
1/29/2018 • 2 minutes to read • Edit Online

Key management

WARNINGWARNING

Key lifetime

By Rick Anderson

The app attempts to detect its operational environment and handle key configuration on its own.

1. If the app is hosted in Azure Apps, keys are persisted to the %HOME%\ASP.NET\DataProtection-Keys
folder. This folder is backed by network storage and is synchronized across all machines hosting the app.

Keys aren't protected at rest.
The DataProtection-Keys folder supplies the key ring to all instances of an app in a single deployment
slot.
Separate deployment slots, such as Staging and Production, don't share a key ring. When you swap
between deployment slots, for example swapping Staging to Production or using A/B testing, any app
using Data Protection won't be able to decrypt stored data using the key ring inside the previous slot.
This leads to users being logged out of an app that uses the standard ASP.NET Core cookie
authentication, as it uses Data Protection to protect its cookies. If you desire slot-independent key rings,
use an external key ring provider, such as Azure Blob Storage, Azure Key Vault, a SQL store, or Redis
cache.

2. If the user profile is available, keys are persisted to the %LOCALAPPDATA%\ASP.NET\DataProtection-

Keys folder. If the operating system is Windows, the keys are encrypted at rest using DPAPI.

3. If the app is hosted in IIS, keys are persisted to the HKLM registry in a special registry key that's ACLed
only to the worker process account. Keys are encrypted at rest using DPAPI.

4. If none of these conditions match, keys aren't persisted outside of the current process. When the process
shuts down, all generated keys are lost.

The developer is always in full control and can override how and where keys are stored. The first three options
above should provide good defaults for most apps similar to how the ASP.NET <machineKey> auto-generation
routines worked in the past. The final, fallback option is the only scenario that requires the developer to specify
configuration upfront if they want key persistence, but this fallback only occurs in rare situations.

When hosting in a Docker container, keys should be persisted in a folder that's a Docker volume (a shared volume
or a host-mounted volume that persists beyond the container's lifetime) or in an external provider, such as Azure
Key Vault or Redis. An external provider is also useful in web farm scenarios if apps can't access a shared network
volume (see PersistKeysToFileSystem for more information).

If the developer overrides the rules outlined above and points the Data Protection system at a specific key repository,
automatic encryption of keys at rest is disabled. At-rest protection can be re-enabled via configuration.

Keys have a 90-day lifetime by default. When a key expires, the app automatically generates a new key and sets

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/configuration/default-settings.md
https://twitter.com/RickAndMSFT
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/services/key-vault/
https://redis.io/

Default algorithms

See also

the new key as the active key. As long as retired keys remain on the system, your app can decrypt any data
protected with them. See key management for more information.

The default payload protection algorithm used is AES-256-CBC for confidentiality and HMACSHA256 for
authenticity. A 512-bit master key, changed every 90 days, is used to derive the two sub-keys used for these
algorithms on a per-payload basis. See subkey derivation for more information.

Key management extensibility

Data Protection machine-wide policy support in
ASP.NET Core
3/21/2018 • 3 minutes to read • Edit Online

WARNINGWARNING

Setting default policy

VALUE TYPE DESCRIPTION

EncryptionType string Specifies which algorithms should be
used for data protection. The value
must be CNG-CBC, CNG-GCM, or
Managed and is described in more
detail below.

DefaultKeyLifetime DWORD Specifies the lifetime for newly-
generated keys. The value is specified in
days and must be >= 7.

KeyEscrowSinks string Specifies the types that are used for
key escrow. The value is a semicolon-
delimited list of key escrow sinks, where
each element in the list is the
assembly-qualified name of a type that
implements IKeyEscrowSink.

Encryption types

By Rick Anderson

When running on Windows, the Data Protection system has limited support for setting a default machine-wide
policy for all apps that consume ASP.NET Core Data Protection. The general idea is that an administrator might
wish to change a default setting, such as the algorithms used or key lifetime, without the need to manually update
every app on the machine.

The system administrator can set default policy, but they can't enforce it. The app developer can always override any value
with one of their own choosing. The default policy only affects apps where the developer hasn't specified an explicit value
for a setting.

To set default policy, an administrator can set known values in the system registry under the following registry
key:

HKLM\SOFTWARE\Microsoft\DotNetPackages\Microsoft.AspNetCore.DataProtection

If you're on a 64-bit operating system and want to affect the behavior of 32-bit apps, remember to configure the
Wow6432Node equivalent of the above key.

The supported values are shown below.

If EncryptionType is CNG-CBC, the system is configured to use a CBC-mode symmetric block cipher for

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/configuration/machine-wide-policy.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.keymanagement.ikeyescrowsink

VALUE TYPE DESCRIPTION

EncryptionAlgorithm string The name of a symmetric block cipher
algorithm understood by CNG. This
algorithm is opened in CBC mode.

EncryptionAlgorithmProvider string The name of the CNG provider
implementation that can produce the
algorithm EncryptionAlgorithm.

EncryptionAlgorithmKeySize DWORD The length (in bits) of the key to derive
for the symmetric block cipher
algorithm.

HashAlgorithm string The name of a hash algorithm
understood by CNG. This algorithm is
opened in HMAC mode.

HashAlgorithmProvider string The name of the CNG provider
implementation that can produce the
algorithm HashAlgorithm.

VALUE TYPE DESCRIPTION

EncryptionAlgorithm string The name of a symmetric block cipher
algorithm understood by CNG. This
algorithm is opened in Galois/Counter
Mode.

EncryptionAlgorithmProvider string The name of the CNG provider
implementation that can produce the
algorithm EncryptionAlgorithm.

EncryptionAlgorithmKeySize DWORD The length (in bits) of the key to derive
for the symmetric block cipher
algorithm.

VALUE TYPE DESCRIPTION

EncryptionAlgorithmType string The assembly-qualified name of a type
that implements SymmetricAlgorithm.

confidentiality and HMAC for authenticity with services provided by Windows CNG (see Specifying custom
Windows CNG algorithms for more details). The following additional values are supported, each of which
corresponds to a property on the CngCbcAuthenticatedEncryptionSettings type.

If EncryptionType is CNG-GCM, the system is configured to use a Galois/Counter Mode symmetric block cipher
for confidentiality and authenticity with services provided by Windows CNG (see Specifying custom Windows
CNG algorithms for more details). The following additional values are supported, each of which corresponds to a
property on the CngGcmAuthenticatedEncryptionSettings type.

If EncryptionType is Managed, the system is configured to use a managed SymmetricAlgorithm for
confidentiality and KeyedHashAlgorithm for authenticity (see Specifying custom managed algorithms for more
details). The following additional values are supported, each of which corresponds to a property on the
ManagedAuthenticatedEncryptionSettings type.

EncryptionAlgorithmKeySize DWORD The length (in bits) of the key to derive
for the symmetric encryption
algorithm.

ValidationAlgorithmType string The assembly-qualified name of a type
that implements KeyedHashAlgorithm.

VALUE TYPE DESCRIPTION

WARNINGWARNING

If EncryptionType has any other value other than null or empty, the Data Protection system throws an exception
at startup.

When configuring a default policy setting that involves type names (EncryptionAlgorithmType, ValidationAlgorithmType,
KeyEscrowSinks), the types must be available to the app. This means that for apps running on Desktop CLR, the assemblies
that contain these types should be present in the Global Assembly Cache (GAC). For ASP.NET Core apps running on .NET
Core, the packages that contain these types should be installed.

Non-DI aware scenarios for Data Protection in
ASP.NET Core
3/1/2018 • 2 minutes to read • Edit Online

By Rick Anderson

The ASP.NET Core Data Protection system is normally added to a service container and consumed by dependent
components via dependency injection (DI). However, there are cases where this isn't feasible or desired, especially
when importing the system into an existing app.

To support these scenarios, the Microsoft.AspNetCore.DataProtection.Extensions package provides a concrete
type, DataProtectionProvider, which offers a simple way to use Data Protection without relying on DI. The
DataProtectionProvider type implements IDataProtectionProvider. Constructing DataProtectionProvider only

requires providing a DirectoryInfo instance to indicate where the provider's cryptographic keys should be stored,
as seen in the following code sample:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/configuration/non-di-scenarios.md
https://twitter.com/RickAndMSFT
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Extensions/
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.DataProtection.DataProtectionProvider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotectionprovider
https://docs.microsoft.com/dotnet/api/system.io.directoryinfo

using System;
using System.IO;
using Microsoft.AspNetCore.DataProtection;

public class Program
{
 public static void Main(string[] args)
 {
 // Get the path to %LOCALAPPDATA%\myapp-keys
 var destFolder = Path.Combine(
 System.Environment.GetEnvironmentVariable("LOCALAPPDATA"),
 "myapp-keys");

 // Instantiate the data protection system at this folder
 var dataProtectionProvider = DataProtectionProvider.Create(
 new DirectoryInfo(destFolder));

 var protector = dataProtectionProvider.CreateProtector("Program.No-DI");
 Console.Write("Enter input: ");
 var input = Console.ReadLine();

 // Protect the payload
 var protectedPayload = protector.Protect(input);
 Console.WriteLine($"Protect returned: {protectedPayload}");

 // Unprotect the payload
 var unprotectedPayload = protector.Unprotect(protectedPayload);
 Console.WriteLine($"Unprotect returned: {unprotectedPayload}");

 Console.WriteLine();
 Console.WriteLine("Press any key...");
 Console.ReadKey();
 }
}

/*
 * SAMPLE OUTPUT
 *
 * Enter input: Hello world!
 * Protect returned: CfDJ8FWbAn6...ch3hAPm1NJA
 * Unprotect returned: Hello world!
 *
 * Press any key...
*/

By default, the DataProtectionProvider concrete type doesn't encrypt raw key material before persisting it to the
file system. This is to support scenarios where the developer points to a network share and the Data Protection
system can't automatically deduce an appropriate at-rest key encryption mechanism.

Additionally, the DataProtectionProvider concrete type doesn't isolate apps by default. All apps using the same
key directory can share payloads as long as their purpose parameters match.

The DataProtectionProvider constructor accepts an optional configuration callback that can be used to adjust the
behaviors of the system. The sample below demonstrates restoring isolation with an explicit call to
SetApplicationName. The sample also demonstrates configuring the system to automatically encrypt persisted
keys using Windows DPAPI. If the directory points to a UNC share, you may wish to distribute a shared
certificate across all relevant machines and to configure the system to use certificate-based encryption with a call
to ProtectKeysWithCertificate.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.protectkeyswithcertificate

using System;
using System.IO;
using Microsoft.AspNetCore.DataProtection;

public class Program
{
 public static void Main(string[] args)
 {
 // Get the path to %LOCALAPPDATA%\myapp-keys
 var destFolder = Path.Combine(
 System.Environment.GetEnvironmentVariable("LOCALAPPDATA"),
 "myapp-keys");

 // Instantiate the data protection system at this folder
 var dataProtectionProvider = DataProtectionProvider.Create(
 new DirectoryInfo(destFolder),
 configuration =>
 {
 configuration.SetApplicationName("my app name");
 configuration.ProtectKeysWithDpapi();
 });

 var protector = dataProtectionProvider.CreateProtector("Program.No-DI");
 Console.Write("Enter input: ");
 var input = Console.ReadLine();

 // Protect the payload
 var protectedPayload = protector.Protect(input);
 Console.WriteLine($"Protect returned: {protectedPayload}");

 // Unprotect the payload
 var unprotectedPayload = protector.Unprotect(protectedPayload);
 Console.WriteLine($"Unprotect returned: {unprotectedPayload}");

 Console.WriteLine();
 Console.WriteLine("Press any key...");
 Console.ReadKey();
 }
}

TIPTIP
Instances of the DataProtectionProvider concrete type are expensive to create. If an app maintains multiple instances of
this type and if they're all using the same key storage directory, app performance might degrade. If you use the
DataProtectionProvider type, we recommend that you create this type once and reuse it as much as possible. The
DataProtectionProvider type and all IDataProtector instances created from it are thread-safe for multiple callers.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector

ASP.NET Core Data Protection extensibility APIs
3/21/2018 • 2 minutes to read • Edit Online

Core cryptography extensibility

Key management extensibility

Miscellaneous APIs

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/extensibility/index.md

Core cryptography extensibility in ASP.NET Core
4/10/2018 • 5 minutes to read • Edit Online

WARNINGWARNING

IAuthenticatedEncryptor

NOTENOTE

How to create an IAuthenticatedEncryptor

Types that implement any of the following interfaces should be thread-safe for multiple callers.

The IAuthenticatedEncryptor interface is the basic building block of the cryptographic subsystem. There's
generally one IAuthenticatedEncryptor per key, and the IAuthenticatedEncryptor instance wraps all cryptographic
key material and algorithmic information necessary to perform cryptographic operations.

As its name suggests, the type is responsible for providing authenticated encryption and decryption services. It
exposes the following two APIs.

Decrypt(ArraySegment ciphertext, ArraySegment additionalAuthenticatedData) : byte[]

Encrypt(ArraySegment plaintext, ArraySegment additionalAuthenticatedData) : byte[]

The Encrypt method returns a blob that includes the enciphered plaintext and an authentication tag. The
authentication tag must encompass the additional authenticated data (AAD), though the AAD itself need not be
recoverable from the final payload. The Decrypt method validates the authentication tag and returns the
deciphered payload. All failures (except ArgumentNullException and similar) should be homogenized to
CryptographicException.

The IAuthenticatedEncryptor instance itself doesn't actually need to contain the key material. For example, the
implementation could delegate to an HSM for all operations.

ASP.NET Core 2.x
ASP.NET Core 1.x

The IAuthenticatedEncryptorFactory interface represents a type that knows how to create an
IAuthenticatedEncryptor instance. Its API is as follows.

CreateEncryptorInstance(IKey key) : IAuthenticatedEncryptor

For any given IKey instance, any authenticated encryptors created by its CreateEncryptorInstance method should
be considered equivalent, as in the below code sample.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/extensibility/core-crypto.md

// we have an IAuthenticatedEncryptorFactory instance and an IKey instance
IAuthenticatedEncryptorFactory factory = ...;
IKey key = ...;

// get an encryptor instance and perform an authenticated encryption operation
ArraySegment<byte> plaintext = new ArraySegment<byte>(Encoding.UTF8.GetBytes("plaintext"));
ArraySegment<byte> aad = new ArraySegment<byte>(Encoding.UTF8.GetBytes("AAD"));
var encryptor1 = factory.CreateEncryptorInstance(key);
byte[] ciphertext = encryptor1.Encrypt(plaintext, aad);

// get another encryptor instance and perform an authenticated decryption operation
var encryptor2 = factory.CreateEncryptorInstance(key);
byte[] roundTripped = encryptor2.Decrypt(new ArraySegment<byte>(ciphertext), aad);

// the 'roundTripped' and 'plaintext' buffers should be equivalent

IAuthenticatedEncryptorDescriptor (ASP.NET Core 2.x only)

XML Serialization

TIPTIP

ASP.NET Core 2.x
ASP.NET Core 1.x

The IAuthenticatedEncryptorDescriptor interface represents a type that knows how to export itself to XML. Its
API is as follows.

ExportToXml() : XmlSerializedDescriptorInfo

The primary difference between IAuthenticatedEncryptor and IAuthenticatedEncryptorDescriptor is that the
descriptor knows how to create the encryptor and supply it with valid arguments. Consider an
IAuthenticatedEncryptor whose implementation relies on SymmetricAlgorithm and KeyedHashAlgorithm. The
encryptor's job is to consume these types, but it doesn't necessarily know where these types came from, so it can't
really write out a proper description of how to recreate itself if the application restarts. The descriptor acts as a
higher level on top of this. Since the descriptor knows how to create the encryptor instance (e.g., it knows how to
create the required algorithms), it can serialize that knowledge in XML form so that the encryptor instance can be
recreated after an application reset.

 The descriptor can be serialized via its ExportToXml routine. This routine returns an XmlSerializedDescriptorInfo
which contains two properties: the XElement representation of the descriptor and the Type which represents an
IAuthenticatedEncryptorDescriptorDeserializer which can be used to resurrect this descriptor given the
corresponding XElement.

The serialized descriptor may contain sensitive information such as cryptographic key material. The data
protection system has built-in support for encrypting information before it's persisted to storage. To take
advantage of this, the descriptor should mark the element which contains sensitive information with the attribute
name "requiresEncryption" (xmlns "http://schemas.asp.net/2015/03/dataProtection"), value "true".

There's a helper API for setting this attribute. Call the extension method XElement.MarkAsRequiresEncryption() located in
namespace Microsoft.AspNetCore.DataProtection.AuthenticatedEncryption.ConfigurationModel.

There can also be cases where the serialized descriptor doesn't contain sensitive information. Consider again the
case of a cryptographic key stored in an HSM. The descriptor cannot write out the key material when serializing
itself since the HSM won't expose the material in plaintext form. Instead, the descriptor might write out the key-

http://schemas.asp.net/2015/03/dataProtection

IAuthenticatedEncryptorDescriptorDeserializer

NOTENOTE

The top-level factory

wrapped version of the key (if the HSM allows export in this fashion) or the HSM's own unique identifier for the
key.

The IAuthenticatedEncryptorDescriptorDeserializer interface represents a type that knows how to deserialize
an IAuthenticatedEncryptorDescriptor instance from an XElement. It exposes a single method:

ImportFromXml(XElement element) : IAuthenticatedEncryptorDescriptor

The ImportFromXml method takes the XElement that was returned by
IAuthenticatedEncryptorDescriptor.ExportToXml and creates an equivalent of the original
IAuthenticatedEncryptorDescriptor.

Types which implement IAuthenticatedEncryptorDescriptorDeserializer should have one of the following two
public constructors:

.ctor(IServiceProvider)

.ctor()

The IServiceProvider passed to the constructor may be null.

ASP.NET Core 2.x
ASP.NET Core 1.x

The AlgorithmConfiguration class represents a type which knows how to create
IAuthenticatedEncryptorDescriptor instances. It exposes a single API.

CreateNewDescriptor() : IAuthenticatedEncryptorDescriptor

Think of AlgorithmConfiguration as the top-level factory. The configuration serves as a template. It wraps
algorithmic information (e.g., this configuration produces descriptors with an AES-128-GCM master key), but it's
not yet associated with a specific key.

When CreateNewDescriptor is called, fresh key material is created solely for this call, and a new
IAuthenticatedEncryptorDescriptor is produced which wraps this key material and the algorithmic information
required to consume the material. The key material could be created in software (and held in memory), it could be
created and held within an HSM, and so on. The crucial point is that any two calls to CreateNewDescriptor should
never create equivalent IAuthenticatedEncryptorDescriptor instances.

The AlgorithmConfiguration type serves as the entry point for key creation routines such as automatic key rolling.
To change the implementation for all future keys, set the AuthenticatedEncryptorConfiguration property in
KeyManagementOptions.

Key management extensibility in ASP.NET Core
3/21/2018 • 7 minutes to read • Edit Online

TIPTIP

WARNINGWARNING

Key

NOTENOTE

IKeyManager

WARNINGWARNING

Read the key management section before reading this section, as it explains some of the fundamental concepts behind these
APIs.

Types that implement any of the following interfaces should be thread-safe for multiple callers.

The IKey interface is the basic representation of a key in cryptosystem. The term key is used here in the abstract
sense, not in the literal sense of "cryptographic key material". A key has the following properties:

Activation, creation, and expiration dates

Revocation status

Key identifier (a GUID)

ASP.NET Core 2.x
ASP.NET Core 1.x

Additionally, IKey exposes a CreateEncryptor method which can be used to create an IAuthenticatedEncryptor
instance tied to this key.

There's no API to retrieve the raw cryptographic material from an IKey instance.

The IKeyManager interface represents an object responsible for general key storage, retrieval, and manipulation. It
exposes three high-level operations:

Create a new key and persist it to storage.

Get all keys from storage.

Revoke one or more keys and persist the revocation information to storage.

Writing an IKeyManager is a very advanced task, and the majority of developers shouldn't attempt it. Instead, most
developers should take advantage of the facilities offered by the XmlKeyManager class.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/extensibility/key-management.md

XmlKeyManager
The XmlKeyManager type is the in-box concrete implementation of IKeyManager . It provides several useful facilities,
including key escrow and encryption of keys at rest. Keys in this system are represented as XML elements
(specifically, XElement).

XmlKeyManager depends on several other components in the course of fulfilling its tasks:

ASP.NET Core 2.x
ASP.NET Core 1.x

AlgorithmConfiguration , which dictates the algorithms used by new keys.

IXmlRepository , which controls where keys are persisted in storage.

IXmlEncryptor [optional], which allows encrypting keys at rest.

IKeyEscrowSink [optional], which provides key escrow services.

Below are high-level diagrams which indicate how these components are wired together within XmlKeyManager .

ASP.NET Core 2.x
ASP.NET Core 1.x

Key Creation / CreateNewKey

In the implementation of CreateNewKey , the AlgorithmConfiguration component is used to create a unique
IAuthenticatedEncryptorDescriptor , which is then serialized as XML. If a key escrow sink is present, the raw

(unencrypted) XML is provided to the sink for long-term storage. The unencrypted XML is then run through an
IXmlEncryptor (if required) to generate the encrypted XML document. This encrypted document is persisted to

long-term storage via the IXmlRepository . (If no IXmlEncryptor is configured, the unencrypted document is
persisted in the IXmlRepository .)

ASP.NET Core 2.x
ASP.NET Core 1.x

https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/xelement-class-overview

IXmlRepository

services.Configure<KeyManagementOptions>(options => options.XmlRepository = new MyCustomXmlRepository());

IXmlEncryptor

Key Retrieval / GetAllKeys

In the implementation of GetAllKeys , the XML documents representing keys and revocations are read from the
underlying IXmlRepository . If these documents are encrypted, the system will automatically decrypt them.
XmlKeyManager creates the appropriate IAuthenticatedEncryptorDescriptorDeserializer instances to deserialize the

documents back into IAuthenticatedEncryptorDescriptor instances, which are then wrapped in individual IKey

instances. This collection of IKey instances is returned to the caller.

Further information on the particular XML elements can be found in the key storage format document.

The IXmlRepository interface represents a type that can persist XML to and retrieve XML from a backing store. It
exposes two APIs:

GetAllElements() : IReadOnlyCollection

StoreElement(XElement element, string friendlyName)

Implementations of IXmlRepository don't need to parse the XML passing through them. They should treat the
XML documents as opaque and let higher layers worry about generating and parsing the documents.

There are two built-in concrete types which implement IXmlRepository : FileSystemXmlRepository and
RegistryXmlRepository . See the key storage providers document for more information. Registering a custom
IXmlRepository would be the appropriate manner to use a different backing store, e.g., Azure Blob Storage.

To change the default repository application-wide, register a custom IXmlRepository instance:

ASP.NET Core 2.x
ASP.NET Core 1.x

The IXmlEncryptor interface represents a type that can encrypt a plaintext XML element. It exposes a single API:

Encrypt(XElement plaintextElement) : EncryptedXmlInfo

If a serialized IAuthenticatedEncryptorDescriptor contains any elements marked as "requires encryption", then
XmlKeyManager will run those elements through the configured IXmlEncryptor 's Encrypt method, and it will

services.Configure<KeyManagementOptions>(options => options.XmlEncryptor = new MyCustomXmlEncryptor());

IXmlDecryptor

NOTENOTE

IKeyEscrowSink

persist the enciphered element rather than the plaintext element to the IXmlRepository . The output of the
Encrypt method is an EncryptedXmlInfo object. This object is a wrapper which contains both the resultant

enciphered XElement and the Type which represents an IXmlDecryptor which can be used to decipher the
corresponding element.

There are four built-in concrete types which implement IXmlEncryptor :

CertificateXmlEncryptor

DpapiNGXmlEncryptor

DpapiXmlEncryptor

NullXmlEncryptor

See the key encryption at rest document for more information.

To change the default key-encryption-at-rest mechanism application-wide, register a custom IXmlEncryptor

instance:

ASP.NET Core 2.x
ASP.NET Core 1.x

The IXmlDecryptor interface represents a type that knows how to decrypt an XElement that was enciphered via an
IXmlEncryptor . It exposes a single API:

Decrypt(XElement encryptedElement) : XElement

The Decrypt method undoes the encryption performed by IXmlEncryptor.Encrypt . Generally, each concrete
IXmlEncryptor implementation will have a corresponding concrete IXmlDecryptor implementation.

Types which implement IXmlDecryptor should have one of the following two public constructors:

.ctor(IServiceProvider)

.ctor()

The IServiceProvider passed to the constructor may be null.

The IKeyEscrowSink interface represents a type that can perform escrow of sensitive information. Recall that
serialized descriptors might contain sensitive information (such as cryptographic material), and this is what led to
the introduction of the IXmlEncryptor type in the first place. However, accidents happen, and key rings can be
deleted or become corrupted.

The escrow interface provides an emergency escape hatch, allowing access to the raw serialized XML before it's
transformed by any configured IXmlEncryptor. The interface exposes a single API:

Store(Guid keyId, XElement element)

It's up to the IKeyEscrowSink implementation to handle the provided element in a secure manner consistent with
business policy. One possible implementation could be for the escrow sink to encrypt the XML element using a

NOTENOTE

using System;
using System.IO;
using System.Xml.Linq;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.AspNetCore.DataProtection.KeyManagement;
using Microsoft.AspNetCore.DataProtection.XmlEncryption;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
 public static void Main(string[] args)
 {
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddDataProtection()
 .PersistKeysToFileSystem(new DirectoryInfo(@"c:\temp-keys"))
 .ProtectKeysWithDpapi()
 .AddKeyEscrowSink(sp => new MyKeyEscrowSink(sp));
 var services = serviceCollection.BuildServiceProvider();

 // get a reference to the key manager and force a new key to be generated
 Console.WriteLine("Generating new key...");
 var keyManager = services.GetService<IKeyManager>();
 keyManager.CreateNewKey(
 activationDate: DateTimeOffset.Now,
 expirationDate: DateTimeOffset.Now.AddDays(7));
 }

 // A key escrow sink where keys are escrowed such that they
 // can be read by members of the CONTOSO\Domain Admins group.
 private class MyKeyEscrowSink : IKeyEscrowSink
 {
 private readonly IXmlEncryptor _escrowEncryptor;

 public MyKeyEscrowSink(IServiceProvider services)
 {
 // Assuming I'm on a machine that's a member of the CONTOSO
 // domain, I can use the Domain Admins SID to generate an
 // encrypted payload that only they can read. Sample SID from
 // https://technet.microsoft.com/library/cc778824(v=ws.10).aspx.

known corporate X.509 certificate where the certificate's private key has been escrowed; the
CertificateXmlEncryptor type can assist with this. The IKeyEscrowSink implementation is also responsible for

persisting the provided element appropriately.

By default no escrow mechanism is enabled, though server administrators can configure this globally. It can also
be configured programmatically via the IDataProtectionBuilder.AddKeyEscrowSink method as shown in the sample
below. The AddKeyEscrowSink method overloads mirror the IServiceCollection.AddSingleton and
IServiceCollection.AddInstance overloads, as IKeyEscrowSink instances are intended to be singletons. If multiple
IKeyEscrowSink instances are registered, each one will be called during key generation, so keys can be escrowed

to multiple mechanisms simultaneously.

There's no API to read material from an IKeyEscrowSink instance. This is consistent with the design theory of the
escrow mechanism: it's intended to make the key material accessible to a trusted authority, and since the
application is itself not a trusted authority, it shouldn't have access to its own escrowed material.

The following sample code demonstrates creating and registering an IKeyEscrowSink where keys are escrowed
such that only members of "CONTOSODomain Admins" can recover them.

To run this sample, you must be on a domain-joined Windows 8 / Windows Server 2012 machine, and the domain controller
must be Windows Server 2012 or later.

 // https://technet.microsoft.com/library/cc778824(v=ws.10).aspx.
 _escrowEncryptor = new DpapiNGXmlEncryptor(
 "SID=S-1-5-21-1004336348-1177238915-682003330-512",
 DpapiNGProtectionDescriptorFlags.None,
 services);
 }

 public void Store(Guid keyId, XElement element)
 {
 // Encrypt the key element to the escrow encryptor.
 var encryptedXmlInfo = _escrowEncryptor.Encrypt(element);

 // A real implementation would save the escrowed key to a
 // write-only file share or some other stable storage, but
 // in this sample we'll just write it out to the console.
 Console.WriteLine($"Escrowing key {keyId}");
 Console.WriteLine(encryptedXmlInfo.EncryptedElement);

 // Note: We cannot read the escrowed key material ourselves.
 // We need to get a member of CONTOSO\Domain Admins to read
 // it for us in the event we need to recover it.
 }
 }
}

/*
 * SAMPLE OUTPUT
 *
 * Generating new key...
 * Escrowing key 38e74534-c1b8-4b43-aea1-79e856a822e5
 * <encryptedKey>
 * <!-- This key is encrypted with Windows DPAPI-NG. -->
 * <!-- Rule: SID=S-1-5-21-1004336348-1177238915-682003330-512 -->
 * <value>MIIIfAYJKoZIhvcNAQcDoIIIbTCCCGkCAQ...T5rA4g==</value>
 * </encryptedKey>
 */

Miscellaneous ASP.NET Core Data Protection APIs
3/21/2018 • 2 minutes to read • Edit Online

WARNINGWARNING

ISecret

Types that implement any of the following interfaces should be thread-safe for multiple callers.

The ISecret interface represents a secret value, such as cryptographic key material. It contains the following API
surface:

Length : int

Dispose() : void

WriteSecretIntoBuffer(ArraySegment<byte> buffer) : void

The WriteSecretIntoBuffer method populates the supplied buffer with the raw secret value. The reason this API
takes the buffer as a parameter rather than returning a byte[] directly is that this gives the caller the opportunity
to pin the buffer object, limiting secret exposure to the managed garbage collector.

The Secret type is a concrete implementation of ISecret where the secret value is stored in in-process memory.
On Windows platforms, the secret value is encrypted via CryptProtectMemory.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/extensibility/misc-apis.md
https://msdn.microsoft.com/library/windows/desktop/aa380262(v=vs.85).aspx

ASP.NET Core Data Protection implementation
3/22/2018 • 2 minutes to read • Edit Online

Authenticated encryption details

Subkey Derivation and Authenticated Encryption

Context headers

Key Management

Key Storage Providers

Key Encryption At Rest

Key immutability and settings

Key Storage Format

Ephemeral data protection providers

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/index.md

Authenticated encryption details in ASP.NET Core
3/21/2018 • 2 minutes to read • Edit Online

Protected payload format

09 F0 C9 F0 80 9C 81 0C 19 66 19 40 95 36 53 F8
AA FF EE 57 57 2F 40 4C 3F 7F CC 9D CC D9 32 3E
84 17 99 16 EC BA 1F 4A A1 18 45 1F 2D 13 7A 28
79 6B 86 9C F8 B7 84 F9 26 31 FC B1 86 0A F1 56
61 CF 14 58 D3 51 6F CF 36 50 85 82 08 2D 3F 73
5F B0 AD 9E 1A B2 AE 13 57 90 C8 F5 7C 95 4E 6A
8A AA 06 EF 43 CA 19 62 84 7C 11 B2 C8 71 9D AA
52 19 2E 5B 4C 1E 54 F0 55 BE 88 92 12 C1 4B 5E
52 C9 74 A0

WARNINGWARNING

 Calls to IDataProtector.Protect are authenticated encryption operations. The Protect method offers both
confidentiality and authenticity, and it's tied to the purpose chain that was used to derive this particular
IDataProtector instance from its root IDataProtectionProvider.

IDataProtector.Protect takes a byte[] plaintext parameter and produces a byte[] protected payload, whose format is
described below. (There's also an extension method overload which takes a string plaintext parameter and returns
a string protected payload. If this API is used the protected payload format will still have the below structure, but it
will be base64url-encoded.)

The protected payload format consists of three primary components:

A 32-bit magic header that identifies the version of the data protection system.

A 128-bit key id that identifies the key used to protect this particular payload.

The remainder of the protected payload is specific to the encryptor encapsulated by this key. In the example
below the key represents an AES-256-CBC + HMACSHA256 encryptor, and the payload is further
subdivided as follows: * A 128-bit key modifier. * A 128-bit initialization vector. * 48 bytes of AES-256-CBC
output. * An HMACSHA256 authentication tag.

A sample protected payload is illustrated below.

From the payload format above the first 32 bits, or 4 bytes are the magic header identifying the version (09 F0 C9
F0)

The next 128 bits, or 16 bytes is the key identifier (80 9C 81 0C 19 66 19 40 95 36 53 F8 AA FF EE 57)

The remainder contains the payload and is specific to the format used.

All payloads protected to a given key will begin with the same 20-byte (magic value, key id) header. Administrators can use
this fact for diagnostic purposes to approximate when a payload was generated. For example, the payload above
corresponds to key {0c819c80-6619-4019-9536-53f8aaffee57}. If after checking the key repository you find that this
specific key's activation date was 2015-01-01 and its expiration date was 2015-03-01, then it's reasonable to assume that
the payload (if not tampered with) was generated within that window, give or take a small fudge factor on either side.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/authenticated-encryption-details.md
https://tools.ietf.org/html/rfc4648#section-5

Subkey derivation and authenticated encryption in
ASP.NET Core
3/21/2018 • 3 minutes to read • Edit Online

NOTENOTE

Additional authenticated data and subkey derivation

 Most keys in the key ring will contain some form of entropy and will have algorithmic information stating "CBC-
mode encryption + HMAC validation" or "GCM encryption + validation". In these cases, we refer to the embedded
entropy as the master keying material (or KM) for this key, and we perform a key derivation function to derive the
keys that will be used for the actual cryptographic operations.

Keys are abstract, and a custom implementation might not behave as below. If the key provides its own implementation of
IAuthenticatedEncryptor rather than using one of our built-in factories, the mechanism described in this section no

longer applies.

The IAuthenticatedEncryptor interface serves as the core interface for all authenticated encryption operations. Its
Encrypt method takes two buffers: plaintext and additionalAuthenticatedData (AAD). The plaintext contents flow

unchanged the call to IDataProtector.Protect , but the AAD is generated by the system and consists of three
components:

1. The 32-bit magic header 09 F0 C9 F0 that identifies this version of the data protection system.

2. The 128-bit key id.

3. A variable-length string formed from the purpose chain that created the IDataProtector that's performing
this operation.

Because the AAD is unique for the tuple of all three components, we can use it to derive new keys from KM
instead of using KM itself in all of our cryptographic operations. For every call to IAuthenticatedEncryptor.Encrypt

, the following key derivation process takes place:

(K_E, K_H) = SP800_108_CTR_HMACSHA512(K_M, AAD, contextHeader || keyModifier)

Here, we're calling the NIST SP800-108 KDF in Counter Mode (see NIST SP800-108, Sec. 5.1) with the following
parameters:

Key derivation key (KDK) = K_M

PRF = HMACSHA512

label = additionalAuthenticatedData

context = contextHeader || keyModifier

The context header is of variable length and essentially serves as a thumbprint of the algorithms for which we're
deriving K_E and K_H. The key modifier is a 128-bit string randomly generated for each call to Encrypt and
serves to ensure with overwhelming probability that KE and KH are unique for this specific authentication
encryption operation, even if all other input to the KDF is constant.

For CBC-mode encryption + HMAC validation operations, | K_E | is the length of the symmetric block cipher key,

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/subkeyderivation.md
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf

CBC-mode encryption + HMAC validation

NOTENOTE

Galois/Counter Mode encryption + validation

and | K_H | is the digest size of the HMAC routine. For GCM encryption + validation operations, | K_H | = 0.

Once K_E is generated via the above mechanism, we generate a random initialization vector and run the
symmetric block cipher algorithm to encipher the plaintext. The initialization vector and ciphertext are then run
through the HMAC routine initialized with the key K_H to produce the MAC. This process and the return value is
represented graphically below.

output:= keyModifier || iv || E_cbc (K_E,iv,data) || HMAC(K_H, iv || E_cbc (K_E,iv,data))

The IDataProtector.Protect implementation will prepend the magic header and key id to output before returning it to
the caller. Because the magic header and key id are implicitly part of AAD, and because the key modifier is fed as input to the
KDF, this means that every single byte of the final returned payload is authenticated by the MAC.

Once K_E is generated via the above mechanism, we generate a random 96-bit nonce and run the symmetric
block cipher algorithm to encipher the plaintext and produce the 128-bit authentication tag.

output := keyModifier || nonce || E_gcm (K_E,nonce,data) || authTag

NOTENOTE
Even though GCM natively supports the concept of AAD, we're still feeding AAD only to the original KDF, opting to pass an
empty string into GCM for its AAD parameter. The reason for this is two-fold. First, to support agility we never want to use
K_M directly as the encryption key. Additionally, GCM imposes very strict uniqueness requirements on its inputs. The
probability that the GCM encryption routine is ever invoked on two or more distinct sets of input data with the same (key,
nonce) pair must not exceed 2^32. If we fix K_E we cannot perform more than 2^32 encryption operations before we run
afoul of the 2^-32 limit. This might seem like a very large number of operations, but a high-traffic web server can go
through 4 billion requests in mere days, well within the normal lifetime for these keys. To stay compliant of the 2^-32
probability limit, we continue to use a 128-bit key modifier and 96-bit nonce, which radically extends the usable operation
count for any given K_M. For simplicity of design we share the KDF code path between CBC and GCM operations, and since
AAD is already considered in the KDF there's no need to forward it to the GCM routine.

Context headers in ASP.NET Core
3/21/2018 • 8 minutes to read • Edit Online

Background and theory

CBC-mode encryption + HMAC authentication

In the data protection system, a "key" means an object that can provide authenticated encryption services. Each
key is identified by a unique id (a GUID), and it carries with it algorithmic information and entropic material. It's
intended that each key carry unique entropy, but the system cannot enforce that, and we also need to account for
developers who might change the key ring manually by modifying the algorithmic information of an existing key
in the key ring. To achieve our security requirements given these cases the data protection system has a concept of
cryptographic agility, which allows securely using a single entropic value across multiple cryptographic
algorithms.

Most systems which support cryptographic agility do so by including some identifying information about the
algorithm inside the payload. The algorithm's OID is generally a good candidate for this. However, one problem
that we ran into is that there are multiple ways to specify the same algorithm: "AES" (CNG) and the managed Aes,
AesManaged, AesCryptoServiceProvider, AesCng, and RijndaelManaged (given specific parameters) classes are
all actually the same thing, and we'd need to maintain a mapping of all of these to the correct OID. If a developer
wanted to provide a custom algorithm (or even another implementation of AES!), they'd have to tell us its OID.
This extra registration step makes system configuration particularly painful.

Stepping back, we decided that we were approaching the problem from the wrong direction. An OID tells you
what the algorithm is, but we don't actually care about this. If we need to use a single entropic value securely in
two different algorithms, it's not necessary for us to know what the algorithms actually are. What we actually care
about is how they behave. Any decent symmetric block cipher algorithm is also a strong pseudorandom
permutation (PRP): fix the inputs (key, chaining mode, IV, plaintext) and the ciphertext output will with
overwhelming probability be distinct from any other symmetric block cipher algorithm given the same inputs.
Similarly, any decent keyed hash function is also a strong pseudorandom function (PRF), and given a fixed input
set its output will overwhelmingly be distinct from any other keyed hash function.

We use this concept of strong PRPs and PRFs to build up a context header. This context header essentially acts as
a stable thumbprint over the algorithms in use for any given operation, and it provides the cryptographic agility
needed by the data protection system. This header is reproducible and is used later as part of the subkey
derivation process. There are two different ways to build the context header depending on the modes of operation
of the underlying algorithms.

 The context header consists of the following components:

[16 bits] The value 00 00, which is a marker meaning "CBC encryption + HMAC authentication".

[32 bits] The key length (in bytes, big-endian) of the symmetric block cipher algorithm.

[32 bits] The block size (in bytes, big-endian) of the symmetric block cipher algorithm.

[32 bits] The key length (in bytes, big-endian) of the HMAC algorithm. (Currently the key size always
matches the digest size.)

[32 bits] The digest size (in bytes, big-endian) of the HMAC algorithm.

EncCBC(K_E, IV, ""), which is the output of the symmetric block cipher algorithm given an empty string
input and where IV is an all-zero vector. The construction of K_E is described below.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/context-headers.md
https://www.microsoft.com/en-us/research/publication/cryptographic-agility-and-its-relation-to-circular-encryption/

Example: AES-192-CBC + HMACSHA256Example: AES-192-CBC + HMACSHA256

5B B6 C9 83 13 78 22 1D 8E 10 73 CA CF 65 8E B0
61 62 42 71 CB 83 21 DD A0 4A 05 00 5B AB C0 A2
49 6F A5 61 E3 E2 49 87 AA 63 55 CD 74 0A DA C4
B7 92 3D BF 59 90 00 A9

00 00 00 00 00 18 00 00 00 10 00 00 00 20 00 00
00 20 F4 74 B1 87 2B 3B 53 E4 72 1D E1 9C 08 41
DB 6F D4 79 11 84 B9 96 09 2E E1 20 2F 36 E8 60
8F A8 FB D9 8A BD FF 54 02 F2 64 B1 D7 21 15 36
22 0C

MAC(K_H, ""), which is the output of the HMAC algorithm given an empty string input. The construction of
K_H is described below.

Ideally, we could pass all-zero vectors for K_E and K_H. However, we want to avoid the situation where the
underlying algorithm checks for the existence of weak keys before performing any operations (notably DES and
3DES), which precludes using a simple or repeatable pattern like an all-zero vector.

Instead, we use the NIST SP800-108 KDF in Counter Mode (see NIST SP800-108, Sec. 5.1) with a zero-length
key, label, and context and HMACSHA512 as the underlying PRF. We derive | K_E | + | K_H | bytes of output, then
decompose the result into K_E and K_H themselves. Mathematically, this is represented as follows.

(K_E || K_H) = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = "")

As an example, consider the case where the symmetric block cipher algorithm is AES-192-CBC and the validation
algorithm is HMACSHA256. The system would generate the context header using the following steps.

First, let (K_E || K_H) = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = ""), where | K_E | =
192 bits and | K_H | = 256 bits per the specified algorithms. This leads to K_E = 5BB6..21DD and K_H =
A04A..00A9 in the example below:

Next, compute Enc_CBC (K_E, IV, "") for AES-192-CBC given IV = 0* and K_E as above.

result := F474B1872B3B53E4721DE19C0841DB6F

Next, compute MAC(K_H, "") for HMACSHA256 given K_H as above.

result := D4791184B996092EE1202F36E8608FA8FBD98ABDFF5402F264B1D7211536220C

This produces the full context header below:

This context header is the thumbprint of the authenticated encryption algorithm pair (AES-192-CBC encryption +
HMACSHA256 validation). The components, as described above are:

the marker (00 00)

the block cipher key length (00 00 00 18)

the block cipher block size (00 00 00 10)

the HMAC key length (00 00 00 20)

the HMAC digest size (00 00 00 20)

the block cipher PRP output (F4 74 - DB 6F) and

the HMAC PRF output (D4 79 - end).

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf

NOTENOTE

Example: 3DES-192-CBC + HMACSHA1Example: 3DES-192-CBC + HMACSHA1

A2 19 60 2F 83 A9 13 EA B0 61 3A 39 B8 A6 7E 22
61 D9 F8 6C 10 51 E2 BB DC 4A 00 D7 03 A2 48 3E
D1 F7 5A 34 EB 28 3E D7 D4 67 B4 64

00 00 00 00 00 18 00 00 00 08 00 00 00 14 00 00
00 14 AB B1 00 F8 1E 53 E1 0E 76 EB 18 9B 35 CF
03 46 1D DF 87 7C D9 F4 B1 B4 D6 3A 75 55

Galois/Counter Mode encryption + authentication

The CBC-mode encryption + HMAC authentication context header is built the same way regardless of whether the
algorithms implementations are provided by Windows CNG or by managed SymmetricAlgorithm and KeyedHashAlgorithm
types. This allows applications running on different operating systems to reliably produce the same context header even
though the implementations of the algorithms differ between OSes. (In practice, the KeyedHashAlgorithm doesn't have to be
a proper HMAC. It can be any keyed hash algorithm type.)

First, let (K_E || K_H) = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = ""), where | K_E | =
192 bits and | K_H | = 160 bits per the specified algorithms. This leads to K_E = A219..E2BB and K_H =
DC4A..B464 in the example below:

Next, compute Enc_CBC (K_E, IV, "") for 3DES-192-CBC given IV = 0* and K_E as above.

result := ABB100F81E53E10E

Next, compute MAC(K_H, "") for HMACSHA1 given K_H as above.

result := 76EB189B35CF03461DDF877CD9F4B1B4D63A7555

This produces the full context header which is a thumbprint of the authenticated encryption algorithm pair (3DES-
192-CBC encryption + HMACSHA1 validation), shown below:

The components break down as follows:

the marker (00 00)

the block cipher key length (00 00 00 18)

the block cipher block size (00 00 00 08)

the HMAC key length (00 00 00 14)

the HMAC digest size (00 00 00 14)

the block cipher PRP output (AB B1 - E1 0E) and

the HMAC PRF output (76 EB - end).

The context header consists of the following components:

[16 bits] The value 00 01, which is a marker meaning "GCM encryption + authentication".

[32 bits] The key length (in bytes, big-endian) of the symmetric block cipher algorithm.

[32 bits] The nonce size (in bytes, big-endian) used during authenticated encryption operations. (For our
system, this is fixed at nonce size = 96 bits.)

Example: AES-256-GCMExample: AES-256-GCM

00 01 00 00 00 20 00 00 00 0C 00 00 00 10 00 00
00 10 E7 DC CE 66 DF 85 5A 32 3A 6B B7 BD 7A 59
BE 45

[32 bits] The block size (in bytes, big-endian) of the symmetric block cipher algorithm. (For GCM, this is
fixed at block size = 128 bits.)

[32 bits] The authentication tag size (in bytes, big-endian) produced by the authenticated encryption
function. (For our system, this is fixed at tag size = 128 bits.)

[128 bits] The tag of Enc_GCM (K_E, nonce, ""), which is the output of the symmetric block cipher algorithm
given an empty string input and where nonce is a 96-bit all-zero vector.

K_E is derived using the same mechanism as in the CBC encryption + HMAC authentication scenario. However,
since there's no K_H in play here, we essentially have | K_H | = 0, and the algorithm collapses to the below form.

K_E = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = "")

First, let K_E = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = ""), where | K_E | = 256 bits.

K_E := 22BC6F1B171C08C4AE2F27444AF8FC8B3087A90006CAEA91FDCFB47C1B8733B8

Next, compute the authentication tag of Enc_GCM (K_E, nonce, "") for AES-256-GCM given nonce = 096 and K_E
as above.

result := E7DCCE66DF855A323A6BB7BD7A59BE45

This produces the full context header below:

The components break down as follows:

the marker (00 01)

the block cipher key length (00 00 00 20)

the nonce size (00 00 00 0C)

the block cipher block size (00 00 00 10)

the authentication tag size (00 00 00 10) and

the authentication tag from running the block cipher (E7 DC - end).

Key management in ASP.NET Core
3/21/2018 • 6 minutes to read • Edit Online

WARNINGWARNING

Default key selection

Key expiration and rolling

 The data protection system automatically manages the lifetime of master keys used to protect and unprotect
payloads. Each key can exist in one of four stages:

Created - the key exists in the key ring but has not yet been activated. The key shouldn't be used for new
Protect operations until sufficient time has elapsed that the key has had a chance to propagate to all
machines that are consuming this key ring.

Active - the key exists in the key ring and should be used for all new Protect operations.

Expired - the key has run its natural lifetime and should no longer be used for new Protect operations.

Revoked - the key is compromised and must not be used for new Protect operations.

Created, active, and expired keys may all be used to unprotect incoming payloads. Revoked keys by default may
not be used to unprotect payloads, but the application developer can override this behavior if necessary.

The developer might be tempted to delete a key from the key ring (e.g., by deleting the corresponding file from the file
system). At that point, all data protected by the key is permanently undecipherable, and there's no emergency override like
there's with revoked keys. Deleting a key is truly destructive behavior, and consequently the data protection system exposes
no first-class API for performing this operation.

When the data protection system reads the key ring from the backing repository, it will attempt to locate a
"default" key from the key ring. The default key is used for new Protect operations.

The general heuristic is that the data protection system chooses the key with the most recent activation date as
the default key. (There's a small fudge factor to allow for server-to-server clock skew.) If the key is expired or
revoked, and if the application has not disabled automatic key generation, then a new key will be generated with
immediate activation per the key expiration and rolling policy below.

The reason the data protection system generates a new key immediately rather than falling back to a different key
is that new key generation should be treated as an implicit expiration of all keys that were activated prior to the
new key. The general idea is that new keys may have been configured with different algorithms or encryption-at-
rest mechanisms than old keys, and the system should prefer the current configuration over falling back.

There's an exception. If the application developer has disabled automatic key generation, then the data protection
system must choose something as the default key. In this fallback scenario, the system will choose the non-
revoked key with the most recent activation date, with preference given to keys that have had time to propagate
to other machines in the cluster. The fallback system may end up choosing an expired default key as a result. The
fallback system will never choose a revoked key as the default key, and if the key ring is empty or every key has
been revoked then the system will produce an error upon initialization.

When a key is created, it's automatically given an activation date of { now + 2 days } and an expiration date of {
now + 90 days }. The 2-day delay before activation gives the key time to propagate through the system. That is, it

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/key-management.md

services.AddDataProtection()
 // use 14-day lifetime instead of 90-day lifetime
 .SetDefaultKeyLifetime(TimeSpan.FromDays(14));

Automatic key ring refresh

WARNINGWARNING

using System;
using System.IO;
using System.Threading;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.AspNetCore.DataProtection.KeyManagement;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
 public static void Main(string[] args)
 {

allows other applications pointing at the backing store to observe the key at their next auto-refresh period, thus
maximizing the chances that when the key ring does become active it has propagated to all applications that
might need to use it.

If the default key will expire within 2 days and if the key ring doesn't already have a key that will be active upon
expiration of the default key, then the data protection system will automatically persist a new key to the key ring.
This new key has an activation date of { default key's expiration date } and an expiration date of { now + 90 days }.
This allows the system to automatically roll keys on a regular basis with no interruption of service.

There might be circumstances where a key will be created with immediate activation. One example would be
when the application hasn't run for a time and all keys in the key ring are expired. When this happens, the key is
given an activation date of { now } without the normal 2-day activation delay.

The default key lifetime is 90 days, though this is configurable as in the following example.

An administrator can also change the default system-wide, though an explicit call to SetDefaultKeyLifetime will
override any system-wide policy. The default key lifetime cannot be shorter than 7 days.

When the data protection system initializes, it reads the key ring from the underlying repository and caches it in
memory. This cache allows Protect and Unprotect operations to proceed without hitting the backing store. The
system will automatically check the backing store for changes approximately every 24 hours or when the current
default key expires, whichever comes first.

Developers should very rarely (if ever) need to use the key management APIs directly. The data protection system will
perform automatic key management as described above.

The data protection system exposes an interface IKeyManager that can be used to inspect and make changes to
the key ring. The DI system that provided the instance of IDataProtectionProvider can also provide an instance of
IKeyManager for your consumption. Alternatively, you can pull the IKeyManager straight from the
IServiceProvider as in the example below.

Any operation which modifies the key ring (creating a new key explicitly or performing a revocation) will
invalidate the in-memory cache. The next call to Protect or Unprotect will cause the data protection system to
reread the key ring and recreate the cache.

The sample below demonstrates using the IKeyManager interface to inspect and manipulate the key ring,
including revoking existing keys and generating a new key manually.

 {
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddDataProtection()
 // point at a specific folder and use DPAPI to encrypt keys
 .PersistKeysToFileSystem(new DirectoryInfo(@"c:\temp-keys"))
 .ProtectKeysWithDpapi();
 var services = serviceCollection.BuildServiceProvider();

 // perform a protect operation to force the system to put at least
 // one key in the key ring
 services.GetDataProtector("Sample.KeyManager.v1").Protect("payload");
 Console.WriteLine("Performed a protect operation.");
 Thread.Sleep(2000);

 // get a reference to the key manager
 var keyManager = services.GetService<IKeyManager>();

 // list all keys in the key ring
 var allKeys = keyManager.GetAllKeys();
 Console.WriteLine($"The key ring contains {allKeys.Count} key(s).");
 foreach (var key in allKeys)
 {
 Console.WriteLine($"Key {key.KeyId:B}: Created = {key.CreationDate:u}, IsRevoked =
{key.IsRevoked}");
 }

 // revoke all keys in the key ring
 keyManager.RevokeAllKeys(DateTimeOffset.Now, reason: "Revocation reason here.");
 Console.WriteLine("Revoked all existing keys.");

 // add a new key to the key ring with immediate activation and a 1-month expiration
 keyManager.CreateNewKey(
 activationDate: DateTimeOffset.Now,
 expirationDate: DateTimeOffset.Now.AddMonths(1));
 Console.WriteLine("Added a new key.");

 // list all keys in the key ring
 allKeys = keyManager.GetAllKeys();
 Console.WriteLine($"The key ring contains {allKeys.Count} key(s).");
 foreach (var key in allKeys)
 {
 Console.WriteLine($"Key {key.KeyId:B}: Created = {key.CreationDate:u}, IsRevoked =
{key.IsRevoked}");
 }
 }
}

/*
 * SAMPLE OUTPUT
 *
 * Performed a protect operation.
 * The key ring contains 1 key(s).
 * Key {1b948618-be1f-440b-b204-64ff5a152552}: Created = 2015-03-18 22:20:49Z, IsRevoked = False
 * Revoked all existing keys.
 * Added a new key.
 * The key ring contains 2 key(s).
 * Key {1b948618-be1f-440b-b204-64ff5a152552}: Created = 2015-03-18 22:20:49Z, IsRevoked = True
 * Key {2266fc40-e2fb-48c6-8ce2-5fde6b1493f7}: Created = 2015-03-18 22:20:51Z, IsRevoked = False
 */

Key storage
The data protection system has a heuristic whereby it tries to deduce an appropriate key storage location and
encryption at rest mechanism automatically. This is also configurable by the app developer. The following
documents discuss the in-box implementations of these mechanisms:

In-box key storage providers

In-box key encryption at rest providers

Key storage providers in ASP.NET Core
3/21/2018 • 2 minutes to read • Edit Online

NOTENOTE

File system

sc.AddDataProtection()
 // persist keys to a specific directory
 .PersistKeysToFileSystem(new DirectoryInfo(@"c:\temp-keys\"));

Azure and Redis

public void ConfigureServices(IServiceCollection services)
{
 services.AddDataProtection()
 .PersistKeysToAzureBlobStorage(new Uri("<blob URI including SAS token>"));

 services.AddMvc();
}

 By default the data protection system employs a heuristic to determine where cryptographic key material should
be persisted. The developer can override the heuristic and manually specify the location.

If you specify an explicit key persistence location, the data protection system will deregister the default key encryption at
rest mechanism that the heuristic provided, so keys will no longer be encrypted at rest. It's recommended that you
additionally specify an explicit key encryption mechanism for production applications.

The data protection system ships with several in-box key storage providers.

We anticipate that many apps will use a file system-based key repository. To configure this, call the
PersistKeysToFileSystem configuration routine as shown below. Provide a DirectoryInfo pointing to the
repository where keys should be stored.

The DirectoryInfo can point to a directory on the local machine, or it can point to a folder on a network share. If
pointing to a directory on the local machine (and the scenario is that only applications on the local machine will
need to use this repository), consider using Windows DPAPI to encrypt the keys at rest. Otherwise consider using
an X.509 certificate to encrypt keys at rest.

The Microsoft.AspNetCore.DataProtection.AzureStorage and Microsoft.AspNetCore.DataProtection.Redis packages
allow storing your data protection keys in Azure Storage or a Redis cache. Keys can be shared across several
instances of a web app. Your ASP.NET Core app can share authentication cookies or CSRF protection across
multiple servers. To configure on Azure, call one of the PersistKeysToAzureBlobStorage overloads as shown
below.

See also the Azure test code.

To configure on Redis, call one of the PersistKeysToRedis overloads as shown below.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/key-storage-providers.md
https://github.com/aspnet/DataProtection/blob/rel/1.1.0/src/Microsoft.AspNetCore.DataProtection/DataProtectionBuilderExtensions.cs
https://github.com/aspnet/DataProtection/blob/rel/1.1.0/src/Microsoft.AspNetCore.DataProtection.AzureStorage/AzureDataProtectionBuilderExtensions.cs
https://github.com/aspnet/DataProtection/blob/rel/1.1.0/samples/AzureBlob/Program.cs
https://github.com/aspnet/DataProtection/blob/rel/1.1.0/src/Microsoft.AspNetCore.DataProtection.Redis/RedisDataProtectionBuilderExtensions.cs

public void ConfigureServices(IServiceCollection services)
{
 // Connect to Redis database.
 var redis = ConnectionMultiplexer.Connect("<URI>");
 services.AddDataProtection()
 .PersistKeysToRedis(redis, "DataProtection-Keys");

 services.AddMvc();
}

Registry

 sc.AddDataProtection()
 // persist keys to a specific location in the system registry
 .PersistKeysToRegistry(Registry.CurrentUser.OpenSubKey(@"SOFTWARE\Sample\keys"));

Custom key repository

See the following for more information:

StackExchange.Redis ConnectionMultiplexer
Azure Redis Cache
Redis test code.

Sometimes the app might not have write access to the file system. Consider a scenario where an app is running as
a virtual service account (such as w3wp.exe's app pool identity). In these cases, the administrator may have
provisioned a registry key that's appropriate ACLed for the service account identity. Call the
PersistKeysToRegistry configuration routine as shown below. Provide a RegistryKey pointing to the location
where cryptographic keys/values should be stored.

If you use the system registry as a persistence mechanism, consider using Windows DPAPI to encrypt the keys at
rest.

If the in-box mechanisms are not appropriate, the developer can specify their own key persistence mechanism by
providing a custom IXmlRepository .

https://github.com/StackExchange/StackExchange.Redis/blob/master/docs/Basics.md
https://docs.microsoft.com/azure/redis-cache/cache-dotnet-how-to-use-azure-redis-cache#connect-to-the-cache
https://github.com/aspnet/DataProtection/blob/rel/1.1.0/samples/Redis/Program.cs
https://github.com/aspnet/DataProtection/blob/rel/1.1.0/src/Microsoft.AspNetCore.DataProtection/DataProtectionBuilderExtensions.cs

Key encryption at rest in ASP.NET Core
5/4/2018 • 3 minutes to read • Edit Online

NOTENOTE

Windows DPAPI

sc.AddDataProtection()
 // only the local user account can decrypt the keys
 .ProtectKeysWithDpapi();

sc.AddDataProtection()
 // all user accounts on the machine can decrypt the keys
 .ProtectKeysWithDpapi(protectToLocalMachine: true);

X.509 certificate

sc.AddDataProtection()
 // searches the cert store for the cert with this thumbprint
 .ProtectKeysWithCertificate("3BCE558E2AD3E0E34A7743EAB5AEA2A9BD2575A0");

 By default, the data protection system employs a heuristic to determine how cryptographic key material should be
encrypted at rest. The developer can override the heuristic and manually specify how keys should be encrypted at
rest.

If you specify an explicit key encryption at rest mechanism, the data protection system will deregister the default key
storage mechanism that the heuristic provided. You must specify an explicit key storage mechanism, otherwise the data
protection system will fail to start.

 The data protection system ships with three in-box key encryption mechanisms.

This mechanism is available only on Windows.

When Windows DPAPI is used, key material will be encrypted via CryptProtectData before being persisted to
storage. DPAPI is an appropriate encryption mechanism for data that will never be read outside of the current
machine (though it's possible to back these keys up to Active Directory; see DPAPI and Roaming Profiles). For
example to configure DPAPI key-at-rest encryption.

If ProtectKeysWithDpapi is called with no parameters, only the current Windows user account can decipher the
persisted key material. You can optionally specify that any user account on the machine (not just the current user
account) should be able to decipher the key material, as shown in the below example.

This mechanism isn't available on .NET Core 1.0 or 1.1 .

If your application is spread across multiple machines, it may be convenient to distribute a shared X.509
certificate across the machines and to configure applications to use this certificate for encryption of keys at rest.
See below for an example.

Due to .NET Framework limitations only certificates with CAPI private keys are supported. See Certificate-based

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/key-encryption-at-rest.md
https://msdn.microsoft.com/library/windows/desktop/aa380261(v=vs.85).aspx
https://support.microsoft.com/kb/309408/#6

Windows DPAPI-NG

sc.AddDataProtection()
 // uses the descriptor rule "SID=S-1-5-21-..."
 .ProtectKeysWithDpapiNG("SID=S-1-5-21-...",
 flags: DpapiNGProtectionDescriptorFlags.None);

sc.AddDataProtection()
 // uses the descriptor rule "SID={current account SID}"
 .ProtectKeysWithDpapiNG();

Certificate-based encryption with Windows DPAPI-NG

sc.AddDataProtection()
 // searches the cert store for the cert with this thumbprint
 .ProtectKeysWithDpapiNG("CERTIFICATE=HashId:3BCE558E2AD3E0E34A7743EAB5AEA2A9BD2575A0",
 flags: DpapiNGProtectionDescriptorFlags.None);

Custom key encryption

encryption with Windows DPAPI-NG below for possible workarounds to these limitations.

This mechanism is available only on Windows 8 / Windows Server 2012 and later.

Beginning with Windows 8, the operating system supports DPAPI-NG (also called CNG DPAPI). Microsoft lays
out its usage scenario as follows.

Cloud computing, however, often requires that content encrypted on one computer be decrypted on another.
Therefore, beginning with Windows 8, Microsoft extended the idea of using a relatively straightforward API to
encompass cloud scenarios. This new API, called DPAPI-NG, enables you to securely share secrets (keys,
passwords, key material) and messages by protecting them to a set of principals that can be used to unprotect
them on different computers after proper authentication and authorization.

From About CNG DPAPI

The principal is encoded as a protection descriptor rule. Consider the below example, which encrypts key material
such that only the domain-joined user with the specified SID can decrypt the key material.

There's also a parameterless overload of ProtectKeysWithDpapiNG . This is a convenience method for specifying the
rule "SID=mine", where mine is the SID of the current Windows user account.

In this scenario, the AD domain controller is responsible for distributing the encryption keys used by the DPAPI-
NG operations. The target user will be able to decipher the encrypted payload from any domain-joined machine
(provided that the process is running under their identity).

If you're running on Windows 8.1 / Windows Server 2012 R2 or later, you can use Windows DPAPI-NG to
perform certificate-based encryption, even if the application is running on .NET Core. To take advantage of this,
use the rule descriptor string "CERTIFICATE=HashId:thumbprint", where thumbprint is the hex-encoded SHA1
thumbprint of the certificate to use. See below for an example.

Any application which is pointed at this repository must be running on Windows 8.1 / Windows Server 2012 R2
or later to be able to decipher this key.

If the in-box mechanisms are not appropriate, the developer can specify their own key encryption mechanism by
providing a custom IXmlEncryptor .

https://msdn.microsoft.com/library/windows/desktop/hh706794(v=vs.85).aspx

Key immutability and key settings in ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

TIPTIP

Once an object is persisted to the backing store, its representation is forever fixed. New data can be added to the
backing store, but existing data can never be mutated. The primary purpose of this behavior is to prevent data
corruption.

One consequence of this behavior is that once a key is written to the backing store, it's immutable. Its creation,
activation, and expiration dates can never be changed, though it can revoked by using IKeyManager . Additionally,
its underlying algorithmic information, master keying material, and encryption at rest properties are also
immutable.

If the developer changes any setting that affects key persistence, those changes won't go into effect until the next
time a key is generated, either via an explicit call to IKeyManager.CreateNewKey or via the data protection system's
own automatic key generation behavior. The settings that affect key persistence are as follows:

The default key lifetime

The key encryption at rest mechanism

The algorithmic information contained within the key

If you need these settings to kick in earlier than the next automatic key rolling time, consider making an explicit
call to IKeyManager.CreateNewKey to force the creation of a new key. Remember to provide an explicit activation
date ({ now + 2 days } is a good rule of thumb to allow time for the change to propagate) and expiration date in
the call.

All applications touching the repository should specify the same settings with the IDataProtectionBuilder extension
methods. Otherwise, the properties of the persisted key will be dependent on the particular application that invoked the key
generation routines.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/key-immutability.md

Key storage format in ASP.NET Core
5/14/2018 • 2 minutes to read • Edit Online

The <key> element

<?xml version="1.0" encoding="utf-8"?>
<key id="80732141-ec8f-4b80-af9c-c4d2d1ff8901" version="1">
 <creationDate>2015-03-19T23:32:02.3949887Z</creationDate>
 <activationDate>2015-03-19T23:32:02.3839429Z</activationDate>
 <expirationDate>2015-06-17T23:32:02.3839429Z</expirationDate>
 <descriptor deserializerType="{deserializerType}">
 <descriptor>
 <encryption algorithm="AES_256_CBC" />
 <validation algorithm="HMACSHA256" />
 <enc:encryptedSecret decryptorType="{decryptorType}" xmlns:enc="...">
 <encryptedKey>
 <!-- This key is encrypted with Windows DPAPI. -->
 <value>AQAAANCM...8/zeP8lcwAg==</value>
 </encryptedKey>
 </enc:encryptedSecret>
 </descriptor>
 </descriptor>
</key>

The <descriptor> element

 Objects are stored at rest in XML representation. The default directory for key storage is
%LOCAL APPDATA%\ASP.NET\DataProtection-Keys.

Keys exist as top-level objects in the key repository. By convention keys have the filename key-{guid}.xml, where
{guid} is the id of the key. Each such file contains a single key. The format of the file is as follows.

The <key> element contains the following attributes and child elements:

The key id. This value is treated as authoritative; the filename is simply a nicety for human readability.

The version of the <key> element, currently fixed at 1.

The key's creation, activation, and expiration dates.

A <descriptor> element, which contains information on the authenticated encryption implementation
contained within this key.

In the above example, the key's id is {80732141-ec8f-4b80-af9c-c4d2d1ff8901}, it was created and activated on
March 19, 2015, and it has a lifetime of 90 days. (Occasionally the activation date might be slightly before the
creation date as in this example. This is due to a nit in how the APIs work and is harmless in practice.)

The outer <descriptor> element contains an attribute deserializerType, which is the assembly-qualified name of a
type which implements IAuthenticatedEncryptorDescriptorDeserializer. This type is responsible for reading the
inner <descriptor> element and for parsing the information contained within.

The particular format of the <descriptor> element depends on the authenticated encryptor implementation
encapsulated by the key, and each deserializer type expects a slightly different format for this. In general, though,
this element will contain algorithmic information (names, types, OIDs, or similar) and secret key material. In the
above example, the descriptor specifies that this key wraps AES-256-CBC encryption + HMACSHA256 validation.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/key-storage-format.md

The <encryptedSecret> element

The <revocation> element

<?xml version="1.0" encoding="utf-8"?>
<revocation version="1">
 <revocationDate>2015-03-20T22:45:30.2616742Z</revocationDate>
 <key id="eb4fc299-8808-409d-8a34-23fc83d026c9" />
 <reason>human-readable reason</reason>
</revocation>

<?xml version="1.0" encoding="utf-8"?>
<revocation version="1">
 <revocationDate>2015-03-20T15:45:45.7366491-07:00</revocationDate>
 <!-- All keys created before the revocation date are revoked. -->
 <key id="*" />
 <reason>human-readable reason</reason>
</revocation>

An element which contains the encrypted form of the secret key material may be present if encryption of secrets
at rest is enabled. The attribute decryptorType will be the assembly-qualified name of a type which implements
IXmlDecryptor. This type is responsible for reading the inner element and decrypting it to recover the original
plaintext.

As with <descriptor>, the particular format of the element depends on the at-rest encryption mechanism in use. In
the above example, the master key is encrypted using Windows DPAPI per the comment.

Revocations exist as top-level objects in the key repository. By convention revocations have the filename
revocation-{timestamp}.xml (for revoking all keys before a specific date) or revocation-{guid}.xml (for
revoking a specific key). Each file contains a single <revocation> element.

For revocations of individual keys, the file contents will be as below.

In this case, only the specified key is revoked. If the key id is "*", however, as in the below example, all keys whose
creation date is prior to the specified revocation date are revoked.

The <reason> element is never read by the system. It's simply a convenient place to store a human-readable
reason for revocation.

Ephemeral data protection providers in ASP.NET
Core
3/21/2018 • 2 minutes to read • Edit Online

 There are scenarios where an application needs a throwaway IDataProtectionProvider . For example, the
developer might just be experimenting in a one-off console application, or the application itself is transient (it's
scripted or a unit test project). To support these scenarios the Microsoft.AspNetCore.DataProtection package
includes a type EphemeralDataProtectionProvider . This type provides a basic implementation of
IDataProtectionProvider whose key repository is held solely in-memory and isn't written out to any backing store.

Each instance of EphemeralDataProtectionProvider uses its own unique master key. Therefore, if an IDataProtector

rooted at an EphemeralDataProtectionProvider generates a protected payload, that payload can only be
unprotected by an equivalent IDataProtector (given the same purpose chain) rooted at the same
EphemeralDataProtectionProvider instance.

The following sample demonstrates instantiating an EphemeralDataProtectionProvider and using it to protect and
unprotect data.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/implementation/key-storage-ephemeral.md
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection/

using System;
using Microsoft.AspNetCore.DataProtection;

public class Program
{
 public static void Main(string[] args)
 {
 const string purpose = "Ephemeral.App.v1";

 // create an ephemeral provider and demonstrate that it can round-trip a payload
 var provider = new EphemeralDataProtectionProvider();
 var protector = provider.CreateProtector(purpose);
 Console.Write("Enter input: ");
 string input = Console.ReadLine();

 // protect the payload
 string protectedPayload = protector.Protect(input);
 Console.WriteLine($"Protect returned: {protectedPayload}");

 // unprotect the payload
 string unprotectedPayload = protector.Unprotect(protectedPayload);
 Console.WriteLine($"Unprotect returned: {unprotectedPayload}");

 // if I create a new ephemeral provider, it won't be able to unprotect existing
 // payloads, even if I specify the same purpose
 provider = new EphemeralDataProtectionProvider();
 protector = provider.CreateProtector(purpose);
 unprotectedPayload = protector.Unprotect(protectedPayload); // THROWS
 }
}

/*
* SAMPLE OUTPUT
*
* Enter input: Hello!
* Protect returned: CfDJ8AAAAAAAAAAAAAAAAAAAAA...uGoxWLjGKtm1SkNACQ
* Unprotect returned: Hello!
* << throws CryptographicException >>
*/

Compatibility in ASP.NET Core
3/19/2018 • 2 minutes to read • Edit Online

Replacing ASP.NET <machineKey> in ASP.NET Core

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/compatibility/index.md

Replace the ASP.NET machineKey in ASP.NET Core
3/21/2018 • 2 minutes to read • Edit Online

Package installation

NOTENOTE

<machineKey compatibilityMode="Framework45" dataProtectorType="..." />

TIPTIP

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="CfDJ8AWPr2EQPTBGs3L2GCZOpk..." />

Package configuration

 The implementation of the <machineKey> element in ASP.NET is replaceable. This allows most calls to ASP.NET
cryptographic routines to be routed through a replacement data protection mechanism, including the new data
protection system.

The new data protection system can only be installed into an existing ASP.NET application targeting .NET 4.5.1 or higher.
Installation will fail if the application targets .NET 4.5 or lower.

To install the new data protection system into an existing ASP.NET 4.5.1+ project, install the package
Microsoft.AspNetCore.DataProtection.SystemWeb. This will instantiate the data protection system using the
default configuration settings.

When you install the package, it inserts a line into Web.config that tells ASP.NET to use it for most cryptographic
operations, including forms authentication, view state, and calls to MachineKey.Protect. The line that's inserted
reads as follows.

You can tell if the new data protection system is active by inspecting fields like __VIEWSTATE , which should begin with
"CfDJ8" as in the example below. "CfDJ8" is the base64 representation of the magic "09 F0 C9 F0" header that identifies a
payload protected by the data protection system.

The data protection system is instantiated with a default zero-setup configuration. However, since by default keys
are persisted to the local file system, this won't work for applications which are deployed in a farm. To resolve this,
you can provide configuration by creating a type which subclasses DataProtectionStartup and overrides its
ConfigureServices method.

Below is an example of a custom data protection startup type which configured both where keys are persisted and
how they're encrypted at rest. It also overrides the default app isolation policy by providing its own application
name.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/data-protection/compatibility/replacing-machinekey.md
https://blogs.msdn.microsoft.com/webdev/2012/10/23/cryptographic-improvements-in-asp-net-4-5-pt-2/
https://blogs.msdn.microsoft.com/webdev/2012/10/23/cryptographic-improvements-in-asp-net-4-5-pt-2/

using System;
using System.IO;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.AspNetCore.DataProtection.SystemWeb;
using Microsoft.Extensions.DependencyInjection;

namespace DataProtectionDemo
{
 public class MyDataProtectionStartup : DataProtectionStartup
 {
 public override void ConfigureServices(IServiceCollection services)
 {
 services.AddDataProtection()
 .SetApplicationName("my-app")
 .PersistKeysToFileSystem(new DirectoryInfo(@"\\server\share\myapp-keys\"))
 .ProtectKeysWithCertificate("thumbprint");
 }
 }
}

TIPTIP

<appSettings>
 <!--
 If you want to customize the behavior of the ASP.NET Core Data Protection stack, set the
 "aspnet:dataProtectionStartupType" switch below to be the fully-qualified name of a
 type which subclasses Microsoft.AspNetCore.DataProtection.SystemWeb.DataProtectionStartup.
 -->
 <add key="aspnet:dataProtectionStartupType" value="" />
</appSettings>

<add key="aspnet:dataProtectionStartupType"
 value="DataProtectionDemo.MyDataProtectionStartup, DataProtectionDemo" />

You can also use <machineKey applicationName="my-app" ... /> in place of an explicit call to SetApplicationName. This is
a convenience mechanism to avoid forcing the developer to create a DataProtectionStartup-derived type if all they wanted
to configure was setting the application name.

To enable this custom configuration, go back to Web.config and look for the <appSettings> element that the
package install added to the config file. It will look like the following markup:

Fill in the blank value with the assembly-qualified name of the DataProtectionStartup-derived type you just
created. If the name of the application is DataProtectionDemo, this would look like the below.

The newly-configured data protection system is now ready for use inside the application.

Enforce HTTPS in ASP.NET Core
6/18/2018 • 5 minutes to read • Edit Online

WARNINGWARNING

Require HTTPS

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseMvc();
}

By Rick Anderson

This document shows how to:

Require HTTPS for all requests.
Redirect all HTTP requests to HTTPS.

Do not use RequireHttpsAttribute on Web APIs that receive sensitive information. RequireHttpsAttribute uses HTTP
status codes to redirect browsers from HTTP to HTTPS. API clients may not understand or obey redirects from HTTP to
HTTPS. Such clients may send information over HTTP. Web APIs should either:

Not listen on HTTP.
Close the connection with status code 400 (Bad Request) and not serve the request.

We recommend all ASP.NET Core web apps call HTTPS Redirection Middleware (UseHttpsRedirection) to
redirect all HTTP requests to HTTPS.

The following code calls UseHttpsRedirection in the Startup class:

The following code calls AddHttpsRedirection to configure middleware options:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/enforcing-ssl.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.requirehttpsattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.httpsredirectionservicesextensions.addhttpsredirection

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddHsts(options =>
 {
 options.Preload = true;
 options.IncludeSubDomains = true;
 options.MaxAge = TimeSpan.FromDays(60);
 options.ExcludedHosts.Add("example.com");
 options.ExcludedHosts.Add("www.example.com");
 });

 services.AddHttpsRedirection(options =>
 {
 options.RedirectStatusCode = StatusCodes.Status307TemporaryRedirect;
 options.HttpsPort = 5001;
 });
}

NOTENOTE

NOTENOTE

The preceding highlighted code:

Sets HttpsRedirectionOptions.RedirectStatusCode to Status307TemporaryRedirect , which is the default value.
Production apps should call UseHsts.
Sets the HTTPS port to 5001. The default value is 443.

The following mechanisms set the port automatically:

The middleware can discover the ports via IServerAddressesFeature when the following conditions apply:

Kestrel or HTTP.sys is used directly with HTTPS endpoints (also applies to running the app with Visual Studio
Code's debugger).
Only one HTTPS port is used by the app.

Visual Studio is used:

IIS Express has HTTPS enabled.
launchSettings.json sets the sslPort for IIS Express.

When an app is run behind a reverse proxy (for example, IIS, IIS Express), IServerAddressesFeature isn't available. The
port must be manually configured. When the port isn't set, requests aren't redirected.

The port can be configured by setting the:

ASPNETCORE_HTTPS_PORT environment variable.
http_port host configuration key (for example, via hostsettings.json or a command line argument).

HttpsRedirectionOptions.HttpsPort. See the preceding example that shows how to set the port to 5001.

The port can be configured indirectly by setting the URL with the ASPNETCORE_URLS environment variable. The
environment variable configures the server, and then the middleware indirectly discovers the HTTPS port via
IServerAddressesFeature .

If no port is set:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpspolicy.httpsredirectionoptions.redirectstatuscode
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.server.features.iserveraddressesfeature
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.httpspolicy.httpsredirectionoptions.httpsport

NOTENOTE

// Requires using Microsoft.AspNetCore.Mvc;
public void ConfigureServices(IServiceCollection services)
{
 services.Configure<MvcOptions>(options =>
 {
 options.Filters.Add(new RequireHttpsAttribute());
 });

// Requires using Microsoft.AspNetCore.Rewrite;
public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 var options = new RewriteOptions()
 .AddRedirectToHttps();

 app.UseRewriter(options);

HTTP Strict Transport Security Protocol (HSTS)

Requests aren't redirected.
The middleware logs a warning.

An alternative to using HTTPS Redirection Middleware (UseHttpsRedirection) is to use URL Rewriting Middleware (
AddRedirectToHttps). AddRedirectToHttps can also set the status code and port when the redirect is executed. For

more information, see URL Rewriting Middleware.

When redirecting to HTTPS without the requirement for additional redirect rules, we recommend using HTTPS Redirection
Middleware (UseHttpsRedirection) described in this topic.

The RequireHttpsAttribute is used to require HTTPS. [RequireHttpsAttribute] can decorate controllers or
methods, or can be applied globally. To apply the attribute globally, add the following code to ConfigureServices

in Startup :

The preceding highlighted code requires all requests use HTTPS ; therefore, HTTP requests are ignored. The
following highlighted code redirects all HTTP requests to HTTPS:

For more information, see URL Rewriting Middleware. The middleware also permits the app to set the status
code or the status code and the port when the redirect is executed.

Requiring HTTPS globally (options.Filters.Add(new RequireHttpsAttribute());) is a security best practice.
Applying the [RequireHttps] attribute to all controllers/Razor Pages isn't considered as secure as requiring
HTTPS globally. You can't guarantee the [RequireHttps] attribute is applied when new controllers and Razor
Pages are added.

Per OWASP, HTTP Strict Transport Security (HSTS) is an opt-in security enhancement that is specified by a web
application through the use of a special response header. Once a supported browser receives this header that
browser will prevent any communications from being sent over HTTP to the specified domain and will instead
send all communications over HTTPS. It also prevents HTTPS click through prompts on browsers.

ASP.NET Core 2.1 or later implements HSTS with the UseHsts extension method. The following code calls
UseHsts when the app isn't in development mode:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.requirehttpsattribute
https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseMvc();
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddHsts(options =>
 {
 options.Preload = true;
 options.IncludeSubDomains = true;
 options.MaxAge = TimeSpan.FromDays(60);
 options.ExcludedHosts.Add("example.com");
 options.ExcludedHosts.Add("www.example.com");
 });

 services.AddHttpsRedirection(options =>
 {
 options.RedirectStatusCode = StatusCodes.Status307TemporaryRedirect;
 options.HttpsPort = 5001;
 });
}

UseHsts isn't recommended in development because the HSTS header is highly cacheable by browsers. By
default, UseHsts excludes the local loopback address.

The following code:

Sets the preload parameter of the Strict-Transport-Security header. Preload is not part of the RFC HSTS
specification, but is supported by web browsers to preload HSTS sites on fresh install. See
https://hstspreload.org/ for more information.
Enables includeSubDomain, which applies the HSTS policy to Host subdomains.
Explicitly sets the max-age parameter of the Strict-Transport-Security header to to 60 days. If not set, defaults
to 30 days. See the max-age directive for more information.
Adds example.com to the list of hosts to exclude.

UseHsts excludes the following loopback hosts:

localhost : The IPv4 loopback address.
127.0.0.1 : The IPv4 loopback address.
[::1] : The IPv6 loopback address.

The preceding example shows how to add additional hosts.

https://tools.ietf.org/html/rfc6797
https://hstspreload.org/
https://tools.ietf.org/html/rfc6797#section-6.1.2
https://tools.ietf.org/html/rfc6797#section-6.1.1

Opt-out of HTTPS on project creation

How to setup a developer certificate for Docker

The ASP.NET Core 2.1 or later web application templates (from Visual Studio or the dotnet command line)
enable HTTPS redirection and HSTS. For deployments that don't require HTTPS, you can opt-out of HTTPS. For
example, some backend services where HTTPS is being handled externally at the edge, using HTTPS at each
node is not needed.

To opt-out of HTTPS:

Visual Studio
.NET Core CLI

Uncheck the Configure for HTTPS checkbox.

See this GitHub issue.

https://github.com/aspnet/Docs/issues/6199

EU General Data Protection Regulation (GDPR)
support in ASP.NET Core
6/18/2018 • 5 minutes to read • Edit Online

ASP.NET Core GDPR support in template generated code

CookiePolicyOptions and UseCookiePolicyCookiePolicyOptions and UseCookiePolicy

By Rick Anderson

ASP.NET Core provides APIs and templates to help meet some of the EU General Data Protection Regulation
(GDPR) requirements:

The project templates include extension points and stubbed markup you can replace with your privacy and
cookie use policy.
A cookie consent feature allows you to ask for (and track) consent from your users for storing personal
information. If a user has not consented to data collection and the app is set with CheckConsentNeeded to
true , non-essential cookies will not be sent to the browser.

Cookies can be marked as essential. Essential cookies are sent to the browser even when the user has not
consented and tracking is disabled.
TempData and Session cookies are not functional when tracking is disabled.
The Identity manage page provides a link to download and delete user data.

The sample app lets you test most of the GDPR extension points and APIs added to the ASP.NET Core 2.1
templates. See the ReadMe file for testing instructions.

View or download sample code (how to download)

Razor Pages and MVC projects created with the project templates include the following GDPR support:

CookiePolicyOptions and UseCookiePolicy are set in Startup .
The _CookieConsentPartial.cshtml partial view.
The Pages/Privacy.cshtml or Home/Privacy.cshtml view provides a page to detail your site's privacy policy.
The _CookieConsentPartial.cshtml file generates a link to the privacy page.
For applications created with individual user accounts, the manage page provides links to download and
delete personal user data.

CookiePolicyOptions are initialized in the Startup class ConfigureServices method:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/gdpr.md
https://twitter.com/RickAndMSFT
https://www.eugdpr.org/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.checkconsentneeded
https://github.com/aspnet/Docs/tree/live/aspnetcore/security/gdpr/sample
https://github.com/aspnet/Docs/tree/live/aspnetcore/security/gdpr/sample
https://github.com/aspnet/Docs/tree/live/aspnetcore/security/gdpr/sample
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyappbuilderextensions.usecookiepolicy
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this method to add services
 // to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies
 // is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 services.AddDefaultIdentity<IdentityUser>()
 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 // This method gets called by the runtime. Use this method to configure the
 // HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseAuthentication();

 app.UseMvc();
 }
}

UseCookiePolicy is called in the Startup class Configure method:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyappbuilderextensions.usecookiepolicy

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this method to add services
 // to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies
 // is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 services.AddDefaultIdentity<IdentityUser>()
 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 // This method gets called by the runtime. Use this method to configure the
 // HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseAuthentication();

 app.UseMvc();
 }
}

_CookieConsentPartial.cshtml partial view_CookieConsentPartial.cshtml partial view
The _CookieConsentPartial.cshtml partial view:

@using Microsoft.AspNetCore.Http.Features

@{
 var consentFeature = Context.Features.Get<ITrackingConsentFeature>();
 var showBanner = !consentFeature?.CanTrack ?? false;
 var cookieString = consentFeature?.CreateConsentCookie();
}

@if (showBanner)
{
 <nav id="cookieConsent" class="navbar navbar-default navbar-fixed-top" role="alert">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target="#cookieConsent .navbar-collapse">
 Toggle cookie consent banner

 </button>

 </div>
 <div class="collapse navbar-collapse">
 <p class="navbar-text">
 Use this space to summarize your privacy and cookie use policy.
 </p>
 <div class="navbar-right">
 <a asp-page="/Privacy" class="btn btn-info navbar-btn">Learn More
 <button type="button" class="btn btn-default navbar-btn" data-cookie-
string="@cookieString">Accept</button>
 </div>
 </div>
 </div>
 </nav>
 <script>
 (function () {
 document.querySelector("#cookieConsent button[data-cookie-string]").addEventListener("click",
function (el) {
 document.cookie = el.target.dataset.cookieString;
 document.querySelector("#cookieConsent").classList.add("hidden");
 }, false);
 })();
 </script>
}

Essential cookies

This partial:

Gets the state of tracking for the user. If the application is configured to require consent the user must
consent before cookies can be tracked. If consent is required, the cookie consent chrome is fixed on top of the
navigation bar created in the Pages/Shared/_Layout.cshtml file.
Provides an HTML <p> element to summarize your privacy and cookie use policy.
Provides a link to Pages/Privacy.cshtml where you can detail your site's privacy policy.

If consent has not been given, only cookies marked essential are sent to the browser. The following code makes a
cookie essential:

public IActionResult OnPostCreateEssentialAsync()
{
 HttpContext.Response.Cookies.Append(Constants.EssentialSec,
 DateTime.Now.Second.ToString(),
 new CookieOptions() { IsEssential = true });

 ResponseCookies = Response.Headers[HeaderNames.SetCookie].ToString();

 return RedirectToPage("./Index");
}

Tempdata provider and session state cookies are not essential

// The Tempdata provider cookie is not essential. Make it essential
// so Tempdata is functional when tracking is disabled.
services.Configure<CookieTempDataProviderOptions>(options => {
 options.Cookie.IsEssential = true;
});

Personal data

The Tempdata provider cookie is not essential. If tracking is disabled, the Tempdata provider is not functional. To
enable the Tempdata provider when tracking is disabled, mark the TempData cookie as essential in
ConfigureServices :

Session state cookies are not essential. Session state is not functional when tracking is disabled.

ASP.NET Core applications created with individual user accounts include code to download and delete personal
data.

Select the user name and then select Personal data:

Encryption at rest

Notes:

To generate the Account/Manage code, see Scaffold Identity.
Delete and download only impact the default identity data. Apps the create custom user data must be
extended to delete/download the custom user data. GitHub issue How to add/delete custom user data to
Identity tracks a proposed article on creating custom/deleting/downloading custom user data. If you'd like to
see that topic prioritized, leave a thumbs up reaction in the issue.
Saved tokens for the user that are stored in the Identity database table AspNetUserTokens are deleted when
the user is deleted via the cascading delete behavior due to the foreign key.

Some databases and storage mechanisms allow for encryption at rest. Encryption at rest:

Encrypts stored data automatically.
Encrypts without configuration, programming, or other work for the software that accesses the data.
Is the easiest and safest option.
Lets the database manage keys and encryption.

For example:

Microsoft SQL and Azure SQL provide Transparent Data Encryption (TDE).
SQL Azure encrypts the database by default

https://github.com/aspnet/Docs/issues/6226
https://github.com/aspnet/Identity/blob/release/2.1/src/EF/IdentityUserContext.cs#L152
https://docs.microsoft.com/sql/relational-databases/security/encryption/transparent-data-encryption
https://azure.microsoft.com/updates/newly-created-azure-sql-databases-encrypted-by-default/

Additional Resources

Azure Blobs, Files, Table, and Queue Storage are encrypted by default.

For databases that don't provide built-in encryption at rest you may be able to use disk encryption to provide the
same protection. For example:

BitLocker for Windows Server
Linux:

eCryptfs
EncFS.

Microsoft.com/GDPR

https://azure.microsoft.com/blog/announcing-default-encryption-for-azure-blobs-files-table-and-queue-storage/
https://docs.microsoft.com/windows/security/information-protection/bitlocker/bitlocker-how-to-deploy-on-windows-server
https://launchpad.net/ecryptfs
https://github.com/vgough/encfs
https://www.microsoft.com/en-us/trustcenter/Privacy/GDPR

Safe storage of app secrets in development in
ASP.NET Core
6/6/2018 • 8 minutes to read • Edit Online

Environment variables

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: false,
 reloadOnChange: true)
 .AddEnvironmentVariables();

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets<Startup>();
 }

 Configuration = builder.Build();
}

WARNINGWARNING

Secret Manager

By Rick Anderson, Daniel Roth, and Scott Addie

View or download sample code (how to download)

This document explains techniques for storing and retrieving sensitive data during the development of an
ASP.NET Core app. You should never store passwords or other sensitive data in source code, and you
shouldn't use production secrets in development or test mode. You can store and protect Azure test and
production secrets with the Azure Key Vault configuration provider.

Environment variables are used to avoid storage of app secrets in code or in local configuration files.
Environment variables override configuration values for all previously specified configuration sources.

Configure the reading of environment variable values by calling AddEnvironmentVariables in the Startup

constructor :

Consider an ASP.NET Core web app in which Individual User Accounts security is enabled. A default
database connection string is included in the project's appsettings.json file with the key DefaultConnection .
The default connection string is for LocalDB, which runs in user mode and doesn't require a password. During
app deployment, the DefaultConnection key value can be overridden with an environment variable's value.
The environment variable may store the complete connection string with sensitive credentials.

Environment variables are generally stored in plain, unencrypted text. If the machine or process is compromised,
environment variables can be accessed by untrusted parties. Additional measures to prevent disclosure of user secrets
may be required.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/app-secrets.md
https://twitter.com/RickAndMSFT
https://github.com/danroth27
https://github.com/scottaddie
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/app-secrets/samples
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.environmentvariablesextensions.addenvironmentvariables

WARNINGWARNING

How the Secret Manager tool works

Install the Secret Manager tool

TIPTIP

The tool 'Microsoft.Extensions.SecretManager.Tools' is now included in the .NET Core SDK. Information on
resolving this warning is available at (https://aka.ms/dotnetclitools-in-box).

The Secret Manager tool stores sensitive data during the development of an ASP.NET Core project. In this
context, a piece of sensitive data is an app secret. App secrets are stored in a separate location from the
project tree. The app secrets are associated with a specific project or shared across several projects. The app
secrets aren't checked into source control.

The Secret Manager tool doesn't encrypt the stored secrets and shouldn't be treated as a trusted store. It's for
development purposes only. The keys and values are stored in a JSON configuration file in the user profile directory.

The Secret Manager tool abstracts away the implementation details, such as where and how the values are
stored. You can use the tool without knowing these implementation details. The values are stored in a JSON
configuration file in a system-protected user profile folder on the local machine:

Windows
macOS
Linux

File system path:

%APPDATA%\Microsoft\UserSecrets\<user_secrets_id>\secrets.json

In the preceding file paths, replace <user_secrets_id> with the UserSecretsId value specified in the .csproj

file.

Don't write code that depends on the location or format of data saved with the Secret Manager tool. These
implementation details may change. For example, the secret values aren't encrypted, but could be in the
future.

The Secret Manager tool is bundled with the .NET Core CLI as of .NET Core SDK 2.1.300. For .NET Core SDK
versions before 2.1.300, tool installation is necessary.

Run dotnet --version from a command shell to see the installed .NET Core SDK version number.

A warning is displayed if the .NET Core SDK being used includes the tool:

Install the Microsoft.Extensions.SecretManager.Tools NuGet package in your ASP.NET Core project. For
example:

https://www.nuget.org/packages/Microsoft.Extensions.SecretManager.Tools/

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 <UserSecretsId>1242d6d6-9df3-4031-b031-d9b27d13c25a</UserSecretsId>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore"
 Version="1.1.6" />
 <PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets"
 Version="1.1.2" />
 <PackageReference Include="System.Data.SqlClient"
 Version="4.5.0" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.Tools"
 Version="1.0.1" />
 </ItemGroup>
</Project>

dotnet user-secrets -h

Usage: dotnet user-secrets [options] [command]

Options:
-?|-h|--help Show help information
--version Show version information
-v|--verbose Show verbose output
-p|--project <PROJECT> Path to project. Defaults to searching the current directory.
-c|--configuration <CONFIGURATION> The project configuration to use. Defaults to 'Debug'.
--id The user secret ID to use.

Commands:
clear Deletes all the application secrets
list Lists all the application secrets
remove Removes the specified user secret
set Sets the user secret to the specified value

Use "dotnet user-secrets [command] --help" for more information about a command.

NOTENOTE

Set a secret

Execute the following command in a command shell to validate the tool installation:

The Secret Manager tool displays sample usage, options, and command help:

You must be in the same directory as the .csproj file to run tools defined in the .csproj file's DotNetCliToolReference

elements.

The Secret Manager tool operates on project-specific configuration settings stored in your user profile. To use
user secrets, define a UserSecretsId element within a PropertyGroup of the .csproj file. The value of
UserSecretsId is arbitrary, but is unique to the project. Developers typically generate a GUID for the
UserSecretsId .

<PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 <UserSecretsId>1242d6d6-9df3-4031-b031-d9b27d13c25a</UserSecretsId>
</PropertyGroup>

<PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 <UserSecretsId>79a3edd0-2092-40a2-a04d-dcb46d5ca9ed</UserSecretsId>
</PropertyGroup>

TIPTIP

{
 "Movies": {
 "ServiceApKey": "12345",
 "ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

dotnet user-secrets set "Movies:ServiceApiKey" "12345"

dotnet user-secrets set "Movies:ServiceApiKey" "12345" --project "C:\apps\WebApp1\src\WebApp1"

Set multiple secrets

type .\input.json | dotnet user-secrets set

In Visual Studio, right-click the project in Solution Explorer, and select Manage User Secrets from the context menu.
This gesture adds a UserSecretsId element, populated with a GUID, to the .csproj file. Visual Studio opens a
secrets.json file in the text editor. Replace the contents of secrets.json with the key-value pairs to be stored. For
example:

Define an app secret consisting of a key and its value. The secret is associated with the project's
UserSecretsId value. For example, run the following command from the directory in which the .csproj file

exists:

In the preceding example, the colon denotes that Movies is an object literal with a ServiceApiKey property.

The Secret Manager tool can be used from other directories too. Use the --project option to supply the file
system path at which the .csproj file exists. For example:

A batch of secrets can be set by piping JSON to the set command. In the following example, the input.json

file's contents are piped to the set command.

Windows
macOS
Linux

Open a command shell, and execute the following command:

Access a secret

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: false,
 reloadOnChange: true)
 .AddEnvironmentVariables();

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets<Startup>();
 }

 Configuration = builder.Build();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: false,
 reloadOnChange: true)
 .AddEnvironmentVariables();

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets<Startup>();
 }

 Configuration = builder.Build();
}

The ASP.NET Core Configuration API provides access to Secret Manager secrets. Install the
Microsoft.Extensions.Configuration.UserSecrets NuGet package.

Add the user secrets configuration source with a call to AddUserSecrets in the Startup constructor :

The ASP.NET Core Configuration API provides access to Secret Manager secrets. If your project targets the
.NET Framework, install the Microsoft.Extensions.Configuration.UserSecrets NuGet package.

In ASP.NET Core 2.0 or later, the user secrets configuration source is automatically added in development
mode when the project calls CreateDefaultBuilder to initialize a new instance of the host with preconfigured
defaults. CreateDefaultBuilder calls AddUserSecrets when the EnvironmentName is Development:

When CreateDefaultBuilder isn't called during host construction, add the user secrets configuration source
with a call to AddUserSecrets in the Startup constructor :

User secrets can be retrieved via the Configuration API:

https://www.nuget.org/packages/Microsoft.Extensions.Configuration.UserSecrets
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.usersecretsconfigurationextensions.addusersecrets
https://www.nuget.org/packages/Microsoft.Extensions.Configuration.UserSecrets
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.usersecretsconfigurationextensions.addusersecrets
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.environmentname
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.environmentname.development
https://docs.microsoft.com/dotnet/api/microsoft.extensions.configuration.usersecretsconfigurationextensions.addusersecrets

public class Startup
{
 private string _moviesApiKey = null;

 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: false,
 reloadOnChange: true)
 .AddEnvironmentVariables();

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets<Startup>();
 }

 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 _moviesApiKey = Configuration["MoviesApiKey"];
 }

 public void Configure(IApplicationBuilder app)
 {
 var result = string.IsNullOrEmpty(_moviesApiKey) ? "Null" : "Not Null";
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync($"Secret is {result}");
 });
 }
}

public class Startup
{
 private string _moviesApiKey = null;

 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 _moviesApiKey = Configuration["MoviesApiKey"];
 }

 public void Configure(IApplicationBuilder app)
 {
 var result = string.IsNullOrEmpty(_moviesApiKey) ? "Null" : "Not Null";
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync($"Secret is {result}");
 });
 }
}

String replacement with secrets

{
 "ConnectionStrings": {
 "Movies": "Server=(localdb)\\mssqllocaldb;Database=Movie-1;User
Id=johndoe;Password=pass123;MultipleActiveResultSets=true"
 }
}

dotnet user-secrets set "DbPassword" "pass123"

{
 "ConnectionStrings": {
 "Movies": "Server=(localdb)\\mssqllocaldb;Database=Movie-1;User
Id=johndoe;MultipleActiveResultSets=true"
 }
}

Storing passwords in plain text is insecure. For example, a database connection string stored in
appsettings.json may include a password for the specified user :

A more secure approach is to store the password as a secret. For example:

Remove the Password key-value pair from the connection string in appsettings.json. For example:

The secret's value can be set on a SqlConnectionStringBuilder object's Password property to complete the
connection string:

https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder.password

public class Startup
{
 private string _connection = null;

 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: false,
 reloadOnChange: true)
 .AddEnvironmentVariables();

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets<Startup>();
 }

 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 var builder = new SqlConnectionStringBuilder(
 Configuration.GetConnectionString("Movies"));
 builder.Password = Configuration["DbPassword"];
 _connection = builder.ConnectionString;
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync($"DB Connection: {_connection}");
 });
 }
}

public class Startup
{
 private string _connection = null;

 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 var builder = new SqlConnectionStringBuilder(
 Configuration.GetConnectionString("Movies"));
 builder.Password = Configuration["DbPassword"];
 _connection = builder.ConnectionString;
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync($"DB Connection: {_connection}");
 });
 }
}

List the secrets

{
 "Movies": {
 "ServiceApKey": "12345",
 "ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

dotnet user-secrets list

Movies:ServiceApiKey = 12345
Movies:ConnectionString = Server=(localdb)\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true

Remove a single secret

Assume the app's secrets.json file contains the following two secrets:

Run the following command from the directory in which the .csproj file exists:

The following output appears:

In the preceding example, a colon in the key names denotes the object hierarchy within secrets.json.

Assume the app's secrets.json file contains the following two secrets:

{
 "Movies": {
 "ServiceApKey": "12345",
 "ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

dotnet user-secrets remove "Movies:ConnectionString"

{
 "Movies": {
 "ServiceApiKey": "12345"
 }
}

Movies:ServiceApiKey = 12345

Remove all secrets

{
 "Movies": {
 "ServiceApKey": "12345",
 "ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

dotnet user-secrets clear

{}

No secrets configured for this application.

Additional resources

Run the following command from the directory in which the .csproj file exists:

The app's secrets.json file was modified to remove the key-value pair associated with the
MoviesConnectionString key:

Running dotnet user-secrets list displays the following message:

Assume the app's secrets.json file contains the following two secrets:

Run the following command from the directory in which the .csproj file exists:

All user secrets for the app have been deleted from the secrets.json file:

Running dotnet user-secrets list displays the following message:

Configuration in ASP.NET Core
Azure Key Vault configuration provider in ASP.NET Core

Azure Key Vault configuration provider in ASP.NET
Core
6/4/2018 • 8 minutes to read • Edit Online

Package

Application configuration

APP SETTING DESCRIPTION EXAMPLE

Vault Azure Key Vault name contosovault

ClientId Azure Active Directory App Id 627e911e-43cc-61d4-992e-
12db9c81b413

ClientSecret Azure Active Directory App Key g58K3dtg59o1Pa+e59v2Tx829w6VxTB
2yv9sv/101di=

By Luke Latham and Andrew Stanton-Nurse

ASP.NET Core 2.x
ASP.NET Core 1.x

View or download sample code for 2.x:

Basic sample (how to download) - Reads secret values into an app.
Key name prefix sample (how to download) - Reads secret values using a key name prefix that represents the
version of an app, which allows you to load a different set of secret values for each app version.

This document explains how to use the Microsoft Azure Key Vault configuration provider to load application
configuration values from Azure Key Vault secrets. Azure Key Vault is a cloud-based service that helps you
safeguard cryptographic keys and secrets used by apps and services. Common scenarios include controlling
access to sensitive configuration data and meeting the requirement for FIPS 140-2 Level 2 validated Hardware
Security Modules (HSM's) when storing configuration data. This feature is available for applications that target
ASP.NET Core 1.1 or higher.

To use the provider, add a reference to the Microsoft.Extensions.Configuration.AzureKeyVault package.

You can explore the provider with the sample apps. Once you establish a key vault and create secrets in the vault,
the sample apps securely load the secret values into their configurations and display them in webpages.

The provider is added to the ConfigurationBuilder with the AddAzureKeyVault extension. In the sample apps, the
extension uses three configuration values loaded from the appsettings.json file.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/key-vault-configuration.md
https://github.com/guardrex
https://github.com/anurse
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/key-vault-configuration/samples/basic-sample/2.x
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/key-vault-configuration/samples/key-name-prefix-sample/2.x
https://azure.microsoft.com/services/key-vault/
https://www.nuget.org/packages/Microsoft.Extensions.Configuration.AzureKeyVault/
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/key-vault-configuration/samples

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((context, config) =>
 {
 var builtConfig = config.Build();

 var keyVaultConfigBuilder = new ConfigurationBuilder();

 keyVaultConfigBuilder.AddAzureKeyVault(
 $"https://{builtConfig["Vault"]}.vault.azure.net/",
 builtConfig["ClientId"],
 builtConfig["ClientSecret"]);

 var keyVaultConfig = keyVaultConfigBuilder.Build();

 config.AddConfiguration(keyVaultConfig);
 })
 .UseStartup<Startup>();

Creating key vault secrets and loading configuration values (basic-
sample)
1. Create a key vault and set up Azure Active Directory (Azure AD) for the application following the

guidance in Get started with Azure Key Vault.

Add secrets to the key vault using the AzureRM Key Vault PowerShell Module available from the
PowerShell Gallery, the Azure Key Vault REST API, or the Azure Portal. Secrets are created as either
Manual or Certificate secrets. Certificate secrets are certificates for use by apps and services but are
not supported by the configuration provider. You should use the Manual option to create name-value
pair secrets for use with the configuration provider.

Register the sample app with Azure Active Directory.
Authorize the app to access the key vault. When you use the Set-AzureRmKeyVaultAccessPolicy

PowerShell cmdlet to authorize the app to access the key vault, provide List and Get access to
secrets with -PermissionsToSecrets list,get .

Simple secrets are created as name-value pairs. Azure Key Vault secret names are limited to
alphanumeric characters and dashes.
Hierarchical values (configuration sections) use -- (two dashes) as a separator in the sample.
Colons, which are normally used to delimit a section from a subkey in ASP.NET Core
configuration, aren't allowed in secret names. Therefore, two dashes are used and swapped for a
colon when the secrets are loaded into the app's configuration.
Create two Manual secrets with the following name-value pairs. The first secret is a simple
name and value, and the second secret creates a secret value with a section and subkey in the
secret name:

SecretName : secret_value_1

Section--SecretName : secret_value_2

2. Update the app's appsettings.json file with the values of Vault , ClientId , and ClientSecret .

3. Run the sample app, which obtains its configuration values from IConfigurationRoot with the same name
as the secret name.

Non-hierarchical values: The value for SecretName is obtained with config["SecretName"] .
Hierarchical values (sections): Use : (colon) notation or the GetSection extension method. Use either
of these approaches to obtain the configuration value:

config["Section:SecretName"]

https://azure.microsoft.com/documentation/articles/key-vault-get-started/
https://docs.microsoft.com/powershell/module/azurerm.keyvault
https://www.powershellgallery.com/packages/AzureRM.KeyVault
https://docs.microsoft.com/rest/api/keyvault/
https://portal.azure.com/

Creating prefixed key vault secrets and loading configuration values
(key-name-prefix-sample)

WARNINGWARNING

config.GetSection("Section")["SecretName"]

When you run the app, a webpage shows the loaded secret values:

AddAzureKeyVault also provides an overload that accepts an implementation of IKeyVaultSecretManager , which
allows you to control how key vault secrets are converted into configuration keys. For example, you can
implement the interface to load secret values based on a prefix value you provide at app startup. This allows you,
for example, to load secrets based on the version of the app.

Don't use prefixes on key vault secrets to place secrets for multiple apps into the same key vault or to place environmental
secrets (for example, development versus production secrets) into the same vault. We recommend that different apps and
development/production environments use separate key vaults to isolate app environments for the highest level of
security.

Using the second sample app, you create a secret in the key vault for 5000-AppSecret (periods aren't allowed in
key vault secret names) representing an app secret for version 5.0.0.0 of your app. For another version, 5.1.0.0,
you create a secret for 5100-AppSecret . Each app version loads its own secret value into its configuration as
AppSecret , stripping off the version as it loads the secret. The sample's implementation is shown below:

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((context, config) =>
 {
 // The appVersion obtains the app version (5.0.0.0), which
 // is set in the project file and obtained from the entry
 // assembly. The versionPrefix holds the version without
 // dot notation for the PrefixKeyVaultSecretManager.
 var appVersion = Assembly.GetEntryAssembly().GetName().Version.ToString();
 var versionPrefix = appVersion.Replace(".", string.Empty);

 var builtConfig = config.Build();

 var keyVaultConfigBuilder = new ConfigurationBuilder();

 keyVaultConfigBuilder.AddAzureKeyVault(
 $"https://{builtConfig["Vault"]}.vault.azure.net/",
 builtConfig["ClientId"],
 builtConfig["ClientSecret"],
 new PrefixKeyVaultSecretManager(versionPrefix));

 var keyVaultConfig = keyVaultConfigBuilder.Build();

 config.AddConfiguration(keyVaultConfig);
 })
 .UseStartup<Startup>();

public class PrefixKeyVaultSecretManager : IKeyVaultSecretManager
{
 private readonly string _prefix;

 public PrefixKeyVaultSecretManager(string prefix)
 {
 _prefix = $"{prefix}-";
 }

 public bool Load(SecretItem secret)
 {
 // Load a vault secret when its secret name starts with the
 // prefix. Other secrets won't be loaded.
 return secret.Identifier.Name.StartsWith(_prefix);
 }

 public string GetKey(SecretBundle secret)
 {
 // Remove the prefix from the secret name and replace two
 // dashes in any name with the KeyDelimiter, which is the
 // delimiter used in configuration (usually a colon). Azure
 // Key Vault doesn't allow a colon in secret names.
 return secret.SecretIdentifier.Name
 .Substring(_prefix.Length)
 .Replace("--", ConfigurationPath.KeyDelimiter);
 }
}

The Load method is called by a provider algorithm that iterates through the vault secrets to find the ones that
have the version prefix. When a version prefix is found with Load , the algorithm uses the GetKey method to
return the configuration name of the secret name. It strips off the version prefix from the secret's name and
returns the rest of the secret name for loading into the app's configuration name-value pairs.

When you implement this approach:

1. The key vault secrets are loaded.

NOTENOTE

2. The string secret for 5000-AppSecret is matched.
3. The version, 5000 (with the dash), is stripped off of the key name leaving AppSecret to load with the secret

value into the app's configuration.

You can also provide your own KeyVaultClient implementation to AddAzureKeyVault . Supplying a custom client allows
you to share a single instance of the client between the configuration provider and other parts of your app.

1. Create a key vault and set up Azure Active Directory (Azure AD) for the application following the
guidance in Get started with Azure Key Vault.

Add secrets to the key vault using the AzureRM Key Vault PowerShell Module available from the
PowerShell Gallery, the Azure Key Vault REST API, or the Azure Portal. Secrets are created as either
Manual or Certificate secrets. Certificate secrets are certificates for use by apps and services but are
not supported by the configuration provider. You should use the Manual option to create name-value
pair secrets for use with the configuration provider.

Register the sample app with Azure Active Directory.
Authorize the app to access the key vault. When you use the Set-AzureRmKeyVaultAccessPolicy

PowerShell cmdlet to authorize the app to access the key vault, provide List and Get access to
secrets with -PermissionsToSecrets list,get .

Hierarchical values (configuration sections) use -- (two dashes) as a separator.
Create two Manual secrets with the following name-value pairs:

5000-AppSecret : 5.0.0.0_secret_value

5100-AppSecret : 5.1.0.0_secret_value

2. Update the app's appsettings.json file with the values of Vault , ClientId , and ClientSecret .

3. Run the sample app, which obtains its configuration values from IConfigurationRoot with the same name
as the prefixed secret name. In this sample, the prefix is the app's version, which you provided to the
PrefixKeyVaultSecretManager when you added the Azure Key Vault configuration provider. The value for
AppSecret is obtained with config["AppSecret"] . The webpage generated by the app shows the loaded

value:

4. Change the version of the app assembly in the project file from 5.0.0.0 to 5.1.0.0 and run the app
again. This time, the secret value returned is 5.1.0.0_secret_value . The webpage generated by the app
shows the loaded value:

https://azure.microsoft.com/documentation/articles/key-vault-get-started/
https://docs.microsoft.com/powershell/module/azurerm.keyvault
https://www.powershellgallery.com/packages/AzureRM.KeyVault
https://docs.microsoft.com/rest/api/keyvault/
https://portal.azure.com/

Controlling access to the ClientSecret

var store = new X509Store(StoreLocation.CurrentUser);
store.Open(OpenFlags.ReadOnly);
var cert = store.Certificates.Find(X509FindType.FindByThumbprint, config["CertificateThumbprint"], false);

builder.AddAzureKeyVault(
 config["Vault"],
 config["ClientId"],
 cert.OfType<X509Certificate2>().Single(),
 new EnvironmentSecretManager(env.ApplicationName));
store.Close();

Configuration = builder.Build();

Reloading secrets

Configuration.Reload();

Disabled and expired secrets

Troubleshooting

Additional resources

Use the Secret Manager tool to maintain the ClientSecret outside of your project source tree. With Secret
Manager, you associate app secrets with a specific project and share them across multiple projects.

When developing a .NET Framework app in an environment that supports certificates, you can authenticate to
Azure Key Vault with an X.509 certificate. The X.509 certificate's private key is managed by the OS. For more
information, see Authenticate with a Certificate instead of a Client Secret. Use the AddAzureKeyVault overload
that accepts an X509Certificate2 .

Secrets are cached until IConfigurationRoot.Reload() is called. Expired, disabled, and updated secrets in the key
vault are not respected by the application until Reload is executed.

Disabled and expired secrets throw a KeyVaultClientException . To prevent your app from throwing, replace your
app or update the disabled/expired secret.

When the application fails to load configuration using the provider, an error message is written to the ASP.NET
Logging infrastructure. The following conditions will prevent configuration from loading:

The app isn't configured correctly in Azure Active Directory.
The key vault doesn't exist in Azure Key Vault.
The app isn't authorized to access the key vault.
The access policy doesn't include Get and List permissions.
In the key vault, the configuration data (name-value pair) is incorrectly named, missing, disabled, or expired.
The app has the wrong key vault name (Vault), Azure AD App Id (ClientId), or Azure AD Key (
ClientSecret).

The Azure AD Key (ClientSecret) is expired.
The configuration key (name) is incorrect in the app for the value you're trying to load.

Configuration

https://docs.microsoft.com/azure/key-vault/key-vault-use-from-web-application#authenticate-with-a-certificate-instead-of-a-client-secret

Microsoft Azure: Key Vault
Microsoft Azure: Key Vault Documentation
How to generate and transfer HSM-protected keys for Azure Key Vault
KeyVaultClient Class

https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/azure/key-vault/
https://docs.microsoft.com/azure/key-vault/key-vault-hsm-protected-keys
https://docs.microsoft.com/dotnet/api/microsoft.azure.keyvault.keyvaultclient

Prevent Cross-Site Request Forgery (XSRF/CSRF)
attacks in ASP.NET Core
6/12/2018 • 13 minutes to read • Edit Online

By Steve Smith, Fiyaz Hasan, and Rick Anderson

Cross-site request forgery (also known as XSRF or CSRF, pronounced see-surf) is an attack against web-
hosted apps whereby a malicious web app can influence the interaction between a client browser and a
web app that trusts that browser. These attacks are possible because web browsers send some types of
authentication tokens automatically with every request to a website. This form of exploit is also known as a
one-click attack or session riding because the attack takes advantage of the user's previously authenticated
session.

An example of a CSRF attack:

<h1>Congratulations! You're a Winner!</h1>
<form action="http://good-banking-site.com/api/account" method="post">
 <input type="hidden" name="Transaction" value="withdraw">
 <input type="hidden" name="Amount" value="1000000">
 <input type="submit" value="Click to collect your prize!">
</form>

1. A user signs into www.good-banking-site.com using forms authentication. The server authenticates
the user and issues a response that includes an authentication cookie. The site is vulnerable to
attack because it trusts any request that it receives with a valid authentication cookie.

2. The user visits a malicious site, www.bad-crook-site.com .

The malicious site, www.bad-crook-site.com , contains an HTML form similar to the following:

Notice that the form's action posts to the vulnerable site, not to the malicious site. This is the
"cross-site" part of CSRF.

3. The user selects the submit button. The browser makes the request and automatically includes the
authentication cookie for the requested domain, www.good-banking-site.com .

4. The request runs on the www.good-banking-site.com server with the user's authentication context
and can perform any action that an authenticated user is allowed to perform.

In addition to the scenario where the user selects the button to submit the form, the malicious site could:

Run a script that automatically submits the form.
Send the form submission as an AJAX request.
Hide the form using CSS.

These alternative scenarios don't require any action or input from the user other than initially visiting the
malicious site.

Using HTTPS doesn't prevent a CSRF attack. The malicious site can send an
https://www.good-banking-site.com/ request just as easily as it can send an insecure request.

Some attacks target endpoints that respond to GET requests, in which case an image tag can be used to
perform the action. This form of attack is common on forum sites that permit images but block JavaScript.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/anti-request-forgery.md
https://ardalis.com/
https://twitter.com/FiyazBinHasan
https://twitter.com/RickAndMSFT

Authentication fundamentals

Cookie-based authenticationCookie-based authentication

Token-based authenticationToken-based authentication

Multiple apps hosted at one domainMultiple apps hosted at one domain

Apps that change state on GET requests, where variables or resources are altered, are vulnerable to
malicious attacks. GET requests that change state are insecure. A best practice is to never change
state on a GET request.

CSRF attacks are possible against web apps that use cookies for authentication because:

Browsers store cookies issued by a web app.
Stored cookies include session cookies for authenticated users.
Browsers send all of the cookies associated with a domain to the web app every request regardless of
how the request to app was generated within the browser.

However, CSRF attacks aren't limited to exploiting cookies. For example, Basic and Digest authentication
are also vulnerable. After a user signs in with Basic or Digest authentication, the browser automatically
sends the credentials until the session† ends.

†In this context, session refers to the client-side session during which the user is authenticated. It's
unrelated to server-side sessions or ASP.NET Core Session Middleware.

Users can guard against CSRF vulnerabilities by taking precautions:

Sign off of web apps when finished using them.
Clear browser cookies periodically.

However, CSRF vulnerabilities are fundamentally a problem with the web app, not the end user.

Cookie-based authentication is a popular form of authentication. Token-based authentication systems are
growing in popularity, especially for Single Page Applications (SPAs).

When a user authenticates using their username and password, they're issued a token, containing an
authentication ticket that can be used for authentication and authorization. The token is stored as a cookie
that accompanies every request the client makes. Generating and validating this cookie is performed by
the Cookie Authentication Middleware. The middleware serializes a user principal into an encrypted
cookie. On subsequent requests, the middleware validates the cookie, recreates the principal, and assigns
the principal to the User property of HttpContext.

When a user is authenticated, they're issued a token (not an antiforgery token). The token contains user
information in the form of claims or a reference token that points the app to user state maintained in the
app. When a user attempts to access a resource requiring authentication, the token is sent to the app with
an additional authorization header in form of Bearer token. This makes the app stateless. In each
subsequent request, the token is passed in the request for server-side validation. This token isn't encrypted;
it's encoded. On the server, the token is decoded to access its information. To send the token on
subsequent requests, store the token in the browser's local storage. Don't be concerned about CSRF
vulnerability if the token is stored in the browser's local storage. CSRF is a concern when the token is
stored in a cookie.

Shared hosting environments are vulnerable to session hijacking, login CSRF, and other attacks.

Although example1.contoso.net and example2.contoso.net are different hosts, there's an implicit trust
relationship between hosts under the *.contoso.net domain. This implicit trust relationship allows
potentially untrusted hosts to affect each other's cookies (the same-origin policies that govern AJAX
requests don't necessarily apply to HTTP cookies).

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httpcontext.user
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/dotnet/framework/security/claims-based-identity-model

 ASP.NET Core antiforgery configuration

WARNINGWARNING

<form method="post">
 ...
</form>

NOTENOTE

Attacks that exploit trusted cookies between apps hosted on the same domain can be prevented by not
sharing domains. When each app is hosted on its own domain, there is no implicit cookie trust relationship
to exploit.

ASP.NET Core implements antiforgery using ASP.NET Core Data Protection. The data protection stack must be
configured to work in a server farm. See Configuring data protection for more information.

In ASP.NET Core 2.0 or later, the FormTagHelper injects antiforgery tokens into HTML form elements. The
following markup in a Razor file automatically generates antiforgery tokens:

Similarily, IHtmlHelper.BeginForm generates antiforgery tokens by default if the form's method isn't GET.

The automatic generation of antiforgery tokens for HTML form elements happens when the <form> tag
contains the method="post" attribute and either of the following are true:

The action attribute is empty (action="").
The action attribute isn't supplied (<form method="post">).

Automatic generation of antiforgery tokens for HTML form elements can be disabled:

<form method="post" asp-antiforgery="false">
 ...
</form>

<!form method="post">
 ...
</!form>

@removeTagHelper Microsoft.AspNetCore.Mvc.TagHelpers.FormTagHelper,
Microsoft.AspNetCore.Mvc.TagHelpers

Explicitly disable antiforgery tokens with the asp-antiforgery attribute:

The form element is opted-out of Tag Helpers by using the Tag Helper ! opt-out symbol:

Remove the FormTagHelper from the view. The FormTagHelper can be removed from a view by
adding the following directive to the Razor view:

Razor Pages are automatically protected from XSRF/CSRF. For more information, see XSRF/CSRF and Razor Pages.

The most common approach to defending against CSRF attacks is to use the Synchronizer Token Pattern
(STP). STP is used when the user requests a page with form data:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.rendering.ihtmlhelper.beginform

<form asp-controller="Manage" asp-action="ChangePassword" method="post">
 ...
</form>

@using (Html.BeginForm("ChangePassword", "Manage"))
{
 ...
}

<form action="/" method="post">
 @Html.AntiForgeryToken()
</form>

<input name="__RequestVerificationToken" type="hidden" value="CfDJ8NrAkS ... s2-m9Yw">

Antiforgery options

services.AddAntiforgery(options =>
{
 options.CookieDomain = "contoso.com";
 options.CookieName = "X-CSRF-TOKEN-COOKIENAME";
 options.CookiePath = "Path";
 options.FormFieldName = "AntiforgeryFieldname";
 options.HeaderName = "X-CSRF-TOKEN-HEADERNAME";
 options.RequireSsl = false;
 options.SuppressXFrameOptionsHeader = false;
});

OPTION DESCRIPTION

Cookie Determines the settings used to create the antiforgery
cookies.

1. The server sends a token associated with the current user's identity to the client.
2. The client sends back the token to the server for verification.
3. If the server receives a token that doesn't match the authenticated user's identity, the request is rejected.

The token is unique and unpredictable. The token can also be used to ensure proper sequencing of a series
of requests (for example, ensuring the request sequence of: page 1 – page 2 – page 3). All of the forms in
ASP.NET Core MVC and Razor Pages templates generate antiforgery tokens. The following pair of view
examples generate antiforgery tokens:

Explicitly add an antiforgery token to a <form> element without using Tag Helpers with the HTML helper
@Html.AntiForgeryToken:

In each of the preceding cases, ASP.NET Core adds a hidden form field similar to the following:

ASP.NET Core includes three filters for working with antiforgery tokens:

ValidateAntiForgeryToken
AutoValidateAntiforgeryToken
IgnoreAntiforgeryToken

Customize antiforgery options in Startup.ConfigureServices :

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.htmlhelper.antiforgerytoken
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.validateantiforgerytokenattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.autovalidateantiforgerytokenattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.ignoreantiforgerytokenattribute
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Antiforgery.AntiforgeryOptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookie

CookieDomain The domain of the cookie. Defaults to null . This
property is obsolete and will be removed in a future
version. The recommended alternative is Cookie.Domain.

CookieName The name of the cookie. If not set, the system generates a
unique name beginning with the DefaultCookiePrefix
(".AspNetCore.Antiforgery."). This property is obsolete
and will be removed in a future version. The
recommended alternative is Cookie.Name.

CookiePath The path set on the cookie. This property is obsolete and
will be removed in a future version. The recommended
alternative is Cookie.Path.

FormFieldName The name of the hidden form field used by the
antiforgery system to render antiforgery tokens in views.

HeaderName The name of the header used by the antiforgery system.
If null , the system considers only form data.

RequireSsl Specifies whether SSL is required by the antiforgery
system. If true , non-SSL requests fail. Defaults to
false . This property is obsolete and will be removed in

a future version. The recommended alternative is to set
Cookie.SecurePolicy.

SuppressXFrameOptionsHeader Specifies whether to suppress generation of the
X-Frame-Options header. By default, the header is

generated with a value of "SAMEORIGIN". Defaults to
false .

OPTION DESCRIPTION

Configure antiforgery features with IAntiforgery

For more information, see CookieAuthenticationOptions.

IAntiforgery provides the API to configure antiforgery features. IAntiforgery can be requested in the
Configure method of the Startup class. The following example uses middleware from the app's home

page to generate an antiforgery token and send it in the response as a cookie (using the default Angular
naming convention described later in this topic):

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookiedomain
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookiename
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.defaultcookieprefix
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookiepath
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.formfieldname
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.headername
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.requiressl
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.suppressxframeoptionsheader
https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Builder.CookieAuthenticationOptions
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgery

public void Configure(IApplicationBuilder app, IAntiforgery antiforgery)
{
 app.Use(next => context =>
 {
 string path = context.Request.Path.Value;

 if (
 string.Equals(path, "/", StringComparison.OrdinalIgnoreCase) ||
 string.Equals(path, "/index.html", StringComparison.OrdinalIgnoreCase))
 {
 // The request token can be sent as a JavaScript-readable cookie,
 // and Angular uses it by default.
 var tokens = antiforgery.GetAndStoreTokens(context);
 context.Response.Cookies.Append("XSRF-TOKEN", tokens.RequestToken,
 new CookieOptions() { HttpOnly = false });
 }

 return next(context);
 });
}

Require antiforgery validationRequire antiforgery validation

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> RemoveLogin(RemoveLoginViewModel account)
{
 ManageMessageId? message = ManageMessageId.Error;
 var user = await GetCurrentUserAsync();

 if (user != null)
 {
 var result =
 await _userManager.RemoveLoginAsync(
 user, account.LoginProvider, account.ProviderKey);

 if (result.Succeeded)
 {
 await _signInManager.SignInAsync(user, isPersistent: false);
 message = ManageMessageId.RemoveLoginSuccess;
 }
 }

 return RedirectToAction(nameof(ManageLogins), new { Message = message });
}

NOTENOTE

Automatically validate antiforgery tokens for unsafe HTTP methods onlyAutomatically validate antiforgery tokens for unsafe HTTP methods only

ValidateAntiForgeryToken is an action filter that can be applied to an individual action, a controller, or
globally. Requests made to actions that have this filter applied are blocked unless the request includes a
valid antiforgery token.

The ValidateAntiForgeryToken attribute requires a token for requests to the action methods it decorates,
including HTTP GET requests. If the ValidateAntiForgeryToken attribute is applied across the app's
controllers, it can be overridden with the IgnoreAntiforgeryToken attribute.

ASP.NET Core doesn't support adding antiforgery tokens to GET requests automatically.

ASP.NET Core apps don't generate antiforgery tokens for safe HTTP methods (GET, HEAD, OPTIONS,

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.validateantiforgerytokenattribute

[Authorize]
[AutoValidateAntiforgeryToken]
public class ManageController : Controller
{

services.AddMvc(options =>
 options.Filters.Add(new AutoValidateAntiforgeryTokenAttribute()));

Override global or controller antiforgery attributesOverride global or controller antiforgery attributes

[Authorize]
[AutoValidateAntiforgeryToken]
public class ManageController : Controller
{
 [HttpPost]
 [IgnoreAntiforgeryToken]
 public async Task<IActionResult> DoSomethingSafe(SomeViewModel model)
 {
 // no antiforgery token required
 }
}

Refresh tokens after authentication

JavaScript, AJAX, and SPAs

and TRACE). Instead of broadly applying the ValidateAntiForgeryToken attribute and then overriding it
with IgnoreAntiforgeryToken attributes, the AutoValidateAntiforgeryToken attribute can be used. This
attribute works identically to the ValidateAntiForgeryToken attribute, except that it doesn't require tokens
for requests made using the following HTTP methods:

GET
HEAD
OPTIONS
TRACE

We recommend use of AutoValidateAntiforgeryToken broadly for non-API scenarios. This ensures POST
actions are protected by default. The alternative is to ignore antiforgery tokens by default, unless
ValidateAntiForgeryToken is applied to individual action methods. It's more likely in this scenario for a

POST action method to be left unprotected by mistake, leaving the app vulnerable to CSRF attacks. All
POSTs should send the antiforgery token.

APIs don't have an automatic mechanism for sending the non-cookie part of the token. The
implementation probably depends on the client code implementation. Some examples are shown below:

Class-level example:

Global example:

The IgnoreAntiforgeryToken filter is used to eliminate the need for an antiforgery token for a given action
(or controller). When applied, this filter overrides ValidateAntiForgeryToken and
AutoValidateAntiforgeryToken filters specified at a higher level (globally or on a controller).

Tokens should be refreshed after the user is authenticated by redirecting the user to a view or Razor Pages
page.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.autovalidateantiforgerytokenattribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.ignoreantiforgerytokenattribute

JavaScriptJavaScript

@{
 ViewData["Title"] = "AJAX Demo";
}
@inject Microsoft.AspNetCore.Antiforgery.IAntiforgery Xsrf
@functions{
 public string GetAntiXsrfRequestToken()
 {
 return Xsrf.GetAndStoreTokens(Context).RequestToken;
 }
}

<input type="hidden" id="RequestVerificationToken"
 name="RequestVerificationToken" value="@GetAntiXsrfRequestToken()">

<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<div class="row">
 <p><input type="button" id="antiforgery" value="Antiforgery"></p>
 <script>
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (xhttp.readyState == XMLHttpRequest.DONE) {
 if (xhttp.status == 200) {
 alert(xhttp.responseText);
 } else {
 alert('There was an error processing the AJAX request.');
 }
 }
 };

 document.addEventListener('DOMContentLoaded', function() {
 document.getElementById("antiforgery").onclick = function () {
 xhttp.open('POST', '@Url.Action("Antiforgery", "Home")', true);
 xhttp.setRequestHeader("RequestVerificationToken",
 document.getElementById('RequestVerificationToken').value);
 xhttp.send();
 }
 });
 </script>
</div>

In traditional HTML-based apps, antiforgery tokens are passed to the server using hidden form fields. In
modern JavaScript-based apps and SPAs, many requests are made programmatically. These AJAX
requests may use other techniques (such as request headers or cookies) to send the token.

If cookies are used to store authentication tokens and to authenticate API requests on the server, CSRF is a
potential problem. If local storage is used to store the token, CSRF vulnerability might be mitigated
because values from local storage aren't sent automatically to the server with every request. Thus, using
local storage to store the antiforgery token on the client and sending the token as a request header is a
recommended approach.

Using JavaScript with views, the token can be created using a service from within the view. Inject the
Microsoft.AspNetCore.Antiforgery.IAntiforgery service into the view and call GetAndStoreTokens:

This approach eliminates the need to deal directly with setting cookies from the server or reading them
from the client.

The preceding example uses JavaScript to read the hidden field value for the AJAX POST header.

JavaScript can also access tokens in cookies and use the cookie's contents to create a header with the
token's value.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgery
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgery.getandstoretokens

context.Response.Cookies.Append("CSRF-TOKEN", tokens.RequestToken,
 new Microsoft.AspNetCore.Http.CookieOptions { HttpOnly = false });

services.AddAntiforgery(options => options.HeaderName = "X-CSRF-TOKEN");

function getCookie(cname) {
 var name = cname + "=";
 var decodedCookie = decodeURIComponent(document.cookie);
 var ca = decodedCookie.split(';');
 for(var i = 0; i <ca.length; i++) {
 var c = ca[i];
 while (c.charAt(0) == ' ') {
 c = c.substring(1);
 }
 if (c.indexOf(name) == 0) {
 return c.substring(name.length, c.length);
 }
 }
 return "";
}

var csrfToken = getCookie("CSRF-TOKEN");

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
 if (xhttp.readyState == XMLHttpRequest.DONE) {
 if (xhttp.status == 200) {
 alert(xhttp.responseText);
 } else {
 alert('There was an error processing the AJAX request.');
 }
 }
};
xhttp.open('POST', '/api/password/changepassword', true);
xhttp.setRequestHeader("Content-type", "application/json");
xhttp.setRequestHeader("X-CSRF-TOKEN", csrfToken);
xhttp.send(JSON.stringify({ "newPassword": "ReallySecurePassword999$$$" }));

AngularJSAngularJS

services.AddAntiforgery(options => options.HeaderName = "X-XSRF-TOKEN");

Assuming the script requests to send the token in a header called X-CSRF-TOKEN , configure the antiforgery
service to look for the X-CSRF-TOKEN header :

The following example uses JavaScript to make an AJAX request with the appropriate header :

AngularJS uses a convention to address CSRF. If the server sends a cookie with the name XSRF-TOKEN , the
AngularJS $http service adds the cookie value to a header when it sends a request to the server. This
process is automatic. The header doesn't need to be set explicitly. The header name is X-XSRF-TOKEN . The
server should detect this header and validate its contents.

For ASP.NET Core API work with this convention:

Configure your app to provide a token in a cookie called XSRF-TOKEN .
Configure the antiforgery service to look for a header named X-XSRF-TOKEN .

View or download sample code (how to download)

https://github.com/aspnet/Docs/tree/master/aspnetcore/security/anti-request-forgery/sample/AngularSample

Extend antiforgery

Additional resources

The IAntiForgeryAdditionalDataProvider type allows developers to extend the behavior of the anti-CSRF
system by round-tripping additional data in each token. The GetAdditionalData method is called each time
a field token is generated, and the return value is embedded within the generated token. An implementer
could return a timestamp, a nonce, or any other value and then call ValidateAdditionalData to validate this
data when the token is validated. The client's username is already embedded in the generated tokens, so
there's no need to include this information. If a token includes supplemental data but no
IAntiForgeryAdditionalDataProvider is configured, the supplemental data isn't validated.

CSRF on Open Web Application Security Project (OWASP).

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgeryadditionaldataprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgeryadditionaldataprovider.getadditionaldata
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgeryadditionaldataprovider.validateadditionaldata
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Main_Page

Prevent open redirect attacks in ASP.NET Core
5/4/2018 • 3 minutes to read • Edit Online

What is an open redirect attack?

An example attackAn example attack

A web app that redirects to a URL that's specified via the request such as the querystring or form data can
potentially be tampered with to redirect users to an external, malicious URL. This tampering is called an open
redirection attack.

Whenever your application logic redirects to a specified URL, you must verify that the redirection URL hasn't been
tampered with. ASP.NET Core has built-in functionality to help protect apps from open redirect (also known as
open redirection) attacks.

Web applications frequently redirect users to a login page when they access resources that require authentication.
The redirection typlically includes a returnUrl querystring parameter so that the user can be returned to the
originally requested URL after they have successfully logged in. After the user authenticates, they're redirected to
the URL they had originally requested.

Because the destination URL is specified in the querystring of the request, a malicious user could tamper with the
querystring. A tampered querystring could allow the site to redirect the user to an external, malicious site. This
technique is called an open redirect (or redirection) attack.

A malicious user could develop an attack intended to allow the malicious user access to a user's credentials or
sensitive information on your app. To begin the attack, they convince the user to click a link to your site's login
page, with a returnUrl querystring value added to the URL. For example, the NerdDinner.com sample application
(written for ASP.NET MVC) includes such a login page here:
http://nerddinner.com/Account/LogOn?returnUrl=/Home/About . The attack then follows these steps:

1. User clicks a link to http://nerddinner.com/Account/LogOn?returnUrl=http://nerddiner.com/Account/LogOn (note,
second URL is nerddiner, not nerddinner).

2. The user logs in successfully.
3. The user is redirected (by the site) to http://nerddiner.com/Account/LogOn (malicious site that looks like real

site).
4. The user logs in again (giving malicious site their credentials) and is redirected back to the real site.

The user will likely believe their first attempt to log in failed, and their second one was successful. They will most
likely remain unaware their credentials have been compromised.

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/preventing-open-redirects.md
http://nerddinner.com

Protecting against open redirect attacks

LocalRedirectLocalRedirect

public IActionResult SomeAction(string redirectUrl)
{
 return LocalRedirect(redirectUrl);
}

IsLocalUrlIsLocalUrl

In addition to login pages, some sites provide redirect pages or endpoints. Imagine your app has a page with an
open redirect, /Home/Redirect . An attacker could create, for example, a link in an email that goes to
[yoursite]/Home/Redirect?url=http://phishingsite.com/Home/Login . A typical user will look at the URL and see it

begins with your site name. Trusting that, they will click the link. The open redirect would then send the user to the
phishing site, which looks identical to yours, and the user would likely login to what they believe is your site.

When developing web applications, treat all user-provided data as untrustworthy. If your application has
functionality that redirects the user based on the contents of the URL, ensure that such redirects are only done
locally within your app (or to a known URL, not any URL that may be supplied in the querystring).

Use the LocalRedirect helper method from the base Controller class:

LocalRedirect will throw an exception if a non-local URL is specified. Otherwise, it behaves just like the Redirect

method.

Use the IsLocalUrl method to test URLs before redirecting:

https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.IUrlHelper?view=aspnetcore-2.0#Microsoft_AspNetCore_Mvc_IUrlHelper_IsLocalUrl_System_String_

private IActionResult RedirectToLocal(string returnUrl)
{
 if (Url.IsLocalUrl(returnUrl))
 {
 return Redirect(returnUrl);
 }
 else
 {
 return RedirectToAction(nameof(HomeController.Index), "Home");
 }
}

The following example shows how to check whether a URL is local before redirecting.

The IsLocalUrl method protects users from being inadvertently redirected to a malicious site. You can log the
details of the URL that was provided when a non-local URL is supplied in a situation where you expected a local
URL. Logging redirect URLs may help in diagnosing redirection attacks.

Prevent Cross-Site Scripting (XSS) in ASP.NET Core
5/30/2018 • 6 minutes to read • Edit Online

Protecting your application against XSS

HTML Encoding using Razor

@{
 var untrustedInput = "<\"123\">";
 }

 @untrustedInput

By Rick Anderson

Cross-Site Scripting (XSS) is a security vulnerability which enables an attacker to place client side scripts (usually
JavaScript) into web pages. When other users load affected pages the attackers scripts will run, enabling the
attacker to steal cookies and session tokens, change the contents of the web page through DOM manipulation or
redirect the browser to another page. XSS vulnerabilities generally occur when an application takes user input and
outputs it in a page without validating, encoding or escaping it.

At a basic level XSS works by tricking your application into inserting a <script> tag into your rendered page, or
by inserting an On* event into an element. Developers should use the following prevention steps to avoid
introducing XSS into their application.

1. Never put untrusted data into your HTML input, unless you follow the rest of the steps below. Untrusted
data is any data that may be controlled by an attacker, HTML form inputs, query strings, HTTP headers,
even data sourced from a database as an attacker may be able to breach your database even if they cannot
breach your application.

2. Before putting untrusted data inside an HTML element ensure it's HTML encoded. HTML encoding takes
characters such as < and changes them into a safe form like <

3. Before putting untrusted data into an HTML attribute ensure it's HTML attribute encoded. HTML attribute
encoding is a superset of HTML encoding and encodes additional characters such as " and '.

4. Before putting untrusted data into JavaScript place the data in an HTML element whose contents you
retrieve at runtime. If this isn't possible then ensure the data is JavaScript encoded. JavaScript encoding
takes dangerous characters for JavaScript and replaces them with their hex, for example < would be
encoded as \u003C .

5. Before putting untrusted data into a URL query string ensure it's URL encoded.

The Razor engine used in MVC automatically encodes all output sourced from variables, unless you work really
hard to prevent it doing so. It uses HTML Attribute encoding rules whenever you use the @ directive. As HTML
attribute encoding is a superset of HTML encoding this means you don't have to concern yourself with whether
you should use HTML encoding or HTML attribute encoding. You must ensure that you only use @ in an HTML
context, not when attempting to insert untrusted input directly into JavaScript. Tag helpers will also encode input
you use in tag parameters.

Take the following Razor view;

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/cross-site-scripting.md
https://twitter.com/RickAndMSFT

<"123">

WARNINGWARNING

Javascript Encoding using Razor

@{
 var untrustedInput = "<\"123\">";
 }

 <div
 id="injectedData"
 data-untrustedinput="@untrustedInput" />

 <script>
 var injectedData = document.getElementById("injectedData");

 // All clients
 var clientSideUntrustedInputOldStyle =
 injectedData.getAttribute("data-untrustedinput");

 // HTML 5 clients only
 var clientSideUntrustedInputHtml5 =
 injectedData.dataset.untrustedinput;

 document.write(clientSideUntrustedInputOldStyle);
 document.write("
")
 document.write(clientSideUntrustedInputHtml5);
 </script>

<div
 id="injectedData"
 data-untrustedinput="<"123">" />

 <script>
 var injectedData = document.getElementById("injectedData");

 var clientSideUntrustedInputOldStyle =
 injectedData.getAttribute("data-untrustedinput");

 var clientSideUntrustedInputHtml5 =
 injectedData.dataset.untrustedinput;

 document.write(clientSideUntrustedInputOldStyle);
 document.write("
")
 document.write(clientSideUntrustedInputHtml5);
 </script>

This view outputs the contents of the untrustedInput variable. This variable includes some characters which are
used in XSS attacks, namely <, " and >. Examining the source shows the rendered output encoded as:

ASP.NET Core MVC provides an HtmlString class which isn't automatically encoded upon output. This should never be
used in combination with untrusted input as this will expose an XSS vulnerability.

There may be times you want to insert a value into JavaScript to process in your view. There are two ways to do
this. The safest way to insert values is to place the value in a data attribute of a tag and retrieve it in your
JavaScript. For example:

This will produce the following HTML

<"123">
 <"123">

@using System.Text.Encodings.Web;
 @inject JavaScriptEncoder encoder;

 @{
 var untrustedInput = "<\"123\">";
 }

 <script>
 document.write("@encoder.Encode(untrustedInput)");
 </script>

<script>
 document.write("\u003C\u0022123\u0022\u003E");
 </script>

WARNINGWARNING

Accessing encoders in code

public class HomeController : Controller
 {
 HtmlEncoder _htmlEncoder;
 JavaScriptEncoder _javaScriptEncoder;
 UrlEncoder _urlEncoder;

 public HomeController(HtmlEncoder htmlEncoder,
 JavaScriptEncoder javascriptEncoder,
 UrlEncoder urlEncoder)
 {
 _htmlEncoder = htmlEncoder;
 _javaScriptEncoder = javascriptEncoder;
 _urlEncoder = urlEncoder;
 }
 }

Which, when it runs, will render the following;

You can also call the JavaScript encoder directly,

This will render in the browser as follows;

Don't concatenate untrusted input in JavaScript to create DOM elements. You should use createElement() and assign
property values appropriately such as node.TextContent= , or use element.SetAttribute() / element[attribute]=

otherwise you expose yourself to DOM-based XSS.

The HTML, JavaScript and URL encoders are available to your code in two ways, you can inject them via
dependency injection or you can use the default encoders contained in the System.Text.Encodings.Web namespace.
If you use the default encoders then any you applied to character ranges to be treated as safe won't take effect -
the default encoders use the safest encoding rules possible.

To use the configurable encoders via DI your constructors should take an HtmlEncoder, JavaScriptEncoder and
UrlEncoder parameter as appropriate. For example;

Encoding URL Parameters

var example = "\"Quoted Value with spaces and &\"";
 var encodedValue = _urlEncoder.Encode(example);

WARNINGWARNING

Customizing the Encoders

<p>This link text is in Chinese: @Html.ActionLink("汉语/漢語", "Index")</p>

<p>This link text is in Chinese: 汉语/漢語</p>

services.AddSingleton<HtmlEncoder>(
 HtmlEncoder.Create(allowedRanges: new[] { UnicodeRanges.BasicLatin,
 UnicodeRanges.CjkUnifiedIdeographs }));

<p>This link text is in Chinese: 汉语/漢語</p>

If you want to build a URL query string with untrusted input as a value use the UrlEncoder to encode the value.
For example,

After encoding the encodedValue variable will contain %22Quoted%20Value%20with%20spaces%20and%20%26%22 . Spaces,
quotes, punctuation and other unsafe characters will be percent encoded to their hexadecimal value, for example a
space character will become %20.

Don't use untrusted input as part of a URL path. Always pass untrusted input as a query string value.

By default encoders use a safe list limited to the Basic Latin Unicode range and encode all characters outside of
that range as their character code equivalents. This behavior also affects Razor TagHelper and HtmlHelper
rendering as it will use the encoders to output your strings.

The reasoning behind this is to protect against unknown or future browser bugs (previous browser bugs have
tripped up parsing based on the processing of non-English characters). If your web site makes heavy use of non-
Latin characters, such as Chinese, Cyrillic or others this is probably not the behavior you want.

You can customize the encoder safe lists to include Unicode ranges appropriate to your application during startup,
in ConfigureServices() .

For example, using the default configuration you might use a Razor HtmlHelper like so;

When you view the source of the web page you will see it has been rendered as follows, with the Chinese text
encoded;

To widen the characters treated as safe by the encoder you would insert the following line into the
ConfigureServices() method in startup.cs ;

This example widens the safe list to include the Unicode Range CjkUnifiedIdeographs. The rendered output would
now become

Safe list ranges are specified as Unicode code charts, not languages. The Unicode standard has a list of code
charts you can use to find the chart containing your characters. Each encoder, Html, JavaScript and Url, must be

http://unicode.org/
http://www.unicode.org/charts/index.html

NOTENOTE

Where should encoding take place?

Validation as an XSS prevention technique

configured separately.

Customization of the safe list only affects encoders sourced via DI. If you directly access an encoder via
System.Text.Encodings.Web.*Encoder.Default then the default, Basic Latin only safelist will be used.

The general accepted practice is that encoding takes place at the point of output and encoded values should never
be stored in a database. Encoding at the point of output allows you to change the use of data, for example, from
HTML to a query string value. It also enables you to easily search your data without having to encode values
before searching and allows you to take advantage of any changes or bug fixes made to encoders.

Validation can be a useful tool in limiting XSS attacks. For example, a numeric string containing only the
characters 0-9 won't trigger an XSS attack. Validation becomes more complicated should you wish to accept
HTML in user input - parsing HTML input is difficult, if not impossible. MarkDown and other text formats would
be a safer option for rich input. You should never rely on validation alone. Always encode untrusted input before
output, no matter what validation you have performed.

Enable Cross-Origin Requests (CORS) in ASP.NET
Core
3/22/2018 • 9 minutes to read • Edit Online

What is "same origin"?

NOTENOTE

Setting up CORS

public void ConfigureServices(IServiceCollection services)
{
 services.AddCors();
}

Enabling CORS with middleware

By Mike Wasson, Shayne Boyer, and Tom Dykstra

Browser security prevents a web page from making AJAX requests to another domain. This restriction is called
the same-origin policy, and prevents a malicious site from reading sensitive data from another site. However,
sometimes you might want to let other sites make cross-origin requests to your web API.

Cross Origin Resource Sharing (CORS) is a W3C standard that allows a server to relax the same-origin policy.
Using CORS, a server can explicitly allow some cross-origin requests while rejecting others. CORS is safer and
more flexible than earlier techniques such as JSONP. This topic shows how to enable CORS in an ASP.NET Core
application.

Two URLs have the same origin if they have identical schemes, hosts, and ports. (RFC 6454)

These two URLs have the same origin:

http://example.com/foo.html

http://example.com/bar.html

These URLs have different origins than the previous two:

http://example.net - Different domain

http://www.example.com/foo.html - Different subdomain

https://example.com/foo.html - Different scheme

http://example.com:9000/foo.html - Different port

Internet Explorer doesn't consider the port when comparing origins.

To set up CORS for your application add the Microsoft.AspNetCore.Cors package to your project.

Add the CORS services in Startup.cs:

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/cors.md
https://github.com/mikewasson
https://twitter.com/spboyer
https://github.com/tdykstra
http://www.w3.org/TR/cors/
https://wikipedia.org/wiki/JSONP
http://tools.ietf.org/html/rfc6454

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // Shows UseCors with CorsPolicyBuilder.
 app.UseCors(builder =>
 builder.WithOrigins("http://example.com"));

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });

app.UseCors(builder =>
 builder.WithOrigins("http://example.com")
 .AllowAnyHeader()
);

To enable CORS for your entire application add the CORS middleware to your request pipeline using the
UseCors extension method. Note that the CORS middleware must precede any defined endpoints in your app

that you want to support cross-origin requests (ex. before any call to UseMvc).

You can specify a cross-origin policy when adding the CORS middleware using the CorsPolicyBuilder class.
There are two ways to do this. The first is to call UseCors with a lambda:

Note: The URL must be specified without a trailing slash (/). If the URL terminates with / , the comparison will
return false and no header will be returned.

The lambda takes a CorsPolicyBuilder object. You'll find a list of the configuration options later in this topic. In
this example, the policy allows cross-origin requests from http://example.com and no other origins.

Note that CorsPolicyBuilder has a fluent API, so you can chain method calls:

The second approach is to define one or more named CORS policies, and then select the policy by name at run
time.

public void ConfigureServices(IServiceCollection services)
{
 services.AddCors(options =>
 {
 options.AddPolicy("AllowSpecificOrigin",
 builder => builder.WithOrigins("http://example.com"));
 });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // Shows UseCors with named policy.
 app.UseCors("AllowSpecificOrigin");
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
}

Enabling CORS in MVC

Per actionPer action

[HttpGet]
[EnableCors("AllowSpecificOrigin")]
public IEnumerable<string> Get()
{
 return new string[] { "value1", "value2" };
}

Per controllerPer controller

[Route("api/[controller]")]
[EnableCors("AllowSpecificOrigin")]
public class ValuesController : Controller

GloballyGlobally

This example adds a CORS policy named "AllowSpecificOrigin". To select the policy, pass the name to UseCors .

You can alternatively use MVC to apply specific CORS per action, per controller, or globally for all controllers.
When using MVC to enable CORS the same CORS services are used, but the CORS middleware isn't.

To specify a CORS policy for a specific action add the [EnableCors] attribute to the action. Specify the policy
name.

To specify the CORS policy for a specific controller add the [EnableCors] attribute to the controller class. Specify
the policy name.

You can enable CORS globally for all controllers by adding the CorsAuthorizationFilterFactory filter to the global
filter collection:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 services.Configure<MvcOptions>(options =>
 {
 options.Filters.Add(new CorsAuthorizationFilterFactory("AllowSpecificOrigin"));
 });
}

Disable CORSDisable CORS

[HttpGet("{id}")]
[DisableCors]
public string Get(int id)
{
 return "value";
}

CORS policy options

Set the allowed originsSet the allowed origins

options.AddPolicy("AllowSpecificOrigins",
builder =>
{
 builder.WithOrigins("http://example.com", "http://www.contoso.com");
});

using System;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

namespace CorsExample4
{

The precedence order is: Action, controller, global. Action-level policies take precedence over controller-level
policies, and controller-level policies take precedence over global policies.

To disable CORS for a controller or action, use the [DisableCors] attribute.

This section describes the various options that you can set in a CORS policy.

Set the allowed origins

Set the allowed HTTP methods

Set the allowed request headers

Set the exposed response headers

Credentials in cross-origin requests

Set the preflight expiration time

For some options it may be helpful to read How CORS works first.

To allow one or more specific origins:

To allow all origins:

{
 public class Startup
 {
 // This method gets called by the runtime. Use this method to add services to the container.
 // For more information on how to configure your application, visit http://go.microsoft.com/fwlink/?
LinkID=398940
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddCors(options =>
 {
 // BEGIN01
 options.AddPolicy("AllowSpecificOrigins",
 builder =>
 {
 builder.WithOrigins("http://example.com", "http://www.contoso.com");
 });
 // END01

 // BEGIN02
 options.AddPolicy("AllowAllOrigins",
 builder =>
 {
 builder.AllowAnyOrigin();
 });
 // END02

 // BEGIN03
 options.AddPolicy("AllowSpecificMethods",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .WithMethods("GET", "POST", "HEAD");
 });
 // END03

 // BEGIN04
 options.AddPolicy("AllowAllMethods",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .AllowAnyMethod();
 });
 // END04

 // BEGIN05
 options.AddPolicy("AllowHeaders",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .WithHeaders("accept", "content-type", "origin", "x-custom-header");
 });
 // END05

 // BEGIN06
 options.AddPolicy("AllowAllHeaders",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .AllowAnyHeader();
 });
 // END06

 // BEGIN07
 options.AddPolicy("ExposeResponseHeaders",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .WithExposedHeaders("x-custom-header");
 });

 // END07

 // BEGIN08
 options.AddPolicy("AllowCredentials",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .AllowCredentials();
 });
 // END08

 // BEGIN09
 options.AddPolicy("SetPreflightExpiration",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .SetPreflightMaxAge(TimeSpan.FromSeconds(2520));
 });
 // END09
 });
 }

 // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseCors("AllowSpecificOrigins");
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }
 }
}

Set the allowed HTTP methodsSet the allowed HTTP methods

options.AddPolicy("AllowAllMethods",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .AllowAnyMethod();
 });

Set the allowed request headersSet the allowed request headers

Consider carefully before allowing requests from any origin. It means that literally any website can make AJAX
calls to your API.

To allow all HTTP methods:

This affects pre-flight requests and Access-Control-Allow-Methods header.

A CORS preflight request might include an Access-Control-Request-Headers header, listing the HTTP headers set
by the application (the so-called "author request headers").

To whitelist specific headers:

options.AddPolicy("AllowHeaders",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .WithHeaders("accept", "content-type", "origin", "x-custom-header");
 });

options.AddPolicy("AllowAllHeaders",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .AllowAnyHeader();
 });

Set the exposed response headersSet the exposed response headers

options.AddPolicy("ExposeResponseHeaders",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .WithExposedHeaders("x-custom-header");
 });

Credentials in cross-origin requestsCredentials in cross-origin requests

var xhr = new XMLHttpRequest();
xhr.open('get', 'http://www.example.com/api/test');
xhr.withCredentials = true;

To allow all author request headers:

Browsers are not entirely consistent in how they set Access-Control-Request-Headers. If you set headers to
anything other than "*", you should include at least "accept", "content-type", and "origin", plus any custom headers
that you want to support.

By default, the browser doesn't expose all of the response headers to the application. (See
http://www.w3.org/TR/cors/#simple-response-header.) The response headers that are available by default are:

Cache-Control

Content-Language

Content-Type

Expires

Last-Modified

Pragma

The CORS spec calls these simple response headers. To make other headers available to the application:

Credentials require special handling in a CORS request. By default, the browser doesn't send any credentials with
a cross-origin request. Credentials include cookies as well as HTTP authentication schemes. To send credentials
with a cross-origin request, the client must set XMLHttpRequest.withCredentials to true.

Using XMLHttpRequest directly:

In jQuery:

http://www.w3.org/TR/cors/#simple-response-header

$.ajax({
 type: 'get',
 url: 'http://www.example.com/home',
 xhrFields: {
 withCredentials: true
}

options.AddPolicy("AllowCredentials",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .AllowCredentials();
 });

Set the preflight expiration timeSet the preflight expiration time

options.AddPolicy("SetPreflightExpiration",
 builder =>
 {
 builder.WithOrigins("http://example.com")
 .SetPreflightMaxAge(TimeSpan.FromSeconds(2520));
 });

How CORS works

In addition, the server must allow the credentials. To allow cross-origin credentials:

Now the HTTP response will include an Access-Control-Allow-Credentials header, which tells the browser that
the server allows credentials for a cross-origin request.

If the browser sends credentials, but the response doesn't include a valid Access-Control-Allow-Credentials
header, the browser won't expose the response to the application, and the AJAX request fails.

Be careful when allowing cross-origin credentials. A website at another domain can send a logged-in user's
credentials to the app on the user's behalf without the user's knowledge. The CORS specification also states that
setting origins to "*" (all origins) is invalid if the Access-Control-Allow-Credentials header is present.

The Access-Control-Max-Age header specifies how long the response to the preflight request can be cached. To
set this header :

This section describes what happens in a CORS request at the level of the HTTP messages. It's important to
understand how CORS works so that the CORS policy can be configured correctly and troubleshooted when
unexpected behaviors occur.

The CORS specification introduces several new HTTP headers that enable cross-origin requests. If a browser
supports CORS, it sets these headers automatically for cross-origin requests. Custom JavaScript code isn't
required to enable CORS.

Here is an example of a cross-origin request. The Origin header provides the domain of the site that's making
the request:

GET http://myservice.azurewebsites.net/api/test HTTP/1.1
Referer: http://myclient.azurewebsites.net/
Accept: */*
Accept-Language: en-US
Origin: http://myclient.azurewebsites.net
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0)
Host: myservice.azurewebsites.net

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Type: text/plain; charset=utf-8
Access-Control-Allow-Origin: http://myclient.azurewebsites.net
Date: Wed, 20 May 2015 06:27:30 GMT
Content-Length: 12

Test message

Preflight RequestsPreflight Requests

OPTIONS http://myservice.azurewebsites.net/api/test HTTP/1.1
Accept: */*
Origin: http://myclient.azurewebsites.net
Access-Control-Request-Method: PUT
Access-Control-Request-Headers: accept, x-my-custom-header
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0)
Host: myservice.azurewebsites.net
Content-Length: 0

If the server allows the request, it sets the Access-Control-Allow-Origin header in the response. The value of this
header either matches the Origin header from the request, or is the wildcard value "*", meaning that any origin is
allowed:

If the response doesn't include the Access-Control-Allow-Origin header, the AJAX request fails. Specifically, the
browser disallows the request. Even if the server returns a successful response, the browser doesn't make the
response available to the client application.

For some CORS requests, the browser sends an additional request, called a "preflight request", before it sends
the actual request for the resource. The browser can skip the preflight request if the following conditions are true:

The request method is GET, HEAD, or POST, and

The application doesn't set any request headers other than Accept, Accept-Language, Content-Language,
Content-Type, or Last-Event-ID, and

The Content-Type header (if set) is one of the following:

application/x-www-form-urlencoded

multipart/form-data

text/plain

The rule about request headers applies to headers that the application sets by calling setRequestHeader on the
XMLHttpRequest object. (The CORS specification calls these "author request headers".) The rule doesn't apply to
headers the browser can set, such as User-Agent, Host, or Content-Length.

Here is an example of a preflight request:

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Length: 0
Access-Control-Allow-Origin: http://myclient.azurewebsites.net
Access-Control-Allow-Headers: x-my-custom-header
Access-Control-Allow-Methods: PUT
Date: Wed, 20 May 2015 06:33:22 GMT

The pre-flight request uses the HTTP OPTIONS method. It includes two special headers:

Access-Control-Request-Method: The HTTP method that will be used for the actual request.

Access-Control-Request-Headers: A list of request headers that the application set on the actual request.
(Again, this doesn't include headers that the browser sets.)

Here is an example response, assuming that the server allows the request:

The response includes an Access-Control-Allow-Methods header that lists the allowed methods, and optionally
an Access-Control-Allow-Headers header, which lists the allowed headers. If the preflight request succeeds, the
browser sends the actual request, as described earlier.

Share cookies among apps with ASP.NET and
ASP.NET Core
6/14/2018 • 5 minutes to read • Edit Online

Share authentication cookies among ASP.NET Core apps

By Rick Anderson and Luke Latham

Websites often consist of individual web apps working together. To provide a single sign-on (SSO) experience, web
apps within a site must share authentication cookies. To support this scenario, the data protection stack allows
sharing Katana cookie authentication and ASP.NET Core cookie authentication tickets.

View or download sample code (how to download)

The sample illustrates cookie sharing across three apps that use cookie authentication:

ASP.NET Core 2.0 Razor Pages app without using ASP.NET Core Identity
ASP.NET Core 2.0 MVC app with ASP.NET Core Identity
ASP.NET Framework 4.6.1 MVC app with ASP.NET Identity

In the examples that follow:

The authentication cookie name is set to a common value of .AspNet.SharedCookie .
The AuthenticationType is set to Identity.Application either explicitly or by default.
A common app name is used to enable the data protection system to share data protection keys (
SharedCookieApp).
Identity.Application is used as the authentication scheme. Whatever scheme is used, it must be used

consistently within and across the shared cookie apps either as the default scheme or by explicitly setting it. The
scheme is used when encrypting and decrypting cookies, so a consistent scheme must be used across apps.
A common data protection key storage location is used. The sample app uses a folder named KeyRing at the
root of the solution to hold the data protection keys.
In the ASP.NET Core apps, PersistKeysToFileSystem is used to set the key storage location.
SetApplicationName is used to configure a common shared app name.
In the .NET Framework app, the cookie authentication middleware uses an implementation of
DataProtectionProvider. DataProtectionProvider provides data protection services for the encryption and
decryption of authentication cookie payload data. The DataProtectionProvider instance is isolated from the data
protection system used by other parts of the app.

DataProtectionProvider.Create(System.IO.DirectoryInfo, Action<IDataProtectionBuilder>) accepts a
DirectoryInfo to specify the location for data protection key storage. The sample app provides the path of
the KeyRing folder to DirectoryInfo . DataProtectionBuilderExtensions.SetApplicationName sets the
common app name.
DataProtectionProvider requires the Microsoft.AspNetCore.DataProtection.Extensions NuGet package.
To obtain this package for ASP.NET Core 2.1 and later apps, reference the Microsoft.AspNetCore.App
metapackage. When targeting the .NET Framework, add a package reference to
Microsoft.AspNetCore.DataProtection.Extensions .

When using ASP.NET Core Identity:

ASP.NET Core 2.x

https://github.com/aspnet/Docs/blob/master/aspnetcore/security/cookie-sharing.md
https://twitter.com/RickAndMSFT
https://github.com/guardrex
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/cookie-sharing/sample/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystofilesystem
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider.create?view=aspnetcore-2.0#Microsoft_AspNetCore_DataProtection_DataProtectionProvider_Create_System_IO_DirectoryInfo_System_Action_Microsoft_AspNetCore_DataProtection_IDataProtectionBuilder__
https://docs.microsoft.com/dotnet/api/system.io.directoryinfo
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname?view=aspnetcore-2.0#Microsoft_AspNetCore_DataProtection_DataProtectionBuilderExtensions_SetApplicationName_Microsoft_AspNetCore_DataProtection_IDataProtectionBuilder_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Extensions/

services.AddDataProtection()
 .PersistKeysToFileSystem(GetKeyRingDirInfo())
 .SetApplicationName("SharedCookieApp");

services.ConfigureApplicationCookie(options => {
 options.Cookie.Name = ".AspNet.SharedCookie";
});

services.AddDataProtection()
 .PersistKeysToFileSystem(GetKeyRingDirInfo())
 .SetApplicationName("SharedCookieApp");

services.AddAuthentication("Identity.Application")
 .AddCookie("Identity.Application", options =>
 {
 options.Cookie.Name = ".AspNet.SharedCookie";
 });

Encrypting data protection keys at rest

services.AddDataProtection()
 .ProtectKeysWithCertificate("thumbprint");

Sharing authentication cookies between ASP.NET 4.x and ASP.NET
Core apps

ASP.NET Core 1.x

In the ConfigureServices method, use the ConfigureApplicationCookie extension method to set up the data
protection service for cookies.

Data protection keys and the app name must be shared among apps. In the sample apps, GetKeyRingDirInfo

returns the common key storage location to the PersistKeysToFileSystem method. Use SetApplicationName to
configure a common shared app name (SharedCookieApp in the sample). For more information, see Configuring
Data Protection.

See the CookieAuthWithIdentity.Core project in the sample code (how to download).

When using cookies directly:

ASP.NET Core 2.x
ASP.NET Core 1.x

Data protection keys and the app name must be shared among apps. In the sample apps, GetKeyRingDirInfo

returns the common key storage location to the PersistKeysToFileSystem method. Use SetApplicationName to
configure a common shared app name (SharedCookieApp in the sample). For more information, see Configuring
Data Protection.

See the CookieAuth.Core project in the sample code (how to download).

For production deployments, configure the DataProtectionProvider to encrypt keys at rest with DPAPI or an
X509Certificate. See Key Encryption At Rest for more information.

ASP.NET Core 2.x
ASP.NET Core 1.x

https://docs.microsoft.com/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.configureapplicationcookie
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystofilesystem
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/cookie-sharing/sample/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystofilesystem
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/cookie-sharing/sample/

app.UseCookieAuthentication(new CookieAuthenticationOptions
{
 AuthenticationType = "Identity.Application",
 CookieName = ".AspNet.SharedCookie",
 LoginPath = new PathString("/Account/Login"),
 Provider = new CookieAuthenticationProvider
 {
 OnValidateIdentity =
 SecurityStampValidator
 .OnValidateIdentity<ApplicationUserManager, ApplicationUser>(
 validateInterval: TimeSpan.FromMinutes(30),
 regenerateIdentity: (manager, user) =>
 user.GenerateUserIdentityAsync(manager))
 },
 TicketDataFormat = new AspNetTicketDataFormat(
 new DataProtectorShim(
 DataProtectionProvider.Create(GetKeyRingDirInfo(),
 (builder) => { builder.SetApplicationName("SharedCookieApp"); })
 .CreateProtector(
 "Microsoft.AspNetCore.Authentication.Cookies.CookieAuthenticationMiddleware",
 "Identity.Application",
 "v2"))),
 CookieManager = new ChunkingCookieManager()
});

// If not setting http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier and
// http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider,
// then set UniqueClaimTypeIdentifier to a claim that distinguishes unique users.
System.Web.Helpers.AntiForgeryConfig.UniqueClaimTypeIdentifier =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name";

ASP.NET 4.x apps which use Katana cookie authentication middleware can be configured to generate
authentication cookies that are compatible with the ASP.NET Core cookie authentication middleware. This allows
upgrading a large site's individual apps piecemeal while providing a smooth SSO experience across the site.

When an app uses Katana cookie authentication middleware, it calls UseCookieAuthentication in the project's
Startup.Auth.cs file. ASP.NET 4.x web app projects created with Visual Studio 2013 and later use the Katana cookie
authentication middleware by default. Although UseCookieAuthentication is obsolete and unsupported for
ASP.NET Core apps, calling UseCookieAuthentication in an ASP.NET 4.x app that uses Katana cookie authentication
middleware is valid.

An ASP.NET 4.x app must target .NET Framework 4.5.1 or higher. Otherwise, the necessary NuGet packages fail to
install.

To share authentication cookies between an ASP.NET 4.x app and an ASP.NET Core app, configure the ASP.NET
Core app as stated above, then configure the ASP.NET 4.x app by following these steps:

1. Install the package Microsoft.Owin.Security.Interop into each ASP.NET 4.x app.

2. In Startup.Auth.cs, locate the call to UseCookieAuthentication and modify it as follows. Change the cookie
name to match the name used by the ASP.NET Core cookie authentication middleware. Provide an instance
of a DataProtectionProvider initialized to the common data protection key storage location. Make sure that
the app name is set to the common app name used by all apps that share cookies, SharedCookieApp in the
sample app.

See the CookieAuthWithIdentity.NETFramework project in the sample code (how to download).

When generating a user identity, the authentication type must match the type defined in AuthenticationType set
with UseCookieAuthentication .

Models/IdentityModels.cs:

https://www.nuget.org/packages/Microsoft.Owin.Security.Interop/
https://github.com/aspnet/Docs/tree/master/aspnetcore/security/cookie-sharing/sample/

public async Task<ClaimsIdentity> GenerateUserIdentityAsync(UserManager<ApplicationUser> manager)
{
 // Note the authenticationType must match the one defined in
CookieAuthenticationOptions.AuthenticationType
 var userIdentity = await manager.CreateIdentityAsync(this, "Identity.Application");
 // Add custom user claims here
 return userIdentity;
}

Use a common user database
Confirm that the identity system for each app is pointed at the same user database. Otherwise, the identity system
produces failures at runtime when it attempts to match the information in the authentication cookie against the
information in its database.

Performance in ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

Cache responses

Response compression middleware

Cache in-memory
Work with a distributed cache
Response caching

https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/index.md

Cache responses in ASP.NET Core
3/22/2018 • 2 minutes to read • Edit Online

Cache in-memory
Work with a distributed cache
Detect changes with change tokens
Response caching
Response Caching Middleware
Cache Tag Helper
Distributed Cache Tag Helper

https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/index.md

Cache in-memory in ASP.NET Core
6/4/2018 • 5 minutes to read • Edit Online

Caching basics

Using IMemoryCache

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.DependencyInjection;

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMemoryCache();
 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvcWithDefaultRoute();
 }
}

By Rick Anderson, John Luo, and Steve Smith

View or download sample code (how to download)

Caching can significantly improve the performance and scalability of an app by reducing the work required to
generate content. Caching works best with data that changes infrequently. Caching makes a copy of data that
can be returned much faster than from the original source. You should write and test your app to never depend
on cached data.

ASP.NET Core supports several different caches. The simplest cache is based on the IMemoryCache, which
represents a cache stored in the memory of the web server. Apps which run on a server farm of multiple servers
should ensure that sessions are sticky when using the in-memory cache. Sticky sessions ensure that subsequent
requests from a client all go to the same server. For example, Azure Web apps use Application Request Routing
(ARR) to route all subsequent requests to the same server.

Non-sticky sessions in a web farm require a distributed cache to avoid cache consistency problems. For some
apps, a distributed cache can support higher scale out than an in-memory cache. Using a distributed cache
offloads the cache memory to an external process.

The IMemoryCache cache will evict cache entries under memory pressure unless the cache priority is set to
CacheItemPriority.NeverRemove . You can set the CacheItemPriority to adjust the priority with which the cache

evicts items under memory pressure.

The in-memory cache can store any object; the distributed cache interface is limited to byte[] .

In-memory caching is a service that's referenced from your app using Dependency Injection. Call
AddMemoryCache in ConfigureServices :

Request the IMemoryCache instance in the constructor :

https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/memory.md
https://twitter.com/RickAndMSFT
https://github.com/JunTaoLuo
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/performance/caching/memory/sample
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://www.iis.net/learn/extensions/planning-for-arr
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.cacheitempriority

public class HomeController : Controller
{
 private IMemoryCache _cache;

 public HomeController(IMemoryCache memoryCache)
 {
 _cache = memoryCache;
 }

public IActionResult CacheTryGetValueSet()
{
 DateTime cacheEntry;

 // Look for cache key.
 if (!_cache.TryGetValue(CacheKeys.Entry, out cacheEntry))
 {
 // Key not in cache, so get data.
 cacheEntry = DateTime.Now;

 // Set cache options.
 var cacheEntryOptions = new MemoryCacheEntryOptions()
 // Keep in cache for this time, reset time if accessed.
 .SetSlidingExpiration(TimeSpan.FromSeconds(3));

 // Save data in cache.
 _cache.Set(CacheKeys.Entry, cacheEntry, cacheEntryOptions);
 }

 return View("Cache", cacheEntry);
}

@model DateTime?

<div>
 <h2>Actions</h2>

 <a asp-controller="Home" asp-action="CacheTryGetValueSet">TryGetValue and Set
 <a asp-controller="Home" asp-action="CacheGet">Get
 <a asp-controller="Home" asp-action="CacheGetOrCreate">GetOrCreate
 <a asp-controller="Home" asp-action="CacheGetOrCreateAsync">GetOrCreateAsync
 <a asp-controller="Home" asp-action="CacheRemove">Remove

</div>

<h3>Current Time: @DateTime.Now.TimeOfDay.ToString()</h3>
<h3>Cached Time: @(Model == null ? "No cached entry found" : Model.Value.TimeOfDay.ToString())</h3>

IMemoryCache requires NuGet package Microsoft.Extensions.Caching.Memory.

IMemoryCache requires NuGet package Microsoft.Extensions.Caching.Memory, which is avaiable in the
Microsoft.AspNetCore.All metapackage.

IMemoryCache requires NuGet package Microsoft.Extensions.Caching.Memory, which is avaiable in the
Microsoft.AspNetCore.App metapackage.

The following code uses TryGetValue to check if a time is in the cache. If a time isn't cached, a new entry is
created and added to the cache with Set.

The current time and the cached time are displayed:

The cached DateTime value remains in the cache while there are requests within the timeout period (and no

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/
https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/
https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.imemorycache.trygetvalue?view=aspnetcore-2.0#Microsoft_Extensions_Caching_Memory_IMemoryCache_TryGetValue_System_Object_System_Object__
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.set?view=aspnetcore-2.0#Microsoft_Extensions_Caching_Memory_CacheExtensions_Set__1_Microsoft_Extensions_Caching_Memory_IMemoryCache_System_Object___0_Microsoft_Extensions_Caching_Memory_MemoryCacheEntryOptions_

public IActionResult CacheGetOrCreate()
{
 var cacheEntry = _cache.GetOrCreate(CacheKeys.Entry, entry =>
 {
 entry.SlidingExpiration = TimeSpan.FromSeconds(3);
 return DateTime.Now;
 });

 return View("Cache", cacheEntry);
}

public async Task<IActionResult> CacheGetOrCreateAsync()
{
 var cacheEntry = await
 _cache.GetOrCreateAsync(CacheKeys.Entry, entry =>
 {
 entry.SlidingExpiration = TimeSpan.FromSeconds(3);
 return Task.FromResult(DateTime.Now);
 });

 return View("Cache", cacheEntry);
}

public IActionResult CacheGet()
{
 var cacheEntry = _cache.Get<DateTime?>(CacheKeys.Entry);
 return View("Cache", cacheEntry);
}

eviction due to memory pressure). The following image shows the current time and an older time retrieved
from the cache:

The following code uses GetOrCreate and GetOrCreateAsync to cache data.

The following code calls Get to fetch the cached time:

See IMemoryCache methods and CacheExtensions methods for a description of the cache methods.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.cacheextensions#Microsoft_Extensions_Caching_Memory_CacheExtensions_GetOrCreate__1_Microsoft_Extensions_Caching_Memory_IMemoryCache_System_Object_System_Func_Microsoft_Extensions_Caching_Memory_ICacheEntry___0__
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.cacheextensions#Microsoft_Extensions_Caching_Memory_CacheExtensions_GetOrCreateAsync__1_Microsoft_Extensions_Caching_Memory_IMemoryCache_System_Object_System_Func_Microsoft_Extensions_Caching_Memory_ICacheEntry_System_Threading_Tasks_Task___0___
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.get#Microsoft_Extensions_Caching_Memory_CacheExtensions_Get__1_Microsoft_Extensions_Caching_Memory_IMemoryCache_System_Object_
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.cacheextensions

Using MemoryCacheEntryOptions

public IActionResult CreateCallbackEntry()
{
 var cacheEntryOptions = new MemoryCacheEntryOptions()
 // Pin to cache.
 .SetPriority(CacheItemPriority.NeverRemove)
 // Add eviction callback
 .RegisterPostEvictionCallback(callback: EvictionCallback, state: this);

 _cache.Set(CacheKeys.CallbackEntry, DateTime.Now, cacheEntryOptions);

 return RedirectToAction("GetCallbackEntry");
}

public IActionResult GetCallbackEntry()
{
 return View("Callback", new CallbackViewModel
 {
 CachedTime = _cache.Get<DateTime?>(CacheKeys.CallbackEntry),
 Message = _cache.Get<string>(CacheKeys.CallbackMessage)
 });
}

public IActionResult RemoveCallbackEntry()
{
 _cache.Remove(CacheKeys.CallbackEntry);
 return RedirectToAction("GetCallbackEntry");
}

private static void EvictionCallback(object key, object value,
 EvictionReason reason, object state)
{
 var message = $"Entry was evicted. Reason: {reason}.";
 ((HomeController)state)._cache.Set(CacheKeys.CallbackMessage, message);
}

Cache dependencies

The following sample:

Sets the absolute expiration time. This is the maximum time the entry can be cached and prevents the item
from becoming too stale when the sliding expiration is continuously renewed.
Sets a sliding expiration time. Requests that access this cached item will reset the sliding expiration clock.
Sets the cache priority to CacheItemPriority.NeverRemove .
Sets a PostEvictionDelegate that will be called after the entry is evicted from the cache. The callback is run on
a different thread from the code that removes the item from the cache.

The following sample shows how to expire a cache entry if a dependent entry expires. A
CancellationChangeToken is added to the cached item. When Cancel is called on the CancellationTokenSource ,

both cache entries are evicted.

https://docs.microsoft.com/dotnet/api/microsoft.extensions.caching.memory.postevictiondelegate

public IActionResult CreateDependentEntries()
{
 var cts = new CancellationTokenSource();
 _cache.Set(CacheKeys.DependentCTS, cts);

 using (var entry = _cache.CreateEntry(CacheKeys.Parent))
 {
 // expire this entry if the dependant entry expires.
 entry.Value = DateTime.Now;
 entry.RegisterPostEvictionCallback(DependentEvictionCallback, this);

 _cache.Set(CacheKeys.Child,
 DateTime.Now,
 new CancellationChangeToken(cts.Token));
 }

 return RedirectToAction("GetDependentEntries");
}

public IActionResult GetDependentEntries()
{
 return View("Dependent", new DependentViewModel
 {
 ParentCachedTime = _cache.Get<DateTime?>(CacheKeys.Parent),
 ChildCachedTime = _cache.Get<DateTime?>(CacheKeys.Child),
 Message = _cache.Get<string>(CacheKeys.DependentMessage)
 });
}

public IActionResult RemoveChildEntry()
{
 _cache.Get<CancellationTokenSource>(CacheKeys.DependentCTS).Cancel();
 return RedirectToAction("GetDependentEntries");
}

private static void DependentEvictionCallback(object key, object value,
 EvictionReason reason, object state)
{
 var message = $"Parent entry was evicted. Reason: {reason}.";
 ((HomeController)state)._cache.Set(CacheKeys.DependentMessage, message);
}

Additional notes

Additional resources

Using a CancellationTokenSource allows multiple cache entries to be evicted as a group. With the using pattern
in the code above, cache entries created inside the using block will inherit triggers and expiration settings.

When using a callback to repopulate a cache item:

Multiple requests can find the cached key value empty because the callback hasn't completed.
This can result in several threads repopulating the cached item.

When one cache entry is used to create another, the child copies the parent entry's expiration tokens and
time-based expiration settings. The child isn't expired by manual removal or updating of the parent entry.

Work with a distributed cache
Detect changes with change tokens
Response caching
Response Caching Middleware
Cache Tag Helper

Distributed Cache Tag Helper

Work with a distributed cache in ASP.NET Core
6/4/2018 • 5 minutes to read • Edit Online

What is a distributed cache

NOTENOTE

The IDistributedCache Interface

By Steve Smith

Distributed caches can improve the performance and scalability of ASP.NET Core apps, especially when hosted
in a cloud or server farm environment. This article explains how to work with ASP.NET Core's built-in distributed
cache abstractions and implementations.

View or download sample code (how to download)

A distributed cache is shared by multiple app servers (see Cache Basics). The information in the cache isn't
stored in the memory of individual web servers, and the cached data is available to all of the app's servers. This
provides several advantages:

1. Cached data is coherent on all web servers. Users don't see different results depending on which web
server handles their request

2. Cached data survives web server restarts and deployments. Individual web servers can be removed or
added without impacting the cache.

3. The source data store has fewer requests made to it (than with multiple in-memory caches or no cache at
all).

If using a SQL Server Distributed Cache, some of these advantages are only true if a separate database instance is used
for the cache than for the app's source data.

Like any cache, a distributed cache can dramatically improve an app's responsiveness, since typically data can be
retrieved from the cache much faster than from a relational database (or web service).

Cache configuration is implementation specific. This article describes how to configure both Redis and SQL
Server distributed caches. Regardless of which implementation is selected, the app interacts with the cache
using a common IDistributedCache interface.

The IDistributedCache interface includes synchronous and asynchronous methods. The interface allows items
to be added, retrieved, and removed from the distributed cache implementation. The IDistributedCache

interface includes the following methods:

Get, GetAsync

Takes a string key and retrieves a cached item as a byte[] if found in the cache.

Set, SetAsync

Adds an item (as byte[]) to the cache using a string key.

Refresh, RefreshAsync

https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/distributed.md
https://ardalis.com/
https://github.com/aspnet/Docs/tree/master/aspnetcore/performance/caching/distributed/sample

NOTENOTE

Refreshes an item in the cache based on its key, resetting its sliding expiration timeout (if any).

Remove, RemoveAsync

Removes a cache entry based on its key.

To use the IDistributedCache interface:

1. Add the required NuGet packages to your project file.

2. Configure the specific implementation of IDistributedCache in your Startup class's ConfigureServices

method, and add it to the container there.

3. From the app's Middleware or MVC controller classes, request an instance of IDistributedCache from
the constructor. The instance will be provided by Dependency Injection (DI).

There's no need to use a Singleton or Scoped lifetime for IDistributedCache instances (at least for the built-in
implementations). You can also create an instance wherever you might need one (instead of using Dependency Injection),
but this can make your code harder to test, and violates the Explicit Dependencies Principle.

The following example shows how to use an instance of IDistributedCache in a simple middleware component:

http://deviq.com/explicit-dependencies-principle/

using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Caching.Distributed;

namespace DistCacheSample
{
 public class StartTimeHeader
 {
 private readonly RequestDelegate _next;
 private readonly IDistributedCache _cache;

 public StartTimeHeader(RequestDelegate next,
 IDistributedCache cache)
 {
 _next = next;
 _cache = cache;
 }

 public async Task Invoke(HttpContext httpContext)
 {
 string startTimeString = "Not found.";
 var value = await _cache.GetAsync("lastServerStartTime");
 if (value != null)
 {
 startTimeString = Encoding.UTF8.GetString(value);
 }

 httpContext.Response.Headers.Append(
 "Last-Server-Start-Time", startTimeString);

 await _next.Invoke(httpContext);
 }
 }

 // Add the middleware to the HTTP request pipeline.
 public static class StartTimeHeaderExtensions
 {
 public static IApplicationBuilder UseStartTimeHeader(
 this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<StartTimeHeader>();
 }
 }
}

In the code above, the cached value is read, but never written. In this sample, the value is only set when a server
starts up, and doesn't change. In a multi-server scenario, the most recent server to start will overwrite any
previous values that were set by other servers. The Get and Set methods use the byte[] type. Therefore, the
string value must be converted using Encoding.UTF8.GetString (for Get) and Encoding.UTF8.GetBytes (for Set

).

The following code from Startup.cs shows the value being set:

public void Configure(IApplicationBuilder app,
 IDistributedCache cache)
{
 var serverStartTimeString = DateTime.Now.ToString();
 byte[] val = Encoding.UTF8.GetBytes(serverStartTimeString);
 var cacheEntryOptions = new DistributedCacheEntryOptions()
 .SetSlidingExpiration(TimeSpan.FromSeconds(30));
 cache.Set("lastServerStartTime", val, cacheEntryOptions);

NOTENOTE

Using a Redis distributed cache

public void ConfigureStagingServices(IServiceCollection services)
{
 services.AddDistributedRedisCache(options =>
 {
 options.Configuration = "localhost";
 options.InstanceName = "SampleInstance";
 });
}

NOTENOTE

Using a SQL Server distributed cache

<ItemGroup>
<DotNetCliToolReference Include="Microsoft.Extensions.Caching.SqlConfig.Tools"
Version="2.0.2" />
</ItemGroup>

Since IDistributedCache is configured in the ConfigureServices method, it's available to the Configure method as
a parameter. Adding it as a parameter will allow the configured instance to be provided through DI.

Redis is an open source in-memory data store, which is often used as a distributed cache. You can use it locally,
and you can configure an Azure Redis Cache for your Azure-hosted ASP.NET Core apps. Your ASP.NET Core
app configures the cache implementation using a RedisDistributedCache instance.

You configure the Redis implementation in ConfigureServices and access it in your app code by requesting an
instance of IDistributedCache (see the code above).

In the sample code, a RedisCache implementation is used when the server is configured for a Staging

environment. Thus the ConfigureStagingServices method configures the RedisCache :

To install Redis on your local machine, install the chocolatey package https://chocolatey.org/packages/redis-64/ and run
redis-server from a command prompt.

The SqlServerCache implementation allows the distributed cache to use a SQL Server database as its backing
store. To create SQL Server table you can use sql-cache tool, the tool creates a table with the name and schema
you specify.

Add SqlConfig.Tools to the <ItemGroup> element of the project file and run dotnet restore .

Test SqlConfig.Tools by running the following command:

https://redis.io/
https://azure.microsoft.com/services/cache/
https://chocolatey.org/packages/redis-64/

dotnet sql-cache create --help

dotnet sql-cache create "Data Source=(localdb)\v11.0;Initial Catalog=DistCache;Integrated Security=True;"
dbo TestCache
info: Microsoft.Extensions.Caching.SqlConfig.Tools.Program[0]
Table and index were created successfully.

public void ConfigureProductionServices(IServiceCollection services)
{
 services.AddDistributedSqlServerCache(options =>
 {
 options.ConnectionString =
 @"Data Source=(localdb)\v11.0;Initial Catalog=DistCache;" +
 @"Integrated Security=True;";
 options.SchemaName = "dbo";
 options.TableName = "TestCache";
 });
}

NOTENOTE

Recommendations

Additional resources

SqlConfig.Tools displays usage, options, and command help.

Create a table in SQL Server by running the sql-cache create command :

The created table has the following schema:

Like all cache implementations, your app should get and set cache values using an instance of
IDistributedCache , not a SqlServerCache . The sample implements SqlServerCache in the Production

environment (so it's configured in ConfigureProductionServices).

The ConnectionString (and optionally, SchemaName and TableName) should typically be stored outside of source
control (such as UserSecrets), as they may contain credentials.

When deciding which implementation of IDistributedCache is right for your app, choose between Redis and
SQL Server based on your existing infrastructure and environment, your performance requirements, and your
team's experience. If your team is more comfortable working with Redis, it's an excellent choice. If your team
prefers SQL Server, you can be confident in that implementation as well. Note that a traditional caching solution
stores data in-memory which allows for fast retrieval of data. You should store commonly used data in a cache
and store the entire data in a backend persistent store such as SQL Server or Azure Storage. Redis Cache is a
caching solution which gives you high throughput and low latency as compared to SQL Cache.

Redis Cache on Azure
SQL Database on Azure
Cache in-memory
Detect changes with change tokens
Response caching
Response Caching Middleware
Cache Tag Helper
Distributed Cache Tag Helper

https://azure.microsoft.com/documentation/services/redis-cache/
https://azure.microsoft.com/documentation/services/sql-database/

Response caching in ASP.NET Core
6/4/2018 • 8 minutes to read • Edit Online

NOTENOTE

HTTP-based response caching

DIRECTIVE ACTION

public A cache may store the response.

private The response must not be stored by a shared cache. A
private cache may store and reuse the response.

max-age The client won't accept a response whose age is greater than
the specified number of seconds. Examples: max-age=60 (60
seconds), max-age=2592000 (1 month)

no-cache On requests: A cache must not use a stored response to
satisfy the request. Note: The origin server re-generates the
response for the client, and the middleware updates the
stored response in its cache.

On responses: The response must not be used for a
subsequent request without validation on the origin server.

no-store On requests: A cache must not store the request.

On responses: A cache must not store any part of the
response.

By John Luo, Rick Anderson, Steve Smith, and Luke Latham

Response caching in Razor Pages is available in ASP.NET Core 2.1 or later.

View or download sample code (how to download)

Response caching reduces the number of requests a client or proxy makes to a web server. Response caching also
reduces the amount of work the web server performs to generate a response. Response caching is controlled by
headers that specify how you want client, proxy, and middleware to cache responses.

The web server can cache responses when you add Response Caching Middleware.

The HTTP 1.1 Caching specification describes how Internet caches should behave. The primary HTTP header
used for caching is Cache-Control, which is used to specify cache directives. The directives control caching
behavior as requests make their way from clients to servers and as reponses make their way from servers back
to clients. Requests and responses move through proxy servers, and proxy servers must also conform to the
HTTP 1.1 Caching specification.

Common Cache-Control directives are shown in the following table.

Other cache headers that play a role in caching are shown in the following table.

https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/response.md
https://github.com/JunTaoLuo
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://github.com/guardrex
https://github.com/aspnet/Docs/tree/master/aspnetcore/performance/caching/response/samples
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2.2.5
https://tools.ietf.org/html/rfc7234#section-5.2.2.6
https://tools.ietf.org/html/rfc7234#section-5.2.1.1
https://tools.ietf.org/html/rfc7234#section-5.2.1.4
https://tools.ietf.org/html/rfc7234#section-5.2.1.5

HEADER FUNCTION

Age An estimate of the amount of time in seconds since the
response was generated or successfully validated at the origin
server.

Expires The date/time after which the response is considered stale.

Pragma Exists for backwards compatibility with HTTP/1.0 caches for
setting no-cache behavior. If the Cache-Control header is
present, the Pragma header is ignored.

Vary Specifies that a cached response must not be sent unless all
of the Vary header fields match in both the cached
response's original request and the new request.

HTTP-based caching respects request Cache-Control directives

Other caching technology in ASP.NET Core
In-memory cachingIn-memory caching

Distributed CacheDistributed Cache

Cache Tag HelperCache Tag Helper

The HTTP 1.1 Caching specification for the Cache-Control header requires a cache to honor a valid
Cache-Control header sent by the client. A client can make requests with a no-cache header value and force the

server to generate a new response for every request.

Always honoring client Cache-Control request headers makes sense if you consider the goal of HTTP caching.
Under the official specification, caching is meant to reduce the latency and network overhead of satisfying
requests across a network of clients, proxies, and servers. It isn't necessarily a way to control the load on an origin
server.

There's no current developer control over this caching behavior when using the Response Caching Middleware
because the middleware adheres to the official caching specification. Future enhancements to the middleware will
permit configuring the middleware to ignore a request's Cache-Control header when deciding to serve a cached
response. This will offer you an opportunity to better control the load on your server when you use the
middleware.

In-memory caching uses server memory to store cached data. This type of caching is suitable for a single server
or multiple servers using sticky sessions. Sticky sessions means that the requests from a client are always routed
to the same server for processing.

For more information, see Cache in-memory.

Use a distributed cache to store data in memory when the app is hosted in a cloud or server farm. The cache is
shared across the servers that process requests. A client can submit a request that's handled by any server in the
group if cached data for the client is available. ASP.NET Core offers SQL Server and Redis distributed caches.

For more information, see Work with a distributed cache.

You can cache the content from an MVC view or Razor Page with the Cache Tag Helper. The Cache Tag Helper
uses in-memory caching to store data.

For more information, see Cache Tag Helper in ASP.NET Core MVC.

https://tools.ietf.org/html/rfc7234#section-5.1
https://tools.ietf.org/html/rfc7234#section-5.3
https://tools.ietf.org/html/rfc7234#section-5.4
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7234#section-5.2
https://github.com/aspnet/ResponseCaching/issues/96

Distributed Cache Tag HelperDistributed Cache Tag Helper

ResponseCache attribute

WARNINGWARNING

REQUEST RESULT

http://example.com?key1=value1 Returned from server

http://example.com?key1=value1 Returned from middleware

http://example.com?key1=value2 Returned from server

VaryVary

[ResponseCache(VaryByHeader = "User-Agent", Duration = 30)]
public IActionResult About2()
{

You can cache the content from an MVC view or Razor Page in distributed cloud or web farm scenarios with the
Distributed Cache Tag Helper. The Distributed Cache Tag Helper uses SQL Server or Redis to store data.

For more information, see Distributed Cache Tag Helper.

The ResponseCacheAttribute specifies the parameters necessary for setting appropriate headers in response
caching.

Disable caching for content that contains information for authenticated clients. Caching should only be enabled for content
that doesn't change based on a user's identity or whether a user is signed in.

VaryByQueryKeys varies the stored response by the values of the given list of query keys. When a single value of
* is provided, the middleware varies responses by all request query string parameters. VaryByQueryKeys

requires ASP.NET Core 1.1 or later.

The Response Caching Middleware must be enabled to set the VaryByQueryKeys property; otherwise, a runtime
exception is thrown. There isn't a corresponding HTTP header for the VaryByQueryKeys property. The property is
an HTTP feature handled by the Response Caching Middleware. For the middleware to serve a cached response,
the query string and query string value must match a previous request. For example, consider the sequence of
requests and results shown in the following table.

The first request is returned by the server and cached in middleware. The second request is returned by
middleware because the query string matches the previous request. The third request isn't in the middleware
cache because the query string value doesn't match a previous request.

The ResponseCacheAttribute is used to configure and create (via IFilterFactory) a ResponseCacheFilter. The
ResponseCacheFilter performs the work of updating the appropriate HTTP headers and features of the response.

The filter :

Removes any existing headers for Vary , Cache-Control , and Pragma .
Writes out the appropriate headers based on the properties set in the ResponseCacheAttribute .
Updates the response caching HTTP feature if VaryByQueryKeys is set.

This header is only written when the VaryByHeader property is set. It's set to the Vary property's value. The
following sample uses the VaryByHeader property:

https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Mvc.ResponseCacheAttribute
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute.varybyquerykeys
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.internal.responsecachefilter

[ResponseCache(VaryByHeader = "User-Agent", Duration = 30)]
public IActionResult About2()
{

NoStore and Location.NoneNoStore and Location.None

[ResponseCache(Location = ResponseCacheLocation.None, NoStore = true)]
public IActionResult Error()
{
 return View();
}

[ResponseCache(Location = ResponseCacheLocation.None, NoStore = true)]
public IActionResult Error()
{
 return View();
}

You can view the response headers with your browser's network tools. The following image shows the Edge F12
output on the Network tab when the About2 action method is refreshed:

NoStore overrides most of the other properties. When this property is set to true , the Cache-Control header is
set to no-store . If Location is set to None :

Cache-Control is set to no-store,no-cache .
Pragma is set to no-cache .

If NoStore is false and Location is None , Cache-Control and Pragma are set to no-cache .

You typically set NoStore to true on error pages. For example:

This results in the following headers:

Cache-Control: no-store,no-cache
Pragma: no-cache

Location and DurationLocation and Duration

NOTENOTE

[ResponseCache(Duration = 60)]
public IActionResult Contact()
{
 ViewData["Message"] = "Your contact page.";

 return View();
}

[ResponseCache(Duration = 60)]
public IActionResult Contact()
{
 ViewData["Message"] = "Your contact page.";

 return View();
}

Cache-Control: public,max-age=60

Cache profilesCache profiles

To enable caching, Duration must be set to a positive value and Location must be either Any (the default) or
Client . In this case, the Cache-Control header is set to the location value followed by the max-age of the

response.

Location 's options of Any and Client translate into Cache-Control header values of public and private ,
respectively. As noted previously, setting Location to None sets both Cache-Control and Pragma headers to
no-cache .

Below is an example showing the headers produced by setting Duration and leaving the default Location value:

This produces the following header :

Instead of duplicating ResponseCache settings on many controller action attributes, cache profiles can be
configured as options when setting up MVC in the ConfigureServices method in Startup . Values found in a
referenced cache profile are used as the defaults by the ResponseCache attribute and are overridden by any
properties specified on the attribute.

Setting up a cache profile:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.CacheProfiles.Add("Default",
 new CacheProfile()
 {
 Duration = 60
 });
 options.CacheProfiles.Add("Never",
 new CacheProfile()
 {
 Location = ResponseCacheLocation.None,
 NoStore = true
 });
 }).SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.CacheProfiles.Add("Default",
 new CacheProfile()
 {
 Duration = 60
 });
 options.CacheProfiles.Add("Never",
 new CacheProfile()
 {
 Location = ResponseCacheLocation.None,
 NoStore = true
 });
 });
}

[ResponseCache(Duration = 30)]
public class HomeController : Controller
{
 [ResponseCache(CacheProfileName = "Default")]
 public IActionResult Index()
 {
 return View();
 }

[ResponseCache(Duration = 30)]
public class HomeController : Controller
{
 [ResponseCache(CacheProfileName = "Default")]
 public IActionResult Index()
 {
 return View();
 }

Referencing a cache profile:

The ResponseCache attribute can be applied both to actions (methods) and controllers (classes). Method-level
attributes override the settings specified in class-level attributes.

In the above example, a class-level attribute specifies a duration of 30 seconds, while a method-level attribute

Cache-Control: public,max-age=60

Additional resources

references a cache profile with a duration set to 60 seconds.

The resulting header :

Storing Responses in Caches
Cache-Control
Cache in-memory
Work with a distributed cache
Detect changes with change tokens
Response Caching Middleware
Cache Tag Helper
Distributed Cache Tag Helper

https://tools.ietf.org/html/rfc7234#section-3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Response Caching Middleware in ASP.NET Core
6/12/2018 • 6 minutes to read • Edit Online

Package

Configuration

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddResponseCaching();
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

By Luke Latham and John Luo

View or download ASP.NET Core 2.1 sample code (how to download)

This article explains how to configure Response Caching Middleware in an ASP.NET Core app. The middleware
determines when responses are cacheable, stores responses, and serves responses from cache. For an
introduction to HTTP caching and the ResponseCache attribute, see Response Caching.

To include the middleware in your project, add a reference to the Microsoft.AspNetCore.ResponseCaching
package or use the Microsoft.AspNetCore.App metapackage, which is available for use in ASP.NET Core 2.1 or
later.

In ConfigureServices , add the middleware to the service collection.

Configure the app to use the middleware with the UseResponseCaching extension method, which adds the
middleware to the request processing pipeline. The sample app adds a Cache-Control header to the response
that caches cacheable responses for up to 10 seconds. The sample sends a Vary header to configure the
middleware to serve a cached response only if the Accept-Encoding header of subsequent requests matches
that of the original request. In the code example that follows, CacheControlHeaderValue and HeaderNames
require a using statement for the Microsoft.Net.Http.Headers namespace.

https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/caching/middleware.md
https://github.com/guardrex
https://github.com/JunTaoLuo
https://github.com/aspnet/Docs/tree/master/aspnetcore/performance/caching/middleware/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.ResponseCaching/
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://docs.microsoft.com/dotnet/api/microsoft.net.http.headers.cachecontrolheadervalue
https://docs.microsoft.com/dotnet/api/microsoft.net.http.headers.headernames
https://docs.microsoft.com/dotnet/api/microsoft.net.http.headers

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseResponseCaching();

 app.Use(async (context, next) =>
 {
 context.Response.GetTypedHeaders().CacheControl =
 new Microsoft.Net.Http.Headers.CacheControlHeaderValue()
 {
 Public = true,
 MaxAge = TimeSpan.FromSeconds(10)
 };
 context.Response.Headers[Microsoft.Net.Http.Headers.HeaderNames.Vary] =
 new string[] { "Accept-Encoding" };

 await next();
 });

 app.UseMvc();
}

WARNINGWARNING

Options

OPTION DESCRIPTION

UseCaseSensitivePaths Determines if responses are cached on case-sensitive paths.
The default value is false .

MaximumBodySize The largest cacheable size for the response body in bytes.
The default value is 64 * 1024 * 1024 (64 MB).

SizeLimit The size limit for the response cache middleware in bytes.
The default value is 100 * 1024 * 1024 (100 MB).

Response Caching Middleware only caches server responses that result in a 200 (OK) status code. Any other
responses, including error pages, are ignored by the middleware.

Responses containing content for authenticated clients must be marked as not cacheable to prevent the middleware from
storing and serving those responses. See Conditions for caching for details on how the middleware determines if a
response is cacheable.

The middleware offers three options for controlling response caching.

The following example configures the middleware to:

services.AddResponseCaching(options =>
{
 options.UseCaseSensitivePaths = true;
 options.MaximumBodySize = 1024;
});

VaryByQueryKeys

var responseCachingFeature = context.HttpContext.Features.Get<IResponseCachingFeature>();
if (responseCachingFeature != null)
{
 responseCachingFeature.VaryByQueryKeys = new[] { "MyKey" };
}

HTTP headers used by Response Caching Middleware

HEADER DETAILS

Authorization The response isn't cached if the header exists.

Cache responses smaller than or equal to 1,024 bytes.
Store the responses by case-sensitive paths (for example, /page1 and /Page1 are stored separately).

When using MVC/Web API controllers or Razor Pages page models, the ResponseCache attribute specifies the
parameters necessary for setting the appropriate headers for response caching. The only parameter of the
ResponseCache attribute that strictly requires the middleware is VaryByQueryKeys , which doesn't correspond to

an actual HTTP header. For more information, see ResponseCache Attribute.

When not using the ResponseCache attribute, response caching can be varied with the VaryByQueryKeys feature.
Use the ResponseCachingFeature directly from the IFeatureCollection of the HttpContext :

Using a single value equal to * in VaryByQueryKeys varies the cache by all request query parameters.

Response caching by the middleware is configured using HTTP headers.

Cache-Control The middleware only considers caching responses marked
with the public cache directive. Control caching with the
following parameters:

†If no limit is specified to max-stale , the middleware takes
no action.
‡ proxy-revalidate has the same effect as
must-revalidate .

For more information, see RFC 7231: Request Cache-Control
Directives.

Pragma A Pragma: no-cache header in the request produces the
same effect as Cache-Control: no-cache . This header is
overridden by the relevant directives in the Cache-Control

header, if present. Considered for backward compatibility
with HTTP/1.0.

Set-Cookie The response isn't cached if the header exists. Any
middleware in the request processing pipeline that sets one
or more cookies prevents the Response Caching Middleware
from caching the response (for example, the cookie-based
TempData provider).

Vary The Vary header is used to vary the cached response by
another header. For example, cache responses by encoding
by including the Vary: Accept-Encoding header, which
caches responses for requests with headers
Accept-Encoding: gzip and
Accept-Encoding: text/plain separately. A response with

a header value of * is never stored.

Expires A response deemed stale by this header isn't stored or
retrieved unless overridden by other Cache-Control

headers.

If-None-Match The full response is served from cache if the value isn't *

and the ETag of the response doesn't match any of the
values provided. Otherwise, a 304 (Not Modified) response
is served.

If-Modified-Since If the If-None-Match header isn't present, a full response is
served from cache if the cached response date is newer than
the value provided. Otherwise, a 304 (Not Modified)
response is served.

HEADER DETAILS

max-age
max-stale†
min-fresh
must-revalidate
no-cache
no-store
only-if-cached
private
public
s-maxage
proxy-revalidate‡

https://tools.ietf.org/html/rfc7234#section-5.2.1

Date When serving from cache, the Date header is set by the
middleware if it wasn't provided on the original response.

Content-Length When serving from cache, the Content-Length header is
set by the middleware if it wasn't provided on the original
response.

Age The Age header sent in the original response is ignored.
The middleware computes a new value when serving a
cached response.

HEADER DETAILS

Caching respects request Cache-Control directives

Troubleshooting

Conditions for cachingConditions for caching

The middleware respects the rules of the HTTP 1.1 Caching specification. The rules require a cache to honor a
valid Cache-Control header sent by the client. Under the specification, a client can make requests with a
no-cache header value and force the server to generate a new response for every request. Currently, there's no

developer control over this caching behavior when using the middleware because the middleware adheres to
the official caching specification.

For more control over caching behavior, explore other caching features of ASP.NET Core. See the following
topics:

Cache in-memory
Work with a distributed cache
Cache Tag Helper in ASP.NET Core MVC
Distributed Cache Tag Helper

If caching behavior isn't as expected, confirm that responses are cacheable and capable of being served from
the cache. Examine the request's incoming headers and the response's outgoing headers. Enable logging to help
with debugging.

When testing and troubleshooting caching behavior, a browser may set request headers that affect caching in
undesirable ways. For example, a browser may set the Cache-Control header to no-cache or max-age=0 when
refreshing a page. The following tools can explicitly set request headers and are preferred for testing caching:

Fiddler
Postman

The request must result in a server response with a 200 (OK) status code.
The request method must be GET or HEAD.
Terminal middleware, such as Static File Middleware, must not process the response prior to the Response
Caching Middleware.
The Authorization header must not be present.
Cache-Control header parameters must be valid, and the response must be marked public and not marked
private .

The Pragma: no-cache header must not be present if the Cache-Control header isn't present, as the
Cache-Control header overrides the Pragma header when present.

The Set-Cookie header must not be present.

https://tools.ietf.org/html/rfc7234#section-5.2
https://www.telerik.com/fiddler
https://www.getpostman.com/

NOTENOTE

Additional resources

Vary header parameters must be valid and not equal to * .
The Content-Length header value (if set) must match the size of the response body.
The IHttpSendFileFeature isn't used.
The response must not be stale as specified by the Expires header and the max-age and s-maxage cache
directives.
Response buffering must be successful, and the size of the response must be smaller than the configured or
default SizeLimit .
The response must be cacheable according to the RFC 7234 specifications. For example, the no-store

directive must not exist in request or response header fields. See Section 3: Storing Responses in Caches of
RFC 7234 for details.

The Antiforgery system for generating secure tokens to prevent Cross-Site Request Forgery (CSRF) attacks sets the
Cache-Control and Pragma headers to no-cache so that responses aren't cached. For information on how to disable

antiforgery tokens for HTML form elements, see ASP.NET Core antiforgery configuration.

Application Startup
Middleware
Cache in-memory
Work with a distributed cache
Detect changes with change tokens
Response caching
Cache Tag Helper
Distributed Cache Tag Helper

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.features.ihttpsendfilefeature
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234

Response Compression Middleware for ASP.NET
Core
6/4/2018 • 9 minutes to read • Edit Online

When to use Response Compression Middleware

Response compression

ACCEPT-ENCODING HEADER VALUES MIDDLEWARE SUPPORTED DESCRIPTION

br No Brotli Compressed Data Format

compress No UNIX "compress" data format

By Luke Latham

View or download sample code (how to download)

Network bandwidth is a limited resource. Reducing the size of the response usually increases the responsiveness
of an app, often dramatically. One way to reduce payload sizes is to compress an app's responses.

Use server-based response compression technologies in IIS, Apache, or Nginx. The performance of the
middleware probably won't match that of the server modules. HTTP.sys server and Kestrel don't currently offer
built-in compression support.

Use Response Compression Middleware when you're:

Unable to use the following server-based compression technologies:

Hosting directly on:

IIS Dynamic Compression module
Apache mod_deflate module
Nginx Compression and Decompression

HTTP.sys server (formerly called WebListener)
Kestrel

Usually, any response not natively compressed can benefit from response compression. Responses not natively
compressed typically include: CSS, JavaScript, HTML, XML, and JSON. You shouldn't compress natively
compressed assets, such as PNG files. If you attempt to further compress a natively compressed response, any
small additional reduction in size and transmission time will likely be overshadowed by the time it took to process
the compression. Don't compress files smaller than about 150-1000 bytes (depending on the file's content and
the efficiency of compression). The overhead of compressing small files may produce a compressed file larger
than the uncompressed file.

When a client can process compressed content, the client must inform the server of its capabilities by sending the
Accept-Encoding header with the request. When a server sends compressed content, it must include information

in the Content-Encoding header on how the compressed response is encoded. Content encoding designations
supported by the middleware are shown in the following table.

https://github.com/aspnet/Docs/blob/master/aspnetcore/performance/response-compression.md
https://github.com/guardrex
https://github.com/aspnet/Docs/tree/master/aspnetcore/performance/response-compression/samples
https://www.iis.net/overview/reliability/dynamiccachingandcompression
http://httpd.apache.org/docs/current/mod/mod_deflate.html
https://www.nginx.com/resources/admin-guide/compression-and-decompression/
https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener

deflate No "deflate" compressed data inside the
"zlib" data format

exi No W3C Efficient XML Interchange

gzip Yes (default) gzip file format

identity Yes "No encoding" identifier: The response
must not be encoded.

pack200-gzip No Network Transfer Format for Java
Archives

* Yes Any available content encoding not
explicitly requested

ACCEPT-ENCODING HEADER VALUES MIDDLEWARE SUPPORTED DESCRIPTION

HEADER ROLE

Accept-Encoding Sent from the client to the server to indicate the content
encoding schemes acceptable to the client.

Content-Encoding Sent from the server to the client to indicate the encoding of
the content in the payload.

Content-Length When compression occurs, the Content-Length header is
removed, since the body content changes when the response
is compressed.

Content-MD5 When compression occurs, the Content-MD5 header is
removed, since the body content has changed and the hash
is no longer valid.

Content-Type Specifies the MIME type of the content. Every response
should specify its Content-Type . The middleware checks this
value to determine if the response should be compressed.
The middleware specifies a set of default MIME types that it
can encode, but you can replace or add MIME types.

For more information, see the IANA Official Content Coding List.

The middleware allows you to add additional compression providers for custom Accept-Encoding header values.
For more information, see Custom Providers below.

The middleware is capable of reacting to quality value (qvalue, q) weighting when sent by the client to prioritize
compression schemes. For more information, see RFC 7231: Accept-Encoding.

Compression algorithms are subject to a tradeoff between compression speed and the effectiveness of the
compression. Effectiveness in this context refers to the size of the output after compression. The smallest size is
achieved by the most optimal compression.

The headers involved in requesting, sending, caching, and receiving compressed content are described in the
table below.

http://www.iana.org/assignments/http-parameters/http-parameters.xml#http-content-coding-registry
https://tools.ietf.org/html/rfc7231#section-5.3.4

Vary When sent by the server with a value of Accept-Encoding

to clients and proxies, the Vary header indicates to the
client or proxy that it should cache (vary) responses based on
the value of the Accept-Encoding header of the request.
The result of returning content with the
Vary: Accept-Encoding header is that both compressed

and uncompressed responses are cached separately.

HEADER ROLE

Package

Configuration

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddResponseCompression();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 app.UseResponseCompression();
 }
}

NOTENOTE

You can explore the features of the Response Compression Middleware with the sample app. The sample
illustrates:

The compression of app responses using gzip and custom compression providers.
How to add a MIME type to the default list of MIME types for compression.

To include the middleware in your project, add a reference to the Microsoft.AspNetCore.ResponseCompression
package. This feature is available for apps that target ASP.NET Core 1.1 or later.

To include the middleware in your project, add a reference to the Microsoft.AspNetCore.ResponseCompression
package or use the Microsoft.AspNetCore.App metapackage (ASP.NET Core 2.1 or later).

The following code shows how to enable the Response Compression Middleware with the default gzip
compression and for default MIME types.

Use a tool like Fiddler, Firebug, or Postman to set the Accept-Encoding request header and study the response headers,
size, and body.

Submit a request to the sample app without the Accept-Encoding header and observe that the response is
uncompressed. The Content-Encoding and Vary headers aren't present on the response.

https://github.com/aspnet/Docs/tree/master/aspnetcore/performance/response-compression/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.ResponseCompression/
https://www.nuget.org/packages/Microsoft.AspNetCore.ResponseCompression/
http://www.telerik.com/fiddler
http://getfirebug.com/
https://www.getpostman.com/

Providers
GzipCompressionProviderGzipCompressionProvider

Submit a request to the sample app with the Accept-Encoding: gzip header and observe that the response is
compressed. The Content-Encoding and Vary headers are present on the response.

Use the GzipCompressionProvider to compress responses with gzip. This is the default compression provider if
none are specified. You can set the compression level with the GzipCompressionProviderOptions.

The gzip compression provider defaults to the fastest compression level (CompressionLevel.Fastest), which might
not produce the most efficient compression. If the most efficient compression is desired, you can configure the
middleware for optimal compression.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.responsecompression.gzipcompressionprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.responsecompression.gzipcompressionprovideroptions
https://docs.microsoft.com/dotnet/api/system.io.compression.compressionlevel

COMPRESSION LEVEL DESCRIPTION

CompressionLevel.Fastest Compression should complete as quickly as possible, even if
the resulting output isn't optimally compressed.

CompressionLevel.NoCompression No compression should be performed.

CompressionLevel.Optimal Responses should be optimally compressed, even if the
compression takes more time to complete.

public void ConfigureServices(IServiceCollection services)
{
 services.AddResponseCompression(options =>
 {
 options.Providers.Add<GzipCompressionProvider>();
 options.Providers.Add<CustomCompressionProvider>();
 options.MimeTypes =
 ResponseCompressionDefaults.MimeTypes.Concat(
 new[] { "image/svg+xml" });
 });

 services.Configure<GzipCompressionProviderOptions>(options =>
 {
 options.Level = CompressionLevel.Fastest;
 });
}

MIME types

ASP.NET Core 2.x
ASP.NET Core 1.x

The middleware specifies a default set of MIME types for compression:

text/plain

text/css

application/javascript

text/html

application/xml

text/xml

application/json

text/json

You can replace or append MIME types with the Response Compression Middleware options. Note that wildcard
MIME types, such as text/* aren't supported. The sample app adds a MIME type for image/svg+xml and
compresses and serves the ASP.NET Core banner image (banner.svg).

ASP.NET Core 2.x
ASP.NET Core 1.x

https://docs.microsoft.com/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/dotnet/api/system.io.compression.compressionlevel

public void ConfigureServices(IServiceCollection services)
{
 services.AddResponseCompression(options =>
 {
 options.Providers.Add<GzipCompressionProvider>();
 options.Providers.Add<CustomCompressionProvider>();
 options.MimeTypes =
 ResponseCompressionDefaults.MimeTypes.Concat(
 new[] { "image/svg+xml" });
 });

 services.Configure<GzipCompressionProviderOptions>(options =>
 {
 options.Level = CompressionLevel.Fastest;
 });
}

Custom providersCustom providers

public void ConfigureServices(IServiceCollection services)
{
 services.AddResponseCompression(options =>
 {
 options.Providers.Add<GzipCompressionProvider>();
 options.Providers.Add<CustomCompressionProvider>();
 options.MimeTypes =
 ResponseCompressionDefaults.MimeTypes.Concat(
 new[] { "image/svg+xml" });
 });

 services.Configure<GzipCompressionProviderOptions>(options =>
 {
 options.Level = CompressionLevel.Fastest;
 });
}

public class CustomCompressionProvider : ICompressionProvider
{
 public string EncodingName => "mycustomcompression";
 public bool SupportsFlush => true;

 public Stream CreateStream(Stream outputStream)
 {
 // Create a custom compression stream wrapper here
 return outputStream;
 }
}

You can create custom compression implementations with ICompressionProvider. The EncodingName
represents the content encoding that this ICompressionProvider produces. The middleware uses this information
to choose the provider based on the list specified in the Accept-Encoding header of the request.

Using the sample app, the client submits a request with the Accept-Encoding: mycustomcompression header. The
middleware uses the custom compression implementation and returns the response with a
Content-Encoding: mycustomcompression header. The client must be able to decompress the custom encoding in

order for a custom compression implementation to work.

ASP.NET Core 2.x
ASP.NET Core 1.x

Submit a request to the sample app with the Accept-Encoding: mycustomcompression header and observe the

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.responsecompression.icompressionprovider
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.responsecompression.icompressionprovider.encodingname

 Compression with secure protocol

Adding the Vary header

// ONLY REQUIRED FOR ASP.NET CORE 1.x APPS
private void ManageVaryHeader(HttpContext context)
{
 // If the Accept-Encoding header is present, add the Vary header
 var accept = context.Request.Headers[HeaderNames.AcceptEncoding];
 if (!StringValues.IsNullOrEmpty(accept))
 {
 context.Response.Headers.Append(HeaderNames.Vary, HeaderNames.AcceptEncoding);
 }
}

Middleware issue when behind an Nginx reverse proxy

response headers. The Vary and Content-Encoding headers are present on the response. The response body (not
shown) isn't compressed by the sample. There isn't a compression implementation in the
CustomCompressionProvider class of the sample. However, the sample shows where you would implement such a

compression algorithm.

Compressed responses over secure connections can be controlled with the EnableForHttps option, which is
disabled by default. Using compression with dynamically generated pages can lead to security problems such as
the CRIME and BREACH attacks.

When compressing responses based on the Accept-Encoding header, there are potentially multiple compressed
versions of the response and an uncompressed version. In order to instruct client and proxy caches that multiple
versions exist and should be stored, the Vary header is added with an Accept-Encoding value. In ASP.NET Core
2.0 or later, the middleware adds the Vary header automatically when the response is compressed.

When compressing responses based on the Accept-Encoding header, there are potentially multiple compressed
versions of the response and an uncompressed version. In order to instruct client and proxy caches that multiple
versions exist and should be stored, the Vary header is added with an Accept-Encoding value. In ASP.NET Core
1.x, adding the Vary header to the response is accomplished manually:

When a request is proxied by Nginx, the Accept-Encoding header is removed. This prevents the middleware from
compressing the response. For more information, see NGINX: Compression and Decompression. This issue is

https://wikipedia.org/wiki/CRIME_(security_exploit)
https://wikipedia.org/wiki/BREACH_(security_exploit)
https://www.nginx.com/resources/admin-guide/compression-and-decompression/

Working with IIS dynamic compression

Troubleshooting

Additional resources

tracked by Figure out pass-through compression for Nginx (BasicMiddleware #123).

If you have an active IIS Dynamic Compression Module configured at the server level that you would like to
disable for an app, you can do so with an addition to your web.config file. For more information, see Disabling IIS
modules.

Use a tool like Fiddler, Firebug, or Postman, which allow you to set the Accept-Encoding request header and
study the response headers, size, and body. The Response Compression Middleware compresses responses that
meet the following conditions:

The Accept-Encoding header is present with a value of gzip , * , or custom encoding that matches a custom
compression provider that you've established. The value must not be identity or have a quality value
(qvalue, q) setting of 0 (zero).
The MIME type (Content-Type) must be set and must match a MIME type configured on the
ResponseCompressionOptions.
The request must not include the Content-Range header.
The request must use insecure protocol (http), unless secure protocol (https) is configured in the Response
Compression Middleware options. Note the danger described above when enabling secure content
compression.

Application Startup
Middleware
Mozilla Developer Network: Accept-Encoding
RFC 7231 Section 3.1.2.1: Content Codings
RFC 7230 Section 4.2.3: Gzip Coding
GZIP file format specification version 4.3

https://github.com/aspnet/BasicMiddleware/issues/123
http://www.telerik.com/fiddler
http://getfirebug.com/
https://www.getpostman.com/
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.responsecompression.responsecompressionoptions
https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Encoding
https://tools.ietf.org/html/rfc7231#section-3.1.2.1
https://tools.ietf.org/html/rfc7230#section-4.2.3
http://www.ietf.org/rfc/rfc1952.txt

Migration to ASP.NET Core
5/30/2018 • 2 minutes to read • Edit Online

ASP.NET to ASP.NET Core

ASP.NET Core 1.x to 2.0

ASP.NET Core 2.0 to 2.1

Migrate from ASP.NET to ASP.NET Core
Migrate from ASP.NET MVC to ASP.NET Core MVC
Migrate from ASP.NET Web API to ASP.NET Core Web API
Migrate configuration
Migrate authentication and Identity
Migrate ClaimsPrincipal.Current usage
Migrate ASP.NET Membership to ASP.NET Core Identity
Migrate HTTP modules to middleware

Migrate from ASP.NET Core 1.x to 2.0
Migrate authentication and Identity

Migrate from ASP.NET Core 2.0 to 2.1

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/index.md

Migrate from ASP.NET Core 2.0 to 2.1
6/15/2018 • 3 minutes to read • Edit Online

Update the project file to use 2.1 versions

By Rick Anderson

See What's new in ASP.NET Core 2.1 for an overview of the new features in ASP.NET Core 2.1.

This article:

Covers the basics of migrating an ASP.NET Core 2.0 app to 2.1.
Provides an overview of the changes to the ASP.NET Core web application templates.

A quick way to get an overview of the changes in 2.1 is to:

Create an ASP.NET Core 2.0 web app named WebApp1.
Commit the WebApp1 in a source control system.
Delete WebApp1 and create an ASP.NET Core 2.1 web app named WebApp1 in the same place.
Review the changes in the 2.1 version.

This article provides an overview on migration to ASP.NET Core 2.1. It does not contain a complete list of all
changes needed to migrate to version 2.1. Some projects might require more steps depending on the options
selected when the project was created and modifications made to the project.

Update the .csproj project file:

Change <TargetFramework>netcoreapp2.0</TargetFramework> to the 2.1 version, that is
<TargetFramework>netcoreapp2.1</TargetFramework> .

Replace the version specified "Microsoft.AspNetCore.All" package reference with the versionless
"Microsoft.AspNetCore.App" package reference. You may need to add dependencies that were removed
from "Microsoft.AspNetCore.All". See Migrating from Microsoft.AspNetCore.All to
Microsoft.AspNetCore.App and Microsoft.AspNetCore.App metapackage. If you're targetting the .NET
Framework:

Add individual package references instead of a meta package reference.
Update each package reference to 2.1.

Remove all references to <DotNetCliToolReference> elements for "Microsoft.AspNetCore",
"Microsoft.VisualStudio", and "Microsoft.EntityFrameworkCore" packages. These tools have been replaced
by global tools.

The following markup shows the template generated 2.0 .csproj project file:

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/20_21.md
https://twitter.com/RickAndMSFT

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 <UserSecretsId>aspnet-{Project Name}-{GUID}</UserSecretsId>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.8" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="2.0.3" PrivateAssets="All" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.4"
PrivateAssets="All" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.3" />
 <DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.Tools" Version="2.0.2" />
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.4" />
 </ItemGroup>
</Project>

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 <UserSecretsId>aspnet-{Project Name}-{GUID}</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.1.0"
PrivateAssets="All" />
 </ItemGroup>

</Project>

Changes to take advantage of the new code-based idioms that are
recommended in ASP.NET Core 2.1
Changes to MainChanges to Main

The following markup shows the template generated 2.1 .csproj project file:

The following images show the changes made to the templated generated Program.cs file.

The preceding image shows the 2.0 version with the deletions in red.

The following image shows the 2.1 code. The code in green replaced the 2.0 version:

namespace WebApp1
{
 public class Program
 {
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

Changes to StartupChanges to Startup

The following code shows the 2.1 version of Program.cs:

The new Main replaces the call to BuildWebHost with CreateWebHostBuilder. IWebHostBuilder was added to
support a new integration test infrastructure.

The following code shows the changes to 2.1 template generated code. All changes are newly added code, except
that UseBrowserLink has been removed:

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.createwebhostbuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;

namespace WebApp1
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies is needed for a given
request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseMvc();
 }
 }
}

Changes to authentication codeChanges to authentication code

The preceding code changes are detailed in:

GDPR support in ASP.NET Core for CookiePolicyOptions and UseCookiePolicy .
HTTP Strict Transport Security Protocol (HSTS) for UseHsts .
Require HTTPS for UseHttpsRedirection .
SetCompatibilityVersion for SetCompatibilityVersion(CompatibilityVersion.Version_2_1) .

ASP.NET Core 2.1 provides ASP.NET Core Identity as a Razor Class Library. If you have not made substantial
changes to the 2.0 template generated Identity code, consider the following upgrade approach:

Changes to Razor Pages projects Razor files
The layout fileThe layout file

_ValidationScriptsPartial.cshtml_ValidationScriptsPartial.cshtml

New filesNew files

Changes to MVC projects Razor files
The layout fileThe layout file

_ValidationScriptsPartial.cshtml_ValidationScriptsPartial.cshtml

New files and action methodsNew files and action methods

Additional changes

Delete your existing Identity code.
Scaffold Identity into your project.

Pages/_Layout.cshtml moves to Pages/Shared/_Layout.cshtml

The Layout.cshtml file has the following changes:

<partial name="_CookieConsentPartial" /> is added. For more information, see GDPR support in
ASP.NET Core.
jQuery changes from 2.2.0 to 3.3.1

Pages/_ValidationScriptsPartial.cshtml moves to Pages/Shared/_ValidationScriptsPartial.cshtml

jquery.validate/1.14.0 changes to jquery.validate/1.17.0

The following files are added:

Privacy.cshtml

Privacy.cshtml.cs

See GDPR support in ASP.NET Core for information on the preceding files.

The Layout.cshtml file has the following changes:

<partial name="_CookieConsentPartial" /> is added.
jQuery changes from 2.2.0 to 3.3.1

jquery.validate/1.14.0 changes to jquery.validate/1.17.0

The following are added:

Views/Home/Privacy.cshtml

The Privacy action method is added to the Home controller.

See GDPR support in ASP.NET Core for information on the preceding files.

SetCompatibilityVersion
Transport configuration

Migrate from ASP.NET to ASP.NET Core
5/4/2018 • 7 minutes to read • Edit Online

Prerequisites

Target frameworks

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
</ItemGroup>

Project structure differences

By Isaac Levin

This article serves as a reference guide for migrating ASP.NET apps to ASP.NET Core.

.NET Core SDK 2.0 or later

ASP.NET Core projects offer developers the flexibility of targeting .NET Core, .NET Framework, or both. See
Choosing between .NET Core and .NET Framework for server apps to determine which target framework is most
appropriate.

When targeting .NET Framework, projects need to reference individual NuGet packages.

Targeting .NET Core allows you to eliminate numerous explicit package references, thanks to the ASP.NET Core
metapackage. Install the Microsoft.AspNetCore.All metapackage in your project:

When the metapackage is used, no packages referenced in the metapackage are deployed with the app. The .NET
Core Runtime Store includes these assets, and they're precompiled to improve performance. See
Microsoft.AspNetCore.All metapackage for ASP.NET Core 2.x for more detail.

The .csproj file format has been simplified in ASP.NET Core. Some notable changes include:

Explicit inclusion of files isn't necessary for them to be considered part of the project. This reduces the risk
of XML merge conflicts when working on large teams.

There are no GUID-based references to other projects, which improves file readability.

The file can be edited without unloading it in Visual Studio:

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/proper-to-2x/index.md
https://isaaclevin.com
https://www.microsoft.com/net/download
https://docs.microsoft.com/dotnet/standard/choosing-core-framework-server

Global.asax file replacement

public class MvcApplication : System.Web.HttpApplication
{
 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 }
}

ASP.NET Core introduced a new mechanism for bootstrapping an app. The entry point for ASP.NET applications is
the Global.asax file. Tasks such as route configuration and filter and area registrations are handled in the
Global.asax file.

This approach couples the application and the server to which it's deployed in a way that interferes with the
implementation. In an effort to decouple, OWIN was introduced to provide a cleaner way to use multiple
frameworks together. OWIN provides a pipeline to add only the modules needed. The hosting environment takes a
Startup function to configure services and the app's request pipeline. Startup registers a set of middleware with
the application. For each request, the application calls each of the middleware components with the head pointer of
a linked list to an existing set of handlers. Each middleware component can add one or more handlers to the
request handling pipeline. This is accomplished by returning a reference to the handler that's the new head of the
list. Each handler is responsible for remembering and invoking the next handler in the list. With ASP.NET Core, the
entry point to an application is Startup , and you no longer have a dependency on Global.asax. When using
OWIN with .NET Framework, use something like the following as a pipeline:

http://owin.org/

using Owin;
using System.Web.Http;

namespace WebApi
{
 // Note: By default all requests go through this OWIN pipeline. Alternatively you can turn this off by
adding an appSetting owin:AutomaticAppStartup with value “false”.
 // With this turned off you can still have OWIN apps listening on specific routes by adding routes in
global.asax file using MapOwinPath or MapOwinRoute extensions on RouteTable.Routes
 public class Startup
 {
 // Invoked once at startup to configure your application.
 public void Configuration(IAppBuilder builder)
 {
 HttpConfiguration config = new HttpConfiguration();
 config.Routes.MapHttpRoute("Default", "{controller}/{customerID}", new { controller = "Customer",
customerID = RouteParameter.Optional });

 config.Formatters.XmlFormatter.UseXmlSerializer = true;
 config.Formatters.Remove(config.Formatters.JsonFormatter);
 // config.Formatters.JsonFormatter.UseDataContractJsonSerializer = true;

 builder.UseWebApi(config);
 }
 }
}

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace WebApplication2
{
 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

This configures your default routes, and defaults to XmlSerialization over Json. Add other Middleware to this
pipeline as needed (loading services, configuration settings, static files, etc.).

ASP.NET Core uses a similar approach, but doesn't rely on OWIN to handle the entry. Instead, that's done through
the Program.cs Main method (similar to console applications) and Startup is loaded through there.

Startup must include a Configure method. In Configure , add the necessary middleware to the pipeline. In the
following example (from the default web site template), several extension methods are used to configure the
pipeline with support for :

BrowserLink
Error pages
Static files
ASP.NET Core MVC
Identity

http://vswebessentials.com/features/browserlink

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseIdentity();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

NOTENOTE

Store configurations

<appSettings>
 <add key="UserName" value="User" />
 <add key="Password" value="Password" />
</appSettings>

string userName = System.Web.Configuration.ConfigurationManager.AppSettings["UserName"];
string password = System.Web.Configuration.ConfigurationManager.AppSettings["Password"];

The host and application have been decoupled, which provides the flexibility of moving to a different platform in
the future.

For a more in-depth reference to ASP.NET Core Startup and Middleware, see Startup in ASP.NET Core

ASP.NET supports storing settings. These setting are used, for example, to support the environment to which the
applications were deployed. A common practice was to store all custom key-value pairs in the <appSettings>

section of the Web.config file:

Applications read these settings using the ConfigurationManager.AppSettings collection in the
System.Configuration namespace:

ASP.NET Core can store configuration data for the application in any file and load them as part of middleware
bootstrapping. The default file used in the project templates is appsettings.json:

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 },
 // Here is where you can supply custom configuration settings, Since it is is JSON, everything is
represented as key: value pairs
 // Name of section is your choice
 "AppConfiguration": {
 "UserName": "UserName",
 "Password": "Password"
 }
}

public Startup(IConfiguration configuration)
{
 Configuration = configuration;
}

public IConfiguration Configuration { get; }

string userName = Configuration.GetSection("AppConfiguration")["UserName"];
string password = Configuration.GetSection("AppConfiguration")["Password"];

// Assume AppConfiguration is a class representing a strongly-typed version of AppConfiguration section
services.Configure<AppConfiguration>(Configuration.GetSection("AppConfiguration"));

NOTENOTE

Native dependency injection

Loading this file into an instance of IConfiguration inside your application is done in Startup.cs:

The app reads from Configuration to get the settings:

There are extensions to this approach to make the process more robust, such as using Dependency Injection (DI)
to load a service with these values. The DI approach provides a strongly-typed set of configuration objects.

For a more in-depth reference to ASP.NET Core configuration, see Configuration in ASP.NET Core.

An important goal when building large, scalable applications is the loose coupling of components and services.
Dependency Injection is a popular technique for achieving this, and it's a native component of ASP.NET Core.

In ASP.NET apps, developers rely on a third-party library to implement Dependency Injection. One such library is
Unity, provided by Microsoft Patterns & Practices.

An example of setting up Dependency Injection with Unity is implementing IDependencyResolver that wraps a
UnityContainer :

https://github.com/unitycontainer/unity

using Microsoft.Practices.Unity;
using System;
using System.Collections.Generic;
using System.Web.Http.Dependencies;

public class UnityResolver : IDependencyResolver
{
 protected IUnityContainer container;

 public UnityResolver(IUnityContainer container)
 {
 if (container == null)
 {
 throw new ArgumentNullException("container");
 }
 this.container = container;
 }

 public object GetService(Type serviceType)
 {
 try
 {
 return container.Resolve(serviceType);
 }
 catch (ResolutionFailedException)
 {
 return null;
 }
 }

 public IEnumerable<object> GetServices(Type serviceType)
 {
 try
 {
 return container.ResolveAll(serviceType);
 }
 catch (ResolutionFailedException)
 {
 return new List<object>();
 }
 }

 public IDependencyScope BeginScope()
 {
 var child = container.CreateChildContainer();
 return new UnityResolver(child);
 }

 public void Dispose()
 {
 Dispose(true);
 }

 protected virtual void Dispose(bool disposing)
 {
 container.Dispose();
 }
}

Create an instance of your UnityContainer , register your service, and set the dependency resolver of
HttpConfiguration to the new instance of UnityResolver for your container :

public static void Register(HttpConfiguration config)
{
 var container = new UnityContainer();
 container.RegisterType<IProductRepository, ProductRepository>(new HierarchicalLifetimeManager());
 config.DependencyResolver = new UnityResolver(container);

 // Other Web API configuration not shown.
}

public class ProductsController : ApiController
{
 private IProductRepository _repository;

 public ProductsController(IProductRepository repository)
 {
 _repository = repository;
 }

 // Other controller methods not shown.
}

public void ConfigureServices(IServiceCollection services)
{
 // Add application services.
 services.AddTransient<IProductRepository, ProductRepository>();
}

NOTENOTE

Serve static files

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles();
}

Inject IProductRepository where needed:

Because Dependency Injection is part of ASP.NET Core, you can add your service in the ConfigureServices

method of Startup.cs:

The repository can be injected anywhere, as was true with Unity.

For an in-depth reference to dependency injection in ASP.NET Core, see Dependency Injection in ASP.NET Core

An important part of web development is the ability to serve static, client-side assets. The most common examples
of static files are HTML, CSS, Javascript, and images. These files need to be saved in the published location of the
app (or CDN) and referenced so they can be loaded by a request. This process has changed in ASP.NET Core.

In ASP.NET, static files are stored in various directories and referenced in the views.

In ASP.NET Core, static files are stored in the "web root" (<content root>/wwwroot), unless configured otherwise.
The files are loaded into the request pipeline by invoking the UseStaticFiles extension method from
Startup.Configure :

NOTENOTE

NOTENOTE

Additional resources

If targeting .NET Framework, install the NuGet package Microsoft.AspNetCore.StaticFiles .

For example, an image asset in the wwwroot/images folder is accessible to the browser at a location such as
http://<app>/images/<imageFileName> .

For a more in-depth reference to serving static files in ASP.NET Core, see Static files.

Porting Libraries to .NET Core

https://docs.microsoft.com/dotnet/core/porting/libraries

Migrate from ASP.NET MVC to ASP.NET Core MVC
5/4/2018 • 7 minutes to read • Edit Online

NOTENOTE

Create the starter ASP.NET MVC project

By Rick Anderson, Daniel Roth, Steve Smith, and Scott Addie

This article shows how to get started migrating an ASP.NET MVC project to ASP.NET Core MVC. In the process, it
highlights many of the things that have changed from ASP.NET MVC. Migrating from ASP.NET MVC is a multiple
step process and this article covers the initial setup, basic controllers and views, static content, and client-side
dependencies. Additional articles cover migrating configuration and identity code found in many ASP.NET MVC
projects.

The version numbers in the samples might not be current. You may need to update your projects accordingly.

To demonstrate the upgrade, we'll start by creating a ASP.NET MVC app. Create it with the name WebApp1 so the
namespace matches the ASP.NET Core project we create in the next step.

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/mvc.md
https://twitter.com/RickAndMSFT
https://github.com/danroth27
https://ardalis.com/
https://scottaddie.com

Create the ASP.NET Core project

Optional: Change the name of the Solution from WebApp1 to Mvc5. Visual Studio displays the new solution name
(Mvc5), which makes it easier to tell this project from the next project.

Create a new empty ASP.NET Core web app with the same name as the previous project (WebApp1) so the
namespaces in the two projects match. Having the same namespace makes it easier to copy code between the two
projects. You'll have to create this project in a different directory than the previous project to use the same name.

Configure the site to use MVC

Optional: Create a new ASP.NET Core app using the Web Application project template. Name the project
WebApp1, and select an authentication option of Individual User Accounts. Rename this app to
FullAspNetCore. Creating this project saves you time in the conversion. You can look at the template-generated
code to see the end result or to copy code to the conversion project. It's also helpful when you get stuck on a
conversion step to compare with the template-generated project.

When targeting .NET Core, the ASP.NET Core metapackage is added to the project, called
Microsoft.AspNetCore.All by default. This package contains packages like Microsoft.AspNetCore.Mvc and
Microsoft.AspNetCore.StaticFiles . If targeting .NET Framework, package references need to be listed

individually in the *.csproj file.

Microsoft.AspNetCore.Mvc is the ASP.NET Core MVC framework. Microsoft.AspNetCore.StaticFiles is the static
file handler. The ASP.NET Core runtime is modular, and you must explicitly opt in to serve static files (see Static
files).

Open the Startup.cs file and change the code to match the following:

Add a controller and view

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;

namespace WebApp1
{
 public class Startup
 {
 // This method gets called by the runtime. Use this method to add services to the container.
 // For more information on how to configure your application, visit
https://go.microsoft.com/fwlink/?LinkID=398940
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 // This method gets called by the runtime. Use this method to configure the HTTP request
pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

The UseStaticFiles extension method adds the static file handler. As mentioned previously, the ASP.NET runtime
is modular, and you must explicitly opt in to serve static files. The UseMvc extension method adds routing. For
more information, see Application Startup and Routing.

In this section, you'll add a minimal controller and view to serve as placeholders for the ASP.NET MVC controller
and views you'll migrate in the next section.

Add a Controllers folder.

Add a Controller Class named HomeController.cs to the Controllers folder.

Add a Views folder.

Add a Views/Home folder.

Add a Razor View named Index.cshtml to the Views/Home folder.

The project structure is shown below:

<h1>Hello world!</h1>

Controllers and views

Replace the contents of the Views/Home/Index.cshtml file with the following:

Run the app.

See Controllers and Views for more information.

Now that we have a minimal working ASP.NET Core project, we can start migrating functionality from the
ASP.NET MVC project. We need to move the following:

client-side content (CSS, fonts, and scripts)

controllers

views

models

bundling

filters

Log in/out, Identity (This is done in the next tutorial.)

Copy each of the methods from the ASP.NET MVC HomeController to the new HomeController . Note that

Static content

Migrate the layout file

in ASP.NET MVC, the built-in template's controller action method return type is ActionResult; in ASP.NET
Core MVC, the action methods return IActionResult instead. ActionResult implements IActionResult , so
there's no need to change the return type of your action methods.

Copy the About.cshtml, Contact.cshtml, and Index.cshtml Razor view files from the ASP.NET MVC project to
the ASP.NET Core project.

Run the ASP.NET Core app and test each method. We haven't migrated the layout file or styles yet, so the
rendered views only contain the content in the view files. You won't have the layout file generated links for
the About and Contact views, so you'll have to invoke them from the browser (replace 4492 with the port
number used in your project).

http://localhost:4492/home/about

http://localhost:4492/home/contact

Note the lack of styling and menu items. We'll fix that in the next section.

In previous versions of ASP.NET MVC, static content was hosted from the root of the web project and was
intermixed with server-side files. In ASP.NET Core, static content is hosted in the wwwroot folder. You'll want to
copy the static content from your old ASP.NET MVC app to the wwwroot folder in your ASP.NET Core project. In
this sample conversion:

Copy the favicon.ico file from the old MVC project to the wwwroot folder in the ASP.NET Core project.

The old ASP.NET MVC project uses Bootstrap for its styling and stores the Bootstrap files in the Content and
Scripts folders. The template, which generated the old ASP.NET MVC project, references Bootstrap in the layout
file (Views/Shared/_Layout.cshtml). You could copy the bootstrap.js and bootstrap.css files from the ASP.NET MVC
project to the wwwroot folder in the new project. Instead, we'll add support for Bootstrap (and other client-side
libraries) using CDNs in the next section.

Copy the _ViewStart.cshtml file from the old ASP.NET MVC project's Views folder into the ASP.NET Core
project's Views folder. The _ViewStart.cshtml file has not changed in ASP.NET Core MVC.

Create a Views/Shared folder.

https://msdn.microsoft.com/library/system.web.mvc.actionresult(v=vs.118).aspx
https://getbootstrap.com/

<link rel="stylesheet"
 href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
 integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
 crossorigin="anonymous">

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"
crossorigin="anonymous"></script>

Optional: Copy _ViewImports.cshtml from the FullAspNetCore MVC project's Views folder into the
ASP.NET Core project's Views folder. Remove any namespace declaration in the _ViewImports.cshtml file.
The _ViewImports.cshtml file provides namespaces for all the view files and brings in Tag Helpers. Tag
Helpers are used in the new layout file. The _ViewImports.cshtml file is new for ASP.NET Core.

Copy the _Layout.cshtml file from the old ASP.NET MVC project's Views/Shared folder into the ASP.NET
Core project's Views/Shared folder.

Open _Layout.cshtml file and make the following changes (the completed code is shown below):

Replace @Styles.Render("~/Content/css") with a <link> element to load bootstrap.css (see below).

Remove @Scripts.Render("~/bundles/modernizr") .

Comment out the @Html.Partial("_LoginPartial") line (surround the line with @*...*@). We'll return to it
in a future tutorial.

Replace @Scripts.Render("~/bundles/jquery") with a <script> element (see below).

Replace @Scripts.Render("~/bundles/bootstrap") with a <script> element (see below).

The replacement markup for Bootstrap CSS inclusion:

The replacement markup for jQuery and Bootstrap JavaScript inclusion:

The updated _Layout.cshtml file is shown below:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>@ViewBag.Title - My ASP.NET Application</title>
 <link rel="stylesheet"
 href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
 integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
 crossorigin="anonymous">
</head>
<body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">

 </button>
 @Html.ActionLink("Application name", "Index", "Home", new { area = "" }, new { @class =
"navbar-brand" })
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

 @*@Html.Partial("_LoginPartial")*@
 </div>
 </div>
 </div>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© @DateTime.Now.Year - My ASP.NET Application</p>
 </footer>
 </div>

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"
 crossorigin="anonymous"></script>
 @RenderSection("scripts", required: false)
</body>
</html>

Configure bundling and minification

Solve HTTP 500 errors

View the site in the browser. It should now load correctly, with the expected styles in place.

Optional: You might want to try using the new layout file. For this project you can copy the layout file from the
FullAspNetCore project. The new layout file uses Tag Helpers and has other improvements.

For information about how to configure bundling and minification, see Bundling and Minification.

There are many problems that can cause a HTTP 500 error message that contain no information on the source of
the problem. For example, if the Views/_ViewImports.cshtml file contains a namespace that doesn't exist in your

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;

namespace WebApp1
{
 public class Startup
 {
 // This method gets called by the runtime. Use this method to add services to the container.
 // For more information on how to configure your application, visit https://go.microsoft.com/fwlink/?
LinkID=398940
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }

 // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Additional resources

project, you'll get a HTTP 500 error. By default in ASP.NET Core apps, the UseDeveloperExceptionPage extension is
added to the IApplicationBuilder and executed when the configuration is Development. This is detailed in the
following code:

ASP.NET Core converts unhandled exceptions in a web app into HTTP 500 error responses. Normally, error details
aren't included in these responses to prevent disclosure of potentially sensitive information about the server. See
Using the Developer Exception Page in Handle errors for more information.

Client-side development
Tag Helpers

Migrate from ASP.NET Web API to ASP.NET Core
5/10/2018 • 8 minutes to read • Edit Online

Review ASP.NET Web API Project

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Http;
using System.Web.Routing;

namespace ProductsApp
{
 public class WebApiApplication : System.Web.HttpApplication
 {
 protected void Application_Start()
 {
 GlobalConfiguration.Configure(WebApiConfig.Register);
 }
 }
}

By Steve Smith and Scott Addie

Web APIs are HTTP services that reach a broad range of clients, including browsers and mobile devices. ASP.NET
Core MVC includes support for building Web APIs providing a single, consistent way of building web applications.
In this article, we demonstrate the steps required to migrate a Web API implementation from ASP.NET Web API
to ASP.NET Core MVC.

View or download sample code (how to download)

This article uses the sample project, ProductsApp, created in the article Getting Started with ASP.NET Web API 2
as its starting point. In that project, a simple ASP.NET Web API project is configured as follows.

In Global.asax.cs, a call is made to WebApiConfig.Register :

WebApiConfig is defined in App_Start, and has just one static Register method:

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/webapi.md
https://ardalis.com/
https://scottaddie.com
https://github.com/aspnet/Docs/tree/master/aspnetcore/migration/webapi/sample
https://docs.microsoft.com/aspnet/web-api/overview/getting-started-with-aspnet-web-api/tutorial-your-first-web-api

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace ProductsApp
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 // Web API configuration and services

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

This class configures attribute routing, although it's not actually being used in the project. It also configures the
routing table, which is used by ASP.NET Web API. In this case, ASP.NET Web API will expect URLs to match the
format /api/{controller}/{id}, with {id} being optional.

The ProductsApp project includes just one simple controller, which inherits from ApiController and exposes two
methods:

https://docs.microsoft.com/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2

using ProductsApp.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Web.Http;

namespace ProductsApp.Controllers
{
 public class ProductsController : ApiController
 {
 Product[] products = new Product[]
 {
 new Product { Id = 1, Name = "Tomato Soup", Category = "Groceries", Price = 1 },
 new Product { Id = 2, Name = "Yo-yo", Category = "Toys", Price = 3.75M },
 new Product { Id = 3, Name = "Hammer", Category = "Hardware", Price = 16.99M }
 };

 public IEnumerable<Product> GetAllProducts()
 {
 return products;
 }

 public IHttpActionResult GetProduct(int id)
 {
 var product = products.FirstOrDefault((p) => p.Id == id);
 if (product == null)
 {
 return NotFound();
 }
 return Ok(product);
 }
 }
}

namespace ProductsApp.Models
{
 public class Product
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 }
}

Create the Destination Project

Finally, the model, Product, used by the ProductsApp, is a simple class:

Now that we have a simple project from which to start, we can demonstrate how to migrate this Web API project
to ASP.NET Core MVC.

Using Visual Studio, create a new, empty solution, and name it WebAPIMigration. Add the existing ProductsApp
project to it, then, add a new ASP.NET Core Web Application Project to the solution. Name the new project
ProductsCore.

Next, choose the Web API project template. We will migrate the ProductsApp contents to this new project.

Delete the Project_Readme.html file from the new project. Your solution should now look like this:

Migrate Configuration
ASP.NET Core no longer uses Global.asax, web.config, or App_Start folders. Instead, all startup tasks are done in
Startup.cs in the root of the project (see Application Startup). In ASP.NET Core MVC, attribute-based routing is
now included by default when UseMvc() is called; and, this is the recommended approach for configuring Web
API routes (and is how the Web API starter project handles routing).

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

namespace ProductsCore
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();
 }

 // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseMvc();
 }
 }
}

Assuming you want to use attribute routing in your project going forward, no additional configuration is needed.
Simply apply the attributes as needed to your controllers and actions, as is done in the sample ValuesController

class that's included in the Web API starter project:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;

namespace ProductsCore.Controllers
{
 [Route("api/[controller]")]
 public class ValuesController : Controller
 {
 // GET api/values
 [HttpGet]
 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }

 // GET api/values/5
 [HttpGet("{id}")]
 public string Get(int id)
 {
 return "value";
 }

 // POST api/values
 [HttpPost]
 public void Post([FromBody]string value)
 {
 }

 // PUT api/values/5
 [HttpPut("{id}")]
 public void Put(int id, [FromBody]string value)
 {
 }

 // DELETE api/values/5
 [HttpDelete("{id}")]
 public void Delete(int id)
 {
 }
 }
}

[Route("api/[controller]")]

Note the presence of [controller] on line 8. Attribute-based routing now supports certain tokens, such as
[controller] and [action]. These tokens are replaced at runtime with the name of the controller or action,
respectively, to which the attribute has been applied. This serves to reduce the number of magic strings in the
project, and it ensures the routes will be kept synchronized with their corresponding controllers and actions when
automatic rename refactorings are applied.

To migrate the Products API controller, we must first copy ProductsController to the new project. Then simply
include the route attribute on the controller :

You also need to add the [HttpGet] attribute to the two methods, since they both should be called via HTTP Get.
Include the expectation of an "id" parameter in the attribute for GetProduct() :

// /api/products
[HttpGet]
...

// /api/products/1
[HttpGet("{id}")]

Migrate Models and Controllers

At this point, routing is configured correctly; however, we can't yet test it. Additional changes must be made before
ProductsController will compile.

The last step in the migration process for this simple Web API project is to copy over the Controllers and any
Models they use. In this case, simply copy Controllers/ProductsController.cs from the original project to the new
one. Then, copy the entire Models folder from the original project to the new one. Adjust the namespaces to match
the new project name (ProductsCore). At this point, you can build the application, and you will find a number of
compilation errors. These should generally fall into the following categories:

ApiController does not exist

System.Web.Http namespace does not exist

IHttpActionResult does not exist

Fortunately, these are all very easy to correct:

Change ApiController to Controller (you may need to add using Microsoft.AspNetCore.Mvc)

Delete any using statement referring to System.Web.Http

Change any method returning IHttpActionResult to return a IActionResult

Once these changes have been made and unused using statements removed, the migrated ProductsController
class looks like this:

using Microsoft.AspNetCore.Mvc;
using ProductsCore.Models;
using System.Collections.Generic;
using System.Linq;

namespace ProductsCore.Controllers
{
 [Route("api/[controller]")]
 public class ProductsController : Controller
 {
 Product[] products = new Product[]
 {
 new Product { Id = 1, Name = "Tomato Soup", Category = "Groceries", Price = 1 },
 new Product { Id = 2, Name = "Yo-yo", Category = "Toys", Price = 3.75M },
 new Product { Id = 3, Name = "Hammer", Category = "Hardware", Price = 16.99M }
 };

 // /api/products
 [HttpGet]
 public IEnumerable<Product> GetAllProducts()
 {
 return products;
 }

 // /api/products/1
 [HttpGet("{id}")]
 public IActionResult GetProduct(int id)
 {
 var product = products.FirstOrDefault((p) => p.Id == id);
 if (product == null)
 {
 return NotFound();
 }
 return Ok(product);
 }
 }
}

Microsoft.AspNetCore.Mvc.WebApiCompatShim

You should now be able to run the migrated project and browse to /api/products; and, you should see the full list
of 3 products. Browse to /api/products/1 and you should see the first product.

A useful tool when migrating ASP.NET Web API projects to ASP.NET Core is the
Microsoft.AspNetCore.Mvc.WebApiCompatShim library. The compatibility shim extends ASP.NET Core to allow a
number of different Web API 2 conventions to be used. The sample ported previously in this document is basic
enough that the compatibility shim was not necessary. For larger projects, using the compatibility shim can be
useful for temporarily bridging the API gap between ASP.NET Core and ASP.NET Web API 2.

The Web API compatibility shim is meant to be used as a temporary measure to facilitate migrating large Web
API projects to ASP.NET Core. Over time, projects should be updated to use ASP.NET Core patterns instead of
relying on the compatibility shim.

Compatibility features included in Microsoft.AspNetCore.Mvc.WebApiCompatShim include:

Adds an ApiController type so that controllers' base types don't need to be updated.
Enables Web API-style model binding. ASP.NET Core MVC model binding functions similarly to MVC 5, by
default. The compatibility shim changes model binding to be more similar to Web API 2 model binding
conventions. For example, complex types are automatically bound from the request body.
Extends model binding so that controller actions can take parameters of type HttpRequestMessage .
Adds message formatters allowing actions to return results of type HttpResponseMessage .

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.WebApiCompatShim

Summary

Adds additional response methods that Web API 2 actions may have used to serve responses:

Adds an instance of IContentNegotiator to the app's DI container and makes content negotiation-related types
from Microsoft.AspNet.WebApi.Client available. This includes types like DefaultContentNegotiator ,
MediaTypeFormatter , etc.

HttpResponseMessage generators:

Action result methods:

CreateResponse<T>

CreateErrorResponse

BadResuestErrorMessageResult

ExceptionResult

InternalServerErrorResult

InvalidModelStateResult

NegotiatedContentResult

ResponseMessageResult

To use the compatibility shim, you need to:

Reference the Microsoft.AspNetCore.Mvc.WebApiCompatShim NuGet package.
Register the compatibility shim's services with the app's DI container by calling
services.AddWebApiConventions() in the application's Startup.ConfigureServices method.

Define Web API-specific routes using MapWebApiRoute on the IRouteBuilder in the application's
IApplicationBuilder.UseMvc call.

Migrating a simple ASP.NET Web API project to ASP.NET Core MVC is fairly straightforward, thanks to the built-
in support for Web APIs in ASP.NET Core MVC. The main pieces every ASP.NET Web API project will need to
migrate are routes, controllers, and models, along with updates to the types used by controllers and actions.

https://www.nuget.org/packages/Microsoft.AspNet.WebApi.Client/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.WebApiCompatShim

Migrate configuration to ASP.NET Core
5/4/2018 • 2 minutes to read • Edit Online

Setup configuration

public Startup(IConfiguration configuration)
{
 Configuration = configuration;
}

public IConfiguration Configuration { get; }

using Microsoft.Extensions.Configuration;

By Steve Smith and Scott Addie

In the previous article, we began migrate an ASP.NET MVC project to ASP.NET Core MVC. In this article, we
migrate configuration.

View or download sample code (how to download)

ASP.NET Core no longer uses the Global.asax and web.config files that previous versions of ASP.NET utilized. In
earlier versions of ASP.NET, application startup logic was placed in an Application_StartUp method within
Global.asax. Later, in ASP.NET MVC, a Startup.cs file was included in the root of the project; and, it was called when
the application started. ASP.NET Core has adopted this approach completely by placing all startup logic in the
Startup.cs file.

The web.config file has also been replaced in ASP.NET Core. Configuration itself can now be configured, as part of
the application startup procedure described in Startup.cs. Configuration can still utilize XML files, but typically
ASP.NET Core projects will place configuration values in a JSON-formatted file, such as appsettings.json. ASP.NET
Core's configuration system can also easily access environment variables, which can provide a more secure and
robust location for environment-specific values. This is especially true for secrets like connection strings and API
keys that shouldn't be checked into source control. See Configuration to learn more about configuration in
ASP.NET Core.

For this article, we are starting with the partially migrated ASP.NET Core project from the previous article. To
setup configuration, add the following constructor and property to the Startup.cs file located in the root of the
project:

Note that at this point, the Startup.cs file won't compile, as we still need to add the following using statement:

Add an appsettings.json file to the root of the project using the appropriate item template:

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/configuration.md
https://ardalis.com/
https://scottaddie.com
https://github.com/aspnet/Docs/tree/master/aspnetcore/migration/configuration/samples

Migrate configuration settings from web.config

{
 "Data": {
 "DefaultConnection": {
 "ConnectionString": "Server=(localdb)\\MSSQLLocalDB;Database=_CHANGE_ME;Trusted_Connection=True;"
 }
 }
}

Summary

Our ASP.NET MVC project included the required database connection string in web.config, in the
<connectionStrings> element. In our ASP.NET Core project, we are going to store this information in the

appsettings.json file. Open appsettings.json, and note that it already includes the following:

In the highlighted line depicted above, change the name of the database from _CHANGE_ME to the name of your
database.

ASP.NET Core places all startup logic for the application in a single file, in which the necessary services and
dependencies can be defined and configured. It replaces the web.config file with a flexible configuration feature
that can leverage a variety of file formats, such as JSON, as well as environment variables.

Migrate Authentication and Identity to ASP.NET Core
5/4/2018 • 2 minutes to read • Edit Online

Configure Identity and Membership

public void ConfigureServices(IServiceCollection services)
{
 // Add EF services to the services container.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
}

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

namespace NewMvcProject.Models
{
 public class ApplicationUser : IdentityUser
 {
 }
}

By Steve Smith

In the previous article, we migrated configuration from an ASP.NET MVC project to ASP.NET Core MVC. In this
article, we migrate the registration, login, and user management features.

In ASP.NET MVC, authentication and identity features are configured using ASP.NET Identity in Startup.Auth.cs
and IdentityConfig.cs, located in the App_Start folder. In ASP.NET Core MVC, these features are configured in
Startup.cs.

Install the Microsoft.AspNetCore.Identity.EntityFrameworkCore and Microsoft.AspNetCore.Authentication.Cookies

NuGet packages.

Then, open Startup.cs and update the Startup.ConfigureServices method to use Entity Framework and Identity
services:

At this point, there are two types referenced in the above code that we haven't yet migrated from the ASP.NET
MVC project: ApplicationDbContext and ApplicationUser . Create a new Models folder in the ASP.NET Core
project, and add two classes to it corresponding to these types. You will find the ASP.NET MVC versions of these
classes in /Models/IdentityModels.cs, but we will use one file per class in the migrated project since that's more
clear.

ApplicationUser.cs:

ApplicationDbContext.cs:

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/identity.md
https://ardalis.com/

using Microsoft.AspNetCore.Identity.EntityFramework;
using Microsoft.Data.Entity;

namespace NewMvcProject.Models
{
 public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
 {
 public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder builder)
 {
 base.OnModelCreating(builder);
 // Customize the ASP.NET Identity model and override the defaults if needed.
 // For example, you can rename the ASP.NET Identity table names and more.
 // Add your customizations after calling base.OnModelCreating(builder);
 }
 }
}

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;

Migrate registration and login logic

 @Html.ActionLink("Contact", "Contact", "Home")

 @*@Html.Partial("_LoginPartial")*@
 </div>
</div>

The ASP.NET Core MVC Starter Web project doesn't include much customization of users, or the
ApplicationDbContext . When migrating a real app, you also need to migrate all of the custom properties and

methods of your app's user and DbContext classes, as well as any other Model classes your app utilizes. For
example, if your DbContext has a DbSet<Album> , you need to migrate the Album class.

With these files in place, the Startup.cs file can be made to compile by updating its using statements:

Our app is now ready to support authentication and Identity services. It just needs to have these features exposed
to users.

With Identity services configured for the app and data access configured using Entity Framework and SQL Server,
we're ready to add support for registration and login to the app. Recall that earlier in the migration process we
commented out a reference to _LoginPartial in _Layout.cshtml. Now it's time to return to that code, uncomment it,
and add in the necessary controllers and views to support login functionality.

Uncomment the @Html.Partial line in _Layout.cshtml:

Now, add a new Razor view called _LoginPartial to the Views/Shared folder :

Update _LoginPartial.cshtml with the following code (replace all of its contents):

@inject SignInManager<ApplicationUser> SignInManager
@inject UserManager<ApplicationUser> UserManager

@if (SignInManager.IsSignedIn(User))
{
 <form asp-area="" asp-controller="Account" asp-action="Logout" method="post" id="logoutForm"
class="navbar-right">
 <ul class="nav navbar-nav navbar-right">

 <a asp-area="" asp-controller="Manage" asp-action="Index" title="Manage">Hello
@UserManager.GetUserName(User)!

 <button type="submit" class="btn btn-link navbar-btn navbar-link">Log out</button>

 </form>
}
else
{
 <ul class="nav navbar-nav navbar-right">
 <a asp-area="" asp-controller="Account" asp-action="Register">Register
 <a asp-area="" asp-controller="Account" asp-action="Login">Log in

}

Summary

At this point, you should be able to refresh the site in your browser.

ASP.NET Core introduces changes to the ASP.NET Identity features. In this article, you have seen how to migrate
the authentication and user management features of ASP.NET Identity to ASP.NET Core.

Migrate from ClaimsPrincipal.Current
5/4/2018 • 2 minutes to read • Edit Online

Context-specific data instead of static data

// Create a ClaimsPrincipal and set Thread.CurrentPrincipal
var identity = new ClaimsIdentity();
identity.AddClaim(new Claim(ClaimTypes.Name, "User1"));
Thread.CurrentPrincipal = new ClaimsPrincipal(identity);

// Check the current user
Console.WriteLine($"Current user: {Thread.CurrentPrincipal?.Identity.Name}");

// For the method to complete asynchronously
await Task.Yield();

// Check the current user after
Console.WriteLine($"Current user: {Thread.CurrentPrincipal?.Identity.Name}");

Retrieve the current user in an ASP.NET Core app

In ASP.NET projects, it was common to use ClaimsPrincipal.Current to retrieve the current authenticated user's
identity and claims. In ASP.NET Core, this property is no longer set. Code that was depending on it needs to be
updated to get the current authenticated user's identity through a different means.

When using ASP.NET Core, the values of both ClaimsPrincipal.Current and Thread.CurrentPrincipal aren't set.
These properties both represent static state, which ASP.NET Core generally avoids. Instead, ASP.NET Core's
architecture is to retrieve dependencies (like the current user's identity) from context-specific service collections
(using its dependency injection (DI) model). What's more, Thread.CurrentPrincipal is thread static, so it may not
persist changes in some asynchronous scenarios (and ClaimsPrincipal.Current just calls Thread.CurrentPrincipal

by default).

To understand the sorts of problems thread static members can lead to in asynchronous scenarios, consider the
following code snippet:

The preceding sample code sets Thread.CurrentPrincipal and checks its value before and after awaiting an
asynchronous call. Thread.CurrentPrincipal is specific to the thread on which it's set, and the method is likely to
resume execution on a different thread after the await. Consequently, Thread.CurrentPrincipal is present when it's
first checked but is null after the call to await Task.Yield() .

Getting the current user's identity from the app's DI service collection is more testable, too, since test identities can
be easily injected.

There are several options for retrieving the current authenticated user's ClaimsPrincipal in ASP.NET Core in place
of ClaimsPrincipal.Current :

ControllerBase.User. MVC controllers can access the current authenticated user with their User property.

HttpContext.User. Components with access to the current HttpContext (middleware, for example) can get
the current user's ClaimsPrincipal from HttpContext.User.

Passed in from caller. Libraries without access to the current HttpContext are often called from controllers
or middleware components and can have the current user's identity passed as an argument.

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/claimsprincipal-current.md
https://docs.microsoft.com/dotnet/api/system.security.claims.claimsprincipal.current
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.user
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.httpcontext.user

IHttpContextAccessor. The ASP.NET project being migrated to ASP.NET Core may be too large to easily
pass the current user's identity to all necessary locations. In such cases, IHttpContextAccessor can be used
as a workaround. IHttpContextAccessor is able to access the current HttpContext (if one exists). A short-
term solution to getting the current user's identity in code that hasn't yet been updated to work with
ASP.NET Core's DI-driven architecture would be:

Make IHttpContextAccessor available in the DI container by calling AddHttpContextAccessor in
Startup.ConfigureServices .

Get an instance of IHttpContextAccessor during startup and store it in a static variable. The instance is
made available to code that was previously retrieving the current user from a static property.
Retrieve the current user's ClaimsPrincipal using HttpContextAccessor.HttpContext?.User . If this code is
used outside of the context of an HTTP request, the HttpContext is null.

The final option, using IHttpContextAccessor , is contrary to ASP.NET Core principles (preferring injected
dependencies to static dependencies). Plan to eventually remove the dependency on the static
IHttpContextAccessor helper. It can be a useful bridge, though, when migrating large existing ASP.NET apps that

were previously using ClaimsPrincipal.Current .

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor
https://github.com/aspnet/Hosting/issues/793

Migrate from ASP.NET Membership authentication to
ASP.NET Core 2.0 Identity
5/4/2018 • 5 minutes to read • Edit Online

NOTENOTE

Review of Membership schema

ASP.NET Core Identity 2.0 schema

By Isaac Levin

This article demonstrates migrating the database schema for ASP.NET apps using Membership authentication to
ASP.NET Core 2.0 Identity.

This document provides the steps needed to migrate the database schema for ASP.NET Membership-based apps to the
database schema used for ASP.NET Core Identity. For more information about migrating from ASP.NET Membership-based
authentication to ASP.NET Identity, see Migrate an existing app from SQL Membership to ASP.NET Identity. For more
information about ASP.NET Core Identity, see Introduction to Identity on ASP.NET Core.

Prior to ASP.NET 2.0, developers were tasked with creating the entire authentication and authorization process for
their apps. With ASP.NET 2.0, Membership was introduced, providing a boilerplate solution to handling security
within ASP.NET apps. Developers were now able to bootstrap a schema into a SQL Server database with the
aspnet_regsql.exe command. After running this command, the following tables were created in the database.

To migrate existing apps to ASP.NET Core 2.0 Identity, the data in these tables needs to be migrated to the tables
used by the new Identity schema.

ASP.NET Core 2.0 follows the Identity principle introduced in ASP.NET 4.5. Though the principle is shared, the
implementation between the frameworks is different, even between versions of ASP.NET Core (see Migrate
authentication and Identity to ASP.NET Core 2.0).

The fastest way to view the schema for ASP.NET Core 2.0 Identity is to create a new ASP.NET Core 2.0 app. Follow
these steps in Visual Studio 2017:

Select File > New > Project.

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/proper-to-2x/membership-to-core-identity.md
https://isaaclevin.com
https://docs.microsoft.com/aspnet/identity/overview/migrations/migrating-an-existing-website-from-sql-membership-to-aspnet-identity
https://msdn.microsoft.com/library/ms229862.aspx
https://docs.microsoft.com/aspnet/identity/index

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=localhost;Database=aspnet-core-
identity;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

Migrate the schema

UsersUsers

IDENTITY(ASPNETUSERS)
MEMBERSHIP(ASPNET_USERS/A
SPNET_MEMBERSHIP)

Field Name Type Field Name Type

Create a new ASP.NET Core Web Application, and name the project CoreIdentitySample.
Select ASP.NET Core 2.0 in the dropdown, and then select Web Application. This template produces a Razor
Pages app. Before clicking OK, click Change Authentication.
Choose Individual User Accounts for the Identity templates. Finally, click OK, then OK. Visual Studio creates
a project using the ASP.NET Core Identity template.

ASP.NET Core 2.0 Identity uses Entity Framework Core to interact with the database storing the authentication
data. In order for the newly created app to work, there needs to be a database to store this data. After creating a
new app, the fastest way to inspect the schema in a database environment is to create the database using Entity
Framework migrations. This process creates a database, either locally or elsewhere, which mimics that schema.
Review the preceding documentation for more information.

To create a database with the ASP.NET Core Identity schema, run the Update-Database command in Visual
Studio's Package Manager Console (PMC) window—it's located at Tools > NuGet Package
Manager > Package Manager Console. PMC supports running Entity Framework commands.

Entity Framework commands use the connection string for the database specified in appsettings.json. The
following connection string targets a database on localhost named asp-net-core-identity. In this setting, Entity
Framework is configured to use the DefaultConnection connection string.

This command builds the database specified with the schema and any data needed for app initialization. The
following image depicts the table structure that's created with the preceding steps.

There are subtle differences in the table structures and fields for both Membership and ASP.NET Core Identity. The
pattern has changed substantially for authentication/authorization with ASP.NET and ASP.NET Core apps. The key
objects that are still used with Identity are Users and Roles. Here are mapping tables for Users, Roles, and UserRoles.

https://docs.microsoft.com/ef/core

Id string aspnet_Users.UserId string

UserName string aspnet_Users.UserName string

Email string aspnet_Membership.Email string

NormalizedUserName string aspnet_Users.LoweredUserName string

NormalizedEmail string aspnet_Membership.LoweredEmailstring

PhoneNumber string aspnet_Users.MobileAlias string

LockoutEnabled bit aspnet_Membership.IsLockedOutbit

IDENTITY(ASPNETUSERS)
MEMBERSHIP(ASPNET_USERS/A
SPNET_MEMBERSHIP)

NOTENOTE

RolesRoles

IDENTITY(ASPNETROLES) MEMBERSHIP(ASPNET_ROLES)

Field Name Type Field Name Type

Id string RoleId string

Name string RoleName string

NormalizedName string LoweredRoleName string

User RolesUser Roles

IDENTITY(ASPNETUSERROLES)
MEMBERSHIP(ASPNET_USERSI
NROLES)

Field Name Type Field Name Type

RoleId string RoleId string

UserId string UserId string

Not all the field mappings resemble one-to-one relationships from Membership to ASP.NET Core Identity. The preceding table
takes the default Membership User schema and maps it to the ASP.NET Core Identity schema. Any other custom fields that
were used for Membership need to be mapped manually. In this mapping, there's no map for passwords, as both password
criteria and password salts don't migrate between the two. It's recommended to leave the password as null and to ask
users to reset their passwords. In ASP.NET Core Identity, LockoutEnd should be set to some date in the future if the user
is locked out. This is shown in the migration script.

Reference the preceding mapping tables when creating a migration script for Users and Roles. The following
example assumes you have two databases on a database server. One database contains the existing ASP.NET
Membership schema and data. The other database was created using steps described earlier. Comments are
included inline for more details.

-- THIS SCRIPT NEEDS TO RUN FROM THE CONTEXT OF THE MEMBERSHIP DB
BEGIN TRANSACTION MigrateUsersAndRoles
use aspnetdb

-- INSERT USERS
INSERT INTO coreidentity.dbo.aspnetusers
 (id,
 username,
 normalizedusername,
 passwordhash,
 securitystamp,
 emailconfirmed,
 phonenumber,
 phonenumberconfirmed,
 twofactorenabled,
 lockoutend,
 lockoutenabled,
 accessfailedcount,
 email,
 normalizedemail)
SELECT aspnet_users.userid,
 aspnet_users.username,
 aspnet_users.loweredusername,
 --Creates an empty password since passwords don't map between the two schemas
 '',
 --Security Stamp is a token used to verify the state of an account and is subject to change at any
time. It should be intialized as a new ID.
 NewID(),
 --EmailConfirmed is set when a new user is created and confirmed via email. Users must have this set
during migration to ensure they're able to reset passwords.
 1,
 aspnet_users.mobilealias,
 CASE
 WHEN aspnet_Users.MobileAlias is null THEN 0
 ELSE 1
 END,
 --2-factor Auth likely wasn't setup in Membership for users, so setting as false.
 0,
 CASE
 --Setting lockout date to time in the future (1000 years)
 WHEN aspnet_membership.islockedout = 1 THEN Dateadd(year, 1000,
 Sysutcdatetime())
 ELSE NULL
 END,
 aspnet_membership.islockedout,
 --AccessFailedAccount is used to track failed logins. This is stored in membership in multiple columns.
Setting to 0 arbitrarily.
 0,
 aspnet_membership.email,
 aspnet_membership.loweredemail
FROM aspnet_users
 LEFT OUTER JOIN aspnet_membership
 ON aspnet_membership.applicationid =
 aspnet_users.applicationid
 AND aspnet_users.userid = aspnet_membership.userid
 LEFT OUTER JOIN coreidentity.dbo.aspnetusers
 ON aspnet_membership.userid = aspnetusers.id
WHERE aspnetusers.id IS NULL

-- INSERT ROLES
INSERT INTO coreIdentity.dbo.aspnetroles(id,name)
SELECT roleId,rolename
FROM aspnet_roles;

-- INSERT USER ROLES
INSERT INTO coreidentity.dbo.aspnetuserroles(userid,roleid)
SELECT userid,roleid

FROM aspnet_usersinroles;

IF @@ERROR <> 0
 BEGIN
 ROLLBACK TRANSACTION MigrateUsersAndRoles
 RETURN
 END

COMMIT TRANSACTION MigrateUsersAndRoles

NOTENOTE

Next steps

After completion of this script, the ASP.NET Core Identity app created earlier is populated with Membership users.
Users need to change their passwords before logging in.

If the Membership system had users with user names that didn't match their email address, changes are required to the app
created earlier to accommodate this. The default template expects UserName and Email to be the same. For situations in
which they're different, the login process needs to be modified to use UserName instead of Email .

In the PageModel of the Login Page, located at Pages\Account\Login.cshtml.cs, remove the [EmailAddress]

attribute from the Email property. Rename it to UserName. This requires a change wherever EmailAddress is
mentioned, in the View and PageModel. The result looks like the following:

In this tutorial, you learned how to port users from SQL membership to ASP.NET Core 2.0 Identity. For more
information regarding ASP.NET Core Identity, see Introduction to Identity.

Migrate HTTP handlers and modules to ASP.NET
Core middleware
5/2/2018 • 15 minutes to read • Edit Online

Modules and handlers revisited

By Matt Perdeck

This article shows how to migrate existing ASP.NET HTTP modules and handlers from system.webserver to
ASP.NET Core middleware.

Before proceeding to ASP.NET Core middleware, let's first recap how HTTP modules and handlers work:

Handlers are:

Classes that implement IHttpHandler

Used to handle requests with a given file name or extension, such as .report

Configured in Web.config

Modules are:

Classes that implement IHttpModule

Invoked for every request

Able to short-circuit (stop further processing of a request)

Able to add to the HTTP response, or create their own

Configured in Web.config

The order in which modules process incoming requests is determined by:

1. The application life cycle, which is a series events fired by ASP.NET: BeginRequest, AuthenticateRequest,
etc. Each module can create a handler for one or more events.

2. For the same event, the order in which they're configured in Web.config.

In addition to modules, you can add handlers for the life cycle events to your Global.asax.cs file. These handlers
run after the handlers in the configured modules.

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/http-modules.md
https://www.linkedin.com/in/mattperdeck
https://docs.microsoft.com/iis/configuration/system.webserver/
https://docs.microsoft.com/dotnet/api/system.web.ihttphandler
https://docs.microsoft.com/iis/configuration/system.webserver/handlers/
https://docs.microsoft.com/dotnet/api/system.web.ihttpmodule
https://docs.microsoft.com/iis/configuration/system.webserver/modules/
https://msdn.microsoft.com/library/ms227673.aspx
https://docs.microsoft.com/dotnet/api/system.web.httpapplication.beginrequest
https://docs.microsoft.com/dotnet/api/system.web.httpapplication.authenticaterequest

From handlers and modules to middleware

Migrating module code to middleware

Middleware are simpler than HTTP modules and handlers:

Modules, handlers, Global.asax.cs, Web.config (except for IIS configuration) and the application life cycle
are gone

The roles of both modules and handlers have been taken over by middleware

Middleware are configured using code rather than in Web.config

Pipeline branching lets you send requests to specific middleware, based on not only the URL but also on
request headers, query strings, etc.

Middleware are very similar to modules:

Invoked in principle for every request

Able to short-circuit a request, by not passing the request to the next middleware

Able to create their own HTTP response

Middleware and modules are processed in a different order:

Order of middleware is based on the order in which they're inserted into the request pipeline, while order
of modules is mainly based on application life cycle events

Order of middleware for responses is the reverse from that for requests, while order of modules is the
same for requests and responses

See Create a middleware pipeline with IApplicationBuilder

Note how in the image above, the authentication middleware short-circuited the request.

An existing HTTP module will look similar to this:

https://msdn.microsoft.com/library/ms227673.aspx

// ASP.NET 4 module

using System;
using System.Web;

namespace MyApp.Modules
{
 public class MyModule : IHttpModule
 {
 public void Dispose()
 {
 }

 public void Init(HttpApplication application)
 {
 application.BeginRequest += (new EventHandler(this.Application_BeginRequest));
 application.EndRequest += (new EventHandler(this.Application_EndRequest));
 }

 private void Application_BeginRequest(Object source, EventArgs e)
 {
 HttpContext context = ((HttpApplication)source).Context;

 // Do something with context near the beginning of request processing.
 }

 private void Application_EndRequest(Object source, EventArgs e)
 {
 HttpContext context = ((HttpApplication)source).Context;

 // Do something with context near the end of request processing.
 }
 }
}

As shown in the Middleware page, an ASP.NET Core middleware is a class that exposes an Invoke method taking
an HttpContext and returning a Task . Your new middleware will look like this:

// ASP.NET Core middleware

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Http;
using System.Threading.Tasks;

namespace MyApp.Middleware
{
 public class MyMiddleware
 {
 private readonly RequestDelegate _next;

 public MyMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public async Task Invoke(HttpContext context)
 {
 // Do something with context near the beginning of request processing.

 await _next.Invoke(context);

 // Clean up.
 }
 }

 public static class MyMiddlewareExtensions
 {
 public static IApplicationBuilder UseMyMiddleware(this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<MyMiddleware>();
 }
 }
}

// ASP.NET 4 module that may terminate the request

private void Application_BeginRequest(Object source, EventArgs e)
{
 HttpContext context = ((HttpApplication)source).Context;

 // Do something with context near the beginning of request processing.

 if (TerminateRequest())
 {
 context.Response.End();
 return;
 }
}

The preceding middleware template was taken from the section on writing middleware.

The MyMiddlewareExtensions helper class makes it easier to configure your middleware in your Startup class.
The UseMyMiddleware method adds your middleware class to the request pipeline. Services required by the
middleware get injected in the middleware's constructor.

 Your module might terminate a request, for example if the user isn't authorized:

A middleware handles this by not calling Invoke on the next middleware in the pipeline. Keep in mind that this
doesn't fully terminate the request, because previous middlewares will still be invoked when the response makes
its way back through the pipeline.

// ASP.NET Core middleware that may terminate the request

public async Task Invoke(HttpContext context)
{
 // Do something with context near the beginning of request processing.

 if (!TerminateRequest())
 await _next.Invoke(context);

 // Clean up.
}

Migrating module insertion into the request pipeline

<?xml version="1.0" encoding="utf-8"?>
<!--ASP.NET 4 web.config-->
<configuration>
 <system.webServer>
 <modules>
 <add name="MyModule" type="MyApp.Modules.MyModule"/>
 </modules>
 </system.webServer>
</configuration>

When you migrate your module's functionality to your new middleware, you may find that your code doesn't
compile because the HttpContext class has significantly changed in ASP.NET Core. Later on, you'll see how to
migrate to the new ASP.NET Core HttpContext.

HTTP modules are typically added to the request pipeline using Web.config:

Convert this by adding your new middleware to the request pipeline in your Startup class:

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseMyMiddleware();

 app.UseMyMiddlewareWithParams();

 var myMiddlewareOptions = Configuration.GetSection("MyMiddlewareOptionsSection").Get<MyMiddlewareOptions>
();
 var myMiddlewareOptions2 =
Configuration.GetSection("MyMiddlewareOptionsSection2").Get<MyMiddlewareOptions>();
 app.UseMyMiddlewareWithParams(myMiddlewareOptions);
 app.UseMyMiddlewareWithParams(myMiddlewareOptions2);

 app.UseMyTerminatingMiddleware();

 // Create branch to the MyHandlerMiddleware.
 // All requests ending in .report will follow this branch.
 app.MapWhen(
 context => context.Request.Path.ToString().EndsWith(".report"),
 appBranch => {
 // ... optionally add more middleware to this branch
 appBranch.UseMyHandler();
 });

 app.MapWhen(
 context => context.Request.Path.ToString().EndsWith(".context"),
 appBranch => {
 appBranch.UseHttpContextDemoMiddleware();
 });

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

Migrating handler code to middleware

The exact spot in the pipeline where you insert your new middleware depends on the event that it handled as a
module (BeginRequest , EndRequest , etc.) and its order in your list of modules in Web.config.

As previously stated, there's no application life cycle in ASP.NET Core and the order in which responses are
processed by middleware differs from the order used by modules. This could make your ordering decision more
challenging.

If ordering becomes a problem, you could split your module into multiple middleware components that can be
ordered independently.

// ASP.NET 4 handler

using System.Web;

namespace MyApp.HttpHandlers
{
 public class MyHandler : IHttpHandler
 {
 public bool IsReusable { get { return true; } }

 public void ProcessRequest(HttpContext context)
 {
 string response = GenerateResponse(context);

 context.Response.ContentType = GetContentType();
 context.Response.Output.Write(response);
 }

 // ...

 private string GenerateResponse(HttpContext context)
 {
 string title = context.Request.QueryString["title"];
 return string.Format("Title of the report: {0}", title);
 }

 private string GetContentType()
 {
 return "text/plain";
 }
 }
}

An HTTP handler looks something like this:

In your ASP.NET Core project, you would translate this to a middleware similar to this:

// ASP.NET Core middleware migrated from a handler

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Http;
using System.Threading.Tasks;

namespace MyApp.Middleware
{
 public class MyHandlerMiddleware
 {

 // Must have constructor with this signature, otherwise exception at run time
 public MyHandlerMiddleware(RequestDelegate next)
 {
 // This is an HTTP Handler, so no need to store next
 }

 public async Task Invoke(HttpContext context)
 {
 string response = GenerateResponse(context);

 context.Response.ContentType = GetContentType();
 await context.Response.WriteAsync(response);
 }

 // ...

 private string GenerateResponse(HttpContext context)
 {
 string title = context.Request.Query["title"];
 return string.Format("Title of the report: {0}", title);
 }

 private string GetContentType()
 {
 return "text/plain";
 }
 }

 public static class MyHandlerExtensions
 {
 public static IApplicationBuilder UseMyHandler(this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<MyHandlerMiddleware>();
 }
 }
}

Migrating handler insertion into the request pipeline

This middleware is very similar to the middleware corresponding to modules. The only real difference is that here
there's no call to _next.Invoke(context) . That makes sense, because the handler is at the end of the request
pipeline, so there will be no next middleware to invoke.

Configuring an HTTP handler is done in Web.config and looks something like this:

<?xml version="1.0" encoding="utf-8"?>
<!--ASP.NET 4 web.config-->
<configuration>
 <system.webServer>
 <handlers>
 <add name="MyHandler" verb="*" path="*.report" type="MyApp.HttpHandlers.MyHandler"
resourceType="Unspecified" preCondition="integratedMode"/>
 </handlers>
 </system.webServer>
</configuration>

You could convert this by adding your new handler middleware to the request pipeline in your Startup class,
similar to middleware converted from modules. The problem with that approach is that it would send all requests
to your new handler middleware. However, you only want requests with a given extension to reach your
middleware. That would give you the same functionality you had with your HTTP handler.

One solution is to branch the pipeline for requests with a given extension, using the MapWhen extension method.
You do this in the same Configure method where you add the other middleware:

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseMyMiddleware();

 app.UseMyMiddlewareWithParams();

 var myMiddlewareOptions = Configuration.GetSection("MyMiddlewareOptionsSection").Get<MyMiddlewareOptions>
();
 var myMiddlewareOptions2 =
Configuration.GetSection("MyMiddlewareOptionsSection2").Get<MyMiddlewareOptions>();
 app.UseMyMiddlewareWithParams(myMiddlewareOptions);
 app.UseMyMiddlewareWithParams(myMiddlewareOptions2);

 app.UseMyTerminatingMiddleware();

 // Create branch to the MyHandlerMiddleware.
 // All requests ending in .report will follow this branch.
 app.MapWhen(
 context => context.Request.Path.ToString().EndsWith(".report"),
 appBranch => {
 // ... optionally add more middleware to this branch
 appBranch.UseMyHandler();
 });

 app.MapWhen(
 context => context.Request.Path.ToString().EndsWith(".context"),
 appBranch => {
 appBranch.UseHttpContextDemoMiddleware();
 });

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

MapWhen takes these parameters:

1. A lambda that takes the HttpContext and returns true if the request should go down the branch. This
means you can branch requests not just based on their extension, but also on request headers, query string
parameters, etc.

2. A lambda that takes an IApplicationBuilder and adds all the middleware for the branch. This means you
can add additional middleware to the branch in front of your handler middleware.

Middleware added to the pipeline before the branch will be invoked on all requests; the branch will have no
impact on them.

Loading middleware options using the options pattern
Some modules and handlers have configuration options that are stored in Web.config. However, in ASP.NET Core
a new configuration model is used in place of Web.config.

The new configuration system gives you these options to solve this:

Directly inject the options into the middleware, as shown in the next section.

Use the options pattern:

public class MyMiddlewareOptions
{
 public string Param1 { get; set; }
 public string Param2 { get; set; }
}

{
 "MyMiddlewareOptionsSection": {
 "Param1": "Param1Value",
 "Param2": "Param2Value"
 }
}

1. Create a class to hold your middleware options, for example:

2. Store the option values

The configuration system allows you to store option values anywhere you want. However, most sites use
appsettings.json, so we'll take that approach:

MyMiddlewareOptionsSection here is a section name. It doesn't have to be the same as the name of your
options class.

3. Associate the option values with the options class

The options pattern uses ASP.NET Core's dependency injection framework to associate the options type
(such as MyMiddlewareOptions) with a MyMiddlewareOptions object that has the actual options.

Update your Startup class:

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
}

a. If you're using appsettings.json, add it to the configuration builder in the Startup constructor :

b. Configure the options service:

 Loading middleware options through direct injection

public class MyMiddlewareWithParams
{
 private readonly RequestDelegate _next;
 private readonly MyMiddlewareOptions _myMiddlewareOptions;

 public MyMiddlewareWithParams(RequestDelegate next,
 IOptions<MyMiddlewareOptions> optionsAccessor)
 {
 _next = next;
 _myMiddlewareOptions = optionsAccessor.Value;
 }

 public async Task Invoke(HttpContext context)
 {
 // Do something with context near the beginning of request processing
 // using configuration in _myMiddlewareOptions

 await _next.Invoke(context);

 // Do something with context near the end of request processing
 // using configuration in _myMiddlewareOptions
 }
}

public void ConfigureServices(IServiceCollection services)
{
 // Setup options service
 services.AddOptions();

 // Load options from section "MyMiddlewareOptionsSection"
 services.Configure<MyMiddlewareOptions>(
 Configuration.GetSection("MyMiddlewareOptionsSection"));

 // Add framework services.
 services.AddMvc();
}

public void ConfigureServices(IServiceCollection services)
{
 // Setup options service
 services.AddOptions();

 // Load options from section "MyMiddlewareOptionsSection"
 services.Configure<MyMiddlewareOptions>(
 Configuration.GetSection("MyMiddlewareOptionsSection"));

 // Add framework services.
 services.AddMvc();
}

c. Associate your options with your options class:

4. Inject the options into your middleware constructor. This is similar to injecting options into a controller.

The UseMiddleware extension method that adds your middleware to the IApplicationBuilder takes care
of dependency injection.

This isn't limited to IOptions objects. Any other object that your middleware requires can be injected this
way.

The options pattern has the advantage that it creates loose coupling between options values and their consumers.
Once you've associated an options class with the actual options values, any other class can get access to the
options through the dependency injection framework. There's no need to pass around options values.

This breaks down though if you want to use the same middleware twice, with different options. For example an
authorization middleware used in different branches allowing different roles. You can't associate two different
options objects with the one options class.

The solution is to get the options objects with the actual options values in your Startup class and pass those
directly to each instance of your middleware.

{
 "MyMiddlewareOptionsSection2": {
 "Param1": "Param1Value2",
 "Param2": "Param2Value2"
 },
 "MyMiddlewareOptionsSection": {
 "Param1": "Param1Value",
 "Param2": "Param2Value"
 }
}

1. Add a second key to appsettings.json

To add a second set of options to the appsettings.json file, use a new key to uniquely identify it:

2. Retrieve options values and pass them to middleware. The Use... extension method (which adds your
middleware to the pipeline) is a logical place to pass in the option values:

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseMyMiddleware();

 app.UseMyMiddlewareWithParams();

 var myMiddlewareOptions =
Configuration.GetSection("MyMiddlewareOptionsSection").Get<MyMiddlewareOptions>();
 var myMiddlewareOptions2 =
Configuration.GetSection("MyMiddlewareOptionsSection2").Get<MyMiddlewareOptions>();
 app.UseMyMiddlewareWithParams(myMiddlewareOptions);
 app.UseMyMiddlewareWithParams(myMiddlewareOptions2);

 app.UseMyTerminatingMiddleware();

 // Create branch to the MyHandlerMiddleware.
 // All requests ending in .report will follow this branch.
 app.MapWhen(
 context => context.Request.Path.ToString().EndsWith(".report"),
 appBranch => {
 // ... optionally add more middleware to this branch
 appBranch.UseMyHandler();
 });

 app.MapWhen(
 context => context.Request.Path.ToString().EndsWith(".context"),
 appBranch => {
 appBranch.UseHttpContextDemoMiddleware();
 });

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

3. Enable middleware to take an options parameter. Provide an overload of the Use... extension method
(that takes the options parameter and passes it to UseMiddleware). When UseMiddleware is called with
parameters, it passes the parameters to your middleware constructor when it instantiates the middleware
object.

 Migrating to the new HttpContext

public async Task Invoke(HttpContext context)

HttpContextHttpContext

IDictionary<object, object> items = httpContext.Items;

string requestId = httpContext.TraceIdentifier;

HttpContext.RequestHttpContext.Request

string httpMethod = httpContext.Request.Method;

public static class MyMiddlewareWithParamsExtensions
{
 public static IApplicationBuilder UseMyMiddlewareWithParams(
 this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<MyMiddlewareWithParams>();
 }

 public static IApplicationBuilder UseMyMiddlewareWithParams(
 this IApplicationBuilder builder, MyMiddlewareOptions myMiddlewareOptions)
 {
 return builder.UseMiddleware<MyMiddlewareWithParams>(
 new OptionsWrapper<MyMiddlewareOptions>(myMiddlewareOptions));
 }
}

Note how this wraps the options object in an OptionsWrapper object. This implements IOptions , as
expected by the middleware constructor.

You saw earlier that the Invoke method in your middleware takes a parameter of type HttpContext :

HttpContext has significantly changed in ASP.NET Core. This section shows how to translate the most commonly
used properties of System.Web.HttpContext to the new Microsoft.AspNetCore.Http.HttpContext .

HttpContext.Items translates to:

Unique request ID (no System.Web.HttpContext counterpart)

Gives you a unique id for each request. Very useful to include in your logs.

HttpContext.Request.HttpMethod translates to:

HttpContext.Request.QueryString translates to:

https://docs.microsoft.com/dotnet/api/system.web.httpcontext

IQueryCollection queryParameters = httpContext.Request.Query;

// If no query parameter "key" used, values will have 0 items
// If single value used for a key (...?key=v1), values will have 1 item ("v1")
// If key has multiple values (...?key=v1&key=v2), values will have 2 items ("v1" and "v2")
IList<string> values = queryParameters["key"];

// If no query parameter "key" used, value will be ""
// If single value used for a key (...?key=v1), value will be "v1"
// If key has multiple values (...?key=v1&key=v2), value will be "v1,v2"
string value = queryParameters["key"].ToString();

// using Microsoft.AspNetCore.Http.Extensions;
var url = httpContext.Request.GetDisplayUrl();

var isSecureConnection = httpContext.Request.IsHttps;

var userHostAddress = httpContext.Connection.RemoteIpAddress?.ToString();

IRequestCookieCollection cookies = httpContext.Request.Cookies;
string unknownCookieValue = cookies["unknownCookie"]; // will be null (no exception)
string knownCookieValue = cookies["cookie1name"]; // will be actual value

var routeValue = httpContext.GetRouteValue("key");

// using Microsoft.AspNetCore.Http.Headers;
// using Microsoft.Net.Http.Headers;

IHeaderDictionary headersDictionary = httpContext.Request.Headers;

// GetTypedHeaders extension method provides strongly typed access to many headers
var requestHeaders = httpContext.Request.GetTypedHeaders();
CacheControlHeaderValue cacheControlHeaderValue = requestHeaders.CacheControl;

// For unknown header, unknownheaderValues has zero items and unknownheaderValue is ""
IList<string> unknownheaderValues = headersDictionary["unknownheader"];
string unknownheaderValue = headersDictionary["unknownheader"].ToString();

// For known header, knownheaderValues has 1 item and knownheaderValue is the value
IList<string> knownheaderValues = headersDictionary[HeaderNames.AcceptLanguage];
string knownheaderValue = headersDictionary[HeaderNames.AcceptLanguage].ToString();

HttpContext.Request.Url and HttpContext.Request.RawUrl translate to:

HttpContext.Request.IsSecureConnection translates to:

HttpContext.Request.UserHostAddress translates to:

HttpContext.Request.Cookies translates to:

HttpContext.Request.RequestContext.RouteData translates to:

HttpContext.Request.Headers translates to:

HttpContext.Request.UserAgent translates to:

string userAgent = headersDictionary[HeaderNames.UserAgent].ToString();

string urlReferrer = headersDictionary[HeaderNames.Referer].ToString();

// using Microsoft.Net.Http.Headers;

MediaTypeHeaderValue mediaHeaderValue = requestHeaders.ContentType;
string contentType = mediaHeaderValue?.MediaType.ToString(); // ex. application/x-www-form-urlencoded
string contentMainType = mediaHeaderValue?.Type.ToString(); // ex. application
string contentSubType = mediaHeaderValue?.SubType.ToString(); // ex. x-www-form-urlencoded

System.Text.Encoding requestEncoding = mediaHeaderValue?.Encoding;

if (httpContext.Request.HasFormContentType)
{
 IFormCollection form;

 form = httpContext.Request.Form; // sync
 // Or
 form = await httpContext.Request.ReadFormAsync(); // async

 string firstName = form["firstname"];
 string lastName = form["lastname"];
}

WARNINGWARNING

string inputBody;
using (var reader = new System.IO.StreamReader(
 httpContext.Request.Body, System.Text.Encoding.UTF8))
{
 inputBody = reader.ReadToEnd();
}

WARNINGWARNING

HttpContext.ResponseHttpContext.Response

HttpContext.Request.UrlReferrer translates to:

HttpContext.Request.ContentType translates to:

HttpContext.Request.Form translates to:

Read form values only if the content sub type is x-www-form-urlencoded or form-data.

HttpContext.Request.InputStream translates to:

Use this code only in a handler type middleware, at the end of a pipeline.

You can read the raw body as shown above only once per request. Middleware trying to read the body after the first read
will read an empty body.

This doesn't apply to reading a form as shown earlier, because that's done from a buffer.

HttpContext.Response.Status and HttpContext.Response.StatusDescription translate to:

// using Microsoft.AspNetCore.Http;
httpContext.Response.StatusCode = StatusCodes.Status200OK;

// using Microsoft.Net.Http.Headers;
var mediaType = new MediaTypeHeaderValue("application/json");
mediaType.Encoding = System.Text.Encoding.UTF8;
httpContext.Response.ContentType = mediaType.ToString();

httpContext.Response.ContentType = "text/html";

string responseContent = GetResponseContent();
await httpContext.Response.WriteAsync(responseContent);

public async Task Invoke(HttpContext httpContext)
{
 // ...
 httpContext.Response.OnStarting(SetHeaders, state: httpContext);

HttpContext.Response.ContentEncoding and HttpContext.Response.ContentType translate to:

HttpContext.Response.ContentType on its own also translates to:

HttpContext.Response.Output translates to:

HttpContext.Response.TransmitFile

Serving up a file is discussed here.

HttpContext.Response.Headers

Sending response headers is complicated by the fact that if you set them after anything has been written to the
response body, they will not be sent.

The solution is to set a callback method that will be called right before writing to the response starts. This is best
done at the start of the Invoke method in your middleware. It's this callback method that sets your response
headers.

The following code sets a callback method called SetHeaders :

The SetHeaders callback method would look like this:

// using Microsoft.AspNet.Http.Headers;
// using Microsoft.Net.Http.Headers;

private Task SetHeaders(object context)
{
 var httpContext = (HttpContext)context;

 // Set header with single value
 httpContext.Response.Headers["ResponseHeaderName"] = "headerValue";

 // Set header with multiple values
 string[] responseHeaderValues = new string[] { "headerValue1", "headerValue1" };
 httpContext.Response.Headers["ResponseHeaderName"] = responseHeaderValues;

 // Translating ASP.NET 4's HttpContext.Response.RedirectLocation
 httpContext.Response.Headers[HeaderNames.Location] = "http://www.example.com";
 // Or
 httpContext.Response.Redirect("http://www.example.com");

 // GetTypedHeaders extension method provides strongly typed access to many headers
 var responseHeaders = httpContext.Response.GetTypedHeaders();

 // Translating ASP.NET 4's HttpContext.Response.CacheControl
 responseHeaders.CacheControl = new CacheControlHeaderValue
 {
 MaxAge = new System.TimeSpan(365, 0, 0, 0)
 // Many more properties available
 };

 // If you use .Net 4.6+, Task.CompletedTask will be a bit faster
 return Task.FromResult(0);
}

public async Task Invoke(HttpContext httpContext)
{
 // ...
 httpContext.Response.OnStarting(SetCookies, state: httpContext);
 httpContext.Response.OnStarting(SetHeaders, state: httpContext);

private Task SetCookies(object context)
{
 var httpContext = (HttpContext)context;

 IResponseCookies responseCookies = httpContext.Response.Cookies;

 responseCookies.Append("cookie1name", "cookie1value");
 responseCookies.Append("cookie2name", "cookie2value",
 new CookieOptions { Expires = System.DateTime.Now.AddDays(5), HttpOnly = true });

 // If you use .Net 4.6+, Task.CompletedTask will be a bit faster
 return Task.FromResult(0);
}

Additional resources

HttpContext.Response.Cookies

Cookies travel to the browser in a Set-Cookie response header. As a result, sending cookies requires the same
callback as used for sending response headers:

The SetCookies callback method would look like the following:

HTTP Handlers and HTTP Modules Overview
Configuration
Application Startup
Middleware

https://docs.microsoft.com/iis/configuration/system.webserver/

Migrate from ASP.NET Core 1.x to 2.0
5/26/2018 • 7 minutes to read • Edit Online

Prerequisites

Update Target Framework Moniker (TFM)

<TargetFramework>netcoreapp2.0</TargetFramework>

<TargetFramework>net461</TargetFramework>

NOTENOTE

Update .NET Core SDK version in global.json

{
 "sdk": {
 "version": "2.0.0"
 }
}

Update package references

By Scott Addie

In this article, we walk you through updating an existing ASP.NET Core 1.x project to ASP.NET Core 2.0. Migrating
your application to ASP.NET Core 2.0 enables you to take advantage of many new features and performance
improvements.

Existing ASP.NET Core 1.x applications are based off of version-specific project templates. As the ASP.NET Core
framework evolves, so do the project templates and the starter code contained within them. In addition to
updating the ASP.NET Core framework, you need to update the code for your application.

See Get Started with ASP.NET Core.

Projects targeting .NET Core should use the TFM of a version greater than or equal to .NET Core 2.0. Search for
the <TargetFramework> node in the .csproj file, and replace its inner text with netcoreapp2.0 :

Projects targeting .NET Framework should use the TFM of a version greater than or equal to .NET Framework
4.6.1. Search for the <TargetFramework> node in the .csproj file, and replace its inner text with net461 :

.NET Core 2.0 offers a much larger surface area than .NET Core 1.x. If you're targeting .NET Framework solely because of
missing APIs in .NET Core 1.x, targeting .NET Core 2.0 is likely to work.

If your solution relies upon a global.json file to target a specific .NET Core SDK version, update its version

property to use the 2.0 version installed on your machine:

The .csproj file in a 1.x project lists each NuGet package used by the project.

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/1x-to-2x/index.md
https://github.com/scottaddie
https://docs.microsoft.com/dotnet/standard/frameworks#referring-to-frameworks
https://docs.microsoft.com/dotnet/core/tools/global-json

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
</ItemGroup>

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="2.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.Authentication.Cookies" Version="2.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore" Version="2.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.Identity.EntityFrameworkCore" Version="2.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.ViewCompilation" Version="2.0.0"
PrivateAssets="All" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="2.0.0" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="2.0.0" PrivateAssets="All" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="2.0.0" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="2.0.0" PrivateAssets="All" />
 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink" Version="2.0.0" />
 <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.0"
PrivateAssets="All" />
</ItemGroup>

Update .NET Core CLI tools

<ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.Tools" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />
</ItemGroup>

Rename Package Target Fallback property

<PackageTargetFallback>$(PackageTargetFallback);portable-net45+win8+wp8+wpa81;</PackageTargetFallback>

<AssetTargetFallback>$(AssetTargetFallback);portable-net45+win8+wp8+wpa81;</AssetTargetFallback>

In an ASP.NET Core 2.0 project targeting .NET Core 2.0, a single metapackage reference in the .csproj file replaces
the collection of packages:

All the features of ASP.NET Core 2.0 and Entity Framework Core 2.0 are included in the metapackage.

ASP.NET Core 2.0 projects targeting .NET Framework should continue to reference individual NuGet packages.
Update the Version attribute of each <PackageReference /> node to 2.0.0.

For example, here's the list of <PackageReference /> nodes used in a typical ASP.NET Core 2.0 project targeting
.NET Framework:

In the .csproj file, update the Version attribute of each <DotNetCliToolReference /> node to 2.0.0.

For example, here's the list of CLI tools used in a typical ASP.NET Core 2.0 project targeting .NET Core 2.0:

The .csproj file of a 1.x project used a PackageTargetFallback node and variable:

Rename both the node and variable to AssetTargetFallback :

Update Main method in Program.cs

using System.IO;
using Microsoft.AspNetCore.Hosting;

namespace AspNetCoreDotNetCore1App
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .UseApplicationInsights()
 .Build();

 host.Run();
 }
 }
}

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace AspNetCoreDotNetCore2App
{
 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

Unable to create an object of type '<Context>'. Add an implementation of
'IDesignTimeDbContextFactory<Context>' to the project, or see https://go.microsoft.com/fwlink/?linkid=851728
for additional patterns supported at design time.

Add configuration providers

In 1.x projects, the Main method of Program.cs looked like this:

In 2.0 projects, the Main method of Program.cs has been simplified:

The adoption of this new 2.0 pattern is highly recommended and is required for product features like Entity
Framework (EF) Core Migrations to work. For example, running Update-Database from the Package Manager
Console window or dotnet ef database update from the command line (on projects converted to ASP.NET Core
2.0) generates the following error :

In 1.x projects, adding configuration providers to an app was accomplished via the Startup constructor. The steps
involved creating an instance of ConfigurationBuilder , loading applicable providers (environment variables, app

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets<Startup>();
 }

 builder.AddEnvironmentVariables();
 Configuration = builder.Build();
}

public IConfigurationRoot Configuration { get; }

public Startup(IConfiguration configuration)
{
 Configuration = configuration;
}

public IConfiguration Configuration { get; }

public static void Main(string[] args)
{
 BuildWebHost(args).Run();
}

public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureAppConfiguration((hostContext, config) =>
 {
 // delete all default configuration providers
 config.Sources.Clear();
 config.AddJsonFile("myconfig.json", optional: true);
 })
 .Build();

settings, etc.), and initializing a member of IConfigurationRoot .

The preceding example loads the Configuration member with configuration settings from appsettings.json as well
as any appsettings.<EnvironmentName>.json file matching the IHostingEnvironment.EnvironmentName property.
The location of these files is at the same path as Startup.cs.

In 2.0 projects, the boilerplate configuration code inherent to 1.x projects runs behind-the-scenes. For example,
environment variables and app settings are loaded at startup. The equivalent Startup.cs code is reduced to
IConfiguration initialization with the injected instance:

To remove the default providers added by WebHostBuilder.CreateDefaultBuilder , invoke the Clear method on the
IConfigurationBuilder.Sources property inside of ConfigureAppConfiguration . To add providers back, utilize the
ConfigureAppConfiguration method in Program.cs:

The configuration used by the CreateDefaultBuilder method in the preceding code snippet can be seen here.

For more information, see Configuration in ASP.NET Core.

https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs#L152

Move database initialization code

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

SeedData.Initialize(app.ApplicationServices);

var host = BuildWebHost(args);

using (var scope = host.Services.CreateScope())
{
 var services = scope.ServiceProvider;

 try
 {
 // Requires using RazorPagesMovie.Models;
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
}

host.Run();

Review Razor view compilation setting

In 1.x projects using EF Core 1.x, a command such as dotnet ef migrations add does the following:

1. Instantiates a Startup instance
2. Invokes the ConfigureServices method to register all services with dependency injection (including DbContext

types)
3. Performs its requisite tasks

In 2.0 projects using EF Core 2.0, Program.BuildWebHost is invoked to obtain the application services. Unlike 1.x,
this has the additional side effect of invoking Startup.Configure . If your 1.x app invoked database initialization
code in its Configure method, unexpected problems can occur. For example, if the database doesn't yet exist, the
seeding code runs before the EF Core Migrations command execution. This problem causes a
dotnet ef migrations list command to fail if the database doesn't yet exist.

Consider the following 1.x seed initialization code in the Configure method of Startup.cs:

In 2.0 projects, move the SeedData.Initialize call to the Main method of Program.cs:

As of 2.0, it's bad practice to do anything in BuildWebHost except build and configure the web host. Anything that's
about running the application should be handled outside of BuildWebHost — typically in the Main method of
Program.cs.

Faster application startup time and smaller published bundles are of utmost importance to you. For these reasons,
Razor view compilation is enabled by default in ASP.NET Core 2.0.

Setting the MvcRazorCompileOnPublish property to true is no longer required. Unless you're disabling view

<PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.ViewCompilation" Version="2.0.0" PrivateAssets="All"
/>

Rely on Application Insights "light-up" features

Adopt authentication/Identity improvements

Additional resources

compilation, the property may be removed from the .csproj file.

When targeting .NET Framework, you still need to explicitly reference the
Microsoft.AspNetCore.Mvc.Razor.ViewCompilation NuGet package in your .csproj file:

Effortless setup of application performance instrumentation is important. You can now rely on the new
Application Insights "light-up" features available in the Visual Studio 2017 tooling.

ASP.NET Core 1.1 projects created in Visual Studio 2017 added Application Insights by default. If you're not using
the Application Insights SDK directly, outside of Program.cs and Startup.cs, follow these steps:

<PackageReference Include="Microsoft.ApplicationInsights.AspNetCore" Version="2.0.0" />

public static void Main(string[] args)
{
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .UseApplicationInsights()
 .Build();

 host.Run();
}

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
@Html.Raw(JavaScriptSnippet.FullScript)

1. If targeting .NET Core, remove the following <PackageReference /> node from the .csproj file:

2. If targeting .NET Core, remove the UseApplicationInsights extension method invocation from Program.cs:

3. Remove the Application Insights client-side API call from _Layout.cshtml. It comprises the following two
lines of code:

If you are using the Application Insights SDK directly, continue to do so. The 2.0 metapackage includes the latest
version of Application Insights, so a package downgrade error appears if you're referencing an older version.

ASP.NET Core 2.0 has a new authentication model and a number of significant changes to ASP.NET Core Identity.
If you created your project with Individual User Accounts enabled, or if you have manually added authentication
or Identity, see Migrate Authentication and Identity to ASP.NET Core 2.0.

Breaking Changes in ASP.NET Core 2.0

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.ViewCompilation
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://github.com/aspnet/announcements/issues?page=1&q=is%3Aissue+is%3Aopen+label%3A2.0.0+label%3A%22Breaking+change%22&utf8=%E2%9C%93

Migrate authentication and Identity to ASP.NET Core
2.0
5/2/2018 • 8 minutes to read • Edit Online

Authentication Middleware and services

public void ConfigureServices(IServiceCollection services)
{
 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>();
}

public void Configure(IApplicationBuilder app, ILoggerFactory loggerfactory)
{
 app.UseIdentity();
 app.UseFacebookAuthentication(new FacebookOptions {
 AppId = Configuration["auth:facebook:appid"],
 AppSecret = Configuration["auth:facebook:appsecret"]
 });
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>();

 // If you want to tweak Identity cookies, they're no longer part of IdentityOptions.
 services.ConfigureApplicationCookie(options => options.LoginPath = "/Account/LogIn");
 services.AddAuthentication()
 .AddFacebook(options =>
 {
 options.AppId = Configuration["auth:facebook:appid"];
 options.AppSecret = Configuration["auth:facebook:appsecret"];
 });
}

public void Configure(IApplicationBuilder app, ILoggerFactory loggerfactory) {
 app.UseAuthentication();
}

By Scott Addie and Hao Kung

ASP.NET Core 2.0 has a new model for authentication and Identity which simplifies configuration by using
services. ASP.NET Core 1.x applications that use authentication or Identity can be updated to use the new model
as outlined below.

In 1.x projects, authentication is configured via middleware. A middleware method is invoked for each
authentication scheme you want to support.

The following 1.x example configures Facebook authentication with Identity in Startup.cs:

In 2.0 projects, authentication is configured via services. Each authentication scheme is registered in the
ConfigureServices method of Startup.cs. The UseIdentity method is replaced with UseAuthentication .

The following 2.0 example configures Facebook authentication with Identity in Startup.cs:

https://github.com/aspnet/Docs/blob/master/aspnetcore/migration/1x-to-2x/identity-2x.md
https://github.com/scottaddie
https://github.com/HaoK

 Cookie-based authenticationCookie-based authentication

JWT Bearer AuthenticationJWT Bearer Authentication

The UseAuthentication method adds a single authentication middleware component which is responsible for
automatic authentication and the handling of remote authentication requests. It replaces all of the individual
middleware components with a single, common middleware component.

Below are 2.0 migration instructions for each major authentication scheme.

Select one of the two options below, and make the necessary changes in Startup.cs:

1. Use cookies with Identity

app.UseAuthentication();

services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

services.ConfigureApplicationCookie(options => options.LoginPath = "/Account/LogIn");

Replace UseIdentity with UseAuthentication in the Configure method:

Invoke the AddIdentity method in the ConfigureServices method to add the cookie authentication
services.

Optionally, invoke the ConfigureApplicationCookie or ConfigureExternalCookie method in the
ConfigureServices method to tweak the Identity cookie settings.

2. Use cookies without Identity

app.UseAuthentication();

// If you don't want the cookie to be automatically authenticated and assigned to
HttpContext.User,
// remove the CookieAuthenticationDefaults.AuthenticationScheme parameter passed to
AddAuthentication.
services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
 .AddCookie(options =>
 {
 options.LoginPath = "/Account/LogIn";
 options.LogoutPath = "/Account/LogOff";
 });

Replace the UseCookieAuthentication method call in the Configure method with UseAuthentication :

Invoke the AddAuthentication and AddCookie methods in the ConfigureServices method:

Make the following changes in Startup.cs:

app.UseAuthentication();

Replace the UseJwtBearerAuthentication method call in the Configure method with UseAuthentication :

Invoke the AddJwtBearer method in the ConfigureServices method:

OpenID Connect (OIDC) authenticationOpenID Connect (OIDC) authentication

Facebook authenticationFacebook authentication

Google authenticationGoogle authentication

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
 .AddJwtBearer(options =>
 {
 options.Audience = "http://localhost:5001/";
 options.Authority = "http://localhost:5000/";
 });

This code snippet doesn't use Identity, so the default scheme should be set by passing
JwtBearerDefaults.AuthenticationScheme to the AddAuthentication method.

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication(options =>
{
 options.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme = OpenIdConnectDefaults.AuthenticationScheme;
})
.AddCookie()
.AddOpenIdConnect(options =>
{
 options.Authority = Configuration["auth:oidc:authority"];
 options.ClientId = Configuration["auth:oidc:clientid"];
});

Replace the UseOpenIdConnectAuthentication method call in the Configure method with UseAuthentication :

Invoke the AddOpenIdConnect method in the ConfigureServices method:

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication()
 .AddFacebook(options =>
 {
 options.AppId = Configuration["auth:facebook:appid"];
 options.AppSecret = Configuration["auth:facebook:appsecret"];
 });

Replace the UseFacebookAuthentication method call in the Configure method with UseAuthentication :

Invoke the AddFacebook method in the ConfigureServices method:

Make the following changes in Startup.cs:

app.UseAuthentication();

Replace the UseGoogleAuthentication method call in the Configure method with UseAuthentication :

Invoke the AddGoogle method in the ConfigureServices method:

Microsoft Account authenticationMicrosoft Account authentication

Twitter authenticationTwitter authentication

Setting default authentication schemesSetting default authentication schemes

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme);

services.AddAuthentication()
 .AddGoogle(options =>
 {
 options.ClientId = Configuration["auth:google:clientid"];
 options.ClientSecret = Configuration["auth:google:clientsecret"];
 });

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication()
 .AddMicrosoftAccount(options =>
 {
 options.ClientId = Configuration["auth:microsoft:clientid"];
 options.ClientSecret = Configuration["auth:microsoft:clientsecret"];
 });

Replace the UseMicrosoftAccountAuthentication method call in the Configure method with
UseAuthentication :

Invoke the AddMicrosoftAccount method in the ConfigureServices method:

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication()
 .AddTwitter(options =>
 {
 options.ConsumerKey = Configuration["auth:twitter:consumerkey"];
 options.ConsumerSecret = Configuration["auth:twitter:consumersecret"];
 });

Replace the UseTwitterAuthentication method call in the Configure method with UseAuthentication :

Invoke the AddTwitter method in the ConfigureServices method:

In 1.x, the AutomaticAuthenticate and AutomaticChallenge properties of the AuthenticationOptions base class
were intended to be set on a single authentication scheme. There was no good way to enforce this.

In 2.0, these two properties have been removed as properties on the individual AuthenticationOptions instance.
They can be configured in the AddAuthentication method call within the ConfigureServices method of Startup.cs:

In the preceding code snippet, the default scheme is set to CookieAuthenticationDefaults.AuthenticationScheme

("Cookies").

Alternatively, use an overloaded version of the AddAuthentication method to set more than one property. In the

https://docs.microsoft.com/dotnet/api/Microsoft.AspNetCore.Builder.AuthenticationOptions?view=aspnetcore-1.1

services.AddAuthentication(options =>
{
 options.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme = OpenIdConnectDefaults.AuthenticationScheme;
});

Use HttpContext authentication extensions

// Clear the existing external cookie to ensure a clean login process
await HttpContext.Authentication.SignOutAsync(_externalCookieScheme);

// Clear the existing external cookie to ensure a clean login process
await HttpContext.SignOutAsync(IdentityConstants.ExternalScheme);

Windows Authentication (HTTP.sys / IISIntegration)

services.AddAuthentication(IISDefaults.AuthenticationScheme);

following overloaded method example, the default scheme is set to
CookieAuthenticationDefaults.AuthenticationScheme . The authentication scheme may alternatively be specified

within your individual [Authorize] attributes or authorization policies.

Define a default scheme in 2.0 if one of the following conditions is true:

You want the user to be automatically signed in
You use the [Authorize] attribute or authorization policies without specifying schemes

An exception to this rule is the AddIdentity method. This method adds cookies for you and sets the default
authenticate and challenge schemes to the application cookie IdentityConstants.ApplicationScheme . Additionally, it
sets the default sign-in scheme to the external cookie IdentityConstants.ExternalScheme .

The IAuthenticationManager interface is the main entry point into the 1.x authentication system. It has been
replaced with a new set of HttpContext extension methods in the Microsoft.AspNetCore.Authentication

namespace.

For example, 1.x projects reference an Authentication property:

In 2.0 projects, import the Microsoft.AspNetCore.Authentication namespace, and delete the Authentication

property references:

There are two variations of Windows authentication:

1. The host only allows authenticated users
2. The host allows both anonymous and authenticated users

The first variation described above is unaffected by the 2.0 changes.

The second variation described above is affected by the 2.0 changes. As an example, you may be allowing
anonymous users into your application at the IIS or HTTP.sys layer but authorizing users at the Controller level. In
this scenario, set the default scheme to IISDefaults.AuthenticationScheme in the ConfigureServices method of
Startup.cs:

Failure to set the default scheme accordingly prevents the authorize request to challenge from working.

https://docs.microsoft.com/en-us/aspnet/core/group1-dest/fundamentals/servers/weblistener

IdentityCookieOptions instances

public AccountController(
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager,
 IOptions<IdentityCookieOptions> identityCookieOptions,
 IEmailSender emailSender,
 ISmsSender smsSender,
 ILoggerFactory loggerFactory)
{
 _userManager = userManager;
 _signInManager = signInManager;
 _externalCookieScheme = identityCookieOptions.Value.ExternalCookieAuthenticationScheme;
 _emailSender = emailSender;
 _smsSender = smsSender;
 _logger = loggerFactory.CreateLogger<AccountController>();
}

public AccountController(
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager,
 IEmailSender emailSender,
 ISmsSender smsSender,
 ILoggerFactory loggerFactory)
{
 _userManager = userManager;
 _signInManager = signInManager;
 _emailSender = emailSender;
 _smsSender = smsSender;
 _logger = loggerFactory.CreateLogger<AccountController>();
}

// Clear the existing external cookie to ensure a clean login process
await HttpContext.SignOutAsync(IdentityConstants.ExternalScheme);

Add IdentityUser POCO navigation properties

A side effect of the 2.0 changes is the switch to using named options instead of cookie options instances. The
ability to customize the Identity cookie scheme names is removed.

For example, 1.x projects use constructor injection to pass an IdentityCookieOptions parameter into
AccountController.cs. The external cookie authentication scheme is accessed from the provided instance:

The aforementioned constructor injection becomes unnecessary in 2.0 projects, and the _externalCookieScheme

field can be deleted:

The IdentityConstants.ExternalScheme constant can be used directly:

The Entity Framework (EF) Core navigation properties of the base IdentityUser POCO (Plain Old CLR Object)
have been removed. If your 1.x project used these properties, manually add them back to the 2.0 project:

/// <summary>
/// Navigation property for the roles this user belongs to.
/// </summary>
public virtual ICollection<IdentityUserRole<int>> Roles { get; } = new List<IdentityUserRole<int>>();

/// <summary>
/// Navigation property for the claims this user possesses.
/// </summary>
public virtual ICollection<IdentityUserClaim<int>> Claims { get; } = new List<IdentityUserClaim<int>>();

/// <summary>
/// Navigation property for this users login accounts.
/// </summary>
public virtual ICollection<IdentityUserLogin<int>> Logins { get; } = new List<IdentityUserLogin<int>>();

protected override void OnModelCreating(ModelBuilder builder)
{
 base.OnModelCreating(builder);
 // Customize the ASP.NET Identity model and override the defaults if needed.
 // For example, you can rename the ASP.NET Identity table names and more.
 // Add your customizations after calling base.OnModelCreating(builder);

 builder.Entity<ApplicationUser>()
 .HasMany(e => e.Claims)
 .WithOne()
 .HasForeignKey(e => e.UserId)
 .IsRequired()
 .OnDelete(DeleteBehavior.Cascade);

 builder.Entity<ApplicationUser>()
 .HasMany(e => e.Logins)
 .WithOne()
 .HasForeignKey(e => e.UserId)
 .IsRequired()
 .OnDelete(DeleteBehavior.Cascade);

 builder.Entity<ApplicationUser>()
 .HasMany(e => e.Roles)
 .WithOne()
 .HasForeignKey(e => e.UserId)
 .IsRequired()
 .OnDelete(DeleteBehavior.Cascade);
}

Replace GetExternalAuthenticationSchemes

var otherLogins = _signInManager.GetExternalAuthenticationSchemes().Where(auth => userLogins.All(ul =>
auth.AuthenticationScheme != ul.LoginProvider)).ToList();

To prevent duplicate foreign keys when running EF Core Migrations, add the following to your IdentityDbContext

class' OnModelCreating method (after the base.OnModelCreating(); call):

The synchronous method GetExternalAuthenticationSchemes was removed in favor of an asynchronous version.
1.x projects have the following code in ManageController.cs:

This method appears in Login.cshtml too:

var loginProviders = SignInManager.GetExternalAuthenticationSchemes().ToList();
 <div>
 <p>
 @foreach (var provider in loginProviders)
 {
 <button type="submit" class="btn btn-default" name="provider"
value="@provider.AuthenticationScheme" title="Log in using your @provider.DisplayName
account">@provider.AuthenticationScheme</button>
 }
 </p>
 </div>
 </form>
}

var schemes = await _signInManager.GetExternalAuthenticationSchemesAsync();
var otherLogins = schemes.Where(auth => userLogins.All(ul => auth.Name != ul.LoginProvider)).ToList();

var loginProviders = (await SignInManager.GetExternalAuthenticationSchemesAsync()).ToList();
 <div>
 <p>
 @foreach (var provider in loginProviders)
 {
 <button type="submit" class="btn btn-default" name="provider" value="@provider.Name"
title="Log in using your @provider.DisplayName account">@provider.DisplayName</button>
 }
 </p>
 </div>
 </form>
}

ManageLoginsViewModel property change

using System.Collections.Generic;
using Microsoft.AspNetCore.Http.Authentication;
using Microsoft.AspNetCore.Identity;

namespace AspNetCoreDotNetCore1App.Models.ManageViewModels
{
 public class ManageLoginsViewModel
 {
 public IList<UserLoginInfo> CurrentLogins { get; set; }

 public IList<AuthenticationDescription> OtherLogins { get; set; }
 }
}

In 2.0 projects, use the GetExternalAuthenticationSchemesAsync method:

In Login.cshtml, the AuthenticationScheme property accessed in the foreach loop changes to Name :

A ManageLoginsViewModel object is used in the ManageLogins action of ManageController.cs. In 1.x projects, the
object's OtherLogins property return type is IList<AuthenticationDescription> . This return type requires an
import of Microsoft.AspNetCore.Http.Authentication :

In 2.0 projects, the return type changes to IList<AuthenticationScheme> . This new return type requires replacing
the Microsoft.AspNetCore.Http.Authentication import with a Microsoft.AspNetCore.Authentication import.

using System.Collections.Generic;
using Microsoft.AspNetCore.Authentication;
using Microsoft.AspNetCore.Identity;

namespace AspNetCoreDotNetCore2App.Models.ManageViewModels
{
 public class ManageLoginsViewModel
 {
 public IList<UserLoginInfo> CurrentLogins { get; set; }

 public IList<AuthenticationScheme> OtherLogins { get; set; }
 }
}

Additional resources

For additional details and discussion, see the Discussion for Auth 2.0 issue on GitHub.

https://github.com/aspnet/Security/issues/1338

	Cover Page
	Introduction
	What's new
	What's new
	What's new
	Get started
	Create a web app
	Create a Web API

	Tutorials
	Create a Razor Pages web app
	Get started with Razor Pages
	Add a model
	Scaffolded Razor Pages
	SQL Server LocalDB
	Update the pages
	Add search
	Add a new field
	Add validation
	Upload files

	Create an MVC web app
	Get started
	Add a controller
	Add a view
	Add a model
	Work with SQL Server LocalDB
	Controller methods and views
	Add search
	Add a new field
	Add validation
	Examine the Details and Delete methods

	Build Web APIs
	Create a Web API in Visual Studio Code
	Create a Web API in Visual Studio for Mac
	Create a Web API in Visual Studio for Windows
	Create backend services for native mobile apps
	Help pages using Swagger
	Get started with NSwag
	Get started with Swashbuckle

	Data access - with EF Core
	Data access - with Razor Pages and EF Core
	Get started
	Create, Read, Update, and Delete operations
	Sort, filter, page, and group
	Migrations
	Create a complex data model
	Read related data
	Update related data
	Handle concurrency conflicts

	Data access - MVC with EF Core
	Get started
	Create, Read, Update, and Delete operations
	Sort, filter, page, and group
	Migrations
	Create a complex data model
	Read related data
	Update related data
	Handle concurrency conflicts
	Inheritance
	Advanced topics

	Cross platform tutorials
	Razor Pages web app on macOS
	Get started with Razor Pages
	Add a model
	Scaffolded Razor Pages
	Work with SQLite
	Update the pages
	Add search

	Razor Pages web app with VS Code
	Get started with Razor Pages
	Add a model
	Scaffolded Razor Pages
	Work with SQLite
	Update the pages
	Add search

	MVC web app with Visual Studio for Mac
	Get started
	Add a controller
	Add a view
	Add a model
	Work with SQLite
	Controller methods and views
	Add search
	Add a new field
	Add validation
	Examine the Details and Delete methods

	MVC web app with Visual Studio Code on macOS or Linux
	Get started
	Add a controller
	Add a view
	Add a model
	Work with SQLite
	Controller methods and views
	Add search
	Add a new field
	Add validation
	Examine the Details and Delete methods

	Web API with Visual Studio for Mac
	Web API with Visual Studio Code

	Develop apps using a file watcher
	Create backend services for mobile apps

	Fundamentals
	Application startup
	Dependency injection (services)
	Middleware
	Middleware
	Factory-based middleware
	Factory-based middleware with third-party container

	Static files
	Routing
	URL rewriting middleware
	Use multiple environments
	Configuration and options
	Configuration
	Options
	Enhance an app from an external assembly

	Logging
	Logging with LoggerMessage

	Handle errors
	File providers
	Host
	Web Host
	Generic Host
	Background tasks with hosted services

	Session and app state
	Servers
	Kestrel
	ASP.NET Core Module
	HTTP.sys

	Globalization and localization
	Configure Portable Object localization with Orchard Core

	Initiate HTTP requests
	Request features
	Primitives
	Change tokens

	Open Web Interface for .NET (OWIN)
	WebSockets
	Microsoft.AspNetCore.App metapackage
	Microsoft.AspNetCore.All metapackage
	Choose between .NET Core and .NET Framework
	Choose between ASP.NET Core and ASP.NET

	Razor Pages
	Filter methods for Razor Pages
	Create a Razor Class Library
	Route and app conventions
	Razor SDK

	MVC
	Model binding
	Model validation

	Views
	Razor syntax
	View compilation
	Layout
	Tag Helpers
	Create Tag Helpers
	Use Tag Helpers in forms
	Built-in Tag Helpers
	Anchor Tag Helper
	Cache Tag Helper
	Distributed Cache Tag Helper
	Environment Tag Helper
	Form Tag Helper
	Image Tag Helper
	Input Tag Helper
	Label Tag Helper
	Partial Tag Helper
	Select Tag Helper
	Textarea Tag Helper
	Validation Message Tag Helper
	Validation Summary Tag Helper

	Partial views
	Dependency injection into views
	View components

	Controllers
	Route to controller actions
	File uploads
	Dependency injection into controllers
	Test controllers

	Advanced
	Work with the app model
	Filters
	Areas
	Application parts
	Custom model binding

	Web API
	Controller action return types
	Advanced
	Custom formatters
	Format response data

	Test, debug, and troubleshoot
	Unit testing
	Integration tests
	Razor Pages unit tests
	Test controllers
	Remote debugging
	Snapshot debugging
	Snapshot debugging in Visual Studio
	Troubleshoot

	Data access with EF Core and Azure
	Get started with Razor Pages and EF Core using Visual Studio
	Get started with ASP.NET Core and EF Core using Visual Studio
	ASP.NET Core with EF Core - new database
	ASP.NET Core with EF Core - existing database
	Get started with ASP.NET Core and Entity Framework 6
	Azure Storage
	Add Azure Storage by using Visual Studio Connected Services
	Get started with Blob storage and Visual Studio Connected Services
	Get Started with Queue Storage and Visual Studio Connected Services
	Get Started with Table Storage and Visual Studio Connected Services

	Client-side development
	Use Gulp
	Use Grunt
	Manage client-side packages with Bower
	Build responsive sites with Bootstrap
	Style apps with LESS, Sass, and Font Awesome
	Bundle and minify
	Use Browser Link
	Use JavaScriptServices for SPAs
	Use the SPA project templates
	Angular project template
	React project template
	React with Redux project template

	SignalR
	Introduction
	Get started
	Hubs
	JavaScript client
	.NET client
	HubContext
	Users and Groups
	MessagePack Hub Protocol
	Publish to Azure
	Streaming
	Supported platforms

	Mobile
	Create backend services for native mobile apps

	Host and deploy
	Host on Azure App Service
	Publish to Azure with Visual Studio
	Publish to Azure with CLI tools
	Continuous deployment to Azure with Visual Studio and Git
	Continuous deployment to Azure with VSTS
	Troubleshoot ASP.NET Core on Azure App Service

	Host on Windows with IIS
	Troubleshoot ASP.NET Core on IIS
	ASP.NET Core Module configuration reference
	Development-time IIS support in Visual Studio for ASP.NET Core
	IIS Modules with ASP.NET Core

	Host in a Windows service
	Host on Linux with Nginx
	Host on Linux with Apache
	Host in Docker
	Build Docker images
	Visual Studio Tools for Docker
	Publish to a Docker image

	Proxy and load balancer configuration
	Visual Studio publish profiles
	Directory structure
	Common errors reference for Azure App Service and IIS

	Security
	Authentication
	Introduction to Identity
	Scaffold Identity
	Add custom user data to Identity
	Community OSS authentication options
	Configure Identity
	Configure Windows Authentication
	Configure primary key type for Identity
	Custom storage providers for Identity
	Enable authentication using Facebook, Google, and other external providers
	Facebook authentication
	Twitter authentication
	Google authentication
	Microsoft authentication
	Other authentication providers

	WS-Federation authentication
	Account confirmation and password recovery
	Enable QR code generation in Identity
	Two-factor authentication with SMS
	Use Cookie Authentication without Identity
	Azure Active Directory
	Integrate Azure AD Into an ASP.NET Core web app
	Integrate Azure AD B2C into a customer-facing ASP.NET Core web app
	Integrate Azure AD B2C into an ASP.NET Core web API
	Call a ASP.NET Core Web API from a WPF app using Azure AD
	Call a Web API in an ASP.NET Core web app using Azure AD

	Secure ASP.NET Core apps with IdentityServer4
	Secure ASP.NET Core apps with Azure App Service authentication (Easy Auth)
	Individual user accounts

	Authorization
	Introduction
	Create an app with user data protected by authorization
	Razor Pages authorization
	Simple authorization
	Role-based authorization
	Claims-based authorization
	Policy-based authorization
	Dependency injection in requirement handlers
	Resource-based authorization
	View-based authorization
	Limit identity by scheme

	Data protection
	Introduction to data protection
	Get started with the Data Protection APIs
	Consumer APIs
	Consumer APIs overview
	Purpose strings
	Purpose hierarchy and multi-tenancy
	Hash passwords
	Limit the lifetime of protected payloads
	Unprotect payloads whose keys have been revoked

	Configuration
	Configure data protection
	Default settings
	Machine-wide policy
	Non-DI aware scenarios

	Extensibility APIs
	Core cryptography extensibility
	Key management extensibility
	Miscellaneous APIs

	Implementation
	Authenticated encryption details
	Subkey derivation and authenticated encryption
	Context headers
	Key management
	Key storage providers
	Key encryption at rest
	Key immutability and settings
	Key storage format
	Ephemeral data protection providers

	Compatibility
	Replace <machineKey> in ASP.NET

	Enforce HTTPS
	EU General Data Protection Regulation (GDPR) support
	Safe storage of app secrets in development
	Azure Key Vault configuration provider
	Anti-request forgery
	Prevent open redirect attacks
	Prevent Cross-Site Scripting
	Enable Cross-Origin Requests (CORS)
	Share cookies among apps

	Performance
	Cache responses
	Cache in-memory
	Work with a distributed cache
	Response caching
	Response caching middleware

	Response compression middleware

	Migration
	ASP.NET Core 2.0 to 2.1
	ASP.NET to ASP.NET Core
	MVC
	Web API
	Configuration
	Authentication and Identity
	ClaimsPrincipal.Current
	Membership to Identity
	HTTP modules to middleware

	ASP.NET Core 1.x to 2.0
	Authentication and Identity

	API reference
	Contribute

