

Windows Azure™
Step by Step

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Windows Azure™
Step by Step

Roberto Brunetti

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2011 by Roberto Brunetti

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-4972-9

1 2 3 4 5 6 7 8 9 M 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Development Editor: Russell Jones
Production Editor: Teresa Elsey
Editorial Production: Online Training Solutions, Inc.
Technical Reviewer: Brian Keller
Indexer: Ginny Munroe
Cover Design: Twist Creative • Seattle
Cover Composition: Karen Montgomery

This book is dedicated to Barbara for her support in every important step of my life.

—Roberto

 vii

Contents at a Glance
1 Introduction to Cloud Computing . 1
2 Introduction to the Windows Azure Platform 15
3 Creating a Web Role Project . 41
4 Windows Azure Storage . 79
5 Tables, Queues, and Worker Roles . 111
6 Windows Azure Operating System Details 137
7 Building an AppFabric Solution . 161
8 WCF Data Services and OData . 193
9 Using SQL Azure . 233
10 Accessing Azure Services from Everywhere 259
11 Application Architecture . 281

 ix

Table of Contents
Acknowledgments .xiii

Foreword . xv

Introduction . xvii

1 Introduction to Cloud Computing . 1
Approaches to Cloud Computing . 1

Infrastructure as a Service . 2
Software as a Service . 2
Platform as a Service . 3
Cloud Services Defined . 4

Long-Term Vision . 5
Windows Azure as a PaaS Solution . 6

Great Opportunity for Small Businesses . 7
Great Opportunity for Big Businesses . 10

Windows Azure and Cloud Computing . 12
Summary . 14

2 Introduction to the Windows Azure Platform 15
The Operating System . 16
Service Creation . 19
Windows Azure Storage . 27
The Worker Role . 31
The Virtual Machine Role . 32
Windows Azure AppFabric . 32

The Service Bus . 33
The Access Control Service . 35

SQL Azure . 39
Summary . 40

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

x Table of Contents

3 Creating a Web Role Project . 41
Software Development Kits . 41
Windows Azure Tools for Visual Studio . 43
Web Role Project Template . 44
The Cloud Project . 50
Deployment to Windows Azure . 56
Configuration and Upgrading . 61
Service Definition File . 70
Role Properties . 72
Summary . 77
Quick Reference . 77

4 Windows Azure Storage . 79
Local Storage . 80
The Windows Azure Storage Account . 85
Windows Azure Management Tool . 90
Blob APIs . 98
Summary . 108
Quick Reference . 109

5 Tables, Queues, and Worker Roles . 111
The Table Service . 111
The Queue Service . 127
Summary . 135
Quick Reference . 136

6 Windows Azure Operating System Details 137
Live ID, Subscriptions, and Billing . 138
Affinity Group . 143
Content Delivery Network . 145
Certificates . 147
Diagnostics . 156
Summary . 160
Quick Reference . 160

 Table of Contents xi

7 Building an AppFabric Solution . 161
Windows Azure AppFabric Components . 161
Service Bus . 164
Direct Connection . 182
Bindings . 185
HTTP for Management URI . 189
Summary . 190
Quick Reference . 191

8 WCF Data Services and OData . 193
The Astoria Project . 193
WCF Data Services (ADO .NET Data Services) . 194
The Building Blocks . 195
WCF Data Service . 205
Query and Relationship . 211
Filtering, Sorting, and Pagination . 217
WCF Data Service Client . 218
The .NET Framework Client . 223
Security Introduction . 228
Summary . 232
Quick Reference . 232

9 Using SQL Azure . 233
SQL Azure Features . 234
SQL Azure Database Access . 235
Database Server Creation in the Cloud . 238
SQL Azure Access . 246
SQL Azure Relational Engine Feature . 252
Existing Database Migration . 253
SQL Azure Migration Wizard . 254
Summary . 257
Quick Reference . 257

xii Table of Contents

10 Accessing Azure Services from Everywhere 259
Creating the Storage Account Project . 260
Accessing the Storage Account from PHP . 272
Using HTTP and REST . 274
Summary . 280
Quick Reference . 280

11 Application Architecture . 281
Characteristics of a Multitier Solution . 281
The Data Access Layer . 283
The Service Agent . 298
Summary . 302

Index . 303

 xiii

Acknowledgments
A book is the result of the work of many people, but usually only the author name appears
on the cover.

First, I want to thank Vanni Boncinelli for his effort in reviewing all the chapters for both tech-
nical aspects and linguistic troubles. This is my first English-written book. Without him, the
editor would have rejected all the chapters.

I also want to thank Russell Jones for his patience in responding quickly and precisely to all of
my rookie questions and for supporting me from the beginning of this writing.

Many thanks go to Brian Keller: he has reviewed not only the text but every line of code two
times, because during the writing process Microsoft released the SDK 1.3, which was signifi-
cantly different from the previous version around configuration and the Visual Studio IDE
add-in. Brian also had to re-review all the portal screenshots, because the Windows Azure
user interface was completely redesigned in Silverlight as of January 2011.

One of the most important people to thank is Victoria Thulman, who guided me in the pro-
cess of copyediting all the chapters. Her patience with my mistakes and incorrect assump-
tions was immeasurable.

Gabriele Castellani and Giuseppe Guerrasio wrote the foreword and have supported me since
2008, when Microsoft first announced Windows Azure at PDC 08.

Fabio Santini and Mario Fontana have given me the opportunity to work with many Italian
Microsoft partners and with a wide range of application scenarios: you can find those experi-
ences reflected in many of this book’s pages.

Last, but not least, thanks to Paolo Pialorsi, who introduced me to Russell Jones one year ago.

Now, the book is complete: thanks again to all of you.

 xv

Foreword
When Roberto asked us to write a foreword for this book, he made us happy for several rea-
sons. First, it’s a pleasure introducing you to the work of one of the members of DevLeap, a
group of professionals who have always been distinguished by the quality and the clarity of
their teaching materials and courses. Second, the topic discussed in this book touches one
of the most important issues for the future of our profession: cloud computing, and in par-
ticular, the Windows Azure Platform, which is the first application infrastructure specifically
conceived and built for the cloud.

The evolution of networks and the growing diffuseness of the Internet, after having trans-
formed the way people consume content, are on the verge of changing the way we think
about concepts such as computational power and storage capabilities. We are used to think-
ing of those as related to local physical machines, but the advent of cloud computing is
leading toward a revolution in how we access computational and storage resources. Thanks
to the Windows Azure Platform, huge data centers easily provide the computational power,
storage, services, and applications developers need to develop their own solutions, trans-
forming them into services accessible on demand.

Providing technologies and infrastructures that we are already familiar with, within an on-de-
mand infrastructure, helps to reduce management and hardware and software maintenance
and licensing costs and to constantly increase available computational power and storage
capacity.

In this book, Roberto accompanies us through the world of the Windows Azure platform and
services, providing us with detailed but still basic explanations about the objectives and fea-
tures of the major components of this new platform and telling us how we can leverage this
platform to host our own services and applications. Ranging from the core of the Windows
Azure Platform to its deployment and monitoring services, from SQL Azure to full integration
with the development tools, this book guides us in discovering the main aspects of this new
technology, from a concrete, development-oriented perspective and with plenty of practi-
cal examples, in line with the philosophy that has always inspired any DevLeap activity. Case
studies and practical tips regarding the use of the services and the most efficient implemen-
tation strategies show the best way to approach the Windows Azure Platform, allowing us to
ride this new technological wave, which is expected to significantly improve our chances to
leverage computational power, storage, and basic services, from the beginning.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Here begins a new and interesting journey toward a new technological frontier. The only
thing you need to do to jump aboard and start exploring this application platform under
Roberto’s guidance is to press F5!

Giuseppe Guerrasio
Architect Evangelist
Developers & Platform Evangelism
Microsoft Italy

Gabriele Castellani
Developer & ITPro Evangelist Manager
Microsoft Italy

xvi Foreword

 xvii

Introduction
Windows Azure is the Microsoft cloud computing platform that lets developers leverage its
powerful, scalable, and fault-tolerant infrastructure to build successful applications.

Windows Azure Step by Step provides an organized walkthrough of the Windows Azure
platform and its related technologies. The text is decidedly introductory; it discusses every
released component, discussing theory interspersed with simple but effective procedures
you can follow, and offering downloadable code examples you can use to jump-start your
learning about the Azure platform and as a basis for your own explorations.

The book provides coverage of every Windows Azure platform component that has been
released to production by Microsoft as of the time of this writing, as well as some related
technologies, such as WCF Data Services, OData, and the ADO.NET Entity Framework.

Who Should Read This Book
This book’s goal is to aid .NET developers who want to start working with the components
of the Windows Azure platform—from the operating system to SQL Azure and Windows
Azure AppFabric. A solid knowledge of the .NET Framework is helpful in fully understanding
the code examples and following the exercises using Visual Studio. The content of this book
should also prove useful to software architects who need an overview of the components
they plan to include in the overall architecture of a cloud-based solution.

Who Should Not Read This Book
If you have already been working with the Windows Azure platform, this book is probably
not for you. This book is an introductory guide to developing applications that leverage the
platform.

Assumptions
This book expects that you have at least a minimal understanding of .NET development and
object-oriented programming concepts. Although Windows Azure can run all .NET language
platforms and many third-party (and open source) runtimes, this book includes examples
in C# only. If you are not yet familiar with C#, you should consider reading John Sharp’s
Microsoft Visual C# 2010 Step by Step (Microsoft Press, 2010) first.

The Web Role examples assume a basic understanding of ASP.NET Web Forms technology,
although the code examples don’t use any advanced ASP.NET features.

Organization of This Book
This book is divided into eleven chapters, each of which focuses on a different aspect or
technology within the Windows Azure platform.

■ Chapter 1 provides a technical overview of cloud computing scenarios and a flavor of
Windows Azure.

■ Chapter 2 analyzes the various components of the platform and guides the reader
through the Windows Azure Management Portal to start using it.

■ Chapter 3 introduces Hosted Services, instances, virtual machines, and roles.

■ Chapter 4 is dedicated to the construction of a simple application that leverages the
Storage Account feature to store and retrieve blobs.

■ Chapter 5 maintains the focus on the Storage Account, explaining the main concepts
around tables and queues, and introduces the Worker Role feature.

■	 Chapter 6 dives deep into important aspects such as billing, security, management cer-
tificates, and affinity groups.

■	 Chapter 7 is dedicated to Windows Azure AppFabric, one of the platform components
built on the Windows Azure Operating System.

■	 Chapter 8 focuses on WCF Data Services and guides you through the creation of an
Entity Data Model and the use of the “Astoria” project to expose this model with REST
and OData protocols.

■	 Chapter 9 is dedicated to SQL Azure, the SQL Server cloud brother.

■	 Chapter 10 leverages the Windows Azure services from an on-premises application and
different programming environments.

■	 Chapter 11 is dedicated to the application architecture.

Conventions and Features in This Book
This book presents information using conventions designed to make the information read-
able and easy to follow.

■	 In most cases, the book includes exercises for Visual C# programmers. The presented
code and procedure are purposely kept as simple as possible, so you can probably gain
insight by studying the C# examples even if you are a Visual Basic programmer.

■	 Each exercise consists of a series of tasks, presented as numbered steps (1, 2, and so on)
listing each action you must take to complete the exercise.

xviii Introduction

■	 Boxed elements with labels such as “Note” provide additional information or alternative
methods for successfully completing a step.

■	 Text that you are supposed to type (apart from code blocks) appears in bold.

■	 A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

■	 A vertical bar between two or more menu items (for example, File | Close), means that
you should select the first menu or menu item, then the next, and so on.

System Requirements
You will need the following hardware and software to complete the practice exercises in this
book:

■	 One of the Windows 7 editions, Windows Server 2008 with Service Pack 2, or Windows
Server 2008 R2.

■	 Visual Studio 2010, any edition (multiple downloads may be required if you use the free
Express Edition products)

■	 SQL Server 2005 Express Edition or higher (2008 or R2 release), with SQL Server
Management Studio 2005 Express or higher (included with Visual Studio; Express
Editions require separate download). To work with SQL Azure, you need SQL Server
Management Studio 2008 R2.

■	 A computer capable of running Visual Studio 2010.

■	 An Internet connection to work with Windows Azure. You can also try all the samples
using the local emulator.

Depending on your Windows configuration, you might require Local Administrator rights to
install or configure Visual Studio 2010 and SQL Server 2008 products.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new ma-
terial learned in the main text. All the example projects, in both their pre-exercise and post-
exercise formats, are available for download from the web:

http://go.microsoft.com/FWLink/?Linkid=217915

Follow the instructions to download the AzureSbs.zip file.

 Introduction xix

Note In addition to the code samples, your system should have Visual Studio 2010 and SQL
Server 2008 installed. The instructions below use SQL Server Management Studio 2008 to set up
the sample database used with the practice examples. If available, install the latest service packs
for each product.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use them
with the exercises in this book.

 1. Unzip the AzureSbs.zip file that you downloaded from the book’s website (specify or
create a specific directory where you want to unzip the files).

 2. If prompted, review the displayed end user license agreement. If you accept the terms,
select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from the same web page
from which you downloaded the AzureSbs.zip file.

Using the Code Samples
The zip file contains

■	 A directory for each chapter with sample code.

■	 Every chapter directory contains a Visual Studio solution you can open and work with.

■	 Chapter 7 contains four subdirectories, each of which contains a Visual Studio solution.

Every chapter contains the step-by-step procedure to recreate the sample so you do not need
any of the code samples to complete the exercises. To complete an exercise, follow the list of
procedure steps in sequence. Each chapter contains all the necessary steps for its exercises; in
other words, you do not have to have completed the exercises in previous chapters.

How to Access Your Online Edition Hosted by Safari
The voucher bound in to the back of this book gives you access to an online edition of the
book. (You can also download the online edition of the book to your own computer; see the
next section.)

xx Introduction

To access your online edition, do the following:

 1. Locate your voucher inside the back cover, and scratch off the metallic foil to reveal
your access code.

 2. Go to http://microsoftpress.oreilly.com/safarienabled.

 3. Enter your 24-character access code in the Coupon Code field under Step 1.

(Please note that the access code in this image is for illustration purposes only.)

 4. Click the CONFIRM COUPON button.

A message will appear to let you know that the code was entered correctly. If the code
was not entered correctly, you will be prompted to re-enter the code.

 5. In this step, you’ll be asked whether you’re a new or existing user of Safari Books
Online. Proceed either with Step 5A or Step 5B.

 5A. If you already have a Safari account, click the EXISTING USER – SIGN IN button
under Step 2.

 5B. If you are a new user, click the NEW USER – FREE ACCOUNT button under Step 2.

■ You’ll be taken to the “Register a New Account” page.

■ This will require filling out a registration form and accepting an End User
Agreement.

 Introduction xxi

■ When complete, click the CONTINUE button.

 6. On the Coupon Confirmation page, click the My Safari button.

 7. On the My Safari page, look at the Bookshelf area and click the title of the book you
want to access.

How to Download the Online Edition to Your Computer
In addition to reading the online edition of this book, you can also download it to your com-
puter. First, follow the steps in the preceding section. After Step 7, do the following:

 1. On the page that appears after Step 7 in the previous section, click the Extras tab.

 2. Find “Download the complete PDF of this book,” and click the book title.

A new browser window or tab will open, followed by the File Download dialog box.

xxii Introduction

 3. Click Save.

 4. Choose Desktop and click Save.

 5. Locate the .zip file on your desktop. Right-click the file, click Extract All, and then follow
the instructions.

Note If you have a problem with your voucher or access code, please contact mspbooksupport@
oreilly.com, or call 800-889-8969, where you’ll reach O’Reilly Media, the distributor of Microsoft
Press books.

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at oreilly.com:

 1. Go to http://microsoftpress.oreilly.com.

 2. In the Search box, enter the book’s ISBN or title.

 3. Select your book from the search results.

 4. On your book’s catalog page, under the cover image, you’ll see a list of links.

 5. Click View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

 Introduction xxiii

http://microsoftpress.oreilly.com
mailto:mspinput@microsoft.com

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

xxiv Introduction

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

Chapter 1

Introduction to Cloud Computing
After completing this chapter, you will be able to

■ Differentiate between IaaS, SaaS, and PaaS.

■ Understand the approach Microsoft has chosen for its cloud strategy.

■ Understand the basics of the Windows Azure platform.

This book is based on my personal experience in learning about, teaching, and developing
cloud-based solutions that take advantage of the various components of the Windows Azure
platform, which consists of Windows Azure Compute, Windows Azure Storage, Windows
Azure AppFabric, and Microsoft SQL Azure. This chapter introduces the cloud computing
philosophy that is the basis for any cloud-based project.

The home page for Windows Azure (Microsoft Corporation, Windows Azure website, 2011,
http://www.microsoft.com/windowsazure/) states:

Microsoft Windows Azure provides a scalable and fault-tolerant environment that
lets developers create powerful applications without the need to purchase and
configure hardware and operating systems. Instead, you can simply rent what you
need following the PaaS (Platform as a Service) model.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

Approaches to Cloud Computing
The idea behind any cloud computing proposal is for you to pay only for what you use,
scaling up or down according to business needs. Vendors supporting cloud computing can
interpret this statement differently, providing varying levels of services to achieve this result.
The three approaches to cloud computing are Infrastructure as a Service (IaaS), Software as a
Service (SaaS), and Platform as a Service (PaaS).

2 Windows Azure Step by Step

Infrastructure as a Service
Some vendors provide the infrastructure to build solutions, and you rent the hardware such
as servers, load balancers, a firewall, and cables. You then configure these remotely and in-
stall your solutions on them. You can scale up by requesting more servers and reconfiguring
the load balancer without purchasing more hardware. You can scale down at any time by
reconfiguring the infrastructure you rented from the cloud service provider. This vendor ap-
proach is called Infrastructure as a Service (IaaS) because a customer can rent the infrastruc-
ture without having to forecast and provision for the highest possible demand in advance. In
this approach, you are responsible for correctly configuring the rented infrastructure.

These are the most important points to remember about IaaS:

■ The lower levels of the stack are managed by the vendor.

■ Very few vendors actually provide an operating system. You are still responsible for
managing everything, from the operating system to the applications.

■ The obvious benefit of IaaS is that it frees you from the concerns of provisioning many
physical or virtual machines.

Software as a Service
In another approach, you can rent a service offered by the vendor and then configure the
service by using the interface provided by the vendor, without having to know what in-
frastructure the vendor uses to provide that service. This approach is called Software as a
Service (SaaS) because you pay to use defined services. For example, Microsoft Exchange
Online carries a per-mailbox charge. To configure it, you use a web application supplied by
the vendor to request mailboxes, and name and dimension them. You receive a password for
that user and nothing else is necessary—users can access their mailboxes immediately.

This proposed interface has little in common with the on-premises version of Microsoft
Exchange. In an SaaS model, you do not have control over nor are you responsible for the
hardware on which the service is installed. Similarly, you have no control over the operating
system that runs the service, nor any control over the software apart from what the web user
interface exposes to you. In other words, a vendor provides everything required to run the
application, shielding you from all the underlying components.

 Chapter 1 Introduction to Cloud Computing 3

Platform as a Service
The third approach is Platform as a Service, or PaaS. In this approach, you rent a platform on
which you deploy your applications without configuring the infrastructure and without the
limitations of the SaaS approach.

The Wikipedia definition for PaaS is as follows (Wikipedia, Platform as a Service, 2011,
http://en.wikipedia.org/wiki/Platform_as_a_service):

…the delivery of a computing platform and solution stack as a service. PaaS offer-
ings facilitate deployment of applications without the cost and complexity of buying
and managing the underlying hardware and software and provisioning hosting
capabilities, providing all of the facilities required to support the complete life cycle
of building and delivering web applications and services entirely available from the
Internet.

PaaS offerings may include facilities for application design, application development,
testing, deployment and hosting as well as application services such as team col-
laboration, web service integration and marshaling, database integration, security,
scalability, storage, persistence, state management, application versioning, applica-
tion instrumentation and developer community facilitation. These services may be
provisioned as an integrated solution over the web.

The Windows Azure platform fits best in the PaaS category, because it doesn’t provide access
to the underlying virtualization environment or operating system details such as the network
interface, IP configuration, and disk management.

The key concepts to remember when dealing with PaaS are:

■ The platform vendor provides and manages everything, from the network connectivity
to the runtime.

■ PaaS offerings reduce the developer burden by supporting the platform runtime and
related application services.

■ Developers can begin creating the business logic for applications almost immediately.

■ PaaS, compared to traditional hosting solutions, offers the potential for significant
productivity increases, because the cloud provider manages all the hardware and opera-
tional aspects of the cloud platform.

4 Windows Azure Step by Step

Cloud Services Defined
The responsibility of you and the vendor is summarized in the following figure.

On-premises
solution

Application

IaaS

Application

PaaS

Application

SaaS

Application

Data Data Data Data

Runtime Runtime Runtime Runtime

FrameworkFrameworkFrameworkFramework

Operating
System

Server

Disk

Network Stack

Operating
System

Operating
System

Operating
System

Server

Disk

Network Stack

Server Server

Disk Disk

Network Stack Network Stack

As you can see in the figure, despite significant differences among the various offerings in
the cloud computing industry, vendors provide a set of services that you can rent so that you
do not have to manage layers (presented as white, below the line).

The definition of cloud computing from Wikipedia is as follows (Wikipedia, Cloud
Computing, 2011, http://en.wikipedia.org/wiki/Cloud_computing):

Cloud computing is Internet-based computing, whereby shared servers provide re-
sources, software, and data to computers and other devices on demand, as with the
electricity grid. Cloud computing is a natural evolution of the widespread adoption
of virtualization, service-oriented architecture and utility computing. Details are ab-
stracted from consumers, who no longer have need for expertise in, or control over,
the technology infrastructure "in the cloud" that supports them. Cloud computing
describes a new supplement, consumption, and delivery model for IT services based
on the Internet, and it typically involves over-the-Internet provision of dynamically

 Chapter 1 Introduction to Cloud Computing 5

scalable and often virtualized resources. It is a byproduct and consequence of the
ease-of-access to remote computing sites provided by the Internet. This frequently
takes the form of web-based tools or applications that users can access and use
through a web browser as if it were a program installed locally on their own
computer.

This definition points out two important aspects of these offerings: the usage of distributed
resources (IaaS, SaaS, and PaaS), and the abstraction of the underlying technology from the
developers. You already learned about the first aspect. The second aspect is important be-
cause you can manage abstracted resources such as distributed storage without having to
know much technical detail about how to configure it, secure it, and distribute it.

Long-Term Vision
I can imagine a future in which all the physical aspects of data and programs are completely
superfluous from a user point of view—but there is still a long way to go to reach that future.

Today, a commonly used acronym is SOA (Service Oriented Architecture), a term that defines
an ecosystem of interconnected services that can exchange data and share processes, using
common patterns and standards. A SOA service can be consumed by applications deployed
on heterogeneous platforms that use different operating systems and have different pro-
gramming environments. SOA defines interoperability concepts that work across systems
and platforms. Each service may be implemented using different approaches and technolo-
gies—SOA simply defines the way these services communicate with each other and with cli-
ent applications, giving the service developers the freedom to implement the internal logic
however they desire. For example, a service implemented in the Microsoft .NET Framework
uses other .NET Framework components and Windows APIs; it is completely different from
a similar service written in Java or Ruby. Although each service might use different commu-
nication patterns internally, they all must adhere to the common communication contract to
talk with other SOA services or clients.

The evolution of languages, operating systems, and frameworks has already provided a
layer of abstraction for local platform concerns; for example, in most modern programming
languages, you do not have to manage RAM directly. Instead, in today's garbage collected
environments, you just have to release your instances correctly, and the framework takes care
of allocating and releasing memory from the operating system. That abstraction means that
the same code can work in a .NET Framework solution on a powerful notebook with 8 GB
of RAM and in a Microsoft .NET Compact Framework environment running on a Windows
CE device with 256 MB of RAM—even though the garbage collector works very differently
between the two devices. I’m not saying that the same code can work everywhere; I’m saying
that there are many differences between Windows and Windows CE, and some of those are
made transparent to the developer by the .NET Framework.

6 Windows Azure Step by Step

Today's compilers do a great job abstracting the machine code. Operating systems abstract
the details of memory, disks, and graphics devices, and runtimes such as the common lan-
guage runtime (CLR) or the Java Virtual Machine (JVM) handle the physical details for you.

That's a strong start, but the next step is to remove the dependencies between the physical
location of a resource and a piece of code that uses it to create a distributed system where
you can deploy applications and services and provide an abstracted way to manage resources.
From a consumer's point of view, location isn't important; instead, obtaining responses to
his or her requests quickly and painlessly is important. From a developer's point of view, the
main goal is to concentrate on application logic and avoid dealing with the distractions of
the underlying environment.

Windows Azure as a PaaS Solution
With a PaaS, you don’t need to know the technical details of every component or the dif-
ference between a RAID 0 and RAID 1 hard drive. You don't have to worry about or choose
hard drive speed or capacity, and you don't need to know or have to care whether a drive is
configured as C or D. You just ask the platform for a location to store some information and
leave all the technical details up to the platform itself.

The Windows Azure platform hides these technical details completely, and instead provides
APIs for managing resources in a logical way. You need only to create storage, choose a
name, and then use an endpoint provided by the system to manage resources.

The idea behind Windows Azure is to provide a distributed operating system where you can
deploy and run applications without dealing with the classic Windows interface. For example,
you don't have to copy files to the Windows Azure file system, and you don’t have to use the
Internet Information Services (IIS) management console to configure sites, virtual directories,
or application pools. In fact, you don't even have to know whether IIS exists behind the scenes.

If you want some disk space, you can just create a storage account and use the provided end-
point to manage resources on it. With PaaS, you can forget disks, storage area networks, and
load balancer configurations when storing data in the cloud. You can use standards such as
REST and HTTP to interact with this kind of storage. Where are the files stored? You just don’t
need to know. Are these the quickest disks available? You don’t have to care; disk manage-
ment (from the ordering phase to switching out a broken one) in a PaaS solution is implicit in
the platform itself.

Using the Windows Azure platform, you cannot see the exact location of the disk space you
rent, you cannot choose the UPS or the hardware manufacturer for disks or servers, you can-
not choose your IPs, and you don't have to worry about computer names.

 Chapter 1 Introduction to Cloud Computing 7

In a system like this, resource access must be done using the related service. Every API must
be exposed as a remote web service. Although today’s systems do not expose every API, you
probably get the point.

In practice, PaaS is a kind of SOA for everything:

■ You ask the storage service to save a new file.

■ You ask the storage service to search for a file.

■ You ask the platform management service to scale up or down according to your
 immediate needs.

■ You ask the storage service to create a new folder.

■ The service replies with a response you have to analyze.

You learn more details about how this works in the following chapters, but the basic idea is
to write a program, deploy it somewhere, and execute it without ever knowing the physical
location of the binaries and data. After the deployment phase, you can forget your software
(apart from bugs) because the platform takes care of managing it by doing the following:

■ Applying patches as soon as they become available.

■ Replicating your data and runtime to provide fault-tolerance and load balancing.

■ Managing disks and other hardware. For example, if a disk fails, the system immediately
uses a replica without any intervention from you. You won't even notice the failure.

■ Allocating more disks automatically when your data grows and reconfiguring the load
balancer without any downtime.

■ Restarting the system automatically if your application crashes.

■ Providing more computational power when you request it, which you can do at any
time. (You can also automate this task in Windows Azure, as you will learn in this book.)

■ Moving your service to a new machine automatically, without your intervention, if the
machine assigned to your application stops responding.

Great Opportunity for Small Businesses
In my opinion, cloud computing—particularly the Windows Azure platform—is a great op-
portunity for every organization and an incredible opportunity for small software houses.
Without a cloud computing platform or infrastructure, a small company cannot compete with
bigger organizations when creating applications that potentially have thousands of simultane-
ous users. It cannot afford to invest in expensive hardware.

8 Windows Azure Step by Step

A small company must take many aspects into account when creating a new solution, such as
an e-commerce site, an advertising application, or a finance web application. The major con-
siderations include not only the initial costs, but also the costs for skilled people to configure
and maintain the following:

■ Production and staging web servers

■ A database cluster

■ Routers and load balancers

■ Firewalls and security software

In addition, there are fixed costs for the bandwidth required by an application as well as
licensing costs for all the software. And that investment isn't limited to the company's initial
needs. The company must buy enough web servers to create a fault-tolerant solution from
the beginning, because the application requires that, starting with its initial deployment.
The collateral damage incurred from failure can be even more expensive than the initial cost
of preventing such a failure.

Apart from the often prohibitive initial costs of developing an application, a small company
needs to find highly skilled people to configure the servers in the most appropriate and high-
est performing way. Often, this skill level must be found outside the company, which means
additional costs in the early stages of the system. Using individuals outside of the company
can also lead to many problems if something goes wrong after going to production, because
the company employees have little or no internal knowledge about the system. In addition,
hiring people with the necessary skillset (or training internal employees) can postpone the
release date and raise the costs even further.

Finally, even after all this initial effort, assume the company deploys (or sells) the applica-
tion, and that users start using it. If the number of users goes up, the company has to buy
new hardware and reconfigure the entire system using its newly hired talent or an external
consulting service. This can be a big problem when the application is successful, and the
numbers go up too quickly. Even if the revenue coming from the application is higher than
expected (which could then be used to improve the system), hardware failures and other
troubles might be imminent. (As Murphy’s Law says, “If something can go wrong, it will.”).

A big company might have the necessary knowledge and fault-tolerant hardware to manage
such events and, in this case, the problem would be fixed by internal personnel in a reason-
able timeframe. But if the company has chosen an external consulting service, it has to spend
some more money to fix the problem. Moreover, it must wait for service availability. Normally,
small companies try to spend less money for external services by buying just what they think
they will need—but sometimes they tend to underestimate Murphy’s Law. On the other hand,
if the number of users is lower than expected, the company has probably already wasted
money on an oversized hardware setup.

 Chapter 1 Introduction to Cloud Computing 9

If the company has a strong marketing department, it can try to advertise the application
or service. Typically, such campaigns offer a trial period to new customers. In theory, this is
good practice from a marketing point of view, but it can lead to a dramatic traffic spike dur-
ing or immediately after the advertising campaign. This leads to two different problems:

■ Trouble for existing users who want their money because of reduced service quality

■ Trouble for trial users, who will not buy a service perceived as slow

If the application is an e-commerce site, you can imagine the problems that occur when a
marketing campaign advertises the website. Existing customers start experiencing latency
while browsing the site, and new customers will see a site that performs poorly. In a case like
this, the simplest solution from a technical point of view is to increase the hardware level, but
in reality, costs often make that approach impractical.

There is yet another factor to take into account. A higher-than-expected number of applica-
tions have what are called “peak times.” For example, use of e-commerce applications can
peak during holiday seasons, when a new product is launched on the market, or when a new
fashion season opens. Similarly, a finance application typically has more traffic at the end
of the month or fiscal year, and a travel application may have many peak times during the
year preceding common holidays. Even an internal application has peak times that typically
correspond to month-end tasks such as salary processing, or to the beginning and end of
workdays.

If a company’s application or website experiences different levels of load throughout the
month or year, but the company has opted for a fixed model for the cost, there is an intrinsic
incongruity—most of the time, the company has to pay more than needed for the ordinary
activity just so it will be able to handle peak activity levels. Even worse, consider a case such
as our hypothetical company, which, if it is not successful, will have completely lost the initial
cost for hardware and licenses.

However, using cloud solutions, a small company can launch with minimal effort and expense.
The following list describes the benefits of using a cloud-based infrastructure:

■ There is no initial cost for the production web servers.

■ There is no fixed cost for the bandwidth.

■ No particular skills are required for the installation of the servers.

■ There is no initial cost for database clusters.

■ The skills required for configuring a database cluster are unnecessary.

■ There are no routers or load balancers to buy or configure.

■ There is no firewall and security software to purchase or configure.

■ There are no skills required to secure the underlying system.

10 Windows Azure Step by Step

■ There is no cost for the staging environment.

■ There are no licenses to buy.

As the preceding list reveals, all the initial effort usually required by any on-premises solution
is bypassed completely. You start paying only when you deploy your solution, and then you
can adjust the computational power and the storage space to your actual needs—almost in
real time. More importantly, you can reduce the computing power (and the costs) according
to those needs as well. Finally, if the business turns out to be unprofitable, you can simply
stop paying at any time.

Great Opportunity for Big Businesses
The same advantages and opportunities of cloud computing apply to big companies, although
with some differences, for example:

■ Big companies usually hire dedicated IT teams that probably already have the neces-
sary skills to install, configure, and maintain an enterprise-class system.

■ Big teams can handle the various aspects of a modern solution, from security tasks to
networking performance to installation criteria.

■ The same team can be used in different projects, reducing the per-solution costs.

■ Big teams typically have fault-tolerant procedures and people dedicated to respond to
alerts.

■ Big companies may launch new businesses by using machines that are already in place
and can meet the initial load.

Remember that on-premises solutions do incur variable costs over time: electrical power, IT
people to install and configure new servers, and bandwidth.

Another set of concerns applies to both big and small companies:

■ Configuring the same server so that it meets the needs of completely different projects
can be problematic. For instance, one project might require some settings that are in-
compatible with the settings required by a different project.

■ Scalability problems can occur when several applications share the same components.

From a technical point of view, using different servers and infrastructure for each application
is ideal—but doing that has an impact on the total cost of solution ownership. In a cloud com-
puting infrastructure, IT managers can separate applications and services from both a logical
and physical perspective without buying the hardware in advance.

In my consulting experience, one of the biggest problems cloud computing faces in large or-
ganizations is the variable nature of the bill. Many organizations prefer to have a fixed amount
of money allocated for a project rather than assume the risks of having variable costs.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 1 Introduction to Cloud Computing 11

Companies must shift their approaches to cloud computing. That shouldn't be too difficult,
because it's the same sort of shift companies and people have been making for the last 20
years in many aspects of business and personal life. These changes include the following:

■ Phone carriers have changed their billing system . I remember my childhood when
there was only one way of paying—a monthly fee and a fixed cost fee for every call.
Today you can choose among hundreds of difficult-to-understand rate plans. The same
applies to any business contract. Cloud billing plans are very similar. They can range
from a fixed rate for a fixed feature to a completely variable rate.

■ A growing number of people live in rented houses in many countries . Buying a
house can be a good investment, but hardware components don’t acquire value over
time. Many companies don’t own the buildings where their offices reside. When they
have a problem, they can request assistance from the owner. Ownership in the cloud is
very similar: problems and patches fall within the owner’s liability.

■ Many companies rent cars for their employee instead of buying them . Renting
typically has a fixed cost and some reasonable usage limit (such as mileage). You pay a
higher fee only when you exceed that limit. Cloud computing is essentially the same as
renting. You pay a fixed fee and accept some limits (such as those for bandwidth and
storage), and pay a higher fee only when you exceed those limits.

■ Many companies already rent hardware such as personal computers, notebooks,
and servers . Again, the cloud platform is similar, but also includes the bandwidth,
routers, firewalls, and so on.

Remember that, in the cloud, hardware is replaced not only when problems occur (such as
when the plumbing in your house bursts), but also when new models become available. The
electric power service you receive at home or in your office is another good example of the
cloud approach. When new devices become available, such as a new type of electric meter,
you do not have to install it yourself. I live in a small village in Tuscany, and a new meter with
remote configuration and an LED display was installed in my house in 2004. I didn't pay any-
thing for this new device; the costs were absorbed by the fees I was already paying to the
electric company. In the same way, you don't have to pay anything when Microsoft installs
new firewalls or routers in Windows Azure data centers.

Cloud computing also has an impact on open source systems, because cloud customers do
not pay for licenses. The cost of licenses is included in the cloud rental fee. In on-premises
solutions, open source fans state that one of the major advantages of open source operating
systems over Windows-based operating systems is that they are free. In the cloud, this state-
ment isn’t applicable: customers pay a fee for the system, which includes servers and other
hardware, and bandwidth. A customer can choose the cloud platform and compare these
costs without worrying about licensing fees.

12 Windows Azure Step by Step

Windows Azure and Cloud Computing
Windows Azure is an operating system for the cloud (and hosted in the cloud) that com-
pletely abstracts the physical components of the system: the developer, as the customer,
chooses the features, the components, and the level of Service Level Agreement (SLA) with-
out the configuring of hardware or software on the assigned machines. To guarantee scal-
ability and fault-tolerance, data stored in Windows Azure is replicated to three nodes, and
the load balancer works in a completely transparent way. At the time of this writing, for com-
putational power, a customer can choose among a range of five virtual machine types that
can be described using only these components:

■ CPUs You can range from a single processor at 1 GHz and greater to 8 cores if you
want to leverage vertical parallelism.

■ RAM Choose the size you need. The available range starts at 768 MB and goes up to
8 GB. You do not have to choose the vendor, the speed, or other characteristics.

■ Instance storage Disk space starts at 20 GB and can expand to 2 terabytes per instance.
You do not need to choose the speed, the controller, or the type of redundancy.

■ I/O performance The choice is straightforward: low, moderate, or high.

The subscription fee can include some or all of these features. When a customer exceeds its
limits, the billing system starts charging the surplus. Moreover, these features include every-
thing you need. In five minutes, you can be up and running with a service or an application
on the Windows Azure platform.

If you want to scale up, you can choose from a simple configuration file to increase the num-
ber of machines you are using, and within about five minutes, you obtain more machines. If
you want to reduce your computing power, you can reduce the number of instances at any
time. The billing system will stop charging for dismissed instances immediately.

You can also change the machine size at any time; however, it takes a slightly longer period
of time to restart the service, because the platform needs you to redeploy the application.
Such a redeployment operation usually takes about five minutes, after which you are up and
running with new instances on new machines.

Costs are proportional to the chosen configuration, but—and this is significant—you can
change the configuration as needed.

Every technical aspect of the deployment is Microsoft's responsibility. Fortunately, no one
knows Microsoft Windows Server 2008 SP2 (the operating system on which Windows Azure
is currently based at the time of this writing) better than Microsoft, and no one knows the
.NET Framework internals, the operating system kernel, the IIS components, Microsoft SQL
Server, and so on, better than Microsoft.

 Chapter 1 Introduction to Cloud Computing 13

Similarly, for maintenance and security, no one can apply patches faster than Microsoft. Even
if your administrators check newsletters or read feeds 24 hours a day, they will always be sec-
ond to the Microsoft team, which applies patches to the Windows Azure platform automati-
cally as soon as they become available.

Your application is deployed using a model that describes the application's needs. Developers
can request a certain amount of disk space, and Windows Azure provides it automatically.
However, you cannot request a specific SCSI (small computer system interface) controller or
a RAID5 configuration—but you don't typically need to do that. The only thing you need to
do is ensure that the application has sufficient disk space. If you achieve the required perfor-
mance for your applications, because redundancy and scalability are assured, you don't need
to know all the internal details. There is no added application value in knowing disk types.
Moreover, you can avoid the inherent risks of choosing the wrong disks.

Windows Azure hides most of the details of an on-premises solution. Every resource is ex-
posed as a service (such as the storage account service for managing files) using standard
protocols. All the storage details are completely transparent to developers on every platform.
Physical resources are exposed by the infrastructure as services so that developers don't need
to write resource-specific code to handle details like these:

■ Physical location of resources

■ Installed hard disks

■ Name of the servers

■ Network path

■ IIS virtual directory

■ IPs of the requested machines

Likewise, the .NET Framework developers usually don't need to understand the way the gar-
bage collector (GC) works internally; all they need to know is how to release objects properly
to let the garbage collector do its work most efficiently. They don't need to ask the garbage
collector to run to clean up memory—and in most cases it would be counterproductive to do
so. Similarly, in the cloud, knowing internal details of the local storage service is unimportant,
but opening and closing files correctly is fundamental.

To reach a remote resource, the application must call the service that exposes the resource
itself. Technically, developers use the service URI to insert, update, or delete a resource, and
use the OData REST pattern to query the service for existing resources.

This usually leads to a common question: does typical developer code work well in Windows
Azure? The answer is that it depends. If you developed the application properly, decoupling
it from dependencies and separating functionality into appropriate layers, the application will

14 Windows Azure Step by Step

probably perform as well (or even better) in Windows Azure with few or no changes. (If you
need to store files in shared storage, you will need to adapt some code.)

If the code is monolithic or you did not take full advantage of object-oriented programming
(OOP) techniques, or the application consists of "spaghetti code" that mixes UI with business
logic or data access logic, the application will probably need some adjustments to work with
a different type of storage. However, generally, when the application works with SQL Server,
you can probably port it to Windows Azure and SQL Azure with minimal modifications.

If you decide to use the Windows Azure storage service instead of SQL Azure as the storage
service for your application, and you wrote a correctly layered solution, you can simply substi-
tute your existing data access layer with the new one (or adapt your existing layer). The stor-
age service exposes resources as an OData service using the same pattern used by Windows
Communication Foundation (WCF) Data Services in .NET Framework (previously referred to as
Microsoft ADO.NET Data Services in .NET 3.5). If you chose this type of data access technique
for your on-premises client solution, you need only adapt the code to use the security model
exposed by Windows Azure—and that’s it.

The upcoming chapters walk you through the various services and features exposed by the
entire Windows Azure platform. You start with a complete description of both the released
and announced features in the next chapter, then begin writing code in the local simulated
environment, and finally deploy the code to an instance in the cloud. You see how to use the
storage service efficiently, and how to work with OData and WCF Data Services. The later
chapters are dedicated to SQL Azure and the Windows Azure AppFabric, which represent
two of the major components built on top of Windows Azure so far.

The last chapter is dedicated to a simple example application that uses OOP techniques and
patterns to decouple the user interface and business layer from the data access components.

Summary
This chapter provided an introduction to cloud computing, starting with the basic idea and
moving on to a brief introduction to Microsoft's cloud strategy. You saw some of the com-
mon patterns and theories behind this new wave in the computer industry.

 15

Chapter 2

Introduction to the Windows Azure
Platform

After completing this chapter, you will be able to

■ Understand the basic workings of the Windows Azure platform.

■ Create a service.

■ Understand Worker Roles.

■ Understand Virtual Machine Roles.

■ Describe the purpose and architecture of Windows Azure AppFabric.

■ Know how SQL Azure fits into the overall picture.

Chapter 1, “Introduction to Cloud Computing,” discussed the general concepts and ideas
that underlie Microsoft’s cloud computing platform and infrastructure. The following excerpt
from the Windows Azure website (Microsoft Corporation, Windows Azure website, 2011,
http://www.azure.com) describes how the Windows Azure platform meets the needs of
developers. The first two sentences recall what Chapter 1 explained: you pay only for what
you use, scale up when necessary, and scale down according to business needs. This is true
for every component of the platform:

Building out an infrastructure that supports your web service or application can
be expensive, complicated and time consuming. Forecasting the highest possible
demand. Building out the network to support your peak times. Getting the right
servers in place at the right time, managing and maintaining the systems.

Or you could look to the Microsoft cloud. The Windows Azure Platform is a flexible
cloud–computing platform that lets you focus on solving business problems and
addressing customer needs. No need to invest upfront on expensive infrastructure.
Pay only for what you use, scale up when you need capacity and pull it back
when you don’t. We handle all the patches and maintenance — all in a secure
environment with over 99.9% uptime.

The chapter you are reading now focuses on the Windows Azure platform, starting with the
operating system, and describes the way Microsoft is choosing to respond to the rise of cloud
computing. It provides an overview of the major Windows Azure platform components. You
see what these components are and how each functions to help you deliver and manage
cloud applications.

16 Windows Azure Step by Step

In the next chapter, you create a simple application that takes advantage of the Windows
Azure platform’s scalability feature. You also publish that simple application to the cloud
using the project portal.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

The Operating System
The most important component of the platform is Windows Azure, the operating system
created for the cloud. Like all operating systems, its purpose is to provide an abstraction
from the physical hardware components and a set of services that every application can use.
In other words, Windows Azure has the same role as a traditional operating system on any
hardware platform.

It also has many similarities to—as well as many differences from—a traditional file system.
Unlike a traditional operating system such as Windows 7, which abstracts a single box with
its CPU, hard disks, keyboard, mouse, and graphics cards, Windows Azure abstracts a set of
servers, providing a common platform for building services and applications in a completely
virtual environment. In this environment, you work with servers, but you do not install the
application on server A or server B; you deploy an application, but not on a specific disk C or
D; and you do not have to configure the network card or the virtual directory to expose your
services.

Like traditional operating systems, Windows Azure exposes a way to store data, called local
storage. However, this storage doesn’t consist of physical hard disks nor is it a traditional
network share such as \\servername\sharename. Instead, Windows Azure provides shared
storage. It provides CPU power—but not just the processors you can see when you open
the case of a physical server. In fact, no one can see the actual disks or machines that host
a Windows Azure solution; you just upload the application to the environment and let
Windows Azure choose the best servers, disks, and load balancing strategies for a particular
solution. You can describe your application’s needs in a logical way. For example, you can
request 1 GB of local disk space to cache remote resources, but you cannot force Windows
Azure to deploy your solution on a specific disk or server. You can specify that your applica-
tion needs to listen for HTTPS requests on port 443, but you cannot configure the IP address
of the virtual node.

You can’t install the current version of Windows Azure locally, but you can use a local devel-
opment environment that simulates the cloud version of Windows Azure so that you can
test your solutions before deploying them. Window Azure is not a product you can find in

 Chapter 2 Introduction to the Windows Azure Platform 17

a shrink-wrapped software box on the shelf in some store, and there’s no demo version you
can download and try out on your local server. Everything is in the cloud. At the time of this
writing, Microsoft is slated to release the Windows Azure appliance, and describes it like
this: “The Windows Azure platform appliance consists of Windows Azure, SQL Azure and a
Microsoft-specified configuration of network, storage and server hardware. This hardware
will be delivered by a variety of partners” (Microsoft Corporation, Windows Azure website,
2011, http://www.microsoft.com/windowsazure/appliance/default.aspx).

As you learned in the previous chapter, the main advantages of this cloud-only approach are:

■ You do not have to configure hardware, drivers, system components, or the operating
system.

■ You do not need an inbound Internet connection.

■ You do not have to install and configure your own router, firewall, or obtain public IPs;
consequently, you do not need network configuration expertise.

■ You do not need to apply patches or monitor the system for hardware or software
failures.

■ Microsoft monitors and maintains the system 24 hours a day so that you don’t have to
do it on your own.

■ The load balancer configuration is logical, not physical.

■ You pay for services you need for a defined period of time. During high-use peaks, you
can increment the number of ”servers” simply by changing a number.

■ You do not need to precisely dimension your hardware and buy it in advance.

Window Azure takes care of all these aspects for you. It can manage services automatically,
basing its decisions on a completely logical configuration. You provide a set of rules that
the Windows Azure “brain” (called fabric) follows to deploy your solution. This set of rules is
called the model; it is a logical description of an application’s configuration in the cloud.

Windows Azure uses the term service to identify every piece of code that can be exposed
and used. For example, an ASP.NET application, a while-block that dequeues some messages,
and a Windows Communication Foundation (WCF) service are all services. Each service can
be hosted in the platform on different servers. Each server, or more precisely, each node, is
based on Windows Server 2008 R2, so virtually any code that can run on-premises can run in
the cloud as well.

The hosting environment is distributed on different nodes that are hosted by servers. Each
server is part of a server collection that resides in a container. The container is like a big ship-
ping container that you can see on the tops of barges and freight trains, and it is placed in
a data center by plugging in a giant cable that provides network connectivity and electrical

18 Windows Azure Step by Step

power. From this point on, Windows Azure takes care of everything. When you deploy a
solution, you do not have to use a remote desktop to connect to one of these servers—in
fact, you don’t even have to know the name of the machine. Instead, you use the simple
web interface shown in the following figure.

Completing this dialog box is the only task you have to do to deploy a solution and, as you
can see, there is no physical component to configure. Microsoft Visual Studio builds the two
files that the dialog box requests (Application Package and Configuration File) to deploy a
service in the cloud automatically every time you create a cloud project. You will learn how
to create a cloud project in Chapter 3, “Creating a Web Role Project.”

The Application Package file is the result of compiling your cloud project. It contains the
code that Windows Azure will deploy to every node. The Configuration Settings file equates
to what I called a model earlier in this chapter. The simplest form of a model is shown in
Listing 2-1.

LISTING 2-1 ServiceConfiguration.cscfg.

<?xml version="1.0"?>
<ServiceConfiguration serviceName="DevLeapCloudService" xmlns="">
 <Role name="WebRole1">
 <Instances count="1" />
...
 </Role>
</ServiceConfiguration>

 Chapter 2 Introduction to the Windows Azure Platform 19

This basic service model contains the configuration for a service, called DevLeapCloudService,
that will be deployed to one node of the cloud (one of the virtual servers) as specified by the
Instances element value.

As you can see, there is little in this configuration except for names and an instance count:
you do not have to configure the IP address, create a virtual directory, copy the application
files to the relative path on some remote disk, configure read access to that directory, and so
on. You just create a service using the portal, and upload the binaries and the configuration
file. You see how to do that in the next procedure.

Service Creation
To create a service that hosts some code, you have to create a new hosted service. You create
that service from the main page of the portal (after logging in with a valid Windows Live ID).

Create a Service

 1. Open the browser of your choice and go to http://www.azure.com.

From this page, you can access useful information about the platform as well as the
major links to the SDKs, as shown in the following figure.

 2. You need to buy a subscription before you can work with Windows Azure. Click the
Sign Up Now link or the Try link and choose the plan that best suits your needs.

20 Windows Azure Step by Step

If you just want to test the product, the portal provides some discounted offers at the
time of this writing. These subscriptions might be a perfect opportunity to test your
solutions in the cloud. Note that most MSDN subscriptions can also include Windows
Azure platform subscriptions. I suggest reviewing all the offers available.

Note You can find detailed information about subscriptions and projects in Chapter 6,
“Windows Azure Operating System Details.”

 3. After you activate your subscription, return to the home page, shown in the following
figure.

Three links on the right side of the page take you to the various portals. The Windows
Azure Developer Portal is the one you need to create your first Windows Azure Service.
You learn more about the SQL Azure and AppFabric Portals and components later in
this chapter.

 4. Click on the Sign In To The Management Portal link to open the Management Portal.
After logging on using your Windows Live credentials, you find the Getting Started
page shown in the following figure.

 Chapter 2 Introduction to the Windows Azure Platform 21

 5. On the Getting Started page, click Hosted Services, Storage Accounts & CDN to man-
age your services. The home page for managing services is shown in the following
figure.

22 Windows Azure Step by Step

 6. Click the New Hosted Service icon on the toolbar to create your new service. Assign the
name Demo to the project and type a URL prefix for your service, as shown in the next
figure. The URL prefix represents the Public Service Name for your service. The name
you supply must be globally unique. The portal checks the availability of the name as
you write.

The service name is just a logical name and has no relevance during deployment. In
practice, the label is useful for finding a service in the service list shown in the previous
image and in the relative treeview menu.

 7. Choose a region to host your service. You can select any region where Microsoft has a
data center for Windows Azure. This option lets you host your code in a data center in
your local region or in the region closest to your users.

Note The Choose A Region Or Affinity Group section is very important because you can
define a group of related services that are guaranteed to be hosted in a single data center.
See Chapter 6 for a detailed discussion.

 Chapter 2 Introduction to the Windows Azure Platform 23

 8. In the Deployment Options section, select the Do Not Deploy option and click the OK
button. (Don’t worry about completing the other text boxes for now.) You now have a
new hosted service. The next figure shows the user interface for managing a deployed
service.

Congratulations! You created a hosted service in which you can deploy your solution using
the easy procedure described at the beginning of this chapter. You also uploaded the bina-
ries and the configuration file—that is, the model that describes the application’s require-
ments. Chapter 3 is dedicated to explaining how to create the binaries and model using
Visual Studio.

To review, to create a new solution, you have to:

 1. Create a hosted service providing the name of the Service, the public URL, and the
region.

 2. Upload the cloud service package (the binaries) and the configuration file.

You learned that Windows Azure is an operating system and that it completely hides the
physical details of the data center, servers, disks, and virtual directories. Because you don’t
need to worry about any of those aspects, you can deploy a solution with just two clicks.

24 Windows Azure Step by Step

Figure 2-1 shows you my Windows Azure subscriptions and projects.

FIGuRE 2-1 Home page for managing projects.

The two projects labeled as Disabled in the preceding screen are based on the first commu-
nity technical preview (CTP) of Windows Azure. (The one called PDC08 –CTP is the first public
release of Windows Azure in October 2008 that I used during the beta period.) The other
three projects are, in the order they appear in the screen: a demo subscription that I used dur-
ing training classes; my company’s website http://thinkahead.cloudapp.net; and a set of hosted
applications that expose services to Windows Phone 7 applications, which you can see at
http://wp7.thinkahead.it (a DNS alias to my company’s hosted services).

Save the Planet is a simple application composed of a hosted service and a Windows Phone
client application. Users enter the actions they’ve taken to help the planet, incrementing a
global counter visible to any application owner. The company developed a service in WCF
to receive this kind of input and a database structure to store the data. Because users can
receive notifications when the global counter reaches important goals, the company had to
store the push channel URI someplace and create a service that sends notifications to the
users. But many questions remain, such as how many users will buy the application. What will
the frequency of their actions be—that is, how many requests will the company receive per
hour? How many notifications will need to be sent? How many records will need to be pro-
cessed? The answer to all these questions is that the company simply doesn’t know!

 Chapter 2 Introduction to the Windows Azure Platform 25

Suppose the company bought some hardware to run the site on, and the number of envi-
ronmentally conscious people using the application grew rapidly, thanks to advertising and
word of mouth. In that case, the company might buy new hardware, but installing, configur-
ing, securing, deploying, and testing the application on the hardware (in addition to other
activities) would take time. Instead, the company decided to host the service on Windows
Azure, so when the application became popular (it was the top-selling app in its category) in
October and November, the company just incremented the number of instances. That took
only a few seconds, and we did nothing but change a number in the model. You can click the
Configure button of the deployed solution to increase the server capacity at any time. This
increased capacity is shown in the next figure. In the figure are five configured instances of
the Web Role for this application. (The Web Role is the front end hosting the WCF Services.)

It’s useful to know that you can perform any of the operations described so far in this chapter
programmatically, by calling the Windows Azure APIs. You can create a remote configura-
tor that reads some data—let’s say, the number of concurrent requests—and automatically
increases or decreases the number of instances accordingly.

The convenience of the virtual configuration works in the opposite direction as well. If use
of the Save the Planet application were to decrease dramatically after its initial momentum,
the company could simply scale down its solution without idling or removing any hardware,
reconfiguring load balancers, endpoints, machine, disks, and so on.

Every service hosted in Windows Azure can manage the resources exposed by the operat-
ing system using the appropriate APIs. For example, in the service model, you can request

26 Windows Azure Step by Step

40 GB of disk space for local storage, and then use the RoleEnvironment class to request a
file path that you can use to manage that space. Windows Azure can allocate the 40 GBs on
a local disk, so you cannot refer to directories and files using the classic path; instead, you
have to ask Windows Azure for that location and then use the classic System.IO API, basing
the root path on it. The local storage request, as well as the other settings in the model, let
the Windows Azure fabric choose the best server to host the service. Local storage is noth-
ing more than a space on a disk of the machine that Windows Azure has chosen to host the
service: it is inaccessible from the outside, it cannot be shared among instances, and it is not
guaranteed to survive a machine recycle or a crash. You can use this space to cache resources
or store temporary files, but do not use it to store application data, session state, or any other
data that you cannot recalculate quickly from the application code.

Windows Azure exposes two different environments for each hosted service: the Production
environment shown in Figure 2-1, and a staging environment that you can create by click-
ing the New Staging Deployment button. Staging and production can use different models
and different configurations, as well as different numbers of instances. You can configure the
staging environment with a smaller instance number sufficient for testing the application,
as well as a different connection string and path that use staging rather than production
resources.

When you deploy a hosted service to the staging environment, you receive a temporary URL
that is composed of a GUID followed by your service name. The staging environment is iden-
tical to the production environment in terms of the types of servers, network capabilities,
processor types, and so on. You have to pay to host a service even in a staging environment,
so the Windows Azure billing system starts to calculate usage time when you deploy a ser-
vice, whether you do so in a staging or production environment. If you chose a pay-as-you-
go subscription, your account is charged immediately; if you chose an offer with some hours
included, your account will be charged only if you exceed your limit.

You can swap production and staging environments whenever you want—it takes just a
moment. Typically, you deploy a new version to the staging environment, test it, and then
press the VIP Swap button to move the staging version to the production environment and
the old production code to the staging environment. If something goes wrong, you can
immediately swap the two environments again to return to the previous situation and inves-
tigate the problem. The swap operation occurs in near real-time because Windows Azure
fabric just adjusts the internal DNS, exchanging the pointers.

Chapter 3 is dedicated to creating and deploying a simple application using the Windows
Azure Tools for Visual Studio.

In the following figure, the production environment is hosting the first version (labeled V1 in
the screen) of the service. It is exposed on http://azuresbs123.cloudapp.net, which represents
its public URL. In contrast, the staging environment is hosting the next version of the service
(labeled V2) for testing purposes.

 Chapter 2 Introduction to the Windows Azure Platform 27

Note The hosted service presented in the previous sentence (http://azuresbs123.cloudapp.net)
was removed at the end of this writing, so don’t try to use it!

During the test phase, the company used the temporary URL http://<guid>.cloudapp.net to
reach the application’s pages and services. When all tests are complete, the Swap VIP (Virtual
IP) button switches the DNS pointers so that the real URL http://azuresbs123.cloudapp.net
points to the machine hosting the second version of the service, and vice versa.

Windows Azure Storage
The Windows Azure operating system, as illustrated in the previous section, exposes a virtu-
alized environment where you can host your services in a very simple fashion: you create a
new hosted service and then deploy your solution without having to worry about any of the
classic (and often painful) deployment issues.

The operating system lets you store three different kinds of resources: blobs, tables, and
queues. You use blob storage to store files. Tables are a type of unstructured entity container,
and you can use queues to decouple two applications. All storage resources are covered in
the next chapters. To use these types of storage, you have to create a storage account project
from the portal. Storage accounts are publicly exposed via HTTP, so you can reach a particu-
lar storage account (subject to security policy permissions) from virtually everywhere. Hosted

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

28 Windows Azure Step by Step

services can use the storage account to store application data permanently (remember that
local storage is local to the machine and is only temporary). Because the storage location is
exposed via HTTP, an on-premises server application can use the same Windows Azure stor-
age account as a hosted or mobile application as long as a connection is available.

Windows Azure exposes the storage account data using Internet standards such as HTTP,
REST, and OData (Open Data Protocol), so it’s accessible by just about any platform in our
galaxy.

To create a new storage account, you complete a simple wizard available from the project
portal.

 Create a Storage Account

A storage account is the second project type you can create using the Windows Azure Portal.

 1. On the main project page, click the Storage Accounts link in the upper-left menu,
shown in the following figure.

 Chapter 2 Introduction to the Windows Azure Platform 29

 2. Click the New Storage Account button on the toolbar to open the Create A New
Storage Account wizard, shown in the following figure.

 3. Type a unique URL for your service in the Enter A URL text box and select a region in
the Choose A Region Or Affinity Group section. The service name you choose will form
the suffix for the URI that Windows Azure exposes so that you can access the service.

The Create Or Choose An Affinity Group option list box allows you to define a named
group of servers to host your services and data. Windows Azure guarantees that the
servers in an affinity group will be hosted in the same data center. Placing your services
in the same affinity group will hold latency to a minimum.

 4. Click the Create button to create your storage account. You see the screen shown in
Figure 2-2.

30 Windows Azure Step by Step

FIGuRE 2-2 Storage account details.

If you followed all the steps in this procedure, you should end up, in theory, with an infinite
space in which to store your data. This space is distributed across servers by an automatic
load balancer, and by default it is replicated to three nodes, which guarantee a high level of
fault tolerance. Note that you created this robust storage with just three mouse clicks—you
didn’t have to buy new hardware, configure it, or expose it to the outside world.

As you can see in Figure 2-2, you get three different endpoints for your storage, each one
dedicated to a different kind of resource (I introduced these to you earlier, too):

■ Blob This service is the persistent file system for every Windows Azure application.
You use this endpoint to store images, documents, and other files. The blob can be
organized in different containers.

■ Table A table is a container of heterogeneous entities that you can store and retrieve
using a key. A table has no predefined structure, and you can organize it in partitions,
spreading different partitions across different servers to achieve an optimum level of
scalability.

■ Queues A queue can be used as a method to decouple applications, enabling asyn-
chronous communication. Windows Azure exposes a simple service that any applica-
tion on any platform can use to send messages to other applications.

 Chapter 2 Introduction to the Windows Azure Platform 31

Everything is exposed using standard protocols, so it’s possible, for example, to make a REST
query using the PUT method from a PHP (Hypertext Preprocessor) on-premises applica-
tion to insert a blob in the storage, and then use code in a Windows Phone 7 Microsoft
Silverlight application to perform a GET operation to retrieve the list of blobs in the storage.
As you can see in Figure 2-2, you receive two access keys that you can use to secure access
to your storage account. In the next chapters, you learn that these keys are equivalent. You
learn more about using an Azure storage account and related code in Chapter 4, “Windows
Azure Storage,” and Chapter 5, “Tables, Queues, and Worker Roles,” which are dedicated to
describing this feature.

The billing method for the Windows Azure storage account is different from the billing
method for Windows Azure Compute: you don’t pay when you create a project as you do
with a hosted service. The Windows Azure storage account charges transactions to the stor-
age and the space occupied. I discuss this more in Chapter 6.

The Worker Role
The cloud storage account exposes a smart service so that you can build a queue solution to
decouple one application from another. A perfect example is decoupling the front end of a
web application (the Web Role) from the back end (the Worker Role). A Worker Role is a type
of service that, by default, is not exposed with an endpoint but is instead dedicated to per-
forming process operations in the back end.

An example of a Worker Role project might be an order-processing process that receives
an order as a message in a queue from the front end. The front end is freed up immediately
after it inserts the message in the queue.

You can adjust Web Role and Worker Role instances independently. If you want to accept
more orders, you can increase the instances for the front-end. The queue will accept more
orders without any problems, and the front-end thread that serves the user request can be
placed in the pool to serve another incoming request. Similarly, if the queue length starts to
increase, you can adjust the number of Worker Role instances accordingly.

Figure 2-1 showed the real-world deployment of the Save the Planet Windows Phone 7
application. The 11 instances of the Web Role process the WCF service call to increment the
application’s action counter. The Worker Role is a scheduled process that sends notifications
to the client. The code scans a User Table to check the last date the current user performed
an action to determine whether a user needs any notifications and if so, it sends the notifica-
tion. The application scans the table once each minute, so it does not need more than one
instance.

32 Windows Azure Step by Step

A Worker Role can open an external endpoint; in this way, it becomes reachable synchro-
nously by a remote client or a Web Role in the cloud.

Worker Roles are hosted in different nodes from Web Roles. This is important because it
means that you get charged for Worker Role instances separately from Web Role instances.
For example, if you deploy both a Worker Role instance and a Web Role instance, you have
to pay for a total of two instances.

The Virtual Machine Role
During the Professional Developers Conference (PDC) 2010, Microsoft announced the Virtual
Machine Role functionality by which developers or IT Managers can transfer an on-premises
virtual machine to the cloud. (This feature was first announced at PDC 2008 with the code-
name RAW Mode.)

A Virtual Machine Role runs a virtual hard disk (VHD) image of a Windows Server 2008 R2 vir-
tual machine (VM). The VHD must be created from an on-premises Windows Server machine,
at which point the image can be uploaded to Windows Azure. After it is stored in the cloud,
the VHD can be loaded on demand into a VM Role and executed. Customers can configure
and maintain the operating system and use Windows Services, schedule tasks, and so on for
the VM Role.

It is important to remark on the differences between the Web and Worker Role models and
the VM Role model. At the time of this writing, Microsoft introduced the VM Role with this
statement (Microsoft Corporation, Windows Azure website, 2011, http://www.microsoft.com
/windowsazure/compute/default.aspx):

A Virtual Machine (VM) role runs an image (a VHD) of a Windows Server 2008
R2 virtual machine. This VHD is created using an on-premises Windows Server
machine, then uploaded to Windows Azure. Customers can configure and maintain
the OS and use Windows Services, scheduled tasks etc. in the VM role. Once
it’s stored in the cloud, the VHD can be loaded on demand into a VM role and
executed. The VHD can be used as the base image for all instances of a VM Role.

The statement clarifies that developers have to manage the virtual machine—configuring
it, patching it, and updating it. A Web or Worker Role is a more flexible and automated
environment.

Windows Azure AppFabric
Windows Azure exposes the base services for the entire platform. Microsoft has also
released a set of products and technologies built on Windows Azure called the Microsoft
Push Notification Service for Windows Phone 7. This is a Microsoft service hosted on the

http://www.microsoft.com/windowsazure/compute/default.aspx
http://www.microsoft.com/windowsazure/compute/default.aspx

 Chapter 2 Introduction to the Windows Azure Platform 33

Windows Azure operating system. Some of the Windows Live Services are already hosted
on Windows Azure.

Windows Azure AppFabric is another set of services hosted on top of the operating sys-
tem that provides a comprehensive middleware platform. Developers use Windows Azure
AppFabric to connect application pieces together, manage identity and access control,
cache remote resources, and create composite applications.

At the time of this writing, the official documentation (Microsoft Corporation,
Windows Azure website, 2011, http://www.microsoft.com/windowsazure/appfabric/
overview/default.aspx) describes Windows Azure AppFabric in this way:

Windows Azure AppFabric provides a comprehensive cloud middleware platform
for developing, deploying and managing applications on the Windows Azure
Platform. It delivers additional developer productivity adding in higher-level
Platform-as-a-Service (PaaS) capabilities on top of the familiar Windows Azure
application model. It also enables bridging your existing applications to the cloud
through secure connectivity across network and geographic boundaries, and by
providing a consistent development model for both Windows Azure and Windows
Server.

Finally, it makes development more productive by providing higher abstraction for
building end-to-end applications, and simplifies management and maintenance of
the application as it takes advantage of advances in the underlying hardware and
software infrastructure.

The middleware services run with the same paradigms described in this chapter and the pre-
ceding one: payment only for what you use, deployment, logical management, and autocon-
figuration of lower-level services such as load balancers and a fault-tolerance strategy.

Windows Azure AppFabric was released in April 2010 with two important initial services:
Service Bus and Access Control. Other services will be released in the CTP during 2011.

The Service Bus
The Service Bus service provides secure connectivity and messaging capabilities through
which distributed and disconnected applications can talk together via the Service Bus pat-
tern. The Service Bus is of course hosted in the cloud, so any application that has an Internet
connection can access it. To start exchanging messages via the Service Bus from any applica-
tion and platform, you create a new service namespace using the portal. The service uses
Internet standards such as HTTP and REST to create services and exchange messages. As you
will learn in Chapter 7, “Building an AppFabric Solution,” if your service-oriented architecture
(SOA) solution is based on WCF, adapting the solution to use the Service Bus involves only a
few lines of code and some configuration settings.

http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx

34 Windows Azure Step by Step

At the time of this writing, Microsoft presents the Service Bus with this statement (Microsoft
Corporation, Windows Azure website, 2011, http://www.microsoft.com/windowsazure
/appfabric/overview/default.aspx):

The Service Bus provides secure messaging and connectivity capabilities that
enable building distributed and disconnected applications in the cloud, as well as
hybrid application across both on-premise and the cloud. It enables using various
communication and messaging protocols and patterns, and saves the need for the
developer to worry about delivery assurance, reliable messaging and scale.

The following figure illustrates a typical Service Bus message flow. In this image, an on-
premises application behind a firewall or a NAT registers itself on the service bus using a
simple POST request to the service namespace URL (created in the portal). When authorized
applications send messages to this public URL, the Service Bus acts as a relay; it forwards the
messages to the on-premises applications. This technique eliminates the need to expose the
on-premises application to the outside world. It also enables new applications to become
part of the message flow. Any new application that needs to receive the same messages can
register itself in the service namespace.

http://www.azure.com
http://www.azure.com

 Chapter 2 Introduction to the Windows Azure Platform 35

The Service Bus can relay messages that contain text, XML, graphics, binary data, and stream-
ing data. It exposes classes to various programming environments using a set of SDKs. If an
SDK is not available for a particular platform, developers can still use REST and HTTP to inter-
act with the Service Bus nodes.

The Access Control Service
The second released piece of the Windows Azure AppFabric is the Access Control Service.
At the time of this writing, the official documentation states (Microsoft Corporation,
Windows Azure website, 2011, http://www.microsoft.com/windowsazure/appfabric
/overview/default.aspx):

Access Control provides an easy way to provide identity and access control to web
applications and services, while integrating with standards-based identity providers,
including enterprise directories such as Active Directory®, and web identities such
as Windows Live ID, Google, Yahoo! and Facebook.

The service enables authorization decisions to be pulled out of the application
and into a set of declarative rules that can transform incoming security claims
into claims that applications understand. These rules are defined using a simple
and familiar programming model, resulting in cleaner code. It can also be used to
manage users’ permissions, saving the effort and complexity of developing these
capabilities.

Authorization rules can be pulled out from an application and put onto the Windows Azure
AppFabric Access Control. A developer can manage permissions and claims using both the
developer portal and the provided command-line tool. Some third-party tools and free tools
can facilitate the construction of these rules. (You can find these at http://www.codeplex.com.
Use the term “Azure” in the search engine.)

Here’s a possible scenario. A client application (represented on the right side of the following
figure) sends the required claims to the public Access Control URL to access a remote appli-
cation. The Access Control service checks the input claims against the defined rules, produces
the output claims, and sends these claims in a secure token that the client application then
sends to the remote application (on the left side of the figure). The server application can
request permission to the AppFabric Access Control.

http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx

36 Windows Azure Step by Step

The Access Control service uses REST and the Web Resources Access Protocol (WRAP) to fun-
nel claims back and forth to the applications. Because those are publicly exposed in the cloud,
they can be used anywhere and on any platform. For example, at the time of this writing, no
SDK exists for Windows Phone 7, but you can still use REST and HTTP to ask the Access Control
Service for security claims and use those to send messages to the Service Bus.

Microsoft plans to release three additional useful components in the second half of 2011:
the caching service, the integration service, and the composite application service, which I
describe in the following sections.

The Caching Service
Caching supplies a distributed, in-memory, highly available application cache service for
Windows Azure applications. This capability is provided using the same approach as other
Windows Azure services use: no installation, no instance management required, and the
ability to dynamically increase or decrease the cache size as needed.

You can use the developer preview—part of the CTP/Labs environment—to get an early look
at these features. Just request access to the CTP using the link you can find in the portal in
the Caching section.

 Chapter 2 Introduction to the Windows Azure Platform 37

Caching architecture is shown in the following figure.

Hosted services code can use the Caching Service to cache remote resources on demand.
You need to make only a few minor modifications to standard ASP.NET cache code to inte-
grate with this new caching provider. You can secure the cache using the Access Control
Service policy.

The Integration Service
The Integration Service component will be available as a CTP during 2011. At the time of this
writing, Microsoft states the following about the Integration Service (Microsoft Corporation,
Windows Azure website, 2011, http://www.microsoft.com/windowsazure/appfabric/overview
/default.aspx):

…provides common BizTalk Server integration capabilities (e.g. pipeline, transforms,
adapters) on Windows Azure, using out-of-box integration patterns to accelerate
and simplify development. It also delivers higher level business user enablement
capabilities, such as Business Activity Monitoring and Rules, as well as self-service
trading partner community portal and provisioning of business-to-business
pipelines.

http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx

38 Windows Azure Step by Step

The idea is to ease the integration between applications hosted on the Windows Azure
platform and third-party Software as a Service (SaaS) solutions. The Integration Service
also extends the Service Bus service to ease integration with existing Line Of Business (LOB)
applications. The official schema for this component is shown in the following figure.

The Composite Application Service
Another new component, the Composite Application Service, is slated to ship as a CTP in
2011. Its goal is to simplify the deployment of a complex application that uses different
Windows Azure services. You build Composite Applications by composing prebuilt compo-
nents and services—both those developed in house and those purchased or licensed from
third-party cloud services. These components and services might be distributed on on-
premises hardware and/or on cloud machines.

The feature consists of a set of Microsoft .NET Framework extensions for composing appli-
cations, a visual designer directly integrated into Visual Studio to manage the creation and
deployment of such applications, and a multitenant service that consumes the Composite
Model definition and automates the deployment.

 Chapter 2 Introduction to the Windows Azure Platform 39

At the time of this writing, the Windows Azure website (Microsoft Corporation, 2011,
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx) identifies the
Composite Application as a Windows Azure platform feature that provides the following:

…a multi-tenant, managed service which consumes the .NET based AppFabric
Composition Model definition and automates the deployment and management
of the end to end application, eliminating manual steps needed by both developers
and ITPros today. It directly executes application components to provide a high-
performance runtime optimized for cloud-scale services and mid-tier components. It
also delivers a complete hosting environment for web services built using Windows
Communication Foundation (either natively developed or using WCF Data Services
and WCF RIA Services) and workflows built using Windows Workflow Foundation.

SQL Azure
The last (but not least) piece of the platform is the SQL Server cloud version, called SQL Azure.
At the time of this writing, the official documentation presents SQL Azure with this statement
(Microsoft Corporation, Windows Azure website, 2011, http://www.microsoft.com/en-us
/sqlazure/database.aspx):

Microsoft® SQL Azure™ is a highly available, and scalable cloud database service
built on SQL Server technologies. With SQL Azure, developers do not have to
install, setup, patch or manage any software. High availability and fault tolerance
is built-in and no physical administration is required. Additionally, developers
can get productive on SQL Azure quickly by using the same familiar T-SQL based
relational model and the same powerful development and management tools used
for on-premises databases.

The most important information you’ll take away from Chapter 9, “Using SQL Azure,” which
covers SQL Azure in depth, is that the database service is built with the same concepts as the
other components of the Windows Azure platform.

You can access a SQL Azure database using Tabular Data Stream (TDS) from the .NET
Framework applications based on ADO.NET or any other programming environment
in which a SQL Server ODBC driver is available (such as JDBC). The database is exposed
through a virtual server name that you receive when you create your server on the portal.
You can use the database feature from a cloud-based application or from a traditional on-
premises application by adapting the connection string to the cloud format.

http://www.microsoft.com/en-us/sqlazure/database.aspx
http://www.microsoft.com/en-us/sqlazure/database.aspx

40 Windows Azure Step by Step

Summary
Windows Azure is the operating system for the Microsoft cloud platform. It is currently based
on Windows Server 2008 R2 but completely removes the need for configuration and deploy-
ment, both for applications and the operating system. You don’t need to apply patches or
install any Windows components. Developers can deploy and manage an application using a
simple-to-use web-based project portal. Windows Azure offers storage services with a stor-
age account that can store blobs, tables, and queues.

In addition to the operating system, the Windows Azure platform offers comprehensive ser-
vices that range from a cloud-based Service Bus to an Access Control Service.

SQL Azure is a cloud-based version of SQL Server that you use the same way as you would a
traditional database application.

 41

Chapter 3

Creating a Web Role Project
After completing this chapter, you will be able to

■ Install and use the SDKs appropriate for the Windows Azure platform.

■ Use the Web Role Project template.

■ Build a Windows Azure Project.

■ Deploy a project to Windows Azure.

■ Configure and upgrade a deployed project.

The preceding chapters showed how Windows Azure provides a scalable and fault-tolerant
environment that lets you create powerful applications without purchasing and configur-
ing hardware and operating systems. Instead, you can rent what you need, following the
Platform as a Service (PaaS) model.

This chapter translates PaaS into practice. You start by installing the SDK with Microsoft
Visual Studio 2010, review some APIs and local development tools to help you understand
the complete flow for building a Windows Azure project, and deploy a simple application in
the cloud before moving on to Windows Azure storage in the next chapter.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

Software Development Kits
To start developing Windows Azure projects, you need the relative SDKs and tools. Because
Windows Azure is a multiplatform environment, you need to install the Windows Azure SDK
or the tools for your development platform. Windows Azure also offers appropriate SDKs for
other languages as well as tools for other development platforms.

To download the SDKs and tools, go to http://www.azure.com, the home page for the
Windows Azure platform, and choose the Developers section. This section includes docu-
mentation about the components, a link to the Training Kit and to the SDK & Tools, which is
what you should look at.

42 Windows Azure Step by Step

The SDK & Tools page (http://www.microsoft.com/windowsazure/sdk/) is divided into several
sections: one is dedicated to Visual Studio and the Microsoft .NET Framework, a second to
the SDK tools and AppFabric tools, and a third contains the Training Kit. Here is a brief expla-
nation of each package.

■ Windows Azure Tools for Visual Studio An add-in that extends both Visual Studio
2010 and Visual Studio 2008 to facilitate the creation, configuration, testing, debug-
ging, and deploying of web applications and services on Windows Azure. This com-
ponent includes the Windows Azure SDK, so this is the only tool you need to run the
samples and complete the exercises in this chapter. To install it, follow exactly the steps
provided in the installation section of this chapter.

■ Windows Azure SDK The core component that provides the APIs you need in the
sample projects in this book. It includes simulators for Windows Azure Compute and
Windows Azure Storage so that you can test and debug applications locally, as well as
a set of samples with which you can start testing the various components. This SDK is
included in the Windows Azure Tools for Visual Studio.

■ Windows Azure AppFabric SDK Related to both the Service Bus and the Access
Control Service, as you will see in Chapter 7, “Building an AppFabric Solution.” You don’t
need to download this component to complete the samples presented in this chapter.

■ Windows Azure Solution Accelerators Provides a set of complete solutions for jump-
starting applications.

■ Windows Azure Platform Training Kit A comprehensive set of documentation, slides,
and numerous hands-on labs and demonstration scripts.

■ Windows Azure Management Tools Facilitates management operations, providing a
remote, easy-to-use console.

A section of the Windows Azure home page is dedicated to the Interoperability SDKs and
tools. In particular, the Windows Azure SDKs for Java and the Windows Azure SDK for
PHP (Hypertext Preprocessor) are the equivalents of the Windows Azure SDK for the .NET
Framework. Finally, the Windows Azure Tools for Eclipse is the counterpart of the Windows
Azure Tools for Visual Studio.

 Chapter 3 Creating a Web Role Project 43

Windows Azure Tools for Visual Studio
Before starting the installation, be sure to check the system requirements, especially verify
that you have Internet Information Services (IIS) 7.x and the relevant components installed.
To do that on computers running Windows Vista, Windows 7, and Windows Server 2008,
open Control Panel, select Programs And Features, and then click the Turn Windows Features
On Or Off link. Expand the Internet Information Services section and make sure that the
following items are selected (if they aren’t selected, select them): ASP.NET, CGI, WCF HTTP
Activation, and Static Content. Selected items are shown in the next figure.

Note To install Windows Azure Tools for Visual Studio, you don’t need the full Visual Studio
2010 version; you can download and install Microsoft Visual Web Developer 2010 Express
Edition. Visit the page http://msdn.microsoft.com/en-us/library/gg465715.aspx to check the in-
stallation steps for your particular operating system.

Tip You’ll find WCF Activation in the section named Microsoft .NET Framework 3.x, where x can
be .0 or .5 based on which .NET Framework version you have installed.

44 Windows Azure Step by Step

Important Even though Microsoft SQL Server 2005 is not required for the examples used in
this chapter because you don’t use the Windows Azure storage account, the installation tool
needs it. Therefore, if you don’t have an instance of Microsoft SQL Server Express Edition on
your machine, install it before continuing.

Note I strongly recommend that you double-check the system requirements as well as the in-
structions on the download page before downloading and installing any component. There are
some differences between the requirements for 32-bit and 64-bit systems as well as some hot-
fixes that you might need to install before installing the SDK.

After completing the SDK installation, you are ready to begin your first project. Follow the
step-by-step procedure in the next section to choose the right template and create the project.

Web Role Project Template
To debug and test your applications in the compute emulator (the local fabric that simulates
the behavior of the real Windows Azure fabric), you need to run Visual Studio with adminis-
trative privileges.

Tip If you do not want to elevate your user account to an administrative level, you can just right-
click Visual Studio from the Start menu or on the Taskbar, and select the Run As Administrator
option.

Note It is beyond the scope of this book to introduce or discuss administrative accounts and
their development ramifications.

Create the Project

The SDK and Tools setup process installed some new templates and wizards to facilitate
the creation of a Windows Azure project. In Figure 3-2, under the Visual C# or Visual Basic
project types, you can see a new section named Cloud that represents the entry point for a
Windows Azure project. This new section exposes a single template named Windows Azure
Cloud Service and this short description: A Project For Creating A Scalable Application Or
Service That Runs On Windows Azure. Remember that “Windows Azure Service” just refers to
an application; an application can consist of dynamic pages, static content, and/or services.

 Chapter 3 Creating a Web Role Project 45

 1. Create a new Windows Azure Project. To do that, open Visual Studio 2010, and from
the File menu, select New Project. Choose Cloud from the list of installed templates,
and then choose Windows Azure Project from the list of available projects.

 2. Select version 4 as the .NET Framework version for your new project.

 3. Name the new project DevLeapCloudService, and then choose a location on your
file system and a solution name. You can assign any name you like, because there is no
relationship between the cloud service name and the project name. When you’re fin-
ished, click the OK button.

If you use a source control system, you can select the Add To Source Control check box.

The following figure shows the first step of the New Project wizard: I assigned the name
DevLeapCloudService to both the project and solution.

At this stage, Visual Studio 2010 normally creates the solution folder, the project
folder, and a project related to the chosen template. Because Windows Azure supports
several different project types, the Cloud template starts the New Project wizard and
asks what project type you want to create (as shown in the next figure). You can see
that the wizard knows that this project uses Visual C#, and proposes various kinds of
projects called roles.

46 Windows Azure Step by Step

Note A role, as you learned in Chapter 2, “Introduction to the Windows Azure Platform,”
is not the correct term for the project type. The ASP.NET Web Role and CGI Web Role are
both Web Roles, and the only different role type is the Worker Role.

Table 3-1 explains all the different project types.

TABLE 3-1 Cloud Service Project
Project Type Description
ASP.NET Web Role Classic ASP.NET project with a Default.aspx page that

can be deployed on Windows Azure. This is the most
common project template used for samples and classic
Web Form application.

ASP.NET MVC 2 Web Role ASP.NET project based on MVC 2 patterns introduced
in .NET Framework 4.

WCF Service Web Role ASP.NET project based on a WCF Service Project
 template.

CGI Web Role FastCGI application hosted in a Web Role.

Worker Role Template that creates a C# worker role project. (The
Worker role is covered in Chapter 5, “Tables, Queues,
and Work Roles.”

Each project template is a starting point for building a project, which you can configure
at a later time. For example, you could choose an ASP.NET MVC 2 Web Role and create
a plain ASP.NET Web Forms Project instead, or vice versa.

 Chapter 3 Creating a Web Role Project 47

Because this is your first example, and because it is beyond the scope of this book to
examine the pros and cons of Web Forms vs. Model-View-Controller (MVC), you create
a normal ASP.NET web application.

 4. Choose the ASP.NET Web Role by clicking the Right Arrow button. An ASP.NET Web
Role appears on the right in the Windows Azure Solution panel, meaning that your
solution will contain one Web Role built with ASP.NET. You can also double-click an
item in the left panel to add that item to the right panel.

Note You can add multiple Windows Azure projects to your solution.

You can rename your ASP.NET Web Role Project by selecting it in the right panel and clicking
the pencil icon. The name automatically assigned by the system is used as the project name
for the ASP.NET Web Role in this procedure (see the next figure). Do not change the name of
your ASP.NET Web Role to follow this procedure.

Visual Studio creates the solution folder and the classic solution file during the first phase of
creating the project, using the name that you provided earlier. It then creates the ASP.NET
project (or whatever project you chose in the wizard) and binds it to a Web Role in this sec-
ond phase.

Because you selected the ASP.NET Web Role, Visual Studio uses a partially modified version of
the classic ASP.NET template, which has added references to the Windows Azure APIs and a
pre-created class named WebRole.cs. The rest of the project is identical to a standard ASP.NET
web application. The project is hosted inside a normal Visual Studio solution that also contains
a cloud project. Figure 3-1 shows the complete solution in Solution Explorer.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

48 Windows Azure Step by Step

FIGuRE 3-1 A complete cloud solution in Solution Explorer.

The lower part of Figure 3-1 shows the ASP.NET project files. Other than the WebRole.cs file,
everything is identical to a classic ASP.NET Web Application project, including the ability
to view the Default.aspx or About.aspx page in a browser by selecting the View In Browser
option from the context menu.

Listing 3-1 shows the modified default page with the sample text removed and an added
Label named TimeLabel.

LISTING 3-1 Modified Default.aspx page.

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master"
 AutoEventWireup="true" CodeBehind="Default.aspx.cs"
 Inherits="WebRole1._Default" %>

<asp:Content ID="HeaderContent" runat="server"
 ContentPlaceHolderID="HeadContent">
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <asp:Label ID="TimeLabel" runat="server" />
</asp:Content>

 Chapter 3 Creating a Web Role Project 49

Listing 3-1 contains nothing special. It uses the master page feature as suggested by the
template and contains a normal ASP.NET web control to render the content. There is nothing
special in the code-behind file for this page either, because it doesn’t use any features related
to Windows Azure.

In the code-behind file, assign the current time to the Label (TimeLabel) within the Page_Load
event, as shown in Listing 3-2.

LISTING 3-2 Code-behind file for Default page: Default.aspx.cs.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
namespace WebRole1
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 TimeLabel.Text = DateTime.Now.ToString();
 }
 }
}

Test the Solution

Follow these steps to modify and test the Default.aspx page in your new project.

 1. Modify the Default.aspx file so that its contents are identical to Listing 3-1.

 2. Open the code-behind file (Default.aspx.cs) and insert in the Page_Load method the
boldface line in Listing 3-2.

 3. To run the project, right-click the Default.aspx page and select View In Browser. Don’t
run the project by pressing F5 or Ctrl+F5.

Note Most ASP.NET developers test their applications in the local environment (ASP.NET
Development Server) by using the debugger, and they ignore the View In Browser func-
tionality. This shortcut menu compiles the web project, launches the ASP.NET Development
Server if it is not running, and launches an instance of Windows Internet Explorer that navi-
gates to the URL of the requested resource.

The following figure shows the results.

50 Windows Azure Step by Step

Now you have an ASP.NET application that runs on the ASP.NET Development Server, a clas-
sic Default.aspx page, a classic Web.config file, and a typical Global.asax file. To repeat, you
don’t need to do anything special to create a Windows Azure project in ASP.NET. You can
use any web, HTML, or mobile control; bind the control to data sources as you normally do
in ASP.NET; and use the Web.config file to configure authentication, authorization, tracing,
caching, HttpHandler, modules, and so on.

The magic of Windows Azure lies not in what you can or can’t do inside a project but in how
you can leverage the deployment and scalability feature of the platform for the project.

The Cloud Project
So far, you created a cloud project as an ASP.NET web application, but you haven’t used any
cloud-specific APIs yet. In this section, you examine the cloud project inside the solution and
explore some cloud APIs that you can use for your pages.

Notice the presence of a cloud project in your solution, shown earlier in Figure 3-1. Thanks
to the property window, you can verify that the project has a .ccproj extension and that
it is placed in a separate directory inside the solution like any Visual Studio project. Visual
Studio represents the content of the .ccproj project as a root element with the same name
as the project, a Roles folder, and two elements named ServiceConfiguration.cscfg and
ServiceDefinition.csdef inside your WebRole1 project. Notice also that the cloud project
is set as the startup project. You can test the project in a cloud-simulated environment by
pressing F5.

 Chapter 3 Creating a Web Role Project 51

When you run the project (unless you’re running Visual Studio as an administrator), you will
see a dialog box stating this error: The Compute Emulator Must Be Run Elevated. Please
Restart Visual Studio In Elevated Administrator Mode In Order To Run The Project. This error
contains an important message: Visual Studio is trying to communicate with the compute
emulator (the local Windows Azure fabric simulator) to start the project. You’ve learned that
you can start the project as an ASP.NET web application—even though it’s contained in a
cloud solution—by selecting View In Browser, but if you want to test the Windows Azure APIs
or the application’s real behavior in the cloud, you need to run the application in the com-
pute emulator, and to do that, you need administrative privileges.

If you use an administrative account, you won’t see the error dialog box, and both the result
of the compilation and the execution will be exactly the same as in the previous example,
which the next figure shows. However, this time, the application is running in a simulated
cloud infrastructure in which Visual Studio deployed the solution that processes the URL
request. If you look carefully at the address bar, you notice that this second example isn’t
using port 6696 as in the previous run. (This is the ASP.NET Development Server port on my
development machine, but yours may differ.) Instead, it’s using port 81.

The difference isn’t just the port number, but rather the entire environment in which the appli-
cation is running. Go to the Notification Area of the Windows Taskbar and click the Windows
Azure icon. When you click the icon, you receive a comforting message saying that everything
is fine with the compute emulator and storage emulator.

52 Windows Azure Step by Step

If you right-click the icon and choose Show Compute Emulator UI, you end up with some-
thing similar to the following figure.

The tree in the left pane of the compute emulator window provides information about the
local deployment of the sample project. The number adjacent to Deployment is an identity
assigned to this deployment. (This is my 189th deployment on this machine since install-
ing the Windows Azure SDK.) Every time you test an application by pressing F5 (or Ctrl+F5),
Visual Studio asks the compute emulator to deploy the cloud solution, so it is pretty easy to
reach high numbers.

In the user interface, you can see that the project named DevLeapCloudService contains a
role named Web Role1 that has just one instance named 0. If you select this instance, the
right pane of the window shows numerous trace messages. This pane reports all the events
that the fabric has raised, together with some useful diagnostic information. I discuss these
aspects in Chapter 6, “Windows Azure Operating System Details.”

Service Details is useful for discovering how the fabric configured the service at run time, the
port used by Web Roles, and other information about the service. Figure 3-2 shows the ser-
vice detail for the sample project. On my machine, it uses port 81 on localhost (127.0.0.1), and
there is an interface on HttpIn for WebRole1 defined in the contract of the service, as well as
the cloud-based infrastructure.

Now that you know the difference between running within an ASP.NET Development Server
and running in the compute emulator simulator, let the beautiful part of this process begin.

 Chapter 3 Creating a Web Role Project 53

FIGuRE 3-2 Compute emulator service detail.

Conduct a Multiple-Instance Test

 1. Close the browser and return to the DevLeapCloudService project in your solution.

 2. Double-click WebRole1 in the Roles folder of the cloud project. The result is shown in
the following figure.

54 Windows Azure Step by Step

 3. On the Configuration tab, in the Instances section, type the value 5 in the Instance
Count text box.

 4. Press F5 to run the project again.

The response in the browser still looks the same, but if you now open the compute
emulator UI, you notice a significant (and delightful!) difference, shown in the following
figure.

I hope this demo has proved the theory covered in Chapter 2—that with Windows Azure,
you can forget installation steps, physical paths, all the aspects of transferring a configuration
from machine to machine, and load-balancer configuration. Instead, you can just modify the
instance count parameter, and Windows Azure takes care of upgrading or redeploying your
application to the correct instances.

 Chapter 3 Creating a Web Role Project 55

Locally, the compute emulator simulates instances using processes. In fact, if you open Task
Manager, you see 10 processes named WaIISHost.exe, where Wa stands for Windows Azure,
and IISHost means that the process is running inside IIS. The result in Task Manager looks
similar to the following figure.

Every developer who sees Task Manager has the same thought: kill some processes! Go
ahead! Kill whatever WaIISHost.exe you want. It doesn’t matter, because the compute emula-
tor restarts those processes when needed, just as Windows Azure would do with your Web
Roles running in the actual cloud if something were to happen to them (such as a hardware
failure or an application fault). Try adding the PID (process ID) column to the task manager to
verify this behavior: as soon as you kill an Azure process, the same host returns under a dif-
ferent process ID.

56 Windows Azure Step by Step

Deployment to Windows Azure
As you saw in Chapter 2, managing projects and solutions in the cloud through the Windows
Azure Portal is simple and straightforward. In this section, you deploy your sample to the
cloud using Azure Services as a host. You follow the manual deployment process so that you
can familiarize yourself with all the steps involved in the process.

Note Since the June 2010 version of the Windows Azure SDK was released, Visual Studio 2010 can
automate Azure Service deployment. Chapter 6 returns to this topic and delves into the details.

Note Before trying to perform any operation on systems running Visual Studio or Windows
Azure, verify that the project has just one instance in the configuration. Go back to the configu-
ration tab and change the 5 to a 1.

 Deploy Your Project Manually

To deploy a service, you need a package, a configuration file, and Windows Azure service.

 1. Right-click the cloud project in your solution and select the Publish menu to activate
the publication process.

Because you’re following a manual deployment procedure, choose the first option,
Create Service Package Only. Windows Explorer opens the Publish subdirectory in the
bin\Debug directory of the cloud project. If you are following the examples in this
book, your path should be something like this:

C:\temp\DevLeapCloudService\DevLeapCloudService\bin\Debug\Publish

In the preceding path, the first DevLeapCloudService is the solution folder, and the
second is the cloud project.

Visual Studio creates two files in that folder. The file with the .cspkg extension is the
cloud service package and contains every role in the solution. The file with the .cscfg
extension is the configuration file.

 2. You now have everything you need to deploy your solution. Open the portal using
your Windows Live account, select your subscription, and create a new hosted service
if you haven’t already done so. (See Chapter 2 for information about creating a hosted
service.)

 Chapter 3 Creating a Web Role Project 57

For this simple demo, you are going to deploy the package to the production environ-
ment of your hosted service. Click New Production Deployment to access the upload
form (called Create A New Deployment), which is shown in the next figure.

 3. In the Package Location section of the user interface, click the Browse Locally button
and select the application package created by Visual Studio that has the .cspkg exten-
sion. In the Configuration File section, click the Browse Locally button and select the file
with the .cscfg extension.

 4. In the Deployment Name text box, type a name for your deployment. The name you
provide is completely useless to Windows Azure, but it will be crucial to you when
identifying your deployment later. For example, the label you choose might indicate
the iteration number of an Agile project, or it might include just a version number
that allows you to quickly differentiate one deployment from another. The name you
choose also has no direct connection with the software version or the .NET Framework
assembly version.

58 Windows Azure Step by Step

 5. Verify that you are using the correct Subscription and Service Name, because when you
click the OK button, the application is deployed in the production environment and
you are charged accordingly.

 6. Click the OK button. At this point, you should see a warning message informing you
that Windows Azure cannot guarantee the 99.95 percent uptime because you are
deploying to just one instance, as shown in the following figure.

As soon as you return to the main screen, you can see the status of the deployment.
Remember that you have started paying—every deployed hosted service begins accruing
charges. Production and staging environments are identical from this point of view. The next
figure shows the main screen. You can delete the deployment at any time to stop the pay-
ment system.

Note Your subscription can include some deployed time for free or at a discounted rate. If you
don’t exceed the included time, you won’t pay anything.

 Chapter 3 Creating a Web Role Project 59

From this main screen, you can perform various operations on the deployed service. First,
you should test the URL you chose in the Create A New Service wizard. The wizard responds
with the message Internet Explorer Cannot Display The Webpage, because the service has
not been deployed yet. Second, configure the application, which means modifying the con-
figuration file you uploaded together with the application package, or just modifying the
operating system version and upgrade policy. Third, configure the operating system, choos-
ing which version of Windows Azure you want to use.

During the deployment, the status of the hosted service changes to reflect the internal oper-
ations. The underlying process involves three phases:

 1 . Initializing The virtual machine is created and the package is deployed.

 2 . Busy Windows Azure Fabric starts the roles involved.

 3 . Ready All roles in all instances are started, as shown in the next figure.

60 Windows Azure Step by Step

Do you want to know what time it is—in the cloud? Just click the link you chose for your ser-
vice. The result is similar to the date and time stamp generated when running the program
earlier in this chapter, but now the information is coming from the cloud. The time is based
on UTC time; it does not reflect the time zone of the data center you choose. The following
figure shows the URL and the page in Internet Explorer.

 Chapter 3 Creating a Web Role Project 61

At any time, you can return to the configuration window to modify the number of instances,
letting Windows Azure reconfigure the fabric to allocate more virtual machines and adjust
the load-balancing policy.

You can also upgrade the production (or staging) environment at any time simply by upload-
ing a newer version of the package. Now that you’ve learned the manual method, you can
learn about a more efficient technique in the next section.

Configuration and upgrading
The beauty of a PaaS environment and, in particular, of Windows Azure, is the complete iso-
lation from the physical aspect of the file system as well as from the virtual directories and
the load balancer. As you learned earlier, you can upload a package created by Visual Studio
(or Eclipse) and then substitute a newer version of the running package in the cloud at any
time, just by clicking the Upgrade button. However, this easy operation leads to a problem:
what happens if the newer version of the package doesn’t work in the cloud? What happens
when you misspell a pathname or URL?

Ideally, you upload and test your solution in a separate environment and then move the solu-
tion to the real endpoint. In Windows Azure, there’s no operation simpler than that—you
deploy new applications or versions to the staging environment, use the given temporary URL
to test the application, and then switch from the staging to the production environment. The
switching operation is practically immediate, because Windows Azure Fabric doesn’t move
any physical components; it just switches DNS entries. At the time of the switch, the internal
GUID-based URL gets switched to the real URL. You can package any update—pages, services,
Global.asax, or Web.config created in Visual Studio—as a new version, upload it to staging,
test it, and then move the application to production using this foolproof operation.

In on-premises, load-balanced solutions, even small configuration changes imply that you
have to synchronize the Web.config file on each web server. In the cloud, this problem
doesn’t exist because Windows Azure manages the sync operations for you during the
deployment. Nevertheless, a complete redeployment to staging or production in the cloud
can be quite time consuming. The Web.config file is included in the application package, so
any modification to application settings or connection strings would typically lead to a com-
plete redeployment of the entire package.

Fortunately, Windows Azure proposes a new configuration file for these kinds of settings: the
.cscfg file discussed earlier in this chapter. This file contains a special section for your configu-
ration as well as important configuration information for Windows Azure fabric.

62 Windows Azure Step by Step

 Configure a Cloud Service

Returning to the Visual Studio project, you can use the project properties dialog box
to configure the application settings. This dialog box reads and writes values from the
ServiceConfiguration.cscfg file.

 1. Double click the Web Role Project named WebRole1 under the Roles section of the
cloud project. The Settings tab contains a unique item named Microsoft.WindowsAzure.
Plugins.Diagnostics.ConnectionString.

 2. Add a new setting by clicking the Add Setting button in the Mini Toolbar. Type
EmailAdmin as the new setting’s name and type the value roberto@devleap.com.
The following figure shows a setting named EmailAdmin with my email address as a
value.

 Chapter 3 Creating a Web Role Project 63

The Windows Azure SDK provides a new API called RoleEnvironment that exposes a
simple method to read this value from the new configuration file. You don’t need a
reference because the modified ASP.NET project template used to create your project
already contains it.

 3. Test your configuration settings by adding a new Label to your default page. In the fol-
lowing code, the new Label is presented in boldface:

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master"
AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits="WebRole1._Default" %>
<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <p><asp:Label ID="TimeLabel" runat="server" /></p>
 <p><asp:Label ID="EmailAdminLabel" runat="server" /></p>
</asp:Content>

The code to read the configuration value uses the GetConfigurationSettingValue(string)
static method exposed by the RoleEnvironment class, shown in boldface in the follow-
ing code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.WindowsAzure.ServiceRuntime;

namespace WebRole1
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 TimeLabel.Text = DateTime.Now.ToString();
 EmailAdminLabel.Text =
 RoleEnvironment.GetConfigurationSettingValue("EmailAdmin");
 }
 }
}

 4. Add the code to your code-behind file, compile, and run the project.

64 Windows Azure Step by Step

RoleEnvironment is one of the APIs exposed by the Microsoft.WindowsAzure.ServiceRuntime,
as you can see from the using statement in the preceding code. You do not need a
reference to the assembly, because Visual Studio adds it automatically, together with
Microsoft.WindowsAzure.Diagnostics (discussed in more detail in Chapter 6), and
Microsoft.WindowsAzure.StorageClient, a helper class to manage the Azure Storage
Account (discussed in Chapter 7).

Running your new service implementation locally sends a new package to the compute
emulator, creates a new deployment directory on disk, and spins up a new process. The
result is shown in the following figure.

Before upgrading your live service with these new lines of code so that you can learn how
to modify live settings, it is important to understand that the GetConfigurationSettings
Value static method searches for configuration values both in Web.config and in
ServiceConfiguration.cscfg—and in that sequence. This means that when your solution has
a configuration value in Web.config, you can read it with the new API as well.

 Chapter 3 Creating a Web Role Project 65

To test whether your service is running in the compute emulator or in a classic web server
environment, you can check the value of the IsAvailable property. The value true means that
the infrastructure provided a RoleEnviroment, so you know that the service is running in a
Windows Azure fabric, either local or live. A value of false means that your service is running
in a traditional web server environment.

The complete code for a solution that can be hosted on-premises or in the cloud looks
something like Listing 3-5.

LISTING 3-5 Code-behind file for Default.aspx.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.WindowsAzure.ServiceRuntime;
using System.Configuration;
namespace WebRole1
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_load(object sender, EventArgs e)
 {
 TimeLabel.Text = DateTime.Now.ToString();

 if (RoleEnvironment.IsAvailable)
 EmailAdminLabel.Text =
 RoleEnvironment.GetConfigurationSettingValue("EmailAdmin");
 else
 EmailAdminLabel.Text =
 ConfigurationManager.AppSettings["EmailAdmin"];

 }
 }
}

To try this new behavior, you can add a configuration setting named EmailAdmin in the
Web.config file and then choose View In Browser for your default page without launching
the compute emulator—just close the browser and launch the application in the compute
emulator using F5. As you learned in the previous chapter, you can deploy your solution
to the staging environment to test it, and then easily move it to production. You can also

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

66 Windows Azure Step by Step

upgrade your solution in place, where it was originally deployed. (You examine the vari-
ous upgrade options in more detail in Chapter 6.) For now, publish manually by following
the procedure described in this chapter, in the section “Deploy Your Project Manually,”
and upgrade the production environment by clicking the Upgrade button. The Upgrade
Deployment form looks like the following figure.

Select the application package and the new ServiceConfiguration.cscfg file, name the deploy-
ment v2, and click the OK button.

When the service instances are shown as Ready, you receive an error message (shown in the
next figure) informing you that one or more configuration settings defined in the service def-
inition file were not specified in the service configuration file. The error occurs because the
service definition changed as a result of the new EmailAdmin setting. As you learn in Chapter
6, you can change the values of the configuration settings without redeploying, but when
you introduce something new in the definition, the service needs to be redeployed, not just
upgraded. You can create a new staging deployment to host the new version of the service
and then swap the environment.

 Chapter 3 Creating a Web Role Project 67

To continue this exercise, delete the current deployment, and then create a new production
deployment.

You can modify the live configuration in ServiceConfiguration.cscfg whenever you want,
either by uploading a new configuration file or by modifying that file directly on the por-
tal. In the former case, you can also use the editor provided by Visual Studio to modify the
file locally, and then upload the updated file. Using Visual Studio is simpler, and reduces
the risk of a misspelled XML element or tag, but you have to use it carefully because some
editor settings also modify the ServiceDefinition.csdef file and, as you learned, a modifica-
tion of the definition file requires a new deployment. For this reason, it’s best to use only
the Settings tab to avoid unexpected effects on the overall configuration. You explore the
ServiceDefinition.csdef file in the next section.

The process to upload a new ServiceConfiguration.cscfg file or modify it live on the portal is
straightforward: just click the Configure button in the production or staging environment to
open the configuration web form.

68 Windows Azure Step by Step

Note You can also copy the text in the configuration from the project portal and paste it to the
Visual Studio editor or any other XML editor, modify it, and then copy it back to the portal.

You still haven’t seen a description of one more important file in the WebRole1 project, which
is a classic ASP.NET web application project that has three important modifications: the three
references to the Windows Azure APIs, a new trace listener configuration (explained in
Chapter 6), and a class named WebRole, defined in the WebRole.cs file. Listing 3-6 shows the
class definition.

LISTING 3-6 WebRole definition.

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Diagnostics;
using Microsoft.WindowsAzure.ServiceRuntime;

namespace WebRole1
{
 public class WebRole : RoleEntryPoint
 {
 public override bool OnStart()
 {
 // For information on handling configuration changes
 // see the MSDN topic at
 // http://go.microsoft.com/fwlink/?LinkId=166357.

 return base.OnStart();
 }
 }
}

As you can see from Listing 3-6, the class derives from the RoleEntryPoint class, defined in the
Microsoft.WindowsAzure.ServiceRuntime namespace. WebRole overrides the RoleEntryPoint
class’s OnStart method to provide an entry point when Windows Azure fabric starts the ser-
vice. That method fires every time you choose to run a suspended service or increment the
number of instances. Remember that the package is deployed on a varying number of virtual
machines based on the ServiceConfiguration.cscfg setting.

 Chapter 3 Creating a Web Role Project 69

During the execution of the OnStart method, your service is placed in a Busy state,
as described in the previous section. You can use this method to initialize variables or
handle other housekeeping chores. In the Windows Azure SDK 1.2, by default, the tem-
plate uses this method to initialize the Diagnostic engine, passing the string you set in the
ServiceConfiguration.cscfg file. The DiagnosticsConnectionString setting provides a location
where the engine can store diagnostics information. (You learn more about this topic in
Chapter 6.) In the Windows Azure SDK 1.3, the configuration for the diagnostic engine was
moved from code to the service configuration.

A classic WebRole.cs file might look like Listing 3-7.

LISTING 3-7 A classic WebRole definition.

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Diagnostics;
using Microsoft.WindowsAzure.ServiceRuntime;

namespace WebRole1
{
 public class WebRole : RoleEntryPoint
 {
 public override bool OnStart()
 {
 RoleEnvironment.Changing += RoleEnvironmentChanging;

 base.OnStart();
 }

 private void RoleEnvironmentChanging(object sender,
 RoleEnvironmentChangingEventArgs e)
 {
 // If a configuration setting is changing
 if (e.Changes.Any(change => change is
 RoleEnvironmentConfigurationSettingChange))
 {
 // Set e.Cancel to true to restart this role instance
 e.Cancel = true;
 }
 }
 }
}

70 Windows Azure Step by Step

In Listing 3-7, the first line of the OnStart method informs the RoleEnvironment that there’s
an event handler for the Changing event. This event occurs before any change to the service
configuration gets applied to the running instances of the role. The event handler receives
an instance of the RoleEnvironmentConfigurationSettingChange class. This class exposes two
interesting properties: Cancel and Changes. You use the Cancel property to signal to the fab-
ric that you want to restart the instance. The read-only Changes property contains a collec-
tion of RoleEnvironmentChange instances that are to be applied to the role instance.

The code uses LINQ query syntax to inspect the collection and find any change that repre-
sents a configuration settings change (a RoleEnvironmentConfigurationTopologyChange class
that derives from RoleEnvironmentChange). If the query returns true, the code sets e.Cancel
to true to force a role instance restart.

From the code in Listing 3-7, you can see that, by default, a Visual Studio Web Role Project
forces every instance to restart when you modify any setting in the ServiceConfiguration.cscfg
file. However, if you modify only the instance number or other settings, the role instances are
not restarted.

You can change this behavior as needed. For example, if you use static variables that depend
on some configuration setting, you can choose to restart the instance, or just destroy your
static value; if you use the System.Cache classes to cache a remote resource pointed to by a
URL placed in the configuration file, you can remove the item from the cache, querying for
the name of the URL setting.

In Chapter 4, “Windows Azure Storage,” you use the StorageClient library to access the
Windows Azure storage account. This library caches the URL for accessing the account and,
by default, places these URLs in ServiceConfiguration.cscfg. You would need to modify the
code in Listing 3-6 to respond to this type of change.

Service Definition File
Another topic to examine in this basic introduction to Web Roles is the ServiceDefinition.csdef
file that the New Project wizard placed in the Cloud Service Project.

If you open ServiceDefinition.csdef, you see something similar to Listing 3-7. After the clas-
sic XML declaration, the definition continues with an XML element named ServiceDefinition
that provides a name for it. This definition name is used by the compute emulator and the
Windows Azure fabric to define a contract for a service.

 Chapter 3 Creating a Web Role Project 71

LISTING 3-7 ServiceDefinition.csdef.

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="DevLeapCloudService"
 xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition">
 <WebRole name="WebRole1">
 <Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="Endpoint1” endpointName="Endpoint1">
 </Bindings>
 </Site>
 </Sites>
 <Endpoints>
 <InputEndpoint name="Endpoint1" protocol="http" port="80" />
 </Endpoints>
 <Imports>
 <Import moduleName="Diagnostics" />
 </Imports>
 <ConfigurationSettings>
 <Setting name="EmailAdmin" />
 </ConfigurationSettings>
 </WebRole>
</ServiceDefinition>

The service definition includes a WebRole element containing the name of the ASP.NET
Web Role Project, and an InputEndpoint definition that lets the fabric configure ports and
protocols for the service. In Figure 3-9, you can see these settings in the compute emulator
user interface. Note that port 80 is configured in the definition file, but port 81 is used by
the compute emulator. This behavior derives from the presence of IIS on my machine, which
reserved port 80.

Note The compute emulator will use the first free port above the configured port.

The ConfigurationSettings element is somewhat strange because it seems like a duplication
of that setting in the ServiceConfiguration.cscfg file. However, ServiceDefinition defines the
existence of a setting, not a value, whereas the ServiceConfiguration setting assigns a value
to each setting. You cannot assign a value to a setting in the ServiceConfiguration.cscfg file
that hasn’t been defined in the service definition file. The service definition file is packaged
together with the roles code and deployed to every instance of the service in the cloud.
This definition informs each instance that a setting with that precise name will exist. As you
learned in the preceding section, from the Windows Azure portal, you can assign or modify
the value of a setting.

72 Windows Azure Step by Step

Last but not least is the Site element, introduced with the Windows Azure SDK 1.3, which lets
you configure multiple sites on the same Web Role. The Visual Studio template includes three
XML attributes you can use to configure the InputEndpoint element: name is just a mnemonic
element to identify the endpoint (and it is referenced by the Binding element), protocol iden-
tifies the protocol used to reach the endpoint, and port is the port where the endpoint listens
for requests (and the port to be opened automatically by the firewall). You can also associate
a digital certificate to enable the SSL protocol.

Role Properties
The cloud project has many other configuration settings that you can adjust, depending
on the project type. Many of these are defined in the ServiceDefinition.csdef file, but some
require that you modify the ServiceConfiguration.cscfg file as well.

Visual Studio 2010 has a convenient editor for modifying these configuration files in a single
place (the role properties page), but you can always modify these files manually, too. The first
tab of this editor contains the general configuration and is shown in the following figure.

 Chapter 3 Creating a Web Role Project 73

In this form, you can opt for Full Trust or Windows Azure Partial Trust. The Windows Azure
Partial Trust setting means that you cannot execute native code. It corresponds to enable-
NativeExecutionCode in ServiceDefinition.csdef, so changing it requires a complete redeploy.

The Instances section is dedicated to the virtual machine. You already saw the Instance Count
setting at work in various sections of this chapter. The VM Size setting is related to your sub-
scription, and you can choose among different sizes for the virtual machine instances. The
Extra Large size differs from the Small size in the number of cores and gigabytes of RAM
per instance. Check the documentation to discover the currently available configurations,
because they can change over time.

The Startup Action section has options that identify the protocol passed to Internet Explorer
by Visual Studio when you press F5 or Ctrl+F5. You haven’t assigned any digital certificate to
enable SSL, so you would select HTTP Endpoint.

The Diagnostics section lets you enable the diagnostic feature and specify the related
Storage Account where the diagnostic engine will persist this kind of information.

In the next figure, you can see the Endpoints tab, where you configure the input endpoint
of the service. An input endpoint is the port and the protocol that the fabric (local or in the
cloud) has to configure to let requests come in.

74 Windows Azure Step by Step

You can configure other endpoints manually in the ServiceDefinition.csdef file or at run time
using the RoleEnvironment class. You return to this topic in Chapter 6.

The Local Storage settings, shown in the next figure, inform the fabric that your application
needs some space in the virtual machine to cache resources. These settings ensure that the
fabric will configure every instance with the necessary disk space. You can request differ-
ent locations in which to cache data on the local file system by adding more settings. Each
requested storage resource can be organized into different folders as needed. You learn
about this in more detail in Chapter 4.

Warning Do not use local storage to maintain run-time data or application state, because—as
in any on-premises solution—each instance can be recycled or can crash.

The Certificates configuration tab is reserved for digital certificates management. Using this
form, you can assign different X.509 certificates to your services. You must upload any con-
figured certificate to Windows Azure manually using the Developer Portal to use that par-
ticular certificate in your service. The upload operation is mandatory, because Visual Studio
doesn’t package certificates during the publishing process.

 Chapter 3 Creating a Web Role Project 75

When you add a certificate in this form, you can use it in the Endpoints tab. Try adding a fake
certificate and return to the Endpoints tab to understand the configuration without having
to use a real certificate. You’ll find that you cannot use a fake certificate; it breaks the security
principles. In the following figure, I tried to add a certificate named Certificate1.

If you followed all the steps presented in this chapter, you should end up with the Service
Definition file in Listing 3-8 and the Service Configuration file in Listing 3-9.

LISTING 3-8 ServiceDefinition.csdef.

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="DevLeapCloudService" xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceDefinition">
 <WebRole name="WebRole1" enableNativeCodeExecution="true">
 <Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="Endpoint1" endpointName="Endpoint1" />
 <Binding name="Endpoint2" endpointName="Endpoint2" />
 </Bindings>
 </Site>
 </Sites>
 <Endpoints>

76 Windows Azure Step by Step

 <InputEndpoint name="Endpoint1" protocol="http" port="80" />
 <InputEndpoint name="Endpoint2" protocol="https" port="443" />
 </Endpoints>
 <Imports>
 <Import moduleName="Diagnostics" />
 </Imports>
 <ConfigurationSettings>
 <Setting name="EmailAdmin" />
 </ConfigurationSettings>
 <LocalResources>
 <LocalStorage name="LocalStorage" cleanOnRoleRecycle="false"
 sizeInMB="50" />
 </LocalResources>
 <Certificates>
 <Certificate name="Certificate1" storeLocation="LocalMachine"
 storeName="My" />
 </Certificates>
 </WebRole>
</ServiceDefinition>

The ServiceDefinition.csdef file now has two input endpoints for ports 80 and 443, a request
for 50 MB of disk space that will survive to role recycle, and a partially configured certificate.

The ServiceConfiguration.cscfg contains a certificate section with a single certificate that cor-
responds to the definition in the ServiceDefinition.csdef file. The thumbprint is blank because
the real certificate has not been chosen yet.

LISTING 3-9 ServiceConfiguration.cscfg.

<?xml version="1.0" encoding="utf-8"?>
<ServiceConfiguration serviceName="DevLeapCloudService" xmlns=
 "http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">
 <Role name="WebRole1">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"
 value="UseDevelopmentStorage=true" />
 <Setting name="EmailAdmin" value="roberto@devleap.com" />
 </ConfigurationSettings>
 <Certificates>
 <Certificate name="Certificate1" thumbprint=""
 thumbprintAlgorithm="sha1" />
 </Certificates>
 </Role>
</ServiceConfiguration>

 Chapter 3 Creating a Web Role Project 77

Summary
In this chapter, you saw the complete cycle for creating and upgrading a simple but effective
Windows Azure service. You learned about the SDK installation and the various pieces of the
platform, and then you created a project. After a local test in the compute emulator, you
deployed a solution in Windows Azure using the Developer Portal. You modified the project
and followed the upgrade procedure. You saw every definition and configuration for the
cloud project in Visual Studio.

The next chapter is dedicated to the Windows Azure storage account. You learn how to use it
from cloud and on-premises solutions.

Quick Reference
To Do this
Download the Azure SDK and
tools

Go to http://www.azure.com.

Run your application in a web
server context

In Visual Studio, right-click the page you want to run and select
View In Browser from the pop-up menu.

Debug and test your applications
in the compute emulator

In Visual Studio, press F5.

See the running instance Open the compute emulator user interface and expand the
node below the cloud projects.

Modify the number of instances Open ServiceConfiguration.cscfg or right click the Role project,
select Properties, and choose the Settings section.

 79

Chapter 4

Windows Azure Storage
After completing this chapter, you will be able to

■ Use local storage.

■ Understand the Storage Account Portal settings.

■ Use the Windows Azure Management Tool to manage blobs.

■ Use the Blob Storage APIs.

In the last chapter, you built a simple Windows Azure service using the Windows Azure
Tools for Microsoft Visual Studio and the local debugging environment called the Windows
Azure compute emulator. Then you deployed the solution in the cloud using the portal and
upgraded it using the upgrade feature for production and staging. You saw a brief mention
of the local storage feature when you configured the application.

This chapter focuses on a more complete introduction to the storage features exposed by
Windows Azure. You learn how to use local storage to cache resources locally, and then you
walk through exercises that show you how to use the various endpoints for storing and man-
aging blobs, tables, and queues, both locally (for testing purposes), and in the live Storage
Account Project.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

80 Windows Azure Step by Step

Local Storage
As you learned at the end of Chapter 3, “Creating a Web Role Project,” every Windows Azure
Cloud Service has a service definition file (with a .csdef extension) that lets you request fea-
tures, services, endpoints, and so on from the Windows Azure fabric. You also learned that
this file, in conjunction with the service configuration file (which has a .cscfg extension), can
hold application settings that you can read through the RoleEnvironment class.

Local storage is a feature exposed by the operating system to provide a space where an
application can store and read data. It is somewhat like a traditional hard drive, although, as
with every Windows Azure feature, it is exposed as a logical resource, not a physical one: it
has neither a disk drive letter nor a normal path. To use it, you request some space, and then
use the RoleEnviroment class to obtain the starting place to store your data. You can then
create subfolders and files as you normally would with the Microsoft .NET Framework System.
IO classes, read the files, update them, and delete them. The only difference is the way you
reach the root of this space. You can also request multiple local storage if you prefer to store
data in different places rather than in different folders.

The Windows Azure compute emulator tool simulates the local storage feature on your
development machine so that you can test and debug the application’s behavior locally,
without having to deploy the application to the cloud.

Request Local Storage

 1. Create a new Windows Azure Project, and name the project ThinkAheadAzureStorage.

 Note To refresh your memory about how to do this, see Chapter 3.

 2. In the New Windows Azure Project, add an ASP.NET Web Role to the Windows Azure
Solution. Leave its name set to the default, WebRole1.

 3. When Visual Studio is finished creating the project infrastructure, in the cloud project,
under Roles, double-click the WebRole1 node to open the Role Configuration screen.

 4. Click the Local Storage tab in the left pane and, in the Mini Toolbar in the right pane,
click the Add Local Storage button.

 5. Name this new local storage MyStorage and type 50 into the Size text box.

 6. Do not select the Clean On Role Recycle check box (by default, it’s not selected). Save
the WebRole1 configuration.

Figure 4-1 shows the result of your work.

 Chapter 4 Windows Azure Storage 81

FIGuRE 4-1 Request for local storage space.

After saving this configuration, the Visual Studio integrated development environment (IDE)
modifies the ServiceDefinition.csdef file to request the required disk space to the Windows
Azure fabric during the deployment of the hosted service, as shown in the following code.

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="ThinkAheadAzureStorage" xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceDefinition">
 <WebRole name="WebRole1">
 <Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="Endpoint1" endpointName="Endpoint1" />
 </Bindings>
 </Site>
 </Sites>
 <Endpoints>
 <InputEndpoint name="Endpoint1" protocol="http" port="80" />
 </Endpoints>
 <Imports>
 <Import moduleName="Diagnostics" />
 </Imports>
 <LocalResources>
 <LocalStorage name="MyStorage" cleanOnRoleRecycle="false" sizeInMB="50" />
 </LocalResources>
 </WebRole>
</ServiceDefinition>

82 Windows Azure Step by Step

In the preceding XML, the LocalResources tag contains the LocalStorage element, which
requests the specified amount of space from the fabric. Remember that when you deploy
the service on Windows Azure or in the Windows Azure compute emulator, part of that
deployment involves inspecting the configuration files to create the appropriate virtual
machine. In this case, Windows Azure fabric creates a virtual machine with at least 50 MB of
free disk space and exposes it under the name MyStorage.

You can read most of the settings by using the classes in the Microsoft.WindowsAzure.
ServiceRuntime namespace and assembly, and—because this library is referenced by
default in the cloud project template—you can use those APIs directly.

Through the RoleEnvironment class, you can access the configured local resources using the
GetLocalResource method, which takes a string parameter corresponding to the requested
resource name. The method returns a LocalResource type that exposes a Name property, a
MaximumSizeInMegabytes property, and the information you need to access the storage: a
RootPath property.

Read the Configuration Value

 1. Modify the default page by adding a Label control, named localStorage, that you will
use to display the path of the configured Local Storage. The complete code for the
Default.aspx page follows. I also modified the default heading content:

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master"
AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="WebRole1._Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <h2>
 Welcome to ThinkAhead Azure Storage
 </h2>
 <p>
 <asp:Label ID="localStorage" runat="server" />
 </p>
</asp:Content>

 2. Modify the code-behind file, Default.aspx.cs, so that it calls the GetLocalResource
method, which asks the fabric for a configured resource. Use the returned LocalResource
instance to set the label’s Text to the RootPath property, as shown in the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.WindowsAzure.ServiceRuntime;

namespace WebRole1

 Chapter 4 Windows Azure Storage 83

{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_PreRender(object sender, EventArgs e)
 {
 LocalResource resource = RoleEnvironment.GetLocalResource(“MyStorage");

 localStorage.Text = resource.RootPath;
 }
 }
}

 3. Run the project to see the local path assigned to your MyStorage local storage.
(Remember that you have to start Visual Studio with administrative privileges.)
The result should look similar to the following figure.

As you may remember from the previous chapter, the first part of the local storage path
shown in the preceding screen is where the Windows Azure compute emulator deploys the
solution; the number follows a progressive sequence of deployment on the machine. Each
instance is uniquely referenced by the name of the project followed by a number starting
from zero (for example, WebRole1.0). The local resource you specified in the configuration
becomes a subdirectory of the directory root. You can perform whatever file or folder opera-
tions you want using this path.

Now that you know how to configure and use local storage, it’s time to point out three different
aspects:

■ Local deployment

■ Fault tolerance

■ Scalability

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

84 Windows Azure Step by Step

The first aspect, local deployment, concerns the local environment. Every time you deploy
a solution locally, the Windows Azure compute emulator creates a new deployment folder
and assigns it a different number, which means that you will end up with many local folders,
one for each debugging session. This behavior, apart from wasting some of your disk space,
doesn’t let you reuse the local storage from previous debugging sessions. If you modify files
or folders during a debug session, you will need to copy the local storage content to the new
deployment manually. For example, you can create a file in local storage and try to read its
content in a single debug session, but if you stop the debugger and rerun the application,
your deployment folder will be different, so the previously created file will no longer exist
in the new deployment folder. You can either copy the file from the previous deployment
folder, or you can adopt a completely different approach, similar to that imposed by the unit
test practice approach, in which every test should be autonomous. So, if you are testing a
procedure that reads a file, the test run has to copy the file during the initialization phase.
That way, the reading procedure doesn’t depend on the writing procedure or other previ-
ously executed code, and you can test the two independently from one another. Another
benefit conferred by this approach is that you can test the reading procedure even when the
writing procedure doesn’t work, or even when it isn’t developed yet.

The second aspect is fault-tolerance. I covered this problem in the preceding paragraph.
You need to redeploy whenever the application is updated to include a new feature or to fix
bugs—and every new deployment can deploy the solution to a different virtual machine.
From this perspective, storing application or state information in local storage is not a good
idea; every time you redeploy the solution, you lose everything in the previous local storage.
Nevertheless, local storage is local to the machine and any machine-change operation that
Windows Azure performs disregards your existing local storage.

The third aspect, scalability, is along the same lines as the second aspect: one of the advan-
tages of the Windows Azure operating system is that you can increment the number of
instances of a running service as needed. Multiple instances cannot share the local disk and,
as I said before, every attempt to create a synchronization engine is a dangerous practice.
Fortunately, as you see in the next section, Windows Azure gives you a shared storage envi-
ronment, called a storage account, where you can store and retrieve application information
and state across multiple instances.

So why does Windows Azure expose another, similar, type of storage? The answer is simple:
to cache data in the location nearest to the application. If you think about a cloud solution,
you realize that a virtual machine could conceivably be very distant from the data it needs.
A Microsoft SQL Azure database, for example, might be many nodes away from the virtual
machine, or when the solution needs some on-premises data, the path to reach that data for
every external request might be too long.

 Chapter 4 Windows Azure Storage 85

The purpose of local storage is to cache data locally, in the nearest possible location to the
code. The local disk serves this purpose perfectly. Because local storage is a sort of run-time
cache, you should plan to use it by following the cache pattern: before using a resource,
always check first whether it exists locally. If the resource does not exist, get it from the
original source, store it in the local cache, and then use it. By following that pattern, you can
leverage a very efficient local disk to cache whatever resource might be far from the solution
or would be too time-consuming to recreate each time.

An option called Clean On Role Recycle is not selected by default (see Figure 4-1). This flag
tells Windows Azure fabric whether to preserve local storage during a role recycle. For
example, if you modify some important settings in a solution, you can request a role recycle
to clear in-memory data and refresh your application entirely, just as you can in a traditional
Internet Information Services (IIS) application. If you cached some resources based on those
settings, you probably want to clean up your cache, too. If you cached a resource indepen-
dently from the configuration settings, you can leave the option cleared, which will maintain
the existing local storage content during the recycle operation. Remember that this option
cannot ensure that your content will be available at any time. If your role crashes, for exam-
ple, Windows Azure creates a new virtual machine as needed to restart a fresh, new copy of
your service that cannot access the same local storage.

The Windows Azure Storage Account
You can compare local storage to the local file system on an on-premises server. SQL Azure can
be the relational store for an application in the cloud, but its current version has some limitations
regarding space and features. Also, you have to pay for it separately from your Windows Azure
subscription. In addition, Microsoft Silverlight applications and AJAX/jQuery clients cannot access
SQL Azure unless you build a service in the middle of the communication protocol that acts as a
proxy to get the data for them.

A valid alternative for storing data in the cloud is a Windows Azure storage account. It’s a
perfect place to store blobs (even the biggest ones) and application entities (such as business
entities), and it provides a queued mechanism to decouple applications or application com-
ponents. Future versions of the Windows Azure storage account will provide a distributed
cache and a store for file streams.

Note Remember that typically, your Windows Azure storage account accrues charges based on
transactions and space consumed, but there are other subscription types available in which you
can specify some fixed amount of disk space and/or number of transactions.

86 Windows Azure Step by Step

You can either create a storage account for each application or create different contain-
ers inside one storage account for different applications. I usually prefer the first method
because every application can have a different permission set and can be administered by
different users. For every operation you want to perform on the store, you must include the
key provided by the storage account. There is only one key per storage account, so the first
approach—creating a storage account for each application—should be more suitable for dif-
ferent scenarios.

The resources stored in the Windows Azure storage account are always available because
Windows Azure replicates them on different nodes to guarantee both fault tolerance and
scalability. If a node crashes, the fabric elevates a backup node to become the primary. If the
response from a node becomes too slow, the fabric can allocate some resources on a differ-
ent node to improve the overall efficiency.

You can access your Windows Azure storage account resources via REST and HTTP, so any
application running on any platform can store, retrieve, and manipulate data in the cloud.
You can decide to make these standard requests using the classes exposed by the technology
of your choice, or you can use the wrapper classes in the SDK for the appropriate platform.
These wrapper classes help in creating the code, because they make most of the details
required to create REST requests and analyze HTTP responses transparent to developers.

The Windows Azure storage account is publicly available on the Internet, and you access it
only via HTTP/HTTPS. From a protocol point of view, there is no difference between access-
ing the storage in the cloud using a cloud-based application or using an on-premises solu-
tion—except for the latency price when the solution is far away from the data center.

Create a Storage Account Project

 1. To create a project, you need a subscription to Windows Azure services. (This can be
the same subscription you used in the previous chapter to build the Windows Azure
service.) Open the Windows Azure website (http://www.azure.com) and click the sign-in
menu.

 2. Sign in using your account to open the Management Portal, shown in the following
figure.

 Chapter 4 Windows Azure Storage 87

 3. Click the Hosted Services, Storage Accounts & CDN button to open the summary page.

 4. Click Storage Account (0) on the left side of the screen to show the summary page for
the storage accounts. If you have not yet created a storage account, you see only the
subscription name in the central pane, as shown in the following figure.

88 Windows Azure Step by Step

 5. Click the New Storage Account button on the toolbar to open the Create A New
Storage Account dialog box, shown in the following screen.

 6. Type a unique name in the Enter A URL text box. Choose the public name for your ser-
vice yourself, because it must be unique and meaningful to you. For example, if I were
creating a site for this book, I might choose the name azuresbs (“sbs” stands for “step
by step”) as the prefix for the complete path, as shown in the following dialog box.

 7. In the the dialog box, you choose a region or an affinity group where you want to create
the storage account space for blobs, tables, and queues. Select the region you prefer. I
chose West Europe.

 8. Click the Create button to create the storage account.

You created your storage account, choosing a region to store your data as well as a public
URL that every application will use to access the store.

Figure 4-2 shows the end result of the storage account creation filled with my own informa-
tion. From this summary page, you can view the service details. First, notice that your new
service appears in the list of services together with other storage accounts and cloud ser-
vices—a good reminder of the importance of choosing a meaningful label for every project.
In a production environment, I normally use the project name as the name of the cloud ser-
vice project and the suffix “storage” for the storage account project. This way, the list, which

 Chapter 4 Windows Azure Storage 89

is ordered alphabetically, shows me the various cloud projects together with the storage
project, as shown in Figure 4-2.

FIGuRE 4-2 Result of creating the storage account.

The public name selected in the last wizard step becomes the root for the URLs of all kinds of
resources. For example, to request a blob in the storage account, you would make an HTTP
GET request to the following URI: http://azuresbs.blob.core.windows.net.

The Region box in Figure 4-2 shows that the service is hosted in West Europe and has no
affinity group with other services. Affinity groups and the other options that appear in the
service summary page are discussed more in Chapter 6, “Windows Azure Operating System
Details.”

Note the two hidden keys on the page: a primary key and a secondary key. You must include
one of these in every request you make to the storage account resources—unless you decide
to create a public section of the storage. You can use either the primary or the secondary
key because both are valid. If one of them becomes compromised, you can use the other
key in applications while you regenerate the compromised key. To regenerate a key, click the
Regenerate button in the user interface.

You can view a key by clicking the View button next to it. In the View Storage Access Keys
dialog box, you can also copy the keys to the Clipboard to reuse them in your code or some
other management tool, as shown in the next section.

90 Windows Azure Step by Step

Before using the APIs to manage blobs and tables in the storage account, you should know
about a useful tool for managing resources: a management console snap-in, called the
Windows Azure Management Tool, that lets you manage the content of a storage account
using the same APIs you will employ in code in the next sections of this chapter. This tool is
particularly useful because Windows Azure does not provide a blob or table explorer. It is a
good starting point for understanding the various operations you can perform on your stor-
age account and for organizing resources.

Windows Azure Management Tool
You can download the Windows Azure Management Tool for free from the Windows Azure
developer home page. Because URLs and pages can change over time, I suggest you start
from the main page, http://www.azure.com, navigate to the developers’ SDK section, and find
the Windows Azure Management Tools link.

This tool lets you manage blobs, tables, and queues directly on your storage account (or in
the Windows Azure storage emulator) so it is a perfect companion for every project that
uses a storage account. You can also perform many other cloud project operations, such as
deploying, upgrading, and managing the hosted service state; configuring the storage ser-
vice; and managing digital certificates for Windows Azure Service. Almost every operation
you can perform is available on the portal for storage accounts and hosted services, as you
can see in the following figure.

 Chapter 4 Windows Azure Storage 91

The next procedure shows how you can use the Windows Azure Management Tool to man-
age some blobs in the storage account azuresbs by using the primary key and the URL you
saw earlier.

Manage Blobs with the Windows Azure Management Tool

You need to provide the information the tool needs to connect to your Windows Azure stor-
age account, that is, the public name to construct the URLs and the key (primary or secondary,
it doesn’t make any difference) that will be used for every request. If you do not have a storage
account, you can follow the next set of steps by connecting the tool to your local Windows Azure
storage emulator, which is the simulated environment installed by the Windows Azure SDK to
locally simulate storage account behavior.

 1. Expand all the nodes in the management console.

 2. Right click Storage Explorer, and select New Connection to create a new connection to
the storage account.

As you can see from the following figure, the shortcut menu provides options for man-
aging the connection to the storage account. The Connect option lets you select an
already-defined connection, whereas Connect Local defines a connection to the local
emulator. The Delete Connection option deletes an existing connection.

Note The term “connection” is somewhat misleading. When you select New Connection,
you are not opening a connection; instead, you are simply defining the information the
tool needs to make a connection. The same concept applies to Connect and Connect
Locally; these menu items read the connection information and let you open and close the
connection.

92 Windows Azure Step by Step

 3. Type the account name that corresponds to the public name you chose when creating
the storage account, and then copy and paste the primary (or secondary) key from the
storage account summary page.

As you can see in the next figure, I used azuresbs as the account name, and copied the
primary key for that account. You don’t have to fill in the URL fields, because the tool
infers them from the account name.

 4. Verify the account and the key, and then click the OK button to store the connection
information in the tool. You can define different connections for different storage
accounts. A new node appears in the panel on the left, as you can see in Figure 4-3.

 5. Expand the new node that has the same label as the account name (azuresbs in this
case) to view the three resource types you can manage from this tool.

 6. Click BLOB Containers to open the BLOB management window, shown in Figure 4-3.

FIGuRE 4-3 Blob management window.

 Chapter 4 Windows Azure Storage 93

Blobs are organized by containers, just as files in a traditional file system are organized
by folders. You can define different containers to organize your blob however you like;
the container name contributes to form a URL for REST operations. For instance, if I
defined a container named images in this example, the URL for a PUT operation would
be http://azuresbs.blob.core.windows.net/images.

 7. Click the Add Container button in the far-right pane of the window to open the Add
BLOB Container dialog box, where you can define the container name and the access
type that will be applied to the container itself. Type images as the container name,
and select Public for the access type, as shown in the following figure.

Every container can be either public or private. A public container is accessible for GET
operations without the key being specified. In other words, any application or client can
read information in a public container, but nonread operations, such as Create, Update,
or Delete (CUD) requests, are possible only when made by authorized clients and appli-
cations. In contrast, a private container requires an access key for every operation.

 8. Click the OK button to create the container. So far, no request has been made to the
storage account, but now the tool connects to the account to request the new con-
tainer. At the end of the creation procedure, you can see the new container in the list
of containers.

When you click the OK button, the tool uses the underlying APIs to create an HTTP
request with the PUT method, digitally signs the request, and sends the request to the
URL assigned to the connection. You could perform this operation manually by issuing
the same request. Remember that the Windows Azure storage account uses standard
protocols (HTTP and REST) and that every operation is just a request to the public URL
exposed by the service. The Windows Azure Management Tool also demonstrates what
I pointed out earlier in this chapter—that you can access the storage account from any-
where, not just through a hosted service. In this case, I’m using an on-premises applica-
tion that runs on my machine to access the storage account I created earlier.

To better understand the interaction between an application and the storage account, in
the last step of the preceding procedure, I used an HTTP tracer to show you the underlying
request. Almost every platform on planet Earth can make the request shown in Figure 4-4.
The same concept applies when you want to upload a single blob file to the storage.

94 Windows Azure Step by Step

FIGuRE 4-4 HTTP request for container creation.

As you can see in Figure 4-4, the first request uses the PUT method to ask the storage
account service to create a container. The content type is XML, and the URL to which the
request was sent includes the name of my storage account, the standard URI to the ser-
vice, and the new container name. In practice, the tool asks the storage account to create
this URI, and informs the underlying service that the PUT operation is for a container with
a 90-second time-out period in the query string. The result code of the response is 200,
meaning that the service has successfully completed the request.

The trace shows three other important things. The first is the host value of the request, which
contains the storage account path. The second is that the server value of the response head-
ers tells you the server service version.

The third (and most important) item to note is the Authorization element of the request’s
header. As mentioned earlier, storage account management requests can be performed only
by authorized applications. The management tool uses the provided key to pass an authori-
zation header to the server that, in turn, checks its value to authorize or deny the incoming
request.

Figure 4-4 shows two other requests: the first request is the continuation of the preceding
one and contains the HTTP status code of 201 – Created, telling the management tool that
the container was created. The last request is made by the tool to ask for the list of con-
tainers during the refresh of the user interface. As you can deduce from the URL in the last
request, the tool requested a comp=list value in the query string to get the list of containers.

 Chapter 4 Windows Azure Storage 95

Add Blobs to the Container

To complete the container and blob introductory tour, and before you learn about the APIs
you will have to use in your code, try to add some images into the new blob container.

 1. From the Windows Azure Management Tool, select the new container in the BLOB
Containers window. A second window named BLOBs appears in the bottom of the
main screen, and a new menu appears on the toolbar on the right side of the screen.

 2. Click Upload Blob on that toolbar to open the Upload BLOB To Images dialog box. The
term Images in the dialog box title is the container name, so this name varies for each
container.

 3. In the dialog box, choose the file you want to upload from your local hard drive by
clicking the Browse button and selecting the appropriate image.

By default, the blob inherits its name from the selected file name. I chose my com-
pany’s logo, but regardless of the image you select, change the Blob Name to
ThinkAhead Logo.

Note If you want to follow this example exactly, you can download the logo from
http://thinkahead.cloudapp.net.

The Content Type is inferred from the file extension, as shown in the following figure.

The Blob Name you enter is the identifier for this blob inside the storage account con-
tainer. You need it for every subsequent operation with this blob.

 4. Click the OK button to upload the blob into the container. As before, the request oper-
ation via HTTP occurs only after you press the OK button.

 5. At the end of the upload operation, nothing seems to happen! That’s because you’re
using an HTTP tool, so you have to ask for a refresh of the blob list to see the result.
Double-click the container name to refresh it.

 6. Repeat the upload operation procedure for another image, but giving this one the
name DevLeap Logo (again, which image you select isn’t important, but if you want to
use the same one as the example, you can download it from http://www.devleap.com).

96 Windows Azure Step by Step

 7. Refresh the interface by double-clicking the images container in the BLOB Containers
window.

The result is straightforward: the BLOBs list pane shows you the two new blobs, as shown in
the following figure.

The two images in the Images container have names that represent the resource inside the
storage. Each name must be unique inside its container, because the name contributes to
form the URI for REST operations on each storage item. As you can see, the path (that is, the
URI) for subsequent requests is composed of the name of the storage account followed by
the standard URI, the container name, and the blob name. If you want to further separate the
blobs in a container, use a forward slash (/) in the name of the blob you are uploading.

In the interface, you can also delete a container, download every blob to a local folder (or
upload every file in a local folder to a single container), and upload a new blob to overwrite
an existing blob in a container. You can activate a shortcut menu for each blob that provides
options to download it, delete it, or ask the browser to request it. Every operation corre-
sponds to an HTTP request that includes the authorization header.

The next figure shows the complete set of HTTP operations that the Windows Azure
Management Tool performed behind the scenes during the preceding steps.

 Chapter 4 Windows Azure Storage 97

Because the images container is public, any client—even one with no key—can request a GET
operation on the blobs it contains. For instance, open the browser of your choice and type
the URI of one of the uploaded blobs. Because the browser receives a content type header of
image/jpeg, the result is just the image, as you can see from the next figure. Look at the URL
in the address bar of the browser. It refers directly to the uploaded blob at http://azuresbs.
blob.core.windows.net/images/ThinkAhead Logo.

http://azuresbs.blob.core.windows.net/images/ThinkAhead Logo
http://azuresbs.blob.core.windows.net/images/ThinkAhead Logo

98 Windows Azure Step by Step

Blob APIs
I recommend that you experiment with the Windows Azure Management Tool, uploading,
downloading, and deleting blobs and containers until you feel comfortable with these opera-
tions. This next section introduces the APIs that developers use to perform the same Create,
Read, Update, Delete (CRUD) operations in code.

List the Blobs in a Container

The steps for listing the blob in a container are similar to the steps you followed using the
Windows Azure Management Tool. You first obtain the connection information to build the
URL so that you can make a REST request, and then you need to provide the authorization
header and add it to every request. It can be useful to include this information in the Service
Configuration file just as you would include any other configuration information (as you
learned in Chapter 3). You can obtain a container reference easily by adding the container
name to the URL. If you want to list the container’s content, you need to append a comp=list
query string. Finally, you can specify a time-out for every query operation.

The Windows Azure SDK, installed with the Windows Azure Tools for Visual Studio, contains a
library that takes care of all of these details.

 1. Open the project ThinkAheadAzureStorage you created at the beginning of this chapter.

 2. Verify that the project contains a reference to the Microsoft.WindowsAzure.StorageClient
library.

A Visual Studio Windows Azure Project has the reference to this library, as well as to the
Microsoft.WindowsAzure.ServiceRuntime that you used in the previous chapter.

 3. Create a new setting in the Web Role configuration to store the account and the
key information. Double-click WebRole1 in the Roles section of your cloud proj-
ect, and then click Add Setting in the Settings section. Name the new setting
DataConnectionString, and select Connection String as its type.

 4. Click the ellipsis (…) button to open the Storage Connection String dialog box. You can
also type the information directly in the text box near the button, but the dialog box
helps you fill the information correctly.

 Chapter 4 Windows Azure Storage 99

 5. As you did for the Windows Azure Management Tool, copy and paste this information
from your Storage Accounts detail page. Follow the syntax shown in the following fig-
ure to reference your storage account. If you don’t have a subscription, leave the Use
The Windows Azure Storage Emulator option button selected. If you uploaded two
images to the Windows Azure storage emulator in the earlier procedure, you will list
those instead of any online images.

Note Remember to use your own information and not the information presented in this
book, because it points to my storage account. You can choose HTTPS to protect the re-
quest made by an application to the store.

 6. Add a new Web Form item to your project and name it StorageAccountBlobs.

Insert a Repeater control in the page and name it gridBlob. Place an ItemTemplate
inside it to show the Uri property of the blobs you are going to retrieve from the stor-
age account.

The resulting StorageAccountBlob.aspx page code is shown in Listing 4-1.

100 Windows Azure Step by Step

LISTING 4-1 Web Form for testing blobs.

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="StorageAccountBlobs.aspx.cs"
 Inherits="WebRole1.StorageAccountBlobs" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <p>
 <asp:Repeater ID="gridBlob" runat="server">
 <ItemTemplate>
 <p>
 <%# Eval("Uri") %></p>
 </ItemTemplate>
 </asp:Repeater>

 </p>
 </div>
 </form>
</body>
</html>

 7. In the code-behind file, StorageAccountBlobs.aspx.cs, use the following code to bind
the blobs contained in the images container of your storage account to the GridView
control:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.StorageClient;

namespace WebRole1
{
 public partial class StorageAccountBlobs : System.Web.UI.Page
 {
 protected void Page_PreRender(object sender, EventArgs e)
 {
 CloudStorageAccount account =

 Chapter 4 Windows Azure Storage 101

 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudBlobClient blobClient = account.CreateCloudBlobClient();

 CloudBlobContainer container =
 blobClient.GetContainerReference("images");

 gridBlob.DataSource = container.ListBlobs();
 gridBlob.DataBind();
 }
 }
}

The first line of the Page_PreRender method in the preceding code retrieves the infor-
mation you entered in the configuration setting in step 5. The FromConfigurationSettings
static method of the CloudStorageAccount class reads the information in the
ServiceConfiguration.cscfg file and returns an instance of the CloudStorageAccount
type. This instance contains all the information necessary to build a proxy to the Storage
Account Service exposed by Windows Azure in the cloud or to the local Windows Azure
storage emulator. The CreateCloudBlobClient method creates the proxy you need to
perform any operation on blobs and containers.

As you can see, the proxy has a method to get a reference to the container, named
GetContainerReference, that accepts the container name as the only parameter. With
that container reference, you can ask for the blobs it contains using the simple ListBlobs
method. This method returns a type implementing IEnumerable<IListBlobItem> that
you can bind to any control that supports data binding.

 8. The code is almost complete, but the CloudStorageAccount class needs another little
step in the configuration. Type the following code in the Application_Start method of
your Global.asax.cs file to assure the class that every change in the configuration val-
ues of the storage account causes a recycle of the role to update the cached values.
The following code comes directly from MSDN (Microsoft Developers Network) and
is commented directly by the Azure team. Add the relative using clause for every class
that needs it:

#region Setup CloudStorageAccount Configuration Setting Publisher

// This code sets up a handler to update CloudStorageAccount
// instances when their corresponding configuration settings change
// in the service configuration file.
 CloudStorageAccount.SetConfigurationSettingPublisher(
 (configName, configSetter) =>
 {
 // Provide the configSetter with the initial value
 configSetter(RoleEnvironment.GetConfigurationSettingValue(configName));
 RoleEnvironment.Changed += (s, arg) =>
 {
 if (arg.Changes.OfType<RoleEnvironmentConfigurationSettingChange>()
 .Any((change) => (change.ConfigurationSettingName == configName)))
 {

102 Windows Azure Step by Step

 // The corresponding configuration setting has changed,
 // propagate the value
 if (!configSetter(RoleEnvironment.GetConfigurationSettingValue(
 configName)))
 // In this case, the change to the storage account credentials
 // in the service configuration is significant enough that the
 // role needs to be recycled in order to use the latest settings.
 // (for example, the endpoint has changed)
 RoleEnvironment.RequestRecycle();
 }
 }
 };
 });
#endregion

 9. Set StorageAccountBlob.aspx as the default page by right-clicking it and selecting the
Set As Start Page option.

 10. Press F5 to start your project. If you pointed the connection string to your online stor-
age account, be sure that you’re connected to the Internet.

When you browse to the new StorageAccountBlobs.aspx page, you see the list of the URIs for
each blob in the selected storage account. In the following figure, you can see the URIs for
the two files I uploaded using the Windows Azure Management Tool in the previous section.

Because the URI points to a blob of the type image, you can replace the paragraph in the
ItemTemplate inside the Repeater control with an tag, as in the following code:

<asp:Repeater ID="gridBlob" runat="server">
 <ItemTemplate>
 <img src=’<%# Eval(“Uri") %>’ />
 </ItemTemplate>
</asp:Repeater>

The result is straightforward, as you can see from the next figure, but this simple example
unveils the power of a REST-based storage service.

 Chapter 4 Windows Azure Storage 103

Note The Eval method is simple to use but it doesn’t perform as you might think. It uses
Reflection to figure out the underlying type that your code has set as the data source for the
control. A better approach is to manually cast the data to the underlying type: such code not
only executes more quickly, but the compiler can verify the type safety of the code, which it can-
not do when using the Eval method. Listing 4-2 shows better code to perform this operation.
(You can also find this listing in the downloadable sample code. See the book’s “Introduction” for
the download link.) Please note the use of the Import Namespace directive at the top of the page.

LISTING 4-2 Web Form for testing blobs with direct cast.

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="StorageAccountBlobs.aspx.cs"
 Inherits="WebRole1.StorageAccountBlobs" %>
<%@ Import Namespace="Microsoft.WindowsAzure.StorageClient" %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN"
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title></title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <p>
 <asp:Repeater ID="gridBlob" runat="server">
 <ItemTemplate>
 <img src='<%# ((IListBlobItem)Container.DataItem).Uri %>' />
 </ItemTemplate>
 </asp:Repeater>
 </p>
 </div>
 </form>
 </body>
</html>

104 Windows Azure Step by Step

Upload New Blobs

This procedure demonstrates how you can use the StorageClient classes to add a new image
in your storage account. You leverage the classic ASP.NET FileUpload control to upload the
image to the hosted service, which in turn adds the image to the storage account as a blob.

 1. Create a new paragraph <p> tag inside the top <div> of the StorageAccountBlobs page.

 2. Add a FileUpload ASP.NET control in the new paragraph.

 3. Add a Button control immediately after the FileUpload control in the same paragraph.

The code for the page should be similar to the following; the new controls added are in
boldface:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="StorageAccountBlobs.aspx.cs"
 Inherits="WebRole1.StorageAccountBlobs" %>

<%@ Import Namespace="Microsoft.WindowsAzure.StorageClient" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <p>
 <asp:FileUpload id="imageUpload" runat="server" />
 <asp:Button Text="Upload" runat="server" onClick="upload_Click" />
 </p>
 <p>
 <asp:Repeater ID="gridBlob" runat="server">
 <ItemTemplate>
 <img src='<%# ((IListBlobItem)Container.DataItem).Uri %>' />
 </ItemTemplate>
 </asp:Repeater>
 </p>
 </div>
 </form>
</body>
</html>

 4. When a user clicks the button, the button fires the upload_Click event handler.
Therefore, you need to obtain a container reference and use one of the upload meth-
ods provided by the CloudBlob class. Type the following code into the code-behind file:

protected void upload_Click(object sender, EventArgs e)
{
 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting(“DataConnectionString”);
 CloudBlobClient blobClient = account.CreateCloudBlobClient();

 Chapter 4 Windows Azure Storage 105

 CloudBlobContainer container = blobClient.GetContainerReference("images");

 CloudBlob blob = container.GetBlobReference(imageUpload.FileName);

 blob.UploadFromStream(imageUpload.FileContent);

}

The first part of the code contains nothing new compared to the Page_PreRender method
you used in the preceding example. The next-to-last line of code asks the container for a
CloudBlob instance by passing the desired blob name to the GetBlobReference method. This
method does not create anything, nor does it connect to the storage account; it just con-
structs a new CloudBlob class with a complete URI, starting from the container URI. The last
line of code creates the new blob by passing the content of the received file to the service.

If you run the sample and upload a new image (for example, another logo), you would end
up with something like the following page.

You can refine this code by refactoring the first three lines of code in the last example into
a single method that you can call from the Page_PreRender method. The second improve-
ment you should make before using this code is to add a try/catch block around each method
call that invokes a service operation. Remember that the CreateCloudBlobClient method
and the GetReference method do not invoke service operations, but the UploadFromStream
and the ListBlobs methods do make a call to the service. The exceptions you can catch are

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

106 Windows Azure Step by Step

based on the StorageException class, which represents every exception thrown by the library
during a failed service call. To be more specific, you can use one of the two derived classes,
StorageClientException or StorageServerException, which represent a problem in the request
(such as an incorrect parameter) and a problem with the service itself, respectively.

Create a Container from Code

To complete your example, you need to add the code to create a container. The perfect
place to do that is during application initialization. Because the application is a classic
ASP.NET application, you can place this code in the Application_Start pipeline event.

 1. Open the Global.asax.cs file and find the Application_Start method.

Just below the Setup CloudStorageAccount Configuration Setting Publisher region you
added in the previous procedure, call the CreateIfNotExist method on an instance of
CloudBlobContainer. To create the CloudBlobContainer instance, use the same code you
reviewed in the previous two procedures.

 2. If you haven’t refactored this code into a single method, add the following code before
the call to the Application_Start method of the base class. Remember that because the
new container must be publicly available, you have to assign proper permissions to it:

CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

CloudBlobClient blobClient = account.CreateCloudBlobClient();

CloudBlobContainer container = blobClient.GetContainerReference("images");

container.CreateIfNotExist();

BlobContainerPermissions permissions = container.GetPermissions();
permissions.PublicAccess = BlobContainerPublicAccessType.Container;
container.SetPermissions(permissions);

Before moving to the next chapter, in which you analyze tables, queues, and the Worker
Role, test the completed code in your local environment. The test demonstrates that you can
create a container from code, showing the usefulness of the Storage Client API. By making
a small change in the configuration file, you can adapt the solution so that you can test it
locally or use the live storage account.

To make that change to the configuration file, to use the local emulator, open the con-
figuration settings for your Web Role and choose the Use Development Storage option
for the DataConnectionString setting. You can do that in the Storage Configuration dia-
log box, or you can do it directly in the TextBox in the Configuration Settings, by typing
useDevelopmentStorage=true, as shown in the following figure.

 Chapter 4 Windows Azure Storage 107

You can now test the solution by adding new images to the container created by the
Windows Azure compute emulator using the code you placed in the Application_Start
method. You can switch back to the live storage account whenever you want—but be very
careful during the deploy operation; if you are testing the solution using the Windows Azure
storage emulator storage and you deploy the ServiceConfiguration.cscfg file to Windows
Azure, your role will fail, because there is no Windows Azure storage emulator in the cloud.

You can use the Windows Azure storage emulator interface to start and stop the service,
reset the service instances, or shut down the entire service, as shown in the following figure.

The emulator is a Windows process (DSService.exe) that simulates the various endpoints
exposed for blobs, tables, and queues using different ports on the local machine. In the pre-
vious figure, for example, port 10000 is reserved for exposing the blob service. A request
to the local service has a different URI scheme compared to the real cloud service, but the

108 Windows Azure Step by Step

storage client library takes care of this difference for you. If you want to work at a lower level
and compose the HTTP/REST request manually, make sure you form the correct URI.

Running the proposed code against the emulator and uploading two images results in the
following underlying requests to localhost, shown with the HTTP trace in the following figure.

As you can see, the first request is simply a POST to the ASP.NET page. The page code asks
for a PUT to create the image in the local storage. The third request is made by the Page_
PreRender method when it asks for the list of blobs in the images container. The next POST/
PUT/GET sequence occurs during the second upload operation, and the last GET is a diag-
nostic ping operation performed by the fabric (which you learn more about in Chapter 6).

Summary
In this chapter, you used the local Windows Azure compute emulator to explore your first
Web Role project structure and behavior, and then deployed the solution to Windows Azure
using the portal.

You were introduced to local storage for caching remote resources, and a more complete
introduction to an Windows Azure storage account using live development accounts. You
were introduced to the Windows Azure Management Tool and the API from a cloud project,
and then shown how to test your solutions using the local emulator.

 Chapter 4 Windows Azure Storage 109

Quick Reference
To Do this
Download the Windows Azure
Management Tool

Go to http://www.azure.com, select the developers section,
and then choose the Tools subsection.

Access blobs in the Storage
Account

Make an HTTP/REST request or use the Windows Azure
Storage Account library.

Debug and test your applications
in the compute emulator

In Visual Studio, press F5. You can debug locally and use the
live Storage Account.

See the content of a Storage
Account

Use the Windows Azure Management Tool or the Visual Studio
Server Explorer.

 111

Chapter 5

Tables, Queues, and Worker Roles
After completing this chapter, you will be able to

■ Use the API to store and retrieve application entities in storage account tables.

■ Use the storage emulator to test the application locally.

■ Use queues to decouple applications.

■ Create a Worker Role project to perform background processes.

In Chapter 4, “Windows Azure Storage,” you saw how to work with the Windows Azure stor-
age account and used the project portal to create a new storage account. Then you were
introduced to the Windows Azure Management Tool to gain experience with the features for
managing blobs and containers. At the end of the chapter, you developed a simple applica-
tion that uses the StorageClient API to store blobs both in the local simulated environment
and the live account.

This chapter extends to both tables and queues the same concepts applied to blobs. It also
introduces the Worker Role project type.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

The Table Service
As discussed at the beginning of Chapter 4, a Windows Azure storage account is a perfect
place to store blobs (even large ones) and application entities (such as business entities) in
tables, and it provides a queued mechanism that helps to decouple an application’s front end
from its back-end logic. The official definition for this feature at the time of this writing is as
follows (Microsoft Corporation, Windows Azure website, 2011, http://www.microsoft.com/
windowsazure/):

The Table Service offers structured storage in the form of tables. Tables store data
as [a] collection of entities. Entities are similar to rows. An entity has a primary key
and a set of properties. A property is a name, typed-value pair, similar to a column.

The Table Service is exposed via the REST API for working with tables and their data.

http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/

112 Windows Azure Step by Step

Note In this section, you also use some APIs that leverage the Open Data Protocol (OData)
and Windows Communication Foundation (WCF) Data Services (formerly named ADO.NET Data
Services). If you need an introduction to these concepts, you can jump to Chapter 8, “OData,
WCF Data Services, and Astoria Offline,” read at least the first section, and then come back to this
chapter to proceed with the storage concepts. You don’t have to have a complete understanding
of OData to follow the information in this chapter. All you need is a basic understanding of the
REST protocol.

More Info For more information about the REST protocol, review the Wikipedia site at http://
en.wikipedia.org/wiki/REST. For more information about OData, refer to http://www.odata.org.
Note that sites and links change, and these were current at the time of this writing.

Local storage is not suitable for storing permanent or temporary application data, because
the data is local to the specific virtual machine running your application. To store permanent
application data that can survive application and node crashes and be shared among differ-
ent nodes, you can use the Blob Service, which can also be exposed to outside clients.

The same storage concepts that apply to the Blob Service apply to the Table Service. The
store is exposed via HTTP and can be accessed by any application on any platform because
it uses the standard REST protocol. Access to the data occurs via an assigned shared key. The
StorageClient library has classes and methods that simplify the code needed to manage data
you store with the Blob Service. The data itself is replicated to different nodes to guarantee
fault tolerance.

However, despite the few similarities shared by the Blob Service and the Table Service, the
Table Service is really quite different in these ways:

■ It organizes data in tables rather than in containers.

■ Each table is represented by a flexible structured set of properties. A container contains
files.

■ Each table is composed of rows. Each row represents an entity, not a file.

■ Developers have control over table data storage. For example, you can partition a table
by using a specified key and can spread a table across several nodes. In contrast, blob
management is automatic.

■ Each table row has a primary key that represents the entity it contains. A blob is repre-
sented by the file and its file name.

http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST

 Chapter 5 Tables, Queues, and Worker Roles 113

Remember that the storage services are independent from the application hosted in the
cloud. In other words, any client can access the storage service by using the HTTP protocol,
and there are no differences in the code you would use to access a cloud-hosted application
or an on-premises client except latency: an on-premises application pays a penalty, because
it is probably several nodes away from the storage service.

To use the Table Service, you have to create a storage account on the Windows Azure portal.
If you didn’t create a storage account in Chapter 4, you can do it now.

When you create a Windows Azure storage account, the operating system allocates some
space in some of the nodes in the selected data center to store your data, and gives you the
URL to use in your REST query to manage the data. In this section, you use the URL http://
account.table.core.windows.net, where account represents the name you chose for your public
storage account name.

The following figure shows the portal displaying the result of the New Service wizard.

You have what you need to store an entity in table rows in your live cloud-based storage.

114 Windows Azure Step by Step

Use the Table Service APIs

To use the Table Service APIs in this procedure, you can either create a new Microsoft Visual
Studio Web Role project, or use the same project you created in the previous chapter. The
page name will be different from the example either way, so proceed as you prefer.

 1. Open the project that you created at the beginning of Chapter 4. If you did not create
the project, create a new Windows Azure Project using a Microsoft ASP.NET Web Role
template.

 2. Verify that the project contains a reference to the Microsoft.WindowsAzure.StorageClient
library. A Visual Studio Windows Azure Project needs the reference to this library to use
the storage account service, as well as to the Microsoft.WindowsAzure.ServiceRuntime.

 3. If you chose to create a new project, add a new setting in the Web Role configuration
to store the account and key information. To do so, double-click the name WebRole1
in the Roles section of your cloud project, and then click the Add Setting button in the
Settings section of the configuration. Name this new setting DataConnectionString
and select Connection String as its type.

 4. Click the ellipsis (…) button to open the Storage Account Connection String dialog
box shown in the following figure. Type your account name and the related key. If you
don't have an Internet connection, you can select the Use The Windows Azure Storage
Emulator option.

 5. Click the OK button to build the storage connection string and return to the Settings
page.

The storage emulator simulates the Table Service the same way it simulates the Blob Service.
The Table Service responds to requests to localhost using the port 10002 (the Blob Service
reserves the port 10001).

 Chapter 5 Tables, Queues, and Worker Roles 115

After this procedure, your project contains everything you need to use the StorageClient API
to access your storage account. Before you can manage entities using the Table Service, you
have to define the structure of the row you want to use for save or read operations. A table
can contain heterogeneous entities—and each entity can have a completely different struc-
ture from the others. In this way, you can use the same table to store customers and orders.
If you prefer, you can define a Customers table to store customer data and an Orders table
to store orders, or, if you prefer yet a third way of structuring data, you can partition a table
using a partition key of your choice to divide customers from orders.

In common scenarios, you might prefer different tables to store different types of entities
as you normally would in a classic database, but you should take into account that the Table
Service stores data in a nonrelational store. The service cannot enforce a constraint on an
entity: you have to do that in your code. If you think about the storage from this point of
view, there is no difference between storing different entities in different tables and storing
them all in the same table.

You should also take performance considerations into account when you define your stor-
age structure. Entities in the same table by default belong to the same partition, and every
partition is guaranteed to be stored in the same physical node. If the number of data access
operations grows up, the node might respond slowly. To achieve better performance, you
can split the table into different partitions. Splitting data in different partitions allows the
load balancer to store each partition in different nodes, increasing the scalability of the table.
The first possibility that comes to mind is to divide a table by entity type—let’s say Orders
and Customers.

However, doing so does not exclude the possibility of ending up with a stressed node any-
way, because Windows Azure cannot use the load balancer to serve the query on Orders
by multiple nodes. In these scenarios, you can use the partition key to split the same entity
type in the same table (for example, by order year), to achieve better scaling. The presented
options are just examples, and unfortunately, there is no unique solution, but don’t worry—
you learn more about these issues in upcoming chapters.

The partition key is one of the three required fields for each table. Every row needs a RowKey
field that, in tandem with the PartitionKey field, forms what is considered to be the primary
key of that entity inside the store. The third field is a self-generated time stamp called
Timestamp. The StorageClient library exposes a base class called TableServiceEntity that con-
tains these three fields. The PartitionKey and RowKey are represented by two strings, whereas
the Timestamp is exposed by a .NET DateTime type. Listing 5-1 shows the decompiled code
for this class.

116 Windows Azure Step by Step

LISTING 5-1 TableServiceEntity definition.

[CLSCompliant(false), DataServiceKey(new string[] { "PartitionKey", "RowKey" })]
public abstract class TableServiceEntity
{
 // Fields
 [CompilerGenerated]
 private string <PartitionKey>k__BackingField;
 [CompilerGenerated]
 private string <RowKey>k__BackingField;
 [CompilerGenerated]
 private DateTime <Timestamp>k__BackingField;

 // Methods
 protected TableServiceEntity();
 protected TableServiceEntity(string partitionKey, string rowKey);

 // Properties
 public virtual string PartitionKey { [CompilerGenerated] get;
 [CompilerGenerated] set; }
 public virtual string RowKey { [CompilerGenerated] get;
 [CompilerGenerated] set; }
 public DateTime Timestamp { [CompilerGenerated] get;
 [CompilerGenerated] set; }
}

The code, taken directly from Reflector, shows the properties just mentioned as well as a
constructor that takes the primary key composed by the two strings.

You can derive from this class to build your entities and use the TableServiceContext class
to manage the entity. This class encapsulates the complexity of serializing and deserializing
TableServiceEntity instances into REST format, and translates the Add, Update, and Delete
operations in HTTP requests to the configured Table Service. Each request handled by the
TableServiceContext class contains the shared key header, just like the CloudBlobClient exam-
ple you saw in the previous chapter.

The suffix Context might remind you of LINQ to SQL, Entity Framework, or ADO.NET/WCF
Data Services. In fact, the class TableServiceContext derives from the WCF Data Service
DataServiceContext class, and extends it to expose the StorageCredential property used to
store the account name and properties. These values can be inferred from the configuration
and are used in every request to build the URL (local or live) and the authentication header.

Define an Entity

To begin working with the Table Service, you need to define an entity.

 1. Add a new class to your project and name it Message.

 2. Give the class a public accessor and derive it from TableServiceEntity, as shown in the
code in step 4 of this procedure.

 Chapter 5 Tables, Queues, and Worker Roles 117

 3. Place the using statements, as shown in the code in step 4.

 4. Expose a simple property called Body with public scope.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using Microsoft.WindowsAzure.StorageClient;

namespace WebRole1
{
 public class Message : TableServiceEntity
 {
 public String Body { get; set; }
 }
}

You use this Message class to store the body of the message that a user inserts in a page
(which you create soon). Before creating the page, you create the context that encapsulates
every request to the Table Service.

Create the Client-Side Context

 1. Add a new class to the project and name it MessageServiceContext.

 2. Derive your class from TableServiceContext.

 3. Place the using statements, as shown in the code at the end of this procedure.

 4. Add a constructor that calls the constructor of the base class to pass it the storage cre-
dentials and the base address. There is nothing special to do in the constructor, because
the constructor of the base class will take care of that information by reading it from the
configuration file.

 5. Add a reference to System.Data.Services.Client. This reference is important because
the class TableServiceContext derives from DataServiceContext, which is defined in this
assembly.

 6. To avoid complex code in the calling page, you can expose some methods that encap-
sulate the lines of code needed to instantiate the Message class, assign a PartitionKey
and a RowKey automatically to it, and add the instance to the Messages table.

The following code is the complete code for the class described in this procedure:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using Microsoft.WindowsAzure.StorageClient;
using Microsoft.WindowsAzure;

namespace WebRole1

118 Windows Azure Step by Step

{
 public class MessageServiceContext : TableServiceContext
 {
 public MessageServiceContext(string baseAddress,
 StorageCredentials credentials) : base(baseAddress, credentials)
 {
 }

 public void AddMessage(string body)
 {
 Message m = new Message();
 m.PartitionKey = "A";
 m.RowKey = Guid.NewGuid().ToString();

 m.Body = body;

 this.AddObject("Messages", m);
 this.SaveChanges();
 }
 }
}

The class constructor takes two parameters and passes them directly to the base class con-
structor. The AddMessage method takes the string that represents the message text and con-
structs one instance of the Message class. This method is useful for avoiding duplication of
the assignment of the partition key, the row key, and the name of the corresponding table.

You’ve completed the complex part. Using these classes is straightforward, as shown in the
next procedure. You now have everything you need to create an ASP.NET page that takes a
message by the user, creates a new Message entity, and adds it to the context, asking the lat-
ter to save the message to the Table Service.

Use the Table Service

The client-side context represented by the AzureStorageServiceContext you created in the
previous procedure lets you perform almost every Create, Read, Update, Delete (CRUD)
operation that the OData standard defines. In this procedure, you create a simple chat appli-
cation. Users can enter a message in the ASP.NET page, and the context saves the message to
a row in the Messages table. The page also presents the list of saved messages by requesting
them from the Table Service.

 1. Create a new ASP.NET Web Form and name it StorageAccountTable.

 2. Insert a TextBox control where users will insert a message. Name it messageTextBox.

 3. Insert a Button control under the TextBox and name it addButton.

 4. Set the OnClick attribute of the Button control to addButton_Click to bind the click
to the corresponding event handler. The following shows the complete code for the
ASP.NET Web Form:

 Chapter 5 Tables, Queues, and Worker Roles 119

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="StorageAccountTable.aspx.cs"
Inherits="WebRole1.StorageAccountTable" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <p>
 <asp:TextBox ID="messageTextBox" runat="server" />
 </p>
 <p>
 <asp:Button Text="Add" ID="addButton" runat="server" onclick="addButton_Click" />
 </p>
 </div>
 </form>
</body>
</html>

 5. In the code-behind file, StorageAccounTable.aspx.cs, retrieve the account infor-
mation from the CloudStorageAccount class and pass it to the constructor of the
MessageServiceContext class you created in the previous procedure.

Because you already encapsulated the data access logic in the MessageServiceContext
class, the code-behind file is very simple—just the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.WindowsAzure.ServiceRuntime;
using Microsoft.WindowsAzure;

namespace WebRole1
{
 public partial class StorageAccountTable : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void addButton_Click(object sender, EventArgs e)
 {
 var account = CloudStorageAccount.
 FromConfigurationSetting("DataConnectionString");
 var context = new MessageServiceContext(

120 Windows Azure Step by Step

 account.TableEndpoint.ToString(), account.Credentials);

 context.AddMessage(messageTextBox.Text);
 }
 }
}

The first line of code in the addButton_Click event handler reads the value of the
DataConnectionString setting using the built-in CloudStorageAccount class, just as
it did in the previous chapter to access the Blob Service.

The second line of code calls the AddMessage method, which performs the operation
to add the message to the storage.

 6. Before you can compile and run this code, you need to add a reference to the System.
Data.Services.Client assembly because the base class you implemented in this sample
uses the types defined in that assembly.

 7. If you started a new project in this chapter, you also need to add the
CloudStorageAccount region into your Global.asax.cs Application_Start method.
Just copy the following code to your Application_Start method:

#region Setup CloudStorageAccount Configuration Setting Publisher

// This code sets up a handler to update CloudStorageAccount instances when their
// corresponding configuration settings change in the service configuration file.
CloudStorageAccount.SetConfigurationSettingPublisher((configName, configSetter) =>
{
 // Provide the configSetter with the initial value
 configSetter(RoleEnvironment.GetConfigurationSettingValue(configName));

 RoleEnvironment.Changed += (sender, arg) =>
 {
 if (arg.Changes.OfType<RoleEnvironmentConfigurationSettingChange>()
 .Any((change) => (change.ConfigurationSettingName == configName)))
 {
 // The corresponding configuration setting has changed,
 // propagate the value
 if (!configSetter(RoleEnvironment.
 GetConfigurationSettingValue(configName)))
 {
 // In this case, the change to the storage account credentials in the
 // service configuration is significant enough that the role needs
 // to be recycled in order to use the latest settings. (for example,
 // the endpoint has changed)
 RoleEnvironment.RequestRecycle();
 }
 }
 };
});
#endregion

 Chapter 5 Tables, Queues, and Worker Roles 121

 8. Last but not least, you must create the table that will contain the messages. Just
as you did in the previous chapter, you can create the container for these rows in
the Application_Start method of your Global.asax.cs file, as shown in the following
code. Before using this code, add a using statement for Microsoft.WindowsAzure and
Microsoft.WindowsAzure.StorageAccount:

CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");
CloudTableClient tableClient = account.CreateCloudTableClient();
tableClient.CreateTableIfNotExist("Messages");

You can now test your solution. (If you chose to use your live account, remember that
you need an Internet connection.) Before testing your solution, remember to set the
StorageAccountTable.aspx page as the start page for the project. The code used in this
 sample so far does not include any exception handling.

If you followed the procedure, you end up with a plain webpage that has a single field in
which a user can enter a message and click the Add button, as shown in the following figure.
After typing some text, for example, “hello everyone,” the page simply presents a new copy
of the insert form.

Query the Table Services

Now you can add a query to the page that requests—and even filters—the messages the
page saves in the storage account. The procedure to perform these operations is very similar
to the previous procedure; you need to add a public property to expose a query that encap-
sulates the logic to ask the service for the messages, and then call that method from the
page Load event to present the list of stored messages to the user.

 1. Add a new public property to the MessageServiceContext class. Name it Messages and
type IQueryable<Message> as the return type.

 2. In the get accessor, call the CreateQuery method inherited from the DataServiceContext
base class, and pass the value Messages as a parameter.

122 Windows Azure Step by Step

The complete code for MessageDataServiceContext must be identical to the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using Microsoft.WindowsAzure.StorageClient;
using Microsoft.WindowsAzure;

namespace WebRole1
{
 public class MessageServiceContext : TableServiceContext
 {
 public MessageServiceContext(string baseAddress, StorageCredentials
 credentials) : base(baseAddress, credentials)
 {
 }

 public IQueryable<Message> Messages
 {
 get
 {
 return this.CreateQuery<Message>("Messages");
 }
 }

 public void AddMessage(string body)
 {
 Message m = new Message();
 m.PartitionKey = "A";
 m.RowKey = Guid.NewGuid().ToString();

 m.Body = body;

 this.AddObject("Messages", m);
 this.SaveChanges();
 }
 }
}

The CreateQuery<T> method is inherited from the DataServiceContext class from
which the base class TableServiceDataServiceContext derives. The method returns the
IQueryable interface that represents the expression tree from which the code can con-
struct a query. The CreateQuery method needs the name of the defined table so that
it can store the entity. The purpose of all this work is to encapsulate the name of the
table and the query-building operation inside a class, to free your page code from
having to repeatedly perform this task. This way, from a page, you just need to ask for
the Messages property whenever you want to build a query to the Table Service to get
Message entities.

 3. In the Page_Render event, create an instance of the CloudStorageAccount using the
FromConfigurationSetting static method.

 Chapter 5 Tables, Queues, and Worker Roles 123

 4. Use the CloudStorageAccount instance to pass the parameter to the
MessgeServiceDataContext constructor, as you did in the previous procedure.

 5. Add a Repeater control to the StorageAccountTable.aspx page:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="StorageAccountTable.aspx.cs"
Inherits="WebRole1.StorageAccountTable" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <p>
 <asp:TextBox ID="messageTextBox" runat="server" />
 </p>
 <p>
 <asp:Button Text="Add" ID="addButton" runat="server"
 onclick="addButton_Click" />
 </p>
 <p>
 <asp:Repeater ID="gridTable" runat="server">
 <ItemTemplate>
 <p>
 <%# ((WebRole1.Message)Container.DataItem).Body %></p>
 </ItemTemplate>
 </asp:Repeater>

 </p>

 </div>
 </form>
</body>

 6. Bind the Messages property you built in step 2 to the Repeater control in the Page_
PreRender event, as shown in the following excerpt:

public partial class StorageAccountTable : System.Web.UI.Page
{
 protected void Page_PreRender(object sender, EventArgs e)
 {
 var account = CloudStorageAccount.FromConfigurationSetting(
 "DataConnectionString");
 var context = new MessageServiceContext(
 account.TableEndpoint.ToString(), account.Credentials);
 gridTable.DataSource = context.Messages;
 gridTable.DataBind();
 }

 7. Run the project by pressing F5.

124 Windows Azure Step by Step

The code you created in this procedure produces the result shown in the following figure. (I
added some random messages using the interface to create the message list below the Add
button.)

Looking at the code more closely, you can see that the TableServiceServiceContext
class constructs a REST query and sends it to the table service configured in the
ServiceConfiguration.cscfg file by using the authorization header with the shared key
value.

Using an HTTP tracer, you can view the underlying REST query, shown in the following tracer
output.

 Chapter 5 Tables, Queues, and Worker Roles 125

The first traced request is the POST directed to the StorageAccountTable.aspx page running
in the compute emulator I am using to test the code on my machine. The request is straight-
forward: it posts the input field with the message I entered.

The second traced POST is more interesting. As you can see in the preceding image,
the request URL is http://127.0.0.1:10002/StorageAccount1/Messages, which represents
a REST request to the storage emulator that simulates the table service. If I change my
ServiceConfiguration.cscfg to point to the live storage account, the TableServiceContext
class adjusts the URL accordingly.

As you learned in the previous chapter, local URLs differ from live URLs in the order of the
suffix and prefix. For a live URL, the storage account is the first element, but for a local URL,
the storage account (devstoreaccount1 is the default value) follows the socket indication.

The header shows you that the authorization was done via the SharedKey derived from the
one configured in ServiceConfiguration.cscfg.

The third request is a GET performed by the PreRender method of the page, which requests
the list of messages. The last request is not related to the current example; it’s just a check
performed by the compute emulator to the deployed service to verify that it is up and
running.

You can expose the Messages properties as IQueryable because the CreateQuery<T> method
of the DataServiceContext base class returns that type of interface. This also means that you
can leverage the remote query functionality of the LINQ to the data service provider to
request the messages filtered by one or more properties, or to take only a few elements. As
you learn in Chapter 8, the provider is smart enough to build the REST query syntax based
on the clause you specified for the IQueryable interface and implemented in the provider. For
example, you can request a sorting clause using the following code:

context.Messages.Take(2)

That limits the message list to just two items, shown in the following figure.

126 Windows Azure Step by Step

Please remember that each LINQ provider can implement only a subset of the IQueryable inter-
face's defined methods—and the compiler cannot help you during the compilation because it
cannot discover whether an implemented method throws a NotImplementedException. Check
the documentation of the underlying provider or try the query directly in a unit test to make
sure no errors occur. The provider throws an exception every time a method is not supported.
Specifically, the DataServiceContext class throws a DataServiceException exception.

The resulting REST query created by the underlying data service provider will adhere to OData
syntax. In this case, the URL contains a query string with the keyword top equal to the number
of requested elements. You can try this query directly in your browser; the response will be
similar to that shown in the Response Content tab in the following figure.

If you are using the storage emulator, all the tables and entities are stored in your local
Microsoft SQL Server or local SQL Express database, so you can inspect the data inside the
relative tables or even create new entities directly in the local database. This is advantageous
when you practice test-driven development or you use unit tests, because a unit test usually
needs some data to work with. You can use common tools (such as Visual Studio Ultimate) to
generate sample data automatically that you can test against.

The last image that I want to show you before moving to the Queue Service and the Worker
Role is of the Windows Azure Management Tool. This tool can query the Table Service in
either the local or live storage account, and it can request the contained entities for each

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 5 Tables, Queues, and Worker Roles 127

existing table. Because the entities in a table can be heterogeneous, the resulting grid may
be confusing. Bear in mind that the tool cannot create tables or entities from scratch.

The next figure shows the Windows Azure Management Tool with an open query that
requests all data from the message table you built and used in this section. Each row con-
tains the assigned partition and row key, an autogenerated time stamp column, and a but-
ton that deletes the entire record. From the right pane, you can refresh the view or delete
the entire table.

The Queue Service
Chapter 4 discussed how to use the Blob Service to store and retrieve files from the stor-
age account. So far in this chapter, you’ve been introduced to the Table Service, which can
manage application entities. But you can store another type of data in the storage account
as well: a message. Just as a blob resides in a container and an entity in a table, a message
resides in a queue.

As the name implies, a queue is not a store in which a software solution inserts, modifies,
and/or reads application data; a queue is a place where an application can store messages
that usually represent a yet-to-be-completed operation. The same application can retrieve

128 Windows Azure Step by Step

these messages to process them later. The messages can also be dequeued by a different
application that's responsible for taking care of the process.

You could use a table to achieve a similar result. For example, an application could insert
an entity in a table, and another application could read the row and process it, but in the
same way a database table isn’t best suited for this kind of operation in an on-premises
solution, the database table isn't the most suitable approach for a cloud solution. In the
Microsoft world, you use Microsoft Message Queuing (MSMQ)—the message queue mecha-
nism exposed directly by the operating system since 1996—or you opt for the SQL Server
Message Broker that appeared for the first time in SQL Server 2005.

The cloud storage account exposes a smart queue service that serves to decouple one appli-
cation from another. The first example that comes to mind is decoupling the front end of
Azure, the Web Role, from the back end, called the Worker Role. A Worker Role is simply
a role that, by default, is not exposed to the outside and is dedicated to performing some
operations in the back end. A Worker Role project example is an order processing application
that receives orders as messages created by the front end. In this approach, the front end is
free to do other work immediately after inserting the message in the queue. If each order
coming from the users had to be processed immediately by the page (or the business layer)
on the front end, the Web Role could not be so scalable. Indeed, if a thread is processing the
order, it cannot serve other requests, as it could do if the whole process were moved to the
back end.

The decoupling practice has been common in enterprise solutions since the 1990s because
it's a powerful way to serve more requests (and consequently orders) than a single front-
end server could normally satisfy. If you think about the Windows Azure instances, this
 technique becomes even more powerful, because you can adjust the number of instances
of the back end and the front end independently. If you want to accept more orders, you
increase the number of instances for the front end. If the queue length is increasing, you can
adjust the number of instances of the Worker Role accordingly.

The Worker Role project can access the local storage you learned about in the previous chap-
ter, as well as the storage account blobs, tables, and queues; it can also access the Internet
and use a Microsoft SQL Azure database, and it can use the Windows Azure AppFabric. There
are no differences in what a Worker Role can do versus a Web Role. The main difference
between these two roles is that the Worker Role starts with the corresponding staging or
production environment, and loops continuously to perform its actions, whereas a Web Role
sits behind the HTTP/HTTPS protocol and receives requests from the Internet or other roles
in the cloud.

You learn how to put a message in the queue by using the Web Role and then consume that
message using the Worker Role. The example in this section uses a message that contains just
a string with the order to pass from the front end to the back end. You can use this approach
to send a serialized order class.

 Chapter 5 Tables, Queues, and Worker Roles 129

Create the Message

In this procedure, you create the queue and then create a new page in the Web Role project
that inserts the message in the queue. You add a new Worker Role project to the solution to
dequeue the message.

 1. Create a new ASP.NET page and name it StorageAccountQueue.

 2. Add a TextBox control into which the user will type a message. Name it orderTextBox.

 3. Insert a Button control under the TextBox control and name it addButton.

 4. Set the OnClick attribute of the Button control to addButton_Click to bind the click to
the corresponding event handler. The complete code for the ASP.NET page is shown
here:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="StorageAccountQueue.aspx.cs"
Inherits="WebRole1.StorageAccountQueue" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR
/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <p>
 <asp:TextBox ID="orderTextBox" runat="server" />
 </p>
 <p>
 <asp:Button Text="Add" ID="addButton" runat="server"
 onclick="addButton_Click" />
 </p>
 </div>
 </form>
</body>
</html>

 5. In the code-behind file, create the addButton_Click event handler.

 6. Copy the following code into the addButton_Click event handler:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.StorageClient;

namespace WebRole1

130 Windows Azure Step by Step

{
 public partial class StorageAccountQueue : System.Web.UI.Page
 {
 protected void addButton_Click(object sender, EventArgs e)
 {
 var account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudQueueClient queueClient = account.CreateCloudQueueClient();

 CloudQueue queue = queueClient.GetQueueReference("orders");

 CloudQueueMessage m = new CloudQueueMessage(orderTextBox.Text);

 queue.AddMessage(m);
 }

 }
}

This code is very similar to the one used for the Blob Service; you must obtain a service
proxy to begin working with the storage account. The CloudStorageAccount class pro-
vides a method called CreateCloudQueueClient that serves this purpose. The method
returns a CloudQueueClient that represents the proxy for the Queue Service. You can
call GetQueueReference(“queuename”) to obtain a reference to a queue, and then use
the CloudQueue class to insert messages into or read messages from the queue.

The CloudQueueMessage class represents a message that will be serialized automati-
cally to pass the content in the underline REST request.

 7. Create the queue in the same place you created the table in the previous section. The
Application_Start method of the Global class (in Global.asax.cs) is a good place to put
this code, as you can see in the following excerpt:

CloudQueueClient queueClient = account.CreateCloudQueueClient();
CloudQueue queue = queueClient.GetQueueReference("orders");
queue.CreateIfNotExist();

Note The CreateIfNotExist method asks the service to create the queue if it does not exist
yet, so the method makes a request to the service anyway.

 8. Set this new StorageAccountQueue.aspx as the start page, and run the project. The
page looks similar to the following figure.

 Chapter 5 Tables, Queues, and Worker Roles 131

 9. Type order 1 into the text box and click the Add button to insert a new order into the
queue.

You can verify the presence of the message in the queue by using the Windows Azure
Management Tool, as shown in the next figure. Double-click the Queues item in the left pane
to see the queues defined in the storage that is referenced by the specified connection. If
you double-click the single existing queue, you can see the messages you inserted from the
page. To each message, the service (local development storage in this example) assigns a
unique GUID and an insertion date. (My personal computer has the date presented using the
Italian convention: the day is 15 and month is September.)

132 Windows Azure Step by Step

Create the Worker Role Project

In this procedure, you create the Worker Role project. After configuring the role so that it
points to the same storage account as the WebRole project, you write the code to dequeue
the messages from the orders queue.

 1. In the Solution Explorer window, expand the cloud project, and right-click the Roles
folder.

 2. In the shortcut menu, choose Add, and then select New Worker Role Project.

 3. In the left pane, verify that the language selected is C#, and in the right pane, verify
that the Worker Role is the selected template.

 4. Leave the default name set to WorkerRole1. (In a production environment, you should
assign a more meaningful name to your project.)

 5. Click the Add button to add the WorkerRole1 project to the solution.

The solution now contains two projects and two roles in the Roles folder in the cloud project.
Visual Studio added a new configuration section for the new project. The first task you want
to complete is opening the ServiceConfiguration.cscfg file or the visual editor provided by
the IDE to configure this new project with the information for the storage account.

Configure the Worker Role Project

You can copy the configuration value from the WebRole1 configuration to the WorkerRole1
configuration, as you saw how to do in the previous chapter.

 1. Open the configuration window by double-clicking the WebRole1 node in the Roles
folder of the cloud project.

 2. Go to the Setting tab and copy the text inside the DataConnectionString.

 3. Open the configuration window for the WorkerRole1 project.

 4. Go to the Setting tab and click the Add Setting button to add a new configuration
element.

 5. Type DataConnectionString in the name text box.

 6. Paste the value you copied into the value text box.

Now your new Worker Role project has a pointer to the storage account you used to store
the message.

As you might remember from the previous section, a project needs the Configuration Setting
Publisher code before it can use the CloudStorageAccount class.

 Chapter 5 Tables, Queues, and Worker Roles 133

Configure the Setting Publisher

Because you already inserted the code to configure the Configuration Setting Publisher in
the WebRole1 project, you can copy it from that project to this new one.

 1. Open the Global.asax.cs file in the WebRole1 project.

 2. Find the code region named Setup CloudStorageAccount Configuration Setting
Publisher in the Application_Start method and copy it to the Clipboard.

 3. Open the WorkerRole.cs file in the WorkerRole1 project.

 4. Find the OnStart method and paste the code inside it before the return statement.

Now you have everything you need to dequeue an order from the orders queue.

A Worker Role project does not have a user interface, because its job is to process requests
continuously or at scheduled intervals. You have to override the Run method of the base
class to build your own loop (or timers) and insert the code inside the loop. The Visual Studio
template provides the following default code:

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Net;
using System.Threading;
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Diagnostics;
using Microsoft.WindowsAzure.ServiceRuntime;
using Microsoft.WindowsAzure.StorageClient;

namespace WorkerRole1
{
 public class WorkerRole : RoleEntryPoint
 {
 public override void Run()
 {
 // This is a sample worker implementation. Replace with your logic.
 Trace.WriteLine("WorkerRole1 entry point called", "Information");

 while (true)
 {
 Thread.Sleep(10000);
 Trace.WriteLine("Working", "Information");
 }
 }
 }
}

134 Windows Azure Step by Step

As you can see, the template proposes an infinite loop with a delay of 10 seconds between
two consecutive operations. You can do whatever you want inside this method: call external
web services, access the Table or Blob Service, use SQL Azure—or, as in the next procedure,
dequeue and process a message.

Dequeue Messages from the Worker Role

You need to obtain a reference to the queue using the same code used in your WebRole1
project, and then dequeue a message using the Queue Service proxy. When you receive a
message, you can process the order accordingly. The purpose of this example is to show you
how to dequeue a message and send its content to the trace infrastructure.

 1. Create an instance of the CloudStorageAccount class using the FromConfigurationSetting
static method.

 2. Create the Queue Service proxy by calling the CreateCloudQueueClient method of the
CloudStorageAccount class.

 3. Get a CloudQueue object by using the GetQueueReference method of the created proxy.

 4. Inside the proposed loop, use the CloudQueue.GetMessage method to obtain a
CloudQueueMessage.

 5. Test whether you obtained a message by comparing the result to null before calling the
AsString method to analyze its content. Make sure you always do this.

 6. Delete the retrieved message from the queue.

The resulting code is shown in the following listing:

public override void Run()
{
 // This is a sample worker implementation. Replace with your logic.
 Trace.WriteLine("WorkerRole1 entry point called", "Information");

 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");
 CloudQueueClient queueClient = account.CreateCloudQueueClient();
 CloudQueue queue = queueClient.GetQueueReference("orders");

 while (true)
 {
 CloudQueueMessage m = queue.GetMessage();
 if (m != null)
 {
 queue.DeleteMessage(m);

 Trace.WriteLine(m.AsString, "Information");
 }
 Thread.Sleep(2000);
 }
}

 Chapter 5 Tables, Queues, and Worker Roles 135

Assuming you didn't delete the existing message in the queue using the Windows Azure
Management Tool, if you run this code, you end up with the compute emulator trace shown
in the following figure.

You can see the order 1 information message at the end of the trace. With this process in
place, you can insert new orders from the webpage and verify the process in the compute
emulator trace. You can also change the DataConnectionString setting value to your live or
local storage account.

Summary
This chapter provided a complete introduction to the Table Service, explaining how to use
it in your solutions to store and retrieve entities. You saw how to use the Queue Service
exposed by the storage account to decouple an application's front end from its back end.
The queue service is a cloud-based queue system similar to the familiar Microsoft Message
Queue you would use in an on-premises solution. In the last part of the chapter, you saw how
a Worker Role project functions in a solution that built a simple order-processing system in
the back end.

136 Windows Azure Step by Step

Quick Reference
To Do this
Visually manage table entities Use the Windows Azure Management Tool.

To create a storage account Use the Windows Azure project portal and select New
Service, choosing Storage Account as the project type.

Test the solution locally Use the storage emulator.

Use a unit test to test the solution
 locally

Use the tables created by the storage emulator in the
configured SQL instance.

Configure SQL Server instead of
SQL Express

Use DSInit.exe /sqlinstance:<namedinstance>.

 137

Chapter 6

Windows Azure Operating System
Details

After completing this chapter, you will be able to

■ Understand the billing section of the portal.

■ Configure Affinity Groups to avoid latency.

■ Configure the Content Delivery Network.

■ Deploy developer certificates to Windows Azure to simplify deployment.

■ Configure diagnostics and logging.

The last two chapters showed the Windows Azure storage account at work. You used the
project portal to create a storage account, and then used the Windows Azure Management
Tool to understand the client interaction process for managing blobs, tables, and queues.
At the end of the previous chapter, you developed a Worker Role to build a simple back end
that dequeues order messages sent from the front-end Web Role.

This chapter provides you with some important details about the Windows Azure operating
system.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

138 Windows Azure Step by Step

Live ID, Subscriptions, and Billing
It's important to understand the relationship among your Windows Live ID account, sub-
scriptions, and services. As you learned in previous chapters, you must have a Windows
Live ID account to access the Windows Azure portal, Windows Azure AppFabric, and the
Microsoft SQL Azure portal. In the portals, the term subscription refers to a group of ser-
vices that shares a common billing account. You have to choose a subscription each time
you want to create a new hosted service or a new storage account. You can also switch from
one subscription to another in the Create A New Hosted Service dialog box. The Choose A
Subscription drop-down list is visible in the following figure.

 Chapter 6 Windows Azure Operating System Details 139

Recall from Chapter 3, “Creating a Web Role Project,” that every subscription can contain mul-
tiple services. You can view and manage all subscriptions connected to your Windows Live ID
account on the home page of the Management Portal, as shown in Figure 6-1.

FIGuRE 6-1 Windows Azure Management Portal.

At the top of the page, on the right side, is a link named Billing that takes you to the Billing
section of the portal. That link leads to the Microsoft Online Services Customer Portal—the
public website for the Business Online Productivity Suite (BPOS) services. The first time you
use the platform, you must obtain an account. The link for creating a new account is on the
Windows Azure Account page. You can reach this page by clicking the Get Your Account or
the Buy or the Try links on the Windows Azure portal home page, shown in the following
figure.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

140 Windows Azure Step by Step

After obtaining an account, you can access the billing system to add one or more sub-
scriptions to the account (and pay for them, too). Figure 6-2 shows the home page for the
Microsoft Online Services Customer Portal.

FIGuRE 6-2 Microsoft Online Services Customer Portal home page.

 Chapter 6 Windows Azure Operating System Details 141

From the Customer Portal, you can buy and associate various services that run the gamut
from Microsoft Exchange Online to Microsoft Office Communication Online, and from
Microsoft Office Live Meeting to Windows Azure platform services.

When you click an option, detailed prices and quotas are provided (as shown in the following
figure). Every option provides detailed prices and quotas.

To purchase a service, you must provide your credit card information and have your card
validated. The term subscription is synonymous with project in the Windows Azure portal.
If you compare the subscription names shown in Figure 6-1 with the subscription names in
Figure 6-3, you can see they match. The first match is for the project 1786887456, which
corresponds to the Windows Azure Platform Introductory Special subscription shown in the
Figure 6-3. The Exchange Online Standard subscription that you can see in the billing system
is not displayed in the Windows Azure Management Portal because it is related to Microsoft
Exchange Online.

Each subscription also has a numeric identifier. For every subscription except the Introductory
Special, you can assign a meaningful name in the subscription detail page. Because a BPOS
subscription corresponds to a subscription in the Windows Azure portal, you will find the
assigned name in the Windows Azure portal as well.

142 Windows Azure Step by Step

FIGuRE 6-3 Subscription list in the Customer Portal.

As Figure 6-3 reveals, my account also includes an Exchange Online Standard subscription
that does not have a corresponding project in the Windows Azure portal.

To download invoices or consult your current month's billing charges, use the View My Bills
link (see Figure 6-2) to access the information for each service. In the same section of the
page, you can choose the Subscription ID and see the details. You can also see detailed daily
usage information that provides a complete list of every billable service. Each entry in this
list shows the related service, the type of service (for instance, SQL Azure Web Edition), the
region of the data center, the resource charged (computing power in numbers of hours, the
database, or data transfer), the relative consumption value, the type of services, and their
name. Figure 6-4 shows you one of my real subscriptions: the Development Accelerated Core
project with one SQL Azure database showing charges for August and September 2010.

Figure 6-4 shows that I have two active instances, one for the Web Role, and another for the
Worker Role. The total computed hours for a single day (the Windows Azure Compute line)
is 48 (24 hours for each instance). The subscription is the test environment for a production
web service that uses SQL Azure as the database for a Windows Phone 7 application called
Save the Planet.

 Chapter 6 Windows Azure Operating System Details 143

FIGuRE 6-4 Daily Usage report.

Affinity Group
An affinity group is a group of nodes you can create to host different services in the same
data center. The location is independent from the charges applied to the solution, so you can
create as many affinity groups as you want.

You can create a new affinity group whenever you create a new hosted service or a new stor-
age account as you learned in Chapter 4, “Windows Azure Storage,” and you can fully man-
age these types of groups from the Account tab of a project in the Windows Azure portal.

Figure 6-5 shows the Create A New Hosted Service wizard.

144 Windows Azure Step by Step

FIGuRE 6-5 Affinity group selection.

As you learned in Chapter 2, “Introduction to the Windows Azure Platform,” when you cre-
ate a new service, you can select a region from the Choose A Region drop-down list box.
Choosing a region creates the nodes for your service in the selected region, but it does not
use any affinity group; the node can be anywhere in the region you choose. Two nodes in the
same region are located in the same area of the world, but without any affinity group, one
node might be very far away from other nodes in the same region. For instance, if you chose
Europe – Anywhere Europe, one node might be placed in a German data center and another
node in an Italian data center. There is no guarantee that two services in the same region
belong to the same data center. The region parameter just means that the physical location
of a service is within the selected region.

However, services in the same affinity group reside in nodes located in the same data center
in the selected region. As you might have noticed in Figure 6-5, I created an affinity group
called Europa (the Italian word for Europe) that resides in the Anywhere Europe region. This
selection means that the new service I’m going to create will be placed in the same data cen-
ter as the other nodes included in the Europa affinity group.

From the same page, you can create a new affinity group to store the new service and then
associate that affinity group to other services. To manage the affinity group and see which
services belong to which affinity groups, you have to click the Hosted Service, Storage

 Chapter 6 Windows Azure Operating System Details 145

Accounts & CDN option on the portal home page and then click Affinity Groups, as shown in
the following figure. The management page shows every affinity group in your subscription,
the region it belongs to, and the relative status.

This affinity group keeps the Windows Phone 7 cloud services together (the service that
hosts the WCF Data Services for the Windows Phone 7 application you saw in the billing
section and the Storage Account service that manages the data associated with it). You can
delete an affinity group using the Delete Affinity Group button.

Content Delivery Network
Now that you’re familiar with the Affinity Group Service, you may have anticipated the fol-
lowing problem: when you create international applications or international websites, ser-
vices within the same affinity group reside in the same data center, thus lowering the latency
for calls between them. This technique works well inside the application, but what about the
user? Suppose you chose the North Europe data center to host an application and services.
Requests made by the application to storage would occur as quickly as possible to avoid the
high latency that intradata center nodes might incur. However, consider an Australian user,
who is pretty far away from the service and the storage. Remote users (those not located

146 Windows Azure Step by Step

near the data center) would pay substantial latency costs to download data from the applica-
tion or the storage, even when the application has no internal latency.

To avoid this user latency problem, you need to reduce the number of hops the request has
to make. Fortunately, you can do that with the Content Delivery Network (CDN) Service. This
service provides a convenient way to minimize latency, because it caches data in various geo-
graphic locations across the globe.

The CDN is tightly integrated with Azure Storage, as shown in Figure 6-6. To use it, you
enable the CDN Service.

FIGuRE 6-6 Storage account management.

Clicking the Enable CDN button in the toolbar turns on the CDN for that particular storage
account—a process that requires up to 60 minutes to take effect. The delay occurs because
the service distributes files and containers around the world. After the CDN is active, you
must change the URL from which your blobs are accessible. The URL will be in the following
format: http://<guid>.vo.msecnd.net/. The guid is autogenerated by the system.

The following figure shows the Enable CDN dialog box warning about the timeframe for acti-
vation as well as the link to the CDN billing plan.

 Chapter 6 Windows Azure Operating System Details 147

Important Different charges apply when using the CDN, so before you activate it, read the bill-
ing information referenced in the dialog box carefully.

When using a CDN, you must consider an important issue concerning blobs. If you update a
blob in the storage account, the new version will not be accessible by remote users until the
Time To Live (TTL) setting on the previous version of the file expires. The default time interval
for a Windows storage account is 72 hours; to adjust the TTL, you can set the CacheControl
metadata property of the CloudBlob instance. Reducing this interval too much will make
the CDN less effective. In practice, every operation on an existing blob, such as updating it,
deleting it, or modifying some of its metadata, requires the system to propagate a fresh copy
of that blob to all the CDN nodes around the world immediately after the TTL expires.

Certificates
Windows Azure can host and use two certificate types. The first type is the classic Secure
Socket Layer (SSL) certificate that enables a Web Role to respond to HTTPS requests.

148 Windows Azure Step by Step

You can assign the SSL certificate to a single service, because it contains the HTTPS common
names that correspond to the URLs. You can use your DNS name as an alias of the chosen
service name. The upload procedure for a certificate is straightforward. To add a certificate, in
the portal, click the Hosted Services, Storage Account & CDN button, click Hosted Services in
the left toolbar, and select the Certificates item from the tree view that is related to the service
you want to assign the certificate to. Click the Add Certificate button in the upper toolbar and
upload the certificate from your machine. You have to type the password assigned to the cer-
tificate you want to upload in the following dialog box.

After you upload a certificate file (remember to upload a PFX file, which is a certificate that
contains the private key), you can use the certificate in the service configuration file to enable
the HTTPS connection, as you can see in the following code excerpt:

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="ThinkAheadAzureStorage" xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceDefinition">
 <WebRole name="WebRole1">
 <Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="Endpoint1" endpointName="Endpoint1" />
 <Binding name="Endpoint2" endpointName="Endpoint2" />
 </Bindings>
 </Site>

 Chapter 6 Windows Azure Operating System Details 149

 </Sites>
 <Endpoints>
 <InputEndpoint name="Endpoint1" protocol="http" port="80" />
 <InputEndpoint name="Endpoint2" protocol="https" port="443"
 certificate="ThinkAhead" />
 </Endpoints>
 <Imports>
 </Imports>
 <LocalResources>
 </LocalResources>
 <ConfigurationSettings>
 </ConfigurationSettings>
 <Certificates>
 <Certificate name="ThinkAhead" storeLocation="LocalMachine" storeName="My" … />
 </Certificates>
 </WebRole>
</ServiceDefinition>

To simplify this configuration procedure, you can use the Microsoft Visual Studio Con fig-
uration Designer, shown in the next figure, to select a local certificate and assign it to the
Web Role. (I removed my thumbprint in the screen.)

After this operation, you need to configure the endpoint to use the HTTPS protocol. You can
do this from the Endpoints configuration tab of the Visual Studio Configuration Designer,
which is shown in the following figure.

150 Windows Azure Step by Step

If you want to try this configuration in the compute emulator, you can create a self-signed
certificate using the tool of your choice—Internet Information Services (IIS) is perfect—and
assign the certificate on the Certificate tab of the service configuration.

The second certificate type, with the .cer extension, is useful when you want to use the portal
API from a remote application.

Note This kind of certificate type has nothing in common with the SSL certificate discussed pre-
viously; the purpose of the .cer certificate is to enable remote use of the Management API.

Each action exposed by the portal uses an underlying API. Remote applications can access
these APIs if the request is signed with a private key contained in a certificate that has been
uploaded to the portal. This scheme lets Windows Azure verify the identity of the request-
ing application by using the public key contained in the uploaded certificate to decrypt the
request signed by the corresponding private key.

 Chapter 6 Windows Azure Operating System Details 151

Visual Studio and the Windows Azure Management Tool can use a certificate to let develop-
ers take some actions without having to use the portal. You can also use this feature to build
your own remote tool that uses the Management API.

First, you need to upload a developer certificate to the portal on the Manage API Certificates
page, which is on the Account tab of the portal. The certificate lets authorized requests per-
form management operations for all the services created using the corresponding account.

As you can see in the following dialog box, all you have to do is upload a .cer certificate file
(the default file extension for X.509 certificates) to the portal. To complete this task, click
the Hosted Services, Storage Accounts & CND button, and then in the portal, select the
Management Certificates menu item in the left toolbar.

After uploading the certificate, you can verify or delete it at any time using the provided
interface, shown in Figure 6-7.

152 Windows Azure Step by Step

FIGuRE 6-7 Management Certificate page.

As Figure 6-7 shows, my account (Roberto Brunetti) has many certificates associated with dif-
ferent subscriptions. I uploaded the Windows 7 default certificate associated with my account
from three different computers to all my subscriptions.

Having uploaded my certificate, I can publish my applications directly from the Visual Studio
2010 Publish dialog box. The only remaining task is to associate the same certificate with the
publish operation, and Visual Studio will do the rest, asking the remote management API to
publish the cloud project by signing the request with the provided certificate.

Figure 6-8 shows the Publish Cloud Service dialog box with the Deploy Your Cloud Service
To Windows Azure option selected (instead of with the package option selected, as in the
previous chapters). I chose the certificate from the Credentials combo box (you can create
different configurations and certificates to publish to different accounts), selected the staging
environment as the deployment target, and selected the storage account that serves as tem-
porary storage during the upload and deploy operations. You can also assign the standard
Deployment Label.

 Chapter 6 Windows Azure Operating System Details 153

FIGuRE 6-8 Publish Cloud Service dialog box.

After deploying a certificate to your account, you can perform some other operations directly
from Visual Studio as well, such as checking the status of the live production or staging envi-
ronments using Visual Studio Server Explorer, shown in the next figure.

154 Windows Azure Step by Step

Note You can also view a Storage Account from Visual Studio Server Explorer as shown in the
preceding image. This feature does not need a published certificate.

Also, the Windows Azure Management Tool can use the Management APIs. You have to use
the same certificate you uploaded to the portal and bind it to the Subscription ID you typed
in the Connection page. Take a look at the following figure.

When you associate the subscription with the certificate, you can manage the services
remotely. The following figure shows a real configuration for a production environment.

 Chapter 6 Windows Azure Operating System Details 155

You have both role status and complete configuration settings in a simple but effective data
grid. You can change values and click the Save Configuration link in the upper-right section of
the Actions pane. You can also increase or decrease the number of instances at a moment’s
notice using the corresponding links. And you can view any installed certificates for the role or
change them.

Another useful feature is Diagnostics, shown in the tree in the left pane, just below the
Production item. The next section introduces Diagnostics, but you'll come back to the MMC
at the end of the chapter.

156 Windows Azure Step by Step

Diagnostics
One issue that a cloud-based solution must address is collecting and analyzing diagnos-
tic information. Because the application is in the cloud, traditional ways to collect logs (for
instance, IIS logs) are not suitable. Log files are stored in the local file system, and that type
of storage is inaccessible from the outside. Application traces are also normally stored in
the local file system, as well as IIS 7 FREB (Failed Request Tracing) XML files and related XSLT
(Extensible Stylesheet Language Transformations).

The Diagnostic APIs are the core of the diagnostic infrastructure. The related assembly is ref-
erenced by default for every Windows Azure role, so you don't have to do anything special
to use it.

The primary goal of the APIs is to transfer diagnostic data in a manual or scheduled way from
local storage to the storage account so that logged messages are available to external tools
for analysis. Some types of logged data get stored in a blob container, and other types to a
table, depending on the data structures involved.

Using the Web Role Configuration designer, developers can enable the diagnostic feature
and configure the storage account where the native APIs store the related information. The
following figure shows the Configuration tab of the designer.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 6 Windows Azure Operating System Details 157

The diagnostics feature can also be enabled by code in the OnStart method of a Web Role.
The OnStart method is the best place to configure this service, because as you saw in previ-
ous chapters, this method gets called during startup for every role instance. The following
code contains a comment line before each setting to indicate the relative storage:

using System.Linq;
using Microsoft.WindowsAzure.Diagnostics;
using Microsoft.WindowsAzure.ServiceRuntime;
using System;

namespace WebRole1
{
 public class WebRole : RoleEntryPoint
 {
 public override bool OnStart()
 {
 // Get factory from config
 DiagnosticMonitorConfiguration diaConfig =
 DiagnosticMonitor.GetDefaultInitialConfiguration();

 // Transfer Infrastructure Log

 // TABLE WADDiagnosticsInfrastructureLogsTable
 diaConfig.DiagnosticInfrastructureLogs.ScheduledTransferPeriod =
 TimeSpan.FromSeconds(5);
 diaConfig.DiagnosticInfrastructureLogs.ScheduledTransferLogLevelFilter
 = LogLevel.Information;

 // Transfer Directory Log
 // TABLE WADDirectoriesTable
 // FREB - Log IIS
 // Container
 // wad-iis-failedreqlogfiles
 // wad-iis-logfiles

 diaConfig.Directories.ScheduledTransferPeriod = TimeSpan.FromSeconds(5);

 // Tranfer User Log
 // TABLE WADLogTable
 // Trace ASP.NET + Trace.Write/Warn
 diaConfig.Logs.ScheduledTransferPeriod = TimeSpan.FromSeconds(5);
 diaConfig.Logs.ScheduledTransferLogLevelFilter = LogLevel.Information;

 // Start with a connection string
 DiagnosticMonitor.Start("DiagnosticsConnectionString", diaConfig);

 // For information on handling configuration changes
 // see the MSDN topic at http://go.microsoft.com/fwlink/?LinkId=166357.
 RoleEnvironment.Changing += RoleEnvironmentChanging;

 return base.OnStart();

158 Windows Azure Step by Step

 }

 private void RoleEnvironmentChanging(object sender,
 RoleEnvironmentChangingEventArgs e)
 {
 // If a configuration setting is changing
 if (e.Changes.Any(change => change is
 RoleEnvironmentConfigurationSettingChange))
 {
 // Set e.Cancel to true to restart this role instance
 e.Cancel = true;
 }
 }
 }
}

Note Every class referenced in the preceding code is included in the Microsoft.WindowsAzure.
Diagnostics namespace, so I inserted a using statement at the beginning of the stub code that is
inserted by the Visual Studio template.

In the OnStart method, the first line of code reads the default configuration and creates a
new instance of the DiagnosticMonitorConfiguration class. This class contains all you need to
configure the diagnostic monitor.

The second and third lines of the OnStart method are related to the Infrastructure Log,
which is scheduled to be transferred to the storage account every five seconds. Information
sent to the storage account can be filtered by type; this example moves only the trace
of the “informational” level to the storage. The Infrastructure Log gets transferred to the
WADDiagnosticsInfrastructureLogsTable table in the storage account.

The second code block schedules the transfer of directories. The term Directory, to the
Diagnostics APIs, refers to the directories where IIS produces logs as well as FREB files.
These types of resources are moved to two blob containers named, respectively, wad-iis-
failedreqlogfiles and wad-iis-logfiles. As you saw in the previous code, the WADDirectoryTable
does not contain logged data; it serves solely as a reference to know which container is used
for every resource.

The third code block schedules the transfer of the ASP.NET/IIS trace listener data. Every
Trace.Warn or Trace.Write message, as well as the trace outputs produced by the ASP.NET
runtime that are informational in nature, are moved every five seconds to the WADLogTable
table in the storage.

 Chapter 6 Windows Azure Operating System Details 159

The last line of code before the default code produced by the Visual Studio template is the
most important line. Without the Start method call, any modification in the configuration
would produce no effect. The Start method takes the name of the configuration setting
(which by default is called DiagnosticsConnectionString) configured with the storage account
information. As you saw in Chapter 5, “Tables, Queues, and Worker Roles,” this kind of con-
nection string can refer to either the development storage local simulated environment or to
the live account.

If you elected to use the Windows Azure Management Tool to manage your Windows Azure
services, you will be happy to know that the tool can export diagnostic data to Microsoft
Excel, as shown in the following figure.

This tool is useful because it can filter data directly using the simple user interface shown
in the preceding figure. If you want to build your own tool, you could do that as well,
because at this point you have acquired sufficient knowledge to access the storage account
programmatically.

160 Windows Azure Step by Step

Summary
In this chapter, you learned about the operating system. The chapter began by introduc-
ing the relationships between projects and subscriptions, and then drilled down a bit to
the billing system. Next, you explored the role of the two types of certificates that you can
use to open an HTTPS endpoint and use the management API for administration tasks on
your roles. Finally, you saw how to use the Windows Azure Management Tool and the Visual
Studio Server Explorer to manage deployed solutions. The chapter ended with an introduc-
tion to the native diagnostics features and APIs.

Quick Reference
To Do this
Check your billing status Go to http://www.azure.com, log on with your

Windows Live ID, and select Billing.

Configure an affinity group From the project portal, go to the account section
and choose Affinity Group.

Enable the Content Delivery Network Go to the storage account you want to deliver and
configure the related section.

Use Visual Studio to automatically
deploy a cloud project

Upload a certificate in the portal and set the same
certificate in the Publish wizard.

Read diagnostics information Use the Windows Azure Management Tool or use the
APIs to retrieve information from the storage account.

 161

Chapter 7

Building an AppFabric Solution
After completing this chapter, you will be able to

■ Understand the components exposed by Windows Azure AppFabric.

■ Install and use the Windows Azure AppFabric Software Development Kit (SDK).

■ Build a simple solution that leverages the Service Bus feature to connect two
applications.

■ Understand the Access Control Service.

■ Build a claims-based authentication mechanism in the cloud.

This chapter is dedicated to one of the most important components of the Windows Azure
Platform: Windows Azure AppFabric. AppFabric consists of an Internet Service Bus and a
claims-based Access Control Service. This chapter describes these components and then
guides you through the process of creating a simple application that uses them.

According to Microsoft, during 2011, Windows Azure AppFabric will expose three other
important components, which were discussed in Chapter 2 “Introduction to the Windows
Azure Platform.” The goal of this chapter is to explore the released features so that you will
not work with any beta component.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

Windows Azure AppFabric Components
Windows Azure exposes the base services for the entire platform. The operating system
provides the basic layer for every Windows Azure Platform component. Microsoft also
provides other services built on top of the Windows Azure operating system. One of these
services is the Microsoft Push Notification Service for Windows Phone 7. which develop-
ers can use to register and send notifications to client applications. Because this service is
hosted by Windows Azure, Microsoft can adjust the scalability switches you learned about
in the preceding chapters to adapt the system to support the continually growing numbers
of Windows Phone 7 customers.

162 Windows Azure Step by Step

Windows Azure AppFabric is another set of services hosted on top of the operating system. It
provides a comprehensive middleware platform. Developers use Windows Azure AppFabric to
connect application components together, manage identity, define access control rules, cache
remote resources, and create composite applications. At the time of this writing, the first page
of the documentation that addresses Windows Azure AppFabric (Microsoft Corporation,
Windows Azure website, 2011, http://www.microsoft.com/windowsazure/appfabric/overview
/default.aspx) describes AppFabric as a component that does the following:

provides a comprehensive cloud middleware platform for developing, deploying
and managing applications on the Windows Azure Platform. It delivers additional
developer productivity adding in higher-level Platform-as-a-Service (PaaS) capa-
bilities on top of the familiar Windows Azure application model.

It also enables bridging your existing applications to the cloud through secure
connectivity across network and geographic boundaries, and by providing a
consistent development model for both Windows Azure and Windows Server.

Finally, it makes development more productive by providing higher abstraction for
building end-to-end applications, and simplifies management and maintenance of
the application as it takes advantage of advances in the underlying hardware and
software infrastructure.

The middleware services run with the same paradigms described in the preceding chapters.
They are exposed as Platform as a Service (PaaS) components; are simple to deploy on the
platform; you pay only for what you use; you can manage resources via the web portal or
through the remote APIs; and the platform autoconfigures lower-level components such as
load balancers as well as fault tolerance strategies.

Windows Azure AppFabric was released in April 2010 with two important initial services:
Service Bus and Access Control. As understood at the time of this writing, other services will
be released as Community Technical Previews (CTPs) during 2011.

To start developing Windows Azure AppFabric solutions, you need to download and install
the related SDKs and tools. Because Windows Azure AppFabric can be used in many different
environments and by different languages, install the specific SDK for your language and envi-
ronment. The example in this chapter uses C# and Microsoft Visual Studio 2010 (the same con-
cepts would apply to C# in Microsoft Visual Studio 2008), but Windows Azure AppFabric also
offers appropriate SDKs for other languages, as well as tools for other development platforms.

The SDKs available at the time of this writing include the following:

■ Windows Azure AppFabric SDK for Microsoft .NET Framework

■ AppFabric SDK for Java Developers

■ AppFabric SDK for PHP Developers

■ AppFabric SDK for Ruby Developers

http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx

 Chapter 7 Building an AppFabric Solution 163

To download the SDK and tools, go to http://www.microsoft.com/windowsazure/sdk/, the
home page for the Windows Azure platform, and choose the Developers section. The drop-
down menu items include documentation about the components, a link to the Training Kit,
and SDK & Tools. Select SDK & Tools.

Note Because URLs and names may vary over time, the preceding directions may be out of date
by the time you read this. In that case, my best advice is to start looking for the Windows Azure
components on the Windows Azure home page (http://www.azure.com). Information included in
this book was accurate at the time of writing.

The SDK & Tools page is divided into several sections: the first one is dedicated to Windows
Azure. You use this section to download the Windows Azure Tools for Visual Studio add-in
and the Windows Azure SDK. The second section is dedicated to Windows Azure AppFabric
and the Management Tools (the Windows Azure Management Tools you downloaded and
used in Chapter 4, “Windows Azure Storage”). You also find the Windows Azure AppFabric
SDK download in this section. Download and install it now.

You do not need the Windows Azure Tools for Visual Studio add-in or the Windows Azure
SDK to use this SDK, because there are no relationships between the two. You do not need a
Windows Azure project to use Windows Azure AppFabric components. If you do not want to
deploy a solution to Windows Azure, you can use the Windows Azure AppFabric SDK by itself
in on-premises solutions.

The first example you build in this chapter is a console application that leverages the
Windows Communication Foundation (WCF) infrastructure and the Service Bus APIs to
exchange some data with another console application.

Important You do not need Windows Azure to use the Windows Azure AppFabric SDK. As
mentioned earlier, although Windows Azure AppFabric is built on top of the Windows Azure
operating system, it completely hides the operating system itself; you see only a web portal that
you use to configure and use Windows Azure AppFabric. In fact, you don't even need to know
anything about Windows Azure.

I chose to use two console applications to demonstrate that there's nothing magical behind
this technology. You will create a service, hosted in a console application on your personal
computer, and—without doing anything special—you'll be able to receive operational calls
from a client on the Internet. You do not have to configure Internet Information Services (IIS)
to expose the service, nor do you have to open external firewall ports on your LAN for the
Service Bus to be able to reach your computer. Your computer will contact the Service Bus, as
you will learn soon.

164 Windows Azure Step by Step

Service Bus
The Service Bus Service provides secure connectivity and messaging capabilities through
which distributed and disconnected applications can exchange data. The Service Bus is pub-
licly hosted, so it's accessible by any application using an Internet connection. The infrastruc-
ture is secured by the Access Control Service, freeing the Service Bus itself from the logic and
data required to validate users, map them to groups and roles, and discover permissions. The
Access Control Service performs this job on behalf of the Service Bus.

The goal of the Service Bus is to facilitate the connection of applications that are behind
firewalls, NATs (Network Access Translators), applications using dynamic DNS, or mobile
applications that may have dynamic IPs. The Service Bus can interconnect these applica-
tions by creating a secure channel exposed on the Internet. Each application can register
with this channel to receive messages. For example, an on-premises application has no
problems talking with the Service Bus infrastructure, because the application can contact it
using TCP or HTTP protocols. After registering with the Service Bus, an application receives
a public URI on the Service Bus channel. When other authorized applications send a mes-
sage to that URI, the Service Bus infrastructure relays the message to the on-premises
application using the channel opened by the on-premises application itself. You can think
of the Service Bus as a Windows Live Messenger Service for applications. You can talk with
your friends through Windows Live Messenger even when you are hosted in a completely
different network. The Windows Live Messenger Service works by relaying messages from
your machine, which has no problem talking to the Internet, or to your friend’s machine
that has previously opened a channel to the same service.

Figure 7-1 describes the typical message flow I introduced. An on-premises application
behind a firewall or a NAT registers itself on the Service Bus using a simple POST request to
the service namespace URL (created in the portal). Subsequently, when authorized applica-
tions send messages to this public URL, the Service Bus acts as a relay; it forwards the mes-
sages to the on-premises application. This technique eliminates the need to expose the
on-premises application to the outside world. It also enables new applications to become
part of the message flow with minimal effort. Any new application that needs to receive the
same messages can register itself in the service namespace.

The Service Bus can relay messages that contain text, XML, graphics, binary data, and
streaming data.

To use the Service Bus, you follow the same pattern you have used throughout this book:
create a new service using the portal and use some specific APIs to simplify your code. Then
you can start exchanging messages via the Service Bus from any application and platform
without any other complications.

 Chapter 7 Building an AppFabric Solution 165

FIGuRE 7-1 Service Bus message flow.

The service uses Internet standards such as HTTP and REST to create services and exchange
messages so that you can use the service from any desktop and server platform without any
SDK or specific tools. You can also use the service from such disparate programs as Windows
Phone 7 applications, Apple iPhone, iPad, and Android mobile clients. If your service-oriented
architecture (SOA) solution is based on WCF, adapting the solution to use the Service Bus
involves only a few lines of code and some configuration settings.

At the time of this writing, Microsoft presents the Service Bus with this statement (Microsoft
Corporation, Windows Azure website, 2011, http://www.microsoft.com/windowsazure
/appfabric/overview/default.aspx):

The Service Bus provides secure messaging and connectivity capabilities that
enable building distributed and disconnected applications in the cloud, as well as
hybrid application across both on-premises and the cloud. It enables using various
communication and messaging protocols and patterns, and saves the need for the
developer to worry about delivery assurance, reliable messaging and scale.

It’s time to write some code that uses the Windows Azure AppFabric SDK to exchange some
dates between two on-premises applications. Before doing that, you create the service name-
space that will publicly expose the URI for the simple application.

http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx
http://www.microsoft.com/windowsazure/appfabric/overview/default.aspx

166 Windows Azure Step by Step

Create the Service Namespace

In this procedure, you create a new Namespace for your service. The term service namespace,
or simply namespace, refers to the prefix of the public URI that the Service Bus creates for
you. Like Windows Azure, the Service Bus infrastructure has a fixed DNS domain in which
you can create your private space using a globally unique name. The DNS for the Service
Bus is servicebus.windows.net, and the default prefix you see in the portal is simply sb. As you
will see in the next example, you can use also use HTTP as the default protocol to talk to the
Service Bus infrastructure.

 1. Sign in to the Windows Azure portal using your Windows Live ID. In the lower-left tool-
bar, choose the AppFabric section of the portal by clicking Service Bus, Access Control
& Caching. This option is shown in the following figure.

 2. Click the New Namespace button. The Create A New Service Namespace dialog box,
shown in the following figure, appears.

 Chapter 7 Building an AppFabric Solution 167

 3. Enter a name of your choice in the Namespace text box and validate it. I chose azuresbs
for this example. The name you choose must be unique, so validate it with the system
to ensure that the name you select hasn’t already been chosen by other users.

 4. Choose the data center region that will host your service namespace. You cannot
define an affinity group of services as you can with Windows Azure Hosted Service or
Windows Azure storage account, so if you want to host the Service Bus as physically
near your other cloud applications as possible, choose a data center in the same region.

 5. Choose the subscription you want to use for this service as you did for every service
you’ve created in this book.

 6. Choose the Service Bus Connection Pack. You can choose 0 Connection if you prefer a
complete pay-as-you-go billing arrangement, or you can select a pack of connections
billed at a discounted but fixed rate. For now, leave the option set to its default value.

 7. Click the Create Namespace button.

You can see your service in the list of service namespaces for your project. Clicking the ser-
vice namespace lets you see all the details for your new namespace, as shown in the follow-
ing figure.

168 Windows Azure Step by Step

The most important thing to notice here is the URI created on your behalf. The URI is based
on your globally unique name, and exposed using the HTTPS protocol. The infrastructure
created a new digital certificate to secure the conversation between an application and the
Service Bus. This is the address the application must use to register on the Service Bus, and
it's also the address where other applications can send messages.

Also note the Secure Token Service (STS) Endpoint—another namespace on the Access
Control Service address named accesscontrol.windows.net. As mentioned at the beginning of
this chapter, the Service Bus does not expose a security mechanism by itself; instead, it relies
on the claims-based infrastructure exposed and managed by the Access Control Service.
An application that wants to register on the Service Bus has to request permission from the
Access Control Service by providing a set of claims. The Access Control Service uses these
claims to validate the request and produce a token representing the permission level the
application has with the Service Bus. This token is sent to the requesting application, which,
in turn, can send the token to the Service Bus, which then verifies the claims (or permission)
the token represents. Because the Service Bus has a trusted relationship with the Access
Control Service, it trusts the permission token and lets the application either register to the
Service Bus or send or receive a message.

 Chapter 7 Building an AppFabric Solution 169

Note A claim is an assertion of truth made by someone to whom the counterparty has some
kind of trusted relationship.

Finally, note that the last part of the STS Endpoint URI reveals the protocol used to authenti-
cate the resource. Currently, it uses the Web Resource Access Protocol, version 0.9.

You use the Management STS Endpoint (also HTTPS) to configure permissions for this Service
Bus namespace. To authenticate these HTTPS, requests you have to use the management key
name and the current management key.

The Management Endpoint is the URI where an application can request registration to or
deregistration from the Service Bus Namespace.

By default, the infrastructure creates a default issuer name and a default issuer key (called
credentials) that correspond to a user. This set of credentials has complete control over the
Service Bus namespace; it can request that the Management Endpoint register an application
on the Internet Service Bus. In the following procedure, you use these credentials to access
and manipulate the infrastructure.

You completed all the necessary operations to configure the service. To summarize, you cre-
ate a new service namespace from the Windows Azure AppFabric Portal, choose a globally
unique name, and then use the provided credentials to register an application.

As mentioned at the beginning of this section, you can use HTTP and REST to interact with
the Service Bus infrastructure. These provide low-level control of the message flow and con-
tent. Alternatively, you can use the SDK to greatly simplify your code.

If you did not yet download and install the Windows Azure AppFabric SDK, you should do
that now.

Create a WCF Service Application

In this procedure, you create a new console application that acts as the service for the sample
application, using the Windows Azure AppFabric SDK that wraps WCF to simplify the service's
registration with the Service Bus and the creation of a listening channel.

 1. Open Visual Studio and create a new console application using the default template.
Name the project Service and the solution AppFabricDemo, as shown in the follow-
ing figure. Use two different names, because you will create another project inside the
solution that represents a client for this service. Click the OK button.

170 Windows Azure Step by Step

 2. Create the WCF service interface, just as you would normally, to define the contract for
the service. Add a new C# interface item to the project and name it IHelloService.cs.
Open the file, delete all the file's default content, and type the following code.

using System.ServiceModel;
namespace Service
{
 [ServiceContract(Name = "HelloContract", Namespace =
 "http://samples.devleap.com/ServiceBus/")]
 public interface IHelloContract
 {
 [OperationContract]
 string SimpleHello(string text);
 }
}

As you can see, there is nothing special nor anything related to the Service Bus in this
code. You defined a ServiceContract named “HelloContract” in a custom namespace.
The contract indicates an operation called SimpleHello that receives a string and returns
a string.

 3. Add a reference to the System.ServiceModel assembly.

 4. Implement the service as usual, and don’t worry about the Service Bus. Create a new
class item in the project and name it HelloService. Use the following code to build
the class:

 Chapter 7 Building an AppFabric Solution 171

using System;
using System.ServiceModel;

namespace Service
{

 [ServiceBehavior(Name = "HelloService", Namespace =
 "http://samples.devleap.com/ServiceBus/")]
 public class HelloService : IHelloContract
 {
 public string SimpleHello(string text)
 {
 Console.WriteLine("{0} received", text);
 Console.WriteLine();
 return "I've received : " + text;
 }
 }
}

You created a traditional WCF service that implements a defined contract. The method
that corresponds to the SimpleHello operation simply traces the received text to the
console and replies with the same string, preceded by “I’ve received : ”.

 5. Add a new application configuration file. Accept the default name of the Service proj-
ect to configure your service, and fill it with a system.serviceModel section that contains
a traditional netTcpBinding for the HelloService service, shown in the following code:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>

 <bindings>
 <!-- Application Binding -->
 <netTcpBinding>
 <binding name="default" />
 </netTcpBinding>
 </bindings>

 <services>
 <service name="Service.HelloService">
 <endpoint name="RelayEndpoint"
 contract="Service.IHelloContract"
 binding="netTcpBinding"
 bindingConfiguration="default"
 address="" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

172 Windows Azure Step by Step

The service tag contains the service name and an endpoint configured with the
netTcpBinding that contains nothing but the default binding, without any particular
configuration.

 6. To expose the service from the simple console application, from the classic Program.cs
file, use the System.ServiceModel class to build the ServiceHost on the defined service
and open it. The following code uses the port 1234 using the net.tcp protocol, which
corresponds to the netTcpBinding binding defined in the application configuration file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace Service
{
 class Program
 {
 static void Main(string[] args)
 {

 Uri address = new Uri("net.tcp://localhost:1234");

 Console.WriteLine("Address : " + address);
 Console.WriteLine();

 ServiceHost host = new ServiceHost(typeof(HelloService), address);

 host.Open();

 Console.WriteLine("Press [Enter] to exit");
 Console.ReadLine();

 host.Close();
 }
 }
}

Note This is probably the simplest possible example to demonstrate how to modify the
service that you built in the previous procedure for exposure on the cloud Service Bus and
used by a remote client. When creating a real-world WCF service, you should consider de-
fining the service, the contract, and the host in different projects, to decouple the pieces
one from another.

You can now run the project. You should obtain a result similar to the following figure.

 Chapter 7 Building an AppFabric Solution 173

So far, you haven't done anything special. You can build a client application that uses
nct.tcp://localhost:1234 and run it on the same machine to call the SimpleHello opera-
tion and receive a result.

Next, you expose this service on the Service Bus by creating a channel that relays every mes-
sage sent to the service's public address to the on-premises console service application.

Expose the Service to the Service Bus

In this procedure, you expose the traditional WCF service created in the preceding procedure
on the Service Bus Namespace that you created at the beginning of this chapter.

 1. Add a reference to the Microsoft.ServiceBus assembly. To do this, right-click the Service
project and choose Add Reference. Click the Browse tab and navigate to the Windows
Azure AppFabric installation folder. You can find the assembly in the Program Files
\Windows Azure AppFabric SDK folder. Inside that folder is a directory representing
the installed version (currently 1.0) and a separate directory for .NET Framework 3.5
and 4.0. Choose the 4.0 version and locate the Microsoft.ServiceBus.dll assembly file.
You can see the complete default path in the following figure.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

174 Windows Azure Step by Step

 2. The Microsoft.ServiceBus assembly has a dependency on the System.ServiceModel.Web,
assembly—which is not in the .NET Framework 4.0 Client Profile. A new console appli-
cation created in Visual Studio 2010 defaults to the .NET Framework 4.0 Client Profile,
making the application incompatible with the Service Bus. You have to retarget your
application using the Service project’s properties dialog box, as you can see in the next
figure. Change the Target Framework to .NET Framework 4, and then click the Yes but-
ton to confirm the change.

 3. In the Program class's Main method, you have to modify the service URI. You can com-
pose the Service Bus URI automatically using the Service Bus APIs. Comment out the
first line and type the following boldface lines of code from this excerpt:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;
using Microsoft.ServiceBus;

namespace Service
{
 class Program
 {
 static void Main(string[] args)
 {
 //Uri address = new Uri("net.tcp://localhost:1234");
 Uri address = ServiceBusEnvironment.CreateServiceUri("sb", "azuresbs",
 "HelloService");

 Console.WriteLine("Address : " + address);

 Chapter 7 Building an AppFabric Solution 175

 Console.WriteLine();

 ServiceHost host = new ServiceHost(typeof(HelloService), address);

 host.Open();

 Console.WriteLine("Press [Enter] to exit");
 Console.ReadLine();

 host.Close();
 }
 }
}

The first parameter of the CreateServiceUri static method of the ServiceBusEnvironment
is the protocol that the service uses to interact with the Service Bus. The sb protocol
uses TCP on port 808 to send messages from the console application to the cloud
Service Bus service. The second parameter must match the name of your service
namespace. Type the name you chose in the first step of the Create New Service
Namespace wizard in the previous section.

The last parameter is the name of the service. The ServiceBusEnviroment appends this
parameter to the URI it constructs. The REST request that results from this method call
will be sb://azuresbs.servicebus.windows.net/HelloService.

 4. The only other required change before you can use the Service Bus infrastructure is
to adapt the binding in the application configuration file. You need to change netTcp-
Binding to netTcpRelayBinding and provide (as you may remember from the previous
section) the credentials required to use your service namespace. Following is the new
application configuration file (the lines in boldface are the modified lines):

<?xml version="1.0"?>
<configuration>
 <system.serviceModel>

 <bindings>
 <!-- Application Binding -->
 <netTcpRelayBinding>
 <binding name="default" />
 </netTcpRelayBinding>
 </bindings>

 <services>
 <service name="Service.HelloService">
 <endpoint name="RelayEndpoint"
 contract="Service.IHelloContract"
 binding="netTcpRelayBinding"
 bindingConfiguration="default"
 behaviorConfiguration="sharedSecretClientCredentials"
 address=""/>
 </service>
 </services>

176 Windows Azure Step by Step

 <behaviors>
 <endpointBehaviors>
 <behavior name="sharedSecretClientCredentials">
 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="owner"
 issuerSecret="DZ9VqyGQkakohsbMuWoIzU=" />
 </clientCredentials>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
</configuration>

First, note the new binding—the relayed version of the net.tcp classic binding. Second, note
that the modification is the new behaviorConfiguration that uses the issuerName and the
issuerSecret you received when you created the Service Namespace. Your issuerSecret is obvi-
ously different from the presented one.

You can press F5 to run the new service and, if you have used the correct issuerSecret, you
end up with something similar to the following figure.

As you can see, your service is now publicly available on the Windows Azure AppFabric. It
uses a Service Bus URI on the sb TCP/IP protocol. The service used port 808 to communicate
with the Service Bus management service, and will use the relayed version of netTcpBinding
(netTcpRelayBinding) as the binding to exchange data with service consumers.

Before you learn about other available bindings and messaging patterns (in which you learn
how to use HTTP instead of TCP to communicate with the management infrastructure), you
build a service consumer.

 Chapter 7 Building an AppFabric Solution 177

Create the Service Consumer

In this procedure, you create a service consumer that uses the same binding and address you
created in the previous two procedures to exchange data via the Service Bus with the simple
service.

 1. Stop the debugger if you haven’t done that yet.

 2. Add a new project to the solution. Right-click the solution and choose Add New
Project.

 3. Choose the Console Application template, and type Consumer as the project name.
You should see the following figure.

 4. Add a reference to the System.ServiceModel and Microsoft.ServiceBus assemblies,
just as you did in the Service project. Also, change the target configuration to .NET
Framework 4.

 5. Add a new class file and name it HelloProxy. Type the following code to create the
client-side interface and the relative WCF channel, as you would for a non–Service
Bus proxy:

using System.ServiceModel;
namespace Consumer
{
 [ServiceContract(Name = "HelloContract", Namespace =
 "http://samples.devleap.com/ServiceBus/")]
 public interface IHelloContract

178 Windows Azure Step by Step

 {
 [OperationContract]
 string SimpleHello(string text);
 }

 public interface IHelloChannel : IHelloContract, IClientChannel
 {
 }
}

 6. Add a new application configuration file to the Consumer project and use the
system.ServiceModel configuration you worked with in the previous procedure,
making sure you use the Consumer contract defined in the previous step:

<?xml version="1.0"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="sharedSecretClientCredentials">
 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="owner"
 issuerSecret="DZ9VqyGQkaNbL98upEX3WD7wGrcZCwcIohsbMuWoIzU="/>
 </clientCredentials>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <!-- Application Binding -->
 <netTcpRelayBinding>
 <binding name="default"/>
 </netTcpRelayBinding>
 </bindings>

 <client>
 <!-- Application Endpoint -->
 <endpoint name="RelayEndpoint" contract="Consumer.IHelloContract"
 binding="netTcpRelayBinding"
 bindingConfiguration="default"
 behaviorConfiguration="sharedSecretClientCredentials"
 address="http://AddressToBeReplacedInCode/"/>
 </client>

 </system.serviceModel>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
</configuration>

 Chapter 7 Building an AppFabric Solution 179

As you can see from the code in step 5, the configuration is almost identical to the pre-
vious one—in fact, this example uses the same issuerName and issuerSecret that the ser-
vice does. The binding has to be identical to talk with the service as in traditional WCF
configurations. As for the service, the code builds the address, as shown in the next step.

 7. The code for the Main method in the Program class of the Consumer application is
straightforward (the inserted line in the default template is in boldface):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.ServiceBus;
using System.ServiceModel;

namespace Consumer
{
 class Program
 {
 static void Main(string[] args)
 {
 Uri serviceUri = ServiceBusEnvironment.CreateServiceUri(
 "sb", "azuresbs", "HelloService");

 Console.WriteLine("I will send messages to {0}", serviceUri);
 Console.WriteLine();

 ChannelFactory<IHelloChannel> channelFactory = new ChannelFactory
 <IHelloChannel>("RelayEndpoint", new EndpointAddress(serviceUri));
 IHelloChannel channel = channelFactory.CreateChannel();

 channel.Open();

 Console.WriteLine("Hello to be sent (or [Enter] to exit):");

 string input = Console.ReadLine();

 while (!String.IsNullOrEmpty(input))
 {
 try
 {
 Console.WriteLine("Reply from the service : {0}",
 channel.SimpleHello(input));
 Console.WriteLine();
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: " + e.Message);
 }

 input = Console.ReadLine();
 }

180 Windows Azure Step by Step

 channel.Close();
 channel.Dispose();
 channelFactory.Close();
 }
 }
}

The first line of code builds up the Service Bus URI used in the second line. Then the code
creates a ChannelFactory instance using both the IHelloChannel interface that represents the
contract and the composited URI. Finally, it creates the Channel and opens it to send the text
read from the console.

There is nothing special in this procedure either except for the first line of code of the Main
method and the binding configuration in the application configuration file. In practice, to
use the Service Bus from an existing service, you need only to modify the URI construction
and the service configuration. Service registration and data exchange is completely transpar-
ent, thanks to the new bindings. Remember to use the service namespace you chose at the
beginning of this procedure.

Start the service by pressing F5 and wait for the console to show the “Press [Enter] to exit”
message (at that point, the service has been registered on the Service Bus and is ready to
receive messages). Then, right-click on the Consumer project and choose Debug | Start New
Instance to start one instance of the consumer.

If everything worked, you will receive a prompt for sending messages to the Service Bus URI
you configured, as shown in the following figure.

Type some random text in the console and press Enter to send the message to the service,
which will reply according to the code you wrote. For instance, if you type Hello Azure Step
by Step Book !, press Enter, and then type Hello everyone and press Enter again, you end
up with the following output.

 Chapter 7 Building an AppFabric Solution 181

The requests are being relayed from the consumer client application up into the cloud, and
then back down to the service application. They happen to be on my computer, but they
could really be anywhere on the Internet.

You have seen how to create a new Service Bus namespace and how to exchange data
between a consumer and a service using the relay feature of the Internet Service Bus pro-
vided by Windows Azure AppFabric. As with other Windows Azure Platform components,
you can use the portal to configure the component you want to use without configuring
anything else, and then you can start using it with the related APIs.

Remember that you can leverage the Service Bus infrastructure directly using REST and HTTP
without an SDK. For example, if you want to register a service on the Service Bus, you can
issue a POST to the management URI using the security token you have to request to the
Access Control Service. If you want to send a message to a remote service, you can make a
POST to the public URI of the service. If you use the SDK, these steps are performed by the
provided infrastructure.

Before you move to a new example, try to start another instance of the consumer and use it
to send messages to the same service. As you will discover, the Service Bus infrastructure can
be used by more than one client to talk with a single endpoint.

182 Windows Azure Step by Step

Direct Connection
In the preceding section, you learned how to use the Service Bus to create a channel between
two applications that can be hosted in totally different networks using the relay capabilities of
the Windows Azure AppFabric Service Bus. You can connect an on-premises application with
remote clients without having to open firewall ports or reduce the security of your network.
For example, you can use this feature to connect remote notebooks with a service hosted
on premises. But sometimes notebook owners work on the same network that hosts the on-
premises service. In such cases, relaying messages through the Internet to talk to a service in
the same LAN is not efficient. Fortunately, the Service Bus and the SDK provide a completely
transparent algorithm that can make direct calls (provided that they are allowed) when appro-
priate, and still make remote calls when the consumer and service are on different LANs.

It is so transparent that, with the exception of the measurable speed difference, you don't
really know which communication method the consumer and service are using. You config-
ure this type of connection in the following procedure.

Use Direct Connection

 1. Open the application configuration file for the consumer and change the binding ele-
ment, adding the connectionMode attribute and the security element, as in the follow-
ing code:

 <bindings>

 <netTcpRelayBinding>
 <binding name="default" connectionMode="Hybrid">
 <security mode="None" />
 </binding>
 </netTcpRelayBinding>

 </bindings>

 2. Do the same for the service configuration file.

 3. Run the sample by pressing F5 and then start a new Consumer instance. After some
time, depending on the speed of your LAN, a Windows Security Alert might appear
asking you if you want to allow direct communication. If you are using Windows 7, the
alert will be similar to the following figure. (Depending on your firewall settings, this
alert may not appear at all.)

 Chapter 7 Building an AppFabric Solution 183

You have to select, at minimum, your private network, and then click Allow Access to create
a direct connection between the consumer and the service. (Don't worry, you learn how to
remove that permission pretty soon.) If you do not allow that kind of connection, the sample
continues to work using the relayed connection. The term hybrid, in fact, means that a con-
nection is created using the relayed binding and then, if possible, the connection is elevated
to a direct connection. If something goes wrong with the direct connection, or if the client or
the service moves to another network, the connection falls back to relay.

If you want to expose, or discover, the type of connection being used, the Microsoft.ServiceBus
library provides an event that fires when the connection status changes. You can insert this
code immediately after opening the channel:

IHybridConnectionStatus hybridConnectionStatus =
 channel.GetProperty<IHybridConnectionStatus>();

Console.WriteLine("Initial status : {0}",
 hybridConnectionStatus.ConnectionState);
Console.WriteLine();

if (hybridConnectionStatus != null)
{
 hybridConnectionStatus.ConnectionStateChanged += (o, e) =>
 {
 Console.WriteLine("Status changed to: {0}.", e.ConnectionState);
 };
}

184 Windows Azure Step by Step

To test the speed, you can insert this code inside the while loop:

while (!String.IsNullOrEmpty(input))
{
 try
 {
 Int32 start = Environment.TickCount;
 String response = channel.SimpleHello(input);
 Console.WriteLine("Response {0} - Time{1}", response,
 Environment.TickCount - start);
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: " + e.Message);
 }
 input = Console.ReadLine();
}

If you run the sample and send different messages before and after the connection status
changes, you observe that speed can vary significantly between a direct connection and a
relayed connection, as shown in the following figure.

The first and second lines in the preceding figure show a relayed connection that is signifi-
cantly slower than the others. The first message takes the longest amount of time because of
DNS resolution. Note that the event is asynchronous, and was fired during the second opera-
tion call. This explains why the “status changed” line appears before the second call.

You can always remove the rule that the Windows Firewall creates when you select the Allow
Access button in the security alert using the Allowed Programs list in Control Panel.

 Chapter 7 Building an AppFabric Solution 185

As you can see, the program vshost32.exe has permission to use Home/Work features—that
is, the private network. You can remove that rule by selecting each of that program's two
entries, and clicking the Remove button. If you have more entries, click the Details button to
see what program they point to.

Bindings
The Windows Azure AppFabric SDK exposes many other bindings you can use to exchange
data in direct or relayed connections. You can find detailed information about the different
bindings in the official documentation on MSDN.

The complete list of bindings for the current version, created by using Reflector, appears in
the following figure.

186 Windows Azure Step by Step

Many of the Service Bus bindings are simply relayed versions of the related WCF bindings.
The netEventRelayBinding lets the infrastructure send the same message to many receivers.

In the near future, there will be many other bindings that allow round-robin scenarios, load
balanced receivers, message filtering, queuing mechanisms, and so forth. If you are inter-
ested in building Service Bus solutions, keep an eye on the documentation.

In the next exercise, you switch bindings to use the ws2007HttpBinding instead of the
netTcpRelayBinding.

Use a Different Binding

In this procedure, you use ws2007HttpBinding. This binding applies security to the transport
protocol, exchanging data from the same consumer with the same service you built in the
previous procedure.

 1. Change the application configuration file for the service and the consumer so that their
<bindings> sections specify the new binding, as shown in the following code:

 <bindings>
 <!-- Application Binding -->
 <ws2007HttpRelayBinding>
 <binding name="default">
 <security mode="Transport"/>
 </binding>
 </ws2007HttpRelayBinding>
 </bindings>

 Chapter 7 Building an AppFabric Solution 187

 2. Change the endpoint configuration for both the consumer and the service that it points
to the new binding:

 <endpoint name="RelayEndpoint" ...
 binding="ws2007HttpRelayBinding"
 ... />

 3. Change the parameter of the CreateServiceUri method in the Main method of the con-
sumer and the service to use https instead of sb:

 Uri serviceUri = ServiceBusEnvironment.CreateServiceUri(
 "https", "azuresbs", "HelloService");

Note The security mode of the binding states that any security has to be done at the
transport level, so if you followed the procedure, make sure you use https and not http as
the first parameter.

 4. In the consumer Main method, remove the code to test the hybrid connection.

 5. Run the sample using the same pattern you used in the previous procedure.

The result should be similar to the following image.

As you can see, the client uses an HTTPS endpoint to send messages, and the service is lis-
tening at the same address.

The following analyzer image shows the requests made by the two parties during this process.

188 Windows Azure Step by Step

Look at the highlighted row. The underlying API uses the POST method over the HTTPS
protocol to send something to the azuresbs.servicebus.windows.net/HelloService URI. The
payload, shown in the bottom section of the preceding screen, shows the invoked operation,
SimpleHello, the text Ciao, and the result as SimpleHelloResult. The last POST is the call to the
“Hello” message.

The service makes the first POST request. It is also an HTTP POST, but it's directed to the
Access Control Service that is responsible for authenticating the service to listen for Service
Bus messages. The content of the response is a Web Resources Access Protocol (WRAP)
access token that you can view. It looks something like the following text:

wrap_access_token=net.windows.servicebus.action%3dListen%252cSend%252cManage%26Issuer%3dhttp
s%253a%252f%252f
azuresbs-sb.accesscontrol.windows.net
%252f%26Audience%3dhttp%253a%252f%252f
azuresbs.servicebus.windows.net%252f
HelloService%26ExpiresOn%3d1294076696%26HMACSHA256%3dz5fHrxC1p4L4ZHshE5x69PbofrnHKBUf1qnpV4f
7TPk%253d&wrap_access_token_expires_in=1200

The token contains three encrypted permissions for Listen, Send, and Manage (shown in
boldface in the code). I’m using, like you, the default Issuer that is the owner of the service
namespace, so I have all the permissions. The second line states that the token was issued by
azuresbs-sb.accesscontrol.windows.net, and the last part shows the intended audience, that is,
azuresbs.servicebus.windows.net for the HelloService. Like any other token, this one also con-
tains an expiration date and a Hash-based Message Authentication Code (HMAC) hash of the
password.

 Chapter 7 Building an AppFabric Solution 189

The second post is similar to the first, but the consumer issues it. It contains the request for a
token to the Access Control Service. Here's the payload:

wrap_scope=http%3a%2f%2fazuresbs.servicebus.windows.net%2fHelloService%2f&wrap_assertion_
format=SWT&wrap_assertion=Issuer%3downer%26HMACSHA256%3dgqoxIUAM5XrfFO4gevEmNehlnM5wRckfU8Vx
Ej0f564%253dwrap_scope=http%3a%2f%2fazuresbs.servicebus.windows.net%2fHelloService%2f&wrap_
assertion_format=SWT&wrap_assertion=Issuer%3downer%26HMACSHA256%3dgqoxIUAM5XrfFO4gevEmNehlnM
5wRckfU8VxEj0f564%253d

The request is not so difficult to understand; the consumer uses the Issuer=owner and the
hashed password to request the permission for the URI http://azuresbs.servicebus.windows.net
/HelloService.

Note The acronym SWT, shown in the preceding code, stands for Simple Web Token.

It is important to point out that modifying the binding changes the way the message is
transported from the consumer to the server, but it does not modify the protocol that
the two parties use to talk to the Service Bus management infrastructure. You can use
ws2007HttpRelayBinding to exchange data and use TCP on port 808 or 828 (if you use SSL
over TCP) to register the service to the Service Bus and establish the connection from a
consumer.

HTTP for Management uRI
As I just pointed out, changing the binding does not change the way the service and the
consumer talk to the management infrastructure (also called the control channel). If the ser-
vice or the consumer has problems using the output port for TCP/IP, either can switch to a
complete HTTP-based connection.

To make the switch, you must modify the code of one of the presented examples slightly. You
need to inform the infrastructure to use an HTTP connection instead of the default one.

The change is simple and is shown in the following code:

ServiceBusEnvironment.SystemConnectivity.Mode =
 ConnectivityMode.Http;

You have to set the SystemConnectivity before opening the channel. If you were to make this
modification to both the consumer and the service, your connection would be completely
based on HTTP.

That's a convenient change for teaching purposes, because using an HTTP-based connection
lets me show you the complete HTTP trace for an end-to-end test, using the same code you
used in the last procedure. The trace is shown in the following figure.

http://azuresbs.servicebus.windows.net/HelloService
http://azuresbs.servicebus.windows.net/HelloService

190 Windows Azure Step by Step

The analyzer shows that the service issues a POST to the Access Control Service (the first
traced line) to request the simple web token that contains its permission for the service
namespace. It then issues a POST to create the channel for the HelloService service. The
response status code is 201 Created, stating that the Service Bus management APIs suc-
cessfully created the public endpoint. Next, the service issues another POST to a different
address. This address represents the front-end node of the Service Bus selected to be the
forwarder (the node that relays the message). As you can see in the bottom section of the
screen, this request remains open to allow any further communication from the forwarder to
the on-premises service. (Remember that this example uses the HTTP protocol and doesn't
expose the service itself on the Internet.)

Summary
In this chapter, you examined a simple application that sends messages from a consumer to
a service using the relay feature of the Windows Azure AppFabric Service Bus. The consumer
code can be used by any .NET Framework client running on premises or in the cloud—just
as the service code can. You saw how to configure both relayed and direct connections as
well as how to configure using HTTP rather than TCP to manage the service namespace. The
Windows Azure AppFabric Access Control Service manages the service access rules.

 Chapter 7 Building an AppFabric Solution 191

Quick Reference
To Do this
Download the Windows Azure AppFabric SDK
for a different platform

Go to http://www.azure.com.

Build the Service Bus URI Use the ServiceBusEnviroment class.

Create a new Service Bus namespace Use the Windows Azure AppFabric portal.

See the default Issuer Name and Issuer Secret
for the management key

Use the Windows Azure AppFabric portal.

Use a direct connection Use the Hybrid connection mode attribute in
binding element of the configuration.

Allow a direct connection Use the Windows Firewall rule.

 193

Chapter 8

WCF Data Services and OData
After completing this chapter, you will be able to

■ Understand Open Data Protocol (OData).

■ Expose an Entity Data Model to REST/HTTP protocols.

■ Use REST queries against an exposed model.

■ Execute CRUD operations from a remote client.

■ Build a WCF Data Service client application.

Open Data Protocol (OData) is an emerging protocol for querying and updating data across
the web. It uses existing technologies such as HTTP, JSON (JavaScript Object Notation), and
Atom Publishing Protocol (AtomPub) to provide abstract access to a variety of services,
stores, applications, and data.

Microsoft supports OData in a growing list of products, including Microsoft SharePoint Server
2010, Microsoft SQL Server 2008 R2, Microsoft Visual Studio 2008 SP1 and Visual Studio 2010,
and Microsoft Excel 2010 (via PowerPivot for Excel). OData is exposed natively by Windows
Azure storage as well as Microsoft SQL Azure through Windows Communication Foundation
(WCF) Data Services (that is, ADO.NET Data Services). Microsoft also provides client libraries
for the Microsoft .NET Framework, Microsoft Silverlight, and Microsoft ASP.NET AJAX.

This chapter begins by reviewing the history of the Astoria project, which was the code name
for what is now WCF Data Services, and presents the technologies that followed it by using
procedures to help you understand the concepts.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

The Astoria Project
Early in 2007, Microsoft presented a project with the code name Astoria. Astoria exposes
data services that enable applications to access and manipulate data over HTTP connections,
using URIs to identify pieces of information within these data services. The data values are
represented in XML or JavaScript Object Notation (JSON) when transferred from client to
server or from server to client.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

194 Windows Azure Step by Step

The theory was interesting, because a number of scenarios and solutions, such as the emerg-
ing Web 2.0 applications, needed a simple and effective way to exchange data from the
browser to the server. AJAX-based applications benefitted from Astoria because it helped
separate data from its presentation; you could ask the server for some piece of data directly
in JavaScript without requesting an entirely new page. JQuery and other emerging libraries
also benefitted from this approach.

This separation was even more important in technologies such as Adobe Flash and Silverlight
(which was at version 1.0 at that time), because their code is compiled before the browser
plug-in downloads it. When the compiled code reaches the client, the client can request data
from the server again using HTTP, XML, and/or JSON. Users can update various bits of infor-
mation before sending back just the modified values.

The Astoria project was released officially in the .NET Framework 3.5 SP1 in August 2008
together with Visual Studio 2008 SP1. The .NET Framework 3.5 SP1 exposes the server and
the client APIs, including an AJAX version for the major browsers, and Visual Studio 2008 SP1
provides sophisticated designers and data binding features.

In Visual Studio 2010 and the .NET Framework 4, this technology was renamed yet again—
to WCF Data Services. This chapter uses the .NET Framework 4 and Visual Studio 2010, but
almost every step is identical in Visual Studio 2008 SP1 and the .NET Framework 3.5.

WCF Data Services (ADO.NET Data Services)
There are two main goals of this changing-name technology. The first is to aid developers
in defining data services that expose simple methods to query and update a behind-the-
scenes data source in a standard way. The second is to provide libraries that can access
these services from a variety of clients, including Silverlight, XNA, AJAX, jQuery, or any .NET
Framework client.

If you have an existing Entity Data Model (EDM), you can build a WCF Data Service in about
two minutes. If you don’t have an existing EDM, but want to expose every table or view in a
compatible database, it will take you about four minutes.

Data exchange between client and server is based on JSON, AtomPub, or XML. Data access
requires only simple HTTP methods such as a GET to retrieve an entity, a POST to insert
a new one, a MERGE to do an update operation, or a DELETE to remove an entire row of
information.

Server-side ADO.NET Data Services is based on classes that derive from WCF classes: it is
a specialized version of WCF, so renaming it in .NET Framework 4 was appropriate. These
classes serve as base classes for custom data services and expose every operation for every
entity defined in the EDM. The contracts for each operation are defined inside this class and
provide common operations on the data exposed by the EDM.

 Chapter 8 WCF Data Services and OData 195

In practice, all you need to do to get started with ADO.NET/WCF Data Services is to derive
a class and let the library do its work. Next, you can adjust the behavior by adding security
policy and query interceptors. You filter data based on user roles or remove an operation
from the contract. Setting up most of these operations is very easy.

Behind these standard services, you can use LINQ to SQL to expose a model for data stored
in SQL Server, or use the ADO.NET Entity Framework (both versions 3.5 and 4.0 are sup-
ported) to build a more complex model and to support other database servers.

In practice, the data service inspects the model and provides classic Create, Read, Update,
and Delete (CRUD) operations, including filtering or sorting, join operations between entities
defined in the model, and lazy or explicit loading via HTTP. Each query gets sent to the wire,
inspected by the service, and then analyzed by the provider, letting the provider send opti-
mized queries to the database for maximum performance and scalability. The service uses
the IQueryable interface to pass the expression tree to the LINQ to SQL and ADO.NET Entity
Framework providers. Because every query is based on the IQueryable interface, it is possible
to expose your custom data source to WCF Data Services.

Because every service is exposed via HTTP/REST using XML, AtomPub, or JSON, essentially
any client can access these services to query and update data. If you use any supported
Microsoft technology to build the client, you can add a service reference to the service and
let the WCF Data Services client library provide you with a data context so that you can query
data, modify that data locally, and send only the modified entities back to the service using
CUD (Create, Update, Delete) operations.

The next chapters examine application architectures that decouple your applications using
three or more layers. The rest of this chapter takes a step-by-step approach using a simple
example that ignores architectural considerations.

The Building Blocks

Create an ASP .NET Web Application

To begin, you need to create a simple ASP.NET Web Application that will serve as a container
to expose data services. You don’t need to choose any special project template—define the
service wherever clients can reach it. An ASP.NET web application is perfect for achieving this
result.

 1. From Visual Studio 2010, create a normal ASP.NET web application without Model–
view–controller (MVC) or Dynamic Data, and name the project and solution DevLeap.
WCFDataService. Select the Create Directory For Solution check box, which is shown
in the figure that follows. You can also create a Web Site project, because the resulting
project is a fully functional website.

196 Windows Azure Step by Step

Note The ASP.NET Web Site Project template was introduced in Microsoft Visual
Studio 2005 as a simpler model than the Visual Studio 2002/2003 ASP.NET Web Project.
Autocompilation of code-behind files and other features were interesting, but developers
soon faced numerous problems, so Microsoft proposed an add-in for Visual Studio 2005
to return to the classic model. In Visual Studio 2008 and Visual Studio 2010, I prefer the
ASP.NET Web Application approach.

If you’re using the .NET Framework 3.5, you end up with an ADO.NET Data Service. If
you’re using the .NET Framework 4, you end up with a WCF Data Service. Which one
you end up with is not important, because WCF Data Services is just a new name for
ADO.NET Data Services.

 2. Check to make sure the element compilation in the Web.config file has a debug attri-
bute with the value of true. Because the ASP.NET runtime compiles the .aspx pages and
the .svc file, you want to compile them in debug mode during development so that you
can obtain useful information if something goes wrong.

Next, you need to create an EDM that provides the query operation for the different enti-
ties and models the relations between them. You can choose a LINQ to SQL model, an Entity
Framework 3.5 or 4.0 model, or any class that implements the IQueryable interface. If you
haven’t used Entity Framework, don’t worry—you see how to use the basic functionality in
this section.

This example uses a simple database called EstatesManagement, which has just five tables
and the simple structure shown in the next figure. The first table is tabSalesmen and repre-
sents real estate salesmen. Every salesman has a number of assigned estates represented by

 Chapter 8 WCF Data Services and OData 197

the tabEstates table, so this table exposes an idSalesman field. Each estate has a particular
type; the tabEstateTypes table is a lookup table for this data. The other two tables are not
used in this example.

Create the Database

 1. Create a new SQL Server Database called DevLeap.EstatesMagement.DB.SQL2005
using SQL Server Management Studio.

 2. Use the Database.sql file from the Chapter 8 Demo zip file to create the database struc-
ture and fill it with some sample data. (Please refer to this book’s “Introduction,” which
contains the download link.)

You now have the database and the sample data you will look at in the pages that follow.

Create an Entity Data Model

 1. To add an Entity Data Model to your project, right-click the project inside the solution
and select the Add New Item menu. Then select the ADO.NET Entity Framework tem-
plate. Remember to choose Data from the template types menu on the left side of the
wizard, which is shown in the following figure.

198 Windows Azure Step by Step

 2. Name the model EtatesManagement.edmx, and then click the Add button. The tem-
plate opens a new wizard that guides you through the process for creating the EDM.

 3. You can elect to build a model from scratch or to generate the model from an existing
database, as shown in the following figure. Because you already have the database in
this case, choose the Generate From Database option, and then click Next.

 Chapter 8 WCF Data Services and OData 199

 4. Choose a database connection. Because this is the first time you have used this
database, the first list box does not display a connection. You need to click the New
Connection button in the upper-right side of the wizard page to open a standard
Connection Properties dialog box. Fill in the information based on your configuration,
and then click the OK button to return to the Entity Data Model Wizard.

Figure 8-1 shows the wizard page. Notice the following selected options and check
boxes in the figure:

■ Yes, Include The Sensitive Data In The Connection String This being selected
means that the connection string will include the password. You can avoid that by
electing the option No, Exclude Sensitive Data From The Connection String. I Will
Set It In My Application Code. Because the purpose of this chapter is to fully under-
stand every piece needed to expose a WCF Data Service, for now, use the default
option as shown in Figure 8-1. Note that if you are using a trusted connection, the
option button will be dimmed.

■ Entity Connection String box In Figure 8-1, metadata values appear before
the classic connection string. Entities is identified as the default name. The Entity
Framework describes the model with three different languages, which are intro-
duced in the next section of this chapter.

■ Save Entity Connection Settings In Web .Config As check box This is selected
and indicates the name of the connectionString element created by the wizard
to store the connection string. Leave it to the default proposed by the wizard,
because it will be easier to use the model if you do.

FIGuRE 8-1 Entity Data Model connection information.

200 Windows Azure Step by Step

 5. Choose which objects to include in the model. For instance, you could add just two
tables and three views when your application doesn’t care about other information
stored in the database. As you can see in the next figure, you can also include stored
procedures. In this case, the stored procedure will become a method of the model that
you can call, just as you can call any other standard .NET Framework methods.

Expand the Tables node, and select tabEstates, tabEstateTypes, and tabSalesmen, and
then select the Pluralize Or Singularize Generated Object Names check box to let the
designer adapt the collection of entity names to their plural forms. The option Include
Foreign Key Columns In The Model is self-explanatory, and it is one of the new features
(as well as the pluralizing) of Entity Framework 4.0.

The model namespace includes the defined entity, and you can change it at any time
from the designer that appears after you click the Finish button.

The wizard adds some new references to the project required by the Entity Framework APIs;
a new connection string in the Web.Config file, identical to the one you saw in the second
wizard step; and a new file called EstatesManagement.edmx that represents the Entity Data
Model.

 Chapter 8 WCF Data Services and OData 201

The wizard also opens the designer for the new EDM included in the project, showing you
the three entities inferred from the chosen database table. Each entity contains the exact set
of fields as the underlying table and has the same relationship with other entities that the
tables do in the database schema.

Each relation is represented by a navigation property that, by default, assumes the same
name as the entity referenced. In some cases, the navigation property name is plural, mean-
ing that the property represents the N-side of a 1:N relation. In this example, the tabSales-
man has a navigation property called tabEstates that refers to all the estates assigned to that
salesman. On the other hand, the tabEstate entity has a tabSalesman property, which refers
to the salesman assigned to each estate.

Rename the Entity and Entity Set

 1. Rename every entity, deleting the tab prefixes. You can do this in the properties win-
dow (press F4 in the designer with an entity selected) or directly from the design sur-
face in the header of the entity. Entity Framework manages the mapping between the
entity and the corresponding table.

 2. Verify that the Entity Set Name is renamed, too. If it is not, rename it. The entity name
represents a single entity, and the Entity Set Name represents the collection of entities.

 3. Rename every navigation property as well, as shown in the next figure.

Note This is only a brief introduction to Entity Framework 4.0 A complete analysis of the
methodology or of best practices for using Object Role Modeling (ORM) is beyond the
scope of this book.

202 Windows Azure Step by Step

The renaming operation introduces an important concept: Entity Framework, or more pre-
cisely the Entity Framework Designer, uses different languages to describe the entity model,
the underlying database, and the mapping between the two. The EDMX file is composed of
three different sections that are also indicated in the connection string inserted automatically
in the Web.config file, as you can see in Listing 8-1.

LISTING 8-1 Connection string.

metadata=
 res://*/EstatesManagement.csdl|
 res://*/EstatesManagement.ssdl|
 res://*/EstatesManagement.msl;
 provider=System.Data.SqlClient;provider
 connection string="Data Source=(local);Initial
 Catalog=DevLeap.EstatesManagement.DB.SQL2005;Persist Security
 Info=True;User ID=sa;Password=***********"

These three languages are described in the following list:

■ Conceptual Schema Definition Language (CSDL) This represents the entity defini-
tions as you want to use them in code. Each element inside an entity is a property
exposed by the class that represents the entity. This means that the designer pro-
duces a class named Estates which includes, for instance, a public property named
EstatesDescription. You can modify the property name using the designer.

■ Storage Schema Definition Language (SSDL) This represents the database object
definition. Because you used an existing database, the schema contains the name of
the included tables and the definition of every table field. These definitions are partially
visible in the designer.

■ Mapping Schema Language (MSL) With this language, the framework is able to map
an entity with the corresponding table, and each property with the corresponding field.
The MSL is also used to convert the .NET Framework type to the database type and vice
versa. It is important to note that I used SQL Server 2008, but Entity Framework is not
limited to Microsoft databases.

Before exposing the model with a WCF Data Service, you can use the model from the
Microsoft Visual C# code to query the entity and its relationships without having to
remember field and table names. Entity Framework handles this tough job for you. You
can express a query using LINQ to Entities, Entity SQL, or a mix of both.

Create a Simple Page to Show the Result

 1. Place a GridView control named salesmenGrid in the Default.aspx page, as illustrated in
Listing 8-2.

 Chapter 8 WCF Data Services and OData 203

LISTING 8-2 Default.aspx.

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master"
AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="DevLeap.WCFDataService._Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <h2>
 Welcome to ASP.NET!
 </h2>
 <p>
 <asp:GridView ID="salemenGrid" runat="server" AutoGenerateColumns="true"
/>
 </p>
</asp:Content>

 2. In the code-behind file, in the Page_Load event, create a new data context, represented
by the Entity class, and express a LINQ query on the Estates entity set.

 3. Bind the result of the ToList method of the query object to the GridView control, and
call the DataBind method on it, as illustrated in Listing 8-3.

LISTING 8-3 Default.aspx code-behind file.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace DevLeap.WCFDataService
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Entities context = new Entities();

 var query = from estate in context.Estates
 where estate.EstateSold == true
 select estate;

 salemenGrid.DataSource = query.ToList();
 salemenGrid.DataBind();
 }
 }
}

204 Windows Azure Step by Step

Note that the code in Listing 8-3 does not catch any exception. It is fundamental to put the
code in a try/catch block before releasing the code in a production environment. The con-
nection string is read automatically by the constructor of the ObjectContext class, from which
the Entities model is derived.

After inserting some sample data with the tool of your choice (or manually, if you prefer),
test the code by pressing F5. The result is straightforward and should look similar, apart from
entity data, to the page shown in the next figure. I used Visual Studio 2010 Ultimate to popu-
late sample data in the database.

The layout and the fonts are far from perfect, but the example is very useful because it shows
you how the foreign keys are used in the Entity Framework. The support for the foreign key is
one of the new features of the Entity Framework 4.0.

You can try a different query to leverage the foreign key and navigation properties. Listing
8-4 shows a modified version of the previous query. This query extracts the value of the for-
eign key idEstateType of every estate that is already sold and has a salesman in the adminis-
trative role.

 Chapter 8 WCF Data Services and OData 205

LISTING 8-4 Default.aspx code-behind file with Linq to Entities query.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace DevLeap.WCFDataService
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Entities context = new Entities();

 var query = from estate in context.Estates
 where estate.EstateSold == true
 && estate.Salesman.SalesmanIsAdmin == true
 orderby estate.EstateType.EstateTypeDescription
 select estate.idEstateType;

 salemenGrid.DataSource = query.ToList();
 salemenGrid.DataBind();
 }
 }
}

Entity Framework makes the best effort to optimize the query by leveraging the underlining
data store engine. From a LINQ to Entities statement, the query is transformed in text using
the data source dialect (T-SQL, in the case of a SQL Server) and it is arranged by the Entity
Framework engine before it is passed to the database.

WCF Data Service
The underlying infrastructure is ready to be exposed by the service. If you are not familiar
with Entity Framework or other ORMs, you might be amazed by what you did in the previous
section. That was just the beginning! The most fun part is about to start.

Create a WCF Data Service

 1. Use the Add New Item wizard to add a WCF Data Service. The template is in the web
section of the screen and is shown as highlighted in the next figure. Assign the WCF Data
Service a meaningful name in the Name text box such as EstatesManagement.svc,
because this name is included in the path that the client has to use to reach the service.

206 Windows Azure Step by Step

 2. Open the generated code-behind file and give a value to the generic type of DataService
class from which your new EstatesManagement service derives. As you can see from the
comment in Listing 8-4, the class needs your data source class, meaning the name of
the class that represents your Entity Data Model. If you didn’t change the default name
shown in Figure 8-1, your class name should be Entities.

Now your service is ready, although by default, it does not expose anything yet for
security reasons. You have to explicitly give granular permission to every entity.

 3. Modify the first uncommented line of the InitilizeService static method to open your
service to the incoming request. For now, use an asterisk (*) as the first parameter of
the SetEntitySetAccessRule method and modify the value of the EntitySetRights enu-
meration. The resulting code is shown in Listing 8-5.

LISTING 8-5 Data Service code-behind file.

using System;
using System.Collections.Generic;
using System.Data.Services;
using System.Data.Services.Common;
using System.Linq;
using System.ServiceModel.Web;
using System.Web;

namespace DevLeap.WCFDataService
{
 public class EstatesManagement : DataService<Entities>
 {
 // This method is called only once to initialize service-wide policies.

 Chapter 8 WCF Data Services and OData 207

 public static void InitializeService(DataServiceConfiguration config)
 {
 // TODO: set rules to indicate which entity sets and service
 operations are visible, updatable, etc.
 // Examples:
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 config.SetServiceOperationAccessRule("*",
 ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }
 }
}

I introduce the SetServiceOperationAccessRule in the sections that follow. For now, leave it
commented and forget about it.

To test your work, open the new service in a browser of your choice by selecting View In
Browser from the shortcut menu that appears on the .svc file; or compile the solution, open
a browser, and request EstatesManagement.svc.

The result of opening your browser should be similar to the response screen shown in Figure
8-2. If you don’t see any XML but instead some beautiful representation similar to a feed, you
have to configure your browser to show the real XML response. In Windows Internet Explorer,
you can change this setting. From the Tools menu, open the Internet Options dialog box and
select the Content tab. In the Feeds And Web Slices section of this tab, you can find a button
named Settings. Click the Settings button and clear the Turn On Feed Reading View check
box. You may have to restart your browser. The menu or tab position of this configuration
changes from browser to browser, as well as changes depending on the version of a particular
browser.

The service, during the browser call, inspects the model and requests the conceptual schema,
showing the result in an AtomPub feed. From this feed, you can understand what collections
(Entity Set) of entities are exposed by the service and can refine the request by selecting just
what is wanted.

Each entity collection has an atom:tile XML element that represents the name of the entity
as well as an href attribute of the collection element, which provides the path to inspect the
entity set and query it.

208 Windows Azure Step by Step

FIGuRE 8-2 AtomPub result returned by a WCF Data Service call.

Try to change the URL of your request to include a specific request for the entity set named
Salesmen. You have to use something like the following:

http://localhost:port/EstatesManagement.svc/Salesmen

The response shown in Figure 8-3 is created automatically from the service you wrote. As you
can see, the feed XML element tells you that the infrastructure is using the standard way to
provide a feed to a requesting client. The xmlns refers to http://www.w3.org/2005/Atom and
confirms that you are using an OData-compatible protocol to represent the information. The
d and m namespaces inform the requesting client that you are talking to a data service with a
specification created by Microsoft for the ADO schema in August 2007.

The AtomPub feed contains a title element representing the name of the entity set, an id ele-
ment that refers to the path of the service, and an updated element containing the process-
ing date. After the feed definition, for each entity included in the entity set of the underlying
model, the data service composed an entry element containing several bits of information.

The WCF Data Service queried the underlying ADO.NET Entity Framework model that, in
turn, translated the salesmen request into a T-SQL statement and executed it against the
underlying database.

 Chapter 8 WCF Data Services and OData 209

The resulting query in the SQL Server Profiler is a common SELECT statement, which is shown
in Listing 8-6.

FIGuRE 8-3 Result from querying the Salesmen entity set.

LISTING 8-6 T-SQL statement for the salesmen entity set request.

SELECT
[Extent1].[idSalesman] AS [idSalesman],
[Extent1].[SalesmanPassword] AS [SalesmanPassword],
[Extent1].[SalesmanDescription] AS [SalesmanDescription],
[Extent1].[SalesmanIsAdmin] AS [SalesmanIsAdmin],
[Extent1].[LastEditDate] AS [LastEditDate],
[Extent1].[CreationDate] AS [CreationDate]
FROM [dbo].[tabSalesmen] AS [Extent1]

Each entry has some standard information coming from the AtomPub standard such as the
title type, the author of the feed, and a core part represented by the m:properties element
that shows every single property of the entity defined by EDM. By default, every entity prop-
erty is exposed and can be used by the client.

210 Windows Azure Step by Step

An important piece of information is contained in the id element, because this element
tells you how to reach the single entity from a URL. Try the URL http://localhost:yourport/
EstatesManagement.svc/Salesmen('A') to request the single entity with key A or whatever
key you have in your database.

If you try the link identified in the id element, the response should be similar to the figure
shown in Figure 8-4. In this case, you executed a query to the service asking for a particular
entity referenced by the key. The service queried the EDM that in turn executed the T-SQL
statement shown in Listing 8-7.

FIGuRE 8-4 Request for a single salesman entity.

LISTING 8-7 T-SQL statement for a single salesman request.

SELECT
[Extent1].[idSalesman] AS [idSalesman],
[Extent1].[SalesmanPassword] AS [SalesmanPassword],
[Extent1].[SalesmanDescription] AS [SalesmanDescription],
[Extent1].[SalesmanIsAdmin] AS [SalesmanIsAdmin],
[Extent1].[LastEditDate] AS [LastEditDate],
[Extent1].[CreationDate] AS [CreationDate]
FROM [dbo].[tabSalesmen] AS [Extent1]
WHERE N'A' = [Extent1].[idSalesman]

Remember that you are requesting entities defined in the EDM, not from the underlying table.
Every request uses an entity and an entity set name, and every response contains data that is
serialized in entries. The translation to a T-SQL statement is not performed by the service, but
rather from the Entity Framework engine.

 Chapter 8 WCF Data Services and OData 211

Query and Relationship
The last two elements of an entry element that I haven’t explained yet are link elements. You
use the first in the next section dedicated to the CUD operation; and you use the second to
reference the navigation properties of your entity. As you might remember from Figure 8-4,
because the salesman entity has a single navigation property, the corresponding entry shows
you that you can compose a URL to ask for the Estates of the Salesman.

The URL to compose is http://localhost:port/EstatesManagement.svc/Salesmen(‘A’)/Estates,
and the response will be a new feed with the title Estates, an id representing the URL you
asked for, and an entry for every estate of the salesman with the key equal to A. Figure 8-5
shows the result.

FIGuRE 8-5 Query for the estates entity set for a single salesman.

In Listing 8-8, you can see how the Entity Framework engine has translated your request into
an optimized T-SQL statement without doing any filter operation in memory. This approach
is the best to maintain the scalability of your solution.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

212 Windows Azure Step by Step

LISTING 8-8 T-SQL statement for navigation property request.

SELECT
[Extent1].[idEstate] AS [idEstate],
[Extent1].[idSalesman] AS [idSalesman],
[Extent1].[idEstateType] AS [idEstateType],
[Extent1].[EstateDescription] AS [EstateDescription],
[Extent1].[EstateAddress] AS [EstateAddress],
[Extent1].[EstateEuroPrice] AS [EstateEuroPrice],
[Extent1].[EstateNotes] AS [EstateNotes],
[Extent1].[EstateSold] AS [EstateSold],
[Extent1].[EstateImage] AS [EstateImage],
[Extent1].[EstateMetadata] AS [EstateMetadata],
[Extent1].[EstateGPSCoordinate] AS [EstateGPSCoordinate],
[Extent1].[SysTimestamp] AS [SysTimestamp]
FROM [dbo].[tabEstates] AS [Extent1]
WHERE N'A' = [Extent1].[idSalesman]

Every estate represented by entries in the resulting AtomPub feed has the same proper-
ties as the initial salesman, so you can ask for the salesman of every single estate, or for the
EstateType navigation property that implies another join in the database.

For exampe, try this request:

http://localhost:port/EstatesManagement.svc/Salesmen(‘A’)/Estates(737)/EstateType

This request receives the type of the first estate (with key 737) of your initial salesman (with
key A), as shown in Listing 8-9.

LISTING 8-9 AtomPub response for a request to a single EstateType.

 <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
 <entry xml:base="http://localhost:4684/EstatesManagement.svc/"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <id>http://localhost:4684/EstatesManagement.svc/EstateTypes('AAAAAAAAAAAAAAA
 AA')</id>
 <title type="text" />
 <updated>2010-07-21T11:27:15Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="EstateType" href="EstateTypes('AAAAAAAAAAAAAAAAA')" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Estates"
 type="application/atom+xml;type=feed" title="Estates"
 href="EstateTypes('AAAAAAAAAAAAAAAAA')/Estates" />

 Chapter 8 WCF Data Services and OData 213

 <category term="DevLeap.EstatesManagement.DB.SQL2005Model.EstateType"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:idEstateType>AAAAAAAAAAAAAAAAA</d:idEstateType>
 <d:EstateTypeDescription>KÒ4ÓjfôïvËnWBôÑØÙ6õÂ</d:EstateTypeDescription>
 <d:rowguid m:type="Edm.Guid">49d08682-4097-e4a3-95cf-ff46699c73c4</d:rowguid>
 </m:properties>
 </content>
 </entry>

The underlying query that translated to T-SQL from the Entity Framework engine is listed in
Listing 8-10.

LISTING 8-10 T-SQL for a double jump in the navigation property.

SELECT
[Extent2].[idEstateType] AS [idEstateType],
[Extent2].[EstateTypeDescription] AS [EstateTypeDescription],
[Extent2].[rowguid] AS [rowguid]
FROM [dbo].[tabEstates] AS [Extent1]
INNER JOIN [dbo].[tabEstateTypes] AS [Extent2] ON [Extent1].[idEstateType] =
[Extent2].[idEstateType]
WHERE (N'A' = [Extent1].[idSalesman]) AND (737 = [Extent1].[idEstate])

At first glance, the T-SQL statement seems strange because it is not necessary to filter for
idSaleman equals A; the query is already filtered by idEstates, which is the primary key of
the underlying tabEstates. In any case, this is not a problem related to the WCF Data Service,
because the translation from the EDM query to SQL is performed by the Entity Framework
engine. But when you think about the problem and realize that idEstate might not be unique,
the query becomes correct, and as a matter of fact, the query returns all the EstateType enti-
ties for estates with “idEstate equals 737 and idSaleman equals A”.

You can also request a single property of a single entry and, as usual, obtain the response
formatted in AtomPub. For example, try this request:

http://localhost:1185/EstatesManagement.svc/Salesmen('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')/
SalesmanDescription

The response is the description of the estate that has the key equal to 737 and is assigned to
the salesman with key A, as you can see in Listing 8-11.

214 Windows Azure Step by Step

LISTING 8-11 AtomPub response for a single property and related T-SQL.

--- AtomPub---
<?xml version="1.0" encoding="UTF-8" standalone="true"?>

<SalesmanDescription xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">hÍg
YÈÙWÙÛçÉÛÑTQOÕqÇdúî1ké7pôpóXfÍñoëçSgçGëg0wÑAÒî</SalesmanDescription>
--- T-SQL Statement ---

SELECT

[Extent1].[idSalesman] AS [idSalesman],

[Extent1].[SalesmanPassword] AS [SalesmanPassword],

[Extent1].[SalesmanDescription] AS [SalesmanDescription],

[Extent1].[SalesmanIsAdmin] AS [SalesmanIsAdmin],

[Extent1].[LastEditDate] AS [LastEditDate],

[Extent1].[CreationDate] AS [CreationDate]

FROM [dbo].[tabSalesmen] AS [Extent1]

WHERE N'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' = [Extent1].[idSalesman]

Before moving to the filtering and sorting section, I have to mention a useful technique. If
your objective is to analyze the data of every estate of every salesman using the code shown
in the previous examples, you will end up with a roundtrip for every estate: the code will
work but you will pay the latency on every request.

The WCF Data Service has a keyword to request the full entry of a related entity instead of
just the link. The keyword is expand=entity set, and it corresponds to the Include method of
the LINQ to Entities syntax.

This is a query requesting the estate entries for every salesman:

http://localhost:port/EstatesManagement.svc/Salesmen?$expand=Estates

The resulting response and the generated T-SQL statement is something similar to Listings
8-12 and 8-13.

 Chapter 8 WCF Data Services and OData 215

LISTING 8-12 AtomPub response for expanded related entity.

AtomPub

<entry>
 <id>http://localhost:9138/EstatesManagement.svc/Salesmen('A')</id>
 <title type="text" />
 <updated>2010-07-22T08:03:37Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Salesman" href="Salesmen('A')" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Estates"
 type="application/atom+xml;type=feed" title="Estates"
 href="Salesmen('A')/Estates">
 <m:inline>
 <feed>
 <title type="text">Estates</title>
 <id>http://localhost:9138/EstatesManagement.svc/Salesmen('A')/Estates</id>
 <updated>2010-07-22T08:03:37Z</updated>
 <link rel="self" title="Estates" href="Salesmen('A')/Estates" />
 <entry>
 <id>http://localhost:9138/EstatesManagement.svc/Estates(737)</id>
 <title type="text" />
 <updated>2010-07-22T08:03:37Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Estate" href="Estates(737)" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/EstateType"
 type="application/atom+xml;type=entry" title="EstateType"
 href="Estates(737)/EstateType" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Salesman"
 type="application/atom+xml;type=entry" title="Salesman"
 href="Estates(737)/Salesman" />
 <category term="DevLeap.EstatesManagement.DB.SQL2005Model.Estate" scheme="http://
schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:idEstate m:type="Edm.Int32">737</d:idEstate>
 <d:idSalesman>A</d:idSalesman>
 <d:idEstateType>AAAAAAAAAAAAAAAAA</d:idEstateType>
 <d:EstateDescription>Paolo Pialorsi Home</d:EstateDescription>
 <d:EstateAddress>Europe ways</d:EstateAddress>
 <d:EstateEuroPrice m:type="Edm.Decimal">300000.0000</d:EstateEuroPrice>
 <d:EstateNotes />
 <d:EstateSold m:type="Edm.Boolean">false</d:EstateSold>
 <d:EstateImage m:type="Edm.Binary" m:null="true" />
 <d:EstateMetadata m:null="true" />
 <d:EstateGPSCoordinate m:null="true" />
 <d:SysTimestamp m:type="Edm.Binary">AAAAAAABsZk=</d:SysTimestamp>
 </m:properties>
 </content>
 </entry>

216 Windows Azure Step by Step

LISTING 8-13 T-SQL for expanded related entity.

SELECT
[Project1].[C1] AS [C1],
[Project1].[idSalesman] AS [idSalesman],
[Project1].[SalesmanPassword] AS [SalesmanPassword],
[Project1].[SalesmanDescription] AS [SalesmanDescription],
[Project1].[SalesmanIsAdmin] AS [SalesmanIsAdmin],
[Project1].[LastEditDate] AS [LastEditDate],
[Project1].[CreationDate] AS [CreationDate],
[Project1].[C2] AS [C2],
[Project1].[idEstate] AS [idEstate],
[Project1].[idSalesman1] AS [idSalesman1],
[Project1].[idEstateType] AS [idEstateType],
[Project1].[EstateDescription] AS [EstateDescription],
[Project1].[EstateAddress] AS [EstateAddress],
[Project1].[EstateEuroPrice] AS [EstateEuroPrice],
[Project1].[EstateNotes] AS [EstateNotes],
[Project1].[EstateSold] AS [EstateSold],
[Project1].[EstateImage] AS [EstateImage],
[Project1].[EstateMetadata] AS [EstateMetadata],
[Project1].[EstateGPSCoordinate] AS [EstateGPSCoordinate],
[Project1].[SysTimestamp] AS [SysTimestamp]
FROM (SELECT
 [Extent1].[idSalesman] AS [idSalesman],
 [Extent1].[SalesmanPassword] AS [SalesmanPassword],
 [Extent1].[SalesmanDescription] AS [SalesmanDescription],
 [Extent1].[SalesmanIsAdmin] AS [SalesmanIsAdmin],
 [Extent1].[LastEditDate] AS [LastEditDate],
 [Extent1].[CreationDate] AS [CreationDate],
 1 AS [C1],
 [Extent2].[idEstate] AS [idEstate],
 [Extent2].[idSalesman] AS [idSalesman1],
 [Extent2].[idEstateType] AS [idEstateType],
 [Extent2].[EstateDescription] AS [EstateDescription],
 [Extent2].[EstateAddress] AS [EstateAddress],
 [Extent2].[EstateEuroPrice] AS [EstateEuroPrice],
 [Extent2].[EstateNotes] AS [EstateNotes],
 [Extent2].[EstateSold] AS [EstateSold],
 [Extent2].[EstateImage] AS [EstateImage],
 [Extent2].[EstateMetadata] AS [EstateMetadata],
 [Extent2].[EstateGPSCoordinate] AS [EstateGPSCoordinate],
 [Extent2].[SysTimestamp] AS [SysTimestamp],
 CASE WHEN ([Extent2].[idEstate] IS NULL) THEN CAST(NULL AS int) ELSE 1 END AS
[C2]
 FROM [dbo].[tabSalesmen] AS [Extent1]
 LEFT OUTER JOIN [dbo].[tabEstates] AS [Extent2] ON [Extent1].[idSalesman] =
[Extent2].[idSalesman]
) AS [Project1]
ORDER BY [Project1].[idSalesman] ASC, [Project1].[C2] ASC

 Chapter 8 WCF Data Services and OData 217

Filtering, Sorting, and Pagination
So far in this chapter, you tested your service by requesting the entire entity set as well as a
particular entity by requesting its key, but the WCF Data Services allows more refined que-
ries. You can ask the service to filter and sort data, and you can pass some parameters to
paginate the data server-side. Remember that every request is based on the entities and
properties of the EDM. The service translates the URL request to the Entity Framework que-
ries and, in turn, the Entity Framework engine translates them to a T-SQL statement to lever-
age database capabilities.

For instance, you can ask for the estates of a particular salesman requesting an ordering
clause on a field, such as EstateEuroPrice, as shown in the following:

http://localhost:port/EstatesManagement.svc/Salesmen(‘A’)/Estates?$orderby=EstateEuroPrice
desc

First, you need to use the question mark to separate the query string of the URL and, only
after that, express the query arrangement. The syntax to use is always defined by the WCF
Data Services schema, and it is translated into a query on the EDM by the service.

The result of your ordering request is just a normal list of entries with the order specified, and
the resulting T-SQL query is shown in Listing 8-14.

LISTING 8-14 T-SQL for an ordered request.

SELECT
[Extent1].[idEstate] AS [idEstate],
[Extent1].[idSalesman] AS [idSalesman],
[Extent1].[idEstateType] AS [idEstateType],
[Extent1].[EstateDescription] AS [EstateDescription],
[Extent1].[EstateAddress] AS [EstateAddress],
[Extent1].[EstateEuroPrice] AS [EstateEuroPrice],
[Extent1].[EstateNotes] AS [EstateNotes],
[Extent1].[EstateSold] AS [EstateSold],
[Extent1].[EstateImage] AS [EstateImage],
[Extent1].[EstateMetadata] AS [EstateMetadata],
[Extent1].[EstateGPSCoordinate] AS [EstateGPSCoordinate],
[Extent1].[SysTimestamp] AS [SysTimestamp]
FROM [dbo].[tabEstates] AS [Extent1]
WHERE N'A' = [Extent1].[idSalesman]
ORDER BY [Extent1].[EstateEuroPrice] DESC

Before analyzing how an application requests this data and how you can leverage the exist-
ing technologies (such as AJAX or LINQ) to request an OData to WCF Data Service, I want to
show you one of the parameters that is particularly useful for paginating a query. The query
can be any query that returns an entity set or a related entity set, with or without an orderby
clause; it can also contain a filter or any clause you’ve encountered in this chapter.

218 Windows Azure Step by Step

Try the following request that asks for page 3 of the Estates entity set, where every page is
made up of 20 estates. The underlying T-SQL query is arranged, as you can see in Listing 8-15:

http://localhost:9138/EstatesManagement.svc/Estates?$orderby=EstateEuroPrice
desc&$top=20&$skip=40

LISTING 8-15 T-SQL for a paginated request.

SELECT TOP (20)
[Extent1].[idEstate] AS [idEstate],
[Extent1].[idSalesman] AS [idSalesman],
[Extent1].[idEstateType] AS [idEstateType],
[Extent1].[EstateDescription] AS [EstateDescription],
[Extent1].[EstateAddress] AS [EstateAddress],
[Extent1].[EstateEuroPrice] AS [EstateEuroPrice],
[Extent1].[EstateNotes] AS [EstateNotes],
[Extent1].[EstateSold] AS [EstateSold],
[Extent1].[EstateImage] AS [EstateImage],
[Extent1].[EstateMetadata] AS [EstateMetadata],
[Extent1].[EstateGPSCoordinate] AS [EstateGPSCoordinate],
[Extent1].[SysTimestamp] AS [SysTimestamp]
FROM (SELECT [Extent1].[idEstate] AS [idEstate], [Extent1].[idSalesman] AS
[idSalesman], [Extent1].[idEstateType] AS [idEstateType], [Extent1].[EstateDescription]
AS [EstateDescription], [Extent1].[EstateAddress] AS [EstateAddress], [Extent1].
[EstateEuroPrice] AS [EstateEuroPrice], [Extent1].[EstateNotes] AS [EstateNotes],
[Extent1].[EstateSold] AS [EstateSold], [Extent1].[EstateImage] AS [EstateImage],
[Extent1].[EstateMetadata] AS [EstateMetadata], [Extent1].[EstateGPSCoordinate] AS
[EstateGPSCoordinate], [Extent1].[SysTimestamp] AS [SysTimestamp], row_number() OVER
(ORDER BY [Extent1].[EstateEuroPrice] DESC, [Extent1].[idEstate] ASC) AS [row_number]
 FROM [dbo].[tabEstates] AS [Extent1]
) AS [Extent1]
WHERE [Extent1].[row_number] > 40
ORDER BY [Extent1].[EstateEuroPrice] DESC, [Extent1].[idEstate] ASC

You can also use $filter to express a filter clause following the OData syntax. For instance, the
following request asks for every salesman with the property SalesmanIsAdmin equal to true.

http://localhost:9138/EstatesManagement.svc/Salesmen?$filter=SalesmanIsAdmin eq true

The filter clause can contain the classic operator to check for not equal (Ne), greater than (Gt),
and lower than (Lt), and it can express logical and and logical or operators.The OData pro-
posal also contains string operators like substringof, startswith, indexof, and replace.

WCF Data Service Client
You used a browser to request OData from the simplest WCF Data Service. You also created
an EDM to represent your domain model entities and then you created a new WCF Data
Service using the template proposed by Visual Studio 2010, adjusting the generic type to be
identical to the EDM class name.

 Chapter 8 WCF Data Services and OData 219

In the preceding procedure, you saw that Internet Explorer is very useful when you want to
understand the methods for requesting data by using the OData schema. Because every
modern platform exposes a way to request data via HTTP at some URL, you can use the plat-
form of your choice to build any query illustrated in this chapter.

For example, in the .NET Framework, you can use the HttpWebRequest class to ask something
via HTTP and use HttpWebResponse to analyze the response.

In a simple .NET Client (let’s say, a console application), you can use the standard class to
build the query.

Create a Simple Client

 1. Create a console application project in the same solution of your WCF Data Service.

 2. Copy the code in Listing 8-16 inside the main method.

 3. Change the port number to adapt it to your solution.

 4. Verify that the ASP.NET Development Server is running. You can start it using the View
In Browser option from the EstatesManagement.svc file.

As you can see in Listing 8-16, the Main method asks for the same result of the last query in
the previous section. The query asks for page 3 of the estates ordered by the Euro price with
a page size equal to 20 elements.

LISTING 8-16 Console application requesting raw data.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.IO;

namespace DevLeap.WCFDataService.ConsoleApp
{
 class Program
 {
 static void Main(string[] args)
 {
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(
 "http://localhost:9138/EstatesManagement.svc/Estates?
 $orderby=EstateEuroPrice desc&$top=20&$skip=40");

 request.Method = "GET";

 HttpWebResponse response = (HttpWebResponse)request.GetResponse();

 StreamReader reader = new StreamReader(response.GetResponseStream());

220 Windows Azure Step by Step

 StringBuilder output = new StringBuilder();

 output.Append(reader.ReadToEnd());

 Console.WriteLine(output.ToString());

 response.Close();

 Console.ReadLine();

 }
 }
}

The response is shown in Figure 8-6.

FIGuRE 8-6 Console application requesting raw data.

You can also change the response format (asking for a JSON response) that tells the service
what format you accept. Add the following line just after the HttpWebRequest method defini-
tion. The response is visible in Figure 8-7:

 request.Method = "GET";
 request.Accept = "application/json";

FIGuRE 8-7 JSON response in a console application.

 Chapter 8 WCF Data Services and OData 221

Using this technique, you can add a CUD operation to your console application. Because
the WCF Data Service uses the common OData pattern, you can pass the payload for these
operations as AtomPub, JSON, or XML, and choose the corresponding HTTP method. The
POST method is for adding a new entity, the MERGE method is for an update operation, and
DELETE is (not surprisingly) for deleting an entity.

You can modify the console application to update an estate entity, for instance, the 737 that
you saw in the previous section. The code in Listing 8-17 shows your console application
updating the address of an entity using a MERGE method. I included simple but effective
error logging to simplify the test process in case there are errors. If everything goes fine,
the response will be empty, otherwise, the WebException will provide the classic Message
property with a status code. You can also inspect the HTTP status code and response to fully
understand what happened during the service execution. Remember to change the port
number to your actual port.

LISTING 8-17 Code to request and update an entity.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.IO;

namespace DevLeap.WCFDataService.ConsoleApp
{
 class Program
 {
 static void Main(string[] args)
 {
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create("http://
 localhost:9138/EstatesManagement.svc/Estates(737)");

 // JSON payload
 string requestPayload = "{EstateAddress:'new highway'}";

 // HTTP MERGE to update
 request.Method = "MERGE";

 UTF8Encoding encoding = new UTF8Encoding();

 request.ContentLength = encoding.GetByteCount(requestPayload);

 request.Credentials = CredentialCache.DefaultCredentials;

 request.Accept = "application/json";
 request.ContentType = "application/json";

222 Windows Azure Step by Step

 using (Stream requestStream = request.GetRequestStream())
 {
 requestStream.Write(encoding.GetBytes(requestPayload), 0,
 encoding.GetByteCount(requestPayload));
 }

 try
 {
 // Send the request
 HttpWebResponse response = request.GetResponse() as HttpWebResponse;
 string responseBody = "";

 // Analize the response
 using (Stream rspStm = response.GetResponseStream())
 {
 using (StreamReader reader = new StreamReader(rspStm))
 {
 Console.WriteLine("Response Description: " +
 response.StatusDescription);
 Console.WriteLine("Response Status Code: " +
 response.StatusCode);

 responseBody = reader.ReadToEnd();

 Console.WriteLine("Response Body: " +
 responseBody);
 }
 }

 Console.WriteLine("Status Code: " +
 response.StatusCode.ToString());
 }
 catch (System.Net.WebException ex)
 {
 Console.WriteLine("Exception message: " + ex.Message);
 Console.WriteLine("Response Status Code: " + ex.Status);

 // Error details
 StreamReader reader =
 new StreamReader(ex.Response.GetResponseStream());
 Console.WriteLine(reader.ReadToEnd());
 }

 Console.ReadLine();
 }
 }
}

The code in Listing 8-17 requests the estates with a key equal to 737, constructs the payload
for updating the address in JSON format, and then requests the update with a MERGE opera-
tion to the service.

 Chapter 8 WCF Data Services and OData 223

Listing 8-18 shows the query executed in SQL Server. The first query corresponds to the first
request to the service, and the second query refers to the update operation.

LISTING 8-18 T-SQL code for a request and an update operation.

--- Request ---
SELECT
[Extent1].[idEstate] AS [idEstate],
[Extent1].[idSalesman] AS [idSalesman],
[Extent1].[idEstateType] AS [idEstateType],
[Extent1].[EstateDescription] AS [EstateDescription],
[Extent1].[EstateAddress] AS [EstateAddress],
[Extent1].[EstateEuroPrice] AS [EstateEuroPrice],
[Extent1].[EstateNotes] AS [EstateNotes],
[Extent1].[EstateSold] AS [EstateSold],
[Extent1].[EstateImage] AS [EstateImage],
[Extent1].[EstateMetadata] AS [EstateMetadata],
[Extent1].[EstateGPSCoordinate] AS [EstateGPSCoordinate],
[Extent1].[SysTimestamp] AS [SysTimestamp]
FROM [dbo].[tabEstates] AS [Extent1]
WHERE 737 = [Extent1].[idEstate]

--- Update ---
exec sp_executesql N'update [dbo].[tabEstates]
set [EstateAddress] = @0
where ([idEstate] = @1)
select [SysTimestamp]
from [dbo].[tabEstates]
where @@ROWCOUNT > 0 and [idEstate] = @1',N'@0 nvarchar(200),@1 int',@0=N'new
highway',@1=737

The presented examples in this chapter show you how to interact with the OData provided
by WCF Data Services in a standard and easy way. You can choose any platform that supports
HTTP to build a client for your service. All platforms can be used as clients for your OData/
WCF Service.

The .NET Framework Client
If your client is based on the .NET Framework, you can leverage the WCF client tools and APIs
to simplify the communication with the service.

Because a WCF Data Service is a specialized version of a classic WCF Service, you can just add
a service reference (using the Add Service Reference dialog box) to your service and forget
every detail about requests and responses, such as formatting the payload or analyzing error
codes.

With a classic service reference, you have a proxy that lets you create service requests and
inspect service responses in a simpler way. But this kind of service doesn’t expose the classic

224 Windows Azure Step by Step

methods and input/output parameters. A WCF Data Service can receive a query directly in
the URL, and the response is formatted accordingly. There are no fixed methods with fixed
responses. Thus, a classic WCF proxy is not very useful for wrapping this kind of request,
because the request itself does not have a fixed schema. The response is very difficult to ana-
lyze because the service can reply with different entities based on the query sent to it.

Visual Studio 2008 SP1 and Visual Studio 2010 have a modified version of the Add Service
Reference functionality that creates a special proxy to request a client version of the EDM to
the service. The dialog box is very similar to the one you are familiar with, as you can see in
Figure 8-8. You have to change the port number to reflect your development environment.

FIGuRE 8-8 WCF Data Service Add Service Reference dialog box.

You can simulate the same request using a special query string that contains the text
/$metadata. The service asks the Entity Framework for the conceptual model and creates a
response with entries that describe the model. The client receives just the conceptual model,
because the SSDL is completely useless without a connection to the database. Remember
that the client talks to the service via HTTP and cannot talk directly to the database or to
the server-side Entity Framework engine.

The same concept applies to the command-line tool. You cannot use SvcUtil.exe to create the
client proxy. Instead you have to use the WCF Data Service version called DataSvcUtil.exe.
This tool asks for the conceptual model and creates a local version of every entity exposed by
the service (remember that you can expose a subset of entities) as well as a class that repre-
sents the client data context. Visual Studio uses this utility behind the scenes.

The client version of the EDM is a file with the .edmx extension and is downloaded in the
Service Reference folder of the client project, as shown in the next figure. In the solution, I
added a new project to differentiate it from the previous example in which I used the HTTP
classes directly from code.

 Chapter 8 WCF Data Services and OData 225

The first task you can accomplish with your new proxy is use the DataServiceQuery class to
build queries against the service, leaving all the details about protocol and communication to
this class. You have to manually add a reference to the assembly named System.Data.Service.
Client, which contains everything a client needs to talk to a WCF Data Service.

Listing 8-19 contains the code for a new console application that requests the list of salesmen
and shows using the client DataContext class and DataServiceQuery class. Before running this
code, change the port number.

LISTING 8-19 DataContext and DataServiceQuery classes.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.Services.Client;
using DevLeap.WCFDataService.ConsoleWithServiceReference.ServiceReference;

namespace DevLeap.WCFDataService.ConsoleWithServiceReference
{
 class Program
 {
 static void Main(string[] args)
 {
 Entities ctx = new Entities(new Uri("http://localhost:9138/
 EstatesManagement.svc"));

 DataServiceQuery<Salesman> query = ctx.CreateQuery<Salesman>("Salesmen");

 foreach(Salesman s in query)

226 Windows Azure Step by Step

 {
 Console.WriteLine(s.SalesmanDescription);
 }

 Console.ReadLine();

 }
 }
}

You can express the OData Include behavior using a safer method exposed by
DataServiceQuery to prefetch a related instance instead of making too many roundtrips. For
instance, you can ask the service to include an entry for every single estate of each salesman
by using the code in Listing 8-20.

LISTING 8-20 Expand/Include to avoid a deferred query.

DataServiceQuery<Salesman> queryInclude =
ctx.CreateQuery<Salesman>("Salesmen").Expand("Estates");

foreach (Salesman s in query)
{
 Console.WriteLine(s.SalesmanDescription);
 foreach (Estate e in s.Estates)
 {
 Console.WriteLine(e.EstateDescription);
 }
}

Console.ReadLine();

Updating an entry with the classes exposed by the proxy is very simple and does not require
a full understanding of the underlying protocol. The DataContext class is very similar to the
one exposed by Linq to SQL or the Entity Framework, because it works in a disconnected
fashion, letting the user add, update, or remove an entity and then propagate the changes
back when the code invokes the SaveChanges method.

For example, you can ask for the list of salesmen, inspect some properties using type safe
code, make an offline change, and then propagate only these modifications to the service,
which, in turn, creates a server Data Context, inserts the deserialized entities into it, and
finally, asks Entity Framework to update the data source. This process is completely transpar-
ent to you. The client code is shown in Listing 8-21.

 Chapter 8 WCF Data Services and OData 227

LISTING 8-21 Entity update.

DataServiceQuery<Salesman> querySingle =
ctx.CreateQuery<Salesman>("Salesmen");

foreach (Salesman s in query)
{
 Console.WriteLine(s.SalesmanDescription);
 s.SalesmanIsAdmin = false;
}

ctx.SaveChanges();

Console.ReadLine();

The DataServiceQuery class implements the IEnumerable interface and the generic version
IEnumerable<T>, as you may have noticed from the sample presented. This class also imple-
ments the IQueryable<T> interface, so the client data context exposes a way to query the
data context with LINQ queries. These queries are translated into an expression tree that is
evaluated and transformed into a WCF Data Service request over the wire when the query is
first executed.

You can use the LINQ syntax to express a query, as in Listing 8-22, remembering that every
LINQ provider has different support for particular methods. For instance, the first version of
ADO.NET Data Services doesn’t support the method Count, nevertheless, the compiler can-
not stop you from running the application as the IQueryable interface exposes it.

LISTING 8-22 LINQ to WCF Data Services (client side).

var linqQuery = from salesman in ctx.Salesmen
 from estate in salesman.Estates
 where salesman.SalesmanIsAdmin == true
 orderby estate.EstateEuroPrice descending
 select new { Dex = estate.EstateDescription };

foreach (var e in linqQuery)
{
 Console.WriteLine(e.Dex);
}

Console.ReadLine();

228 Windows Azure Step by Step

Security Introduction
In this section, I introduce some important concepts regarding the security mechanism
exposed by WCF Data Services.

An important concept to discuss is not a WCF Data Service feature. However, because a
service is exposed as an ASP.NET application, every rule that applies to ASP.NET pages and
services can be applied to a data service. For example, you can use Windows authentication
for services exposed on the intranet, or whenever you have a domain that contains users and
groups. In this scenario, you can also use digital certificates in the same way you would any
other ASP.NET application.

If you want to expose your service on the Internet and protect it with credentials, you can
leverage the .NET Security Principal in the way you prefer. For example, you can use the
membership and role manager standard ASP.NET provider if you have a simple service, or
you can create a custom provider to use your own storage technique. In case you decide to
use the membership and role manager, it is important to disable (or, at least, to not use) the
Forms Authentication mechanism because it redirects the request to a login page that is use-
less in a service request. The client must provide the credential in every request.

If you do not want to use the membership and role manager provider because they are not
suitable for your scenario, you can leverage the underlying GenericPrincipal or create a cus-
tom principal to adhere to the .NET Framework security pillars. You can also integrate your
solution with other trusted identity providers by using custom code or frameworks such as
Windows Identity Foundation.

These scenarios are possible because a WCF Data Service can be hosted in an on-premises
ASP.NET application or can be moved to the cloud. If you resolve to maintain your solution
in an on-premises infrastructure, you can use the Internet Information Services (IIS) Windows
Activated Service (WAS) to automate the activation of the engine or, even better, you can
leverage the Windows Server AppFabric to simplify the management operations.

A WCF Data Service has two other ways to protect access to an entire entity set or to a
single entity or a subset. In the examples at the beginning of this chapter, you saw the
InitializeService static method, and you uncommented the first line to open your entity data
model to every request that could reach the service. This internal mechanism can be used to
specify access criteria for a single entity set. For example, you can make the salesmen entity
readable, make the estates entity set updatable, and completely hide the other entity sets.

 Chapter 8 WCF Data Services and OData 229

The enum EntitySetRights listed in Table 8-1 shows the various permissions of a single
entity set.

TABLE 8-1 EntitySetRights Enumeration

Entity Right Description
All All operations are permitted.

AllRead Read operations are permitted.

AllWrite Read and write operations are permitted.

None Denies all rights to access data.

ReadMultiple Permission to read multiple data as in queries for different entities.

ReadSingle Only access to single entity is permitted. The request for the entity
set will be denied.

WriteAppend Authorization to create a new entity in the entity set.

WriteDelete Authorization to delete an entity.

WriteMerge Authorization to update the data. Merge is referred to the Http
method used to update the data.

WriteReplace Authorization to replace data.

The keyword * indicates that a right is assigned to every entity set.

When the client requests an operation not permitted by an access rule, the code receives a
DataServiceException exception.

Every service exposes only the operations available on the EDM with some restrictions
imposed by the client provider. You can also add some methods to your service to extend
its functionality and let the client invoke the methods, because the metadata description
instructs the proxy generator (DataSvcUtil.exe) to create a client method in the generated
class.

The interesting thing about a new service operation is that it can have two kinds of secu-
rity implications. The first is the simpler of the two, because it implies the definition of a
ServiceOperationAccessRule in the same way the EntitySetRights does. For every operation,
you can instruct the service how to respond to the client request. You can expose an opera-
tion, protect it as you want, and let the code verify the request before executing it. An opera-
tion is defined by code, so you can define whatever security logic you need. The complete set
of rules for a service operation is listed in Table 8-2.

230 Windows Azure Step by Step

TABLE 8-2 EntitySetRights Enumeration

Entity Right Description
All No restriction on service operations.

AllRead Authorization to read single entity and complete entity sets
returned by the service operation.

None The service operation is not accessible.

ReadSingle Only access to single entity is permitted by the service operation.

ReadMultiple The service operation does not restrict access to an entity set.

OverrideEntitySetRights The service operation rights override the permission defined by the
entity set access rule.

You can also define a new service operation by adding a method to the class that represents
the WCF Data Service and assigning the classic WebGet attribute to it.

Listing 8-23 shows two different security mechanisms applied in a newly defined service
operation. You can use this code directly in the WCF Data Service you created at the begin-
ning of the chapter.

LISTING 8-23 Service Operations added to the WCF Data Service.

public class EstatesManagement : DataService<Entities>
{
 // This method is called only once to initialize service-wide policies.
 public static void InitializeService(DataServiceConfiguration config)
 {
 // Examples:
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 config.SetServiceOperationAccessRule("SalesmanAdmin",
 ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }

 [WebGet]
 public IQueryable<Salesman> SalemanAdmin()
 {
 if (!Thread.CurrentPrincipal.IsInRole("Admin"))
 throw new DataServiceException("You cannot access this method");

 return this.CurrentDataSource.Salesmen;

 }

 [WebGet]
 public IQueryable<Salesman> SalemanForManager()
 {
 if (!Thread.CurrentPrincipal.IsInRole("Manager"))

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 8 WCF Data Services and OData 231

 return this.CurrentDataSource.Salesmen.Where(s => s.Estates.Count < 100);

 return this.CreateDataSource().Salesmen;

 }
}

In Listing 8-23, the first service operation, named SalesmanAdmin, exposes the complete
salesmen entity set only to users in the Admin role. The code is straightforward: it checks the
role of the user using the standard .NET Framework technique to raise a DataServiceException
(or a Security Exception, if you prefer) when the user doesn’t have the correct permission. To
access an entity set from a service operation, you have to use the CurrentDataSource prop-
erty exposed by the base class of your service.

The second operation shown in Listing 8-23 illustrates a smart technique to filter data for a
particular group of users and can be used for every check you need to perform in a solution.
You just check the role and leverage the IQueryable interface of the EntitySet class to apply a
filter on the salesmen entity set: for instance, when the user is not a manager, he cannot see
any salesman with more than 100 estates assigned.

A similar result can be achieved with another feature of the WCF Data Service base class that
is called the query interceptor. When a request comes in, it is up to the service to inspect the
code to find a method with the QueryInterceptorAttribute attribute and execute the method
before passing the query to the Entity Framework engine. The query interceptor replies to
the request, returning an Expression<Func<EntitySet, Boolean>> in which you can express
your filter to apply a security algorithm. The returned value is used by the service to enrich
the query that will be applied to the EDM.

In Listing 8-24, I applied a different security filter to the salesmen entity set, checking whether
the user identity contains the string Roberto. The code returns a lambda expression that
selects the nonadministrative salesmen.

LISTING 8-24 QueryInterceptor.

 [QueryInterceptor("Salesmen")]
 public Expression<Func<Salesman, Boolean>> OnQuerySalemen()
 {
 if (HttpContext.Current.User.Identity.Name.Contains("Roberto"))
 return s => s.SalesmanIsAdmin == false;
 else
 return s => true;
 }

You can also define a query interceptor for CUD operations so that you can selectively
choose which users and roles can perform a given operation.

232 Windows Azure Step by Step

Summary
OData is an emerging protocol for querying and updating data using HTTP, JSON, and Atom
Publishing Protocol (AtomPub). Microsoft supports OData with ADO.NET Data Services in
.NET Framework 3.5 and WCF Data Services in .NET Framework 4.

Quick Reference
To Do this
Build a query Use the OData protocol.

Build an Entity Data Model Use Linq To SQL or Entity Framework model capabilities, or
implement the IQueryable<T> interface on your business model.

Create a client service agent Use the Add Service Reference dialog box to create the proxy
and the service-agent entities.

Use WCF Data Services from
other platforms

Use the REST/HTTP request using the OData protocol syntax.

Use JSON instead of XML to
enable JavaScript client

Set the Accept HTTP header to application/json.

 233

Chapter 9

Using SQL Azure
After completing this chapter, you will be able to

■ Create a virtual server by using the portal.

■ Create administrative and normal users.

■ Create databases and configure firewall rules.

■ Connect to and use a SQL Azure database from applications.

■ Use management tools to administer a database.

The preceding chapters showed how Windows Azure provides a scalable and fault-tolerant
environment that lets you create powerful applications without having to purchase and con-
figure hardware and operating systems. This chapter is dedicated to one of the most impor-
tant features of the platform: Microsoft SQL Azure.

Chapter 4, “Windows Azure Storage,” discussed how the Table Service can be a powerful
storage solution for cloud and on-premises applications. You can access a storage account
via HTTP by using any platform code that is able to understand the REST protocol. Certainly,
this way of storing and retrieving data is very interesting—but it is also very far away from a
classic solution based on a relational database.

When you have an existing solution and you want to port it to the cloud, the easiest approach
is to use the same technology you used in the project and, most importantly, the same data
access methodology. SQL Azure lets you do this with little or no modification of your existing
code.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

234 Windows Azure Step by Step

SQL Azure Features
Microsoft’s goals for the first version of SQL Azure were to provide a basic set of services
for both cloud and on-premises applications. Notice in this statement the descriptor “on-
premises.” It suggests this important concept: that SQL Azure is accessible not only via
Windows Azure–hosted applications, but (with varying levels of latency) from anywhere
in the world.

The second thing to notice in that statement is that SQL Azure doesn’t have all of the same
features as Microsoft SQL Server on-premises applications. Some of those features are not
useful in a cloud environment, some will be released in future versions, and others will be
supplied by third parties.

The set of features in the first version of SQL Azure is called “Core SQL Server database capa-
bilities.” This release provides only the database capabilities. It does not contain the Analysis
Service engine or the Merge or Transactional Replication engines. You cannot create Online
Analytical Processing (OLAP) cubes in the cloud by using this first version—but you can pull
data out from the relational database engine and create and process cubes locally.

The second big on-premises SQL Server component lacking in the first version of SQL Azure
is Reporting Services. You can currently use a community technical preview (CTP) of SQL
Azure Reporting that can consume SQL Azure databases. At the time of this writing, this is
how Microsoft describes the service currently available in the CTP (Microsoft Corporation,
Windows Azure website, 2011, http://www.microsoft.com/en-us/SQLAzure/reporting.aspx):

Microsoft SQL Azure Reporting lets you use the familiar on-premises tools you’re
comfortable with to develop and deploy operational reports to the cloud. There’s no
need to manage or maintain a separate reporting infrastructure, which leads to the
added benefit of lower costs (and less complexity). Your customers can easily access
the reports from the Windows SQL Azure portal, through a web browser, or directly
from your applications.

Although SQL Azure Reporting is not yet commercially available, you can register to be
invited to the community technology preview.

SQL Azure Data Sync will be the replacement for some features of the Replication engines
provided by the on-premises version of SQL Server. Again, this technology is actually in
CTP1. By the time you read these pages, CTP2 will likely be available. The idea is to extend
enterprise data to the cloud, moving the workload to Windows Azure, which will provide a
data synchronization engine built on the well-known Microsoft Sync Framework. The rep-
lica can be bidirectional, that is, moving both to and from on-premises servers and mobile
computers.

Apart from these features, the SQL Azure engine is very similar to the familiar SQL Server
database engine. At the time of this writing, here is Microsoft’s description of it (Microsoft

 Chapter 9 Using SQL Azure 235

Corporation, Windows Azure website, 2011, http://www.microsoft.com/en-us/sqlazure
/database.aspx):

Microsoft® SQL Azure™ Database is a cloud-based relational database service
built on SQL Server® technologies. It is a highly available, scalable, multi-tenant
database service hosted by Microsoft in the cloud. SQL Azure Database helps to
ease provisioning and deployment of multiple databases. Developers do not have to
install, setup, patch or manage any software. High availability and fault tolerance is
built-in and no physical administration is required.

Customers can use existing knowledge in T-SQL development and a familiar rela-
tional data model for symmetry with existing on-premises databases. Additionally,
customers can get productive on SQL Azure quickly by using the same development
and management tools they use for on-premises databases.

Microsoft is using a modified version of the SQL Server engine to provide a highly available
and scalable database service on the Windows Azure Platform. SQL Azure supports T-SQL, so
you can use almost any technology that produces queries, such as original equipment manu-
facturers (ORMs), against a database in the cloud.

The benefits of using a cloud-based relational solution are the same as the benefits offered
by the rest of the platform:

■ No hardware is required.

■ No physical installation is required.

■ Patches and updates are applied automatically.

■ High availability and fault tolerance are built in.

■ Provisioning is simple and you can deploy multiple databases.

■ Databases can be scaled up or down based on business needs.

■ The infrastructure supports multitenancy.

■ There is integration with existing SQL Server tools and technologies.

■ Support for T-SQL is based on the familiar relational database model.

■ You have the option for the pay-as-you-go pricing.

SQL Azure Database Access
To access a SQL Azure database from the Microsoft .NET Framework code, you can use stan-
dard ADO.NET: the SqlCommand class to define a command, a SqlDataReader to pull data
out, or SqlDataAdapter, because internally SQL Azure uses a SqlDataReader in a traditional
manner. You only have to adapt the SqlConnection class’s connection string. After you change
it to the cloud version of the server, you just log on.

236 Windows Azure Step by Step

The code in Listing 9-1 reads the customerId field for every row in the customers table by
using the oldest .NET Framework code.

LISTING 9-1 Classic ADO.NET code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data.SqlClient;
using System.Data;

namespace TAServices
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 try
 {
 using (SqlConnection conn = new SqlConnection())
 {
 conn.ConnectionString = "some connection string";
 using (SqlCommand cmd = new SqlCommand())
 {
 cmd.Connection = conn;
 cmd.CommandText = "SELECT CustomerID from customers";
 conn.Open();

 using (SqlDataReader dr = cmd.ExecuteReader(
 CommandBehavior.CloseConnection))
 {
 while (dr.Read())
 {
 // Do something
 }
 dr.Close();
 }
 }
 }
 }
 catch (SqlException ex)
 {
 // Something goes wrong
 }
 }
 }
}

 Chapter 9 Using SQL Azure 237

The classic connection string for a trusted SQL connection is something similar to the follow-
ing code:

Server=myServer;Database=myDb;Trusted_Connection=Yes;

If you are using a standard SQL connection instead of a trusted one, you have to modify the
connection as shown in the following code:

Server=myServer;Database=myDb;Trusted_Connection=Yes; User
 ID=user;Password=password;Trusted_Connection=False;

With SQL Azure, the connection cannot be a trusted connection, because the client machine
will be always in a different domain than SQL Azure. SQL Azure cannot be in a user domain.

As you learn in the next section, when you create a virtual server to host your database in the
cloud, you receive a server name. You can then modify your connection string accordingly:

Server=tcp:VirtualServerName.database.windows.net;
 Database=myDb;Trusted_Connection=Yes; User
 ID=user@VirtualServerName;Password=password;Trusted_Connection=False;

The two modifications shown in boldface are the server address and the format of the User
ID setting. As stated in the previous paragraph, the VirtualServer name is assigned by the
platform when you complete the Create Server wizard. The user format is different because
the connection is opened to a front-end node that needs to validate the user to let the con-
nection reach the real server.

You can also use LINQ to SQL or Entity Framework in both .NET Framework 3.5 and 4 from
either a Windows Azure hosted service or an on-premises solution. NHibernate and other
ORMs also work if they use ADO.NET. When used with Entity Framework, the connection will
be similar to the following code:

metadata=res://*/ Model.csdl|res://*/ DataModel.ssdl|res://*/DataModel.msl;
provider=System.Data.SqlClient;provider connection string="Data
Source=VirtualServerName.database.windows.net;Initial Catalog=MyDB;Integrated
Security=False;User ID=user@VirtualServerName;Password=password;
MultipleActiveResultSets=False;Encrypt=True;TrustServerCertificate=False""
providerName="System.Data.EntityClient"

This connection string is essentially identical to the classic version; you just have to modify
the server pointer and the user name value. Modifications in the preceding code are in
boldface.

Other platforms can also access SQL Azure using native ODBC code and its variants, such as
JDBC from the Java environment. Compared to a traditional on-premises solution, you have
to adapt the connection string similarly to the ADO.NET managed provider version, but you
can use your existing JDBC:SQLServerDriver. You can also use Hibernate on the Java platform
because it can use the SQL Server JDBC Driver.

238 Windows Azure Step by Step

The code that follows is an example of this kind of connection that points to the same data-
base as the previous connection. The highlighted code shows the differences between the
code for SQL Server and the code for SQL Azure:

hibernate.connection.driver_class=com.microsoft.sqlserver.jdbc.SQLServerDriver
hibernate.connection.url=jdbc:sqlserver://VirtualServerName.database.windows.net:1433;
 databaseName=mydb
hibernate.connection.username=user@VirtualServerName
hibernate.connection.password=password

Hypertext Preprocessor (PHP) is another environment that can access SQL Azure, following
much the same pattern. You change the connection string and then open the connection:

$server = "tcp:VirtualServerName.database.windows.net,1433";
$user = "User@VirtualServerName";
$pass = "password";
$database = "MyDB";
$connectionoptions = array("Database" => $database,
 "UID" => $user,
 "PWD" => $pass,
 "MultipleActiveResultSets" => false);
$conn = sqlsrv_connect($server, $connectionoptions);

You’ve seen now how to connect to a database in the cloud. The next section describes how
to create a virtual server, assign an administrative account, and then create a database.

Database Server Creation in the Cloud
The first operation when planning a database in the cloud is creating the server, which you
can do using the portal. From the Windows Azure home page, click the Account section,
just as you have done in previous chapters. From the Account page, you can access the SQL
Azure Developer Portal.

Create a Virtual Server

You can create a virtual server without worrying about payment, because you aren’t charged
until you create a database on that virtual server.

 1. Log on to the portal using your Windows Live ID account. Choose the Database section
from the lower-left toolbar. Your subscriptions will appear on the top-left pane. The fol-
lowing figure shows the page containing my subscriptions.

 Chapter 9 Using SQL Azure 239

Tip Give meaningful names to the subscription you buy in the Billing Portal, because the
Windows Azure Portal, the Windows Azure AppFabric Portal, and the SQL Azure Portal let
you choose the project only by name.

 2. Choose the project or subscription you want to use to create the database.

 3. If this is the first Virtual Server you created in the project, you may have to accept the
Terms Of Use by clicking the I Accept button.

 4. Click the Create button in the top toolbar to start the Create Server wizard shown in
the next figure. The first step in the wizard lets you choose the region where you want
your virtual server to be hosted.

240 Windows Azure Step by Step

 5. Choose the region you prefer, and then click the Next button.

 6. Type myAdmin as your Administrator Login and aZureStep_Step as the password, and
then click the Next button. The following figure shows the second step of the wizard.

 Chapter 9 Using SQL Azure 241

 7. In the last page of the wizard, leave all the fields set to their default values, and click the
Finish button.

If you followed these steps, you will be redirected to the Subscription Information page that
shows you the server name, the administrator name, and the location you selected, as you
can see in Figure 9-1.

FIGuRE 9-1 Subscription Information page.

You have now created a virtual server that can host different databases. The server name is
autoassigned, and you must use it in the connection string for both the Data Source and the
User ID parameters, as discussed in the previous section.

From the Subscription Administration page, you can also drop the virtual server if you want
to delete it, and you can reset the administrator password whenever you want.

The administrator represents the highest user level. An administrator can be compared to the
famous System Administrator (sa) in SQL Server. This user can administer the server, create
new databases, log on to all databases hosted in this virtual server, and so on.

Figure 9-1 shows the master database, which has the important function (as it does in the on-
premises version as well)—of storing system objects and tables.

242 Windows Azure Step by Step

Create a Database

After requesting the virtual server, you can create a database. Each database is billed based
on its size. In other words, there’s no difference in cost between creating a single virtual
server in a subscription with five databases and creating five virtual servers in five different
subscriptions with just one database in each.

You are charged based on database instances per month. Various database editions are
available to fulfill different needs. For example, the Windows Azure Platform Development
Accelerator Extended edition offers a 10-GB database at a discounted price together with
one instance of a hosted service. There is also a SQL Azure Development Accelerator Core
that offers a 10-GB database at a discounted price.

Note You are charged only for the data you store in your database. Transaction logs and system
objects are not taken into account for billing purposes.

Depending on your Windows Azure subscription, you have particular database creation
rights. For example, a user with a Development Accelerator Extended account cannot create
a 50 GB database.

Note Pricing and policies can vary over time. I suggest you verify in the billing system which
options are available when you create your subscription.

 1. Double-click the subscription in the upper-left pane, and then click the virtual server
you created in the “Create a Database” procedure.

 2. Click the Create button in the upper toolbar. Do not click the Create button you used
in the previous procedure. (If you selected the virtual server correctly, the button is
unavailable). The following figure shows the Create Database dialog box.

 Chapter 9 Using SQL Azure 243

 3. Type myDB for the database name, and choose the edition and a corresponding size to
suit your needs. The Web edition lets you choose from 1 GB and 5 GB database sizes,
whereas the Business edition lets you create a database up to 50 GB.

 4. Click OK to create the database. The operation takes just a few seconds.

After following these steps, the page presents you with your new database. Figure 9-2 shows
a real server with the production database that stores the data for the Save The Planet
Windows Phone 7 application. I obscured some sensitive details.

At this point, you have all the information you need to adapt the connection string to your
database in the cloud. Follow the connection string guidelines in the section “SQL Azure
Database Access” earlier in this chapter.

244 Windows Azure Step by Step

FIGuRE 9-2 A real database in production.

All communication between SQL Azure and your application requires encryption: Secure
Socket Layer (SSL). If the client application does not validate certificates upon connection,
your connection to SQL Azure can be subject to classic "man-in-the-middle" attacks. SSL
secures the connection by validating the server certificate and then encrypting all traffic.

If you do not specify Encrypt=true in the connection string, the connection and data are still
encrypted, but they may not validate the server certificates and would thus be susceptible
to the same types of attacks. To validate certificates with ADO.NET, set Encrypt=True and
TrustServerCertificate=False in the database connection string.

Microsoft SQL Server Management Studio R2 also supports certificate validation. You have
to set Encrypt Connection in the Connection Properties dialog box. SQLCMD.exe supports
encrypted connections starting with Microsoft SQL Server 2008 R2. You can use the -N
command-line option.

Before you can connect a client to the SQL Azure database, you need to perform another
small step: opening the firewall to the remote machine.

Configure the Firewall

Firewall configuration is often a pain point when building on-premises solutions, but this
procedure shows how you can configure firewall settings in only a minute with SQL Azure.

 Chapter 9 Using SQL Azure 245

You need to know that the SQL Azure service is available only through TCP port 1433. It
cannot be reached (in this first version) via named pipes or other protocols. To access a SQL
Azure database from a client application hosted in your local area network, ensure that your
firewall allows outgoing TCP communications on TCP port 1433.

 1. In SQL Azure, click the Firewall Rules button from the Server Information Page.

 2. To allow connections from a Windows Azure hosted service (a Web or Worker Role),
select the Allow Other Windows Azure Services To Access This Server check box.

 3. If you need on-premises access or mobile access, you must add a corresponding rule
by clicking the Add button.

 4. Give the rule a meaningful name and insert the range of IP addresses that can access
the virtual server. The modal dialog box shows your current IP address, which must
be inserted in the rule when you want to connect to the database with SQL Server
Management Studio.

 5. Click the OK button.

Figure 9-3 shows the MicrosoftServices rule that is automatically created whenever you select
the Allow Other Windows Azure Services To Access This Server check box, and a custom rule
named All that ranges from the 1.1.1.1 IP address to the 255.255.255.255 IP address.

FIGuRE 9-3 Firewall rules.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

246 Windows Azure Step by Step

SQL Azure Access
The steps for building and using a SQL Azure database, as you have learned so far, are the
following:

 1. Create a virtual server from the portal. When you do that, the infrastructure provides
you with a server name automatically.

 2. Choose an administrative account and a password.

 3. Create a database, providing the name and the maximum size.

 4. Define applicable firewall rules.

Think for a moment about the steps involved in building a traditional on-premises solution.
The process typically starts with hardware selection and includes the licensing considerations
for both the operating system and the database engine. Consider as well the installation
steps required for a SQL cluster, and the security issues that emerge—even in a simple sys-
tem. With SQL Azure, you can forget almost all of these concerns. You can pay just $9.00 per
month (7.5 euros) for a scalable, redundant database where you can store up to 1 GB of data
that you can access securely from anywhere in the world.

Now that your database is ready, you can use your traditional ADO.NET or ODBC code by
changing only the connection string. If you are configuring a classic on-premises solution, you
probably change the connection string in the connectionString section of your App.config or
Web.config file, but you can also use a different mechanism if you like.

If the client application is a Web Role or a Worker Role (or both), remember to store the con-
nection string in the service configuration files. Do not use the Web.config or App.config files
in this scenario, because you cannot modify them without redeploying the entire solution to
Windows Azure.

To add the connection string parameter to the service configuration, you can either use
Microsoft Visual Studio or manually add the XML elements to the configuration files. If you
decide to use Visual Studio, remember to choose String as the type for the parameter setting,
as shown in the following figure.

 Chapter 9 Using SQL Azure 247

The setting type Connection String is dedicated to connections to in storage account projects
and is used by the StorageClient APIs to build the correct URLs for blobs, tables, and queues.

If you prefer to modify the ServiceConfiguration.cscfg file manually, remember to add the
configuration settings to the service definition file before assigning the settings values in the
service configuration file.

Listing 9-2 shows the service definition for a Web Role named WebRole1, with a setting
named myDBConnectionString. The service definition contains just the definitions for the
various parameters.

LISTING 9-2 ServiceDefinition.csdef.

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="DevLeapCloudService" xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceDefinition">
 <WebRole name="WebRole1">
 <InputEndpoints>
 <InputEndpoint name="HttpIn" protocol="http" port="80" />
 </InputEndpoints>
 <ConfigurationSettings>
 <Setting name="myDBConnectionString" />
 </ConfigurationSettings>
 </WebRole>
</ServiceDefinition>

Listing 9-3 presents the value assignments for the ServiceConfiguration.cscfg.

LISTING 9.3 ServiceConfigurtion.cscfg.

<?xml version="1.0"?>
<ServiceConfiguration serviceName="DevLeapCloudService" xmlns="http://schemas.
microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">
 <Role name="WebRole1">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting name="myDBConnectionString"
 value="Server=tcp:VirtualServerName.database.windows.net;
 Database=myDb;Trusted_Connection=Yes; User ID=user@VirtualServerName;
 Password=password;Trusted_Connection=False" />
 </ConfigurationSettings>
 </Role>
</ServiceConfiguration>

248 Windows Azure Step by Step

To change the connection string, you can use the developer portal—without redeploying the
entire solution to Windows Azure.

If you created the structure of your tables, views, and stored procedures in the cloud data-
base instance, you can use Visual Studio to connect to them using the same connection
string information. In fact, you can use any Visual Studio tool that uses a connection string to
connect to a SQL Azure database. For example, you might build your Entity Data Model by
connecting the designer to the SQL Azure database.

The following figure shows the classic Visual Studio Add Connection dialog box connecting
to the SaveThePlanet database in my SQL Azure virtual server.

When the connection is defined, any Visual Studio tool that uses a database can work against
SQL Azure database instances. The following figure shows the SaveThePlanet.Person table
structure and data inside the traditional Visual Studio 2010 IDE.

 Chapter 9 Using SQL Azure 249

You can also use SQL Management Studio R2 to manage database objects such as tables,
views, and stored procedures, as well as logons, users, and groups. Finally, you can use the
Query Analyzer to query and manage data.

The following figure shows the Connect To Server dialog box.

250 Windows Azure Step by Step

After making a successful connection, SQL Server Management Studio R2 presents the list of
databases on the virtual server, shown in the following figure, and you make data requests
using the traditional query window.

Object Explorer presents a slightly different set of information:

■ It lacks the entire Server Object tree because SQL Azure doesn’t support Linked Servers
or Backup Devices.

■ The Management tree contains just the Data-Tier application menu. There are
no Database Mail, Distributed Transaction Coordinator, Resource Governor, or
Maintenance Plan items.

■ Replication engines are not supported in the current version of SQL Azure, so there is
nothing related to this feature in the user interface.

■ The Security tree presents only the logon menu; logons are equivalent to the on-
premises version of SQL Server.

■ Some of these features are self-managed by the infrastructure, and some are simply
not present at the current time.

■ You can still ask for the query execution plan, shown the following figure.

 Chapter 9 Using SQL Azure 251

If you normally work with a SQL Server instance on your machine or on your Local Area
Network (LAN), you will see a little difference in the performance of the management tool.
This is related to the network latency; requests made by the tool have to traverse the Internet
until they reach the data center where you decided to host your virtual server.

One of the best ways to work is to use a local database instance to configure the SQL Azure
database. You develop by using the local database instance, updating its objects, testing the
application against it, and then transfer the completed tested structure to the cloud instance.
You can do this using either Visual Studio 2010 or SQL Server 2008 R2. You can also use
the tool of your choice to produce the T-SQL script on the local instance and apply it to the
cloud.

Not every SQL Server database feature can be used in SQL Azure, so you have to be care-
ful when you create new database objects in your local database instance. For example, you
can’t use User Defined Types in the current version of SQL Azure, so you must remove those
in the generated scripts before applying the scripts to your cloud version.

The next sections analyze the relational engine feature and introduce a tool that simplifies
creating a cloud adaptation of a local instance.

252 Windows Azure Step by Step

SQL Azure Relational Engine Feature
SQL Azure’s top features, as listed by Microsoft, are these:

■ Tables, views, indexes, roles, stored procedures, triggers, and user defined functions

■ Constraints

■ Transactions

■ Temp tables

■ Basic functions (aggregates, math, string, date/time)

■ Constants

■ Cursors

■ Index management and index rebuilding

■ Local temporary tables

■ Reserved keywords

■ Statistics management

■ Table variables

■ Transact-SQL language elements such as create/drop databases, create/alter/drop
tables, create/alter/drop users and logons

As mentioned at the beginning of this chapter, some of the relational database engine func-
tionalities are not supported. For quick reference, the main features not supported are these:

■ User-defined types

■ Common Language Runtime (CLR)

■ Database file placement

■ Database mirroring

■ Distributed queries

■ Distributed transactions

■ Filegroup management

■ Full Text Search

■ Global temporary tables

 Chapter 9 Using SQL Azure 253

Note This list may change over time. Read the official guide to verify whether these are
supported in the current version of the product.

There are also some differences in the way SQL Azure manages indexes, pages, file groups,
and locks with respect to its on-premises counterpart. You need to remove the following
keywords from the script generated by the SQL Azure management tool:

■ The USE statement

■ The file group specification for table

■ The NOT FOR REPLICATION specification

■ PAD_INDEX, ALLOW_ROW_LOCKS, ROWGUIDCOLUMN, ALLOW_PAGE_LOCKS

■ Fill Factor

■ NEWSEQUENTIALID

■ Windows Login

In addition, every table needs a clustered index.

Existing Database Migration
There are different ways to transfer schema and data to SQL Azure.

You can generate a T-SQL script from SQL Server Management Studio 2008 R2, analyze it to
remove the unsupported SQL Azure features, and adapt some of the T-SQL statements. Then
you can connect the Management Studio tool to the SQL Azure database and run the script
against it. You can do the same thing to update an existing database: use your preferred tool
to generate an incremental script, adapt it for SQL Azure, and then run it against a SQL Azure
database.

After moving the database structure to the cloud, the next step deals with the way you trans-
fer data to and from the SQL Azure instance. An easy (but time consuming) method is to
generate INSERT statements and run them against the remote database. But a more power-
ful technique is to use SQL Server Integration Services (SSIS). SQL Azure does not support
SQL Server Integration Services. That means only that you cannot run an SSIS package from
a SQL Azure instance. However, your local version of SQL Server supports SSIS natively, which
means that you can define and launch an SSIS package from SQL Server to pull or push data
to SQL Azure. Showing how SSIS works is outside the scope of this book, but you can find
plenty of information online.

254 Windows Azure Step by Step

If you decide to use SSIS, remember that SQL Azure does not support OLE DB, so your con-
nection must be based on ADO.NET.

SQL Azure also supports the BULK-COPY (BCP) statement and its cousin, the .NET Framework
class SqlBulkCopy. This is the fastest technique for inserting large numbers of records into a
table.

Currently, SQL Data Sync is in CTP2, but it should be released sometime in 2011. At the time
of this writing, its goals are the following (Microsoft Corporation, Windows Azure website,
2011, http://www.microsoft.com/en-us/sqlazure/datasync.aspx):

■ Extend enterprise data to the cloud rather than replace it.

■ Move workloads to the cloud in stages, preserving investment in existing infrastructure.

■ Extend data to remote locations such as offices and retail stores.

■ Enable new scenarios that span enterprises and the cloud.

■ Scale as resources requirements grow.

■ Provide no-code sync configuration, which allows you to easily define data to be syn-
chronized with easy-to-use tools.

■ Expose a scheduling configuration, allowing you to choose how often data is
synchronized.

■ Manage conflict handling so that you can handle issues when identical data is changed
in multiple locations.

■ Provide logging and monitoring: Administration capabilities for tracking data and mon-
itoring potential issues.

SQL Azure Migration Wizard
A simple and effective way to transfer structures and data from a local database instance to a
SQL Azure database is to install and use the SQL Azure Migration Wizard. This tool has been
available on CodePlex since the CTP version of SQL Azure. At the time of this writing, the cur-
rent version is 3.5.7. You can download it from http://sqlazuremw.codeplex.com/.

You can use the SQL Azure Migration Wizard tool on a local SQL Server 2005 or SQL Server
2008 database to produce a script suitable for SQL Azure. The wizard automatically removes
any unsupported feature, adapts the different keywords cited in the previous section, exe-
cutes the script against a specified SQL Azure database, and moves the data to the cloud.

 Chapter 9 Using SQL Azure 255

The tool can also perform the inverse operation: when pointed to a SQL Azure database, it
can translate the script into the on-premises SQL Server dialect, and move the remote data
to a local copy. It can also move data from one SQL Azure database to another, and analyze
local SQL Profiler data for SQL Azure compatibility.

The first screen in the wizard asks what kind of operation you want to perform. The first
group of options concerns the analysis feature, which lets you analyze SQL Databases, a TSQL
script file, or a SQL Profiler Trace file.

From here you can also analyze and migrate a local database or a TSQL file to SQL Azure.
The final option involves migrating a database without analyzing its structure. The following
figure shows the first page of the wizard.

The second step of the wizard asks for the local connection and is shown in the following
figure. You can choose whether to connect to the Master DB to ask for the list of every data-
base in the local SQL Server instance.

256 Windows Azure Step by Step

The next step, shown in the following figure, asks which objects you want to analyze and
script. The advanced options are very useful for determining the settings to use when the
tool generates the script. For example, you might choose to script tables and data but not
unique keys and defaults.

After you chose the objects to script, the tool analyzes the database, produces a script, and
displays a summary of the analysis, as shown in the following figure.

 Chapter 9 Using SQL Azure 257

The next step asks you to provide a connection to a SQL Azure database, validates it, and
then runs the script against the database in the cloud.

Summary
SQL Azure is an adaptation of SQL Server for the cloud. It provides the same set of funda-
mental database engine features as its local version. Some local SQL Server features are not
available in the current cloud version, and others are simply impractical in the cloud. You
can populate SQL Azure databases using SQL Server Integration Services or the SQL Azure
Migration Wizard.

Quick Reference
To Do this
Use the cloud instance of a database Modify the connection string.

Create a server that can host databases Use the SQL Azure Portal.

Create a database structure Use SQL Server Management Studio 2008 R2 or
Visual Studio 2010.

Configure port access rules Use the Firewall Setting rules in the portal and
define logins for virtual server.

Migrate an existing database Consider using the SQL Azure Migration Wizard.

 259

Chapter 10

Accessing Azure Services from
Everywhere

After completing this chapter, you will be able to

■ Understand how to access a storage account from a client application.

■ Write code to use the Storage Client library from a Windows Forms client application.

■ Create a basic PHP page to work with the storage account.

■ Understand how to make direct calls using REST to access Windows Azure Services.

This chapter is dedicated to some important aspects of a Windows Azure solution. In the
preceding chapters, I used Microsoft ASP.NET applications to access cloud-based resources,
but any client on any platform can use Windows Azure resources and services. In this chapter,
you learn how to configure a client application to access the storage account.

The example you follow in this chapter is a simple Windows Forms application that leverages
the storage account features to store and retrieve blobs and entities. I chose Windows Forms
to make the point that any client can access Windows Azure services as long as it can con-
sume a standard interface based on HTTP/REST. In the code sample, you use the same library
(StorageClient) you used in Chapter 4, “Windows Azure Storage,” and Chapter 5, “Tables,
Queues, and Worker Roles.”

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

260 Windows Azure Step by Step

Creating the Storage Account Project
In this section, you will create a Storage Account Project using the Windows Azure
Ma nagement Portal, a client application that uses the StorageClient APIs to manage data
in the storage account. Then, you use the client application to store and retrieve data.

Create the Storage Account Project

You need to create a Storage Account Project to store and retrieve data. In this procedure,
you create a new storage account.

 1. Open the browser of your choice and go to the Windows Azure Portal at http://
www.azure.com.

 2. Log on with your Windows Live ID to access the Management Portal.

 3. Start the Create A New Storage Account wizard by clicking the New Storage Account
button on the top toolbar.

 4. Choose a unique name for your storage account. If you choose a name that is already
claimed, you receive an error. For example, if you type azuresbs in the Enter A URL text
box, you receive the error message shown in the following figure.

 Chapter 10 Accessing Azure Services from Everywhere 261

The error occurs because the name azuresbs is already claimed. You need to type
a unique name that will represent the prefix for the common service URI (http://
servicename.*.core.windows.net).

 5. Choose a unique name for your service and type it in the Enter A URL text box.
Continue this process until you choose a name the portal accepts.

 6. Choose your preferred region in the first combo box in the Choose A Region Or Affinity
Group section. I have chosen azuresbs3, as you can see from Figure 10-1.

FIGuRE 10-1. Storage Accounts management page.

As you learned in Chapter 4, the portal lets you see every detail of the storage account.

Create the Client Application

In this procedure, you store and retrieve data in the storage account from a client application
by using a Windows Forms application.

 1. Create a new Windows Forms Project using the Microsoft Visual Studio default tem-
plate, shown in the following figure.

262 Windows Azure Step by Step

 2. Type AzureSbs in both the Name and Solution Name text boxes, and click OK to create
the project.

 3. Add a reference to the StorageClient library. Right-click the reference node in the proj-
ect, and select Add Reference.

 4. Click the Browse tab and choose the Ref subdirectory of the Windows Azure SDK. If you
installed the SDK in the default directory, your directory is %Program Files%\Windows
Azure SDK\<version>\ref, which is shown as Ref in the directory in the following figure.

 Chapter 10 Accessing Azure Services from Everywhere 263

 5. Click the OK button to accept the new reference.

 6. Make the form a little bit bigger, and drag a DataGridView control from the designer
toolbox onto the form. Resize the DataGridView so that it can show more data like the
following figure.

 7. Create a new class named Book to represent the entity. In the new Book class, use the
following code to define a book entity that derives from the StorageClient.TableService
Entity base class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.WindowsAzure.StorageClient;

namespace AzureSbs
{
 public class Book : TableServiceEntity
 {
 public String Title { get; set; }
 public DateTime PublicationDate { get; set; }
 }
}

 8. Create a new application configuration file to store the connection string to the Storage
Account Project.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

264 Windows Azure Step by Step

In a hosted service, it is a good practice to store this kind of data in the service con-
figuration file. In an on-premises solution, you have to store this data in the classic
configuration file (Web.config for an ASP.NET application and App.config for a client
application).

 9. Use the following XML fragment to configure the DataConnectionString setting that
you will use to retrieve the storage account connection:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="DataConnectionString" value="UseDevelopmentStorage=true" />
 </appSettings>
</configuration>

In the first test, you use the local storage account simulated service.

 10. Add a reference to the System.Configuration assembly and to System.Data.
Services.Client. You need the first one to read the configuration file from the
ConfigurationManager class, and the second to use the query feature of the
Windows Communication Foundation (WCF) Data Services Client library.

 11. Double-click a blank area in the form to create the Form_Load event handler. Using
this method, you request the list of entities stored in the storage account. Replace the
default code with the following snippet:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using Microsoft.WindowsAzure.StorageClient;
using Microsoft.WindowsAzure;
using System.Configuration;

namespace AzureSbs
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 CloudStorageAccount account =
 CloudStorageAccount.Parse(ConfigurationManager.AppSettings[
 "DataConnectionString"]);
 String baseAddress = account.TableEndpoint.AbsoluteUri;
 StorageCredentials credentials = account.Credentials;

 Chapter 10 Accessing Azure Services from Everywhere 265

 CloudTableClient tableClient = account.CreateCloudTableClient();
 tableClient.CreateTableIfNotExist("Books");

 TableServiceContext context = new TableServiceContext(
 baseAddress, credentials);
 dataGridView1.DataSource = context.CreateQuery<Book>("Books").ToList();
 }
 }
}

The first line of the preceding code uses the Parse method of CloudStorageAccount to
build the information needed to create the request to the Storage Account Service. The
methods take the string stored in the configuration file and expose the information
needed to create the URI that points to the service and the access credentials. I built
two variables to contain this information to simplify the code.

The next two lines are responsible for creating the table container in the storage
account. The sixth line of code creates the client context passing the URI to the Table
Storage Account Service and the credentials.

The last line of the code binds the query for the Books table, asking for a book type.
There are some differences from the code used in Chapter 5, which I will explain a little
later in the chapter.

 12. Before running this project, you have to change the default Target Framework to .NET
Framework 4 in the project properties dialog box, which is shown in the next figure. To
do this, right-click the Windows Forms Application Project and choose Properties.

266 Windows Azure Step by Step

 13. Before running the application, check the state of the storage emulator. To do that,
from the Start menu, select Windows Azure SDK and then the Storage Emulator User
Interface. Verify the running state of the three services. You can click the Start button
to start all of them.

 14. Run the application to verify that no compilation or running error occurs. The result is
an empty grid.

The code for the Windows Form Application Project is slightly different from the code you
used in Chapters 4 and 5. Some of the runtime features of the StorageAccount class cannot
be used outside the Windows Azure hosting environment. For instance, you cannot use the
FromConfigurationSetting static method to build the URI and credentials; this method uses
internal logic to cache the information retrieved from the configuration and leverages the
SetConfigurationSettingPublisher method to read the account access key from the service
configuration file. These methods are useless outside the Windows Azure operating sys-
tem. If you tried to copy and paste the code presented in Chapter 5 to an out-of-the-cloud
ap plication, you would receive an exception like the one presented in the following figure,
even if the application were an ASP.NET application.

 Chapter 10 Accessing Azure Services from Everywhere 267

Insert Some Data

Let’s try to add some books using very simple code. Refer to Chapter 5 for more complete
samples.

 1. Add a TextBox control and a Button control to the form, and leave the default name.
Just change the button text to Add. The form should look similar to the following
figure.

 2. Double-click the Add button to create the event handler. Then type the following code
in the corresponding method:

private void button1_Click(object sender, EventArgs e)
{
 CloudStorageAccount account = CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["DataConnectionString"]);
 String baseAddress = account.TableEndpoint.AbsoluteUri;
 StorageCredentials credentials = account.Credentials;
 TableServiceContext context = new TableServiceContext(
 baseAddress, credentials);

 Book book = new Book();
 book.PartitionKey = "DEV";
 book.RowKey = Guid.NewGuid().ToString();

268 Windows Azure Step by Step

 book.Title = textBox1.Text;
 book.PublicationDate = DateTime.Now;

 context.AddObject("Books", book);
 context.SaveChanges();

 dataGridView1.DataSource = context.CreateQuery<Book>("Books").ToList();
}

The first four lines of code inside the method are identical to the ones presented in
the procedure titled “Create the Client Application” earlier in this chapter (see step 11).
These lines construct the information needed to build the Table Service context. After
that the code creates the context, it creates an entity using the class that derives from
the TableServiceEntity class, fills it with the Partition and Row keys, and then fills it with
the title and publication date. There is no need to recreate the table because the Load
event of the form already did it.

The subsequent two lines of code add the entity to the client context and ask the Table
Storage Account Service to save the changes.

The last line of code asks the service for the current books list and binds it to the user
interface.

 3. Start the storage emulator manually if you rebooted your computer since the previous
procedure, “Create the Client Application.” To find the tool, from the Windows Start
menu, select the Windows Azure SDK v1.x section.

This step is necessary because you are running a classic Windows Forms Application
Project: there is no automatic interaction with the Windows Azure SDK.

 4. Press F5 to start the Windows Forms Application Project, type a book title in the text
box, and then click the Add button.

This is the resulting form.

 Chapter 10 Accessing Azure Services from Everywhere 269

It’s time to change the connection string to point to the live storage account and to refactor
some code. You can use the following code in the Form1.cs file. (Refer to the “Introduction”
for the link to download code samples.)

The code uses generic exception handling to greatly simplify it:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using Microsoft.WindowsAzure.StorageClient;
using Microsoft.WindowsAzure;
using System.Configuration;

namespace AzureSbs
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 CloudStorageAccount account = this.CreateAccount();

 try
 {
 CloudTableClient tableClient = account.CreateCloudTableClient();
 tableClient.CreateTableIfNotExist("Books");

 TableServiceContext context = this.CreateContext(account);
 dataGridView1.DataSource =
 context.CreateQuery<Book>("Books").ToList();
 }
 catch (Exception ex)
 {
 // Exception handling
 // Be specific
 }
 }

 private void button1_Click(object sender, EventArgs e)
 {
 Book book = new Book();
 book.PartitionKey = "DEV";
 book.RowKey = Guid.NewGuid().ToString();

 book.Title = textBox1.Text;

270 Windows Azure Step by Step

 book.PublicationDate = DateTime.Now;

 CloudStorageAccount account = this.CreateAccount();
 TableServiceContext context = this.CreateContext(account);

 try
 {
 context.AddObject("Books", book);
 context.SaveChanges();

 dataGridView1.DataSource =
 context.CreateQuery<Book>("Books").ToList();
 }
 catch (Exception ex)
 {
 // Exception handling
 // TODO: Be specific
 }
 }

 private CloudStorageAccount CreateAccount()
 {
 CloudStorageAccount account = CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["DataConnectionString"]);
 return account;
 }

 private TableServiceContext CreateContext(CloudStorageAccount account)
 {

 String baseAddress = account.TableEndpoint.AbsoluteUri;
 StorageCredentials credentials = account.Credentials;

 return new TableServiceContext(baseAddress, credentials);
 }
 }
}

To adapt the configuration, you have to remember the account name you chose in the proj-
ect portal. You can return to the portal at any time to obtain the service name and, even
more importantly, the access key. From the storage account detail you saw in Figure 10-1,
you can click the View button in the primary or secondary key and then copy the access key
to the Clipboard, as shown in the following figure.

 Chapter 10 Accessing Azure Services from Everywhere 271

Note Refer to Chapter 5 for a complete discussion of the Table Storage Account Service.

Unfortunately, you cannot use the Visual Studio role configuration designer to insert account
and key information, because you are using a Windows Forms application. But you can use
the following snippet to configure your service. Remember, your account and key are differ-
ent from my account and key. The strings you have to change in the App.config file follow:

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <add key="DataConnectionString" value="DefaultEndpointsProtocol=https;
 AccountName=azuresbs3;AccountKey=9Rlw2Np9OQm..."/>
 </appSettings>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
</configuration>

272 Windows Azure Step by Step

You can now use the live storage account from an on-premises Windows Forms application.

Run the application now. You end up with an empty grid. Insert some new books, close the
application, and then run it again to verify that everything is working properly. You can also try
running the sample from another personal computer; you should see the same set of books.

The same concepts apply to a Windows Presentation Foundation application. You can reuse
all the code in the code-behind file and in the configuration file.

Accessing the Storage Account from PHP
On the Windows Azure developers home page is a link to the Windows Azure SDK for PHP
Developers (currently available as the CodePlex project at http://phpazure.codeplex.com/).

The purpose of this project, as stated from the official description at the time of this writing,
is the following (Project contributors, CodePlex, 2011, http://phpazure.codeplex.com):

As part of Microsoft’s commitment to Interoperability, this open source project is
an effort to bridge PHP developers to Windows Azure. PHPAzure is an open source
project to provide a software development kit for Windows Azure and Windows
Azure Storage—Blobs, Tables & Queues.

You have to unzip the package in a folder and then copy the folder into your PHP Project.
You can simply create a library directory in the project and add the full path to that directory
in the configuration file (Php.ini).

The library offers most of the same facilities as the storage client and can be used, apart from
the code syntax, in the same way. For example, the following code uses the same storage
account used in previous samples, but in a PHP application. You must define the Book class,
which will be saved and retrieved from the Books table. The class extends the TableEntity
base class that is part of the included library:

class Contact extends Microsoft_WindowsAzure_Storage_TableEntity
{
 /**
 * @azure Title
 */
 public $Title;
 /**
 * @azure PublicationDate
 */
 public $PublicationDate;
}

The schema is defined using “docblock” comments.

The PartitionKey, RowKey, and TimeStamp properties are obtained from the base class so that,
as in the preceding Microsoft Visual C# samples, you don’t have to expose them directly.

 Chapter 10 Accessing Azure Services from Everywhere 273

A page can reference the entity (assume it is defined in Entities.php) and the classes to work
with tables in the traditional PHP style, as shown in the following code:

require 'Microsoft\WindowsAzure\Storage\Table.php';
require 'entities.php';
$storageClient = new
 Microsoft_WindowsAzure_Storage_Table('table.core.windows.net',
 'azuresbs3',
 ‘eNlSM7B7Bo4dmr1Xr6k5WWJgu4srfd’);

if(!$storageClient->tableExists("Books"))
 $storageClient->createTable("Books");

The constructor for the Table class takes the common part of the URI, the account name, and
the primary or secondary access key. The last two lines of code create the table if it does not
exist yet.

To insert a new book in the table, the code has to create a new Book instance, insert a value
in the properties, and call the insertEntity method on the storageClient class:

$book = new Book ('DEV', $_POST['Title']);
$book ->Title = $_POST['Title'];
$book ->PublicationDate = $_POST['Date'];
$result = $storageClient->insertEntity('Books', $book);

This code excerpt used the posted title as the RowKey value.

Remember that each client library is just a wrapper around REST/HTTP, so you can use any
client platform—even the oldest ones—to access the storage account services. This is true
for tables as well as for blobs and queues.

Accessing the Storage Account Service directly is a powerful mechanism for data-centric
applications, as you’ve learned in Chapter 4, Chapter 5, and in this chapter. The service, in
fact, exposes standard APIs that follow the OData (Open Data Protocol) emerging standard
approach.

From an architectural point of view, all the code presented in this chapter is data access layer
code—the code uses a storage service. When the application is layered correctly, the busi-
ness layer invokes this code to store some data. There is no business logic in the code that
uses the Storage Client library; it is merely data access code.

If the client application is not data-centric and needs business logic code, it is better to
expose a service-oriented architecture (SOA) service to decouple the application logic from
the client. The client invokes the SOA service and the service isolates the data access tech-
niques used server-side. At some point in time, you can change the store for your data by
changing only the data access layer for the service and not every piece of client access code.

The last chapter of this book is completely dedicated to the architectural aspects introduced
here.

274 Windows Azure Step by Step

using HTTP and REST
So far, you used the Storage Client APIs from an application that exists outside the cloud. Any
Create, Read, Update, Delete (CRUD) operation uses REST and HTTP behind the scenes.

The last code example in this chapter inserts a new book entity into the Books table. The
storage client wraps this request in a service operation for Microsoft ADO.NET Data Services
and transforms the simple method call in a REST request to the service.

Figure 10-2 shows the complete flow of operations performed by the Windows Forms appli-
cation code when you start the application and insert a new book. You examine the com-
plete flow to learn how to use the underlying REST APIs.

As I’ve stated throughout this book, many Windows Azure services are exposed via HTTP and
REST. If the library you are using does not expose the operation you need in your application,
or if the platform you are using has no SDK available, or if you want to have complete control
over the operations, you can use REST and HTTP directly. An Apple iPhone is REST/HTTP-
capable; an Android device is REST/HTTP-compliant, too. Nearly every platform (including
those in the cloud) exposes REST APIs to consume REST services. Figure 10-2 shows an HTTP
trace log.

FIGuRE 10-2 The HTTP trace log.

 Chapter 10 Accessing Azure Services from Everywhere 275

The first request you see in Figure 10-2 occurs when the code calls the CreateIfNotExist
method of the CloudStorage class in the Form1_Load method:

tableClient.CreateTableIfNotExist("Books");

The request has a status code of 200, which in the HTTP world means that everything is fine
with the request. The URL uses SSL (Secure Socket Layer) over HTTP (usually termed HTTPS),
and the URI points directly to the Table Storage Account Service. The beginning of the URI
contains the Storage Account Project name to ensure the correctness of the URI with X.509
digital certificates. When you create a new Storage Account Project, the platform releases
a digital certificate for the complete URI that lets the client use HTTPS instead of HTTP.

The presented header (the first tab of the lower part of the HTTP Analyzer tool used to ana-
lyze HTTP traffic in Figure 10-2) demonstrates the use of the ADO.NET Data Services, which
are responsible for converting every method call into a corresponding REST call toward the
service. The TableServiceContext class derives from the DataServiceContext class and adds the
Authorization HTTP header using the ShareKeyLite algorithm and the provided key.

The response is simply an AtomPub feed, as demonstrated by the Content-Type header of
the response, and contains the server identification Windows-Azure-Table/1.0.

The first request has a simple response, because the table already exists in the storage account:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xml:base="https://azuresbs3.table.core.windows.net/"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <id>https://azuresbs3.table.core.windows.net/Tables('Books')</id>
 <title type="text"></title>
 <updated>2011-01-25T15:04:52Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Tables" href="Tables('Books')" />
 <category term="azuresbs3.Tables"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:TableName>Books</d:TableName>
 </m:properties>
 </content>
</entry>

The most important part is the d:TableName xml element that reports the name of the
checked table.

The second line of the trace represents the request made on behalf of the ToList() method:

dataGridView1.DataSource = context.CreateQuery<Book>("Books").ToList();

276 Windows Azure Step by Step

This request is made to the /Books resource in azuresbs3.table.core.windows.net. Just like the
first request in the trace, this request uses HTTPS and contains the Authorization header,
because the HTTP protocol is stateless.

This time, as you can see in the following code snippet, the service response is more complex,
because it contains the books stored in the Storage Account Table:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<feed xml:base="https://azuresbs3.table.core.windows.net/"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Books</title>
 <id>https://azuresbs3.table.core.windows.net/Books</id>
 <updated>2011-01-25T15:04:53Z</updated>
 <link rel="self" title="Books" href="Books" />
 <entry m:etag="W/"datetime'2011-01-25T15%3A02%3A53.4441536Z'"">
 <id>https://azuresbs3.table.core.windows.net/Books(
 PartitionKey='DEV',
 RowKey='c3c16083-0855-45dc-8b24-16ba2341f25e')</id>
 <title type="text"></title>
 <updated>2011-01-25T15:04:53Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Books" href="Books(
 PartitionKey='DEV',RowKey='c3c16083-0855-45dc-8b24-16ba2341f25e')" />
 <category term="azuresbs3.Books"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:PartitionKey>DEV</d:PartitionKey>
 <d:RowKey>c3c16083-0855-45dc-8b24-16ba2341f25e</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">
 2011-01-25T15:02:53.4441536Z</d:Timestamp>
 <d:PublicationDate m:type="Edm.DateTime">
 2011-01-25T15:02:52.6407552Z</d:PublicationDate>
 <d:Title>Azure Step by Step</d:Title>
 </m:properties>
 </content>
 </entry>
</feed>

 Chapter 10 Accessing Azure Services from Everywhere 277

The feed element contains a reference to the schemas used to format the response, which
also uses ADO.NET Data Services.

The title element tells the client the operation response, the id shows the complete URI of the
resource, and the updated element informs the client about the exact time of the response.

The link reference is relative to self for Books; the query that the library made is very simple
and does not contain other links.

The first entry represents the first book in the table. The id tag contains the URI to access the
resource directly for querying, updating, or deleting operations. It contains the PartitionKey
and the RowKey assigned during the insert phase.

Some other tags are left blank because they have no meaning. For example, the author tag is
important when you are reading an AtomPub feed of blog posts; but in this case, the author
tag is completely useless.

Before the actual content of the book, the link element contains an href reference you can
use to perform a delete or an update operation. The category just contains the table name
using the data service scheme.

The content of the content element is straightforward; every property of the stored entity is
represented by a named element that contains the real value.

In the presented Windows Forms application, users can insert a new book. If I test this by
typing SharePoint Developers Reference in the text box, the application invokes the code
to add a new book. The following code is the same code you worked with earlier, before the
refactoring phase:

CloudStorageAccount account = CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["DataConnectionString"]);

String baseAddress = account.TableEndpoint.AbsoluteUri;
StorageCredentials credentials = account.Credentials;
TableServiceContext context = new TableServiceContext(baseAddress, credentials);

Book book = new Book();book.PartitionKey = "DEV";
book.RowKey = Guid.NewGuid().ToString();book.Title = textBox1.Text;book.PublicationDate =
DateTime.Now;context.AddObject("Books", book);context.SaveChanges();

The Storage Client library accepts the change in the local context, adding a new item with
the indicated Title and then asks the Table Storage Account Service to perform the insert
operation using the following REST call:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

278 Windows Azure Step by Step

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <title />
 <author>
 <name />
 </author>
 <updated>2011-01-25T15:05:07.3333884Z</updated>
 <id />
 <content type="application/xml">
 <m:properties>
 <d:PartitionKey>DEV</d:PartitionKey>
 <d:PublicationDate m:type="Edm.DateTime">
 2011-01-25T16:05:07.3333884+01:00</d:PublicationDate>
 <d:RowKey>d0c73806-bf1f-49ea-8656-5d6dc64560fc</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">0001-01-01T00:00:00</d:Timestamp>
 <d:Title>SharePoint Developers Reference</d:Title>
 </m:properties>
 </content>
</entry>

The content is an entry that follows the ADO.NET Data Services rules and contains the serial-
ized entity in the context element.

It is important to remark that the serialization process is made on the client to call the ser-
vice via HTTP/REST and is not the way the Table Storage Account Service stores the entity.
The service can store the received entity in whatever format it wants and, moreover, this
format can change over time. You get to use the service by using the correct schema to pass
and receive entities without worrying about the format the service used to store the entities
internally.

The last call the code makes before returning the grid to the client is another request to
obtain the list of entities:

 dataGridView1.DataSource = context.CreateQuery<Book>("Books").ToList();

This call has the identical format as the second call shown in Figure 1-2, but it contains the
newly added book as another entry element. The second book is presented in boldface:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<feed xml:base="https://azuresbs3.table.core.windows.net/"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Books</title>
 <id>https://azuresbs3.table.core.windows.net/Books</id>
 <updated>2011-01-25T15:05:09Z</updated>
 <link rel="self" title="Books" href="Books" />
 <entry m:etag="W/"datetime'2011-01-25T15%3A02%3A53.4441536Z'"">
 <id>https://azuresbs3.table.core.windows.net/Books(PartitionKey='DEV',
 RowKey='c3c16083-0855-45dc-8b24-16ba2341f25e')</id>

 Chapter 10 Accessing Azure Services from Everywhere 279

 <title type="text"></title>
 <updated>2011-01-25T15:05:09Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Books" href="Books(PartitionKey='DEV',
 RowKey='c3c16083-0855-45dc-8b24-16ba2341f25e')" />
 <category term="azuresbs3.Books"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:PartitionKey>DEV</d:PartitionKey>
 <d:RowKey>c3c16083-0855-45dc-8b24-16ba2341f25e</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">
 2011-01-25T15:02:53.4441536Z</d:Timestamp>
 <d:PublicationDate m:type="Edm.DateTime">
 2011-01-25T15:02:52.6407552Z</d:PublicationDate>
 <d:Title>Azure Step by Step</d:Title>
 </m:properties>
 </content>
 </entry>
 <entry m:etag="W/"datetime'2011-01-25T15%3A05%3A09.1698773Z'"">
 <id>https://azuresbs3.table.core.windows.net/Books(PartitionKey='DEV',
 RowKey='d0c73806-bf1f-49ea-8656-5d6dc64560fc')</id>
 <title type="text"></title>
 <updated>2011-01-25T15:05:09Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Books" href="Books(PartitionKey='DEV',
 RowKey='d0c73806-bf1f-49ea-8656-5d6dc64560fc')" />
 <category term="azuresbs3.Books"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:PartitionKey>DEV</d:PartitionKey>
 <d:RowKey>d0c73806-bf1f-49ea-8656-5d6dc64560fc</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">
 2011-01-25T15:05:09.1698773Z</d:Timestamp>
 <d:PublicationDate m:type="Edm.DateTime">
 2011-01-25T15:05:07.3333884Z</d:PublicationDate>
 <d:Title>SharePoint Developers Reference</d:Title>
 </m:properties>
 </content>
 </entry>
</feed>

This exercise is important because it helps you understand how the library makes the call
to the service. You can use this technique to learn how to make the query yourself without
scanning every REST method interface in the documentation (although having a look at the
documentation is always worthwhile).

280 Windows Azure Step by Step

Summary
In this chapter, you created a simple Windows Forms application that uses the storage account
features to store and retrieve blobs and entities. You then saw a simple PHP application that
leverages the PHP SDK. The goal was to show you how both platforms (and others as well) can
consume the standard HTTP/REST-based interface exposed by the storage account services.

Quick Reference
To Do this
Work with your storage account in the
simplest way

Use the Windows Azure SDK.

Manage storage account data from a
.NET application

Use the StorageClient library referencing it in the client
project.

Store a storage account access key Use the App.config or Web.config file in an on-
premises solution. Use the ServiceConfiguration.cscfg
in a Windows Azure solution.

Work with the storage account directly Use REST/HTTP or REST/HTTPS, following the OData
pattern.

 281

Chapter 11

Application Architecture
After completing this chapter, you will be able to

■ Understand the characteristics of a multitier application.

■ Understand the role of the DAL component.

■ Engineer simple data access layer components for different data store technologies.

■ Understand the role of the service agent component.

This chapter focuses on application patterns and best practices for a cloud-based solution.
The goal is to learn how and when you can best leverage the cloud components in everyday
solutions, and to evaluate the impact of using them in modern software architectures. You
see some architectural patterns and rules, largely related to the data access layer (DAL) and
the business layer of multitier enterprise-level solutions.

Note Because URLs, UI names, and procedures may vary over time, some of them may be out of
date by the time you read this. In that case, my best advice is to start looking for the information
about the Windows Azure product on the Windows Azure home page (http://www.azure.com).
Information included in this book was accurate at the time of writing.

Characteristics of a Multitier Solution
A multitier solution is a software project that usually targets many concurrent users. It is
divided into n layers (usually not fewer than three layers). Applications that use a two-tier
scenario are also referred to as client-server software. One layer is the back-end server infra-
structure, which is generally made up of a database persistence layer. The other layer, the cli-
ent, includes all the code that accesses the database and renders the user interface.

Generally, in two-tier scenarios, the business logic and domain knowledge required for the
solution is implemented within the client software. Sometimes such solutions also include
database logic, such as intelligent stored procedures and triggers.

Although client-server architecture is suitable for implementing solutions that will have a
relatively small number of users, it presents scalability issues and other limitations compared
to other architectural solutions. Software is scalable when its performance remains constant
and independent regardless of the number of users. Scalable software is not necessarily fast:
it simply has a fixed performance score regardless of the number of users served. The very
nature of a client-server solution prevents scalability—specifically, an increase in the number

282 Windows Azure Step by Step

of users can have a huge impact on the back-end database layer. For this reason, this book
will not cover the client-server architecture in detail.

To achieve better scalability, over the past several years, architectures with at least three tiers
have become more and more common. Many modern software solutions are available over
a network and/or over the Internet, and they serve a large (and often unpredictable) number
of concurrent users. Three-tier solutions present a data access layer, a business layer, and a
presentation layer. The data access layer (DAL) represents the set of code and data structures
used to implement information persistence. The business layer (BIZ) defines business logic,
workflows, and rules that drive the behavior of the application. The presentation layer, or user
interface (UI) layer, delivers the information to end users and accepts input from them.

The presentation layer, in particular, has become more complex, because it can (and often
must) be implemented in many different ways, one for each kind of consumer (web, Windows,
smart device, and so on). In general, DAL and BIZ are deployed on specific and dedicated
application servers, whereas the UI can be either deployed on consumer devices or delivered
to web browsers from specific publishing application servers (web applications on front-end
web servers).

Technologies such as Simple Object Access Protocol (SOAP) services, smart clients, smart
phones, workflow services, and so on, have influenced many software architects to add other
layers. The now-common definition of n-tier solution architecture is one in which n desig-
nates a value greater than or at least equal to three. In general, as you can see from Figure
11-1, these n layers are targeted to meet specific application requirements, such as security,
workflow definition, and communication.

ServiceData Source

Business
Entities

Entity
Mapper

User Interface Components
User Process Components

Service Interfaces

Business
Workflows

Business
Components

Entity
Mapper

Data Access Logic
Components Service Agents

Co
m

m
un

ic
at

io
n

Se
cu

rit
y

O
pe

ra
tio

na
l M

an
ag

em
en

t

FIGuRE 11-1 Schema of a typical n-tier architecture.

 Chapter 11 Application Architecture 283

The main reasons for dividing a software solution’s architecture into layers are to improve
maintainability, availability, security, and deployment.

Maintainability results from the ability to change and maintain small portions (for example,
single layers) of an application without needing to touch the other layers. By working this
way, you reduce maintenance time and can also more accurately assess the cost of a fix
or a feature change, because you can focus your attention on just the layers involved in
the change. For instance, you can adapt the code of the data access layer to work with
Microsoft SQL Server instead of Oracle, or you can change a single component to work with
the Windows Azure Table Storage Account Service instead of the local SQL Server database.
Client-server software is more costly to maintain because any code modifications must be
deployed to each client. Well-defined multitier solutions are also available to users more
often because critical or highly stressed layers can be deployed in a redundant infrastruc-
ture. Think about some native components of the Windows Azure platform: the hosted ser-
vice can be scaled up in a moment just by increasing the number of instances.

From a security perspective, a layered solution can use different security modules, each one
tightly aligned with a particular software layer to make the solution stronger. Last but not
least, multitier software is usually deployed more easily, because each layer can be config-
ured and sized somewhat independently from other layers.

In the following pages, I discuss some important points about the various components of a
cloud-based architecture.

The Data Access Layer
Every data access layer component has to be stateless. It cannot maintain the state from
a request to the subsequent one. This is one of the important points to understand when
developing a real scalable solution—if a component maintains the state of a request in mem-
ory, the code cannot be spread across servers and thus it does not scale. This is especially
applicable to a traditional application. Think about an ASP.NET application that allocates
some memory to store session data during request processing. The server memory is not
infinite, and at some point in time, when the system has served an extensive number of these
types of requests, the memory reaches the maximum available and the garbage collector
cannot do anything to clean up session data. If the IT team decides to increase the memory
of the server, it moves up the request limit and, as you know, this limit will be reached in a
shorter time than expected.

If the components are stateless, they do not need memory when they are not serving
requests. In this way, they can theoretically serve an infinite number of subsequent requests
from many users. When the number of concurrent requests grows up, the IT team can
spread the requests across different servers without any trouble. In Windows Azure, this

284 Windows Azure Step by Step

operation can be done in a matter of seconds, adapting the number of instances by using
the Management Portal or the Management APIs.

The role of a data access layer component is to expose data structures that are independent
from the underlying data store. Figure 11-1 illustrates the point: the business layer and the
user interface layer are isolated from the data store and, as I pointed out, the data access
layer can be changed to work with different databases or data services. This level of isolation
can be accomplished by developing components that never return a class that is bound with
the data access technology. Every public method that can be invoked from the upper layer
cannot return a DataReader or a specific database structure. If you return a database-specific
structure, the code of the upper layers are bound to that data structure, and the application
cannot work with different data stores simply by changing the data access layer component.

Listing 11-1 shows the List method of a simple DAL component that returns a list of Salesman
(SalesmenList custom collection) by accessing the underlying database (SQL Server in this
case). In this code, I use the traditional manual technique to demonstrate the concept.

LISTING 11-1 DAL component using a DataReader.

public SalesmenList List()
{
 try
 {
 SalesmenList list = new SalesmenList();

 using (SqlDataReader dr = SqlHelper.ExecSPForReader(
 ConnectionString, "spListSalesmen", null))
 {

 Int32 indexIdSalesman = dr.GetOrdinal("idSalesman");
 Int32 indexSalesmanPassword = dr.GetOrdinal(
 "SalesmanPassword");
 Int32 indexSalesmanDescription = dr.GetOrdinal(
 "SalesmanDescription");
 Int32 indexSalesmanIsAdmin = dr.GetOrdinal("SalesmanIsAdmin");

 while (dr.Read())
 {
 Salesman item = new Salesman();
 item.IdSalesman = dr.GetString(indexIdSalesman);
 item.SalesmanPassword = dr.GetString(indexSalesmanPassword);
 item.SalesmanDescription = dr.GetString(
 indexSalesmanDescription);
 item.SalesmanIsAdmin = dr.GetBoolean(indexSalesmanIsAdmin);

 list.Add(item);
 }
 }

 Chapter 11 Application Architecture 285

 return (list);
 }
 catch (SqlException ex)
 {
 throw new DevLeapDBException("ERR01", ex);
 }
}

The code in Listing 11-1 uses the SqlHelper class exposed by the Data Access Application
Block of the Enterprise library to execute the stored procedure spListSalesmen on a SQL
Server database.

The loop reads every DBDataRecord and creates a new Salesman object with information
taken from the database. The new object is added to the collection of salesmen.

This code can be used to access SQL Azure instead of a local database instance without any
modification. The ConnectionString property used to call the ExecuteSPForReader simply
reads the connection string from the configuration file:

 public string ConnectionString
 {
 get { return (ConfigurationManager.ConnectionStrings[
 "EstatesManagementConnectionString"].ConnectionString); }
 }

This property is exposed by the base class (BaseDal) from which every DAL component
derives. If this code is referenced by a hosted service, you can use it without any modification;
remember that the Web.config file (for the Web Role) or App.config file (for the Worker Role)
is part of the deployment, and any change to either requires a complete re-deployment. If
you want to change the connection string without a redeployment, change the get accessor,
as shown the following code snippet:

 public string ConnectionString
 {
 get { return (RoleEnvironment.GetConfigurationSettingValue(
 "EstatesManagementConnectionString"); }
 }

You have to define a setting in the ServiceDefintion.csdef and assign a value to it in the
ServiceConfiguration.cscfg. That’s it! Your component can work in the cloud, giving you the
flexibility to change the connection string without redeployment. This is a good example of
code centralization. The ConnectionString property is defined in just one place, and the rela-
tive code can be changed at any time without causing any problems in other parts of the
solution.

286 Windows Azure Step by Step

You can also perform some tricks in the code to adapt a component to work inside and out-
side the Windows Azure hosted service. The following code is a simple way to achieve this
goal:

 public string ConnectionString
 {
 get
 {
 if(!RoleEnvironment.IsAvailable)
 return (ConfigurationManager.ConnectionStrings[
 "EstatesManagementConnectionString"].ConnectionString);
 else
 return (RoleEnvironment.GetConfigurationSettingValue(
 "EstatesManagementConnectionString");
 }
 }

A more sophisticated solution would take advantage of some patterns such as factory meth-
ods or factory classes.

There is another important point to note: the methods exposed by the data access layer
component cannot let the underlying exception bubble up to upper layers. The methods
have to catch the data store’s specific exception, log it if necessary, and throw an applica-
tion exception. In the following code, the application exception is represented by a custom
DevLeapDBException class:

 catch (SqlException ex)
 {
 // Log if necessary

 // Throw Application Exception
 throw new DevLeapDBException("ERR01", ex);
 }

By using the DevLeapDBException class, the data access layer hides the native (SQL) exception
to the caller, because the latter has to be independent from the underlying data store.

A DAL component can be considered a mapper between business entities (domain entities)
and the database or data service that stores them.

Note A Data Mapper is a software layer that transfers data between database and in-memory
objects. You can find a more thorough description of a Data Mapper at http://www.martinfowler.
com/eaaCatalog/dataMapper.html.

The Salesman class is defined in another assembly that is referenced by each layer of the
application, as shown in Listing 11-2.

http://www.martinfowler.com/eaaCatalog/dataMapper.html
http://www.martinfowler.com/eaaCatalog/dataMapper.html

 Chapter 11 Application Architecture 287

LISTING 11-2 Business entity definition.

using System;
using System.Collections.Generic;
using System.Text;

namespace DevLeap.EstatesManagement.Entities
{
 public class Salesman : BaseEntity
 {
 private string _idSalesman;
 private string _salesmanDescription;

 public string SalesmanDescription
 {
 get { return _salesmanDescription; }
 set { _salesmanDescription = value; }
 }
 private string _salesmanPassword;

 public string SalesmanPassword
 {
 get { return _salesmanPassword; }
 set { _salesmanPassword = value; }
 }
 private bool _salesmanIsAdmin;

 public bool SalesmanIsAdmin
 {
 get { return _salesmanIsAdmin; }
 set { _salesmanIsAdmin = value; }
 }

 public string IdSalesman
 {
 get { return _idSalesman; }
 set { _idSalesman = value; }
 }

 public Salesman(): base()
 {
 }
 }

 public class SalesmenList : BaseEntityList<Salesman>
 {
 }
}

288 Windows Azure Step by Step

The Salesman class derives from a base class as well as the SalesmenList class, which has its
own base class. It is always a good idea to have a base class for everything, even when you
have nothing to expose in the first version of the solution in the base class. In the near future,
the ability to give some entity a common pattern or a new common property is highly likely
in agile development practices.

The types presented in Listing 11-2 are simple and look like data transfer objects (DTO) rather
than domain model entities. However, remember that this example is just for illustration. In a
real solution, these entities would probably include some domain model logic such as valida-
tion rules and constraints.

The BaseEntity class of the example examined thus far is very simple. The base class for the
entity list leverages the generic type feature introduced in Microsoft .NET Framework 2.0 and
derives from the List base class:

 using System;
 using System.Collections.Generic;
 using System.Text;

 namespace DevLeap.EstatesManagement.Entities
 {
 public class BaseEntity
 {
 public BaseEntity() {}
 }

 public class BaseEntityList<TEntity>: List<TEntity>
 where TEntity: BaseEntity
 {
 }
 }

You can also leverage generic types in the base class of the DAL components by moving
some common methods in the base class without losing type safety. The following code is
just an example of this concept. The SalesmanDal class instructs the BaseDal class regarding
the specific type SalesmanDal has to use:

 namespace DevLeap.EstatesManagement.Dal.SQLServer2008
 {
 public class SalesmanDal : BaseDal<Salesman, SalesmanList, Int32>
 {
 }
 }

With this strategy, the BaseDal class can expose common methods. For instance, in the fol-
lowing code excerpt, the base class can create a new entity or an entity list by using a com-
mon method:

 Chapter 11 Application Architecture 289

 namespace DevLeap.EstatesManagement.Dal
 {
 public class BaseDal<TEntity, TEntityList, TKey>
 where TEntity: BaseEntity, new()
 where TEntityList: BaseEntityList<TEntity>, new()

 {
 public virtual CreateEntity()
 {
 return new TEntity();
 }
 }
 }

This code uses SqlDataReader, which is the fastest way to read data from an underlying data-
base. If you decide to change databases, you have to adapt only the code inside the DAL
components. If you leveraged object-oriented techniques and generic types as well, for every
DAL, you probably have to change only some methods in the base class.

A more modern approach to accessing a database is to leverage an Object Relational Mapper
(ORM) like LINQ to SQL or ADO.NET Entity Framework. The ORMs do a great job of mapping
the relational world of databases with the hierarchical model of the domain entities. Typically,
the introduction of an ORM has to be completely transparent to the application. Following
the philosophy of “changing just what you need,” the introduction of LINQ to SQL in the .NET
Framework 3.5 cannot involve more than just a modification of a single layer.

As stated in the book Programming Microsoft LINQ in .NET Framework 4 by Marco Russo and
Paolo Pialorsi (Microsoft Press, 2010), LINQ to SQL can be used to define the mapping from
the underlying SQL Server database toward the business entities, without any modification of
the application architecture. Let’s look more closely at and analyze two ways of using LINQ to
SQL.

With LINQ to SQL, you can define a model that shapes .NET classes that are mapped to the
underlying database. These classes, known as LINQ to SQL entities, can be used by the entire
application because they are .NET Framework classes; in fact, you can use the types you
define in the LINQ to SQL designer, such as the Salesman entity discussed earlier, through-
out the application. For example, a presentation layer, implemented by using Windows
Presentation Foundation (WPF), could share these defined types with LINQ to SQL and
should perform data binding against a sequence of type IEnumerable<Salesman> that is
obtained by executing a LINQ query directly.

This situation has both advantages and disadvantages. The advantages stem from the agil-
ity and ease of use that LINQ to SQL offers. By taking a closer look at the code generated
and defined by LINQ to SQL tools (such as SQLMetal or the Object Relational Designer in
Microsoft Visual Studio), you can see that these types implement a set of interfaces targeted
at the UI data binding: INotifyPropertyChanging and INotifyPropertyChanged.

290 Windows Azure Step by Step

On the other hand, the nature of LINQ to SQL means that the data layer is tightly integrated
with the SQL Server database. This level of integration might be your goal for a single-data-
base-platform solution, but it can also pose many limitations for your architecture.

In general, a data layer has to be an abstraction of the physical persistence layer, thus allow-
ing changes to the underlying implementation that are transparent to the layers above it.
You usually achieve this abstraction by defining a pluggable architecture like the one shown
in Figure 11-1, and implementing the code in a way similar to what you have seen in this
chapter. Database independency means that the communication between the DAL and BIZ
layers cannot use anything that is bound to a particular database implementation. However,
when you use LINQ to SQL as a pure data layer replacement, you are limited to SQL Server as
a database, and your entities will be widely marked in code with attributes that map to SQL
Server–specific information. In addition, you might already have a domain model defined
simply because you are extending an existing application, or because you do not want to
mark your domain model with data-layer-specific (LINQ to SQL) attributes.

To avoid these issues, you can use LINQ to SQL as a replacement for the code presented in
the List method of the SalesmanDal component. The code can be much simpler for every
DAL component method, especially for the ones that need to create complex queries. The
code in Listing 11-3 can be a LINQ to SQL replacement for the simple SalesmanDal code.

LISTING 11-3 A DAL component that uses LINQ to SQL.

namespace DevLeap.EstatesManagement.Dal.LINQtoSQL
{
 public class SalesmanDal : BaseDal<Salesman, SalesmanList, Int32>
 {
 public SalesmenList List()
 {
 try
 {
 SalesmenList list = new SalesmenList();

 // Old code
 //using (SqlDataReader dr = SqlHelper.ExecSPForReader(
 // ConnectionString, "spListSalesmen", null))
 //{

 // Int32 indexIdSalesman = dr.GetOrdinal("idSalesman");
 // Int32 indexSalesmanPassword = dr.GetOrdinal(
 // "SalesmanPassword");
 // Int32 indexSalesmanDescription = dr.GetOrdinal(
 // "SalesmanDescription");
 // Int32 indexSalesmanIsAdmin = dr.GetOrdinal("SalesmanIsAdmin");

 // while (dr.Read())
 // {
 // Salesman item = new Salesman();
 // item.IdSalesman = dr.GetString(indexIdSalesman);

 Chapter 11 Application Architecture 291

 // item.SalesmanPassword = dr.GetString(
 // indexSalesmanPassword);
 // item.SalesmanDescription = dr.GetString(
 // indexSalesmanDescription);
 // item.SalesmanIsAdmin = dr.GetBoolean(
 // indexSalesmanIsAdmin);

 // list.Add(item);
 // }
 //}

 // New LINQ to SQL code
 using (EstatesManagementDataContext context =
 new EstatesManagementDataContext(this.ConnectionString))
 {
 context.ObjectTrackingEnabled = false;

 var query = from s in context.tabSalesmens
 select new Salesman
 {
 IdSalesman = s.idSalesman,
 SalesmanDescription = s.SalesmanDescription,
 SalesmanIsAdmin = s.SalesmanIsAdmin,
 SalesmanPassword = s.SalesmanPassword
 }
 foreach (Salesman s in query)
 {
 list.add(s);
 }
 }

 return (list);
 }
 catch (SqlException ex)
 {
 throw new DevLeapDBException("ERR01", ex);
 }
 }
 }
}

As you can see, nothing but the query code has changed. The code fills the SalesmenList
collection using a different data access technique, but the meaning and content has not
changed at all. Also, the technique used to catch the exception is exactly the same.

A better solution is to create an entire new DAL component for each different data access
logic technology; the new component will receive all the common functionalities from the
base class and override the specific behavior. In the preceding example, the inner code for
the data querying can be different in every data access scenario, but the rest of the code can
be centralized inside the data access layer.

292 Windows Azure Step by Step

To completely abstract our solution from any specific data layer, including a LINQ to SQL
implementation, you must define the real data layer implementation in a dedicated assem-
bly that will be loaded through a data layer factory instead of being referenced directly. The
code using LINQ to SQL resides inside this referenced assembly. Only domain model entities
can travel across the boundaries between any DAL implementation and the BIZ layer con-
sumer: not data tables, not LINQ to SQL entities—nothing else.

To meet this last requirement, the LINQ to SQL–based data layer translates its own entities
back and forth to the domain model entities, as you saw in Listing 11-3.

It is beyond the scope of this book to illustrate techniques or patterns for decoupling the busi-
ness layer from the data access layer. You can refer to Martin Fowler’s Patterns of Enterprise
Application Architecture (Addison-Wesley, 2002) to obtain a complete understanding of the
various patterns.

The same concept can be applied to ADO.NET Entity Framework 3.5: the model can be
defined inside the DAL assembly and the data access code can map business entities with
the entities defined in the Entity Data Model. One of the main differences of the Entity Data
Model from ADO.NET Entity Framework 3.5 and LINQ to SQL is database independency.
Unlike LINQ to SQL, Entity Framework natively supports different data providers without any
add-in or external component, and many third-party software companies also support this
framework. (For more information, see http://msdn.microsoft.com/en-us/data/dd363565.aspx).

Because of the native abstraction provided by the Entity Framework, you would probably
choose to use it whenever you really needed to abstract from the data layer. However, think
carefully about the overall architecture of your solution as well as about the persistence
model you are going to use with the Entity Framework. The standard behavior of Entity
Framework 3.5 is not persistence ignorance. Thus, if you use the standard Entity Data Model
as your domain entities, you would miss out on one of the main requirements for true data
layer abstraction: the persistence ignorance of the domain model.

In Entity Framework 4.0, the default behavior is identical to the 3.5 version, except that
you can choose to define persistence-ignorant Plain Old CLR Objects (POCO) entities to
regain true abstraction from the persistence layer. With POCO entities, you can leave your
own domain model entities intact, feeding them transparently with Entity Framework. To
achieve that goal, you need to set the Code Generation Strategy of the EDMX to None in the
Microsoft Visual Studio Designer, and define a custom class that inherits from ObjectContext.

The POCO feature doesn’t change any code presented in this chapter. DAL components are
stateless mappers that translate domain entities, which are completely persistence-ignorant,
into something that can be persisted in a data store during CUD (Create, Update, and Delete)
operations. They do the inverse when the upper layers request some data.

The code presented in Listing 11-1 was built for a demo application at the end of 2003 and
was revised to leverage the generic types that came out in 2005. The data access layer code

 Chapter 11 Application Architecture 293

that uses the SqlDataReader hasn’t changed, and it is a good choice when you are looking
for the fastest performance when reading data from a database. In 2007, thanks to the plug-
gable mechanism implemented in the architecture, we (the DevLeap company group) intro-
duced a new data access layer component using LINQ to SQL 3.5, and then a new assembly
for ADO.NET Entity Framework in .NET 3.5 (in September 2008). Today, we are still using the
same entity code we built in 2003 but leveraging new technologies introduced in the .NET
Framework since then, and we do not need to rewrite anything but this single component.

Because the development team could use LINQ to SQL or the Entity Framework in the data
access layer to map the database world, nothing changed architecturally. Pluggable architec-
ture enabled the development team to replace technologies as needed. If the ORM classes
are used directly in the UI or in the business layer code, the solution is not completely per-
sistence-ignorant, because these layers know too much about the storage itself. They do not
know field names or table names, but they know they are using an ORM.

The Table Storage Account Service is a new technology for managing data in the cloud, and
it exposes a REST service that can store and retrieve application entities that are not mapped
to any predefined structure. As you learned in Chapter 5, “Tables, Queues, and Worker Roles,”
the service accepts an HTTP/HTTPS request with an Atom Publishing Protocol (AtomPub)
payload to make CUD operations, and then it provides filtering and searching capabilities
when returning AtomPub content.

The service can be consumed directly using REST/HTTP or via the wrapper library named
StorageClient. In both cases, the role for the data access layer component is to call the service
and then map the results to the SalesmenList custom collection. The internal code for the
method will be different from the code to access a database, but again, architecturally, noth-
ing has changed.

Try to create a REST implementation following the architectural guideline for a data access
layer component:

namespace DevLeap.EstatesManagement.Dal.LINQtoSQL
{
 public class SalesmanDal : BaseDal<Salesman, SalesmanList, Int32>
 {
 public SalesmenList List()
 {
 try
 {
 SalesmenList list = new SalesmenList();
 HttpRequest request = new HttpRequest();
 // property of the request

 // Send Request
 // Analyze the <entry> in the AtomPub
 foreach(var entry in response)
 {
 Salesman item = new Salesman();

294 Windows Azure Step by Step

 // Fill item property with xml element value

 list.Add(item);
 }

 return (list);
 }
 catch (WebException ex)
 {
 throw new DevLeapDBException("ERR01", ex);
 }
 }
 }
}

The preceding code is not complete, but its goal is to show only the architectural essentials.

The main difference between this data access layer method and the LINQ to SQL
SqlDataReader methods is the way I queried the data store. In the traditional data access
code (see Listing 11-1), I issued a query to the database and constructed a list of salesmen
based on the record returned from the query. I issued an HTTP request (represented by the
commented line in the preceding code) to the remote Table Data Service and constructed a
list of salesmen based on the xml element found in the AtomPub response. Because in this
example the XML response is not important, I omitted the related code.

If you prefer to use the StorageClient library, the code you use is very similar to the code that
uses LINQ to SQL, because the StorageClient library exposes an object context, which you
learned about in Chapter 5.

First, define the class that must be serialized and passed to the service:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.WindowsAzure.StorageClient;
using System.Data.Services.Common;

namespace DevLeap.EstatesManagement.Dal.AzureStorage
{

 public partial class tseSalesman : TableServiceEntity
 {
 private string _idSalesman;
 private string _salesmanDescription;

 public string SalesmanDescription
 {
 get { return _salesmanDescription; }
 set { _salesmanDescription = value; }
 }

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 11 Application Architecture 295

 private string _salesmanPassword;

 public string SalesmanPassword
 {
 get { return _salesmanPassword; }
 set { _salesmanPassword = value; }
 }
 private bool _salesmanIsAdmin;

 public bool SalesmanIsAdmin
 {
 get { return _salesmanIsAdmin; }
 set { _salesmanIsAdmin = value; }
 }

 public string IdSalesman
 {
 get { return _idSalesman; }
 set { _idSalesman = value; }
 }

 public tseSalesman() : base()
 {
 }
 }
}

This class is quite similar to the business entity Salesman, but it is really just the class that
represents the data access structure. It can be considered the same as the LINQ to SQL entity
you saw in the preceding example (Listing 11-3), or the DBDataRecord structure you saw in
the first example of this chapter (Listing 11-1).

I named the class in the preceding code tseSalesman to highlight that it has a different mean-
ing than the business entity Salesman, where the prefix tse stands for TableStorageEntity. The
Salesman class must be defined in the same project as the data access layer components
because it is a DAL structure that cannot be used outside of this layer. If another layer uses
this class, the class is bound to the Windows Azure Table Storage Account Service—and, as
you know, this would violate the architectural philosophy.

Next, as shown in the following code, define a custom TableServiceContext that lets the devel-
oper of the data access layer component use a more typed approach to using the base class
directly. This class is a data access layer class called TableServiceEntity:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.WindowsAzure.StorageClient;
using Microsoft.WindowsAzure;

namespace DevLeap.EstatesManagement.DAL.AzureStorage
{

296 Windows Azure Step by Step

 public class EMTableServiceContext : TableServiceContext
 {
 private const String SalesmenTableName = "EMSalesmen";

 #region Ctor & EnsureTablesExist
 public EMTableServiceContext() :
 base(
 CloudStorageAccount.FromConfigurationSetting(
 "AzureStorageConnectionString").TableEndpoint.AbsoluteUri,
 CloudStorageAccount.FromConfigurationSetting(
 "AzureStorageConnectionString").Credentials)
 {
 this.EnsureTablesCreated(CloudStorageAccount.
 FromConfigurationSetting("AzureStorageConnectionString"));
 }
 // Ensure Table Exists
 private static Boolean _tablesCreated = false;
 private static object _tablesCreatedSyncLock = new Object();

 private void EnsureTablesCreated(CloudStorageAccount account)
 {
 if (!_tablesCreated)
 {
 lock (_tablesCreatedSyncLock)
 {
 if (!_tablesCreated)
 {
 CloudTableClient tableClient =
 account.CreateCloudTableClient();
 tableClient.CreateTableIfNotExist(SalesmenTableName);

 }
 }
 }
 }

 #endregion

 public IQueryable<tseSalesman> GetQueryableSalesmen()
 {
 return this.CreateQuery<tseSalesman>(SalesmenTableName);
 }

 public tseSalesman Add(tseSalesman s)
 {
 s.PartitionKey = "A";
 s.RowKey = s.IdSalesman;

 this.AddObject(SalesmenTableName, s);
 this.SaveChanges();
 return s;
 }
 }
}

 Chapter 11 Application Architecture 297

The preceding code is a refined version of some code examples presented in Chapter 5. This
class uses the default constructor to call the base TableServiceContext constructor, passing
the configuration parameter for the URI and credentials.

It also contains a method to check the existence of the table in a centralized place: it is a
good idea, architecturally, to place shareable code in a common method. Also, because this
code is required only once during the lifetime of the hosting process, you can use the single-
ton pattern to execute it just one time.

Apart from these two final touches to the code architecture, the class exposes two methods
to centralize creation of DataServiceQuery<tseSalesman> and adds a new tseSalesman.

Here’s the SalesmanDal List method for the new data access layer. The LINQ to SQL code is
commented so that you can focus on the differences between the LINQ to SQL code and the
Table Storage Account Service code:

namespace DevLeap.EstatesManagement.Dal.AzureStorage
{
 public class SalesmanDal : BaseDal<Salesman, SalesmanList, Int32>
 {
 public SalesmenList List()
 {
 try
 {
 SalesmenList list = new SalesmenList();

 // LINQ to SQL code
 // using (EstatesManagementDataContext context = new
 // EstatesManagementDataContext(this.ConnectionString))
 // {
 // context.ObjectTrackingEnabled = false;

 // var query = from s in context.tabSalesmens
 // select new Salesman
 // {
 // IdSalesman = s.idSalesman,
 // SalesmanDescription = s.SalesmanDescription,
 // SalesmanIsAdmin = s.SalesmanIsAdmin,
 // SalesmanPassword = s.SalesmanPassword
 // }
 // foreach (Salesman s in query)
 // {
 // list.add(s);
 // }
 // }
 using (EMTableServiceContext context = new EMTableServiceContext())
 {

 var query = from s in context.GetQueryableSalesmen()
 select new Salesman
 {
 IdSalesman = s.idSalesman,

298 Windows Azure Step by Step

 SalesmanDescription = s.SalesmanDescription,
 SalesmanIsAdmin = s.SalesmanIsAdmin,
 SalesmanPassword = s.SalesmanPassword
 };

 foreach (Salesman s in query)
 {
 list.add(s);
 }
 }
 return (list);
 }
 // catch (SqlException ex)
 catch (DataServiceQueryException ex)
 {
 throw new DevLeapDBException("ERR01", ex);
 }
 }
 }
}

As you can see, there are no architectural differences among the two code approaches. The
main difference is the exception type listed in the catch block, which the Data Service Client
library throws when problems occur. It cannot throw SqlException because there is no SQL
Server in this example.

The code inside the method is similar to the code used in the LINQ to SQL example; the
TableServiceContext class is very similar to the DataContext class.

All these examples illustrate my main point: good software architecture helps the solution
(and you) leverage new technologies because only the pertinent components or layers must
be changed.

The Service Agent
Figure 11-1 showed another pillar of modern software architecture: the service agent.

The service agent component is responsible for translating a business layer request in an
over-the-wire request to a remote service and translating the received response (or the
exception) into something the business layer can use.

The service agent performs the same work as the data access layer component, abstracting
the upper layer from the details of communicating with remote services. The services can
also be hosted in the same machine in which the service agent resides, but the difference is
that the work is handled by the service agent itself (in the code or configuration settings) and
it does not influence the business layer.

 Chapter 11 Application Architecture 299

When Windows Communication Foundation (WCF) was released in 2006, the only necessary
task to accomplish to leverage the new technology was change the service agent. The solu-
tion didn’t need to be rearchitected. If early Web Service code had been spread across layers
and methods, it would have been practically impossible to use WCF without checking and
testing every line of code.

The Service Agent project also contains the proxy code. The developer has to use the Add
Service Reference tool from the service agent component. Every other component of the
solution must have no idea what a Service Reference or a proxy to a Web Service is. The busi-
ness layer invokes methods on the service agent component, passing and receiving business
entities.

This was the .NET Framework 1.0 code contained in my Estates Management project at the
end of 2003:

namespace DevLeap.EstatesManagement.ServiceAgent.WS20
{
 public partial class SalesmanServiceAgent : BaseServiceAgent
 {
 public SalesmenList List()
 {
 try
 {
 SalesmenService ss = new SalesmenService();
 SalesmenList list = SalesmenMapper.FromContract(ss.List());
 return (list);
 }
 catch (Exception ex)
 {
 throw new DevLeapServiceException("ERR01", ex);
 }
 }

The Add Web Reference tool that came with Visual Studio 2003 creates a proxy that invokes
the various service operations. The tool creates local classes based on the WSDL (Web Service
Description Language) to represent the contract entity (Data Transport Object , or DTO).
When the service agent calls the operations on the Web Service, it receives a SOAP response
that is XML, and the service agent uses it to build a collection of the local defined classes.

These autogenerated classes cannot be considered business entities, because they are
defined in the contract between the service and the consumer. They are bound to the con-
tract, not to the client-side application, which is in a completely different boundary from an
SOA point of view. Do not think about the consumer as just a Windows Forms or WPF appli-
cation. The consumer can be an ASP.NET application or another service.

The role of the service agent is to map these autogenerated classes into the client-side
business entities. The real map operation was done with the helper class SalemenMapper,
because in .NET 1.0 there were no extension methods:

300 Windows Azure Step by Step

namespace DevLeap.EstatesManagement.ServiceAgent.WS20
{
 public static class SalesmenEntityMapper
 {
 public static UIBIZ.SalesmenList FromDataContract(SOA.Salesman[] source)
 {
 UIBIZ.SalesmenList result = new UIBIZ.SalesmenList();

 foreach (SOA.Salesman sourceItem in source)
 {
 result.Add(FromDataContract(sourceItem));
 }

 return (result);
 }

 public static UIBIZ.Salesman FromDataContract(SOA.Salesman source)
 {
 UIBIZ.Salesman result = new UIBIZ.Salesman();

 result.IdSalesman = source._idSalesman;
 result.SalesmanDescription = source._salesmanDescription;
 result.SalesmanIsAdmin = source._salesmanIsAdmin;
 result.SalesmanPassword = source._salesmanPassword;
 return (result);
 }

 public static SOA.Salesman ToDataContract(UIBIZ.Salesman source)
 {
 SOA.Salesman result = new SOA.Salesman();

 result._idSalesman = source.IdSalesman;
 result._salesmanDescription = source.SalesmanDescription;
 result._salesmanIsAdmin = source.SalesmanIsAdmin;
 result._salesmanPassword = source.SalesmanPassword;

 return (result);
 }

 public static List<SOA.Salesman> ToDataContract(UIBIZ.SalesmenList source)
 {
 List<SOA.Salesman> result = new List<SOA.Salesman>();

 foreach (UIBIZ.Salesman sourceItem in source)
 {
 result.Add(ToDataContract(sourceItem));
 }

 return (result);
 }

 }
}

 Chapter 11 Application Architecture 301

The FromDataContract(SOA.Salesman[] source) method of the SalesmenMapper class loops
in the array of the Salesman passed as a parameter and, for each DTO object, it calls the
FromDataContract(SOA.Salesman source) method. This method returns a new Salesman,
the business entity, to the caller that, in turn, returns the business entity typed collection
(SalesmenList) to the caller.

The mapper also contains the method to transform a business entity back to the DTO corre-
spondent object. The mapper is used in CUD operations.

In 2006, I introduced a new service agent component in the solution to leverage the new
WCF features such as in-process communication as well as features based on TCP. The new
service agent differs only in the lines of code that call the service and in the configuration
file:

namespace DevLeap.EstatesManagement.ServiceAgent.WCF30
{
 public partial class SalesmanServiceAgent : BaseServiceAgent
 {
 public SalesmenList List()
 {
 try
 {
 EndpointAddress endpointAddress = new
 EndpointAddress(ConfigurationManager.AppSettings["ServiceUri"]);

 SalesmanServiceClient service = new SalesmanServiceClient(
 SalesmanServiceClient.CreateDefaultBinding(), endpointAddress);

 SalesmenList list = SalesmenMapper.FromContract(service.List());
 return (list);
 }
 catch (FaultException<SalesmanFaultException> ex)
 {
 throw new DevLeapServiceException("ERR01", ex);
 }
 }

As you can see from the code, a custom FaultException was also used, but this new feature is
completely hidden from other layers. The business layer continues to talk to the service agent
component, receiving and passing business entities.

With the introduction of the Service Bus, some lines of code had to be changed to instruct
the infrastructure about the protocols and URLs to use for communicating with the cloud
service. These differences are neither in the business processes nor in the user interface pre-
sentation, nor are they in the data access layer component. They are related only to the com-
munication infrastructure. The service agent component can be adapted or replaced without
even changing the mapper helper class.

302 Windows Azure Step by Step

The following code is an example of modifying the preceding code to use the Service Bus
with the HTTP protocol:

namespace DevLeap.EstatesManagement.ServiceAgent.ServiceBus10
{
 public partial class SalesmanServiceAgent : BaseServiceAgent
 {
 public SalesmenList List()
 {
 try
 {
 EndpointAddress endpointAddress = new EndpointAddress(
 ConfigurationManager.AppSettings["SBNamespace"]);
 ServiceBusEnvironment.SystemConnectivity.Mode =
 ConnectivityMode.Http;
 ChannelFactory<ISalesmenService> factory = new
 ChannelFactory<IEstateService>(endpointAddres);
 svc = factory.CreateChannel();
 SalesmenList list = SalesmenMapper.FromContract(svc.List());
 return (list);
 }
 catch (FaultException<SalesmanFaultException> ex)
 {
 throw new DevLeapServiceException("ERR01", ex);
 }

 }

You can apply the same concepts on the server side of the services infrastructure. Contracts,
services, mappers, and hosts can be defined in the same assembly from a technical point of
view, but when you write the code that way, the components are bound together, so it can
be very difficult to adapt such monolithic code to new technologies. When you instead sepa-
rate the service code from the hosting environment, you can reuse the method code with
a different host. For example, you can easily change the host to a Windows Azure Worker
Role instead of a local Windows Service while still reusing the same contract, Mappers, and
services.

In the last few years, the REST protocol has become more popular; it’s the perfect protocol in
some scenarios. SOAP, on the other hand, is perfect for other scenarios. The use of one over
the other is a matter of preference, not a business layer concern or a user interface problem.

Summary
This chapter provided an introduction to some architectural patterns and a few examples of
how to create data access layer components and service agent components. The examples
show one way you can architect the lower layer of an application. You can modify or replace
the components in a layer whenever a new technology appears or requirements change
without worrying about the other layers and the overall architecture of the solution.

 303

Index

A
abstraction 16

code 5
access

services
creating storage account projects 260–272
HTTP 274–279
PHP 272–273
REST 274–279

SQL Azure 246–252
database access 235–238
on-premises description 234

Access Control Service
security exposure 164, 168
Windows Azure AppFabric 162

accounts
storage accounts

accessing from PHP 272–273
creating 260–272
creating client application 261–266
inserting data 267–272
names 260

subscriptions, billing 140
Add BLOB Container dialog box 93
Add Certificate button 148–149
Add Service Reference tool 299
Add To Source Control check box 45
ADO.NET Entity Framework 292–293
affinity groups 143–145
Affinity Group Service 143–145
APIs

blobs 98–108
listing blobs in containers 98–103

cloud projects 50–55
diagnostics 156–160
StorageClient 115
Table Service 114–116

application entities
storage accounts 85

Application Package file 18
applications

ASP.NET Web Applications, creating 195–196
client, creating 261–266
console, requesting raw data 219–220
international, CDN (Content Delivery Network)

Service 145–147
n-tier 282–283
Save the Planet 24
three-tier 282
two-tier 281

Windows Forms 259
creating client application 261–266
inserting data 267–272

Application_Start method 106
ASP.NET

MVC 2 Web Role 46
Web Applications, creating 195–196
Web Role 46

naming 47
Web Site Project template 195–196

assemblies
Microsoft.ServiceBus 174
System.Configuration 264
System.ServiceModel.Web, 174

Astoria project. See also WCF Data Services
history 193

AtomPub 208
creating WCF Data Services 208
OData 193
response for a single property and related T-SQL 214
response for expanded related entity 215
response for requests 212

authorization rules, Access Control Service 35–36
ava Virtual Machine (JVM) 6
Azure Services, deploying projects 56–62
AzureStorageServiceContext, creating 117–118

B
base classes

BaseDal class 288
BaseEntity class 288
TableServiceEntity 263

big businesses, cloud computing 10–12
billing 12

account subscriptions 140
affinity groups 143–145
Content Delivery Network (CDN) Service 146–147
downloading invoices 142
phone carriers 11
services 138–144
storage accounts 31

bindings, Windows Azure AppFabric SDK 185–189
BIZ (business layer) 282
BLOB Containers window 95
Blob Management window 92
blobs 27–31

adding to containers 95–97
APIs 98–108

listing blobs in containers 98–103

304 blobs (continued)

blobs (continued)
containers 93
listing in containers 98–103
managing with Windows Azure Management

Tool 91–95
names 95
requesting in storage accounts 89–90
storage accounts 85
uploading 104–106

Blob Service 112
compared to Table Service 112–113

BLOBs window 95
BPOS (Business Online Productivity Suite) 139
Business entity definition (listing) 287–288
business layer (BIZ) 282
Business Online Productivity Suite (BPOS) services 139
Busy phase (deployment) 59
buttons, Add Certificate 148–149
buying, subscriptions 19

C
caching, Windows Azure AppFabric 36–37
.ccproj project 50–55
CDN (Content Delivery Network) Service 145–147

billing 146–147
CER certificates 150–155

deleting 151–152
uploading 151
verifying 151–152
Visual Studio Server Explorer 153–154
Windows Azure Management Tool 154–155

certificates 147–155
CER 150–155

deleting 151–152
uploading 151
verifying 151–152
Visual Studio Server Explorer 153–154
Windows Azure Management Tool 154–155

DNS names 148–149
SSL 148–151

uploading 148–149
Visual Studio Configuration Designer, 149–150

CGI Web Role 46
chat applications, creating 118–121
Choose A Region drop-down list box 144
Choose A Region Or Affinity Group section 22
Choose A Subscription drop-down 138
classes

BaseDal 288
BaseEntity 288
CloudStorageAccount 101
ConfigurationManager 264
DataContext 225
DataService 206
DataServiceContext 122
DataServiceQuery 225

DevLeapDBException 286
Message 117

creating client-side context 117–118
RoleEntryPoint 68
RoleEnvironment 74

GetLocalResource method 82
local storage 80

SqlCommand 235
SqlConnection 235–236
SqlHelper 285
StorageClient, uploading blobs 104–106
TableServiceContext 295
TableServiceDataServiceContext 122
TableServiceEntity 295
TableServiceEntity base class 263
TableServiceServiceContext 124

Classic ADO.NET code listing 236–237
client application, creating 261–266
client libraries, WCF Data Services 195
clients

.NET Framework 223–227
SOA (Service Oriented Architecture) 5–6
WCF Data Service 218–223

creating 219–223
client-side context, creating 117–118
cloud-based relational solutions, benefits 235
CloudBlob instance 105
cloud computing 12–14

benefits 17
big business opportunities and 10–12
definition 4
IaaS (Infrastructure as a Service) 2–3
infrastructure benefits 9–10
open source systems 11
ownership 11
PaaS (Platform as a Service) 3–4

Windows Azure 6–12
SaaS (Software as a Service) 2
small business opportunities and 7–9

cloud environments, testing 50
cloud projects

creating 45–51
multiple-instance testing 53–55
role properties 72–76
run error 51
ServiceDefinition.csdef file 70

Cloud section, creating projects 44–50
cloud services, configuring 62–69
CloudStorageAccount class 101
CLR (common language runtime) 6
code 13

abstraction 5
Code-behind file for Default.aspx listing 65–66
Code-behind file for Default page: Default.aspx.cs

(listing) 49
Code to request and update an entity (listing) 221–222
common language runtime (CLR) 6

 DataContext class 305

community technical preview (CTP), SQL Azure
Reporting Services 234

components, DAL 291–298
Composite Application Service 38–39
Conceptual Schema Definition Language (CSDL) 202
ConfigurationManager class 264
configurations

cloud services 62–69
costs 12
.cscfg file 61–69
firewalls 244–245
input endpoints 73
RAID5 13
reading local storage configuration value 82–85
ServiceConfiguration.cscfg file 72–76
Setting Publisher 133–134
Worker Role projects 132

Configuration Settings file 18–19
connections

exposing with Direct Connection 182–185
HTTP (switching to from TCP/IP) 189–190
SQL 237

Connection string listing 202
connection string parameter, adding to service

configuration (SQL Azure access) 246
ConnectionString property 285
Connect Local option 91
Connect option 91
Connect to Server dialog box 249
console applications

creating with WCF (Windows Communication
Foundation) infrastructure 163–164

requesting raw data 219–220
constructors, TableServiceContext 297
containers

adding blobs 95–97
blobs 93
creating

HTTP requests 93–94
PUT method 94

creating from code 106–109
listing blobs in 98–103
public 93
server collection 17

Content Delivery Network (CDN) Service 145–147
billing 146–147

controllers, SCSI (small computer system interface) 13
controls

FileUpload, uploading blobs 104–106
GridView 202
Repeater 102

Core SQL Server database capabilities 234
costs

small businesses 8
Windows Azure 12

CPUs
operating system power 16
virtual machine types 12

Create A New Hosted Service dialog box 138
Create A New Hosted Service wizard 143–144
Create A New Service Namespace dialog box 166–167
Create A New Storage Account dialog box 88–89
Create A New Storage Account wizard 29–31
CreateCloudBlobClient method 101
Create Database dialog box 242–243
Create Or Choose An Affinity Group option list box 29
CreateQuery<T> method 122
Create, Read, Update, Delete (CRUD)

blobs 98–108
HTTP 274–279
REST 274–279

CreateServiceUri static method 175
Create, Update, and Delete (CUD) operations 292
Create, Update, or Delete (CUD) requests 93
CRUD (Create, Read, Update, Delete)

blobs 98–108
HTTP 274–279
REST 274–279

CSDL (Conceptual Schema Definition Language) 202
CTP (community technical preview), SQL Azure

Reporting Services 234
CUD (Create, Update and Delete) operations 292
CUD (Create, Update, or Delete) 93
customers, Windows Azure 12

D
DAL component that uses LINQ to SQL (listing) 290–291
DAL component using a DataReader (listing) 284–285
DAL (data access layer) 282, 283–298

components 291–298
service agent component 298–302

Data Access Application Block 285
data access layer (DAL) 282, 283–298

components 291
service agent component 298–302

databases
access, SQL Azure 235–238
creating, for database server creation in

cloud 242–245
migration, SQL Azure 253–254
servers, creation in cloud (SQL Azure) 238–246
WCF Data Services, creating 197

database servers
creation in cloud (SQL Azure)

configuring firewalls 244–245
database creation 242–245
virtual server creation 238–241

data centers
lowering latency with CDN (Content Delivery

Network) Service 145–147
regions, affinity groups 144
services. See services

DataConnectionString setting 264
DataContext class 225

306 data, inserting

disk space
subscriptions 85

distributed resources 5
DNS names, certificate aliases

 148–149
documentation

Access Control Service 35
Service Bus 34
Windows Azure AppFabric 33

downloading
invoices 142
SDKs

Windows Azure AppFabric 162–163
software development kits (SDK) 41
tools from Azure 41
Windows Azure Management Tool 90

E
EDM, creating 196
elements, LocalStorage 82
EMD. See EDM, creating
Enable CDN dialog box 146–147
entities 111

EntitySetRights enumeration 229
names 201–202
primary key 111
properties 111
requesting 221–222
security 228–229
Table Service 115
updating 221–222

Entity Connection String box 199
Entity Data Model 292. See EDM, creating
Entity Data Model Wizard 199
Entity Framework 292–293, 293
EntitySetRights enumeration 229
Entity update listing 227
enumerations, EntitySetRights 229
errors (cloud projects), run error 51
es, Include The Sensitive Data In The Connection String

box 199
EstatesManagement service 206
event handlers, Form_Load 264
Exchange Online Standard subscription 142
exchanging messages, Service Bus 33–35
Expand/Include to avoid a deferred query (listing) 226
exposing

connections with Direct Connection 182–185
services

HTTP 274–279
.NET Security Principal 228
REST 274–279

services to Service Bus 173–176

data, inserting 267–272
DataService class 206
Data Service code-behind file (listing) 206–207
DataServiceContext class 122
DataServiceQuery class 225
data storage 12. See also storage

Blob Service 112
Table Service 112

DataSvcUtil.exe 224
decoupling web applications, Worker Role 31–32
Default.aspx listing 203
Default.aspx page 48–49

testing 49–50
defined services, SaaS cloud computing 2
defining, entities 116–117
deployment

local deployment, local storage 83–85
phases 59
projects, Azure Services

 56–62
services 26
solutions 17–18

Asure Services 56–62
Deployment Name text box 57
Deploy Your Cloud Service To Windows Azure

option 152–153
dequeuing, Worker Role messages

 134–135
developer code 13
developers 12
DevLeapCloudService 19

creating 45–51
DevLeapDBException class 286
diagnostics 156–160

enabling with Web Role Configuration designer 156
DiagnosticsConnectionString setting 69
Diagnostics section 73
dialog boxes

Add BLOB Container 93
Connect to Server 249
Create A New Hosted Service 138
Create A New Service Namespace 166–167
Create A New Storage Account 88–89
Create Database 242–243
Enable CDN 146–147
Internet Options 207
project properties, configuring cloud services 62–69
Publish Cloud Service 152–153
Upload BLOB To Images 95
View Storage Access Keys 89
Visual Studio 2010 Publish 152–153
Visual Studio Add Connection 248–249
WCF Data Service Add Service Reference 224

direct calls, Direct Connection 182–185
Direct Connection 182–185

 listings 307

F
fault tolerance, local storage 83–85
features, SQL Azure 234–236
fields

PartitionKey 115
Timestamp 115

files
Application Package 18
Configuration Settings 18–19
Global.asax.cs 106–109
ServiceConfiguration.cscfg

configurations 72–76
modifying live configurations 67–68
project properties dialog box 62

ServiceDefinition.csdef
requesting local storage 81–82
Web Roles 70–72

FileUpload control, uploading blobs 104–106
firewalls, configuring 244–245
Form_Load event handler 264
forms, Upgrade Deployment 66
FromConfigurationSettings static method 101
FromConfigurationSetting static method 266

G
garbage collector (GC) 13
GC (garbage collector) 13
GetConfigurationSettingsValue static method 64
GetLocalResource method 82
Global.asax.cs file 106–109
Go To The Windows Azure Developer Portal link

opening Management Portal 86
GridView control 202
groups, affinity 143–145

H
hardware, renting 11
history, of Astoria project 193
home pages, Microsoft Online Services Customer

Portal 140
hosting

environment 17
services 22, 23, 25

HTTP
connections (switching to from TCP/IP) 189–190
CRUD (Create, Read, Update, Delete) 274–279
OData 193
Service Bus Service 165
tracers, storage account requests 93–94

I
IaaS (Infrastructure as a Service) 2–3
Infrastructure as a Service. See IaaS
infrastructure, cloud computing benefits 9–10
InitializeService static method 206
Initializing phase (deployment) 59
input endpoints, configuring 73
inserting, data 267–272
installations

tools for Visual Studio 43
Windows Azure 16

Instance Count setting 73
instances 25

CloudBlob 105
LocalResource 82
multiple instances testing 53–55
Web Role 31
Worker Role 31

Instances section 73
instance storage, virtual machine types 12
Integration Service 37–38
international applications, CDN (Content Delivery

Network) Service 145–147
Internet Options dialog box 207
invoices, downloading 142
I/O performance, virtual machine types 12

J
JSON (JavaScript Object Notation), OData 193
JVM (Java Virtual Machine) 6

K
keys, viewing 89

L
latency, lowering with CDN (Content Delivery Network)

Service 145–147
libraries

StorageClient 294–295
Windows Communication Foundation (WCF) Data

Services Client 264
link elements 211
LINQ to SQL 289, 290, 293
listings

AtomPub response for a request to a single
EstateType 212

AtomPub response for a single property and related
T-SQL 214

AtomPub response for expanded related entity 215
blobs in containers 98–103

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

308 listings (continued)

listings (continued)
Business entity definition 287–288
Classic ADO.NET code 236–237
Code-behind file for Default.aspx 65–66
Code-behind file for Default page: Default.aspx.cs. 49
Code to request and update an entity 221–222
Connection string 202
Console application requesting raw data 219–220
DAL component that uses LINQ to SQL 290–291
DAL component using a DataReader 284–285
DataContext class 225
Data Service code-behind file 206–207
DataServiceQuery class 225
Default.aspx 203
Entity update 227
Expand/Include to avoid a deferred query 226
Modified Default.aspx page 48–49
QueryInterceptor 231
ServiceConfiguration.cscfg 18–19, 76, 247
ServiceDefinition.csdef 71, 75–76, 247
Service Operations added to the WCF Data

Service 230
StorageAccountBlob.aspx 99–100
TableServiceEntity definition 116–117
T-SQL code for a request and an update

operation 223
T-SQL for a double jump in the navigation

property 213
T-SQL for an ordered request 217
T-SQL for a paginated request 218
T-SQL for expanded related entity 216
T-SQL statement for a single salesman request 210
T-SQL statement for the salesmen entity set

request 209
T-SQL statement navigation property requests 212
WebRole definition 68

Live ID account 138–144
local deployment, local storage 83–85
LocalResource instance 82
LocalResources tag 82
LocalResource type 82
local storage 16, 80–85

fault tolerance 83–85
local deployment 83–85
reading configuration value 82–85
requesting 80–82
RoleEnviroment class 80
scalability 83–85
storage accounts 85–91

LocalStorage element 82
Local Storage settings 74

M
maintenance 13
Management Portal, opening 20, 86
management requests (storage accounts), HTTP

tracers 93–94
managing, services 21
Mapping Schema Language (MSL) 202
Message class 117

creating client-side context 117–118
message exchanges, Service Bus 33–35
methods

Application_Start 106
CreateCloudBlobClient 101
CreateQuery<T> 122
CreateServiceUri static 175
FromConfigurationSettings static 101
FromConfigurationSetting static 266
GetConfigurationSettingsValue static 64
GetLocalResource 82
InitializeService static 206
OnStart 69, 157–159
Page_PreRender 101
PUT, requesting storage container creation

 94
SalesmanDal List 297
SqlDataReader 294

Microsoft .NET Framework, SDK & Tools page 42
Microsoft Online Services Customer Portal 139

home page 140
Microsoft Push Notification Service for Windows Phone

7 32, 161
Microsoft.ServiceBus assembly 174
Microsoft.WindowsAzure.ServiceRuntime

namespace 68
middleware services, Windows Azure AppFabric 162
migration (database), SQL Azure 253–254
MSL (Mapping Schema Language) 202
multiple instances, testing 53–55
multitier solutions, characteristics 281–283

N
names

ASP.NET Web Role 47
blobs 95
entities 201–202
services 22, 29, 88–89
storage accounts 260
subscriptions 141

namespaces
Microsoft.WindowsAzure.ServiceRuntime 68
Secure Token Service (STS) Endpoint 168–169
Service Bus Service, creating 166–169

.NET Framework, client 223–227

.NET Framework 4, changing Target Framework to 265

.NET Security Principal 228

 projects . See also roles 309

New Project wizard 45
New Service wizard, creating storage accounts 113
New Storage Account button 88–89
n-tier applications 282–283
numeric identifiers, subscriptions 141

O
Object Explorer, database object management 250–251
Object Relational Mapper (ORM) 289
OData (Open Data Protocol) 112

syntax, REST query 126
on-premises (SQL Azure access) 234
OnStart method 69, 157–159
Open Data Protocol. See OData
Open Data Protocol (OData) 112
opening

Create A New Storage Account dialog box 88–89
Management Portal 20, 86

open queries, requesting data 127
open source systems, cloud computing 11
operating system

billing 138–144
Live ID account 138–144
subscriptions 138–144

operating system (Windows Azure platform) 16–19
abstraction 16
cloud computing benefits 17
hosting environment 17
local storage 16
Microsoft Push Notification Service for Windows

Phone 7 32
services, definition 17
storage 27–31
Windows Azure AppFabric 33–39

ORM (Object Relational Mapper) 289
ownership, cloud computing 11

P
PaaS (Platform as a Service) 1, 3–4

standards 6
storage 6
Windows Azure as PaaS solution 6–12

Package Location section 57
packages, upgrading 61–69
Page_PreRender method 101
partition key 115
PartitionKey field 115
patches 13
permanent application data, Blob Service 112
permissions, Access Control Service 35–36
phone carriers, billing 11
PHP, accessing storage accounts 272–273
physical resources 13
Plain Old CLR Objects (POCO) entities 292

Platform as a Service. See PaaS
platforms, PaaS cloud computing 3–4
platform (Windows Azure) 15

creating services 19–27
operating system 16–19

abstraction 16
cloud computing 17
hosting environment 17
local storage 16
Microsoft Push Notification Service for Windows

Phone 7 33
services 17
shared storage 16
storage 27–31
Windows Azure AppFabric 33–39

SQL Azure 39
POCO (Plain Old CLR Objects) entities 292
portals

Microsoft Online Services Customer Portal 139
home page 140

subscriptions 138, 141
presentation layer 282
primary key

entities 111
requesting storage account resources 89–90

production environment, switching to staging
environment 26

project properties dialog box, configuring cloud
services 62–69

projects. See also roles
ASP.NET MVC 2 Web Role 46
ASP.NET Web Role 46

names 47
CGI Web Role 46
cloud projects

creating 45–51
multiple-instance testing 53–55
role properties 72–76
ServiceDefinition.csdef file 70

creating 44–50
creating WCF service applications 169–173
deployment

Azure Services 56–62
phases 59

multitier solutions, characteristics 281–283
Service Agent 299
storage accounts, creating 86–90, 260–272
ThinkAheadAzureStorage

listing blobs in containers 98–103
requesting storage 80–82

types 46
WCF Service Web Role 46
Web Role, Table Service APIs 114–116
Worker Role 31–32, 46

configurations 132
creating 132–133, 132–135

310 properties

properties
ConnectionString 285
entities 111
LocalResource type 82
role, cloud projects 72–76
RootPath 82

public containers 93
Publish Cloud Service dialog box 152–153
purchasing, services 141
PUT method, requesting storage container creation 94

Q
queries

open, requesting data 127
relationships 211–216
REST 124

OData syntax 126
SQL Server 223–224
Table Service 121–127
WCF Data Services 211–216

QueryInterceptor listing 231
queues 27–31

creating 129–132
definition 127

Queue Service 127–135
configuring Setting Publisher 133–134
configuring Worker Role projects 132
creating queue messages 129–132
creating Worker Role projects 132–133, 132–135
dequeuing Worker Role messages 134–135

R
RAID5, configuration 13
RAM, virtual machine types 12
Ready phase (deployment) 59
regions, data centers, affinity groups 144
relational engine features, SQL Azure 252–253
relationships, WCF Data Services 211–216
remote calls, Direct Connection 182–185
renting, hardware 11
Repeater control 102
requesting

blobs in storage accounts 89–90
entities 221–222
local storage 80–82
sorting clauses 125

requests, Create, Update, or Delete (CUD) 93
REST

CRUD (Create, Read, Update, Delete) 274–279
Service Bus Service 165

REST query 124
OData syntax 126

reviewing, solutions 23
RoleEntryPoint class 68

RoleEnvironment class 74
GetLocalResource method 82
local storage 80

role properties, cloud projects 72–76
roles. See also projects

Virtual Machine Role 32
Web, OnStart method 157
Web Role

ASP.NET 46
ASP.NET MVC 2 46
CGI 46
creating queue messages 129–132
project template 44–50
ServiceDefinition.csdef file 70–72
Table Service APIs 114–116
WCF Service 46

WebRole1, service definitions 247
Worker Role 31–32, 46

configuring projects 132
dequeuing messages 134–135

RootPath property 82
RowKey 115
run error, cloud projects 51

S
SaaS (Software as a Service) 2
SalesmanDal List method 297
Save Entity Connection Settings In Web.Config As check

box 199
Save the Planet 24
scalability

local storage 83–85
software 281

SCSI (small computer system interface) controllers 13
SDKs

Windows Azure AppFabric 162–163
bindings 185–189

SDKs (software development kits) 41–42
downloading 41
Windows Azure AppFabric 42
Windows Azure Platform Training Kit 42
Windows Azure SDK 42

SDK & Tools page 42
secondary key, requesting storage account

resources 89–90
Secure Token Service (STS) Endpoint

namespace 168–169
security 13

Access Control Service 35–36
entities 228–229
WCF Data Services 228–231

server collections, containers 17
servers, SQL, queries 223–224
service agent component 298–302
Service Agent project 299
Service Bus 33–35

 small businesses 311

Service Bus Service 162
bindings 186
creating namespace for 166–169
creating service consumers 177–181
creating WCF service applications 169–173
exposing services to Service Bus 173–176
HTTP 165
message flow 164–165
REST 165

ServiceConfiguration.cscfg 247
ServiceConfiguration.cscfg. 18–19
ServiceConfiguration.cscfg file 50

configurations 72–76
modifying live configurations 67–68
project properties dialog box 62

ServiceConfiguration.cscfg listing 76
service configuration (SQL Azure access)

adding connection string parameter 246
service consumers, creating 177–181
ServiceDefinition.csdef file 50

requesting local storage 81–82
Web Roles 70–72

ServiceDefinition.csdef listing 71, 75–76, 247
service definitions, WebRole1 247
Service Operations added to the WCF Data Service

listing 230
Service Oriented Architecture. See SOA
services

access
creating storage account projects 260–272
from PHP 272–273
HTTP 274–279
REST 274–279

Access Control Service 162
security exposure 164, 168

account billing 140
affinity groups 143–145
Affinity Group Service 143–145
billing 138–144
Blob Service 112

compared to Table Service 112–113
Business Online Productivity Suite (BPOS) 139
cloud services, configuring 62–69
Content Delivery Network (CDN) Service 145–147
creating 19–27
defined services, SaaS cloud computing 2
definition 17
deploying 26
DevLeapCloudService 19
EstatesManagement 206
exposing

HTTP 274–279
.NET Security Principal 228
REST 274–279

hosting 22, 23, 25
input endpoint 73
managing 21

Microsoft Push Notification Service for Windows
Phone 7 32, 161

names 22, 29
naming 88–89
purchasing 141
Queue Service 127–135

configuring Setting Publisher 133–134
configuring Worker Role projects 132
creating queue messages 129–132
creating Worker Role projects 132–133, 132–135
dequeuing Worker Role messages 134–135

Service Bus Service 162
bindings 186
creating namespace for 166–169
creating service consumers 177–181
creating WCF service applications 169–173
exposing services to Service Bus 173–176
HTTP 165
message flow 164–165
REST 165

SOA (Service Oriented Architecture) 5–6
subscriptions 138–144
Table Service 111–127

APIs 114–116
compared to Blob Service 112–113
creating chat applications 118–121
creating client-side context 117–118
creating storage accounts 113
defining entities 116–117
querying 121–127

Table Storage Account Service 293
testing 65
WCF Data Service

client 218–223
.NET Framework client 223–227

WCF Data Services 194–195. See also Astoria project
client library 195
creating 205–211
creating ASP.NET Web Applications 195–196
creating database 197
creating simple pages 202–206
renaming entities 201–202
security 228–231

Web Role, project template 44–50
Windows Azure AppFabric 33–39

Access Control Service 35–36
caching 36–37
Composite Application Service 38–39
documentation 33
Integration Service 37–38
Service Bus 33–35

Worker Role 31–32
Setting Publisher, configuring 133–134
shared storage 16
small businesses

cloud computing 7–9
costs 8

312 small computer system interface . See SCSI

small computer system interface. See SCSI
SOA (Service Oriented Architecture) 5–6

compared to PaaS 7
Software as a Service. See SaaS
software development kits. See SDKs (software

development kits)
software, scalability 281
solutions

cloud-based relational
benefits 235

creating 23
deployment 17–18

Azure Services 56–62
phases 59

multitier, characteristics 281–283
reviewing 23
testing 49–50
Visual Studio 47–48

sorting clauses, requesting 125
SQL Azure 39, 233

access 246–252
on-premises description 234

Core SQL Server database capabilities 234
CTP (community technical preview) Reporting

Services 234
database access 235–238
database migration 253–254
database server creation in cloud 238–246

configuring firewalls 244–245
database creation 242–245
virtual server creation 238–241

features 234–236
relational engine featuers 252–253

SQL Azure Data Sync 234
SQL Azure Migration Wizard 254–257
SQL Azure Reporting 234
SqlCommand class 235
SqlConnection class 235–236
SQL connections 237
SqlDataAdapter 235
SqlDataReader 235
SqlDataReader methods 294
SqlHelper class 285
SQL Management Studio R2

database object management 249–250
SQL Server Management Studio R2 250
SQL Server, queries 223–224
SSDL (Storage Schema Definition Language) 202
SSL certificates 148–151

uploading 148–149
Visual Studio Configuration Designer, 149–150

staging environment
swtiching to production environment 26
testing 26–27

standards, PaaS 6
Startup Action section 73

statements, T-SQL
double jump in the navigation property 213
expanded related entity 216
navigation property requests 212
ordered request 217
paginated request 218
salesman entity set request (WCF Data Services

creation) 209
single salesman request (WCF Data Services

creation) 210
static methods, FromConfigurationSetting 266
storage 27–31

Blob Service 112
instance storage, Windows Azure 12
local storage 16, 80–85

fault tolerance 83–85
local deployment 83–85
reading configuration value 82–85
requesting 80–82
RoleEnviroment class 80
scalability 83–85
storage accounts 85–91

PaaS 6
shared storage 16

StorageAccountBlob.aspx page 99–100
storage accounts 27–31, 85–91

accessing from PHP 272–273
billing 31
creating 28–30, 260–272

client application 261–266
data 267–272
New Storage wizard 113

names 260
projects, creating 86–90
requesting blobs 89–90
requesting resources 89–90
Windows Azure Management Tool 90–91, 90–97

adding blobs to containers 95–97
blob operations 98–108
downloading 90
managing blobs 91–95
uploading blobs 104–106

storage accounts, HTTP tracers 93–94
StorageClient API 115
StorageClient classes, uploading blobs 104–106
StorageClient library 294–295
storage keys, viewing 89
Storage Schema Definition Language (SSDL) 202
Subscription Information page 241
subscriptions

affinity groups 143–145
billing 140
buying 19
database creation 242
Exchange Online Standard 142
fees 12
fixed amount disk space 85

 Visual Studio 2010 313

names 141
numeric identifiers 141
portals 138, 141
services 138–144
transactions 85

SvcUtil.exe 224
System.Configuration assembly 264
System.ServiceModel.Web, assembly 174

T
tables 27–31

entities 111, 115
defining 116–117

partition key 115
PartitionKey field 115
properties 112
RowKey 115
rows 112

Table Service 111–127
APIs 114–116
compared to Blob Service 112–113
creating chat applications 118–121
creating client-side context 117–118
creating storage accounts 113
data storage 112
defining entities 116–117
querying 121–127
tables

entities 115
partition key 115
properties 112
rows 112

TableServiceContext class 295
TableServiceContext constructor 297
TableServiceDataServiceContext class 122
TableServiceEntity base class 263
TableServiceEntity class 295
TableServiceEntity definition (listing) 116–117
TableServiceServiceContext class 124
Table Storage Account Service 293
Table Storage Account Service code 297
tags, LocalResources 82
Target Framework, changing to .NET Framework 4 265
templates

ASP.NETWeb Site Project 195–196
Web Role 44–50

testing
cloud environments 50
Default.aspx page 49–50
multiple instances 53–55
services 65
solutions 49–50
staging environment 26–27

ThinkAheadAzureStorage project
listing blobs in containers 98–103
requesting storage 80–82

three-tier applications 282

Timestamp field 115
tools

downloading from Azure 41
Visual Studio 43–44

transactions, subscriptions 85
T-SQL

AtomPub response for a single property and related
T-SQL 214

code for a request and an update operation
(listing) 223

T-SQL statements
double jump in the navigation property 213
expanded related entity 216
navigation property requests 212
ordered request 217
paginated request 218, 218–223
salesman entity set request (WCF Data Services

creation) 209
single salesman request (WCF Data Services

creation) 210
Turn On Feed Reading View check box 207
two-tier applications 281
types, LocalResource 82

u
UI (user interface) layer 282
updating, entities 221–222
Upgrade Deployment form 66
upgrading

.cscfg file 61–69
packages 61–69

Upload BLOB To Images dialog box 95
uploading

blobs 104–106
CER certificates 151
SSL certificates 148–149

user interface (UI) layer 282

V
vendors, IaaS cloud computing 2–3
verifying, CER certificates 151–152
viewing, storage keys 89
View My Bills link 142
View Storage Access Keys dialog box 89
Virtual Machine Role 32
virtual machine types

CPUs 12
instance storage 12
I/O performance 12
RAM 12

virtual servers, creating 238–241
Visual Studio 2010

creating projects 44–50
creating WCF service applications 169–173
SDK & Tools page 42
tools 43–44

314 Visual Studio 2010 Publish dialog box

Visual Studio 2010 Publish dialog box 152–153
Visual Studio Add Connection dialog box 248–249
Visual Studio Configuration Designer,

SSL certificate configuration 149–150
Visual Studio Server Explorer, CER certificates 153–154
Visual Studio solution 47–48
VM Size setting 73

W
WCF Data Service Add Service Reference dialog box 224
WCF Data Services 194–195. See also Astoria project

client 218–223
creating 219–223

client library 195
creating 205–211

AtomPub result 208
creating ASP.NET Web Applications 195–196
creating database 197
creating simple pages 202–206
EDM, creating 197–200
.NET Framework client 223–227
queries 211–216
relationships 211–216
renaming entities 201–202
security 228–231

WCF service applications
creating, Service Bus Service 169–173
exposing service to Service Bus 173–176

WCF Service Web Role 46
WCF (Windows Communication Foundation) 299–302

infrastructure, creating console applications 163–164
WCF (Windows Communication Foundation) Data

Services 112
Web Role

ASP.NET 46
project names 47

ASP.NET MVC 2 46
CGI 46
creating queue messages 129–132
instances 31
OnStart method 157–159
projects, Table Service APIs 114–116
project template 44–50
ServiceDefinition.csdef file 70–72
WCF Service 46

WebRole1, service definition 247
Web Role Configuration designer

enabling diagnostics 156
WebRole definition listing 68
websites, Windows Azure 1
windows

BLOB Containers 95
Blob Management 92
BLOBs 95

Windows Azure
billing 12
business opportunities

big businesses 10–12
small businesses 7–9

cloud computing 12–14
code 13
configurations, costs 12
costs 12
customers 12
data storage 12
developers 12
GC (garbage collector) 13
installation 16
PaaS (Platform as a Service) 1
as PaaS solution 6–12
physical resources 13
subscription fees 12
website 1

Windows Azure AppFabric 33–39
Access Control 162
Access Control Service 35–36

security exposure 164, 168
bindings 185–189
caching 36–37
components 161–163
Composite Application Service 38–39
Direct Connection 182–185
documentation 33
HTTP connections (switching to from TCP/IP) 189–190
Integration Service 37–38
middleware services 162
SDK 42
SDKs 162–163
Service Bus 33–35, 162
Service Bus Service

bindings 186
creating namespace for 166–169
creating service consumers 177–181
creating WCF service applications 169–173
exposing services 173–176
HTTP 165
message flow 164–165
REST 165

Windows Communication Foundation (WCF)
infrastructure 163–164

Windows Azure Management Tool 42, 90–91, 90–97
adding blobs to containers 95–97
blob operations 98–108
CER certificates 154–155
downloading 90
managing blobs 91–95
requesting data with open queries 127
uploading blobs 104–106

Windows Azure Platform Training Kit 42

 315

Windows Azure SDK 42
Windows Azure Solution Accelerators 42
Windows Azure storage accounts. See storage accounts
Windows Azure Tools for Visual Studio 42
Windows Communication Foundation (WCF) 299–302

Data Services 112
Data Services Client library 264
infrastructure, creating console applications 163–164

Windows Forms applications 259
creating client application 261–266
inserting data 267–272

wizards
Create A New Hosted Service 143–144
Create A New Storage Account 29–31
Entity Data Model 199
New Project 45
New Service, creating storage accounts 113
SQL Azure Migration 254–257

Worker Role 31–32, 46
dequeuing messages 134–135
instances 31
projects

configurations 132
creating 132, 132–133

About the Author
Roberto Brunetti is an experienced consultant, trainer, and author. He’s a cofounder of
DevLeap, a company focused on providing high-value content and consulting services to
professional developers, and the founder of ThinkMobile, the largest Italian community for
mobile development. He is a regular speaker at major conferences, and works closely with
Microsoft Italy to put on events and build training courses.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Copyright
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Foreword
	Introduction
	Chapter 1. Introduction to Cloud Computing
	Approaches to Cloud Computing
	Infrastructure as a Service
	Software as a Service
	Platform as a Service
	Cloud Services Defined

	Long-Term Vision
	Windows Azure as a PaaS Solution
	Great Opportunity for Small Businesses
	Great Opportunity for Big Businesses

	Windows Azure and Cloud Computing
	Summary

	Chapter 2. Introduction to the Windows Azure Platform
	The Operating System
	Service Creation
	Windows Azure Storage
	The Worker Role
	The Virtual Machine Role
	Windows Azure AppFabric
	The Service Bus
	The Access Control Service

	SQL Azure
	Summary

	Chapter 3. Creating a Web Role Project
	Software Development Kits
	Windows Azure Tools for Visual Studio
	Web Role Project Template
	The Cloud Project
	Deployment to Windows Azure
	Configuration and Upgrading
	Service Definition File
	Role Properties
	Summary
	Quick Reference

	Chapter 4. Windows Azure Storage
	Local Storage
	The Windows Azure Storage Account
	Windows Azure Management Tool
	Blob APIs
	Summary
	Quick Reference

	Chapter 5. Tables, Queues, and Worker Roles
	The Table Service
	The Queue Service
	Summary
	Quick Reference

	Chapter 6. Windows Azure Operating System Details
	Live ID, Subscriptions, and Billing
	Affinity Group
	Content Delivery Network
	Certificates
	Diagnostics
	Summary
	Quick Reference

	Chapter 7. Building an AppFabric Solution
	Windows Azure AppFabric Components
	Service Bus
	Direct Connection
	Bindings
	HTTP for Management URI
	Summary
	Quick Reference

	Chapter 8. WCF Data Services and OData
	The Astoria Project
	WCF Data Services (ADO.NET Data Services)
	The Building Blocks
	WCF Data Service
	Query and Relationship
	Filtering, Sorting, and Pagination
	WCF Data Service Client
	The .NET Framework Client
	Security Introduction
	Summary
	Quick Reference

	Chapter 9. Using SQL Azure
	SQL Azure Features
	SQL Azure Database Access
	Database Server Creation in the Cloud
	SQL Azure Access
	SQL Azure Relational Engine Feature
	Existing Database Migration
	SQL Azure Migration Wizard
	Summary
	Quick Reference

	Chapter 10. Accessing Azure Services from Everywhere
	Creating the Storage Account Project
	Accessing the Storage Account from PHP
	Using HTTP and REST
	Summary
	Quick Reference

	Chapter 11. Application Architecture
	Characteristics of a Multitier Solution
	The Data Access Layer
	The Service Agent
	Summary

	Index
	About the Author

