sy
Get a Handle on Your Data

Learning

Seyed M.M. “Saied” Tahaghoghi

(:)’REILI_Y® & Hugh E. Williams

atabase/Web Programming
Database/Web Programming

O’REILLY"

Learning MySQL

Whether you're running a business, keeping track of members and meetings for a club,
| or just trying to organize a large and diverse collection of information, you'll find the
MySQL database engine to be a lifelong friend. And there’s no better way to make
MySQL work for you than Learning MySQL. This densely packed tutorial includes
detailed instructions to help you set up and design an effective database, create powerful queries
using SQL, configure MySQL for improved security, and glean useful information from your data.

After covering the basics, Learning MySQL travels far into MySQL's subtleties, including complex
queries and joins, how to interact with the database over the Web using PHP or Perl, and important
housekeeping such as backups and security.

Topics include:

e [nstallation on Linux, Windows, and Mac OS X

e Basic and advanced querying using SQL

e User management and security

e Backups and recovery

e Tuning for improved efficiency

e Command-line and web database applications using the PHP and Perl programming languages
MySQL is the most popular open source database, offering the power of a fully relational database in

a package that's easy to set up and administer. Whether you've never touched a database or have
already completed some MySQL projects, you'll find insights in Learning MySQL that will last a career.
Saied Tahaghoghi is a senior lecturer at the RMIT University School of Computer Science and
Information Technology, and he is a member of the RMIT Search Engine Group, where he supervises
research on text, image, video, and code retrieval.

Hugh E. Williams is a software design engineer at Microsoft’s Windows Live Search in Redmond,
Washington. He’s published over 70 research papers and holds several patents, mostly in the search
engine area.

www.oreilly.com
US $44.99 CAN $58.99

ISBN: 978-0-596-00864-2 —
54499 Safari incuudes
TORET LT sooxsontme FREE 45-Day

780596008642 Online Edition

Learning MySQL

Learning MySQL

Seyed M.M. “Saied” Tahaghoghi and Hugh E. Williams

O’REILLY"

Beijing - Cambridge + Farnham - KoIn - Sebastopol - Taipei - Tokyo

Learning MySQL
by Seyed M.M. “Saied” Tahaghoghi and Hugh E. Williams

Copyright © 2007 O’Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Julie Hawks

Production Editor: Sanders Kleinfeld Cover Designer: Karen Montgomery

Copyeditor: Sanders Kleinfeld Interior Designer: David Futato

Proofreader: Colleen Gorman lllustrators: Robert Romano and Jessamyn Read
Printing History:

November 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning MySQL, the image of blue spotted crows and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

RepKover.
S
=T T This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-00864-2
(M] (01/09]
1259603998

http://safari.oreilly.com

Table of Contents

o] 1 [« Xi

Partl. Introduction

1. Introduction ... 3
Why Is MySQL so Popular? 4
Elements of MySQL and Its Environment 5
MySQL Software Covered in This Book 7
The Book’s Web Site 8

2. Installing MySQLovnirieiti ettt it it it ie e e eeenaaaaas 9
Installation Choices and Platforms 9
Using the Command-Line Interface 12
Using a Text Editor 18
Following the Instructions in This Book 20
Downloading and Verifying Files from the MySQL AB Web Site 22
Installing Under Linux 25
Installing Under Windows 51
Installing Under Mac OS X 61
Using a MySQL Installation Provided by an ISP 69
Upgrading an Existing MySQL Server 69
Configuring Access to the MySQL Server 74
What If Things Don’t Work? 75
The Contents of the MySQL Directory 81
Configuring and Controlling the Apache Web Server 83
Setting up Perl 88
Resources 93
Exercises 94

3. Usingthe MySQLMONItOrcvvniiiie it iii e e e reneannnnnnns 95
Starting the Monitor 95

Style, Case, and Semicolons 97

The Monitor Help 98
Running the Monitor in Batch Mode 101
Loading the Sample Databases 102
MySQL Monitor Program Options 102
Graphical Clients 104
Exercises 105

Partll. Using MySQL

4. Modeling and Designing Databasesccovviiiiiiiiiiniiiniinnns 109
How Not to Develop a Database 109
The Database Design Process 111
The Entity Relationship Model 112
Entity Relationship Modeling Examples 120
Using the Entity Relationship Model 128
Using Tools for Database Design 130
Resources 132
Exercises 132
5. BasicSQL ..uiiii e 135
Using the Music Database 135
The SELECT Statement and Basic Querying Techniques 139
The INSERT Statement 162
The DELETE Statement 168
The UPDATE Statement 171
Exploring Databases and Tables with SHOW and mysqlshow 173
Exercises 176
6. Working with Database Structurescooviiiiiiiiiiiiiinnnn, 179
Creating and Using Databases 179
Creating Tables 181
The Sample Music Database 212
Altering Structures 214
Deleting Structures 220
Exercises 221
7. Advanced QUErYingc.oviiniiiniiiiiiiiii it i, 223
Aliases 223
Aggregating Data 228
Advanced Joins 237
Nested Queries 250

vi | Table of Contents

User Variables 263
Transactions and Locking 266
Table Types 267
Exercises 275
8. DoingMorewithMySQLovuniriiniiiiiiiii it iiiiieneeneanes 277
Inserting Data Using Queries 277
Loading Data from Comma-Delimited Files 281
Writing Data into Comma-Delimited Files 284
Creating Tables with Queries 285
Updates and Deletes with Multiple Tables 288
Replacing Data 292
The EXPLAIN Statement 294
Exercises 295
9. Managing Usersand Privilegescoviiiiiiiiiniiiiniiienennnnes 297
Understanding Users and Privileges 298
Creating and Using New Users 299
Privileges 303
The GRANT OPTION Privilege 306
How Privileges Interact 307
Users and Hosts 308
Checking Privileges 317
Revoking Privileges 323
Removing Users 324
Understanding and Changing Passwords 324
The Default Users 328
Devising a User Security Policy 333
Managing Privileges with SQL 339
Privileges and Performance 346
Resetting Forgotten MySQL Passwords 347
Exercises 349
Partlll. Advanced Topics
10. BackupsandRecoveryccoviiiiiiiiiiiiiiiiiiiiiiiiii e 353
Dumping a Database as SQL Statements 353
Loading Data from an SQL Dump File 360
mysqlhotcopy 361
Scheduling Backups 361
The Binary Log 365
Checking and Repairing Corrupted Tables 366

Table of Contents | vii

V413HAV
Typewritten Text
V413HAV

Re-Creating Damaged Grant Tables 369
Resources 369
Exercises 369
11. UsinganOptionsFileooniuiiiiiiiiiiiii ittt iiiieeenannens 3N
Configuring Options for the MySQL Monitor 371
Structure of the Options File 373
Scope of Options 374
Search Order for Options Files 375
Determining the Options in Effect 376
Exercises 377
12. Configuringand TuningtheServerc.ccovviiiiiiiiiiininennennnnn. 379
The MySQL Server Daemon 379
Server Variables 383
Checking Server Settings 388
Other Things to Consider 391
Resources 392
Exercises 392
PartIV. Web Database Applications with PHP
13. Web Database Applicationsccceuiiriiiiiniiiiiniinrnnennennns 395
Building a Web Database Application 395
The Apache Web Server 400
Introducing PHP 402
Using a PHP-Enabled Web Hosting Site 410
Resources 411
Exercises 412
T4, PHP et e it it i i i 415
Language Basics 415
Accessing MySQL Using PHP 427
Modularizing Code 449
Processing and Using User Data 452
The PHP Predefined Superglobal Variables 455
Untainting User Data 456
Sessions 462
The Reload Problem 463
Using PHP for Command-Line Scripts 466
Resources 471
Exercises 471

viii | Table of Contents

15. APHP Application: The Wedding Gift Registryccovvivvnnnenn. 473
Designing and Creating the Wedding Database 474
The Login Form 476
Passing a Message to a Script 478
Logging Users In and Out 480
The db.php Include File 486
Editing the List of Gifts 487
Loading Sample Gifts 497
Listing Gifts for Selection 497
Selecting and Deselecting Gifts 501
Resources 507
Exercises 507

PartV. Interacting with MySQL Using Perl

16, Perl oo 51
Writing Your First Perl Program 512
Scripting With Perl 513
Resources 538
Exercises 538

17. UsingPerlwithMySQLoovvniiiiii i e 539
Connecting to the MySQL Server and Database 539
Handling Errors When Interacting with the Database 540
Using Queries That Return Answer Sets 542
Using Queries That Don’t Return Answer Sets 545
Binding Queries and Variables 546
Importing and Exporting Data 552
Handling NULL Values 554
Resources 554
Exercises 554

18. Serving Perl PagestotheWebccoviiiiiiiiiiiiiiiiiiininen, 557
The Perl CGI Module 560
Processing User Input 562
A Note on mod_perl 566
Perl Security 566
Resources 568
Exercises 568

Table of Contents | ix

PartVl. Appendix

X | Table of Contents

Preface

Database management systems are the electronic filing cabinets that help individuals
and organizations to manage the mass of information they process each day. With a
well-designed database, information can be easily stored, updated, accessed, and col-
lated. For example, a freight company can use a database to record data associated with
each shipment, such as the sender and recipient, origin and destination, dispatch and
delivery time, current location, and shipping fee. Some of this information needs to be
updated as the shipment progresses. The current status of a shipment can be read off
the database at any time, and data on all shipments can also be summarized into regular
reports.

The Web has inspired a new generation of database use. It’s now very easy to develop
and publish multi-user applications that don’t require any custom software to be in-
stalled on each user’s computer. Adding a database to a web application allows infor-
mation to be automatically collected and used. For example, a customer can visit an
online shopping site, see what’s in stock, place an order, submit payment information,
and track the order until the goods are delivered. He can also place advance orders for
goods that aren’t available, and submit reviews and participate in discussions on items
he has purchased. If all goes well, the site’s staff doesn’t need to intervene in any of
these actions; the less staff intervention required during normal operation, the more
scalable the application is to large numbers of users. The staff are then free to do more
productive tasks, such as monitoring sales and stock in real time, and designing special
promotions based on product sales.

Both authors of this book have always been interested in using computers as a tool to
make things faster, more efficient, and more effective. Over the past few years we’ve
repeatedly found that the MySQL database management system—and the PHP and
Perl programming languages—provide a perfect platform for serious applications such
as managing research records and marking student assignments, and not-so-serious
ones like running the office sweepstakes. On the way, we’ve learned a lot of lessons
that we’d like to pass on; this book contains the tips that we think most readers will
find useful on a daily basis.

Xi

Who This Book Is for

This book is primarily for people who don’t know much about deploying and using an
actual database-management system, or about developing applications that use a da-
tabase. We provide a readable introduction to relational databases, the MySQL data-
base management system, the Structured Query Language (SQL), and the PHP and Perl
programming languages. We also cover some quite advanced material that will be of
interest even to experienced database users. Readers with some exposure to these topics
should be able to use this book to expand their repertoire and deepen their under-
standing of MySQL in particular, and database techniques in general.

What's in the Book

The book is divided into six main parts:

1. Introduction

2. Using MySQL

3. Advanced Topics

4. Web Database Applications with PHP
5. Interacting with MySQL using Perl

6. Appendix

Let’s look at how the individual chapters are laid out.

Introduction

We first provide some context for the book in Chapter 1, where we describe how
MySQL and web database applications fit into the domain of information management
tools and technologies.

In Chapter 2, we explain how you can configure the software required for this book on
different operating systems. This chapter provides far more detail than most books
because we know that it’s hard to learn MySQL if you can’t first get it up and running.

Chapter 3 introduces the standard text-based interface to the MySQL server. Through
this interface, you can control almost every aspect of the database server and the da-
tabases on it.

Using MySQL

Before we dive into creating and using databases, we look at proper database design in
Chapter 4. You’ll learn how to determine the features that your database must have,
and how the information items in your database relate to each other.

xii | Preface

In Chapter 5, we explore how to read data from an existing MySQL database and how
to store data in it.

In Chapter 6, we explain how to create a new MySQL database and how to modify an
existing one.

Chapter 7 covers more advanced operations such as using nested queries and using
different MySQL database engines.

Chapter 8 continues the advanced operations theme; in this chapter, you’ll find a dis-
cussion of importing and exporting data, and peeking under the hood to see how the
MySQL server processes a given query.

In any serious application, you’ll need to prevent unauthorized data access and ma-
nipulation. In Chapter 9, we look at how MySQL authenticates users and how you can
allow or disallow access to data or database operations.

Advanced Topics

Data stored on a computer can be lost due to hardware failure, theft, or other incidents
such as fire or flood. If you need your database, you’ll save yourself a lot of hair-pulling
by setting up regular and complete backups of your database structure and data. In
Chapter 10, we introduce techniques that can help you easily recover from a data loss
or corrupted database.

MySQL is highly configurable; in Chapter 11, we describe how you can use configu-
ration files to modify the behavior of the MySQL server and associated programs.

In Chapter 12, we introduce several ways to customize your MySQL server and your
application database for improved performance. Small speedups for frequently used
queries can markedly improve the overall performance of your system.

Web Database Applications with PHP

In Chapter 13, we examine how web database applications work.

Chapter 14 follows with an introduction to the PHP programming language and a
discussion of how PHP can be used to access and manipulate datain a MySQL database.

In Chapter 15, we walk through the design of a wedding gift registry to illustrate the
process of developing a full-fledged web database application.

Interacting with MySQL Using Perl

In Chapter 16, we present an easy-to-follow introduction to the powerful Perl pro-
gramming language.

We continue in Chapter 17 by using the Perl DBI module to connect to a MySQL
database to store and read information, and to import and export data.

Preface | xiii

We conclude this part in Chapter 18 by using the Perl CGI module to create dynamic
web pages that can interact with a MySQL database.

Appendix

The Appendix contains all the source code for the wedding gift registry developed in
Chapter 15. You can download this source code, and much more, from the book’s web
site.

Conventions Used in This Book

This book uses the following typographical conventions:

Italic
Indicates nomenclature that we’ve not previously used. Also used for emphasis and
to indicate files and directories.
Constant Width
Indicates commands and command options, usernames, and hostnames. Also used
to show the command output, and the contents of text and program files.
Constant Width Bold
Used in examples to indicate commands or other text that should be typed literally
by the user.
Constant Width Italic
Indicates text that you should replace with your own values—for example, your
own name or password. When this appears as part of text that you should type in,
it is shown as Constant Width Italic Bold .
#$
Used in some examples as the root shell prompt (#) and as the user prompt ($)
under the Bourne or bash shell. Unless stated otherwise, instructions in such ex-
amples can be used with little modification from the Windows command prompt.
Cc:\»
Used in some examples as the Windows command prompt.

W

Signifies a tip, suggestion, or general note.

Q«
4'

Indicates a warning or caution.

xiv | Preface

Resources

Each chapter finishes with a list of books and web sites that contain further information
on the topics covered. The book also has a companion web site at http://www.learning
mysql.com that contains links to useful resources, frequently asked questions (FAQs),
and the example code and data used in this book. It’s probably a good idea to have a
quick look at the web site now so that you know what’s there; it could save you a lot
of searching and typing!

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning MySQL by Seyed M.M.
Tahaghoghi and Hugh E. Williams. Copyright 2007 O’Reilly Media, Inc.,
978-0-596-00864-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Enabled

Saf When you see a Safari® Enabled icon on the cover of your favorite tech-
arari nology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com. (http://safari.oreilly.com)

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

Preface | xv

http://www.learningmysql.com
http://www.learningmysql.com
http://safari.oreilly.com
http://safari.oreilly.com

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http:/fwww.oreilly.com/catalog/learnmysql
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

We've spent a lot of effort trying to ensure that the material in this book is correct and
that the instructions and examples will work in your environment. However, there is
always room for improvement, and we’re keen to know your thoughts on how we can
make things better. Please send your thoughts by email to saied@tahaghoghi.com, or
use the online feedback form at http://www.learningmysql.com/feedback.

Acknowledgments

First of all, we thank all the people around the world who have contributed to the
MySQL, PHP, and Perl projects, and related open source initiatives such as Linux.
These have been an important part of our lives, and of course, this wouldn’t be much
of a book without them!

Writing a technical book is an incredibly time-consuming process, and only an editor
as patient and steady-handed as Andy Oram could have coaxed and cajoled us into
getting the book done and out of the door. Thanks Andy!

We also thank our technical reviewers, Paul Kinzelman, Falk Scholer, and Omkhar
Arasaratnam, for pointing out many ways in which the content could be improved, and
the team at O’Reilly for converting our material into a professionally produced book.

Saied Tahaghoghi

I thank Hugh for inviting me to collaborate on this project (and for the countless other
ways he’s made my life more interesting); Santha Sumanasekara for helping me to set
up my first ever Linux box and introducing me to MySQL and PHP so many years ago;
my various teachers and mentors for painstakingly showing me the way; and my friends
and colleagues for helping me maintain an appearance of sanity. Most of all, I thank
all my family for their constant kindness, support, and prayers; I'm especially indebted

xvi | Preface

http://www.oreilly.com/catalog/learnmysql
http://www.oreilly.com
http://www.learningmysql.com/feedback

to my wife, Somayyeh, for patiently enduring for so long my claims that, “The book’s
almost done!”

Hugh Williams

I thank Selina Williams for being always patient, even-tempered, encouraging, and
ready to listen while I slaved away on yet another (and maybe my last?) book project.
Thanks also to Lucy and Rose for letting Dad work upstairs day after day, and to Mum
and Dad for the lend of the Winnebago in the paddock while I bashed out a few of the
more technical chapters. But most of all, thanks Saied for agreeing to take up the reins
and finish the book after I moved to Microsoft: you’re one of the best men I know. Last,
another thank you to Andy Oram; you’re a very patient guy whom I've learnt a lot from.

Preface | xvii

PART |

Introduction

CHAPTER 1
Introduction

MySQL (pronounced “My Ess Cue Ell”) is more than just “the world’s most popular
open source database,” as the developers at the MySQL AB corporation (http://www
.mysql.com) claim. This modest-sized database has introduced millions of everyday
computer users and amateur researchers to the world of powerful information systems.

MySQL is a relatively recent entrant into the well-established area of relational database
management systems (RDBMs), a concept invented by IBM researcher Edgar Frank
Codd in 1970. Despite the arrival of newer types of data repositories over the past 35
years, relational databases remain the workhorses of the information world. They per-
mit users to represent sophisticated relationships between items of data and to calculate
these relationships with the speed needed to make decisions in modern organizations.
It’s impressive how you can go from design to implementation in just a few hours, and
how easily you can develop web applications to access terabytes of data and serve
thousands of web users per second.

Whether you’re offering products on a web site, conducting a scientific survey, or sim-
ply trying to provide useful data to your classroom, bike club, or religious organization,
MySQL gets you started quickly and lets you scale up your services comfortably over
time. Its ease of installation and use led media analyst Clay Shirky to credit MySQL
with driving a whole new type of information system he calls “situated software”—
custom software that can be easily designed and built for niche applications.

In this book, we provide detailed instructions to help you set up MySQL and related
software. We'll teach you Structured Query Language (SQL), which is used to insert,
retrieve, and manipulate data. We’ll also provide a tutorial on database design, explain
how to configure MySQL for improved security, and offer you advanced hints on get-
ting even more out of your data. In the last five chapters, we show how to interact with
the database using the PHP and Perl programming languages, and how to allow inter-
action with your data over the medium most people prefer these days: the Web.

http://www.mysql.com
http://www.mysql.com

Why Is MySQL so Popular?

The MySQL development process focuses on offering a very efficient implementation
of the features most people need. This means that MySQL still has fewer features than
its chief open source competitor, PostgreSQL, or the commercial database engines.
Nevertheless, the skills you get from this book will serve you well on any platform.

Many database management systems—even open source ones—preceded MySQL.
Why has MySQL been the choice for so many beginners and small sites, and now for
some heavyweight database users in government and industry? We can suggest a few
factors:

Size and speed
MySQL can run on very modest hardware and puts very little strain on system
resources; many small users serve up information to their organizations by running
MySQL on modest desktop systems. The speed with which it can retrieve infor-
mation has made it a longstanding favorite of web administrators.

Over the past few years, MySQL AB has addressed the need of larger sites by adding
features that necessarily slow down retrieval, but its modular design lets you ignore
the advanced features and maintain the suppleness and speed for which MySQL
is famous.

Ease of installation
Partly because MySQL is small and fast, it works the way most people want straight
“out of the box.” It can be installed without a lot of difficult and sophisticated
configuration. Now that many Linux distributions include MySQL, installation
can be almost automatic.

This doesn’t mean MySQL is free of administrative tasks. In particular, we’ll cover
a few things you need to do at the start to tighten security. Very little configuration
is shown in this book, however, which is a tribute to the database engine’s con-
venience and natural qualities.

Attention to standards
As we’ll explain in the “Structured Query Language” section later in this chapter,
multiple standards exist in the relational database world, and it’s impossible to
claim total conformance. But learning MySQL certainly prepares you for moving
to other database engines. Moving code from one database engine to another is
never trivial, but MySQL does a reasonable job of providing a standard environ-
ment, and gets better as it develops more features.

Responsiveness to community
With a few hundred employees scattered around the globe, MySQL AB is a very
flexible organization that keeps constant tabs on user needs. At its conferences,
lead developers get out in front and make themselves available to everyone with a
gripe or a new idea. There are also local MySQL user groups in almost every major
city. This responsiveness is helped by the fact that MySQL is open and free; any

4 | Chapter1: Introduction

sufficiently skilled programmer can look at the program code to find and perhaps
help in fixing problems.

MySQL actually has a dual-license approach: if you want to build your own prod-
uct around it, you pay MySQL AB a license fee. If you just want to use MySQL to
serve your own data, you don’t have to pay the license fee. MySQL also offers
technical support, as do numerous other companies and consultants, some of them
probably near you.

Easy interface to other software
It is easy to use MySQL as part of a larger software system. For example, you can
write programs that can interact directly with a MySQL database. Most major
programming languages have libraries of functions for use with MySQL; these in-
clude C, PHP, Perl, Python, Ruby, and the Microsoft .NET languages. MySQL also
supports the Open Database Connectivity (ODBC) standard, making it accessible
even when MySQL-specific functionality isn’t available.

Elements of MySQL and Its Environment

You need to master several skills to run a database system. In this section, we’ll lay out
what goes into using MySQL and how we meet those needs in this book.

A MySQL installation has two components: a server that manages the data, and cli-
ents that ask the server to do things with the data, such as change entries or provide
reports. The client that you’ll probably use most often is the mysql “MySQL monitor”
program, provided by the MySQL AB company and available in most MySQL instal-
lations. This allows you to connect to a MySQL server and run SQL queries. Other
simple clients are included in a typical installation; for example, the mysqladmin program
is a client that allows you to perform various server administration tasks.

In fact, any program that knows how to talk to the MySQL server is a client; a program
for a web-based shopping site or an application to generate sales graphs for a marketing
team can both be clients. In Chapter 3, you’ll learn to use the MySQL monitor client
to access the MySQL server. In Chapters 13 through 15, we’ll look at how we can use
PHP to write our own custom clients that run on a web server to present a web frontend
to the database for this. We’ll use the Apache web server (http://httpd.apache.org).
Apache has a long history of reliable service and has been the most popular web server
in the world for over 10 years. The Apache web server—or “HTTP server”— project
is managed by the Apache Foundation (hitp://www.apache.org). Although the web
server and MySQL server are separate programs and can run on separate computers,
it’s common to find small- to medium-scale implementations that have both running
on a single computer. In Chapters 16 through 18, we’ll explore how the Perl program-
ming language can be used to build command-line and web interfaces to the MySQL
server.

Elements of MySQL and Its Environment | 5

http://httpd.apache.org
http://www.apache.org

To follow the content in this book, you will need some software; fortunately, all the
software we use is open source, free for noncommercial use, and easily downloaded
from the Internet. To cover all parts of this book, you need a MySQL database server,
Perl, and a web server that can talk to MySQL using the PHP and Perl programming
languages. We’ll explore four aspects of using MySQL.:

MySQL server
We explain how to create your own MySQL installation, and how to configure and
administer it.

SQL
This is the core of MySQL use, and the major topic in this book. It’s introduced in
“Structured Query Language.”

Programming languages
SQL is not a simple or intuitive language, and it can be tedious to repeatedly per-
form complex operations. You can instead use a general-purpose programming
language such as PHP or Perl to automatically create and execute SQL queries on
the MySQL server. You can also hide the details of the interaction with the database
behind a user-friendly interface. We’ll show you how to do this.

Web database applications
We explain how you can use PHP or Perl to create dynamic, database-driven web
applications that can publish information from the database to the Web, and cap-
ture information provided by users.

HTML is the lingua franca of the Web. Although learning HTML is not within the
scope of this book, there are many great HTML guides available, including HTML and
XHTML: The Definitive Guide by Chuck Musciano (O’Reilly). We recommend that
you pick up the basics of HTML before reading Chapters 13, 14, 15, or 18.

The LAMP Platform

It’s very common to find web database applications developed using the Linux oper-
ating system, the Apache web server, the MySQL database management system, and
the Perl or PHP scripting language. This combination is often referred to by the acronym
LAMP, a term invented at O’Reilly Media.

Linux is the most common development and deployment platform, but as we’ll show
in this book, you can run all the tools on other operating systems. In fact, we’ll give
directions for getting started on Linux, Windows, and Mac OS X. Most of the content
in this book can be used for other operating systems with little modification.

The P in LAMP originally stood for Perl, but over the past decade, users have increas-
ingly turned to PHP for developing dynamic web pages. PHP is very clean and efficient
for retrieving data and displaying it with minimal processing. If you have to do heavy
data crunching after the data is returned from MySQL, Perl may still be a better choice.
We discuss PHP and Perl largely independently; you can pick up one without needing

6 | Chapter1: Introduction

to learn the other, although we believe that you’ll benefit from learning both languages.
In fact, almost any modern language can be used to perform this task; most of them
have the necessary interfaces to both web servers and database engines.

Structured Query Language

IBM is to be credited not only with inventing the relational database, but developing
the language still used today to interact with such databases. SQL is a little odd, bearing
the stylistic marks of its time and its developers. It’s also gotten rather bloated over the
years—a process made worse by its being standardized (multiple times)—but in this
book we’ll show you the essentials you really need and help you become fluent in them.

SQL shows many of the problems that are commonly attributed to computing stand-
ards: it tries to accomplish too much, it forces new features into old molds to maintain
backward compatibility, and it reflects uneasy compromises and trade-offs among
powerful vendors. As a result, there are several standards that database management
systems can adhere to. SQL-92 dates back to 1992 and provides just about everything
that you will need for beginning work. However, it lacks features demanded by some
modern applications. SQL:1999 was standardized in 1999 and adds a huge number of
new features, many of them considered overkill by some experts. There is also a more
recent standard, SQL:2003, that was published in 2003 and adds support for XML data.

Each development team has to decide on the trade-offs between the features requested
by users and the need to keep software fast and robust, and so database engines gen-
erally don’t conform totally to any one standard. Furthermore, historical differences
have stayed around in legacy database engines. That means that even if you use fairly
simple, vanilla SQL, you may have to spend time when porting your skills and your
code to another database engine.

In this book, we’ll show you how to use MySQL’s flavor of SQL to create databases
and store and modify data. We’ll also show you how to use this SQL variant to ad-
minister the MySQL server and its users.

MySQL Software Covered in This Book

You can be very productive with MySQL without dedicating a lot of time to configu-
ration and administration. In Chapter 2, we’ll look at several common ways of setting
up the software you’ll need for this book. While you can skip most of the instructions
if you already have a working MySQL installation, we recommend you at least skim
through the material for your operating system; we’ll frequently refer to parts of this
chapter later on. As part of this chapter, we explain how you can configure your MySQL
server for good security.

MySQL provides many other tools for administration, including compile-time options,
a large configuration file, and standalone utilities developed by both MySQL AB and

MySQL Software Covered in This Book | 7

external developers. We’ll give you the basics that will keep you up and running in
most environments, and will briefly describe even some relatively advanced topics.

We won'’t cover all the programs that come with the MySQL distribution, and we won’t
spend too long on each one; the MySQL reference manual does a good job of covering
all the options. We’ll instead look at the programs and options that you’re most likely
to use in practice; these are the ones we’ve used ourselves a reasonable number of times
over several years of working with MySQL.

The Book’s Web Site

We’ve set up the web site, hitp://www.learningmysql.com, which contains the sample
databases, datafiles, and program code. We recommend you make good use of the web
site while you read this book.

8 | Chapter1: Introduction

http://www.learningmysql.com

CHAPTER 2
Installing MySQL

Learning MySQL is easiest if you have a database server installed on your computer.
By administering your own server, you can go beyond querying and learn how to man-
age users and privileges, configure the server, and make the best use of its features.
Importantly, you also learn the steps required to install and configure MySQL, which
is useful when you need to deploy your applications elsewhere.

This chapter explains how to choose and configure a suitable environment for learning
MySQL. We cover the following topics:

* What to install: how to decide between precompiled packages, an integrated web
development environment, and compiling from the source code

¢ Where to install: Linux, Microsoft Windows, or Mac OS X?
* Why, when, and how to upgrade MySQL
* How MySQL has changed and how to migrate between versions

* How to configure the Apache web server and support for the PHP and Perl scripting
languages.

MySQL is available in several forms and for many operating systems. In the next section,
we examine the choices available and how you can decide what suits you.

Installation Choices and Platforms

As we mentioned before, you’ll need MySQL, the Apache web server, PHP, and Perl
for this book. How you choose to install these depends on what you want to do, how
confident you are in using your operating system environment, and the level of privi-
leges you have on your system. If you’re planning to use the installation for learning
and development only, and not for a production site, then you have greater choice, and
you need not be so concerned about security and performance. We’ll describe the most
common ways to install the software you need.

You can find the ready-to-use MySQL programs (known as binaries) on the MySQL
AB web site and on Linux installation CDs and web sites. You can also download the

source code for MySQL from the MySQL AB web site and prepare, or compile, the
executable programs yourself. By doing the compiling yourself, you ensure that you
have the most up-to-date version of the software, and you can optimize the compiler
output for your particular needs. The MySQL manual says that you can get a perform-
ance increase of up to 30 percent if you compile the code with the ideal settings for
your environment. However, rolling your own installation from source code can also
be a tedious and error-prone process, so we suggest that you stick with the ready-made
binaries unless you’re experienced and really need to squeeze every ounce of perform-
ance from your server. Compiling from source under Windows and Mac OS X is even
more involved, so it’s uncommon, and we don’t discuss it in this book.

You can also install MySQL as part of an integrated package that includes the Apache,
PHP, and Perl software that you’ll need later in this book. Using an integrated package
allows you to follow a step-by-step installation wizard. It’s easier than integrating
standalone packages, and many of the integrated packages include other tools that help
you adjust configuration files, work with MySQL, or conveniently start and stop serv-
ices. Unfortunately, many of the integrated packages are a couple of minor releases
behind the current version and may not include all the PHP libraries that you require.
Another disadvantage is that an integrated package doesn’t always fit in with your
current setup; for example, even if you already have a MySQL installation, you’ll get
another one as part of the integrated package, and you’ll have to take care to avoid
clashes. Despite the disadvantages, we recommend you follow this approach. There
are several integrated packages available; we feel that XAMPP is probably the best
produced of these, and we’ll describe how to install and use this. XAMPP includes
MySQL, the Apache web server with PHP and Perl support, and other useful software
such as phpMyAdmin. We recommend that you start out by using XAMPP, and we
won’t spend time describing how to separately install and configure Apache, PHP, and
Perl to work together on your system.

The software packages you need—MySQL, Apache, PHP, and Perl—are available
ready to install on many operating systems and can be compiled to run on a large
number of others. However, chances are that you’re running one of three major oper-
ating systems: Linux, Windows, or Mac OS X, so we’ll provide detailed instructions
for only these three. Let’s see how they compare as MySQL development and produc-
tion platforms.

Linux

Linux is an open source operating system that is closely modeled on Unix, which is
why it’s often called a Unix clone. Even though it’s free, Linux is very powerful and
very secure, with versions available for a wide range of hardware.

You typically get Linux in the form of a distribution, such as Red Hat or Mandriva. A
distribution packages the operating system together with a large range of useful soft-
ware for things such as word processing, networking, web and database development,

10 | Chapter2: Installing MySQL

and even games. These distributions are free to download and distribute; you can also
buy low-cost CD copies or more expensive shrink-wrapped packs with printed man-
uals. Many of the most popular web sites run on Linux, and it’s an excellent choice for
learning MySQL.

Live CDs

You can install Linux on its own, or alongside Windows on a single computer (this is
known as dual-booting). If you want to try out Linux without installing it on your
computer, you can use a bootable, or live, CD distribution. This allows you to boot
your computer from a CD to get a fully-working Linux system without making any
changes to your hard disk. When you remove a live CD and reboot, everything is back
to what you had before; you don’t have to worry about doing any damage while you
learn how to use Linux. For example, the Knoppix (http://www.knoppix.org) live CD
includes all the software—MySQL, the Apache web server, PHP, and Perl—that you
need for this book. However, we recommend that you use a live CD only to become
familiar with Linux. While it’s possible to save files from a live CD onto the hard disk,
a USB flash disk, or another computer through a network connection, this is tedious.
For anything that involves using Linux for extended periods of time, you’re better off
with a full installation to hard disk.

Windows

Microsoft Windows is by far the most common commercial PC operating system today,
and new PCs often come with Windows pre-installed. Windows XP, released in 2001,
is available on most current PCs. Windows Vista is the latest version of Windows; at
the time of writing, it’s in “release candidate” (for testing) form and due to be published
in the next few months.

We've tested the instructions in this book using both XP and Vista. While we wouldn’t
recommend using either version for a production server, they’re quite appropriate for
learning the material in this book. We assume you’re using either XP or Vista; you can
set up a suitable environment on older versions of Windows such as 98 and Me, but
the process is less straightforward. When we say “Windows” in this book, we mean
XP or Vista.

Mac0S X

All new Apple computers since 2001 have come with OS X; recent versions include
10.3 (Panther) and 10.4 (Tiger), with 10.5 (Leopard) due for release in the next few
months. OS X has a nice graphical user interface over a Unix-like heart, which means
it’s not hard to use software originally designed for Unix or Linux. Most new Apple
computers built from 2006 onward have an x86-type processor; older systems have a
PowerPC processor. You can easily check which operating system version or processor
your system has by clicking on the Apple menu and choosing the About This Mac entry.

Installation Choices and Platforms | 11

http://www.knoppix.org

It’s not common to find a production MySQL server running on OS X, but it’s a good
environment for learning MySQL.

So, What Should | Do?

As we mentioned earlier, you can use almost any major operating system when prac-
tising the material covered in this book, but to keep things sensible, we’ll assume you’re
using one of the big three just listed. Where the process varies between operating sys-
tems, we'll clearly explain the necessary steps. It shouldn’t be too hard to interpret the
instructions for other operating systems that we don’t focus on in this book. For ex-
ample, many of the Linux instructions can be used with little adaptation on Solaris or
FreeBSD.

To install a MySQL server with the standard directories and settings for a system-wide
installation, you’ll generally need superuser (also known as the system root user or
administrator) privileges on your system. Always be careful when using superuser ac-
cess. The superuser can do anything on a system, so you might be tempted to always
log in under the superuser account. However, “anything” means anything—including
accidentally deleting vital system files and making the system unusable. There are also
security risks associated with using this level of access by default, so we strongly suggest
you stick to an ordinary, or nonprivileged, user account and switch to the privileged
account only when necessary. We’ll explain how to configure a MySQL server installed
on a Linux or Mac OS X system to run as a less privileged user; any files and directories
that the server creates are then owned by this account.

If you don’t have superuser access—for example, you're using a shared university
computer or want to experiment without touching the system-wide MySQL installation
—you can generally install a local MySQL server using nonstandard settings; we’ll also
explain how you can do this. However, we recommend that you go with the default
settings if you can, at least while you’re still learning a lot about MySQL. You're far
less likely to make mistakes, and less likely to run into difficulties with the software;
programs are rarely tested as well on nonstandard configurations as they are on the
default settings.

Finally, there are cases when the database server may already be set up for you. Many
hosting companies, for example, allow you to administer your databases using only a
web-based MySQL client such as phpMyAdmin. We'll take a brief look at phpMyAd-
min in Chapter 13.

Using the Command-Line Interface

The three operating systems we use in this book all have graphical user interfaces; you
can start programs by clicking on icons, you can select tasks from menus, and you can
drag and drop files and folders. However, once you start to use more powerful aspects
of the operating system and applications, you’ll quickly find that some tasks are more

12 | Chapter2: Installing MySQL

easily done by typing in commands. For example, you can tell the operating system to
list certain files in a folder or run a given program in a particular way.

Linux, Windows, and Mac OS X all have a command-line interface that allows you to
do this. In Linux and Mac OS X, you use a Terminal program to show you the com-
mand-line interface, which is called the shell. In Windows, you use the Command
Prompt Window program to show you the Command Prompt, sometimes called the
DOS prompt.

In this section, we’ll describe how each command-line interface works; you can skip
the descriptions for the operating systems you don’t use.

The Linux and Mac 0S X Shell

To access the shell under Linux, open a terminal program, such as konsole, rxvt, or
xterm; these are often listed in the main menu under the System or System Tools group,
and may be simply labeled Terminal. To access the shell under Mac OS X, open a
terminal window by double-clicking on the Terminal icon in the Utilities folder under
the Applications group.

Under Linux, you’ll see a prompt similar to this one:
[adam@eden ~]1$

while under Mac OS X, you’ll see something like this:

eden:~ adam$

This shell prompt indicates what user account you're logged in under, what computer
you’re logged in to, and what directory you’re working from. You’ll generally be first
logged in as an ordinary user (we’ve shown the user adam here) on the computer
(eden), and working from your home directory. The tilde (*) character is a shortcut
symbol to a user’s home directory on any Unix-like system, including Linux and Mac
OS X; for example, a user’s home directory could be /home/adam, but you can refer to
it as ~adam, or, if you’re logged in as adam, simply as ~. The sample prompt shows that
the user adam is logged in to the computer eden and working from his home directory.
To keep things simple, we’ll just show a dollar sign to indicate the Linux or Mac OS X
shell prompt, as below:

$

From the shell, you can run many useful commands; we’ll see some as we progress
through this book. Two standard commands that are important to know for this book
are:

cd
Changes your working folder or directory on disk. For example, you can change
to the /tmp directory by typing:

$ cd /tmp

Using the Command-Line Interface | 13

You can also change to your home directory by using the tilde shortcut:
$cd~

In fact, you can leave out the tilde: cd on its own means “change to my home
directory.”

1s
Lists the files and directories in your working folder. For example, you can list the
files in your home directory by typing:

$1s ~

Together, the cd and 1s commands are the text equivalent of using a graphical file
manager—such as Konqueror or Nautilus under Linux, or the Finder under Mac OS
X—to go to different directories and view their contents.

Command completion and history

Command completion is a great time-saving feature; when you start to type the name
of a command, file, or directory, pressing the Tab key cycles through names that could
match. The best way to understand this is to try it. For example, when you type:

$cd /t

[{P%}]

and then repeatedly press the Tab key, you’ll see items beginning with the letter “t” in
the / (filesystem root) directory. If a name has spaces, a backslash character is added
automatically before each space—for example My\ Important\ Notes.txt. Most Linux
and Mac OS X systems are configured to use the bash shell, and we assume you’re using
this, too. If you’re using a different shell variant, such as tcsh, you’ll need to press the
Ctrl-D key combination in place of the Tab key.

Pressing the up and down arrow keys will cycle through the last commands you typed;
you can use the arrow keys to edit a previous command, and you can press the Enter
key to run a displayed command. You can see a list of recently used commands with
the history command, as below:

$ history

cd Photos/

1t

find . -name "*AMES*"
cfdisk /dev/hda

ssh ubuntu@192.168.1.1

[y

vihs WwWiN

You can quickly run a command again by typing the number preceded by an exclama-
tion mark (!) character. For example, to run the command numbered 3 in the history
list, you can type !3 and press the Enter key.

Performing restricted operations

Certain restricted operations on a Linux or Mac OS X system are allowed only if you
have superuser, or root, privileges. On a Linux system, you can log in as the system root

14 | Chapter2: Installing MySQL

user by typing the su - (switch user) command. When prompted, type in the system
root user’s password and press the Enter key:
[adam@eden ~]$ su -

Password: the_system_root_password
[root@eden ~]#

This is almost identical to the case for Mac OS X:

eden:~ adam$ su -
Password: the_system_root_password
eden:~ root#

After you type in the password, you’ll be logged in as the user root on the same com-
puter (in this example, eden) and be working from that user’s home directory (also
indicated by a tilde).

Notice how the last character of the prompt is a dollar sign ($) when you’re not the root
user and the hash or pound (#) sign when you are. In this book, we’ll use these symbols
to indicate whether you should run a certain command as an ordinary user or as the
root user. When you’ve finished doing the restricted operations, you can log out from
the system root account by typing exit:

exit

$

You can generally use the sudo command to perform actions with system superuser
privileges, even though you’re not actually logged in as root. You can also use the sudo
-s command to log in as the root user (in place of su -). If you log in as the system root
user, you can then omit the sudo keyword. Again, we emphasize that you can inadver-
tently do a great deal of damage if you use the root account, and we recommend that
you log in as the system root user as infrequently as you can. Some configuration is
necessary to allow ordinary Linux users to use the sudo command, but it’s enabled by
default under Mac OS X, and we’ll use this approach when discussing installation for
this operating system.

You can add the ampersand symbol (&) at the end of a command to start the command
in the background, allowing you to use the shell for other work. It’s better to avoid
using this symbol in conjuction with the sudo command, since you won’t see any system
prompt for you to enter your password. When we want you to run a sudo job in the
background, we’ll ask you to start the job normally, then press the CTRL-Z key com-
bination to suspend this new job. You can then type the command bg to send the
suspended job to the background.

Restricting access to files and directories

Before we end our discussion of the Linux and Mac OS X shell, let’s look at how access
to files and directories is controlled under such Unix-like operating systems. Each file
or directory can have read, write, and execute permissions set for the user who owns
it, the group associated with it, and every other user.

Using the Command-Line Interface | 15

When the operating system is asked to allow access to a file or directory, it looks to see
who the user is and what groups this user belongs to. It then checks the user and the
group associated with that file or directory, and allows access only if the permission
settings are appropriate.

Your group on a Linux or Mac OS X system is typically the same as your username, so,
for example, the username and group for the user adam would both be adam. The user
and group associated with a file or directory can be changed by using the chown com-
mand and specifying the username and group as username : group. For example, you can
set the owner of myfile.txt to be adam, and the associated group to be managers, by typing:

chown adam:managers myfile.txt
Only the superuser is allowed to change the owner of a file or directory.

You can allocate permissions to a file or directory by using the chmod command. To
allow the user who owns the file myfile.txt to read and write (modify) it but allow other
users to only read it, you would write:

$ chmod u=rw,g=r,o=r myfile.txt
You can also ensure that only the user who owns the file can read and write to the file
as follows:

$ chmod u=rw,g=,0= myfile.txt
Here, the group and other users have been assigned no permissions. Similarly, you can

give everyone read, write, and execute permissions to the directory mydir by typing the
command:

$ chmod u=rwx,g=rwx,o=rwx mydir
When reading other documentation, you’ll probably also come across cases where an
octal value (or mask) is used with the chmod command. In this notation, read access has
the value 4, write access has the value 2, and execute access has the value 1. So, read-

only access has the value 4, but read-and-write access has the value 4+2=6. Our pre-
vious two examples would be written as:

$ chmod 644 myfile.txt
and:
$ chmod 777 mydir
The chown or chmod operation can be applied to all files and directories under a specified

directory by using the --recursive option (under Linux) or the -R option (under Mac
OS X as well as Linux). We'll see examples of this later in this chapter.

16 | Chapter2: Installing MySQL

The Windows Command Prompt

Under Windows, you can open a command-prompt window by clicking on the Com-
mand Prompt entry under the Accessories submenu. You can also type cmd in the Start
menu search box (Vista) or in the Start menu “Run...” field (XP).

The command prompt typically shows you the current working disk and directory:

C:\Documents and Settings\Adam>

In this example, the current working directory is the home directory \Documents and
Settings\Adam on the C: disk. Under Vista, the location of the home directory is slightly
different:

C:\Users\Adam>

From the command prompt, you can run many useful commands; we’ll see some as
we progress through this book. Two standard commands that are important to know
for this book are:

cd
Changes your working folder or directory on disk.
dir
Lists the files and directories in your working folder.
Together, the cd and dir commands are the text equivalent of using a graphical file

manager such as Windows Explorer to go to different directories and view their
contents.

Windows uses the variable $HOMEPATH% to refer to your home directory, so you can
always change to your home directory by typing;:

C:\> cd %HOMEPATH%
C:\Documents and Settings\Adam>

Command completion and history

Command completion is a feature that can save you a lot of typing. When you start to
type the name of a command, file, or directory, pressing the completion key sequence
cycles through matches. The completion key varies between systems; it is generally the
Tab key or the Ctrl-D or Ctrl-F key combination.

Under Windows, you can activate the command-completion feature if you start the
command prompt with the /f:on option (command completion is active by default in
Vista). If the /f:on switch doesn’t work on your system, try calling the emd program
without the switch. You can also configure Windows XP to have command completion
active by default, but we won’t describe how to do this here.

The best way to understand command completion is to try it out. For example, when
you type cd c:\p:

Using the Command-Line Interface | 17

—m=m Type the name of a program, folder, document, or

.' Internet resource, and Windows will open it For vou,

c:\Program FilesiMySOLMySOL Server 5.0
c:\Program Files\MySQLMySOL Server 5.00bin A
c:\Program Files\MySQLIMySOL Server S,00C0F
c:\Pragram Files|My SQUMYSCL Server 5.00dat: —
c:\Program Filas\MySQLMySOL Server 5.0ERC
c:\Program Filas\MySQLMySOL Server S.00my-|
c:\Program Files\My3QLMySOL Server S.00my-i A

c:Program Files\MySOLMySOL Server 5, Br—
L T s & "3 Server - saed@192,..,

Open:

—
V4 star

Figure 2-1. Starting a program from the Run menu item

C:\> cd c:\p

and then repeatedly press the completion key sequence, you’ll see items beginning with
the letter “p” in the C:\ directory. Note that Windows doesn’t mind whether you use
uppercase or lowercase when referring to files and folders.

Quotes are added automatically around names with spaces—for example, "C:\Program
Files". To continue expansion, press the backspace key to delete the last quote and
type a further hint. For example, to switch to the C:\Program Files\MySQL directory,
you’d delete the quote, type a backslash (\), and then press the completion key sequence
again.

Pressing the up and down arrow keys will cycle through the command history. You can
see a list of recently used commands with the doskey/history command, as below:
C:\> doskey/history
dir C:\
doskey/history
There are many more tweaks for the command prompt; just do a search on the Web
for “windows cmd”.

You can also start other programs from the Start menu; under XP, you would use the
Run menu item to browse to select the program you want. If you type in the command,
you’ll also get command completion, as shown in Figure 2-1. Under Vista, simply type
the name of the program in the Start menu search box. However, this approach doesn’t
always keep the results of running a program on the screen, so we suggest you use the
command-prompt window.

Using a Text Editor

As you read through this book, you’ll frequently find references to using a text editor.
This means a program that can edit and save files that contain only plain text. Word

18 | Chapter2: Installing MySQL

processors save additional formatting instructions that only other word processors un-
derstand. Word processing programs also tend to use proportional fonts, which makes
it hard to read and write files of scripts and commands. It is possible to use a word
processor to load and save plain-text files, but it’s rather inconvenient and error-prone,
and so we don’t recommend you do this.

So, what should you use? There are hundreds of text editors available, and most people
find one they prefer to use. You should try out several different programs and settle on
one that you’re comfortable with. Let’s look at some options:

Linux
Under Linux, popular text editors include pico, gvim, vim, emacs, joe, kate, gedit,
and xedit. You can often find these listed under the Editors group in the main
menu of most Linux distributions. If you’re curious, you can also type the com-
mand apropos "text editor" at the shell to see a list of programs that have the
phrase “text editor” in their description.

Windows
Under Windows, use Notepad; you can also download and install free text editors
such as gvim, or commercial editors such as EditPad and TextPad.

Mac OS X
Under Mac OS X, you can use the included editors pico, vim, or emacs, configure
the TextEdit program to behave as a text editor, or install and use other editors
such as BBEdit or Smultron.

To start an editor from the command line, type in the name of the program followed
by the name of the file you wish to edit; for example, you can open the file myfile.txt
with the pico editor by typing:

$ pico myfile.txt

You can also open files from the graphical user interface; double-clicking on the text-
file icon will generally open the file in a text editor. You can modify the program that’s
used to open text files by right-clicking on the text-file icon (in Windows, depress the
Shift button while clicking) and work your way through the program options. We won’t
go into detail here.

Under Mac OS X, you can also configure the TextEdit program to act as a text editor.
Start the TextEdit program, and then choose the Preferences option from the TextEdit
menu. In the dialog box that appears, select Plain Text under the Format heading. To
open a file with TextEdit from the command line, you should type:

$ open -a TextEdit myfile.txt
You can instead select the plain-text mode for individual files one at a time by selecting

the Make Plain Text option from the Format menu, but this approach is likely to be
tedious and error-prone over time.

Using a Text Editor | 19

Following the Instructions in This Book

Starting in the next section, we’ll explain how to configure a MySQL server on the same
system that you’re logged in to (that is, localhost). We won’t describe how to set up
the MySQL server on one computer and the web server on a different computer; it
shouldn’t be too hard to modify our instructions to do this. If you modify any of the
default settings, you’ll need to remember to specify them where necessary.

We also assume that if you’re using Windows, you use only the C: disk; we’ll explain
how and when to change your working directory. When we show only the Linux or
Mac OS X prompt as below:

$

or the Windows Command Prompt as:
Cc:\»

the working disk and directory are unimportant, or you will be in the appropriate lo-
cation after following the steps we describe.

When we use the hash or pound symbol (#) as the prompt:
#

you will need to type in the commands as the superuser. For a Linux or Mac OS X
system, this means you should log in as the system superuser by typing su -, or use the
sudo keyword before the command. For a Windows system, you must be logged in with
a system account that has administrator privileges.

Most of our command-line examples outside this chapter are written in a form suitable
for Linux and Mac OS X; to run these instructions under Windows, simply replace the
forward slash character (/) with the backslash character (\). For example, you may see
an example starting the MySQL monitor program (mysql) from the bin subdirectory as
follows:

$ bin/mysql

On Windows, you’d type bin\mysql at the Windows Command Prompt. After this
chapter, we’ll mostly omit the path to programs and assume that you’ll call them using
the appropriate path described for your installation in this chapter.

The behavior of many of the programs that we describe in this book can be modified
through options. For example, you can use the user and password options to specify
the username and password you want to use. Options can be specified on the command
line after the program name. Some programs can also read options from a file. We
explain options files in Chapter 11.

When you list options on the command line, you identify them by two adjacent
hyphens:

$ mysql --user=saleh --password=tomcat

20 | Chapter2: Installing MySQL

Here, we’ve specified the username saleh and the password tomcat.

If specified in a configuration file, the leading dashes should be omitted. For example,
you would write --user=saleh on the command line and user=saleh in an options file.
We'll generally omit the leading dashes in our descriptions.

Many options also have a short form that can be used only from the command line.
For example, instead of writing --user=saleh on the command line, you can write the
short form -u saleh. To help you understand what each command does, we consis-
tently use the long form of each option (where one exists).

Most of the command-line utilities we describe in this book have a help option that
you can use to discover the command syntax, including any short forms. For example,
to learn about the options to use for the mysql program, type:

$ mysql --help

mysql Ver 14.12 Distrib 5.0.22, for pc-linux-gnu (i686) using readline 5.0

Copyright (C) 2002 MySQL AB

This software comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to modify and redistribute it under the GPL license

Usage: mysql [OPTIONS] [database]
-?, --help Display this help and exit.

-p, --password[=name]
Password to use when connecting to server. If password is
not given it's asked from the tty.

-u, --user=name User for login if not current user.

We’ve shown only part of the output here. You can see that you can use the short form
-? instead of --help, -u in place of --user=, and -p in place of - -password=. The brackets
indicate that a clause is optional; for example, you can call the mysql program without
any command-line options or database name.

Some options assume default values if you don’t specify anything. To avoid surprises,
you can always explicitly specify the values you want.

When a command gets too long for the page, we show it on multiple lines, with each
line ending with a backslash (\) symbol. For example, we might show the previous
command as:
$ mysql \
--user=saleh \
--password=tomcat

The backslash characters indicate that this is a single command that should be typed
in all on one line. You can actually type in the backslash on a Linux or Mac OS X system
to continue your command on a new line, but it’s not necessary.

Following the Instructions in This Book | 21

Downloading and Verifying Files from the MySQL AB Web Site

We’ll now describe in detail the steps you need to follow to get MySQL up and running
on Linux, Windows, and Mac OS X systems. We’ll also describe how to start, stop,
and configure your MySQL server.

Ifyou install MySQL using the packages provided by MySQL AB, you still need Apache,
PHP, and Perl for the later chapters in this book. You can instead follow the instructions
to install the XAMPP integrated package to get everything you need. For Linux, you
can also use packages provided by your distribution.

Downloading MySQL from the MySQL AB Web Site

The MySQL AB web site usually has the very latest versions of the MySQL software.
To download from this web site, follow these steps:

1. Visit the MySQL AB downloads page at http://dev.mysql.com/downloads. Fig-
ure 2-2 shows what this page looks like.

2. Select the MySQL version that you want. You’ll normally want the latest Generally
Available (GA) release; this is 5.0.67 at the time of writing. However, you can also
download the cutting-edge beta version to try out new features or to help identify
problems before the new version becomes the general release.

3. You'll see a long list of packages for the MySQL version you selected; Figure 2-3
shows part of this downloads page. Select the appropriate package to download
for your system. In the following sections, we’ll tell you what this is for each op-
erating system and installation approach.

4. Before the file download starts, you’ll probably be asked to to pick a mirror server
near you. Mirrors are servers that have identical copies of files for download, and
are used to share the burden of many people downloading the packages. The
MySQL site uses an IP-to-location database to guess where you are and will suggest
some nearby servers you can download from. Selecting a mirror will start the file
download.

Verifying Package Integrity with MD5

When downloading files from the Internet, it’s a good idea to ensure that what you’ve
got is what you wanted to get. For a production server, we recommend that you check
the integrity of packages that you download. A simple way to do this is to compare

checksums generated by a digest algorithm such as MD5.

A digest algorithm takes some data (for example, an RPM file) as input and calculates
a 128-bit number, or checksum, from this data. With a good digest algorithm, it’s prac-
tically impossible to change the data without changing the checksum, so if the check-
sums of two files match, you can be certain that the files are identical.

22 | Chapter2: Installing MySQL

http://dev.mysql.com/downloads

MySQL Community Edition - Database Server and Client “Of the five databases we tested, only Oraclei
andMySQL were able to run our Nile application

Current Release (Recommended): as originally written for wit fems.
M‘-—!SQ'—S MySQL 5.0 - Generally Avalable (GA) release for prodiotion use e aas o

Upcoming Releases. ficad more about e benhmark
MySQL 51— Beta release New!, Test new features early!
Snapshots — source code snapshots of the development trees

Leamabo new MySGL releases, thrical
Older Releases: attioles, everts and more.

MySQL 4.1 - Previous GA release

Archives of Olcler Releases Subscribe to the monthly MySQL.
Newsletter!

MySQL Cluster e.com
MySQL Cluster is included in version 5.0 of the MySQL database server, as part of the MySQL Max packages. Binaries and source are available from the MySQL 5.0 [
download page.

MySQL Tools

MySQL also develops Graphical User Interface applications for acministering MySQL Server and working with data,
= LSO higraton Toolkt - Migrate from your legacy caiabases

= LYSOL Workberch ~ A dalakase design ool for MySQL

= WySOL Admiistrator - Admirister WySOL Server

= WYSOLQuery Browser - fowork wilhyour

= LYSOLGUI Tools — sirgl bundie rclLcingall GUI eals

Drivers and Connectors

while mary rave server,

= MySGL Comnector'd - for connecting to MySQL from Java
= mysaL tory

= MySQL Comrectori] 3.1 - Previous Gererally Available (GA) refease
= MySOL Comnectoril 30 - Previous Gererally Available (GA) release
= Older releases - older releases (only pecial nesds)

= Srapshots - source code sraps ot of the ckuelopment trees

= MysaL - from NET
= WySQL Corectoniiet 1.0 Gererally Available (GA) release

= ConnectorODBC - MySQL ODBC diver
= ComnsciorODBC 50~ Alpia release
= ComnclorODBG 351 -~ Gererally Available (GA) release
= Older releases ~ older refeases (only pecial nesds)

= MysaL - server
= MySQL Conrectonhix) 50 - Developrent Release
= WySQL ComrestontiX 1.1 -~ Generally Available (GA) release

Figure 2-2. The MySQL AB downloads page
On the MySQL download page, you’ll see a different string of characters such as:
MD5: 0d2a3b39e7bb4109b2f7b451b7768134

next to each file. You should ensure that the checksum of the file you have downloaded
matches the corresponding value on the downloads page.

On Linux, use the md5sum program on the downloaded file:

$ mdSsum mysql-standard-5.0.22-1inux-i686.tar.gz
Oeaa7a8ec18699ce550db1713a27cda3 mysql-standard-5.0.22-1inux-1686.tar.gz

The filename is shown in italic in this example because the name is likely
to change, and you’ll have to type in the actual name of the file you

On Windows, you can download and use the free winMd5Sum program from http://
www.nullriver.com/winmdSsum. This program is very easy to use; just install and start
the program, press the “...” button to browse for and select the downloaded file, and

Downloading and Verifying Files from the MySQL AB Web Site | 23

http://www.nullriver.com/winmd5sum
http://www.nullriver.com/winmd5sum

[x) Hoo

= MySQL 4.0 Downloads
= Product Information

= Benchmarks

= Feature Comparison

= Gase Studies

= Online Shj 7
= MySQL Network vs. Community Edition

*So even il think Im pretty smart about some
‘aspects [of MySQL] ~ and o ~ there was
always the chance thal the exam makers,
‘could grillme on stuff Id never even looked ai
before. And they did. But they were fair at the
‘same time. Let me recount the whole
experience...”

onvEe®»B0s

Leam about new MySQL releases,
technical articles, events and more.

Subscribe to the monthly MySQL.
tter!
[sakila@example.com
Subscribe

2
|
i
=
6
Lus |
7
0

File Edit View Go Bookmarks Tools Help
0-0-00 0 o -[mmnm
[0. MySQLAB i1 ... | (11" MySQUAB 50| [- MySQLAB &
This s the Gurrent Gersrly Avsicte version 5.0 o the MySQL database server.
Youcan ind the majornew features in MySQL 5.0 here,
The complete list of changes can be found here. You can find how to uparadle to 5.0 here.
The Standard binaries are recomme nded for most users, and includes the TnnoDB slorags engime. The Max version includes addiional features such s the Berkeley DB siorage engine
and other features that have not been exhaustively tested or are not required for general Lisage, such as OpenSSL support, user-defined functions (UDFs). When these features have
matured and proven o be stable, they will be incorporated info future releases of the Standard binaries. The Debug binaries have been compiled with extra debug informaton, and are net
Intended for production use, because the included debugging code may cause reduced performance.
We use the GnuPG signatures to verify the integrity of the
Linux downloads (platform notes)
Linux (x86, glibc-2.3, dynamic, gee) Standard 5.0.15 19.3M Pick a mirror
MDS: 244332303chc53, 05241 1158007300 | Sigrmture
Max 5.0.15 31.3M Pick a mirror
MDS: 1971436 e3348300c4543 7191268601 | Sgrature
Debug 5.5 28.4M Picka mirror
MDS: 20562618434 a3 0350 2 c2ceaba0s | Sigrature
Linux (x86, glibc-2.2, static (Standard only), gec) Standard 5.0.15 24.2M Pick a mirror
MDS: r1045385488614783a73021 L60s307e0 | Sigrature
Max 5.0.15 31.2Mm Pick a mirror
MIDS: 394 b sea 21 20561992133 384 b 070 | Sigrature
Debug 5.0.15 48.7M Pick a mirror
MDS: F144543214 Lescd 26208052144 163 | Sigrmture
Linux (/390X glioc-2.3, dynamic, goc) Standard 5.0.15 21.0M Picka mirror
VDS a01de3c1ca6318ma 01 006772535175 | Sigrmture
Max 5.0.15 34.6M Pick a mirror
MDS: 9515 30051274 ca35bcee fe7b2zmcac | Sorature
Debug 5.0.15 33.0M Pick a mirror
MDS: 804857201 7coBble2eccsaTen 5 fotd | Sgrmture
Linux (1A64, Red Hat AS 2.1, static, gec) Standard 5.0.15 302M Pick a mirror
MDS: c1763 033034 co7asda canz6b074 ba37 | Sigrature
Max 5015 45.7M Pick a mirror
DS 12274052 126315073 | Sigrature
Debug 5.0.15 109.9M Pick a mirror
MDS: 2874 Toe078904 e 287641 304360704 | Sigrature
Linux (1A84, glibc-2.3, dynamic, Intel C++ Compiler 8.1, requires the Intel o
icc shared libraries] Standard 5.0.15 26.6M Pick a mirror
MDS: 2462 s31453320874 t7220b2044 3304 | Sigrature
Max 5013 45.3M Pick & mirror
MDS: 52095037175 172718 266845 030 | Sgrmture
Debug 5.0.15 40.2M Pick a mirror
VDS 6437 Fuc1ab30632735e50 30161 1o | Sigrmture
_ N . Downlnar | Pick 2
http:/jdev mysql from-4.L html

| Proxy: None

Figure 2-3. The Linux section of the MySQL downloads page

then read off the checksum value. Figure 2-4 shows what this program’s dialog box

looks like.

On Mac OS X, open a terminal window and use the md5 program:

$ md5 mysql-standard-5.0.22-05x10.4-1686.dmg
MD5

(mysql-standard-5.0.22-0sx10.4-1686.dmg) =
b7d7f0878503db504e1eaed5d2518f4e

Digitally signed packages offer a more secure way to ensure that files have not been
tampered with; however, MD5 checksums should be sufficient for most readers of this

book.

24 | Chapter2: Installing MySQL

winMdSSum - Nullriver Software

File Mame
About...

|E:\Documents and Settings\Saied\Desktop\Misc'\Windc|

MDE Sum
| B112{6a730c680a4048dbabd0ed 107bH3 |

Calculate

Compare Compare

S

| | Exit

Figure 2-4. Using winMd5Sum to verify the MDS5 checksum of a downloaded file

Open source projects such as MySQL, Apache, PHP, and Perl produce
*‘% constantly evolving software, with new versions appearing regularly.

The installation files typically include the version number in the file-
name—for example, MySQL-server-<version>.i686.rpm. The versions
of the software that you will use are almost certainly newer than the
ones used in our examples, so you should substitute the appropriate
version number when handling them. Of course, installation details
change over time—things generally become easier—so expect some
variation from the steps we discuss here. You’ll also probably find that
the output we show for various programs will be slightly different from
what you see on your own system.

Whenever you install software that can accept connections from other
computers, you should take care to configure your computer firewall
software to block connections from unauthorized systems. This is par-
ticularly important if your computer is easily accessible from the Inter-
net, for example through your connection to your Internet Service Pro-
vider (ISP).

Installing Under Linux

There are five main ways to get MySQL up and running on a Linux system. You can:

* Install a system-wide server from packages downloaded from the MySQL AB web
site. Using packages supplied by MySQL AB means that the MySQL-related files
are located together in a consistent way.

MySQL AB provides these packages in the RPM format: a collection of files that
can be processed and installed by the rpm program. The name is a vestige of the
program’s origins as the Red Hat Package Manager. However, many Linux distri-
butions other than Red Hat use RPMs for managing software installation; these
include Fedora, Mandriva/Mandrake, and SUSE. The MySQL AB company also
provides files for download in the format used by Debian-based distributions but

Installing Under Linux | 25

recommends that the apt-get method be used instead; we describe the recom-
mended approach in this chapter.

* Install a system-wide or local server using using a compressed directory (known as
a gzipped tar archive) from the MySQL AB web site. This directory has all the
necessary MySQL files ready to run in place; you don’t need to run an installer
program or place the files in a particular location on disk.

* Install a system-wide or local server by downloading the MySQL source code from
the MySQL AB web site and compiling the executable programs yourself. This is
the most time-consuming way of setting up Linux, but is the most flexible for power
users.

* Install a system-wide server using packages created by your Linux distribution; you
can download these from the Web or install them from your Linux CDs.

* Install a system-wide server by downloading the XAMPP integrated package. Note
that XAMPP is not designed for use as a local server, and significant effort is re-
quired to get around this limitation.

We’ll describe each of these approaches in detail. If you’re not sure which approach is
most suitable for you, we recommend you first try to use the packages provided by your
Linux distribution.

Installing MySQL on Linux Using RPM Packages from MySQL AB

First, go to the MySQL AB downloads page following the instructions in the “Down-
loading MySQL from the MySQL AB Web Site” section, and scroll down the list to the
part of the page with the label “Linux x86 RPM downloads.” The x86 indicates the
processor type; almost all PCs today use x86 processors. If you have a more advanced
type, such as an AMD 64-bit processor, you should find the appropriate part of the
downloads page.

Pick RPM packages for both the MySQL server and the client, taking care that you
select the correct version for your Linux distribution and your processor. These will
be called something like MySQL-server-5.0.22-0.i386.rpm and MySQL-cli
ent-5.0.22-0.i386.rpm. Packages with higher CPU numbers, such as i586 or i686, are
better tuned for newer machines, but won’t work on older machines.

If you intend to do server benchmarking and testing, you may need to download the
benchmark and test suites package (with a name like MySQL-
bench-5.0.22-0.i386.rpm); however, you won’t need them for this book.

To install the RPM files, you’ll need to log in as the system root user. Open a terminal
program and use the su - command to log in as the root user:

$ su -
#

26 | Chapter2: Installing MySQL

Change to the directory containing the MySQL RPM files you downloaded. This is
typically your home directory or your desktop directory. To change to the home di-
rectory of the user adam, you’d type:

cd ~adam

The location of the desktop directory depends on the Linux distribution you use, but
is commonly the Desktop directory under the home directory. To change to the desktop
directory of the user adam, you’d type:

cd ~adam/Desktop

You can then install the MySQL server and MySQL client RPMs (or upgrade any ex-
isting versions) by typing:

rpm --upgrade --verbose --hash \
MySQL-server-5.0.22-0.1386.rpm MySQL-client-5.0.22-0.1386.1pm

If all goes well, your MySQL server should now be installed. We’ll look at how to
configure it in “Configuring a Newly Installed Server,” later in this chapter.

Installing MySQL on Linux Using a gzipped Tar Archive from MySQL AB

Instead of using an installable package, you can download a compressed directory of
the MySQL executable and support files. This process is slightly more involved than
installation from a package.

Follow the instructions of “Downloading MySQL from the MySQL AB Web Site” and
download the appropriate package from the “Linux (non RPM package) downloads”
section of the MySQL AB downloads page. For this book, select the “standard” pack-
age, rather than the “Max” or “debug” versions.

If you’re unsure what to choose, try picking the Linux download at the top of the list.
This will be named something like mysql-standard-5.0.22-linux-i686.tar.gz.

For distribution, Linux software is often packaged using the tar program, and then this
package is compressed using the gzip program, so the final file often has the file ex-
tension .tar.gz or .tgz. A .tar file, or its gzipped version, is often referred to as a tar-
ball. You’ll need to unpack, or untar, this package:

$ tar --gunzip --extract --file mysql-standard-5.0.22-linux-i686.tar.gz

The gunzip option asks the program to decompress the file first using the gunzip pro-
gram. Some browsers automatically decompress files that have a .gz extension; if you
get a message like “gzip: stdin: not in gzip format,” this has probably happened in your
case, and you can omit the gunzip option:

$ tar --extract --file mysql-standard-5.0.22-linux-i686.tar.gz

You should now have the directory: mysql-standard-5.0.22-linux-i686. To keep things
simple, we’ll call this the MySQL directory.

Installing Under Linux | 27

The MySQL directory is self-contained and has all the files you need to run and access
the server. If you have superuser access on the Linux machine and want this MySQL
server to be the system-wide instance on the machine, you should move it across to a
the standard location under the /usr/local/ directory:

mv mysql-standard-5.0.22-1inux-i686 /usr/local/

and make a link /usr/local/mysql that points to this directory:

1n --symbolic /usr/local/mysql-standard-5.0.22-1inux-i686 /usr/local/mysql

Now you can simply refer to the MySQL directory as /usr/local/mysql. Using a sym-
bolic link in this way allows you to have different versions of MySQL ready to run on
the system, with /usr/local/mysql pointing to the directory containing the version you
want to use.

If you want to have a local installation, you can leave the MySQL directory under your
home directory. You’'ll probably find it helpful to create the link ~/mysql to point to the
actual MySQL directory—for example:

$ 1n --symbolic ~/mysql-standard-5.0.22-1inux-i686 ~/mysql

With this link, you can use ~/mysql wherever you want to refer to the ~/mysql-
standard-5.0.22-linux-i686 directory.

Installing MySQL on Linux by Compiling the Source Code from MySQL AB

Given the nature of this book, we won’t go into detailed compile-time settings, but will
just look at how you can quickly get the server up and running.

First, you need to download the source file package from the MySQL AB downloads
page, following the directions in “Downloading MySQL from the MySQL AB Web
Site.” Go to the “Source downloads” section and download the “Tarball (tar.gz)”
package.

After downloading, you should have a file with a name like mysql-5.0.22.tar.gz. De-
compress this package using the following command:

$ tar --gunzip --extract --file mysql-5.0.22.tar.gz

This creates a new directory containing the MySQL source files; change your working
directory to this by typing:
$ cd mysql-5.0.22

You must now compile the source code and install the resulting programs. After you’ve
done this, you’ll have a MySQL directory that has all the files you need to run and access
the server. This is very similar to the tarball approach. Unlike the tarball approach,
however, you need to first use the configure command to tell the compilation process
where you want the MySQL directory to be located.

28 | Chapter2: Installing MySQL

If you have superuser privileges and want your MySQL installation to be system-wide,
it’s best to install to a directory under the /usr/local directory—for example, /usr/local/
mysql-5.0.22. On the other hand, if you want to run a local server, you can have the
MySQL directory wherever you wish—for example, under your own home directory
at ~/mysql-5.0.22.

To install MySQL to the directory /usr/local/mysql-5.0.22, we call the configure com-
mand with the target as follows:

$./configure --prefix=/usr/local/mysql-5.0.22

If all is not well, you may see some error messages. Problems during configuration are
generally due to Linux programs and libraries missing from your system; read the error
messages carefully to identify the cause of the problem.

If the configuration is successful, you can use the make command to compile the files:
$ make
The compilation process may take a long time.
You need to use the GNU variant of the make program (http://www.gnu
g .org/software/make). The make command on most Linux systems is in
fact the GNU make program; if you run into problems when using

make, it might not be GNU make, and the problem may be resolved by
using the gmake (GNU make) command instead.

When it’s done, you need to install the files to the directory you specified earlier. If
you’ve chosen to install a local server, you can simply type:

$ make install
If—as in our example—you’ve specified a prefix path that you can’t normally write to
as an ordinary user, you’ll need to first log in as root:

$ su -
and then run make install from the root prompt to copy the compiled files to the target
installation directory:

make install
If all goes well, the MySQL files will be installed in the correct directory. You’'ll often
find it helpful to create a link to refer to this directory easily. For example, for a system-

wide server, you can make the link /usr/local/mysql to point to the /usr/local/
mysql-5.0.22 directory:

1n --symbolic /usr/local/mysql-5.0.22 /usr/local/mysql

Now you can simply refer to the MySQL directory as /usr/local/mysql. Similarly, if
you specified the path /home/adam/mysql-5.0.22 for a local installation, you can make
the link ~/mysql to point to the ~/mysql-5.0.22 directory:

Installing Under Linux | 29

http://www.gnu.org/software/make
http://www.gnu.org/software/make

$ 1n --symbolic ~/mysql-5.0.22 ~/mysql
and refer to the directory as ~/mysql.

Again, using a symbolic link in this way allows you to configure and use different ver-
sions of MySQL on a system, with the symbolic link pointing to the directory containing
the version you want to use.

Note that the configuration process assumes default values for anything that you don’t
specify. For example, you can explicitly set the data directory, TCP port, and socket
file (more about these later):
$
./configure \
--prefix=/home/adam/mysql \
--localstatedir=/home/adam/mysql/data \
--with-unix-socket-path=/home/adam/mysql/mysql.sock \
--with-tcp-port=53306
However, we recommend you compile only with the prefix directory specified. You
can then modify other settings by passing options to MySQL from the command line;
we explain how to do this in “Configuring a local server,” later in this chapter. Even
better, you can specify the options in an options file as described in Chapter 11.

Installing MySQL, Apache, PHP, and Perl on Linux Using Distribution
Packages

Almost all distributions include packaged versions of the main pieces of software that
you need to follow this book: MySQL, the Apache web server, and support for the PHP
and Perl scripting languages. In this section, we’ll explain how to install these if they’re
not already present on your Linux system.

The three main distributions we’ll cover are Red Hat, Mandriva, and Debian, as well
as distributions associated with these, including Fedora, Mandrake, Ubuntu, and
Knoppix. These are very widely used, and are well supported by the distributors and
by the general Linux community. Configured correctly, they can automatically fetch
and install the required software from the installation media or from the Internet.

Most distributions have an easy-to-use graphical package-management tool that you
can use, but the command-line tools are generally more reliable, and we feel you’ll
better understand how things fit together by carrying out the installation from the
command line.

Installation on Red Hat and Fedora Core

Red Hat is probably the most famous Linux distribution, and Fedora Core is the cut-
ting-edge version of Red Hat’s Enterprise Linux distribution. If you’re installing one of
these two from scratch, select the Custom installation option and, when you see the
package-selection list like that shown in Figure 2-5, select (put a checkmark) next to

30 | Chapter2: Installing MySQL

oo rit e gl -T2

Add or Remove Packages

Q\j TTTE ST U Aoy U 00 T &0 T 1T SeTveT U7 0T Sy ST ‘I

[T PostyreSQL Database [0/15]

This package group includes packages useful for use with
Postgresgl.
¥ my=QL Database [213]

This package group contains packages useful for use with
My3QL.

[News Server [01] J
d} Thisgroup allows you to configure the system as a news server.

[T Network Servers [o11]

These packages include network-based servers such as DHGP,
Kerberos and NIS.

[T Legacy Network Server [0® k|
Total install size: 1,271 Megabytes

ﬂguit | Update

Figure 2-5. Red Hat and Fedora package options

the Web Server item. To add PHP support and PHP MySQL libraries, click on the
Details link on the right and select the packages “php” and “php-mysql” from the list;
you should see something similar to Figure 2-6. Once you’ve done this, return to the
package-selection list and select (put a checkmark) next to the MySQL Database item.
As before, click on the Details link and ensure the “php-mysql” package is selected.

If you already have a running Linux installation, you can use the rpm command to check
whether MySQL, Apache (known as httpd), and PHP are already installed:

$ rpm --query --whatprovides mysql php php-mysql

mysql-5.0.22-1.FC5.1

mysql-server-5.0.22-1.FC5.1

httpd-2.2.0-5.1.2

php-5.1.4-1

php-mysql-5.1.4-1
If, as in this example, all the necessary packages are installed, you can simply skip to
“Configuring a Newly Installed Server,” later in this chapter.

If the packages aren’t present, you’ll see messages like this:

no package provides php

Installing Under Linux | 31

“MySOl Database Package Details <@saied-sec.cs.rmit.edu, (=T

A package group can have both standard and extra package

mermbers. Standard packages are always available when the
package group is installed.

Select the extra packagesto be installed:

U qt-My3QL - MySQL drivers for Gt's S0L classes. =
perl-DBD-MySAL - An implermentation of DBl for My3QL.
unix2DBG - Acomplete ODBEC driver manager for Linux.
L mysgl-bench - MySQL benchmark scripts and data.
mysgyl-server - The MySQL server and related files.
rysgl-devel - Files for developrment of My3QL applications.
MyQDEC - ODBEC driver for My3QL.

[qt-00BG - ODBG drivers for Qt's 3QL classes.

php-rysgl - A module for PHP applications that us
MySQL-python - An interface to MySQL.

(1 mod_auth_rysgl - Basic authentication for the Apache Web server using a MySQL data (7]
[|

rPackage Information

Full Marne: php-rmy=gl
Size: 131 Kilobytes

X Cloze |

Figure 2-6. Detailed Red Hat and Fedora package options
and you’ll need to install any missing packages.

Run the Package Manager by selecting Add/Remove Software from the Fedora menu.
Alternatively, log in as root and type:

pirut

You should see a window similar to the one shown in Figure 2-7. Select the List tab,
and choose any of these packages that don’t already have a checkmark next to them:

httpd-2.2.0-5.1.2.i386
Apache HTTP Server

mysql-5.0.22-1.FC5.1.i386
MySQL client programs and shared libraries

32 | Chapter2: Installing MySQL

“Package Manager

Fle View Help

@ All packages O Installed packages (O Available packages
Q & mysql - 5.0.22-1.FC5.1.i386 - MySQL client programs and shared libraries.

mysql-administrator - 1.1.10-1.fc5.i386 - GU| to manage mysql Databases

[*]

mysql-bench - 5.0.22-1.FC5.1.i386 - MySQL benchmark scripts and data.

mysqlclient10 - 3.23.58-9.2.i386 - Backlevel MySQL shared libraries.

mysqlclientl0-devel - 3.23.58-9.2.i386 - Backlevel files for development of MySQL applications.
mysqlclientl4 - 4.1.14-4.2.i386 - Backlevel MySQL shared libraries.

mysqlclientl4-devel - 4.1.14-4.2.1386 - Backlevel files for development of MySQL applications.]

| Ex R 5 (e e |

&
&

mysql-connector-odbe - 3.51.12-1.2.1.i386 - ODBC driver for MySQL
mysql-devel - 5.0.22-1. FC5.1.i386 - Files for development of MySQL applications.

oo

mysql-gui-common - 1.1.10-1.fc5.i386 - Common data shared among the MySQL GUI Suites
{# [MySQL-python - 1.2.0-3.2.2.i386 - An interface to MySQL
3 mysql-server - 5.0.22-1.FC5.1.i386 - The MySQL server and related files.

[0 mysql-test - 5.0.22-1.FC5.1.i386 - The test suite distributed with MySQL.

e D

List

(1]

Figure 2-7. Red Hat and Fedora 5 package-management program

mysql-server-5.0.22-1.FC5.1.i386
The MySQL server and related files

php-5.1.2-5.i386

The PHP HTML-embedded scripting language (PHP Hypertext Preprocessor)
php-mysql-5.1.4-1.i386

A module for PHP applications that use MySQL databases

The version numbers you see will probably be different from the ones we’ve listed.
Once you've selected these, click the Apply button, and the software should be
installed.

If you’re using an older version of Red Hat or Fedora, the easiest way to install is to log
in under the root user account (by typing su -) and launch the package-management
program shown in Figure 2-5:

system-config-packages

Place a checkmark next to the entry for MySQL Database, and click on the Details link.
You’ll see a window such as that in Figure 2-6. Select the “mysql-server” and “php-
mysql” packages, and then click the Close button. You’ll be prompted for the Red Hat
or Fedora installation CDs, and the selected packages will be installed.

Installing Under Linux | 33

If you have a relatively recent version of Red Hat or Fedora, you can also use the yum
(short for Yellowdog Updater Modified) program to automatically download and in-
stall the necessary packages from the Internet. This is very convenient because you
don’t have to spend time digging up your installation CDs. More importantly, the latest
version of a package generally has patches for known bugs and security vulnerabilities.
If you’ve never used yum before, you need to configure it first. First, type su - to log in
as the system root user, and then update your /etc/yum.conf configuration file by
typing:

wget http://www.fedorafaq.org/samples/yum.conf
/bin/mv /etc/yum.conf /etc/yum.conf.bak
/bin/mv yum.conf /etc

Now, update the yum indexes that list packages and the locations that they can be
downloaded from:

rpm --upgrade --verbose --hash http://www.fedorafaq.org/yum

Retrieving http://www.fedorafaq.org/yum

Preparing... M [100%]
1:yum-fedorafaq HHHEHHHHHH A [100%]

Once you’ve configured yum, you can download and install all the programs you need
by simply specifying them from the command line:

yum update mysql mysql-server httpd php php-mysql
[root@saiedpc ~]# yum update mysql mysql-server httpd php php-mysql

Could not find update match for php

Could not find update match for php-mysql
Could not find update match for mysql-server
Could not find update match for mysql
Resolving Dependencies

Package Arch Version Repository Size

Updating:

httpd 1386 2.2.2-1.2 updates 1.1 M
Updating for dependencies:

httpd-manual 1386 2.2.2-1.2 updates 846 k
mod_ssl 1386 1:2.2.2-1.2 updates 99 k

Transaction Summary

Install 0 Package(s)
Update 3 Package(s)
Remove 0 Package(s)

Total download size: 2.0 M

Is this ok [y/N]: y

Downloading Packages:

(1/3): mod_ssl-2.2.2-1.2. 100% | | 99 kB 00:14

34 | Chapter2: Installing MySQL

(2/3): httpd-2.2.2-1.2.13 100% | | 1.1 MB 03:14
(3/3): httpd-manual-2.2.2 100% | | 846 kB 02:40
Running Transaction Test

Finished Transaction Test

Transaction Test Succeeded

Running Transaction

Updating : httpd HHHHEHHE R [1/6]
Updating : mod_ssl HHHHEHEE A [2/6]
Updating : httpd-manual HHHEHEHHHHHHEHEHEH I [3/6]
Cleanup : mod_ssl S [4/6]
Cleanup : httpd HHHHEHHE R [5/6]
Cleanup : httpd-manual HHHHEHHE R [6/6]

Updated: httpd.i386 0:2.2.2-1.2
Dependency Updated: httpd-manual.i386 0:2.2.2-1.2 mod ssl.i386 1:2.2.2-1.2
Complete!

You’ll see lots of interesting messages flash by; we haven’t shown them all here. If all
goes well, you should see the reassuring Complete status message at the end. If the latest
version of a package is already installed, yum will tell you that it Could not find update
match for that package. To learn more about Fedora and configuring yum, visit the
Unofficial Fedora FAQ page (http://'www.fedorafaq.org).

You can also download Red Hat or Fedora RPMs and install and upgrade them man-
ually just as you would the MySQL AB ones. For example, you can visit the web site
http://rpm.pbone.net and search for mysql; pick and download the RPM for Red Hat or
Fedora with the highest version number. Once you’ve downloaded the files, log in
under the root account by typing su -, and then install the RPM packages by typing in
this command (all on one line):
rpm --upgrade --verbose --hash \
mysql-server-5.0.22-2.1.1386.rpm \
mysql-5.0.22-2.1.i386.rpm \

httpd-2.2.2-7.1386.rpm \
php-5.1.4-8.1.1386.rpm

Installation on Mandriva

Mandriva, formerly known as Mandrake, is very easy to use for this book (we use it
ourselves). MySQL, Apache, PHP, and Perl all come on the distribution CDs.

If you're installing Mandriva from scratch, choose the Expert installation option and
select the MySQL server and client packages.

If you already have a running Mandpriva installation, you can check whether Apache,
PHP, and MySQL are already installed by typing:

$ rpm --query --whatprovides mysql mysql-client apache php php-mysql
MySQL-5.0.23-1mdv2007.0

MySQL-client-5.0.23-1mdv2007.0

apache-mpm-prefork-2.2.3-1mdv2007.0

apache-mod_php-5.1.4-1mdk

Installing Under Linux | 35

http://www.fedorafaq.org
http://rpm.pbone.net

Rpmdrake

l

Figure 2-8. The Mandriva package-management program

php-cli-5.1.4-6mdv2007.0
php-mysql-5.1.4-3mdv2007.0

If, as in this example, all the necessary packages are installed, you can simply skip to
“Configuring a Newly Installed Server,” later in this chapter.

If the packages aren’t present, you’ll see messages like this:
no package provides php

and you’ll need to install any missing packages.

The easiest way to install is to log in under the root account (by typing su -) and type:
rpmdrake

This will launch the package-management program, shown in Figure 2-8. Place a
checkmark next to the entries for the MySQL server and client, and click on the Install
button. You’ll be prompted to insert the Mandriva installation CDs, and the selected
packages will be copied and installed.

If you prefer to use the command line, you can use the urpmi command to specify
packages to install. This will prompt you to insert the appropriate installation CDs,

36 | Chapter2: Installing MySQL

and will install the packages. You may be prompted to install other related packages,
depending on what’s already available on your system, but in most cases, it should be
painless.

If you have a fast Internet connection, you can also configure urpmi to download and
install the very latest packages from the Internet. This is very convenient because you
don’thave to spend time digging up your installation CDs. More importantly, the latest
version of a package generally has patches for known bugs and security vulnerabilities.
To set up Internet downloads, you’ll first need to tell urpmi where to find the packages.
The easiest way to do this is to go to http:/feasyurpmi.zarb.org; this site will ask you a
few questions and then provide you a list of commands you need to type in as the system
root user to configure the sources (Figure 2-9 shows how this site looks.) From time to
time, you should update the urpmi indexes by logging in as the system root user and

typing;:

urpmi.update -a

Whichever approach—CDs or the Internet—you use, you just need to type urpmi
package_name as the root user to fetch and install the required packages.

$ urpmi mysql mysql-client apache php php-mysql
One of the following packages is needed:
1- MySQL-5.0.23-1mdv2007.0.1586 : MySQL: a very fast and reliable SQL database
engine (to install)
2- MySQL-Max-5.0.23-1mdv2007.0.1586 : MySQL - server with extended functionality
(to install)
3- MySQL-NDB-4.1.12-4.3.20060mdk.i586 : MySQL - server with Berkeley DB, Innodb
and NDB Cluster support (to install)
What is your choice? (1-3) 1
To satisfy dependencies, the following packages are going to be installed:
MySQL-5.0.23-1mdv2007.0.1586
MySQL-client-5.0.23-1mdv2007.0.1586
MySQL-common-5.0.23-1mdv2007.0.1586
apache-mod_php-5.1.4-2mdv2007.0.1586
1ibmysql15-5.0.23-1mdv2007.0.1586
perl-DBD-mysql-3.0006-1mdv2007.0.1586
php-mysql-5.1.4-3mdv2007.0.1586
Proceed with the installation of the 7 packages? (39 MB) (Y/n) Y

ftp://somehost.net/somedir/1libmysql15-5.0.23-1mdv2007.0.1586.rpm
ftp://somehost.net/somedir/per1-DBD-mysql-3.0006-1mdv2007.0.1586.rpm
ftp://somehost.net/somedir/MySQL-common-5.0.23-1mdv2007.0.1586.rpm
ftp://somehost.net/somedir/MySQL-client-5.0.23-1mdv2007.0.1586.rpm
ftp://somehost.net/somedir/MySQL-5.0.23-1mdv2007.0.1586.rpm
ftp://somehost.net/somedir/apache-mod_php-5.1.4-2mdv2007.0.1586.rpm
installing
libmysql15-5.0.23-1mdv2007.0.1586.rpm
MySQL-client-5.0.23-1mdv2007.0.1586.rpm
MySQL-common-5.0.23-1mdv2007.0.1586.rpm
per1-DBD-mysql-3.0006-1mdv2007.0.1586.rpm
MySQL-5.0.23-1mdv2007.0.1586.rpm
apache-mod_php-5.1.4-2mdv2007.0.1586.rpm

Installing Under Linux | 37

http://easyurpmi.zarb.org

File Edit View Go Bookmarks Tools Help

Please follow seps 1 © 3

1) Select your system

Mandriva Linux version I 2005 | and arehitscwrs 1586 ¥| | proceed to step 2

" Show specific sourcss £o

A ™ will restrict the selection t sources thatcan be applied wall
Cooker isa devel version (cutiing-edge, unskible), dont uss it unless you're surs of what you ars doing

2) Select a mirror for each source you want

Always select main, it is needed for all ather media
A few pif packsges nesd contrib, thersfore you should add contrib if you add pif

Resirict your selection io sources you really need, since sources may conflict- H is nol my fault

1) Care distribufian:

Source contrib - Some package make by voluniriss or mandraks, nasuppart, no updat far it

[« [(ftp-//anorien csc warwick ac uk) |

Saurce main © The cors of the mandrale distribufion

|7| (ftp-/fanorien.csc.warwick ac.uk) ﬂ

Source updates . Official updates for mandraks, included sscurily updaks
|7| (ftp /fanorien.csc.warwick.ac.uk) j

[~ Ciher sources:

Saurce jpackage -
[[{ftp:/7anerien csc warwick ac uk) =

Source pif-fres
[+"| australia (ftp-/iftp planetmirror com) ~|

Source plf-nonfres

plAustralia {ftp:fiftp.planetmirror.com) |

Prefix s bo adiclec! sk mexdia. ne e foplanaiy|
[s compreesed index, much smaller than normal, with less informations

' proceed to step 3

3) Type this in a console as root

urpni.addmedia pli-free ftp://ftp.planctairror.con/pub/pli/nandrake/free/10.2 with synthesis.hdlist.cz

urpni.addnedia pli-nonfre= ftp://ftp.planstnirzror.con/puk/pl/nandrake/non-fre=/10.2 with synthesis.hdlist.cz
urpai.addnedia ——update updates ftp://anorien.csc.warwick.ac.uk/Mandrakelinus/officialfupdates/LE2005/nain_updates/ with
nedia_info/synthezi=. hdlist. oz

urpni.addnedia main ftp://anarien.csc.warwick.ac.uk/Mandrakelinux/official /2005/i5E6/nedia/nain with
nedia_info/synthesi=. hdlist. oz

urpni.addnedia contrib fep:/fanarien.csc.warwick.ac.uk/Mandrakelinux/official /2005/i5B6/nediafcantrib with
nedia_infa/synthesis.hdlist.cx

urpni.addmedia jpackage ftp://anarien.csc.warwick_ac.uk/Mandrakelinux/cfficial/2005/i586/nedia/jpackage with
nedia_infa/synthesis. hdlist.cz

m | | Easy Urpmi

| Done

_”ﬁld

Figure 2-9. The easyURPMI configuration page

php-mysql-5.1.4-3mdv2007.0.1586.rpm
from /var/cache/urpmi/rpms
Preparing... HHHHHE . . HHHHEH
1/7: libmysqlis T L
2/7: MySQL-client HHH L L HER
3/7: perl-DBD-mysql HHHHHE |

38 | Chapter2: Installing MySQL

4/7: MySQL-common L | L

5/7: MysQL HHHHEE . | R
6/7: apache-mod_php HHHHHEE . L HERAA
7/7: php-mysql HHHHHEE . L HERAA

More information on package MySQL-5.0.23-1mdv2007.0.1586

The initscript used to start mysql has been reverted to use the one shipped by
MySQL AB. This means the following changes:

* The MYSQLD_OPTIONS="--skip-networking" option in the /etc/sysconfig/mysqld
file has been removed, this is now set in the /etc/my.cnf file.

* The MySQL Instance Manager is used by default, set use_mysqld_safe="1" in
the /etc/sysconfig/mysqld file to use the old mysqld safe script.

The extra MySQL-NDB server package has been merged into the MySQL-Max package
and ndb related pieces has been split into different sub packages as done by
MySQL AB. The MySQL libraries and the MySQL-common sub package uses the
MySQL-Max build so that no functionality required by for example the NDB parts
are lost.

The MySQL-common package now ships with a default /etc/my.cnf file that is
based on the my-medium.cnf file that comes with the source code. The
/etc/my.cnf file is constructed at build time of this package.

To connect to the Instance Manager you need to pass the correct command line
options like in the following examples:

* mysql -u root --password=my password --port=2273 --protocol=TCP
* mysql -u root --password=my password
--socket=/var/1lib/mysql/mysqlmanager.sock

Please note you also need to add a user in the /etc/mysqlmanager.passwd file
and make sure the file is owned by the user under which the Instance Manager
service is running under.

Here, urpmi has downloaded the latest versions of the programs from the Internet.
During installation, some packages display messages that you should read; in our ex-
ample, the MySQL package installation routine has described how the configuration
has changed since older versions.

You can also download and install or upgrade the Mandriva RPMs without using
urpmi. For example, you can visit http://rpm.pbone.net and search for mysql; pick and
download the RPMs for Mandriva with the highest version number. Once you’ve
downloaded the files, log in as the root user by typing su -, and then install the RPM
packages by running this command (all on one line):

rpm --upgrade --verbose --hash \

MySQL-5.0.23-1mdv2007.0.1586.rpm \
MySQL-client-5.0.23-1mdv2007.0.1586.rpm \

Installing Under Linux | 39

http://rpm.pbone.net

MySQL-common-5.0.23-1mdv2007.0.1586.rpm \
apache-mod_php-5.1.4-2mdv2007.0.i586.rpm \
libmysql15-5.0.23-1mdv2007.0.1586.rpm \
perl-DBD-mysql-3.0006-1mdv2007.0.1586.rpm \
php-mysql-5.1.4-3mdv2007.0.1586.rpm

Installing under Debian-based systems

Debian Linux and its derivatives use Debian .deb packages, rather than RPMs. The
popular Ubuntu and Knoppix distributions are based on Debian.

To check whether Apache, PHP, and MySQL are already installed on a Debian-based
Linux system, use the dpkg --1ist command. If any packages aren’t present, the dpkg
program will let you know:

$ dpkg --list mysql-common mysql-server mysql-client apache2 php5

No packages found matching mysql-client.

No packages found matching apache2.

No packages found matching php5s.

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)

||/ Name Version Description

+4++- -===============-== ====
ii mysql-common 5.0.21-3ubuntul mysql database common files (e.g. /etc/mysql/my.cnf)
un mysql-server <none> (no description available)

On some older distributions, you may need to specify php4 rather than phps.

To install MySQL, Apache, and PHP, you must first log in as the root user by typing
su -, and then use the apt-get install command:

apt-get --verbose-versions install mysql-common mysql-server mysql-client apache2 phps
Reading package lists... Done

Building dependency tree... Done
mysql-common is already the newest version.
The following extra packages will be installed:
apache2-common (2.0.55-4ubuntu2)
apache2-mpm-prefork (2.0.55-4ubuntu2)
apache2-utils (2.0.55-4ubuntu2)
libapache2-mod-php5 (5.1.2-1ubuntu3)
libapro (2.0.55-4ubuntu2)

1libdbd-mysql-perl (3.0002-2build1)
libdbi-perl (1.50-1)

libnet-daemon-perl (0.38-1)

libplrpc-perl (0.2017-1)

mysql-client-5.0 (5.0.21-3ubuntul)
mysql-server-5.0 (5.0.21-3ubuntul)
php5-common (5.1.2-1ubuntu3)

ssl-cert (1.0.13)

Suggested packages:

apache2-doc (2.0.55-4ubuntu2)

lynx (2.8.5-2ubuntul)

www-browser ()

php-pear (5.1.2-1ubuntu3)

40 | Chapter2: Installing MySQL

dbishell ()

libcompress-z1lib-perl (1.41-1)

Recommended packages:

mailx (8.1.2-0.20050715cvs-1ubuntul)

The following NEW packages will be installed:
apache2 (2.0.55-4ubuntu2)

apache2-common (2.0.55-4ubuntu2)
apache2-mpm-prefork (2.0.55-4ubuntu2)
apache2-utils (2.0.55-4ubuntu2)
libapache2-mod-php5 (5.1.2-1ubuntu3)

libapro (2.0.55-4ubuntu2)

libdbd-mysql-perl (3.0002-2build1)
libdbi-perl (1.50-1)

libnet-daemon-perl (0.38-1)

libplrpc-perl (0.2017-1)

mysql-client (5.0.21-3ubuntul)
mysql-client-5.0 (5.0.21-3ubuntul)
mysql-server (5.0.21-3ubuntul)
mysql-server-5.0 (5.0.21-3ubuntul)

php5 (5.1.2-1ubuntu3)

php5-common (5.1.2-1ubuntu3)

ssl-cert (1.0.13)

0 upgraded, 17 newly installed, 0 to remove and 0 not upgraded.
Need to get 31.9MB/32.2MB of archives.

After unpacking 75.8MB of additional disk space will be used.
Do you want to continue [Y/n]? Y

The --verbose-versions option displays detailed information on the packages. Once
you press the Y key, the required packages will be automatically downloaded and in-
stalled. We’ve left out most of the displayed messages to save space.

You can also download and install or upgrade the Debian packages without using
apt-get; for example, you can visit the web page hitp://www.debian.org/distrib/pack
ages, select your distribution, and search for “mysql.” Pick and download the package
with the highest version number for your distribution. Once you’ve downloaded the
files, log in as the root user by typing su -, and then install the packages by using the
dpkg --install command—for example:
dpkg --install \
mysql-common_5.0.22-4_all.deb \
mysql-server 5.0.22-4_all.deb \

mysql-client-5.0_5.0.22-4_i386.deb \
libmysqlclient150ff 5.0.22-4 i386.deb

However, it’s quite likely that you’ll need to download other associated packages before
the installation can proceed, and we recommend that you use the apt-get approach to
automate the process. As we mentioned earlier in “Installing Under Linux,” you can
also download packages in the .deb format from the MySQL AB downloads page.

Installing Under Linux | 41

http://www.debian.org/distrib/packages
http://www.debian.org/distrib/packages

Uninstalling MySQL

You can generally install a newer software package over an older one by using the
rpm --upgrade, urpmi, yum update, or apt-get install commands described earlier. If,
you actually want to remove a package altogether rather than upgrading it, you should
first type su - to log in as the root user, and then execute the appropriate uninstall
commands.

Note that the data directory that contains your database files is not actually installed
but created after installation. This is typically the directory data under the MySQL base
directory, or /var/lib/mysql for a Linux distribution package installation. Uninstalling
MySQL packages does not delete this directory, so the files containing your data should
remain in place, unchanged.

For an RPM-based system such as Red Hat, Fedora, or Mandriva, use the
rpm --erase command to uninstall specific packages. If you’re unsure what the exact
package names are, you can use the rpm --query --all command to list all the installed
RPM packages, together with the grep --ignore-case command to show only those
with “mysql” (in uppercase or lowercase letters) in their name:

$ rpm --query --all | grep --ignore-case mysql
per1-DBD-mysql-3.0004-1mdv2007.0
MySQL-5.0.23-1mdv2007.0
libmysql15-5.0.23-1mdv2007.0
MySQL-client-5.0.23-1mdv2007.0
php-mysql-5.1.4-3mdv2007.0
MySQL-common-5.0.23-1mdv2007.0

Note that the .rpm file extension is not considered to be part of the package name. To
uninstall RPM packages, you use the rpm command with the --erase option, and list
the packages to remove. For example, you’d type (all on one line):
rpm --erase \

perl-DBD-mysql-3.0004-1mdv2007.0 \

MySQL-5.0.23-1mdv2007.0 \

libmysql15-5.0.23-1mdv2007.0 \

MySQL-client-5.0.23-1mdv2007.0 \

php-mysql-5.1.4-3mdv2007.0 \
MySQL-common-5.0.23-1mdv2007.0

You can query and remove the packages in one go by using the xargs command:
rpm --query --all | grep --ignore-case mysql | xargs rpm --erase

warning: /etc/my.cnf saved as /etc/my.cnf.rpmsave
#

On a Red Hat or Fedora system with yum, you can also use the yum remove command:

yum remove mysql
[root@saiedpc yum.repos.d]# yum remove mysql

Dependencies Resolved

42 | Chapter2: Installing MySQL

Package Arch Version Repository Size

Removing:
mysql 1386 5.0.22-1.FC5.1 installed 5.5 M
Removing for dependencies:
MySQL-python 1386 1.2.0-3.2.2 installed 2.3 M
1ibdbi-dbd-mysql 1386 0.8.1a-1.2.1 installed 37 k
mysql-connector-odbc 1386 3.51.12-1.2.1 installed 387 k
mysql-server 1386 5.0.22-1.FC5.1 installed 22 M
perl-Class-DBI-mysql noarch 1.00-1.fc5 installed 38 k
per1-DBD-MySQL 1386 3.0004-1.FC5 installed 324 k
php-mysql 1386 5.1.4-1 installed 176 k
Transaction Summary
Install 0 Package(s)
Update 0 Package(s)
Remove 8 Package(s)
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
Removing : mysql-connector-odbc Wi [1/8]
Removing : perl-Class-DBI-mysql Wi Lt [2/8]
Removing : perl-DBD-MySQL WA it [3/8]
Removing : php-mysql WA i [4/8]
Removing : mysql W | [5/8]
Removing : 1libdbi-dbd-mysql W it [6/8]
Remov1ng : MySQL-python HiHHHHE L | [7/8]
warning: /var/log/mysqld log saved as /var/log/mysqld.log.rpmsave
Removing : mysql-server WS L [8/8]

Removed: mysql.i386 0:5.0.22-1.FC5.1

Dependency Removed:
MySQL-python.i386 0:1.2.0-3.2.2
libdbi-dbd-mysql.i386 0:0.8.1a-1.2.1
mysql-connector-odbc.i386 0:3.51.12-1.2.1
mysql-server.i386 0:5.0.22-1.FC5.1
perl-Class-DBI-mysql.noarch 0:1.00-1.fc5
per1-DBD-MySQL.i386 0:3.0004-1.FC5
php-mysql.i386 0:5.1.4-1

Complete!

For Debian-based systems, you can uninstall the MySQL server and client by using the
apt-get remove command:

apt-get remove mysql-server mysql-client
Reading package lists... Done
Building dependency tree... Done
The following packages will be REMOVED:
mysql-client mysql-server
0 upgraded, 0 newly installed, 2 to remove and 1 not upgraded.
Need to get 0B of archives.

Installing Under Linux | 43

After unpacking 31.3MB disk space will be freed.

Do you want to continue [Y/n]? Y

(Reading database ... 103699 files and directories currently installed.)
Removing mysql-client ...

Removing mysql-server ...

If you’re unsure what to use for the package names, you can search for packages asso-
ciated with MySQL using the following command:

dpkg --search "*mysql*" | cut --fields=1 --delimiter= | sort --unique

Installing MySQL, Apache, PHP, and Perl on Linux Using the XAMPP
Integrated Package

To install XAMPP on your Linux system, first visit the XAMPP home page (http://www
.apachefriends.org/en/xampp.html), follow the link to XAMPP for Linux, and download
the gzipped tar package. Switch to the superuser account:

$ su -
and create the directory /opt:

mkdir --parents /opt

We’re using the --parents option here to tell Linux not to complain if the directory
already exists.

Now change to this directory and extract the files from the package:

cd /opt
tar --gunzip --extract --file ~adam/xampp-linux-1.5.3a.tar.gz

Here, we’ve assumed that the downloaded file is in adam‘s home directory (~adam); use
the appropriate location on your system.

You can now start XAMPP by typing:

/opt/lampp/lampp start

Starting XAMPP for Linux 1.5.3a...

XAMPP: Starting Apache with SSL (and PHPS)...
XAMPP: Starting MySQL...

XAMPP: Starting ProFTPD...

XAMPP for Linux started.

If there is already a running MySQL or Apache server running on your system, XAMPP
may complain during startup. If this happens, shut these down before trying to start
XAMPP again. Stop any existing MySQL or Apache server before starting XAMPP.

Now that the server’s running, tighten up the security settings by typing:

/opt/lampp/lampp security

XAMPP: Quick security check...

XAMPP: Your XAMPP pages are NOT secured by a password.
XAMPP: Do you want to set a password? [yes] n

XAMPP: MySQL is accessible via network.

44 | Chapter2: Installing MySQL

http://www.apachefriends.org/en/xampp.html)
http://www.apachefriends.org/en/xampp.html)

XAMPP: Normally that's not recommended. Do you want me to turn it off? [yes] y
XAMPP: Turned off.

XAMPP: Stopping MySQL...

XAMPP: Starting MySQL...

XAMPP: The MySQL/phpMyAdmin user pma has no password set!!!
XAMPP: Do you want to set a password? [yes] y

XAMPP: Password:

XAMPP: Password (again):

XAMPP: Setting new MySQL pma password.

XAMPP: Setting phpMyAdmin's pma password to the new one.
XAMPP: MySQL has no root password set!!!

XAMPP: Do you want to set a password? [yes] y

XAMPP: Write the password somewhere down to make sure you won't forget it!!!
XAMPP: Password:

XAMPP: Password (again):

XAMPP: Setting new MySQL root password.

XAMPP: Change phpMyAdmin's authentication method.

XAMPP: The FTP password is still set to 'lampp’.

XAMPP: Do you want to change the password? [yes] y

XAMPP: Password:

XAMPP: Password (again):

XAMPP: Reload ProFTPD...

XAMPP: Done.

This will allow you to set a password for the MySQL server and also to configure the
server for improved security.

The XAMPP installation may have PHP configured with the register_globals setting
turned on. You should disable this old, insecure feature. Open the file /opt/lampp/etc/
php.ini and look for the line register_globals = On. Change the value On to 0ff, save
the file, and quit the editor. The new setting will be in effect after you restart your
Apache server.

You can stop your XAMPP servers by typing:

/opt/lampp/lampp stop

Stopping XAMPP for Linux 1.5.3a...
XAMPP: Stopping Apache with SSL...
XAMPP: Stopping MySQL...

XAMPP: Stopping ProFTPD...

XAMPP stopped.

The MySQL data directory is /opt/lampp/var/mysql; the files are owned by the user
nobody, and in the root group. Given the nature of the XAMPP installation as a devel-
opment platform, we won’t go into detailed modification of permissions.

Configuring a Newly Installed Server

Once you’ve installed the server, there are some steps you should take to initialize the
database tables and configure the server for good security. One of the first things to do
is to set a password for the database root account; this is not the same as the system

Installing Under Linux | 45

root account but is similar in that it has all privileges on the MySQL server. Let’s look
at three situations:

* You've installed the server using RPM or Debian packages.
* You’ve installed a system-wide server using a tarball or by compiling source code.

* You've installed a local server to run under your own account using a tarball or by
compiling source code.

As we explained earlier, the XAMPP package is tightly integrated and is not designed
for easy modification, so we won’t explore how to customize an XAMPP installation.

Configuring a server installed using RPM or Debian packages

The package installation process generally places the MySQL program files in the /usr/
bin directory, the datafiles in the /var/lib/mysql directory, and the server logs in
the /var/log/mysqld directory or the /var/log/mysqld.log file.

The installation typically configures the files and directories securely and also creates
the /etc/init.d/mysql or /etc/init.d/mysqld (MySQL daemon) startup script for easy con-
trol of the server.

Check what this script is called on your system using the 1s command:

$ 1s /etc/init.d/mysql*
/etc/init.d/mysql

In the preceding example, the file is called mysql. Use the appropriate name (mysql or
mysqld) where you see mysql in the commands below.

To start the server, run the following command:

/etc/init.d/mysql start
Set a password for the database root account:

$ mysqladmin --user=root password the_new_mysql_root_password
You can stop the server by typing the command:

/etc/init.d/mysql stop

The package-based installation process generally starts the MySQL server, and config-
ures it to be started automatically each time the system is started. In “Configuring
MySQL for automatic start,” later in this chapter, we explain how to check and con-
figure automatic startup.

Configuring a system-wide server installed from tarball or source

For security reasons, it’s a good idea to have the system-wide MySQL server run under
its own username and group, rather than the superuser account. First, log in as the root
user with the su - command, and then create the mysql user group:

groupadd mysql

46 | Chapter2: Installing MySQL

and the mysql user account that’s in the mysql user group:
useradd --gid mysql mysql
It’s all right if you get a message that the group or user already exists.

Now let’s configure the MySQL files and directories. Change to the directory where
you installed MySQL; here, we’ll assume that MySQL is installed in the directory /usr/
local/mysql:

cd /usr/local/mysql

To create the data directory and initialize the database for the user mysql, run the
mysql_install db script from the scripts directory under the MySQL directory:

scripts/mysql_install_db --user=mysql
You should now change the files in the MySQL directory to be owned by root but be
in the mysqgl group:

chown --recursive root:mysql .

And change the database files in the data directory to be be owned by the mysql user
and group:

chown --recursive mysql:mysql data

We described this use of the chown command in “Restricting access to files and direc-
tories,” earlier in this chapter.

You can now start the server to run under the mysql system account by running the
mysqld_safe program from the MySQL bin directory:

bin/mysqld_safe --user=mysql &
The ampersand (&) character tells Linux to run the server in the background so that
you can use the shell to do other things. If you don’t add the ampersand at the end,

you won'’t see the shell prompt again until the MySQL server is stopped from another
shell window.

The next thing to do is to set a password for the database root account:
$ bin/mysqladmin --user=root password the_new_mysql_root_password

You can stop the server by running the command:
$ bin/mysqladmin --user=root --password=the_mysql_root_password shutdown

Note that the user root on the Linux system is different from the user root on the
MySQL server, and you don’t need to be logged in as the Linux root user to shut down
the server with mysqladmin.

You can also start and stop the server using the mysql.server script that comes in the
support-files directory; start the server with:

$ support-files/mysql.server start

Installing Under Linux | 47

and stop the server with:

$ support-files/mysql.server stop

You can copy the mysql.server script and place it as the file mysql in the /etc/init.d
directory:

cp support-files/mysql.server /etc/init.d/mysql
This allows you to control the server by typing:

/etc/init.d/mysql start
and

/etc/init.d/mysql stop

as with the package-based installation approaches. Importantly, this also allows you
to configure the server to start on every boot; this is explained later in “Configuring
MySQL for automatic start.”

Configuring a local server

With a local installation, the MySQL files will be placed in a directory under your home
directory, and the server will run under your username rather than mysql.

First, change to the directory containing the MySQL installation. If you followed our
instructions in “Installing MySQL on Linux by Compiling the Source Code from
MySQL AB,” you can type:

$ cd ~/mysql
To configure the data directory and initialize the database, you must run the mysql_in
stall_db script from the scripts directory:

$ scripts/mysql_install db

If you want to use a data directory that’s not under the MySQL installation directory,
you can specify the path using the datadir option, as in:

$ mysql_install_db datadir=/home/adam/MySQL_Data
However, we’ll assume you’ll use the default data directory ~/mysql/data.

Now you need to change the files in the MySQL directory to be owned by your username
and your group. For the username and group adam, you would write:

$ chown --recursive adam:adam ~/mysql

Again, we described this use of the chown command earlier in “Restricting access to files
and directories.”

By default, MySQL listens for incoming client connections on port number 3306; if
there’s already another server running on the same computer, you should choose a
different port number for this installation. It’s best to avoid using port numbers that

48 | Chapter2: Installing MySQL

are typically used by other common programs. For instance, port 8080 is often used by
web servers and proxies. A web search for “common ports” is a good way to learn about
these. Note that only the root user can allocate port numbers below 1024. We’ll use
the port number 57777 for our example.

You also need to specify a custom location for the socket file; this is a special type of
file used by clients to connect to a server on the same machine. A common choice for
a socket file location is the server data directory; we’ll use the file path ~/mysql/data/
mysql.sock in the following example.

Now, start the server using the nonstandard port and socket file:
$ bin/mysqld_safe --port=57777 --socket=~/mysql/data/mysql.sock &

Note that if you’re using a nonstandard MySQL installation directory and don’t start
the server from inside that directory, you have to specify the path to the mysqld safe
program and tell this program where the data directory is. For example, to run the
program from the ~/mysql/bin directory with the data directory ~/mysql/data, you
would type (all on one line):
$ ~/mysql/bin/mysqld_safe \
--port=57777 \

--socket="/mysql/data/mysql.sock \
--datadir="/mysql/data &

Now that the server is running, set a password for the database root account by typing:

$ bin/mysqladmin \
--port=57777 \
--socket="/mysql/data/mysql.sock \
--user=root \
password the_new_mysql_root_password

Once you’ve added a password for the database root user, you’ll have to use it for all
further client connections to the server for the root account.

You can stop the server using the mysqladmin shutdown command, with the necessary
options added to identify the server. Type all on one line:
$ bin/mysqladmin \

--port=57777 \

--socket="/mysql/data/mysql.sock \

--user=root \

--password=the_mysql_root_password \

shutdown

Configuring MySQL for automatic start

If you’re planning to use MySQL a lot, you’ll probably want to have the server start
automatically every time your computer is switched on. The typical way to do this is
to call a script to start and stop the MySQL server when the computer is started and
stopped.

Installing Under Linux | 49

If you used an RPM or Debian package to install MySQL, this script is generally already
installed as /etc/init.d/mysql or /etc/init.d/mysqld (MySQL daemon). Check what this
script is called on your system using the 1s command:

$ 1s /etc/init.d/mysql*
/etc/init.d/mysql

In the preceding example, the file is called mysql. Use the appropriate name (mysql or
mysqld) where you see mysql in the commands below.

If you installed from a tarball or from source, you’ll need to copy the file across yourself
as discussed in the earlier section, “Configuring a system-wide server installed from
tarball or source.”

A Linux system can start in one of six runlevels; a system starting in runlevel 5 will
typically boot straight into the graphical windowing environment such as KDE or
GNOME, while a system starting in runlevels 2 or 3 will end up at a text-based login
screen. There’s an easy way to check what runlevel you’re in; just use the runlevel
program in the /sbin directory:

$ /sbin/runlevel
N5

Here, the system is in runlevel 5.

A program is started automatically for a particular runlevel if there’s a startup entry for
it in the corresponding /etc/rc<runlevel>.d directory. You can list all the entries for
MySQL by typing:

$ 1s /etc/rc*.d/*mysql*
/etc/rco.d/K9omysql /etc/rc2.d/Siimysql /etc/rc4.d/Siimysql /etc/rc6.d/K9omysql
/etc/rc1.d/K9omysql /etc/rc3.d/Siimysql /etc/rc5.d/Siimysql

The entries starting with “S” start the program when the system is booted, and the
entries starting with “K” stop (or kill) the program when the system is shut down. Here,
MySQL is set to start and stop automatically in runlevels 2, 3, 4, and 5. On Red Hat or
Mandriva systems, you can more conveniently determine this using the chkconfig
--list command:

chkconfig --list mysql
mysql 0:off 1:off 2:on 3:on 4:on 5:on 6:0ff

If your server shows “off” for the runlevel that you found using the runlevel command,
the MySQL server is not started automatically.

If you don’t see an entry for your preferred runlevel (normally 3 or 5), you’ll need to
add one yourself. Most Linux distributions have a graphical tool to configure startup
services. For example, under Red Hat and Fedora, you can run the Service Configura-
tion program by choosing the Services entry from the Administration submenu of the
System menu; you can also run this program by typing system-config-services at the
command line. Similarly, with Mandriva, you can use the Services program from the
Mandriva Control Center (select Configure Your Computer from the Configuration

50 | Chapter2: Installing MySQL

submenu of the System menu); you can also run this program by typing
drakxservices at the command line. We’ll explain how to configure services without
using these graphical tools.

On a Red Hat or Mandriva system, type:
chkconfig --level 35 mysql on

to enable automatic startup in runlevels 3 and 5 (corresponding to normal console or
graphical operation run levels), and:

chkconfig --level 35 mysql off
to disable it.

In a Debian-based system, startup services are controlled using the update-rc.d com-
mand. Enable MySQL as follows:

update-rc.d mysql defaults

Adding system startup for /etc/init.d/mysql .
/etc/rco.d/K20mysql -> ../init.d/mysql
/etc/rc1.d/K20mysql -> ../init.d/mysql
/etc/rc6.d/K20mysql -> ../init.d/mysql
/etc/rc2.d/S20mysql -> ../init.d/mysql
/etc/rc3.d/S20mysql -> ../init.d/mysql
/etc/rc4.d/S20mysql -> ../init.d/mysql
/etc/rc5.d/S20mysql -> ../init.d/mysql

and disable automatic startup as follows:

update-rc.d -f mysql remove

update-rc.d: /etc/init.d/mysql exists during rc.d purge (continuing)
Removing any system startup links for /etc/init.d/mysql ...
/etc/rco.d/K20mysql

/etc/rc1.d/K20mysql

/etc/rc2.d/S20mysql

/etc/rc3.d/S20mysql

/etc/rc4.d/S20mysql

/etc/rc5.d/S20mysql

/etc/rc6.d/K20mysql

If you have a standalone Apache web server installed, you can enable and disable its
automatic startup by using httpd or apache2 instead of mysql in the preceding
commands.

Installing Under Windows

The MySQL installation process for Windows uses graphical installation programs and
is relatively straightforward. You need to first decide whether you want to install only
MySQL, or whether you’d like to install an integrated package including additional
software that you’re likely to need later. Both approaches are equally easy to follow. At
various points during the installation process, you may be prompted to allow the in-
staller program to run and modify your system, including unblocking server ports. Read

Installing Under Windows | 51

these prompts carefully; in most cases, you’ll want to allow the installer to do what it
needs to do. Remember to follow the instructions of “Verifying Package Integrity with
MD35,” earlier in this chapter, to verify that you’re running the correct installer program.
You need to unblock ports only if you want to allow connections to your server from
other hosts.

In this section, we’ll look at three ways to install MySQL on a Windows system:
* System-wide, using a graphical installation package provided by MySQL AB
* Local, using a “no-install” package by MySQL AB
* System-wide, using the XAMPP integrated package

To install system-wide, you’ll need to log in as a user with Windows administrator
privileges. The MySQL AB “no-install” package does not need to be installed using a
setup program and is handy for cases where you don’t have administrator privileges on
the computer.

Installing Only MySQL Using Packages from MySQL AB

First, follow the instructions of “Downloading MySQL from the MySQL AB Web
Site,” earlier in this chapter, and download the package you need. If you are using
Windows XP and have administrator privileges, it’s easiest if you download the “Win-
dows Essentials (x86)” package. This is small and has all the MySQL programs you
need. If you don’t have administrator privileges on your Windows machine, or you
need to have a complex server setup with nonstandard configuration, you should
download the package labeled “Without installer (unzip in C:\).” We’ll discuss how
to install each of these packages in the following sections.

Windows installation using the installer

Start the installer program and go with the default (typical) settings. This will install
MySQL in the C:\Program Files\MySQL\MySQL Server 5.0\ directory. Vista may ask
you to confirm whether you want to allow the installer to access your computer; click
Allow.

You might be prompted to sign up for a mysql.com account; you can skip this unless
you want to subscribe to MySQL newsletters, add comments to the online manual, or
file bug reports.

On the final screen of the installer program, you’ll see the “Configure the MySQL Server
now” option selected. When you click the Finish button to exit the installer, the MySQL
Server Instance Configuration Wizard will start. Follow the prompts and select Stand-
ard Configuration to go with the default settings.

On the next screen, shown in Figure 2-10, select “Install as a Windows Service” (typ-
ically already selected by default) and “Include Bin Directory in Windows PATH”
(typically not already selected by default).

52 | Chapter2: Installing MySQL

MySOL Server Instance Configuration Wizard
Mys(QL Server Instance Configuration }
Configure the MySQL Server 5.0 server instance, b

Please set the Windows options.

Install As Windows Service

This is the recommended way to run the MySQL server
1 on Windows,

Service Mame: My3SCL ~

Launch the MySQL Server automatically

Include Bin Directory in Windows PATH

Check this option ta include the directory containing the
server [client executables in the Windows PATH variable
50 khey can be called From the command line,

[< Back] [Mext >] [Cancel

Figure 2-10. Specifying the server options during the Windows installation

Select a new root user password (there isn’t one by default), and then follow the
prompts until the installation process is completed. Unless you know what you’re do-
ing, don’t select the option to enable root access from remote machines. Also, don’t
select the option to create an anonymous account; we’ll discuss anonymous accounts
and the security problems associated with them in Chapter 9.

You may find that the installation program fails to configure the service under Vista
(you’ll see an error message like “Could not connect to the Service Control Man-
ager”). If this happens, click the Back button twice to return to the options dialog box,
and then uncheck the “Install as a Windows Service” checkbox. Continue the instal-
lation process from this point.

You can run the configuration program again at any time by selecting the MySQL Server
Instance Config Wizard entry from the MySQL Server 5.0 section of the MySQL sub-
menu of the Windows Start menu.

Starting and stopping MySQL as a service

If the installation process successtully configures MySQL as a Windows service, you
can use the Windows Services window at any time to check and control the server. On
Windows XP, select the Performance and Maintenance entry from the Control Panel,
and then choose Administrative Tools. If you have Classic View enabled, you can
choose Administrative Tools directly from the Control Panel. Figure 2-11 shows the
Windows Services window.

Installing Under Windows | 53

o x|

File Action

Wigw Help

= mEERE2]> = 0w

% Services (Local) s,

Sservices {Local)

| Description

| Status

| Startup Type

| Log On As

L5

General ILog Elnl Hecovar}l' Depandenclesl
Service name: MySGL
Display name: |M-"'SQL
Description: ‘ jl
-

Path to executable:
|' ‘T:\Program Files\MpSRLAMpSOL Server 4.15binhmysgld-nt" --defaulte-file=

Startup type: IAutomatic j
Automatic
Service status: Hiabled
Start | Stop | Pauze | Eesume |

‘You can specify the stait parameters that apply when you start the service
fram here.

Sitart parameters: I

o

Cancel Apply

MySQL Mame £
%Messanger
%;iﬁ:zﬁ\fie %MS Software Shado, .
Restart the service %MSSQWMICROSOF‘ "
S MasLServerADHeL
Byysol
%Net Logaon

A LiatMeating Ramata

Transmits ...
Manages s...

Supparts p..
Enables an. ..

Manages a...
Provides n...
Manages Dn..
Collects an. ..
Manages X...
Prowides 5.
Saves inst...
. Collects pe...
Enablesac...
Retrigves b
Loads files ...
Provides pr...
Prowides n...
Creates a ...
L Createsa ..,
. Manages a, ..
Provides th...
Manages k...
Enables re...

Offers rout...
Enables st...
Stores sec...
Monitars 5.,
Supports fil...

Started

Started

Started

Started
Started

Started

Started

Started

Started

Started

Started

Started

Started

Started

Started
Started

Disabled
tarual
Aukomatic
Marual
Automatic
Marual
Marual
Automatic
Aukomatic
Marual
Disabled
Disabled
Marual
tarual
Marual
Marual
tarual
Aukomatic
Marual
Automatic
Aukomatic
Marual
tarual
Marual
Marual
Automatic
Marual
Aukomatic
tarual
Disabled
Aukomatic
Automatic
Aukomatic
Automatic

Laocal Syskem
Local System
Local System
Laocal System
Local System
Local System
Laocal Syskem
Local System
Local System
Laocal Syskem
Local System
Local System
Laocal Syskem
Local System
Local System
Laocal Syskem
Metwork 5.
Local System
Laocal Syskem
Local System
Local System
Laocal Syskem
Local System
Local System
Laocal Syskem
Metwork 5.
Metwork ...
Local Service
Local System
Local System
Laocal Syskem
Local System
Local System
Laocal Syskem

Extended 4 Standard /

Figure 2-11. The Windows services window

Under Vista, open the Control Panel, and select the “System and Maintenance” entry.
From here, select the Administrative Tools and then the Services entry. Windows may

prompt you for authorization—click Continue.

Scroll down the list of services till you see an entry for MySQL, and select it. The
installation process sets the service status to be Automatic—that is, the server is started
automatically every time Windows is booted. If you’d prefer to start and stop the server
manually, you can set the service status to Manual. You can also start and stop the
server by clicking the Start or Stop link on the left of the Services window, or by opening

a command-prompt window and typing:
C:\> net start mysql
or:

C:\> net stop mysql

54 | Chapter2: Installing MySQL

You can run MySQL programs from the command window by first changing to the
MySQL directory:

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.0"
and then typing in the MySQL program name.

For example, you can stop the server directly by calling the mysqladmin program directly
from the MySQL installation directory. You would type (all on one line):
C:\Program Files\MySQL\MySQL Server 5.0> bin\mysqladmin \
--user=root \

--password=the_mysql_root_password \
shutdown

Never kill the MySQL server from the Windows task manager; you could lose data.

Starting and stopping MySQL from the command line

If the installation program could not install the service, you’ll need to start and stop
the server from the command line. To do this, open a command prompt window and
change your working directory to the directory where the MySQL installation has been
installed. This is typically C:\Program Files\MySQL\MySQL Server 5.0\:

C:\> cd C:\Program Files\MySQL\MySQL Server 5.0\

To start the server, type:

C:\Program Files\MySQL\MySQL Server 5.0> bin\mysqld-nt

Under Windows, executable programs such as mysqld-nt have the extension .exe. You
can include the full name and extension, as in mysqld-nt.exe; if you leave it out, Win-
dows won’t complain. If the program ends immediately, restart the server but add the
option no-defaults:

C:\Program Files\MySQL\MySQL Server 5.0> bin\mysqld-nt --no-defaults

This tells the server not to expect an options file—we discuss this in further detail in
Chapter 11. You may also be prompted by your firewall software to authorize the server
to listen for incoming connections from the network; unless you need to allow con-
nections from other computers, it’s a good idea to keep blocking such connections.

Once the program’s started, nothing exciting will happen—you’ll just see a blinking
cursor; this command window will remain open as long as the server is running, so to
use any other MySQL command-line programs, you’ll need to open another command-
prompt window.

For example, to shut the server down, you should open another command-prompt
window and change to the MySQL directory:

C:\> cd C:\Program Files\MySQL\MySQL Server 5.0\

and then stop the server by sending the shutdown command:

Installing Under Windows | 55

C:\Program Files\MySQL\MySQL Server 5.0> bin\mysqladmin \
--user=root \
--password=the_mysql_root_password \
shutdown

Never kill the MySQL server from the Windows task manager; you could lose data.

Installation with the “no-install” .zip Archive

The “no-install” package is a ready-to-use collection of files bundled together and
compressed using the popular ZIP compression method. All you need to do is extract
the package to the desired directory. Thisis useful if you don’t have administrator access
on a Windows computer or if you want to avoid changes that the installer program
might make to your Windows configuration.

Windows can handle ZIP files itself; if you’ve installed an archiving program such as
WinZip or PKZIP, this application will normally process the file instead of the standard
Windows decompression tool. In this book, we explain only the default Windows
behavior and assume that you know how to use any extra utility programs on your
system.

The icon for a compressed file often has a picture of a zipper on it, as shown in Fig-
ure 2-12. If you double-click on the icon, you’ll be able to see inside the package, but
this isn’t useful right now. Instead, right-click on the icon, select “Extract All...” as
shown in Figure 2-12, and follow the prompts. Ignore the Password button; the archive
doesn’t have one. When you see the message “Select a Destination,” replace the existing
text with the directory you want the MySQL directory to be located in. Figure 2-13
shows this window. The recommended directory for this package is C:\, so use this,
and click the Next button. The files will be installed to the mysql-5.0.22-win32 sub-
directory.

When you use the ZIP archive, a Windows service isn’t configured for MySQL; you’ll
need to start the server using the MySQL commands themselves. The MySQL execut-
ables directory isn’t added to your Windows path either, so you’ll need to always tell
Windows where to find the MySQL programs you’re trying to run. In the examples
here, we assume you first change to the MySQL directory and then tell Windows to
run the programs from the bin directory. Alternatively, you can add the directory to the
search path manually following the steps outlined later in “Error Message About
MySQL Executable Programs Not Being Found or Recognized.”

To control and access the server, open a command-prompt window and change your
working directory to the MySQL directory. For example, if you extracted the files to
the C:\ directory, change to the MySQL directory under there:

C:\> cd C:\mysql-5.0.22-win32
To start the server, type:

C:\mysql-5.0.22-win32> bin\mysqld-nt

56 | Chapter2: Installing MySQL

= bownists EEH
File Edit ‘Wiew Favorites Took Help ;'.F
eBack s \‘3 L}; psaarch {L_ Folders -

#ddress |53 C:\Documents and Settings|Saied|DesktopiDownloads V| Go

File and Folder Tasks 2 .

Iim Rename this filz Open
[Move this file Search...
Copy this fils

Explore

i Publish this File to the Web E: All... I
o With...

(&) E-mailthis File _EopemMitE

¥ Delete this file Send Ta »
Cut
[t

Other Places op%

i Create Shorkcut
@ sl Delete

lfa My Documents Rename
[Shared Documents

'a My Computer
l‘g MMy Metwark Places

Propetties

Details

Figure 2-12. Decompressing the compressed package

as shown in Figure 2-14. Under Windows, executable programs such asmysqld-nt have
the extension .exe. You can include the full name and extension, as in mysqld-nt.exe;
if you leave it out, Windows won’t complain. If the program ends immediately, restart
it with the option no-defaults:

C:\mysql-5.0.22-win32>bin\mysql-nt --no-defaults
This tells the server not to expect an options file. We discuss options files in Chapter 11

You may also be prompted by your firewall software to authorize the server to listen
for incoming connections from the network; unless you need to allow connections from
other computers, it’s a good idea to keep blocking such connections.

Once the program’s started, nothing exciting will happen: you’ll just see a blinking
cursor; this command window will remain open as long as the server is running, so to
use any other MySQL command-line programs, you’ll need to open another command-
prompt window.

Open another command-prompt window and change to the MySQL directory:
C:\> cd C:\mysql-5.0.22-win32

Now, set a password for the database root account (all on one line):

Installing Under Windows | 57

Extraction Wizard x|

Select a Destination e
Files inzide the ZIF archive will be extracted to the location you
chooze.

Select a folder to extract files to.

Files will be extracted ta this directony:

[
Browse. .. |
Paszword... |
Extracting...

< Back I Mext > I Cancel

Figure 2-13. The Windows compressed-file-extraction dialog window

Microsoft Windows
(C> Copyright 1985-20881 Microsoft Corp.

C:“Documents and Settings>Saied TahaghoghiXcd “mysgl-4.1.14—win32

C:smysgl-4.1_14-win32>bhinsmysgld—nt

Figure 2-14. Starting the server in Windows

C:\mysql-5.0.22-win32> bin\mysqladmin --user=root \
password the_new_mysql_root_password

Finally, stop the server by sending the shutdown command:

C:\mysql-5.0.22-win32> bin\mysqladmin --user=root \
--password=the_mysql_root_password shutdown

Figure 2-15 shows the second command-prompt window and the mysqladmin com-
mands we’ve just discussed. Here, we used the password "new root password" as an
example; you should choose a password that’s hard to guess. As we’ve got spaces in
the password, we’ve enclosed it in quotes. Notice also how the command to shut down
the server has wrapped to the next line; this is fine, but don’t press the Enter key until
you’ve finished typing the whole command.

58 | Chapter2: Installing MySQL

+ Command Prompt

Microsoft Windows XP [Uersion 5.1.268@1]
{C> Copyright 1985-2881 Microsoft Corp.

C:“Documents and Settings:Saied>cd “myszgl-5.8.22—win32

C:wmysgl-5.@.22—win32 >binvwnysgladnin —user=root password ‘'new root password"
C:smysgl-5.8.22—wind2 *bin‘mysgladmin ——user=root ——password="new root password"
=hutdown

C:smysgl-5 . @ 22-win32 >

Figure 2-15. Running the mysqladmin program from the Windows command prompt

Installing MySQL, Apache, PHP, and Perl on Windows Using the XAMPP
Integrated Package

To install XAMPP on your Windows system, first visit the XAMPP home page at http:
/www.apachefriends.orglen/xampp.html, follow the link to XAMPP for Windows, and
download the installer package. The package will have a name like xampp-
win32-1.5.3a-installer.exe.

Run the installer package once you’ve downloaded it; Vista may prompt you to confirm
you want to do this. Accept C:\Program Files as the installation directory and click the
Install button. XAMPP is installed to the C:\Program Files\xampp directory. Don’t
change this unless you really have to. We assume this is the directory you’re using.

After XAMPP is installed, you’ll be prompted to install XAMPP servers as a service;
choose “yes”. Also select “yes” when asked whether you want to install Apache? as a
service and whether you want to autostart the server. If you get a message about port
80 (the web server port) being blocked on your system, check whether you have another
running web server, such as Microsoft IIS; this server could have been installed as part
of Visual Studio .NET. You can also select “yes” to install the FileZilla FTP server as a
service, “no” to autostart the service, “no” to start the service, and “no” to uninstall
the server.

If your Windows Firewall is active, you may be told that Apache has been blocked from
accepting incoming network connections. Unless you need to allow connections from
other computers, this is a good setting to stick with, so choose to keep blocking the
connections.

Installing Under Windows | 59

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

I8 XAMPP Control Panel Application

E ®A&MPP Control Panel
Modules
M sve Apache Running [stop | [Admin... | [W]
Msve Mrsdl Rumning { oiop] (sdmin..]
[#]sve FileZilla Admin..

Sye Mercury r

HAMPP Control Panel Version 2.3 [(17. May, zZ00gG)
Windows 5.1 Build z800 Flatform Z

Current Directory: C:ohZProgram Fileshxampp
Status Cheack OR

Busy. ..

Apache service started

Busy. ..

MySgl service started

<

2
— —_—

Figure 2-16. The XAMPP control panel

Finally, select “yes” when prompted to start the XAMPP control panel. The installation
program places a shortcut to the XAMPP control panel on your desktop, but if it’s not
there, you can also start it from the XAMPP control panel from the “apachefriends”
submenu of the Windows Start menu. Figure 2-16 shows what the XAMPP control
panel looks like. Start the MySQL server by clicking the Start button next to the MySQL
label. You need to be logged in as a user with Windows Administrator privileges to
control XAMPP, although an unprivileged user is allowed to place files on the web
server. Stop any existing MySQL or Apache server before starting XAMPP.

XAMPP does not modify the Windows path. If you need to run any MySQL programs
from the command prompt, you’ll need to run them from the MySQL bin directory.
You can avoid this inconvenience by adding the C:\Program Files\xampp\mysql\bin di-
rectory to your Windows path as discussed in “Error Message About MySQL Execut-
able Programs Not Being Found or Recognized,” later in this chapter.

The first thing you should do once you’ve started the server is to set a password for the
database root account. First, open a command window and change to the MySQL
directory:

C:\> cd C:\Program Files\xampp\mysql
Then run the mysqladmin program from the bin directory:

C:\Program Files\xampp\mysql> bin\mysqladmin \
--user=root \
password the_new_mysql_root_password

60 | Chapter2: Installing MySQL

You can also configure the server password, as well as other settings for better security,
by loading http://localhost in your browser and clicking on the Security link on the left
of the page. This takes you to a page that displays information on your server security
configuration and allows you to add passwords to authenticate access to the MySQL
and Apache servers.

The XAMPP installation has PHP configured, with the register_globals setting turned
on. You should disable this old, insecure feature: open the file C:\Program Files
\xampp\php\php.ini and look for the line register globals = On. Change the value On
to 0ff, save the file, and quit the editor. The new setting will be in effect after you restart
your Apache server.

Finally, you can stop the MySQL server by pressing the Stop button next to the MySQL
label in the XAMPP control panel.

Installing Under Mac 05 X

In this section, we’ll look at three ways to install MySQL on a Mac OS X system:

* System-wide, using an installation package provided by MySQL AB.
* Local, using an non-installation gzipped tar package provided by MySQL AB.
* System-wide, using the XAMPP integrated package.

To install system-wide, you should be able to access superuser privileges through the
sudo command.

Installing only MySQL Using the Installer from MySQL AB

Following the instructions of “Downloading MySQL from the MySQL AB Web Site,”
earlier in this chapter, visit the MySQL AB downloads page and choose the package
corresponding to the version of your operating system and your system processor.

Pick the Standard installer (rather than TAR) package. This is a small package that has
everything you need. Once the file is downloaded, double-click on it to unpack the
archive and view the package contents. You should see something similar to Fig-
ure 2-17.

Double-click on the package file with a name beginning with mysql-standard- to start
the installation process.

Simply following the prompts will install to the /usr/local/mysql-<version> directory,
where <version> is the MySQL version number. It also creates the symbolic link (or
alias) /usr/local/mysql that points to this installation directory. For example, the files
could be installed in the /ust/local/mysql-5.0.22 directory, and the /usr/local/mysql
link set to point to this directory.

Installing Under Mac0SX | 61

http://localhost

B’BB |‘_‘. mysql-standard-5.0.22-0s5x10.4-powerpc 'C_)—
Q
E Saied Tahaghoghi's Computer T 4| Date Modified
b |s .Trashes 27/05/2006, 5:14 AM
 Nework W mysql-standard-5.0....sx10.4-powerpc.pkg 27/05/2006, 5:13 AM
=l Macintosh HD [MysQL.prefPane 27/05/2006, 5:14 AM
@ MysQLstartupitem. pkg 27/05/2006, 5:14 AM
= ReadMe.txt 27/05/2006, 4:17 AM
[l Desktop
’ﬁ" saied "
;ﬂq Applications
j“"‘w Documents
ﬁ Movies
& Music
| Pictures (— 5 i
;*— 5 items, Zero KB available ’Z

Figure 2-17. The contents of the MySQL AB Mac OS X installer package

Next, double-click on the MySQL.prefPane item and install it. This adds a MySQL
configuration entry to the System Preferences; from the System Preferences window,
you can manually start and stop the MySQL server, and also select whether you want
the server to be automatically started each time the system boots.

Finally, if you want the MySQL server to be started and stopped automatically each
time the computer is started or stopped, double-click on the MySQLStartupltem.pkg
item and install this too.

Configuring the installed server

For security reasons, it’s a good idea to have the MySQL server run under its own
username and group, rather than under the superuser account. If something goes wrong
with the server, or an attacker gains control of the server, the damage will be restricted
to the MySQL user rather than the whole system. Mac OS X comes with a mysql user
and group already defined. You can check this using the graphical NetInfo Manager
tool, or from the shell prompt.

To check using the NetInfo Manager, double-click on the NetInfo Manager icon in the
Utilities folder under the Applications group, as shown in Figure 2-18. Then, select
“groups” and scroll down to make sure that there is an entry for the mysql group, as
shown in Figure 2-19. Similarly, you can select “users” and scroll down to see that there
is an entry for the mysql user there too.

You can instead check these settings from the shell prompt. To do this, open a terminal
window and use the grep command to search for the word mysql in the system’s list of
users (the /etc/passwd file) and groups (the /etc/group file):

$ grep mysql /etc/passwd /etc/group

/etc/passwd:mysql:*:74:74:MySQL Server:/var/empty:/usr/bin/false
/etc/group:mysql:*:74:

62 | Chapter2: Installing MySQL

[8O0B6 [utilities o
i [‘ b][".i = EI:DI[#'I Q'GLI|L|

@ Network i o ’)) '

E G | Netinfo Manager Network Utility ODBC Administrator

| Desktop |
ﬁj saiedtahaghoghi h ﬁl %ﬁ ,
1 3 1
If’AE Applications | . L i =) |
1 - Printer Setup Utility Setup Assistant Stufflt Expander

F‘ Documents o) o
. ﬁ Movies (;S ! I/

L

& Music ' System Profiler Terminal iPod Software Updater
| = i

, Pictures | Jlr_,..f'

- Terminal copy | ‘:’—r’;

| Java

1 of 2 selected, 62.62 GB available =

G2

Figure 2-18. Starting the Mac OS X NetInfo Manager
You should see two lines similar to the ones above.

If, for some reason, the mysql user and group aren’t configured on your system, you
have to create them. You can add them in the NetInfo Manager by clicking on the lock
icon at the bottom of the screen and selecting the Add entry from the Edit menu. How-
ever, it’s probably faster to perform these steps from the command line.

First, create the user mysql (note that the first forward slash symbol (/) stands by itself
on the line):

$ sudo niutil -create / /users/mysql
and assign invalid (and therefore relatively secure) values for the home directory and
login shell:

$ sudo niutil -createprop / /users/mysql home /var/empty
$ sudo niutil -createprop / /users/mysql shell /usr/bin/false

Next, create the group mysql:
$ sudo niutil -create / /groups/mysql

Once you’ve done this, define a Group ID number (gid) for the mysql group and a User
ID number (uid) for the mysql user. The Mac OS X default value for both these IDs is
74; you can choose this or any other value—for example, 674—that’s not already al-
located to a user or group. Let’s use 74 in our example, and assign this value to the
mysql group and user:

Installing Under Mac0OSX | 63

ene local @ localhost - / =
@ Q E
elet (Parent Find
/ groups
! > aliases P appserveradm P =
config P appserverusr P
groups Lo bin -
machines P daemon [
mounts P dialer P
networks L guest P
printers P jat L5
protocols P kkmem P
rpes b Ip P
services P mail [
LSErs > mailman P R
. 'y
natwnrk [
F _'-; 14w
[Praperty [Valueis)
name mysql
passwd
gid 74
F e =
\E{ Click the lock to make changes.
Pl

Figure 2-19. Verifying that the mysql group exists

$ sudo niutil -createprop / /groups/mysql gid 74
$ sudo niutil -createprop / /users/mysql uid 74

Finally, associate the mysql user with the mysql group:
$ sudo niutil -createprop / /users/mysql gid 74

When you’re sure the correct user and group exist, you have to initialize the MySQL
databases. First, change to the MySQL base directory:

$ cd /usr/local/mysql
Then run the mysql_install db script from the scripts directory. The user option as-

signs ownership of the MySQL datafiles and folders to the specified user—here to the
system mysql account:

$ sudo scripts/mysql_install_db --user=mysql

64 | Chapter2: Installing MySQL

8eeo MySQL &=

« W 4§ @

Show all Displays Metwork Sound Startup Disk

MySQL Server Status

The MyS0L Database Server is currently stopped.
To start it, use the "Start MySQL Server” button.

The MySQL Server Instance is stopped { Start MySQL Server -,'I

[Automatically Start MySQL Server on Startup

You may select to have the MySOL server start :
automatically whenever your computer starts up.
—rl
MySoL

Figure 2-20. The MySQL preferences pane

You should now change the files in the MySQL directory to be owned by root but be
in the mysqgl group:

$ sudo chown -RL root:mysql /usr/local/mysql

The -RL option tells the chown command to apply the ownership rule recursively (R) to
everything under the /usr/local/mysql directory, following symbolic links (L) if nec-
essary. You should also change the database files in the data directory to be owned by
the mysql user and group:

$ sudo chown -RL mysql:mysql /usr/local/mysql/data

If you used the mysql_install db script with the user=mysql option, this will already
have been done for you.

You can now start the server and stop it in several ways; let’s look at a few of these.

First, if you installed the MySQL.prefPane item, you can use the MySQL pane in the
System Preferences window. To access this, click on the Apple logo at the top left of
the screen menu, select the “System Preferences...” menu entry, and then click on the
MySQL icon in the System Preferences window. This will bring up a window similar
to Figure 2-20, with a button labeled Start MySQL Server when the server is not running
and Stop MySQL Server when itis. Clicking on this button will start or stop the server.
You may be asked to type in your password.

Second, you can use the mysql.server script in the MySQL directory:

$ sudo /usr/local/mysql/support-files/mysql.server start

Installing Under Mac0OSX | 65

to start the MySQL server, and:
$ sudo /usr/local/mysql/support-files/mysql.server stop

to stop it.
Third, if you installed the MySQLStartupltem.pkg file during the installation process,
you can start the server from the command line by calling:

$ sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
and stop it by calling:

$ sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
Finally, you can use the generic mysqld_safe and mysqladmin programs from the com-
mand prompt. To start the server to run under the system mysql user account, type:

$ sudo /usr/local/mysql/bin/mysqld_safe --user=mysql
Then, press the Ctrl-Z key combination, and type bg to leave the server running in the
background.
You can then stop the server by running the command:

$ /usr/local/mysql/bin/mysqladmin --user=root \
--password=the_mysql_root_password shutdown

This approach is the most robust, and also the most flexible if you need to add custom
options to your server.

The first thing you should do once you’ve started the server is to set a password for the
database root account:

$ sudo /usr/local/mysql/bin/mysqladmin --user=root password \
the_new_mysql_root_password

Once you’ve set the MySQL root password, you’ll need to use this in all further accesses
to the server. For example, to shut down the server using mysqladmin, you would type:

$ /usr/local/mysql/bin/mysqladmin --user=root \
--password=the_mysql_root_password shutdown

Installing Only MySQL Using the no-installer Package from MySQL AB

Following the instructions in “Downloading MySQL from the MySQL AB Web Site,”
earlier in this chapter, visit the MySQL AB downloads page and download the “Without
installer” package corresponding to the version of your operating system and processor

type.

This will download a compressed package with a name like mysql-standard-5.0.22-
0sx10.4-i686.tar.gz. This is normally automatically decompressed and unpacked by
the web browser to leave the directory mysql-standard-5.0.22-0sx10.4-i686 in the
download directory. You may instead find that your browser decompresses the file but
does not unpack it. If this is the case, you’ll find the file mysql-standard-5.0.22-0sx10.4-

66 | Chapter2: Installing MySQL

i686.tar in your download directory. You can unpack this in any location by opening
a terminal window, changing to the directory you want to run MySQL from, and calling
the tar program from there to unpack the file. For example, if the file was downloaded
to your Desktop directory, but you want to have the MySQL directory under your home
directory, you can open a terminal window and type:

$ cd
to go to your home directory, and:

$ tar --extract --file ~/Desktop/mysql-standard-5.0.22-0sx10.4-1686.tar

to unpack the file that’s in your Desktop directory. If the browser does not decompress
the file at all, you’ll find the downloaded file still has a .gz extension. You can follow
the same steps as for the decompressed file, but use the gunzip option to decompress
the file before unpacking it:

$ tar --gunzip --extract --file \
~/Desktop/mysql-standard-5.0.22-0sx10.4-1686. tar.gz

Once the package has been decompressed, you can move the resulting directory to the
location you want. For example, you can move it to be under your home directory,
either by dragging and dropping with the mouse, or by using the mv command from the

shell:
$ mv ~/Desktop/mysql-standard-5.0.22-0sx10.4-1686 ~

You can also create a symbolic link to the MySQL directory so that you can refer to it
as simply ~/mysql:

$ 1n -s ~/Desktop/mysql-standard-5.0.22-0sx10.4-1686 ~/mysql
Once you have the extracted directory, you should change to that directory:

$ cd ~/mysql

and run the mysql_install_db program from the scripts directory to initialize the MySQL
databases:

$ scripts/mysql_install_db
You can now start the server using the command:
$ bin/mysqld_safe &
Set a password for the MySQL server root account immediately:
$ bin/mysqladmin --user=root password the_new_mysql_root_password

Since we’ve set a password for the root user, you need to use this password in all further
accesses to the server for the root account. You can now stop the server using the
command:

$ bin/mysqladmin --user=root --password=the_mysql_root_password shutdown

Installing Under Mac0OSX | 67

Installing MySQL, Apache, PHP, and Perl on Mac 0S X Using the XAMPP
Integrated Package

To install XAMPP on Mac OS X, visit the XAMPP home page (http://www.apachefriends
.orglen/xampp.html), follow the link to “XAMPP for Mac OS X,” and download the
installer package.

The installer package is in the Stufflt Expander (.sitx) format. If you get a screen of
garbled text in your browser when trying to download it, press the “back” button to
see the download link—for example, http://easynews.dl.sourceforge.net/sourceforge/
xampp/xampp-macosx-0.3.sitx. Hold down the Ctrl key and click on the link. From
the menu that appears, select the entry that says Download Linked File (for Safari),
Save Link As (for Firefox), or Download Link to Disk (for Internet Explorer).

Once the Stufflt archive is downloaded, double-click on it to extract the installation
package, and then double-click on the installation package to start the XAMPP instal-
lation program. When the decompression program finishes, you should find the in-
stallation program saved in the same directory as the downloaded file, or on your
Desktop. This installation program has a name like xampp-macosx-0.5.pkg. Running
this and accepting the default settings will install XAMPP to the /Applications/xampp/
directory, with the MySQL datafiles located in the /Applications/xampp/xamppfiles/var/
mysql directory.

If there is already a running MySQL or Apache server running on your system, XAMPP
may complain during startup. If this happens, shut these down before trying to start
XAMPP again. To switch off the default installation of Apache, go to the System Pref-
erences Window and click on Sharing. If the Personal Web Sharing entry has a check-
mark next to it, uncheck it to stop the Apache web server.

You can start XAMPP by typing;:
$ sudo /Applications/xampp/xamppfiles/mampp start

Now that the server’s running, tighten up the security settings by typing:
$ sudo /Applications/xampp/xamppfiles/mampp security

and follow the prompts to add a password to your MySQL server.

The XAMPP installation has PHP configured with the register globals setting turned
on. You should disable this old, insecure feature: open the file /Applications/xampp/etc/
php.ini and look for the line register_globals = On. Change the value On to 0ff, save
the file, and quit the editor. The new setting will be in effect after you restart your
Apache server.

You can also manually set the MySQL server root password as follows:

$ sudo /Applications/xampp/xamppfiles/bin/mysqladmin \
--user root \
password the_new_mysql root_password

68 | Chapter2: Installing MySQL

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://easynews.dl.sourceforge.net/sourceforge/xampp/xampp-macosx-0.3.sitx
http://easynews.dl.sourceforge.net/sourceforge/xampp/xampp-macosx-0.3.sitx

When the XAMPP web server is running, you can load pages from your own computer
by starting a browser such as Safari and opening the web page http://localhost.

You can stop XAMPP by typing:
$ sudo /Applications/xampp/xamppfiles/mampp stop

If you’re keen to access the MySQL executable files directly, you can start the server by
typing;:
$ sudo /Applications/xampp/xamppfiles/bin/mysqld_safe

Then, press the Ctrl-Z key combination, and type bg to leave the server running in the
background.

Similarly, you can shut down the server by typing:

$ sudo /Applications/xampp/xamppfiles/bin/mysqladmin \
--user root \
--password=the_mysql_root_password \
shutdown

Using a MySQL Installation Provided by an ISP

Most individuals and small- to medium-sized organizations don’t have the time or
resources to maintain a production web server that’s available around the clock. For-
tunately, there are countless Internet Service Providers (ISPs) that provide—usually for
a fee—access to servers they maintain.

Since you’re reading this book, we can assume you’re interested in servers that can host
dynamic web pages (for example, using PHP or Perl scripts) and provide a backend
MySQL database that can be accessed by the web application. It’s not hard to find an
ISP that provides this; a web search for “php mysql hosting” turns up several million
sites.

When selecting a hosting package, see whether you are given ssh or telnet access to
the server to run the MySQL client, or whether you can use only web clients such as
phpMyAdmin; using web clients is easy, but you could soon find them tedious to use
over extended periods of time. On a different note, don’t forget to also check how much
data transfer is included when comparing costs of alternative web hosting deals. If your
site becomes popular, it could end up costing you a lot of money!

Upgrading an Existing MySQL Server

If you’ve got a MySQL server that’s running well and without problems, you may won-
der whether it’s necessary to upgrade it to the latest version. There are three main
reasons to upgrade:

Upgrading an Existing MySQL Server | 69

http://localhost

Fixes for bugs
No complex software such as MySQL can be free of bugs; over time, people dis-
cover unexpected behavior, or possible data corruption. As these problems come
to light, they are fixed for the latest version. MySQL bugs are reported and analyzed
at the http://bugs.mysql.com web site. You can use this web site to view the bug
reports for your MySQL version and determine whether any are likely to affect your
operations.

Fixes for security vulnerabilities
Security vulnerabilities are an especially dangerous class of bug; by exploiting a
vulnerability, an attacker could gain unauthorized access to data, or render your
system unusable (cause a denial of service). If your server is connected to a network
or otherwise accessible to people other than yourself, you need to take security
issues very seriously.

Improved features

As software matures, new features are added to make some tasks easier or to im-
prove efficiency. For example, MySQL 5.0 introduced support for views (virtual
tables), stored procedures (predefined queries that clients can call), cursors (pointers
to the result of database operations), and triggers (predefined operations that are
carried out automatically before or after a row is inserted, deleted, or updated).
Similarly, subqueries (nested SELECT queries) were not possible in MySQL before
version 4.1; neither were multiple concurrent character sets.

Some new features could greatly simplify your application, allowing you to reduce
development time by simply upgrading your MySQL server. On a related note,
application software that you might want to use with your database server—for
example, a free web portal system—might require you to have a minimum version
of MySQL.

Newer versions of MySQL are generally backward-compatible with recent versions—
that is, older ways of doing things will continue to work. A new server can work with
old data, and even with older clients. For example, MySQL password management was
improved in version 4.1.0. The new server can correctly handle passwords stored in
the old format, and, if it’s started with the old-passwords option, it can modify its
behavior to cater to older clients, such as a web server that uses the old mechanism.

However, software is generally not upward-compatible—that is, you’re more likely to
have difficulty if moving from a newer version of MySQL to an older version, especially
if they are major versions apart (for example, moving from MySQL 5.0 to MySQL 4.1).
It’s hard to find cases where downgrading is warranted.

You should assess your own needs and decide whether an upgrade is necessary or
worthwhile; if, for example, you have an online shopping application that’s running
perfectly, you would only need to upgrade if you wanted to make changes that would
be easier done with a newer MySQL version or if you learn of bugs that could affect the
reliability or security of your site. Upgrading a MySQL server could require upgrades

70 | Chapter2: Installing MySQL

http://bugs.mysql.com

to other associated software—for example, the version of PHP that the application uses;
you must think carefully about the implications of an upgrade before diving in.

Before deciding to upgrade, read the release notes for the new version; in particular,
note any changes marked as an “incompatible change.” You can find a complete set of
release notes under the “MySQL Change History” section of the MySQL manual (http:
/ldev.mysql.com/doc/refman/5.1/en/news.html). For example, you may find that support
for something that you need is no longer available in the new version, or that you need
to carry out certain steps before you start the new server with your existing data. You
should also read the “Upgrading MySQL” section of the MySQL manual (http://dev
.mysql.com/doc/refman/5.1/enfupgrade.html). Note that these links point to the latest
version of the manual (5.1) available at the time of writing.

In this book, we don’t describe how to change over from a non-MySQL database server,
such as Microsoft Access, Microsoft SQL Server, or Oracle. The MySQL Migration
Toolkit is a graphical tool that helps you through the process of moving your data over
to MySQL. You can download this program as as part of the MySQL GUI Tools Bundle
from the MySQL AB downloads page at http://dev.mysql.com/downloads.

Should | Upgrade to MySQL 5.1?

At the time of writing, MySQL 5.1 is in beta testing; this means that it’s available for
easy use and testing, but that it’s best to avoid using it for mission-critical production
sites. You can download and install MySQL 5.1 using the same procedures discussed
in this chapter for the Generally Available versions. Probably the most interesting new
features in MySQL 5.1 are its powerful text search capabilities, improved support for
XML data, and optimizations for applications where the server must handle very high
loads with very high reliability. It’s likely that you won’t need these features for a con-
siderable time after beginning to use MySQL, and you can complete all the examples
in this book with any version of the MySQL server newer than 4.1.0 onwards.

How to Upgrade

We have seen in this chapter that different installation approaches place the MySQL
program and datafiles in different locations. For example, a MySQL AB RPM installs
the MySQL program files and the data directory under the /usr/local/mysql directory,
while a package provided by a Linux distribution typically places the MySQL program
files in the /usr/bin directory, and the datafiles in the /var/lib/mysql directory. Upgrading
a MySQL server installs new versions of the program files but will not affect your
datafiles.

The best way to ensure a trouble-free upgrade is to use the same approach as that used
to install the original server because the installation process can upgrade the existing
program files, and the new server will know where to find your datafiles. Alternatively,

Upgrading an Existing MySQL Server | 71

http://dev.mysql.com/doc/refman/5.1/en/news.html
http://dev.mysql.com/doc/refman/5.1/en/news.html
http://dev.mysql.com/doc/refman/5.1/en/upgrade.html
http://dev.mysql.com/doc/refman/5.1/en/upgrade.html
http://dev.mysql.com/downloads

you should isolate or remove the old version so that there is no confusion about which
program version is called when you type in a command.

To be able to revert to the older version of the MySQL server if the migration runs into
problems, you can install the new server to a different directory from the default. Under
Linux and Mac OS X, you can also make a symbolic link to the directory containing
the version you want to use. We discussed how to do this earlier in “Installing MySQL
on Linux Using a gzipped Tar Archive from MySQL AB” and “Installing MySQL on
Linux by Compiling the Source Code from MySQL AB” for the tarball and source
installation methods under Linux, and in “Installing Only MySQL Using the no-in-
staller Package from MySQL AB” for a local MySQL installation under Mac OS X. The
MySQL AB installer for Mac OS X creates this symbolic link automatically for a system-
wide installation. Under Windows, you can specify a different installation directory
during the installation process. It isn’t straightforward to have coexisting MySQL ver-
sions under Linux if you use RPM or Debian packages.

Steps to Upgrade an Existing MySQL Server

There are several ways to upgrade a server. Here, we look at a simple and reliable
approach. We first save all the databases on the old server to a dump file. Next, we
install the new server. Finally, we load the saved databases into the new server. This
last step is not always necessary; you can often get the new server to use the datafiles
from the old one.

1. To start, change directories to make the old MySQL installation directory your
current working directory. Under Linux or Mac OS X, this is typically /usr/local/
mysql for a system-wide installation:

$ cd /usr/local/mysql
and ~/mysql for a local installation:

$ cd ~/mysql
Under Windows, the MySQL server is typically installed under the MySQL directory
—for example, C:\Program Files\MySQL\MySQL Server 5.0:

C:\> cd C:\Program Files\MySQL\MySQL Server 5.0
Again, we’ll show the command-line instructions for Linux and Mac OS X; under
Windows, simply replace the forward slash (/) with the backslash (\).

2. We discuss how to make a database dumps in detail in Chapter 10. You
can dump all the databases on the old MySQL server to the file dump_of all_data
bases_from_old_server.sql by typing (all on one line):

$ bin/mysqldump \
--user=root \
--password=the_mysql_root_password \
--result-file=dump_of all_databases_from_old_server.sql \
--all-databases

72 | Chapter2: Installing MySQL

It’s a good idea to make a backup of this file on CD or copy it across to another
computer.

. Shut down the old server:

$ bin/mysqladmin --user root --password=the_mysql_root_password shutdown

4. Install the new server.

. Configure and start the new server using the appropriate commands discussed
earlier in this chapter.

. At this point, you should have a fresh installation of the MySQL server and asso-
ciated programs. If the new server version was installed using the same approach
as the old version, it’s likely to have the same data directory. To check that your
databases are available on the new server, you can use the mysqlshow command to
connect to it and list the databases:

$ bin/mysqlshow --user root --password=the_mysql_root_password

You can also use the SHOW DATABASES command in the MySQL monitor (described
in Chapter 3).

If you used a different approach, or for some reason the new server doesn’t know
about your old databases, you should now change your working directory to the
location of the new MySQL installation, and then load the databases from the
dump file you created earlier:
$ bin/mysql \
--user root \

--password=the_mysql_root_password \
< dump_of_all_databases_from old_server.sql

Of course, you should use the password of the new MySQL server here.

. Your new server should now have loaded all the databases from your old server.
One of these, the mysql database, contains grant tables that specify user access
levels. You should now check and upgrade these tables if necessary.

Under Linux, change to your MySQL base directory and type:

$scripts/mysql_fix_privilege_tables \
--user=root \
--password=the_mysql_root_password

For a Windows MySQL server version 4.0.15 or newer, type:

C:\Program Files\MySQL\MySQL Server 5.0> bin/mysql \
--user=root \
--password=the_mysql_root_password \
--database=mysql \
< scripts\mysql_fix_privilege tables.sql

Finally, for Mac OS X, type:

Upgrading an Existing MySQL Server | 73

$ sudo /usr/local/mysql/bin/mysql_fix_privilege_ tables \
--user=root \
--password=the_mysql_root_password

Don’t worry if you see warnings about duplicate column names. Once you’ve
completed upgrading the tables, stop the server.

Configuring Access to the MySQL Server

By default, there is no password set for the MySQL server. You must set a root password
as soon as possible. The MySQL AB Windows installer automatically prompts you to
set one as part of the configuration process. For other cases, make sure you follow our
installation instructions to set a root password.

A MySQL client connects to a server differently depending on where the server is run-
ning. When the client and server are on the same Linux or Mac OS X system, a local
connection is made through a Unix socket file, typically /tmp/mysql.sock or /var/lib/
mysql/mysql.sock. On a Windows system, the connection is made through the MysQL
named pipe if the server was started with the enable-named-pipe option. In other cases,
clients send their requests through a TCP/IP network connection. Using a named pipe
can actually be slower than using TCP/IP.

If you intend for your server to be accessed only from the host it is running on, you can
disable network access to the server by starting the server with the skip-networking
option. For a server running on Windows, remember to enable the enable-named-
pipe option at the same time; otherwise you won’t be able to connect to the server.

If you carry out the steps outlined in this chapter, the filesystem access permissions for
the MySQL data directory and the server logs should be configured correctly. Keep in
mind that users need access to the socket file to connect to the server; if the socket file
is in the data directory (sometimes the case when using Linux distribution RPMs), take
care that users can’t access other files in that directory. We discussed permission set-
tings in “Restricting access to files and directories,” at the beginning of this chapter. Of
course, securing the database server is only a small part of overall system security.

If you’re running Linux or Mac OS X, you can use the mysql_secure_installation script
from the MySQL bin directory to walk interactively through steps to improve the se-
curity of your server:

$ bin/mysql_secure_installation
&Hénge the root password? [Y/n] n
éééove anonymous users? [Y/n] y
bi;allow root login remotely? [Y/n] y

Remove test database and access to it? [Y/n] n

74 | Chapter2: Installing MySQL

Reload privilege tables now? [Y/n] y

The ellipsis (. ..) symbols indicate where we’ve left out some of the program output.

What If Things Don’t Work?

Hopefully, you’ll have managed to get the server up and running without problems.
Sadly, things don’t always work perfectly. Here’s how to get around some of the more
common problems.

Can’t Download Files from Behind a Proxy

If you have to use a proxy to connect to the Web, you’ll need to ask web clients to use
them. Web browsers typically allow you to configure proxies under the program con-
nection preferences. For the Linux wget, yum, and apt-get programs, you can declare
the HTTP and FTP proxy settings as shown below:

export http_proxy=http://proxy_username:mypass@server_name:port
export ftp_proxy=http://proxy_username:mypass@server_name:port

For example, you might type:

export http_proxy=http://adam:mypass@proxy.mycompany.com:8080
export ftp_proxy=http://adam:mypass@proxy.mycompany.com:8080

Your Internet service provider or company network administrator can provide the
proxy settings that you should use. If for some reason the rpm command does not work
through the proxy, you can download the file yourself using a browser or with wget.
You can then install this downloaded file manually using the rpm --upgrade or
dpkg --install commands.

Error Message About MySQL Executable Programs Not Being Found
or Recognized

To use MySQL, you need to run MySQL executable programs, such as the server pro-
grams mysqld_safe and mysqld-nt.exe (described in Chapter 12), the monitor program
mysql (described in Chapter 3), and the mysqladmin administration program that we use
in this chapter and throughout this book. These programs are located together in a
bin directory somewhere on the system; examples of these are:

Linux
lust/local/mysql/bin for a system-wide installation from a tarball or source files,
~/mysql-5.0.22/bin for a local gzipped-tar installation, /usr/bin directory for an in-
stallation from RPM or Debian packages, and /opt/lampp/bin for an XAMPP
installation.

What If Things Don't Work? | 75

Windows
C:\mysql-5.0.22-win32\bin for a “no-install” (zip) installation; C:\Program Files
\MySQL\MySQL Server 5.0\bin for a standard installation; and C:\Program Files
\xampp\mysql\bin for an XAMPP installation.

Mac OS X
fusr/local/mysql/bin for a system-wide installation from a tarball or source files,
~/mysql-5.0.22/bin for a local gzipped-tar installation, /Applications/xampp/xampp
files/bin for an XAMPP installation.

If you can’t find the MySQL programs in one of these directories, try to remember
where you installed the server files. On a Linux or Mac OS X system, use the find
command as the root user to locate the mysqld_safe program:

find / -name mysqld_safe

If you run this command as an ordinary user (not as root), you're likely to see lots of
“permission denied” messages telling you that you can’t look inside certain directories.

On a Windows system, use the search tool to look for files with the word “mysql” in
their names. If your search doesn’t turn anything up, it’s likely that MySQL hasn’t in
fact been installed. Run the installation process again, note the directory in which the
files will be installed, and ensure that all the steps complete successtully.

Once you know where the executable programs are located, you can run each execut-
able program by specifying the full path to it—for example:

$ /usr/local/mysql/mysqladmin status

on a Linux or Mac OS X system, and:
C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin status

on a Windows system.

If the MySQL bin directory is listed in your system PATH, you can simply type:
$ mysqladmin status

from your operating system command prompt. If you get a message such as:
command not found

under Linux or Mac OS X, or:

'mysqladmin’ is not recognized as an internal or external command,
operable program or batch file.

under Windows, the directory containing the MySQL executable programs is not in
the system path.

The convenient thing to do is to add the MySQL bin directory to your system path. You
can see the list of directories in your system path by typing;:

$ echo $PATH

76 | Chapter2: Installing MySQL

at the command line. If the MySQL bin directory isn’t listed there, take the following
steps.

For a Linux or Mac system, open your ~/.bashrc shell configuration file (start a new file
if there isn’t one already) in a text editor using the instructions in “Using a Text Edi-
tor” at the beginning of this chapter, and add this line to the bottom:

export PATH=$PATH:/usr/local/mysql/bin:

If you use a shell other than bash, you’ll need to edit the appropriate shell configuration
file. For example, if you use tcsh, you'll need to edit the ~/.tcshrc or ~/.cshre file and
add the line:

setenv PATH $PATH:/usr/local/mysql/bin

To activate the changes, type $ source ~/.bashrc, log out and log in again, or simply
restart the computer.

For Windows, you can update the path in two ways. The first way is to run the MySQL
server configuration program again by selecting MySQL Server Instance Config Wizard
from the Windows Start menu and selecting the “Include Bin Directory in Windows
PATH?” checkbox as described earlier in this chapter.

The second way is to manually add the appropriate entry to your Windows path by
following these steps:

1. Open the Windows control panel.

2. If you don’t have the control panel Classic View enabled (it’s disabled by default),
you’ll need to step through one additional window (if you have Classic View ena-
bled, you can skip this step). Under XP, if you have Category View enabled, you’ll
see an icon for Performance and Maintenance; open this. Under Vista, the control
panel window will open at the Control Panel Home view by default; click on the
System and Maintenance entry.

3. Open the System entry. Under Vista, click on the Advanced System Settings link
under the list of tasks.

4. Select the Advanced tab
5. Click on the Environment Variables button

6. In the bottom half of the window, you’ll see the “System variables” pane. Scroll
down this list until you see an entry for Path.

7. Double-click on this entry, or select it and press the Edit button.

8. In the dialog box that appears, go to the end of the Variable value field and add a
semicolon followed by the path to the MySQL bin directory. For example, if you
installed MySQL to the C:\Program Files\MySQIL\MySQL Server 5.0\bin directory,
you should add:

;C:\Program Files\MySQL\MySQL Server 5.0\bin

The semicolon at the start is a delimiter used to separate entries in the system path.

What If Things Don't Work? | 77

9. Press the OK button to close the edit dialog box, and then press the OK button to
close the Environment Variables dialog box. The new path should be active
immediately.

Error Message Running mysql_install_db

If, on a Linux or Mac OS X system, you get messages like these when running
mysql install db:

$ bin/mysql_install_db

Installing all prepared tables

/home/saied/mysql/libexec/mysqld: Can't read dir of '/root/tmp/' (Errcode: 13)

Fill help tables

/home/saied/mysql/libexec/mysqld: Can't read dir of '/root/tmp/' (Errcode: 13)

then the setting for your temporary files isn’t set correctly. The solution is to declare
the directory to use for temporary files as:

$ export TMPDIR=/tmp

On most systems, the directory /tmp is present and accessible by all users. You can use
any other directory you wish, but remember that it must exist, and you must have
permission to create and delete files in that directory.

Server Doesn't Start
Possible questions to ask yourself include:

* Do you have filesystem access to the MySQL commands? Under Linux, try running
mysqld_safe as the user root. Under Windows, ensure that you have administrator
privileges. Under Mac OS X, check that you used the sudo keyword when calling
mysqld safe.

* Istheserveralready running? Try stopping the server first and then starting it again.

* Is there another server using port 33062 Try starting your server with a different
port using the port option.

If you're interested, you can list the open ports on a system using the open source
nmap security scanner program that is available for Linux, Windows, and Mac OS
X. To list the open ports on your own machine (localhost), you'd type:

$ nmap localhost

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2006-07-23 02:09 EST
Interesting ports on saied-ltc.cs.rmit.edu.au (127.0.0.1):

Not shown: 1669 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

80/tcp open http

78 | Chapter2: Installing MySQL

143/tcp open imap

631/tcp open ipp

1494/tcp open citrix-ica
3306/tcp open mysql
6000/tcp open X11

8080/tcp open http-proxy
32770/tcp open sometimes-rpc3

Nmap finished: 1 IP address (1 host up) scanned in 0.472 seconds
Here, you can see that there is a MySQL server listening on port 3306.

A good place to find clues to your problem is to look at the error logfile; this is normally
in the data directory with the system host name and the extension .err. For example,
the logfile for the host eden.learningmysql.com is generally called eden.err or eden.lear
ningmysql.com.err. For a Linux host, this might be the file /var/lib/mysql/eden.err, lusr/
local/mysql/eden.err, or Jopt/lampp/var/mysql/eden.err, depending on the way MySQL
was installed. Similarly, on a Windows system, possible locations for the error logfile
include C:\mysql-5.0.22-win32\data\eden.err, C:\Program Files\MySQL
\MySQL Server 5.0\data\eden.err, and C:\Program Files\xampp\mysql\data\eden.err. Fi-
nally, for a Mac OS X system, likely locations for the error logfile are /usr/local/mysql/
eden.err and /Applications/xampp/xamppfilesivar/mysql/eden.err.

You can use the more command to look inside this file:

$ more /var/1ib/mysql/eden.err

050813 22:31:04 mysqld started

050813 22:31:04 InnoDB: Operating system error number 13 in a file operation.
InnoDB: The error means mysqld does not have the access rights to

InnoDB: the directory.

InnoDB: File name ./ibdatal

InnoDB: File operation call: 'create'.

InnoDB: Cannot continue operation.

050813 22:31:04 mysqld ended

This particular message indicates that the directory permissions may not be set cor-
rectly. Press Ctrl-C to exit the more program.

If you installed MySQL on a Linux system using packages provided by your Linux
distribution, you may instead find the MySQL logs under a different name—for ex-
ample, mysqld.log, in the /var/log/mysql or /var/log/mysqld directory.

Client Programs Can’t Connect to the Server
Consider these questions:

1. Did you use the correct username and password? Since the default MySQL instal-
lation doesn’t have a password set, it is easy to be confused when passwords are
enabled. For the MySQL command-line tools, try using the user and password
options. If you’ve forgotten your password, try resetting it by following the steps
of “Resetting Forgotten MySQL Passwords” in Chapter 9.

What If Things Don't Work? | 79

. Isthe server running? Try running the command mysqladmin status from a terminal
window or command prompt.

. If connecting to a server on localhost, do you have filesystem access to the socket
file? The socket file is normally created as /tmp/mysql.sock but can be created in
any location specified when the server was started. If it’s created in a directory that
some users can’t access—for example, in the MySQL server’s data directory—
these users won’t be able to connect to the server. For the MySQL command-line
tools, use the socket option to specify a custom socket path.

. If connecting to a server on a host other than localhost, is the server running on a
port other than 3306? You should specify the same port to the client as the one you
specified when starting your server; if you don’t administer the server, ask the
system administrator to tell you the correct port number. For the MySQL com-
mand-line tools, use the port option to specify a custom port number.

. If connecting to a server on a host other than localhost, is it configured to accept
network connections? Ensure that the server was not started with the skip-net
working option on the command line or in an options file (we discuss options files
in Chapter 11).

. If connecting to a server on a host other than localhost, is a firewall preventing
network connections? Firewall software or hardware may be preventing connec-
tions to the port on which MySQL listens for incoming connections (the default
port is 3306). To fix this, you need to modify the firewall so that connections on
this port are allowed. Firewalls vary between networks and platforms, and you’ll
need to refer to your documentation or discuss with your system administrator
how to make these changes to your network or host-based firewall. Any firewall
changes should be considered carefully to balance feature and security
requirements.

Server Doesn't Stop

When you try to shut down the server, you may get a message like:

$ bin/mysqladmin shutdown
mysqladmin: shutdown failed; error: 'Access denied; you need the SHUTDOWN privilege
for this operation’

This indicates that you have to use a MySQL user account that has the privilege to shut
down the server. If you’re not logged in to your system under the root account, MySQL
will use your own username and the password, if any, (for example, adam) when con-
necting to the MySQL server. (We discuss user privileges in detail in Chapter 9.) For
now, it’s enough to know that you should use the MySQL root account to shut down
the server. You can do this by specifying the username from the command line:

$ bin/mysqladmin --user=root --password-che-root.passwordshutdown
STOPPING server from pid file /var/run/mysql.pid
060706 21:04:02 mysqld ended

80 | Chapter2: Installing MySQL

The Contents of the MySQL Directory

A MySQL installation has several key files and directories, and several optional ones.
In this section, we’ll briefly cover the contents of the MySQL directory when you’ve
downloaded and installed MySQL using a MySQL AB package.

First, there are some text files covering the licensing conditions and the installation
process. It’s a good idea to have a quick read through these:

* COPYING

* README

* EXCEPTIONS-CLIENT
e INSTALL-BINARY

The directory also contains the configure script to configure and start a freshly installed
server; you shouldn’t need to use this if you’ve followed the instructions in this chapter.

Then there are several subdirectories; the important ones are:

bin/
Contains the executable programs—binaries—such as mysqld_safe and mysqlad
min. Compiled programs contain binary (0 and 1) code, rather than human-read-
able text, hence the name of this directory. However, you’ll probably find some
human-readable script files in this directory too.

data/
Contains a subdirectory holding the data and index files for each database on the
server. A newly installed and configured MySQL server comes with the mysql and
test databases, so you’ll have at least these two subdirectories in your data direc-
tory. The mysql database contains information on user access privileges to different
databases; as its name suggests, the test database can be used for testing.

docs/
Contains the MySQL manual. Under Linux and Mac OS X, the manual file is in
an info file called mysql.info; you can view this by changing into the docs directory
and typing:

$ info mysql.info
To see how to navigate in the info viewer, press the “?” key in the program.

Under Windows, the manual file is in the Microsoft HTML Help file called man
ual.chm; you can view this file by double-clicking on the file icon, or by changing
to the Docs directory and typing;:

C:\Program Files\MySQL\MySQL Server 5.0> hh manual.chm

In practice, you’re more likely to find it more convenient to refer to the HTML
version of the MySQL manual available from the MySQL AB web site.

The Contents of the MySQL Directory | 81

include/
Contains header files for use when developing programs that use MySQL libraries.
lib/
Contains library files that can be used by third-party programs to access the MySQL
server.
mysql-test/
Contains detailed tests you can run to confirm that your server is working properly.
sql-bench/
Contains detailed tests that can be used to measure database server performance.

scripts/
Contains scripts, such as mysql_install_db, that may be needed for server admin-
istration. Under Windows, you can’t run most of the scripts directly, but there are
several files that contain SQL statements to do certain tasks, which can be run
through the MySQL server.

share/
Contains configuration files, such as translations of MySQL display messages for
different languages.

Other directories that are typically present on a full installation include:

man/
Contains information on some MySQL programs in the classic Unix manual
format.
If you installed MySQL using RPMs or an installer, you should be able to view the
manual pages by typing man followed by the command name—for example:

$ man mysqldump
If you used a gzipped tar archive, you can add the MySQL man directory to the

search path used by the manual page-viewer program. To do this, edit the
file .bashrc in your home directory (~/.bashrc) and add this line to the end:

export MANPATH=$MANPATH: /usr/local/mysql/man
To activate the changes, type $ source ~/.bashrc,logoutandlogin again, or simply
restart the computer.
Finally, you can always view these files by typing a command such as the one below
(using the mysqldump file as an example):

$ man /usr/local/mysql/man/man1/mysqldump.1

support-files/
Contains files and scripts used to configure the server, including ones you can use
or modify for your system.

82 | Chapter2: Installing MySQL

tests/
Contains sample Perl programs to connect to the MySQL server and perform var-
ious simple database operations.

If you install MySQL using packages provided by your Linux distributions, the direc-
tory locations will vary from the standard layout. For example, the executable files—
such as mysqld_safe, mysql, and mysqladmin—are typically installed in /usr/bin/, and
the data directory is located at /var/lib/mysql. Similarly, the logfiles may be stored in
the /var/log/mysqld directory, or the main server log may be the file /var/log/mysql.
Clearly, there’s a trade-off between easy installation using RPM packages and the dis-
parate location of MySQL-related files when the server is installed in this way. The
XAMPP web page has a section under “Basic Questions” named “Where is What?”
which lists the locations of configuration files and components.

Configuring and Controlling the Apache Web Server

For all chapters up through Chapter 12, you will need access to only a MySQL server.
To practice the examples in Chapters 13, 14, and 15, you’ll need an Apache web server
with support for the PHP language. In Chapter 18, you’ll learn how to run Perl scripts
on a Apache web server.

If you haven’t installed Apache using XAMPP, you should check whether you have
Apache installed and, if so, whether it supports PHP. You should also check whether
your PHP engine supports your installation of MySQL.

If you’ve used the XAMPP package, you can relax, knowing that this has been done for
you. You also know how to start and stop Apache using the /opt/lampp/lampp script
(Linux), the XAMPP control panel (Windows), or the /Applications/xampp/xamppfiles/
mampp script (Mac OS X). If you’re using Linux and aren’t using XAMPP, you’ll need
to ensure that your web server can work with your database server.

Apache is installed as part of the standard Mac OS X configuration, where it’s referred
to as Personal Web Sharing. You can configure it from the Sharing section of the System
Preferences window. However, we’ll rely on the XAMPP installation in this book, so
go to the Sharing settings and ensure that Personal Web Sharing is switched off.

In this section, we look at how to check that your web server is running, and how to
find the directory from which it serves files to your browser. We also explain where to
find the Apache configuration file and error log. Finally, we describe how you can
control the Apache web server on a Linux system where you haven’t used XAMPP, and
how to check that your web server is correctly configured for the work that you’ll do

in this book.

You can test whether a web server is running on your machine by opening a browser
(for example, Firefox, Internet Explorer, or Safari), and typing in the address http://
localhost. 1f your browser reports that it can’t open this page, you can try to start the

Configuring and Controlling the Apache Web Server | 83

http://localhost
http://localhost

server by using the appropriate XAMPP startup command, or the apachectl or
apache2ctl commands described later in this section in “Starting and Stopping
Apache.”

If you see some response when you try to load a page in your browser, you can try
placing content in the server’s document root. Let’s see how to find this directory.

The Apache Document Root

The document root is the base or parent directory in which the web server stores web
resources (such as HTML, PHP, or image files) and serves them to web browsers. For
the Apache web server, common locations of the document root include:

Linux
fvarfwww/html, lvar/www/htdocs, or /var/www for a distribution installation; /usr/
locallapache/htdocs for a standalone installation, and /opt/lampp/htdocs for an
XAMPP installation.

Windows
C:\Program Files\xampp\htdocs for an XAMPP installation, and C:\Program Files
\Apache Group\Apache2\htdocs if Apache is installed independently

Mac OS X
/Applications/xampp/htdocs for an XAMPP installation, and /Library/WebServer/
Documents for the installation of Apache that is part of the standard Mac OS X
configuration

If you're using a Linux system and don’t know where your server’s document root is,
search for it by following these instructions.

First, log in as the system superuser by typing su - in a terminal window. Then try to
list the common document root directories that we listed previously:
1s --directory /var/www/html /var/www/htdocs /var/www /usr/local/apache/htdocs
/bin/1s: /var/www/htdocs: No such file or directory

/bin/1ls: /usr/local/apache/htdocs: No such file or directory
/var/www /var/www/html

The --directory option asks the 1s program to list only directory names, and not their
contents.

If you get an error message for a directory, that directory doesn’t exist. Where the
directory name is listed, as for /var/www and /var/www/html above, the directory exists.
One of these is likely to be the document root. If none of the directories exist, you can
try searching your whole filesystem for a directory called htdocs:

find / -type d -name htdocs
Be patient; this may take a few minutes. Any directory it finds is likely to be the directory

root; if more than one is found, you’ll need to experiment by creating files in each to
determine which is the one used by your Apache installation.

84 | Chapter2: Installing MySQL

V413HAV
Typewritten Text
V413HAV

The Apache Configuration File

The Apache configuration file is usually called httpd.conf and is found in one of several
common locations:

Linux
letc/hitpd/conf/hitpd.conf or Jetc/apache/conf/hitpd.conf for an installation from Li-
nux distribution files; /usr/local/apache/conf/httpd.conf for an installation from
Apache Foundation files; and /opt/lampp/etc/httpd.conf for an XAMPP installation

Windows
C:\Program Files\xampp\apache\conf\httpd.conf tor an XAMPP installation

Mac OS X
/Applications/xamppl/etc/httpd.conf for an XAMPP installation, and /etc/httpd/
httpd.conf for the installation of Apache that is part of the standard Mac OS X
configuration

It’s increasingly common to find servers configured in a modular way, with a main
configuration file that reads in other files, for example under the directory /etc/httpd/
modules.d on a Linux system, or in the apache\confiextra directory under the XAMPP
install directory. For example, directives specific to PHP are often stored in the file /etc/
httpd/modules.d/70_mod_php.conf.

If you make changes to the Apache configuration file, you need to restart the web server
to put the changes into effect.

The Apache Error Log
Common locations for the web server error log include:

Linux
fust/local/apachel/logs/error.log for Apache installed from Apache Foundation
files, /var/log/httpd/error_log or /var/loglapache/error.log for an installation using
distribution packages, and /opt/lampp/logs/error_log for an XAMPP installation

Windows
C:\Program Files\xampp\apache\logs\error.log for an XAMPP installation
Mac OS X
/Applications/xampp/xamppfiles/logs/error_log for an XAMPP installation,

and /private/var/log/httpd/error_log for the Apache installation that is part of the
standard Mac OS X configuration

Starting and Stopping Apache

Apache web server installations usually include a control script called: apachectlthat
you can use to start or stop the server. On newer installations this is sometimes called

Configuring and Controlling the Apache Web Server | 85

apache2ctl; if the examples below don't work for you, try replacing apachectl with
apache2ctl. You can generally start an installed Apache server by using the command:

apachectl start

If this fails on a Linux or Mac OS X system because the command isn't found, use the
find command to locate the apachectl script file:

find / -type f -name apachectl
On a Windows system, use the built-in search instead of the find command. If it’s

reported as being in, say, /ust/local/apache/bin/apachectl, try starting Apache using that
full path:

/usr/local/apache/bin/apachectl start

Apache should start, and you should be able to test it by loading the web page http://
localhost in your browser.

You can stop the server by typing:

apachectl stop
If you make a change to the web server configuration file, you can stop and start the
server in one go by typing:

apachectl restart
If you have an XAMPP installation, you can more easily start and stop the Apache web
server using the XAMPP control scripts (Linux and Mac OS X) or control panel (Win-

dows). Earlier, we described how to do this alongside our XAMPP installation instruc-
tions for each operating system.

Checking Whether Your Apache Installation Supports PHP

Once you’ve found your document root and have Apache running, you can check
whether it can serve PHP requests, and whether its PHP engine has support for MySQL.
Using a text editor, create the file phpinfo.php so that it has one line with the following
contents:

<?php phpinfo(); ?>
Save this file with the name phpinfo.php in the document root directory. On a Linux or

Mac OS X system, you can check the file permissions by listing the file, <path_to_docu
ment_root>/phpinfo.php, for example:

$ 1s -al /var/www/html/phpinfo.php
-IW------- 1 saied saied 20 Jul 22 11:35 /var/www/html/phpinfo.php

Here, only the user who owns the file (saied) has permission to read and write the file.
For the web server to read a file, the file should be readable by everyone. You can set
the appropriate permissions as follows:

$ chmod u=rw,g=r,o=r path_to_document_root/phpinfo.php

86 | Chapter2: Installing MySQL

http://localhost
http://localhost

If you check the permissions again, you should find that other users can access the file;
we've granted the group read access as well, but that’s not strictly necessary:

$ 1s -al path_to_document_root/phpinfo.php
-rw-r--r-- 1 saied saied 20 Jul 22 11:35 /var/www/html/phpinfo.php

A common cause of Access Denied problems is the file or directory not being readable.
The web server also needs execute access to the directory containing the file, and all
the directories above it. On some systems, only the superuser can write to the document
root, so you may also need to allow write access to the document root. See “Restricting
access to files and directories,” at the beginning of this chapter, for more discussion of
file and directory permissions.

After creating the file, run the script by requesting the address http://localhost/phpinfo
.php with a web browser that is running on the same machine as the web server. If you
see a readable web page—and not just what you typed into the file—then your web
server has PHP support. Search this page for the word “mysql”; if you find a section
labeled “mysql” (and perhaps another labeled “mysqli”), your PHP installation can talk
to your MySQL server.

If you just see the contents of the phpinfo.php file, or your browser tries to download
the file, your Apache server may not support PHP. However, there are three common
problems that can cause this to happen even when your server does support PHP:

* Your PHP test files don’t have the extension .php. If this is the case, your web server
will deliver the source code and not run the scripts. Rename your scripts with
a .php extension.

* Your web server isn’t configured to run the PHP engine when a file with the .php
extension is requested. In Apache, this is controlled by the Apache configuration
file described earlier in “The Apache Configuration File.” Open the configuration
file and search for the following line:

AddType application/x-httpd-php .php

If this line is commented out—that is, there’s a pound or hash symbol (#) before
the text on the line—uncomment the line by removing this symbol, save the file,
and restart the web server following the instructions listed earlier in “Starting and
Stopping Apache.” If the line isn’t there at all, add it and restart the server.

* Your Apache PHP module isn’t being loaded by Apache. Open the Apache con-
figuration file and check whether one of the following lines appears in the file:

LoadModule php4_module libexec/libphp4.so
LoadModule php5 module libexec/1libphps.so

Add one of these lines if they don’t appear in the file. Try using the php5_module
line first. If both lines have the pound or hash symbol before the text on the line,
remove the comment symbol from one of the lines to activate the PHP module. If
you change the Apache configuration file, restart the web server.

Configuring and Controlling the Apache Web Server | 87

http://localhost/phpinfo.php
http://localhost/phpinfo.php

If you’re sure that you have Apache but not PHP, or that your PHP installation does
not support MySQL, the easiest solution is to reinstall by following the instructions
earlier in this chapter.

Setting up Perl

Chapters 16, 17, and 18 require that you have a working installation of Perl. Perl is
available as standard on almost all Linux and Mac OS X systems, and it is included in
the XAMPP integrated package, so you don’t need to install it separately. For Chapters
17 and 18, you’ll need two Perl extension packages or modules. We’ll use the Perl DBI
(Database Interface) module in Chapter 17 to talk to a MySQL server, and the Perl CGI
(Common Gateway Interface) module in Chapter 18 to write clean and readable scripts
that can be run by a web server. If you’re not planning to write complex Perl scripts for
a web application, you can manage without the CGI module, but you’ll definitely need
the DBI module to use Perl for interaction with MySQL.

Checking Your Existing Setup

To run Perl scripts, you need to know where the Perl interpreter (called perl) is installed
on your system. For Linux, we’ll use the instance of Perl that comes with the distribu-
tion; to find where this is located, use the which command:

$ which perl
/usr/bin/perl

In this example, the Perl interpreter is the file /usr/bin/perl.

For Windows and Mac OS X systems, we’ll use the instance of Perl that comes with
XAMPP. On a Windows system, the XAMPP Perl interpreter is C:\Program Files
\xampp\perl\bin\perl.exe, while on a Mac OS X system, the XAMPP Perl interpreter
is /Applications/xampp/xamppfiles/bin/perl. You can also use the Mac OS X system de-
faultinstallation (fusr/bin/perl), but as we discuss later in “Installing Perl modules under
Mac OS X,” we recommend you stick with the XAMPP installation for consistency.
Let’s start by examining what the version of this Perl installation is. On a Linux system,
type:

$ perl --version
On a Windows or Mac OS X system, the XAMPP Perl interpreter is not in the system
path, so you should specify the full path on a Windows system as:

C:\> C:\Program Files\xampp\perl\bin\perl --version

or on a Mac system as:

$ /Applications/xampp/xamppfiles/bin/perl --version

88 | Chapter2: Installing MySQL

You should either add this bin directory to your system path following the instructions
earlier in this chapter in “Error Message About MySQL Executable Programs Not Being
Found or Recognized,” or specify the full path to the Perl interpreter whenever you see
perl for the remainder of this chapter.

If Perl is available, the command will display several lines of text describing the version
and other configuration details. If Perl is not installed, you’ll see an error message saying
something like command not found (Linux or Mac OS X) or 'perl' is not recognized
as an internal or external command, operable program or batch file (Windows).
You can find more information on obtaining and installing Perl at http:/www.perl.org/
get.html, and more information on installing modules at http://www.cpan.org/modules/
INSTALL.html. For a Linux system, download and install the Perl package for your
distribution according to the instructions in “Installing MySQL, Apache, PHP, and Perl
on Linux Using Distribution Packages.” For a Windows or Mac OS X system, check
that you’ve installed XAMPP correctly.

Once you know that Perl is installed, you can test whether the DBI and CGI modules
are installed by asking the Perl interpreter to use these modules to run an empty Perl
script. To check whether the DBI module is installed, type:

$ perl -mDBI -e "'
If you see an error message that Perl “Can’t locate” DBILpm, you’ll need to install the
module yourself. Similarly, check whether the CGI module is installed by typing:

$ perl -mCGI -e "'
If the DBI module is installed, you should also check whether the MySQL database

driver (DBD) is installed. An easy way to do this is to ask Perl to print out all the drivers
that are available:

$ perl -e "use DBI; foreach $d (DBI->available_drivers()){print $d;}"
DBMExamplePFileSpongemysql

If you don’t see the letters “mysql”, you’ll need to install the MySQL database driver.

Installing the Perl DBl and CGI Modules

If you found that you need to install the CGI or DBI module, or the MySQL DBD, then
you need to follow the steps outlined in the following sections for each operating
system.

Installing Perl modules under Linux

The standard way to install Perl modules is to get Perl to use the CPAN (Comprehensive
Perl Archive Network) module to install new modules from the Internet. Log in as the
system root user by typing su -, and then install the DBI module, the DBI MySQL
Database Driver, and the CGI module by running the following commands in turn:

Settingup Perl | 89

http://www.perl.org/get.html
http://www.perl.org/get.html
http://www.cpan.org/modules/INSTALL.html
http://www.cpan.org/modules/INSTALL.html

perl -MCPAN -e 'install DBI'

perl -MCPAN -e 'install DBD::mysql;’

perl -MCPAN -e 'install CGI;'
If this is the first time you’re installing Perl modules this way, you may be prompted to
answer a few questions. It’s generally safe to answer no to the question:

Are you ready for manual configuration? [yes]

and leave it to Perl to figure out how to fetch the required packages. If all goes well,
you should see reassuring status messages as Perl downloads and installs everything.

Perl modules are also available for individual Linux distributions, and you can down-
load and install them manually. For RPM-based systems, you should download and
install the perl-DBI package for DBI, the perl-DBD-mysql package for the DBI MySQL
driver, and the perl-CGI package for CGI. For example, on a Red Hat or Fedora system,
type:

yum update perl-DBI perl-DBD-mysql perl-CGI
For a Mandriva or Mandrake system, type:

urpmi perl-DBI perl-DBD-mysql perl-CGI
For a Debian-based system, the package names are slightly different:

apt-get install libdbi-perl libdbd-mysql-perl libcgi-pm-perl

Installing Perl modules under Windows

Windows does not have Perl support by default, so you need to install a Perl interpreter
yourself. The XAMPP package you installed earlier in this chapter includes a minimal
Perl setup. However, to include a reasonable set of Perl libraries, including the DBI and
CGI modules and the MySQL DBD, you should also visit the web page hitp://www
.apachefriends.org/en/xampp.html and download and install the Perl Addons installer.
This will have a filename similar to xampp-perl-addon-5.8.7-2.2.2-installer.exe. Install
this in the same directory in which your XAMPP installation is located; we assume this
is C:\Program Files\xampp.

Many of the MySQL command-line programs in the scripts directory are in fact Perl
scripts; if you want to use these scripts, you’ll need to associate Perl files with the Perl
interpreter. To do this, you tell Windows that all files with the standard Perl exten-
sion .pl must be run by the Perl interpreter. Open a command prompt window and
type the following two lines:

C:\> ASSOC .pl=PerlScript
C:\> FTYPE PerlScript=C:\Program Files\xampp\perl\bin\perl.exe %1 %*

You can now run Perl scripts by double-clicking on the icon of the script file, or by
typing in the name of the script file at the command prompt. You can find other tips
for using Perl under Windows in the Perl Win32 FAQ (http://www.perl.com/doc/FAQs/
nt/perlwin32faq4.html).

90 | Chapter2: Installing MySQL

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.perl.com/doc/FAQs/nt/perlwin32faq4.html
http://www.perl.com/doc/FAQs/nt/perlwin32faq4.html

Installing Perl modules under Mac 0S X

Mac OS X comes with a Perl interpreter already installed, so after installing XAMPP
following the instructions earlier in this chapter, you’ll have two Perl interpreters on
your system: /usr/bin/perl and /Applications/xampp/xamppfiles/bin/perl. You’ll need to
configure the DBI and CGI modules for at least one of these.

Since we use XAMPP for other parts of this book, our instructions will focus on it. You
can still configure the system default Perl interpreter by typing /usr/bin/perl in place
of /Applications/xampp/xamppfiles/bin/perl in our instructions, but we feel that you’ll
have fewer difficulties if you work with the XAMPP installation.

For XAMPP, you need to do two things to ensure a hassle-free DBD MySQL driver
installation. First, to allow the DBD installation process to test the installation process
using the MySQL server, start XAMPP by typing:

$ sudo /Applications/xampp/xamppfiles/mampp start

Then create a symbolic link to the XAMPP MySQL socket file in the default MySQL
socket file location /tmp/mysql.sock, which is where Perl will expect to find it:

$ 1n -s /Applications/xampp/xamppfiles/var/mysql/mysql.sock /tmp/mysql.sock

Some versions of XAMPP come with permission settings for the /Applications/xampp/
xamppfiles/lib/perl5 directory that don’t allow ordinary users to access it, causing mod-
ules to appear missing. To ensure that the permissions are correctly set, type:

$ sudo chmod u=rwx,g=rx,o=rx /Applications/xampp/xamppfiles/1lib/perls

We discussed permission settings in “Restricting access to files and directories,” at the
beginning of this chapter.

You can download and install the DBI module, the MySQL driver, and the CGI module
for the XAMPP Perl installation by typing these commands in turn:

$ sudo /Applications/xampp/xamppfiles/bin/perl -MCPAN -e 'install DBI;'
$ sudo /Applications/xampp/xamppfiles/bin/perl -MCPAN -e 'install DBD::mysql;'
$ sudo /Applications/xampp/xamppfiles/bin/perl -MCPAN -e 'install CGI;'

You may be prompted for the system root user password. You may also be prompted
to configure the download locations with the message:

Are you ready for manual configuration? [yes]

Unless you’re very sure of what you’re doing, just type no and press the Enter key to let
Perl figure out how best to download the required files.

Problems installing the Perl modules
If, during the install process, you see an error message such as this one:

Error: Unable to locate installed Perl libraries or Perl source code.

It is recommended that you install perl in a standard location before

Settingup Perl | 91

building extensions. Some precompiled versions of perl do not contain
these header files, so you cannot build extensions. In such a case,
please build and install your perl from a fresh perl distribution. It
usually solves this kind of problem.

(You get this message, because MakeMaker could not find
"/System/Library/Perl/5.8.1/darwin-thread-multi-2level/CORE/perl.h")
Looks like your test died before it could output anything.

Running make test

Make had some problems, maybe interrupted? Won't test

Running make install

Make had some problems, maybe interrupted? Won't install

you’ll need to install the Apple Developer Tools. These are available on the Mac OS X
install disk that came with your system. Double-click on the XcodeTools.mpkg icon on
the screen of disk contents and follow the prompts to install this package.

You can also get the latest version of the Developer Tools by visiting http://developer
.apple.com and registering as a developer (it’s free). Once you’ve registered and logged
in to the site, click on the Downloads link, and then click on the Developer Tools link
on the downloads page. From the Developer Tools download page, click on the latest
release of the .Mac SDK; at the time of writing, this was 1.2, with version 2.0 available
for testing.

If you see a message similar to the one below:

Writing Makefile for DBD::mysql

-- NOT OK

Running make test

Can't test without successful make

Running make install

make had returned bad status, install seems impossible

you’ll need to build the downloaded module manually. First, check the directories
containing the downloaded module source files:

$ 1s ~/.cpan/build
DBD-mysql-3.0002 DBI-1.48

In this example, we have files for DBI version 1.48 and DBD MySQL driver version
3.0002. The versions you download may be different.

Now, build the module by changing to the corresponding directory (here we’ll compile
the DBI module):

$ cd ~/.cpan/build/DBI-1.48

and using the make command:
$ make

Once the module has been successfully built, install it as the system root user:
$ sudo make install

Repeat this process for any other modules you need to compile.

92 | Chapter2: Installing MySQL

http://developer.apple.com
http://developer.apple.com

Resources

You can find a detailed reference manual on MySQL and several sample databases on
the MySQL AB web site at http://dev.mysql.com/doc, although we recommend you ex-
plore these after you’ve finished reading this book.

You can also participate in MySQL-related discussion forums and mailing lists. Some
of these are run by MySQL AB. To learn more, visit the MySQL AB forums page at
http://forums.mysql.com and the lists page at http:/lists.mysql.com.

There’s also a lot of helpful material on the MySQL community web site (http://forge
.mysql.com). In particular, look at the collection of (mostly user-contributed) docu-
mentation by following the “Wiki” link near the top of the page. Don’t worry if it all
seems overwhelming at first; you’ll be able to make sense of most of it by the time you
reach the end of this book!

To learn more about installing the software described in this book, we recommend the
following resources:

* Formore on the Windows XP command prompt, visit the Microsoft XP command-
line reference at http://www.microsoft.com/resources/documentation/windows/xp/
all/proddocs/en-us/mtcmds_o.mspx. Much of this information applies to Vista too.

* A useful list of frequently-asked questions about XAMPP, including discussion of
common installation problems is available from the XAMPP web site (http://www
.apachefriends.org/en).

* For detailed information on setting up and configuring the Apache web server,
including a list of all the configuration directives, visit http://httpd.apache.org.

To learn more about shell or command-prompt instructions, do a web search for “learn
unix Linux” (for Linux), “learn unix mac os x” (for Mac OS X), or “Windows command
prompt” (for Windows).

Throughout this book, we point out security aspects you should consider while instal-
ling, configuring, and running MySQL and associated web applications. To better un-
derstand security issues, we highly recommend these resources:

 Security Engineering: A Guide to Building Dependable Distributed Systems by Ross
J. Anderson (Wiley). This book is also available online at http://www.cl.cam.ac.uk/
~tjal4/book.html.

* Secrets and Lies: Digital Security in a Networked World by Bruce Schneier (Wiley).

* Themonthly Crypto-Gram Newsletter, written by Bruce Schneier, available at http:
/lwww.schneier.com/crypto-gram.html.

Resources | 93

http://dev.mysql.com/doc
http://forums.mysql.com
http://lists.mysql.com
http://forge.mysql.com
http://forge.mysql.com
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/ntcmds_o.mspx
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/ntcmds_o.mspx
http://www.apachefriends.org/en).
http://www.apachefriends.org/en).
http://httpd.apache.org
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.schneier.com/crypto-gram.html
http://www.schneier.com/crypto-gram.html

Exercises

1. What is command completion?

2. What are the relative advantages of installing MySQL using the package, directory
archive (tarball or “no-install”), or compiled methods?

3. How do you verify the integrity of downloaded packages?
4. How do you add the MySQL bin directory to the operating system path?

94 | Chapter2: Installing MySQL

CHAPTER 3
Using the MySQL Monitor

MySQL has a client-server architecture; clients connect to the server to perform database
operations such as reading or storing data. There are many MySQL clients available,
including some that have graphical interfaces. You can also develop your own clients.
The standard MySQL command-line client or “monitor” program provided by MySQL
AB is the client you’ll probably use the most often. The monitor allows you to control
almost all aspects of database creation and maintenance using SQL and the custom
MySQL extensions to SQL.

In this chapter, we’ll examine how to start the monitor and how to run commands
through the monitor either interactively or in batch mode. We’ll describe how you can
access the inbuilt MySQL help functions, and how to test your MySQL setup using the
sample databases from the book web site. We’ll also take a quick look at a couple of
graphical tools that you can use instead of the monitor.

Starting the Monitor

The monitor program is called simply mysql and is found in a directory with the other
MySQL programs. The exact location depends on your operating system and how you
chose to install MySQL; we considered some of these in “Error Message About MySQL
Executable Programs Not Being Found or Recognized,” in Chapter 2.

If your MySQL server isn’t already running, start it using the appropriate procedure for
your setup as discussed in Chapter 2. Now, follow these steps to start the monitor and
connect to your MySQL server as the MySQL administrator (the MySQL root user) by
typing this from the command line:

$ mysql --user=root
If you followed our instructions in Chapter 2, the MySQL root account is protected by
the password you chose earlier, and so you’ll get a message saying that you’ve been

denied access to the server. If your server has a password, you should specify the pass-
word as follows:

$ mysql --user=root --password=the_mysql_root_password

95

If you get a message from the operating system saying that it can’t find the MySQL
program, you’ll need to specify the full path to the mysql executable file as discussed in
“Error Message About MySQL Executable Programs Not Being Found or Recognized.”

If you used a nonstandard socket file when starting your server, you’ll need to provide
the details to any MySQL client programs you run, including mysql. For example, you
might type:
$ mysql \
--socket=server_socket \

--user=root \
--password=the_mysql_root_password

If you’re trying to connect to a MySQL server on a different computer or a nonstandard
port, you should specify these when starting the monitor:
$mysql \
--host=server_host_name \
--port=server_port \

--user=root \
--password=the_mysql_root_password

We list a few more options to the monitor program at the end of this chapter.

Most of the other MySQL programs we’ll describe in this book take the same port and
socket options to identify the server to connect to, and the same user and password
options to identify and authenticate the MySQL user.

If all goes well, you’ll get the monitor’s mysql> prompt:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 456 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

You can now type in commands that MySQL understands. To start things off, ask the
server what version of MySQL it is:

mysql> SELECT VERSION();

B ittt +
| VERSION() |
B ettt +
| 5.0.22 |

E e ettt +

1 row in set (0.03 sec)

You’ll almost certainly be using a different version number from the one we’re using.
Now ask the server to list all the databases that it has:

mysql> SHOW DATABASES;

96 | Chapter3: Using the MySQL Monitor

| mysql |
| test |

2 rows in set (0.00 sec)

You may see different results on your MySQL server. There are two databases here; the
mysql database is used to store information about user access privileges, and the test
database is an empty scratch space for experimentation. Not terribly exciting, but you’ll
remedy this situation as you progress through this book!

Style, Case, and Semicolons

When interacting with a MySQL server, you’ll use a combination of SQL keywords,
MySQL proprietary commands, and names of databases and database components.
We follow common convention and use a style to make it easier to distinguish between
components of an SQL query. We always show SQL statements and keywords in cap-
itals, such as SELECT or FROM. We also show the MySQL monitor’s proprietary SQL
commands—such as USE—in uppercase. We always enter database components—such
as database, table, and column names—in lowercase. This makes our SQL more read-
able and easier to follow in source code and books.

MySQL isn’t fussy about whether you enter SQL or the monitor’s proprietary state-
ments in uppercase or lowercase. For example, SELECT, select, Select, and even
SelLeCt are equivalent. However, depending on your platform, MySQL can be fussy
about database and table names. For example, under Windows, MySQL isn’t fussy at
all (because Windows itself isn’t fussy about the filenames that store those structures),
while on Mac OS X its fussiness depends on what underlying filesystem you use to store
disk files. Linux and Unix systems observe the difference between uppercase and low-
ercase strictly. A reliable approach is to adopt the convention of using lowercase for all
database, table, and column names. You can control how MySQL manages different
case behavior using an option when you start the MySQL server, mysqld, but we don’t
recommend you do this, and we don’t discuss it further in this book.

There are some restrictions on what characters and words you can use in your database,
table, and other names. For example, you can’t have a column named from or select
(in any mix of uppercase and lowercase). These restrictions are mostly obvious, since
they apply to reserved keywords that confuse MySQL’s parser. We discuss the char-
acters that can and can’t be used in Chapter 6.

You’ll notice that we terminate all SQL statements with the semicolon character (;).
This tells MySQL that we’ve finished entering a statement and that it should now parse
and execute it. This gives you flexibility, allowing you to type in a statement over several
lines. For example, the following statement works fine:

mysql> SELECT User,Host

-> FROM user;
F------ R +

Style, Case, and Semicolons | 97

| User | Host

Hmm e m e +
| | localhost

| root | localhost

| | saied-ltc.cs.rmit.edu.au |
| root | saied-ltc.cs.rmit.edu.au |
Hmmm e T +
4 rows in set (0.00 sec)

We often use this style in this book, because it helps long statements fit in the margins
of a page. Notice that the monitor shows you a different prompt (->) to indicate that
it’s waiting for you to enter more of your SQL statement or to type in a semicolon.

In fact, you can add whitespace—such as space and tab characters—anywhere between
the components of a statement to improve its formatting, and we often do this in our
longer statements. Of course, because whitespace separates keywords and values, you
can’t add space within the keywords or values themselves; for example, if you type the
keyword SELECT as SEL ECT, you’ll get an error.

In contrast to SQL statements, you can’t span the MySQL monitor’s own commands
over more than one line. This is because the semicolon isn’t actually required for these,
and just pressing the Enter key has the same effect. For example, the USE command tells
MySQL that you want to use a particular database. The following works fine:

mysql> USE test
Database changed

However, if you try to span the command over more than one line, you won’t get far:

mysql> USE
ERROR:
USE must be followed by a database name

The Monitor Help

The monitor has a handy HELP command that you can use to get more information on
the monitor commands or SQL syntax. If you type HELP and press the Enter key, you’ll
get a list of commands the monitor understands:

mysql> HELP

For information about MySQL products and services, visit:
http://www.mysql.com/

For developer information, including the MySQL Reference Manual, visit:
http://dev.mysql.com/

To buy MySQL Network Support, training, or other products, visit:
https://shop.mysql.com/

List of all MySQL commands:

Note that all text commands must be first on line and end with ';'

? (\?) Synonym for “help'.

clear (\c) Clear command.

connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter. NOTE: Takes the rest of the line as new

98 | Chapter3: Using the MySQL Monitor

delimiter.

edit (\e) Edit command with $EDITOR.

ego (\G) Send command to mysql server, display result vertically.

exit (\q) Exit mysql. Same as quit.

go (\g) Send command to mysql server.

help (\h) Display this help.

nopager (\n) Disable pager, print to stdout.

notee (\t) Don't write into outfile.

pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.

prompt (\R) Change your mysql prompt.

quit (\q) Quit mysql.

rehash (\#) Rebuild completion hash.

source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.

system (\!) Execute a system shell command.

tee (\T) Set outfile [to outfile]. Append everything into given outfile.
use (\u) Use another database. Takes database name as argument.

charset (\C) Switch to another charset. Might be needed for processing binlog with
multi-byte charsets.

warnings (\W) Show warnings after every statement.

nowarning (\w) Don't show warnings after every statement.

For server side help, type 'help contents’

Depending on the version of the monitor that you’re using, you may see a different list.
The characters in the parentheses indicate a shortcut for each command. You typed in
the USE command earlier in this chapter to change to the test database. From the list,
you can see a short description of this command and also see that you can type \u
instead of USE.

Let’s look at another entry on this list. The monitor has command completion, just like
the Linux and Mac OS X shells, and like the Windows command prompt. You can
press the Tab key to complete SQL statements and table and attribute names. If not all
the options you expect are shown, you can update the internal list of expansions
(“rebuild the completion hash”) by typing rehash (or using the shortcut characters
\#) and pressing the Enter key.

Using the help function of the monitor, you can also get help on how to interact with
the MySQL server. To see a table of contents for the help documentation, type HELP
Contents:

mysql> HELP Contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the following
categories:

Account Management

Administration

Data Definition

Data Manipulation

Data Types

Functions

Functions and Modifiers for Use with GROUP BY

The Monitor Help | 99

Geographic Features
Language Structure
Storage Engines
Stored Routines
Table Maintenance
Transactions
Triggers

You may see more or less help content depending on the help files that have been
installed with your server. You can get information on individual topics by typing in
the HELP command followed by the topic name. For example, to get information on
data manipulation, you would type:

mysql> HELP Data Manipulation
You asked for help about help category: "Data Manipulation"
For more information, type 'help <item>', where <item> is one of the following
topics:

CACHE INDEX

DELETE

ékéLAIN

INSERT

SELECT

SHoW

éﬁbw CREATE DATABASE

éﬁbw CREATE TABLE

éﬁéw DATABASES

éﬁéw GRANTS

éﬁéw STATUS

éﬁéw TABLES

GﬁbATE

We've omitted some items to keep the output short.

You can request further information on any of the items by typing HELP followed by
the appropriate keywords. For example, for information on the SHOW DATABASES com-
mand, you'd type:

mysql> HELP SHOW DATABASES

Name: 'SHOW DATABASES'

Description:

Syntax:

SHOW {DATABASES | SCHEMAS} [LIKE 'pattern']

100 | Chapter3: Using the MySQL Monitor

SHOW DATABASES lists the databases on the MySQL server host. You see
only those databases for which you have some kind of privilege, unless
you have the global SHOW DATABASES privilege. You can also get this
list using the mysqlshow command.

If the server was started with the --skip-show-database option, you
cannot use this statement at all unless you have the SHOW DATABASES
privilege.

SHOW SCHEMAS can be used as of MySQL 5.0.2

Running the Monitor in Batch Mode

The MySQL monitor can be used in interactive mode or in batch mode. In interactive
mode, you type in SQL queries or MySQL commands such as SHOW DATABASES at the
MySQL prompt, and view the results.

In batch mode, you tell the monitor to read in and execute a list of commands from a
file. This is useful when you need to run a large set of operations—for example, when
you want to restore a database from a backup file. It’s also useful when you need to
run a particular sequence of operations frequently; you can save the commands in a
file and then tell the monitor to read in the file whenever you need it.

The examples we’ve presented earlier in this chapter, and most of the examples in this
book, show the monitor being used in interactive mode. Let’s look at an example for
batch mode. Say you have a text file called count users.sql containing the SQL
commands:

use mysql;

SELECT COUNT(*) FROM user;
This script tells MySQL that you want to use the mysql database, and that you want to
count all the users who have accounts on the MySQL server (we’ll explain the syntax
of the SELECT command in Chapter 5).

You can run all the commands in this file using the SOURCE command:

mysql> SOURCE count_users.sql
Database changed

Hmmmmmmmmen +
| count(*) |
Hmmmmmmmmen +
| 4 I
Hmmmmmmmmen +

1 row in set (0.00 sec)

If the count_users.sql file isn’t in the current directory, you should give the full path to
the file—for example, /home/adam/Desktop/count_users.sql or C:\count_users.sql. Al-
ternatively, from the command line, you can use the less-than (<) redirection operator
followed by the filename:

Running the Monitor in Batch Mode | 101

$ mysql --user=root --password=the_mysql_root_password < count_users.sql
count (*)
4

Loading the Sample Databases

To get a working sample database that you can play with, start by visiting the book’s
web site and downloading the music database file music.sql from the sample databases
section.

Toload the file into your server, you need to use the SOURCE command and specify where
MySQL can find the music.sql file. For example, this might be ~/music.sql or
~/Desktop/music.sql on a Linux or Mac OS X system, or C:\Documents and Settings
\my_windows_login_name\Desktop\music.sql on a Windows system.

Once you run the SOURCE command, you should see some reassuring messages flash by:

mysql> SOURCE path_to music.sql_file;
Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.01 sec)

Query OK, 1 row affected (0.00 sec)

You can now see if the database is there by using the SHOW DATABASES command:
mysql> SHOW DATABASES;

B ke +
| Database |
mm - +
| music |
| mysql |
| test |
mmmmm - +

3 rows in set (0.00 sec)
mysql>
We’'ll see how to use this database in future chapters.

Repeat this process for the two additional sample database files, flight.sql and univer-
sity.sql, that are available from the book’s web site. Finally, you can leave the MySQL
monitor by typing quit:

mysql> quit

MySQL Monitor Program Options

The monitor program can take several parameters; the ones you’ll need most frequently
are:

102 | Chapter3: Using the MySQL Monitor

host
The host the server is running on; you can leave this out if the server is running on
the same host as the client (localhost).

user
The username to use when connecting to the MySQL server. This bears no relation
to the username the server is running under, or to your Linux or Mac OS X user-
name. If you don’t provide a username with this option, the monitor uses a default
value; this default username is your machine account name on a Linux or Mac OS
X system, and ODBC on a Windows system.

password
The password of this user. If you don’t provide the password parameter, no pass-
word is supplied to the server. This is fine if there is no password stored for that
user, but if the user does have a password, the connection will fail:
$ mysql --user=the_username

ERROR 1045 (28000): Access denied for user 'the_username'@'localhost’
(using password: NO)

If you include the password option but don’t specify a password, the client will
prompt you for a password after you press the Enter key. If the user has no pass-
word, pressing the Enter key will work; otherwise, the connection will fail again:
$ mysql --user=the_username --password
Enter password:

ERROR 1045 (28000): Access denied for user 'the_username'@'localhost’
(using password: NO)

If you provide an incorrect password, or you don’t have permission to access a
specified database, MySQL will note this in the error message:

$ mysql --user=the_username --password=wrong_password

Enter password:

ERROR 1045 (28000): Access denied for user 'the_username'@'localhost’
(using password: YES)

If you specify the correct password at the Enter password: prompt, or if you specify
the correct password on the command line when starting the monitor, the con-
nection will succeed:

$ mysql --user=the_username --password=the_password

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 169 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

Some users prefer not to specify the password on the command line because sup-
pressing the password guarantees the password won’t be displayed in the operating
system process table or command history. Under all operating systems we’ve tes-
ted, the password is hidden and can’t be seen using operating system utilities to

MySQL Monitor Program Options | 103

view running processes. However, the password may be stored in your command-
line history, which other users may be able to access.

database
The database to use. This saves you from having to type USE the_database_name
after the MySQL monitor starts. You can also simply omit the database option and
just add the name of the database you want to use at the end of the mysql command.

safe-updates
Most experienced MySQL users can remember occasions where they’ve acciden-
tally deleted all the data in a table by issuing a DELETE FROM table name command,
forgetting to add a limiting condition.

The safe-updates option prevents you from doing this by requiring you to provide
a key constraint to DELETE and UPDATE, or to use a LIMIT clause. For example:
mysql> DELETE FROM user;

ERROR 1175 (HY000): You are using safe update mode and you tried to update
a table without a WHERE that uses a KEY column

We'll explain these commands in later chapters.

Let’s look at a couple of examples. First, let’s say you want to connect to the server
running on the same machine you’re working on (localhost), as the MySQL user
root, and with the password the_mysql_root_password. You want to use the database
music, so you would type:

$ mysql --user=root --password=the_mysql_root_password --database=music

Now for a more complex example: say you're working on the host sadri.learning-
mysql.com, and wish to use the Moodle database on the MySQL server listening to port
57777 on the host zahra.learningmysql.com. For this MySQL server, you have the
MySQL account name moodleuser and the password moodlepass. You would type the
command (all on one line):
$ mysql \

--host=zahra.learningmysql.com \

--port=57777 \

--user=moodleuser \

--password=moodlepass \
--database=Moodle

We'll look at how to create and manage users in Chapter 9.

Instead of specifying options on the command line, you can list them in the mysql
section of an options file. You can also store your password in an options file to avoid
typing it in every time you start the monitor. We discuss how to do this in Chapter 11.

Graphical Clients

Before we end this chapter, let’s have a quick look at two graphical clients that you can
use in place of the monitor.

104 | Chapter3: Using the MySQL Monitor

“® MySQL Administrator root@localhost via socket

inf
E7
& m
£
i
£
H
H

Figure 3-1. The MySQL Administrator graphical MySQL administration tool

The MySQL Administrator program is a graphical tool that you can download as part
of the MySQL GUI Tools Bundle from the MySQL AB downloads page at http://dev
.mysql.com/downloads. This program allows you to perform most database adminis-
tration from within a graphical environment, as shown in Figure 3-1.

The MySQL Query Browser program is also available for download from the same web
page. This allows you to run SQL queries from within a graphical environment, and
view the results. A sample query is shown in Figure 3-2. Together, these tools replace
an older program known as the MySQL Control Center mysqlcc. In this book, we focus
on doing things using the monitor; once you understand the way MySQL works, you’ll
find it easy to use other clients such as these.

Exercises

1. What do we mean when we say that MySQL has a client-server architecture?

2. Use the monitor help to look up information on the SELECT statement. (We’ll dis-
cuss SELECT in detail in Chapter 5.)

3. What is the difference between using the monitor in interactive mode and using
the monitor in batch mode?

4. What do the monitor user, password, and database options do?

Exercises | 105

http://dev.mysql.com/downloads
http://dev.mysql.com/downloads

MySQL Query Browser - rc ocalhost via socket

Figure 3-2. The MySQL Query Browser graphical MySQL client

106 | Chapter3: Using the MySQL Monitor

PART Il

Using MySQL

CHAPTER 4
Modeling and Designing Databases

When implementing a new database, it’s easy to fall into the trap of trying to quickly
get something up and running without dedicating adequate time and effort to the de-
sign. This carelessness frequently leads to costly redesigns and reimplementations
down the track. Designing a database is similar to drafting the blueprints for a house;
it’s silly to start building without detailed plans. Importantly, good design allows you
to extend the original building without having to pull everything down and start from
scratch.

How Not to Develop a Database

Database design is probably not the most exciting task in the world, but it’s still im-
portant. Before we describe how to go about the design process, let’s look at an example
of database design on the run.

Imagine we want to create a database to store student grades for a university computer
science department. We could create a Student_Grades table to store grades for each
student and each course. The table would have columns for the given names and the
surname of each student as well as for each course they have taken, the course name,
and the percentage result (shown as Pctg). We’d have a different row for each student
for each of their courses:

e Hmmmmm e e e Hmmmm +
| GivenNames | Surname | CourseName | Pctg |
e Hmmmmm e i m e Hmm +
John Paul	Bloggs	Web Database Applications	72
Sarah	Doe	Programming 1	87
John Paul	Bloggs	Computing Mathematics	43
John Paul	Bloggs	Computing Mathematics	65
Sarah	Doe	Web Database Applications	65
Susan	Smith	Computing Mathematics	75
Susan	Smith	Programming 1	55
Susan	Smith	Computing Mathematics	80
Hmmm e Hmmmmm e e Hmmmm e +

109

This is nice and compact, and we can easily access grades for any student or any course.
However, we could have more than one student called Susan Smith; in the sample data,
there are two entries for Susan Smith and the Computing Mathematics course. Which
Susan Smith got an 80? A common way to differentiate duplicate data entries is to assign
a unique number to each entry. Here, we can assign a unique Student ID number to

each student:

| 12345678
| 12345121
| 12345678
| 12345678
| 12345121
| 12345876
| 12345876
| 12345303

TR Hmmmmmm e m e e Hmmm e m +
| GivenNames | Surname | CourseName | Pctg |
TR Hmmm e m e s Hmmmmem +
| John Paul | Bloggs | Web Database Applications | 72
Sarah	Doe	Programming 1	87
John Paul	Bloggs	Computing Mathematics	43
John Paul	Bloggs	Computing Mathematics	65
Sarah	Doe	Web Database Applications	65
Susan	Smith	Computing Mathematics	75
Susan	Smith	Programming 1	55
Susan	Smith	Computing Mathematics	80
 EEnEEEEEE Ao e Hmmm e +

So, the Susan Smith who got 80 is the one with the Student ID number 12345303.

There’s another

problem. In our table, John Paul Bloggs has failed the Computing

Mathematics course once with 43 percent, and passed it with 65 percent in his second
attempt. In a relational database, the rows form a set, and there is no implicit ordering
between them; you might guess that the pass happened after the fail, but you can’t

actually be sure.

There’s no guarantee that the newer grade will appear after the older

one, so we need to add information about when each grade was awarded, say by adding
a year and semester (Sem):

| 12345678
| 12345121
| 12345678
| 12345678
| 12345121
| 12345876
| 12345876
| 12345303

Fmmmmmm oo mmmm e o m e s R e mmmm - +
| GivenNames | Surname | CourseName | Year | Sem | Pctg |
Fmmmmmm oo mmmm e o m e s R e mmmm - +
John Paul	Bloggs	Web Database Applications	2004	2	72
Sarah	Doe	Programming 1	2006	1	87
John Paul	Bloggs	Computing Mathematics	2005	2	43
John Paul	Bloggs	Computing Mathematics	2006	1] 65	
Sarah	Doe	Web Database Applications	2006	1	65
Susan	Smith	Computing Mathematics	2005	1] 75	
Susan	Smith	Programming 1	2005	2] 55	
Susan	Smith	Computing Mathematics	2006	1] 80	
Fmmmmmm e R L E TP fmmmm - mmmm- S +

Notice that the Student_Grades table has become a bit bloated: the student ID, given
names, and surname are repeated for every grade. We could split up the information
and create a Student_Details table:

o
| StudentID
o
| 12345121

| 12345303

| 12345678

B il B e +
| GivenNames | Surname |
B e Fommmm oo +
| Sarah | Doe

|
| Susan | Smith |
| John Paul | Bloggs |

110 | Chapter4: Modeling and Designing Databases

| 12345876 | Susan | Smith |
 ERREEEEEEEE EEREEEEEEEE REEEEES +

and keep less information in the Student_Grades table:

S RLEEEEEEE Hmm o Hommm-- +om--- +om--- +
| StudentID | CourseName | Year | Sem | Pctg |
S REEEEEPEE R Hmmmmm- +em-- +emm--- +
| 12345678 | Web Database Applications | 2004 | 2 | 72 |
| 12345121 | Programming 1 | 2006 | 1| 87]
12345678	Computing Mathematics	2005	2	43
12345678	Computing Mathematics	2006	1] 65	
12345121	Web Database Applications	2006	1	65
12345876	Computing Mathematics	2005	1] 75	
12345876	Programming 1	2005	2] 55	
12345303	Computing Mathematics	2006	1] 80	
T REEEE e Hmmm-- +em-- +emm--- +

To look up a student’s grades, we’d need to first look up her Student ID from the
Student Details table and then read the grades for that Student ID from the Stu
dent_Grades table.

There are still issues we haven’t considered. For example, should we keep information
on a student’s enrollment date, postal and email addresses, fees, or attendance? Should
we store different types of postal address? How should we store addresses so that things
don’t break when a student changes his address?

Implementing a database in this way is problematic; we keep running into things we
hadn’t thought about and have to keep changing our database structure. Clearly, we
can save a lot of reworking by carefully documenting the requirements and then work-
ing through them to develop a coherent design.

The Database Design Process

There are three major stages in database design, each producing a progressively lower-
level description:

Requirements analysis
First, we determine and write down what exactly the database is needed for, what
data will be stored, and how the data items relate to each other. In practice, this
might involve detailed study of the application requirements and talking to people
in various roles that will interact with the database and application.

Conceptual design
Once we know what the database requirements are, we distill them into a formal
description of the database design. In this chapter, we’ll see how to use modeling
to produce the conceptual design.

Logical design
Finally, we map the database design onto an actual database management system
and database tables.

The Database Design Process | 111

Figure 4-1. An entity set is represented by a named rectangle

At the end of the chapter, we’ll look at how we can use the open source MySQL Work
bench tool to automatically convert the conceptual design to a MySQL database
schema.

The Entity Relationship Model

At a basic level, databases store information about distinct objects, or entities, and the
associations, or relationships, between these entities. For example, a university database
might store information about students, courses, and enrollment. A student and a
course are entities, while an enrollmentis a relationship between a student and a course.
Similarly, an inventory and sales database might store information about products,
customers, and sales. A productand a customer are entities, while a sale is a relationship
between a customer and a product.

A popular approach to conceptual design uses the Entity Relationship (ER) model,
which helps transform the requirements into a formal description of the entities and
relationships that appear in the database. We’ll start by looking at how the Entity
Relationship modeling process itself works, then apply it in “Entity Relationship Mod-
eling Examples” for three sample databases.

Representing Entities

To help visualize the design, the Entity Relationship Modeling approach involves
drawing an Entity Relationship (ER) diagram. In the ER diagram, an entity set is rep-
resented by a rectangle containing the entity name. For our sales database example, the
product and customer entity sets would be shown as in Figure 4-1.

We typically use the database to store certain characteristics, or attributes, of the enti-
ties. In a sales database, we could store the name, email address, postal address, and
telephone number for each customer. In a more elaborate customer relationship man-
agment (CRM) application, we could also store the names of the customer’s spouse
and children, the languages the customer speaks, the customer’s history of interaction
with our company, and so on. Attributes describe the entity they belong to.

112 | Chapter4: Modeling and Designing Databases

An attribute may be formed from smaller parts; for example, a postal address is com-
posed of a street number, city, ZIP code, and country. We classify attributes as com-
posite if they’re composed of smaller parts in this way, and as simple otherwise.

Some attributes can have multiple values for a given entity. For example, a customer
could provide several telephone numbers, so the telephone number attribute is
multivalued.

Attributes help distinguish one entity from other entities of the same type. We could
use the name attribute to distinguish between customers, but this could be an inade-
quate solution because several customers could have identical names. To be able to tell
them apart, we need an attribute (or a minimal combination of attributes) guaranteed
to be unique to each individual customer. The identifying attribute or attributes form
a key.

In our example, we can assume that no two customers have the same email address,
so the email address can be the key. However, we need to think carefully about the
implications of our choices. For example, if we decide to identify customers by their
email address, it would be hard to allow a customer to have multiple email addresses.
Any applications we build to use this database might treat each email address as a
separate person, and it might be hard to adapt everything to allow people to have
multiple email addresses. Using the email address as the key also means that every
customer must have an email address; otherwise, we wouldn’t be able to distinguish
between customers who don’t have one.

Looking at the other attributes for one that can serve as an alternative key, we see that
while it’s possible that two customers would have the same telephone number (and so
we cannot use the telephone number as a key), it’s likely that people who have the same
telephone number never have the same name, so we can use the combination of the
telephone number and the name as a composite key.

Clearly, there may be several possible keys that could be used to identify an entity; we
choose one of the alternative, or candidate, keys to be our main, or primary, key. You
usually make this choice based on how confident you are that the attribute will be non-
empty and unique for each individual entity, and on how small the key is (shorter keys
are faster to maintain and use).

In the ER diagram, attributes are represented as labeled ovals and are connected to their
owning entity, as shown in Figure 4-2. Attributes comprising the primary key are shown
underlined. The parts of any composite attributes are drawn connected to the oval of
the composite attribute, and multivalued attributes are shown as double-lined ovals.

Attribute values are chosen from a domain of legal values; for example, we could specify
that a customer’s given names and surname attributes can each be a string of up to 100
characters, while a telephone number can be a string of up to 40 characters. Similarly,
a product price could be a positive rational number.

The Entity Relationship Model | 113

Customer

Email address
Telephone number
Postal address

ZIP code

Figure 4-2. The ER diagram representation of the customer entity

Attributes can be empty; for example, some customers may not provide their telephone
numbers. The primary key of an entity (including the components of a multiattribute
primary key) must never be unknown (technically, it must be NOT NULL); for example,
if it’s possible for a customer to not provide an email address, we cannot use the email
address as the key.

You should think carefully when classifying an attribute as multivalued: are all the
values equivalent, or do they in fact represent different things? For example, when
listing multiple telephone numbers for a customer, would they be more usefully labeled
separately as the customer’s business phone number, home phone number, cell phone
number, and so on?

Let’s look at another example. The sales database requirements may specify that a
product has a name and a price. We can see that the product is an entity because it’s a
distinct object. However, the product’s name and price aren’t distinct objects; they’re
attributes that describe the product entity. Note that if we want to have different prices
for different markets, then the price is no longer just related to the product entity, and
we’d need to model it differently.

For some applications, no combination of attributes can uniquely identify an entity (or
it would be too unwieldy to use a large composite key), so we create an artificial attribute
that’s defined to be unique and can therefore be used as a key: student numbers, Social
Security numbers, driver’s license numbers, and library card numbers are examples of
unique attributes created for various applications. In our inventory and sales applica-

114 | Chapter4: Modeling and Designing Databases

Product

Figure 4-3. The ER diagram representation of the product entity

tion, it’s possible that we could stock different products with the same name and price.
For example, we could sell two models of “Four-port USB 2.0 Hub,” both at $4.95
each. To distinguish between products, we can assign a unique product ID number to
each item we stock; this would be the primary key. Each product entity would
have name, price, and product ID attributes. This is shown in the ER diagram in
Figure 4-3.

Representing Relationships

Entities can participate in relationships with other entities. For example, a customer
can buy a product, a student can take a course, an artist can record an album, and so on.

Like entities, relationships can have attributes: we can define a sale to be a relationship
between a customer entity (identified by the unique email address) and a given number
of the product entity (identified by the unique product ID) that exists at a particular
date and time (the timestamp).

Our database could then record each sale and tell us, for example, that at 3:13 p.m. on
Wednesday, March 22, Ali Thomson bought one “Four-port USB 2.0 Hub,” one “300
GB 16 MB Cache 7200 rpm SATA Serial ATA133 HDD Hard Disk,” and two sets of
“2000 Watt 5.1 Channel Sub-Woofer Speakers.”

Different numbers of entities can appear on each side of a relationship. For example,
each customer can buy any number of products, and each product can be bought by
any number of customers. This is known as a many-to-many relationship. We can also
have one-to-many relationships. For example, one person can have several credit cards,
but each credit card belongs to just one person. Looking at it the other way, a one-to-
many relationship becomes a many-to-one relationship; for example, many credit cards
belong to a single person. Finally, the serial number on a car engine is an example of a
one-to-one relationship; each engine has just one serial number, and each serial number
belongs to just one engine. We often use the shorthand terms 1:1, 1:N, and M:N for
one-to-one, one-to-many, and many-to-many relationships, respectively.

The number of entities on either side of a relationship (the cardinality of the relation-
ship) define the key constraints of the relationship. It’s important to think about the
cardinality of relationships carefully. There are many relationships that may at first
seem to be one-to-one, but turn out to be more complex. For example, people some-

The Entity Relationship Model | 115

M
Email address @
N
Telephone number
Postal address

Street address Product ID

ZIP code

Figure 4-4. The ER diagram representation of the customer and product entities, and the sale
relationship between them.

times change their names; in some applications, such as police databases, this is of
particular interest, and so it may be necessary to model a many-to-many relationship
between a person entity and a name entity. Redesigning a database can be
time-consuming if you assume a relationship is simpler than it really is.

In an ER diagram, we represent a relationship set with a named diamond. The cardin-
ality of the relationship is often indicated alongside the relationship diamond; this is
the style we use in this book. (Another common style is to have an arrowhead on the
line connecting the entity on the “1” side to the relationship diamond.) Figure 4-4 shows
the relationship between the customer and product entities, along with the number
and timestamp attributes of the sale relationship.

Partial and Total Participation

Relationships between entities can be optional or compulsory. In our example, we
could decide that a person is considered to be a customer only if they have bought a
product. On the other hand, we could say that a customer is a person whom we know
about and whom we hope might buy something—that is, we can have people listed as
customers in our database who never buy a product. In the first case, the customer entity
has total participation in the bought relationship (all customers have bought a product,
and we can’t have a customer who hasn’t bought a product), while in the second case
it has partial participation (a customer can buy a product). These are referred to as the

116 | Chapter4: Modeling and Designing Databases

participation constraints of the relationship. In an ER diagram, we indicate total par-
ticipation with a double line between the entity box and the relationship diamond.

Entity or Attribute?

From time to time, we encounter cases where we wonder whether an item should be
an attribute or an entity on its own. For example, an email address could be modeled
as an entity in its own right. When in doubt, consider these rules of thumb:

Is the item of direct interest to the database?
Objects of direct interest should be entities, and information that describes them
should be stored in attributes. Our inventory and sales database is really interested
in customers, and not their email addresses, so the email address would be best
modeled as an attribute of the customer entity.

Does the item have components of its own?
If so, we must find a way of representing these components; a separate entity might
be the best solution. In the student grades example at the start of the chapter, we
stored the course name, year, and semester for each course that a student takes. It
would be more compact to treat the course as a separate entity and to create a class
ID number to identify each time a course is offered to students (the “offering”).

Can the object have multiple instances?
If so, we must find a way to store data on each instance. The cleanest way to do
this is to represent the object as a separate entity. In our sales example, we must
ask whether customers are allowed to have more than one email address; if they
are, we should model the email address as a separate entity.

Is the object often nonexistent or unknown?
If so, it is effectively an attribute of only some of the entities, and it would be better
to model it as a separate entity rather than as an attribute that is often empty.
Consider a simple example: to store student grades for different courses, we could
have an attribute for the student’s grade in every possible course; this is shown in
Figure 4-5. Because most students will have grades for only a few of these courses,
it’s better to represent the grades as a separate entity set, as in Figure 4-6.

Entity or Relationship?

An easy way to decide whether an object should be an entity or a relationship is to map
nouns in the requirements to entities, and to map the verbs to relations. For example,
in the statement, “A degree program is made up of one or more courses,” we can identify
the entities “program” and “course,” and the relationship “is made up of.” Similarly,
in the statement, “A student enrolls in one program,” we can identify the entities
“student” and “program,” and the relationship “enrolls in.” Of course, we can choose
different terms for entities and relationships than those that appear in the relationships,
but it’s a good idea not to deviate too far from the naming conventions used in the

The Entity Relationship Model | 117

...Attributes for other courses...

Grade: Computer Forensics

Figure 4-5. The ER diagram representation of student grades as attributes of the student entity

Student

Year enrolled Course Course name

Figure 4-6. The ER diagram representation of student grades as a separate entity

requirements so that the design can be checked against the requirements. All else being
equal, try to keep the design simple, and avoid introducing trivial entities where pos-
sible; i.e., there’s no need to have a separate entity for the student’s enrollment when
we can model it as a relationship between the existing student and program entities.

118 | Chapter4: Modeling and Designing Databases

Passenger

Flight F M Books >

Figure 4-7. A passenger participates in an M:N relationship with flight

Intermediate Entities

It is often possible to conceptually simplify many-to-many relationships by replacing
the many-to-many relationship with a new intermediate entity (sometimes called an

associate entity) and connecting the original entities through a many-to-one and a one-
to-many relationship.

Consider the statement: “A passenger can book a seat on a flight.” This is a many-to-
many relationship between the entities “passenger” and “flight.” The related ER dia-
gram fragment is shown in Figure 4-7.

However, let’s look at this from both sides of the relationship:

* Any given flight can have many passengers with a booking.

* Any given passenger can have bookings on many flights.

Hence, we can consider the many-to-many relationship to be in fact two one-to-many
relationships, one each way. This points us to the existence of a hidden intermediate
entity, the booking, between the flight and the passenger entities. The requirement
could be better worded as: “A passenger can make a booking for a seat on a flight.”
The related ER diagram fragment is shown in Figure 4-8.

Each passenger can be involved in multiple bookings, but each booking belongs to a
single passenger, so the cardinality of this relationship is 1:N. Similarly, there can be
many bookings for a given flight, but each booking is for a single flight, so this rela-
tionship also has cardinality 1:N. Since each booking must be associated with a par-
ticular passenger and flight, the booking entity participates totally in the relationships
with these entities. This total participation could not be captured effectively in the
representation in Figure 4-7. (We described partial and total participation earlier in
“Partial and Total Participation.”)

Weak and Strong Entities

Context is very important in our daily interactions; if we know the context, we can
work with a much smaller amount of information. For example, we generally call family
members by only their first name or nickname. Where ambiguity exists, we add further
information such as the surname to clarify our intent. In database design, we can omit

The Entity Relationship Model | 119

Passenger

1

Makes

| Booking |

N
Flight ! @

Figure 4-8. The intermediate booking entity between the passenger and flight entities

some key information for entities that are dependent on other entities. For example, if
we wanted to store the names of our customers’ children, we could create a child entity
and store only enough key information to identify it in the context of its parent. We
could simply list a child’s first name on the assumption that a customer will never have
several children with the same first name. Here, the child entity is a weak entity, and
its relationship with the customer entity is called an identifying relationship. Weak en-
tities participate totally in the identifying relationship, since they can’t exist in the da-
tabase independently of their owning entity.

In the ER diagram, we show weak entities and identifying relationships with double
lines, and the partial key of a weak entity with a dashed underline, as in Figure 4-9. A
weak entity is uniquely identified in the context of its regular (or strong) entity, and so
the full key for a weak entity is the combination of its own (partial) key with the key of
its owning entity. To uniquely identify a child in our example, we need the first name
of the child and the email address of the child’s parent.

Figure 4-10 shows a summary of the symbols we’ve explained for ER diagrams.

Entity Relationship Modeling Examples

Earlier in this chapter, we showed you how to design a database and understand an
Entity Relationship (ER) diagram. This section explains the requirements for our three
example databases—music, university, and flight—and shows you their Entity Re-
lationship diagrams:

* The music database is designed to store details of a music collection, including the
albums in the collection, the artists who made them, the tracks on the albums, and
when each track was last played.

120 | Chapter4: Modeling and Designing Databases

Customer

Figure 4-9. The ER diagram representation of a weak entity

* The university database captures the details of students, courses, and grades for
a university.

* The flight database stores an airline timetable of flight routes, times, and the plane
types.

The next section explains these databases, each with its ER diagram and an explanation
of the motivation for its design. You’ll find that understanding the ER diagrams and
the explanations of the database designs is sufficient to work with the material in this
chapter. We’ll show you how to create the music database on your MySQL server in
Chapter 5.

The Music Database

The music database stores details of a personal music library, and could be used to
manage your MP3, CD, or vinyl collection. Because this database is for a personal
collection, it’s relatively simple and stores only the relationships between artists, al-
bums, and tracks. It ignores the requirements of many music genres, making it most
useful for storing popular music and less useful for storing jazz or classical music. (We
discuss some shortcomings of these requirements at the end of the section in “What it
doesn’t do.”)

We first draw up a clear list of requirements for our database:

Entity Relationship Modeling Examples | 121

Relationship

1 &——(ardinality: 1

Multivalued attribute

|dentifying Relationship

N <&——— (ardinality: N
— Total participation

Attribute

<— (omponent of weak key

Figure 4-10. Quick summary of the ER diagram symbols

¢ The collection consists of albums.

* An album is made by exactly one artist.

* An artist makes one or more albums.

¢ An album contains one or more tracks

e Artists, albums, and tracks each have a name.

* Fach track is on exactly one album.

* Each track has a time length, measured in seconds.

* When a track is played, the date and time the playback began (to the nearest sec-
ond) should be recorded; this is used for reporting when a track was last played,
as well as the number of times music by an artist, from an album, or a track has
been played.

There’s no requirement to capture composers, group members or sidemen, recording
date or location, the source media, or any other details of artists, albums, or tracks.

The ER diagram derived from our requirements is shown in Figure 4-11. You’ll notice
that it consists of only one-to-many relationships: one artist can make many albums,
one album can contain many tracks, and one track can be played many times. Con-
versely, each play is associated with one track, a track is on one album, and an album
is by one artist. The attributes are straightforward: artists, albums, and tracks have
names, as well as identifiers to uniquely identify each entity. The track entity has a time
attribute to store the duration, and the played entity has a timestamp to store when the
track was played.

122 | Chapter4: Modeling and Designing Databases

album_name

Figure 4-11. The ER diagram of the music database

The only strong entity in the database is Artist, which has an artist_id attribute that
uniquely identifies it. Each Album entity is uniquely identified by its album_id combined
with the artist id of the corresponding Artist entity. A Track entity is similarly
uniquely identified by its track_id combined with the related album id and artist_id
attributes. The Played entity is uniquely identified by a combination of its played time,
and the related track_id, album_id, and artist_id attributes.

What it doesn’t do

We've kept the music database simple because adding extra features doesn’t help you
learn anything new, it just makes the explanations longer. If you wanted to use the
music database in practice, then you might consider adding the following features:

* Support for compilations or various-artists albums, where each track may be by a
different artist and may then have its own associated album-like details such as a
recording date and time. Under this model, the album would be a strong entity,
with many-to-many relationships between artists and albums.

* Playlists, a user-controlled collection of tracks. For example, you might create a
playlist of your favorite tracks from an artist.

* Track ratings, to record your opinion on how good a track is.

Entity Relationship Modeling Examples | 123

* Source details, such as when you bought an album, what media it came on, how
much you paid, and so on.

e Album details, such as when and where it was recorded, the producer and label,
the band members or sidemen who played on the album, and even its artwork.

* Smarter track management, such as modeling that allows the same track to appear
on many albums.

The University Database

The university database stores details about university students, courses, the semester
astudent took a particular course (and his mark and grade if he completed it), and what
degree program each student is enrolled in. The database is a long way from one that’d
be suitable for a large tertiary institution, but it does illustrate relationships that are
interesting to query, and it’s easy to relate to when you’re learning SQL. We explain
the requirements next and discuss their shortcomings at the end of this section.

Consider the following requirements list:

* The university offers one or more programs.

* A program is made up of one or more courses.

* A student must enroll in a program.

* A student takes the courses that are part of her program.

* A program has a name, a program identifier, the total credit points required to
graduate, and the year it commenced.

* A course has a name, a course identifier, a credit point value, and the year it
commenced.

* Students have one or more given names, a surname, a student identifier, a date of
birth, and the year they first enrolled. We can treat all given names as a single object
—for example, “John Paul.”

* When a student takes a course, the year and semester he attempted it are recorded.
When he finishes the course, a grade (such as A or B) and a mark (such as 60
percent) are recorded.

* Each course in a program is sequenced into a year (for example, year 1) and a
semester (for example, semester 1).

The ER diagram derived from our requirements is shown in Figure 4-12. Although it
is compact, the diagram uses some advanced features, including relationships that have
attributes and two many-to-many relationships.

In our design:

* Student is a strong entity, with an identifier, student_id, created to be the primary
key used to distinguish between students (remember, we could have several stu-
dents with the same name).

124 | Chapter4: Modeling and Designing Databases

@ program_id

N 1
@ Student [< CreditPoints
Date_of_Birth YearCommenced

1
YearEnrolled @
N ‘
o am> G @’N
course_id

M
@ -------

CreditPoints

YearCommenced

Figure 4-12. The ER diagram of the university database

Program is a strong entity, with the identifier program_id as the primary key used to
distinguish between programs.

Each student must be enrolled in a program, so the Student entity participates
totally in the many-to-one EnrollsIn relationship with Program. A program can
exist without having any enrolled students, so it participates partially in this
relationship.

A Course has meaning only in the context of a Program, so it’s a weak entity, with
course_id as a weak key. This means that a Course is uniquely identified using its
course_id and the program_id of its owning program.

As a weak entity, Course participates totally in the many-to-one identifying rela-
tionship with its owning Program. This relationship has Year and Semester attributes
that identify its sequence position.

Student and Course are related through the many-to-many Attempts relationships;
a course can exist without a student, and a student can be enrolled without at-
tempting any courses, so the participation is not total.

When a student attempts a course, there are attributes to capture the Year and
Semester, and the Mark and Grade.

Entity Relationship Modeling Examples | 125

What it doesn’t do

Our database design is rather simple, but this is because the requirements are simple.
For a real university, many more aspects would need to be captured by the database.
For example, the requirements don’t mention anything about campus, study mode,
course prerequisites, lecturers, timetabling details, address history, financials, or as-
sessment details. The database also doesn’t allow a student to be in more than one
degree program, nor does it allow a course to appear as part of different programs.

The Flight Database

The flight database stores details about an airline’s fleet, flights, and seat bookings.
Again, it’s a hugely simplified version of what a real airline would use, but the principles
are the same.

Consider the following requirements list:

The airline has one or more airplanes.

An airplane has a model number, a unique registration number, and the capacity
to take one or more passengers.

An airplane flight has a unique flight number, a departure airport, a destination
airport, a departure date and time, and an arrival date and time.

Each flight is carried out by a single airplane.
A passenger has given names, a surname, and a unique email address.

A passenger can book a seat on a flight.

The ER diagram derived from our requirements is shown in Figure 4-13:

An Airplane is uniquely identified by its RegistrationNumber, so we use this as the
primary key.

A Flight is uniquely identified by its FlightNumber, so we use the flight number as
the primary key. The departure and destination airports are captured in the From
and To attributes, and we have separate attributes for the departure and arrival date
and time.

Because no two passengers will share an email address, we can use the EmailAd
dress as the primary key for the Passenger entity.

An airplane can be involved in any number of flights, while each flight uses exactly
one airplane, so the Flies relationship between the Airplane and Flight relation-
ships has cardinality 1:N; because a flight cannot exist without an airplane, the
Flight entity participates totally in this relationship.

A passenger can book any number of flights, while a flight can be booked by any
number of passengers. As discussed earlier in “Intermediate Entities,” we could
specify an M:N Books relationship between the Passenger and Flight relationship,

126

| Chapter4: Modeling and Designing Databases

ModelNumber
RegistrationNumber

HasBooking

Figure 4-13. The ER diagram of the flight database

but considering the issue more carefully shows that there is a hidden entity here:
the booking itself. We capture this by creating the intermediate entity Booking and
1:Nrelationships between it and the Passenger and Flight entities. Identifying such
entities allows us to get a better picture of the requirements. Note that even if we
didn’t notice this hidden entity, it would come out as part of the ER-to-tables
mapping process we’ll describe next in “Using the Entity Relationship Model.”

What it doesn’t do

Again, this is a very simple flight database. There are no requirements to capture pas-
senger details such as age, gender, or frequent-flier number.

We’ve treated the capacity of the airplane as an attribute of an individual airplane. If,
instead, we assumed that the capacity is determined by the model number, we would
have created a new AirplaneModel entity with the attributes ModelNumber and
Capacity. The Airplane entity would then not have a Capacity attribute.

We’ve mapped a different flight number to each flight between two destinations. Air-
lines typically use a flight number to identify a given flight path and schedule, and they
specify the date of the flight independently of the flight number. For example, there is
one IR655 flight on April 1, another on April 2, and so on. Different airplanes can

Entity Relationship Modeling Examples | 127

operate on the same flight number over time; our model would need to be extended to
support this.

The system also assumes that each leg of a multihop flight has a different
FlightNumber. This means that a flight from Dubai to Christchurch via Singapore and
Melbourne would need a different FlightNumber for the Dubai-Singapore, Singapore-
Melbourne, and Melbourne-Christchurch legs.

Our database also has limited ability to describe airports. In practice, each airport has
a name, such as “Melbourne Regional Airport,” “Mehrabad,” or “Tullamarine.” The
name can be used to differentiate between airports, but most passengers will just use
the name of the town or city. This can lead to confusion, when, for example, a passenger
could book a flight to Melbourne, Florida, USA, instead of Melbourne, Victoria, Aus-
tralia. To avoid such problems, the International Air Transport Association (IATA)
assigns a unique airport code to each airport; the airport code for Melbourne, Florida,
USA is MLB, while the code for Melbourne, Victoria, Australia is MEL. If we were to
model the airport as a separate entity, we could use the IATA-assigned airport code as
the primary key. Incidentally, there’s an alternative set of airport codes assigned by the
International Civil Aviation Organization (ICAQ); under this code, Melbourne, Florida
is KMLB, and Melbourne, Australia is YMML.

Using the Entity Relationship Model

In this section, we’ll look at the steps required to manually translate an ER model into
database tables. We’ll then perform these steps using the music database as an example.
In “Using Tools for Database Design,” we’ll see how we can automate this process with
the MySQL Workbench tool.

Mapping Entities and Relationships to Database Tables

When converting an ER model to a database schema, we work through each entity and
then through each relationship according to the following rules to end up with a set of
database tables.

Map the entities to database tables

For each strong entity, create a table comprising its attributes and designate the primary
key. The parts of any composite attributes are also included here.

For each weak entity, create a table comprising its attributes and including the primary
key of its owning entity. The primary key of the owning entity is known as a foreign
key here, because it’s a key not of this table, but of another table. The primary key of
the table for the weak entity is the combination of the foreign key and the partial key
of the weak entity. If the relationship with the owning entity has any attributes, add
them to this table.

128 | Chapter4: Modeling and Designing Databases

For each multivalued attribute of an entity, create a table comprising the entity’s pri-
mary key and the attribute.

Map the relationships to database tables

For each one-to-one relationship between two entities, include the primary key of one
entity as a foreign key in the table belonging to the other. If one entity participates
totally in the relationship, place the foreign key in its table. If both participate totally
in the relationship, consider merging them into a single table.

For each nonidentifying one-to-many relationship between two entities, include the
primary key of the entity on the “1” side as a foreign key in the table for the entity on
the “N” side. Add any attributes of the relationship in the table alongside the foreign
key. Note that identifying one-to-many relationships (between a weak entity and its
owning entity) are captured as part of the entity-mapping stage.

For each many-to-many relationship between two entities, create a new table contain-
ing the primary key of each entity as the primary key, and add any attributes of the
relationship. This step helps to identify intermediate entities.

For each relationship involving more than two entities, create a table with the primary
keys of all the participating entities, and add any attributes of the relationship.

Converting the Music Database ER Model to a Database Schema
Following the mapping rules as just described, we first map entities to database tables:

* For the strong entity Artist, we create the table artist comprising the attributes
artist_id and artist_name, and designate artist_id as the primary key.

* For the weak entity Album, we create the table album comprising the attributes
album_id and album_name, and include the primary key artist_id of the owning
Artist entity as a foreign key. The primary key of the album table is the combination
{artist_id, album_id}.

* For the weak entity Track, we create the table track comprising the attributes
track_id, track name, and time, and include the primary key {artist_id,
album_id} of the owning Album entity as a foreign key. The primary key of the
track table is the combination {artist id, album id, track id}.

* For the weak entity Played, we create the table played comprising the attribute
played, and include the primary key {artist_id, album_id, track_id} of the owning
Track entity as a foreign key. The primary key of the played table is the combination
{artist_id, album_id, track id, played}.

* There are no multivalued attributes in our design, nor are there any nonweak re-
lationships between our entities, so our mapping is complete here.

You don’t have to use consistent names across all tables; for example, you could have
a column musician in the album table that contains the artist ID that you call

Using the Entity Relationship Model | 129

© ER.Flight.dia

ModelNumber

RegistrationNumber Airplane l

HasBooking

DepertureDate
DepartureTime
ArrivalDate

Figure 4-14. Using the Dia program to draw an ER diagram

artist_id in the artist table. Obviously, it’s much better to use a consistent naming
convention to avoid confusion. Some designers put fk_ in front of columns that contain
foreign keys; for example, in the album table, we could store the artist ID in the
fk_artist_id column. We don’t use this convention in this book.

Using Tools for Database Design

It’s a good idea to use a tool to draw your ER diagrams; this way, you can easily edit
diagrams as you refine your designs, and the final diagram is clear and unambiguous.
There are a large number of programs that can be used for this purpose. A good free
tool that is available for both Linux and Windows is Dia; you can download the latest
version from http://www.gnome.org/projects/dia. Mac OS X users can use the Omni-
Graffle program that comes bundled with the operating system. Windows users can
also use Microsoft Visio.

A screenshot of Dia is shown in Figure 4-14. When you open the program, you should
first select the ER “sheet” of shapes from the drop-down list in the middle of the control
window (where the ER label appears at the right of the figure) and then select from the
entity and relation shapes.

You can assign properties to shapes by double-clicking on them. For example, you can
mark an attribute as being a key or a weak key, and you can mark an entity’s partici-
pation in a relation as being total or partial.

130 | Chapter4: Modeling and Designing Databases

http://www.gnome.org/projects/dia

Bl My50L Workbench ‘ —10f x|
File Edit Model Database Plugins Tools Window Help

@@ | H | || Tocl cptiors: | [aobalcbientod | mae m B 2 2 = 0

[[Main View schemata | Datatypes
_—
—_ Aimlane - = |l") |
Object Tree |
e < ModelMumber: CHAR| el et e BT S -
— _ | Passenger ¥ + (] Flight
Registrationhumber:
© Capacity: SMALLINT < GiverMames: CHAR
B <& Surname: CHAR
ErmallAddress: CHAR
-
= Airplane »
-) T
E :| Flight - Passenger
(o
Flighthumber: CHAR 1
& From: CHAR —L
5 To: CHAR | Booking v Layers | Froperties
& D turelrate: DATE L] tahle_01
EpATLIE A Flighthumber: CHAR I table.
& DepattureTime: TIME =] table_02
@ Emaildddress: CHAR - tahle 03
© #rrivalDate: DATE D table_
<& ArrivalTime: TIME IFlight . j table_04
@ RegistrationMumber: Flight
& Flighthumber
- Passenger
Airplane @ Emailaddress
& Registrationtumbge e e e Er |
@ FlightMumber AR
al |
4 1 -
il ;l_l

[75% ~] [1721frs [Opened model rom Cr\pecuments and SetingsiGaied Tahaghaghity DecumentsiFlightmwe:

Figure 4-15. A screenshot of the MySQL Workbench program to design the Flight database

The open source MySQL Workbench program is a very powerful visual database design
tool available as part of the MySQL GUI Tools Bundle from the MySQL AB downloads
page at http://dev.mysql.com/downloads.

Figure 4-15 shows a screenshot of using MySQL Workbench to design the flight da-
tabase. You can select tables and relations from the toolbar icons on the left of the

screen, and double-click on each object to set properties such as attributes and rela-
tionship cardinality.

A very useful feature of MySQL Workbench is that it can export your design as SQL
statements ready to use on a MySQL database. Even better, it can connect to a MySQL
database to export a design directly. You can also reverse-engineer an ER model from
an existing database, edit the model, and then export the modified design back to the

MySQL database. Note that this program is currently in the beta testing phase, so you
should use it with care.

Using Tools for Database Design | 131

http://dev.mysql.com/downloads

Resources

To learn more about database fundamentals, including ER modeling, we recommend
the following books:

* Database Management Systems by Raghu Ramakrishnan and Johannes Gehrke
(McGraw-Hill).

* Fundamentals of Database Systems by Ramez Elmasri and Shamkant B. Navathe
(Addison-Wesley).

* Database Systems: A Practical Approach to Design, Implementation and Manage-
ment by Thomas M. Connolly and Carolyn E. Begg (Addison-Wesley).

Exercises

1. When would you use a weak entity?
2. Is it better to use entities instead of attributes?

3. Alter and extend the music database ER model so that it can store compilations,
where a compilation is an album that contains tracks by two or more different
artists.

4. Create an ER diagram for an online media store using the following requirements:
* There are two types of product: music CDs and video DVDs.
* Customers can buy any number of each product.

* For each CD, store the title, the artist’s name, the label (publisher), and the
price. Also store the number, title, and length (in seconds) of each track on the
CD.

* For each video DVD, store the title the studio name, and the price.
Tables 4-1 and 4-2 contain some sample data to help you better understand the

requirements.

Table 4-1. Video DVDs

Title Studio Price
Leon—The Professional Sony Pictures $21.99
Chicken Run Dreamworks Video ~ $19.99

132 | Chapter4: Modeling and Designing Databases

Table 4-2. Music CDs

Title

Artist

Come Away With Me Norah Jones

Feels Like Home Norah Jones
The Joshua Tree U2
Brothers in Arms Dire Straits

Label
Blue Note Records
Blue Note Records
Island

Vertigo

Price
$11.99
$11.99
$10.99
$9.99

Table 4-3 contains a sample list of music CD track titles and length in seconds for
the CD with the title “Come Away With Me” by the artist Norah Jones.

Table 4-3. Tracks

Number
1

O 0 ~N o U B W~

Name

Don’t Know Why
Seven Years

Cold, Cold Heart
Feelin’ the Same Way
Come Away with Me
Shoot the Moon

Turn Me On

Lonestar

I've Got to See You Again
Painter Song

One Flight Down
Nightingale

The Long Day Is Over

The Nearness of You

Length
186
145
218
177
198
236
154
186
253
162
185
252
164
187

Exercises | 133

CHAPTER 5
Basic SQL

SQL is the only database language in widespread use. Since it was first proposed in the
early 1970s, it has been criticized, changed, extended, and finally adopted by all the
players in the database market. The latest standard is SQL-2003—the 2003 denotes its
release year—but the version supported by most database servers is more closely related
to its predecessors, SQL-1999 and SQL-1992. MySQL supports most of the features of
SQL-1992 and many from the newer SQL standards, but it also includes many non-
standard features that give more control over the database server and how it evaluates
queries and returns results.

This chapter introduces the basics of MySQL’s implementation of SQL. We show you
how to read data from a database with the SELECT statement, and how to choose what
data is returned and the order it is displayed in. We also show you the basics of mod-
ifying your databases with the INSERT statement to add data, UPDATE to change, and
DELETE to remove it. We also explain how to use the nonstandard SHOW TABLES and SHOW
COLUMNS statements to explore your database.

Following our example-based approach, we use the music database designed in Chap-
ter 4 to show you how to work with an existing database, and use basic SQL to read
and write data. In Chapter 6, we’ll explain how to create the music database on your
MySQL server. We’ll also show how you can create your own database and tables, and
modify the structure of existing ones. In Chapters 7 and 8, you’ll learn about some
advanced features of the SQL variant used by MySQL.

Using the Music Database

In Chapter 4, we showed you how we understood the requirements for storing a music
collection and how we designed the music ER model. We also introduced the steps you
take to convert an ER model to a format that makes sense for constructing a relational
database. For convenience, we’ve reproduced the music database ER diagram in Fig-
ure 5-1. In this section, we show you the structure of the MySQL database that we
created after converting the ER model into SQL statements. We don’t explain the SQL
statements we used to create the database; that’s the subject of Chapter 6.

135

album_name

Figure 5-1. The ER diagram of the music database

To begin exploring the music database, connect to the MySQL monitor using the
root MySQL account. For Mac OS X or Linux, run a terminal program, and in the
terminal window type:

$ mysql --user=root --password=the_mysql_root_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

For Windows, click on the Start menu, then on the Run option, and then type emd and
press Enter. In the DOS or command window, type:

C:\> mysql --user=root --password=the_mysql_root_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

If you find that the monitor doesn’t start, check the instructions in “Error Message
About MySQL Executable Programs Not Being Found or Recognized” in Chapter 2 to
see how to run it.

136 | Chapter5: BasicSQL

The structure of the music database is straightforward; it’s the simplest of our three
sample databases. Let’s use the MySQL monitor to explore it. If you haven’t already,
start the monitor using the instructions in “Loading the Sample Databases” in Chap-
ter 3. To choose the music database as your current database, type the following:

mysql> USE music;

Database changed

mysql>
You can check that this is the active database by typing in the SELECT DATABASE();
command:

mysql> SELECT DATABASE();

1 row in set (0.00 sec)
mysql>

Now, let’s explore what tables make up the music database using the SHOW TABLES
statement:

mysql> SHOW TABLES;

O LLLCETEE R +
| Tables in music |
S LE EEEEE +
| album |
| artist

| played

| track |
fmm e +

4 rows in set (0.01 sec)

MySQL reports that there are four tables, which map exactly to the four entities in
Figure 5-1. The SHOW statement is discussed in more detail later in “Exploring Databases
and Tables with SHOW and mysqlshow.”

So far, there have been no surprises. Let’s find out more about each of the tables that
make up the music database. First, let’s use the SHOW COLUMNS statement to explore the
artist table:

mysql> SHOW COLUMNS FROM artist;

B B e o Fommmmmmm R +
| Field | Type | Null | Key | Default | Extra |
Fmmmmmmm e P B - Fmmmmmmmm Fmmmmmm- +
| artist id | smallint(5) | NO | PRI | O | |
| artist name | char(128) | NO | | | |
Fommmm e Fommmmmm oo B Fo-m-- LR et +

2 rows in set (0.00 sec)

The DESCRIBE keyword is identical to SHOW COLUMNS FROM, and can be abbreviated to just
DESC, so we can write the previous query as follows:

Using the Music Database | 137

mysql> DESC artist;

Hmmm oo Hmmm e Ao e Hmmmm e Hmmmmm e Hmmmmmm +
| Field | Type | Null | Key | Default | Extra |
Hmmmmmm e Hmmmmm e Hmmm e Hmm - Hmmm e Hmmmmm +
| artist_id | smallint(5) | NO | PRI | O | |
| artist _name | char(128) | NO | | | |
Hmmm e Hmmmmm e Hmmm - Hmm - Hmmmmmm e Hmmmmm +

2 rows in set (0.00 sec)

Let’s examine the table structure more closely. As you’d expect from the ER model in
Figure 5-1, the artist table contains two columns, artist_id and artist_name. The
other information in the output shows the types of the columns—an integer of length
5forartist_idand a character string of length 128 for artist name—and whether the
column is allowed to be NULL (empty), whether it’s part of a key, and the default value
for it. You’ll notice that the artist_id has PRI in the Key column, meaning it’s part of
the primary key for the table. Don’t worry about the details; all that’s important right
now is the column names, artist_id and artist name.

We'll now explore the other three tables. Here are the SHOW COLUMNS statements you
need to type:

mysql> SHOW COLUMNS FROM album;

mmmmm e mmmmmmmmmen mmmm e o fmmmmmmmam mmmmmmm +
| Field | Type | Null | Key | Default | Extra |
fmmmmmmmmee mmmmmmmmmen mmmm - o fmmmmmmmem mmmmmmm +
artist id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
album name	char(128)	YES		NULL	
fmmmmmmmmmee R mmmm - B fmmmmmmmem mmmmmmm +

3 rows in set (0.00 sec)

mysql> SHOW COLUMNS FROM track;

B Rt mmmmmmmm e mn R B Fommmmmmem mmmmmmm +
| Field | Type | Null | Key | Default | Extra |
fommmmmm e mmmmmmmmmemeen R o Fommmmmmm I +
track id	int(3)		PRI	0	
track name	char(128)	YES		NULL	
artist id	int(5)		PRI	o	
album id	int(4)		PRI	O	
time	decimal(5,2)	YES		NULL	
Fommmmmm e mmmmmm e em B +o---- LR B +

5 rows in set (0.02 sec)

mysql> SHOW COLUMNS FROM played;

B Fommmmmemem Fmmmm - o= B E e T e +
| Field | Type | Null | Key | Default | Extra |
dmmmmm e e mmmmmm B oo dmmmmm e +
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
track_id	int(3)		PRI	0	
played	timestamp	YES	PRI	CURRENT_TIMESTAMP	
mmmmm e mmmmm e Fmmmm - B oo dmmmmm e +

4 rows in set (0.00 sec)

138 | Chapter5: BasicSQL

Again, what’s important is getting familiar with the columns in each table, as we’ll make
use of these frequently later when we’re learning about querying. Notice also that be-
cause all of these three entities are weak, each table contains the primary key columns
from the table it’s related to. For example, the track table contains artist_id,
album_id, and track_id, because the combination of all three is required to uniquely
identify a track.

In the next section, we show you how to explore the data that’s stored in the music
database and its tables.

The SELECT Statement and Basic Querying Techniques

Up to this point, you’ve learned how to install and configure MySQL, and how to use
the MySQL monitor. Now that you understand the music database, you’re ready to
start exploring its data and to learn the SQL language that’s used by all MySQL clients.
In this section, we introduce the most commonly used SQL keyword, and the only one
that reads data from a database: the SELECT keyword. We also explain some basic ele-
ments of style and syntax, and the features of the WHERE clause, Boolean operators, and
sorting (much of this also applies to our later discussions of INSERT, UPDATE, and
DELETE). This isn’t the end of our discussion of SELECT; you’ll find more in Chapter 7,
where we show you how to use its advanced features.

Single Table SELECTs

The most basic form of SELECT reads the data in all rows and columns from a table.
Start the monitor and choose the music database:

mysql> use music;
Database changed

Let’s retrieve all of the data in the artist table:

mysql> SELECT * FROM artist;
B et B e e T e +

| artist id | artist_name

| New Order

| Nick Cave & The Bad Seeds |
| Miles Davis

| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue

fmmmmm e e +
6 rows in set (0.08 sec)

+
|
|
|
|
|
|

The output has six rows, and each row contains the values for the artist id and
artist_name columns. We now know that there are six artists in our database and can
see the names and identifiers for these artists.

The SELECT Statement and Basic Querying Techniques | 139

A simple SELECT statement has four components:

1. The keyword SELECT.

2. The columns to be displayed. In our first example, we asked for all columns by
using the asterisk (*) symbol as a wildcard character.

3. The keyword FROM.

4. The table name; in this example, the table name is artist.

Putting all this together, we’ve asked for all columns from the artist table, and that’s
what MySQL has returned to us.

Let’s try another simple SELECT. This time, we’ll retrieve all columns from the album
table:

mysql> SELECT * FROM album;

B Fommmm e B e e T T PR +
| artist _id | album_id | album_name |
---------- T e
| Let Love In |
| Retro - John McCready FAN |
| Substance (Disc 2) |
| Retro - Miranda Sawyer POP

| Retro - New Order / Bobby Gillespie LIVE |
| Live Around The World

| In A Silent Way |
| |
| |
| |
| |
| |
| |

Power, Corruption & Lies
Exile On Main Street
Substance 1987 (Disc 1)
Second Coming

Light Years

¥
|
|
|
|
|
|
|
|
|
|
|
|
| Brotherhood
¥

13 rows in set (0.03 sec)

We have 13 albums in our database, and the output has the same basic structure as our
first example.

The second example gives you an insight into how the relationships between the tables
work. Consider the first row of the results—for the album “Let Love In,” which is by
the artist with the artist_id value of 2. If you inspect the output of our first example
that retrieved data from the artist table, you’ll note that the matching artist is “Nick
Cave & The Bad Seeds.” So, Nick Cave recorded Let Love In. You’ll also notice that
the albums we own for a given artist each have a number in the album_id column. You
can see, for example, that we own seven albums by the artist with an artist_id of 1.
We'll discuss how to write queries on relationships between tables later in this chapter
in “Joining Two Tables.”

Notice also that we have several different albums with the same album id. This isn’t a
problem, since album_id is only a weak key; an album is uniquely identified by the

140 | Chapter5: BasicSQL

combination of its album id and the primary key of its owning entity, which is
artist_id.

You should now feel comfortable about choosing a database, listing its tables, and
retrieving all of the data from a table using the SELECT statement. To practice, you might
want to experiment with the university or flight databases you loaded in Chapter 3
in “Loading the Sample Databases.” Remember that you can use the SHOW TABLES state-
ment to find out the table names in these databases.

Choosing Columns

You've so far used the * wildcard character to retrieve all columns in a table. If you
don’twant to display all the columns, it’s easy to be more specific by listing the columns
you want, in the order you want them, separated by commas. For example, if you want
only the artist_name column from the artist table, you’d type:

mysql> SELECT artist_name FROM artist;

| New Order

| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue

6 rows in set (0.01 sec)

If you want both the artist_name and the artist_id, in that order, you’d use:

mysql> SELECT artist_name,artist_id FROM artist;
B e L TP B +

| artist name | artist_id |

| New Order
| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue

+

6 rows in set (0.00 sec)

You can even list columns more than once:

mysql> SELECT artist_id, artist_id FROM artist;
R ettt R ittt +
| artist id | artist_id |

The SELECT Statement and Basic Querying Techniques | 141

| 4
| 5
| 6
6 rows in set (0.06 sec)

Even though this appears pointless, it can be useful when combined with aliases in
more advanced queries, as we show in Chapter 7.

You can specify databases, tables, and column names in a SELECT statement. This allows
you to avoid the USE command and work with any database and table directly with
SELECT; it also helps resolve ambiguities, as we show later in “Joining Two Tables.”
Consider an example: suppose you want to retrieve the album_name column from the
album table in the music database. You can do this with the following command:

mysql> SELECT album_name FROM music.album;
| album_name |

Let Love In |
Retro - John McCready FAN

Substance (Disc 2) |
Retro - Miranda Sawyer POP

Retro - New Order / Bobby Gillespie LIVE |
Live Around The World

In A Silent Way |
Power, Corruption & Lies

Exile On Main Street

Substance 1987 (Disc 1)

Second Coming |
Light Years |
Brotherhood |

13 rows in set (0.01 sec)

The music.album component after the FROM keyword specifies the music database and
its album table. There’s no need to enter USE music before running this query. This syntax
can also be used with other SQL statements, including the UPDATE, DELETE, INSERT, and
SHOW statements we discuss later in this chapter.

Choosing Rows with the WHERE Clause

This section introduces the WHERE clause and explains how to use the Boolean operators
to write expressions. You’'ll see these in most SELECT statements, and often in other
statements such as UPDATE and DELETE; we’ll show you examples later in this chapter.

WHERE basics

The WHERE clause is a powerful tool that allows you to choose which rows are returned
from a SELECT statement. You use it to return rows that match a condition, such as
having a column value that exactly matches a string, a number greater or less than a

142 | Chapter5: BasicSQL

value, or a string that is a prefix of another. Almost all our examples in this and later
chapters contain WHERE clauses, and you’ll become very familiar with them.

The simplest WHERE clause is one that exactly matches a value. Consider an example
where we want to find out the details of the artist with the name “New Order.” Here’s
what you type:

mysql> SELECT * FROM artist WHERE artist_name = "New Order";

Hmmmmmmmeee Hmmmm e +
| artist_id | artist_name |
Hmmmm e Hmmmm e +
| 1 | New Order |
Hmmmm e Hmmmm e +

1 row in set (0.00 sec)

MySQL returns all rows that match our search criteria—in this case, just the one row
and all its columns. From this, you can see that the artist “New Order” has an
artist_idof 1.

Let’s try another exact-match example. Suppose you want to find out the name of the
artist with an artist_id value of 4. You type:

mysql> SELECT artist_name FROM artist WHERE artist_id = 4;

fmm e +
| artist name |
fmm e +
| The Rolling Stones

fmm e +

1 row in set (0.00 sec)

In this example, we’ve chosen both a column and a row: we’ve included the column
name artist_name after the SELECT keyword, as well as WHERE artist_id = 4.

If a value matches more than one row, the results will contain all matches. Suppose we
ask for the names of all tracks with a track_id of 13; this retrieves the thirteenth song
on every album that has at least that many songs. You type in:

mysql> SELECT track_name FROM track WHERE track_id = 13;

| Every Little Counts

| Everyone Everywhere |
| Turn My Way [Olympia, Liverpool 18/7/01] |
| Let It Loose |

4 rows in set (0.02 sec)

The results show the names of the thirteenth track of different albums, so there must
be 4 albums that contain at least 13 tracks If we could join the information we get from
the track table with information we get from the album table, we could display the

names of these albums. We’ll see how to perform this type of query later in “Joining
Two Tables.”

The SELECT Statement and Basic Querying Techniques | 143

Now let’s try retrieving values in a range. This is simplest for numeric ranges, so let’s
start by finding the names of all artists with an artist_id less than 5. To do this, type:

mysql> SELECT artist_name FROM artist WHERE artist_id < 5;

| New Order

| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |

4 rows in set (0.06 sec)

For numbers, the frequently used operators are equals (=), greater than (>), less than
(<), less than or equal (<=), greater than or equal (>=), and not equal (<> or !=).

Consider one more example. If you want to find all albums that don’t have an
album_id of 2, you’d type:

mysql> SELECT album_name FROM album WHERE album_id <> 2;

| Let Love In |
| Retro - John McCready FAN

| Retro - Miranda Sawyer POP

| Retro - New Order / Bobby Gillespie LIVE |
| Live Around The World

| Power, Corruption & Lies

| Exile On Main Street |
| Substance 1987 (Disc 1) |
| Second Coming |
| Light Years |
| Brotherhood |

11 rows in set (0.01 sec)

This shows us the first, third, and all subsequent albums for all artists. Note that you
can use either <> or != for not-equal.

You can use the same operators for strings. For example, if you want to list all artists
whose name appears earlier alphabetically than (is less than) 'M', use:

mysql> SELECT artist_name FROM artist WHERE artist_name < 'M';

Hmmm e +
| artist _name |
Hmmm e +
| Kylie Minogue |
Hmmm e +

1 row in set (0.00 sec)

Since Kylie Minogue begins with a letter alphabetically less than 'M', she’s reported as
an answer; the names of our six other artists all come later in the alphabet. Note that
by default MySQL doesn’t care about case; we’ll discuss this in more detail later in

144 | Chapter5: BasicSQL

“ORDER BY Clauses.” Of course, we haven’t stored the surname and the given names
separately, and MySQL isn’t smart enough to know that Kylie Minogue is a person’s
name that should ordinarily be sorted by surname (in phonebook order).

Another very common task you’ll want to perform with strings is to find matches that
begin with a prefix, contain a string, or end in a suffix. For example, you might want
to find all album names beginning with the word “Retro.” You can do this with the
LIKE operator in a WHERE clause:

mysql> SELECT album_name FROM album WHERE album_name LIKE "Retro%";

| Retro - John McCready FAN
| Retro - Miranda Sawyer POP
| Retro - New Order / Bobby Gillespie LIVE |

3 rows in set (0.00 sec)
Let’s discuss in detail how this works.

The LIKE clause is used only with strings and means that a match must meet the pattern
in the string that follows. In our example, we’ve used LIKE "Retro%", which means the
string Retro followed by zero or more characters. Most strings used with LIKE contain
the percentage character (%) as a wildcard character that matches all possible strings.

You can also use it to define a string that ends in a suffix—such as "%ing"—or a string
that contains a particular substring, such as %Corruption%.

For example, "John%" would match all strings starting with "John", such as John
Smith and John Paul Getty. The pattern "%Paul" matches all strings that have "Paul" at
the end. Finally, the pattern "%Paul%" matches all strings that have "Paul” in them,
including at the start or at the end.

If you want to match exactly one wildcard character in a LIKE clause, you use the
underscore character (). For example, if you want all tracks that begin with a three-
letter word that starts with 'R', you use:

mysql> SELECT * FROM track WHERE track_name LIKE "R__ %";

Hmmmmmmmmen Hmmm e Hmmmmm e Hmmm e m R +
| track_id | track_name | artist_id | album_id | time |
Hmmmmmmmmen Hmmm e Hmmm e R Hmmmmmmmmen +
| 4 | Red Right Hand | 2 | 1| 00:06:11 |
| 14 | Run Wild | 1| 1 | 00:03:57 |
| 1 | Rip This Joint | 4 | 1| 00:02:23

Hmmmmmmmmen Hmmm e Hmmm e Hmmmmmmmmem Hmmmmmmmman +

3 rows in set (0.00 sec)

The specification "R__ %" means a three-letter word beginning with 'R'—for example
"Red", "Run" and "Rip"—followed by a space character, and then any string.

The SELECT Statement and Basic Querying Techniques | 145

Combining conditions with AND, OR, NOT, and XOR

So far, we’ve used the WHERE clause to test one condition, returning all rows that meet
it. You can combine two or more conditions using the Boolean operators AND, OR, NOT,
and XOR.

Let’s start with an example. Suppose you want to find all albums with a title that begins
with a character greater than C but less than M. This is straightforward with the AND
operator:

mysql> SELECT album_name FROM album WHERE
-> album_name > "C" AND album_name < "M";

| Let Love In
| Live Around The World |
| In A Silent Way |
| Exile On Main Street |
| Light Years

5 rows in set (0.06 sec)

The AND operation in the WHERE clause restricts the results to those rows that meet both
conditions.

The OR operator is used to find rows that meet at least one of several conditions. To
illustrate, imagine you want a list of all albums that have a title beginning with L, S, or
P. You can do this with two OR and three LIKE clauses:

mysql> SELECT album_name FROM album WHERE
-> album_name LIKE "L%" OR
-> album_name LIKE "S%" OR
-> album_name LIKE "P%";

| Let Love In |
| Substance (Disc 2) |
| Live Around The World |
| Power, Corruption & Lies

| Substance 1987 (Disc 1) |
| Second Coming

| Light Years |

7 rows in set (0.00 sec)

The OR operations in the WHERE clause restrict the answers to those that meet any of the
three conditions. As an aside, it’s particularly obvious in this example that the results
are reported without sorting; in this case, they’re reported in the order they were added
to the database. We'll return to sorting output later in “ORDER BY Clauses.”

146 | Chapter5: BasicSQL

You can combine AND and OR, but you need to make it clear whether you want to first
AND the conditions or OR them. Consider an example where the function isn’t obvious
from the query:
mysql> SELECT album_name FROM album WHERE
-> album_name LIKE "L%" OR

-> album_name LIKE "S%" AND
-> album_name LIKE "%g";

| Let Love In

| Live Around The World
| Second Coming

| Light Years

4 rows in set (0.00 sec)

When you inspect the results, it becomes clear what’s happened: the answers either
begin with L, or they have S at the beginning and g at the end. An alternative interpre-
tation of the query would be that the answers must begin with L or S, and all end with
g; this is clearly not how the MySQL server has handled the query, since one of the
displayed answers, “Let Love In,” doesn’tend in a g. To make queries containing several
Boolean conditions easier to read, group conditions within parentheses.

Parentheses cluster parts of a statement together and help make expressions readable;
you can use them just as you would in basic math. Our previous example can be re-
written as follows:

mysql> SELECT album_name FROM album WHERE

-> album_name LIKE "L%" OR
-> (album_name LIKE "S%" AND album_name LIKE "%g");

| Let Love In
| Live Around The World |
| Second Coming |
| Light Years

4 rows in set (0.00 sec)

The parentheses make the evaluation order clear: we want albums beginning with
'L', or those beginning with 'S' and ending with 'g'. We’ve also typed the query over
three lines instead of four, making the intention even clearer through careful layout;
just as when writing program code, spacing, indentation, and careful layout help make
readable queries.

You can also use parentheses to force a different evaluation order. If you did want
albums having names with 'L' or 'S" at the beginning and 'g" at the end, you’d type:

mysql> SELECT album_name FROM album WHERE
-> (album_name LIKE "L%" OR album_name LIKE "S%") AND

The SELECT Statement and Basic Querying Techniques | 147

-> album_name LIKE "%g";

Hmmm e +
| album_name |
Hmmm e +
| Second Coming |
Hmmm e +

1 row in set (0.00 sec)

Both examples with parentheses are much easier to understand. We recommend that
you use parentheses whenever there’s a chance the intention could be misinterpreted;
there’s no good reason to rely on MySQL’s implicit evaluation order.

The unary NOT operator negates a Boolean statement. Suppose you want a list of all
albums except the ones having an album_id of 1 or 3. You’d write the query:
mysql> SELECT * FROM album WHERE NOT (album_id = 1 OR album_id = 3);

mmmmm oo mmmmm e B T T T T +
| artist id | album _id | album name |

| Substance (Disc 2) |
| Retro - New Order / Bobby Gillespie LIVE |
| In A Silent Way |
| Power, Corruption & Lies

| Substance 1987 (Disc 1)

| Brotherhood |
+
)

+
|
|
|
|
|
|
The expression in the parentheses says we want:
(album id = 1 OR album id = 3)

and the NOT operation negates it so we get everything but those that meet the condition
in the parentheses. There are several other ways you can write a WHERE clause with the

same function, and it really doesn’t matter which you choose. For example the follow-
ing three expressions have the same effect:

WHERE NOT (album_id = 1) AND NOT (album_id = 3)
WHERE album_id != 1 AND album id != 3
WHERE album id != 1 AND NOT (album_id = 3)

Consider another example using NOT and parentheses. Suppose you want to get a list
of all albums with an album_id greater than 2, but not those numbered 4 or 6:

mysql> SELECT * FROM album WHERE album_id > 2
-> AND NOT (album_id = 4 OR album_id = 6);

B B Tt B +
| artist id | album_id | album name

P Fommmm e B e +
| 1| 3 | Retro - Miranda Sawyer POP |
| 1| 5 | Power, Corruption & Lies

| 1| 7 | Brotherhood

P Fommmm e B e +

3 rows in set (0.01 sec)

148 | Chapter5: BasicSQL

Again, the expression in parentheses lists albums that meet a condition—those that are
numbered 4 or 6—and the NOT operator negates it so that we get everything else.

The NOT operator’s precedence can be a little tricky. Formally, if you apply it to any
statement that evaluates to a Boolean FALSE or arithmetic zero, you’ll get TRUE (and
TRUE is defined as 1). If you apply it to a statement that is nonzero, you’ll get FALSE (and
FALSE is defined as 0). We’ve so far considered examples with clauses where the NOT is
followed by a expression in parentheses, such as NOT (album_id = 4 OR album_id = 6).
You should write your NOT expressions in this way, or you’ll get unexpected results. For
example, the previous expression isn’t the same as this one:

mysql> SELECT * FROM album WHERE album id > 2
-> AND (NOT album_id) = 4 OR album_id = 6;

Hmmmm e Hmmmm e e +
| artist id | album id | album name

Hmm e Hmmmm e e +
| 1 6 | Substance 1987 (Disc 1) |
Hmm e Hmmmm e e +

1 row in set (0.00 sec)

This returns unexpected results: just those albums with an album_id of 6. To understand
what happened, try just the part of the statement with the NOT operator:

mysql> SELECT * FROM album WHERE (NOT album_id) = 4;
Empty set (0.00 sec)

What has happened is that MySQL has evaluated the expression NOT album id, and
then checked if it’s equal to 4. Since the album_id is always nonzero, NOT album_id is
always zero and, therefore, never equal to 4, and you get no results! Now, try this:

mysql> SELECT * FROM album WHERE (NOT album_id) != 4;

B fmmmmmmme e e T TP +
| artist id | album_id | album name |
----------- B s S T e
| Let Love In |
| Retro - John McCready FAN
| Substance (Disc 2) |
| Retro - Miranda Sawyer POP
| Retro - New Order / Bobby Gillespie LIVE |
| Live Around The World

| In A Silent Way |
| Power, Corruption & Lies

| Exile On Main Street |
| Substance 1987 (Disc 1) |
| Second Coming |
| Light Years |
| Brotherhood |
----------- B et e
13 rows in set (0.00 sec)

R OUVRARWWRRREREN
NP RORUNRBEWNERBR

+
|
|
|
|
|
|
|
|
|
|
|
|
|
+

Again album_id is always nonzero, and so NOT album_id is 0. Since 0 isn’t equal to 4, we
see all albums as answers. So be careful to use those parentheses: if you don’t, NOT’s

The SELECT Statement and Basic Querying Techniques | 149

high priority (or precedence) means it is applied to whatever immediately follows it,
and not to the whole expression!

You can combine the NOT operator with LIKE. Suppose you want all albums that don’t
begin with an L. To do this, type:

mysql> SELECT album_name FROM album WHERE album_name NOT LIKE "L%";

| Retro - John McCready FAN

| Substance (Disc 2) |
| Retro - Miranda Sawyer POP

| Retro - New Order / Bobby Gillespie LIVE |
| In A Silent Way |
| Power, Corruption & Lies

| Exile On Main Street |
| Substance 1987 (Disc 1) |
| Second Coming |
| Brotherhood |

10 rows in set (0.01 sec)
The result is all albums, except those beginning with L.

You can combine NOT LIKE with AND and OR. Suppose you want albums beginning with
S, but not those ending with a closing parenthesis, ')". You can do this with:

mysql> SELECT album_name FROM album WHERE
-> album_name LIKE "S%" AND album_name NOT LIKE "%)";

D e LR +
| album_name |
B LT +
| Second Coming |
mm e +

1 row in set (0.00 sec)

MySQL also supports the exclusive-OR operation through the XOR operator. An exclu-
sive OR evaluates as true if only one—but not both—of the expressions is true. To be
precise, a XOR b is equivalent to (a AND (NOT b)) OR ((NOT a) AND b). For example,
suppose you want to find artists whose names end in “es” or start with “The,” but not
both. You’d need to type:
mysql> SELECT artist_name FROM artist WHERE
-> artist_name LIKE "The%" XOR

-> artist_name LIKE "%es";
Empty set (0.00 sec)

There are no matching entries in the database, since both “The Stone Roses” and “The
Rolling Stones” meet both criteria.

Before we move on to sorting, we’ll discuss syntax alternatives. If you’re familiar with
a programming language such as PHP, C, Perl, or Java, you’ll be used to using ! for
NOT, || for OR, and && for AND. MySQL also supports these, and you can use them inter-

150 | Chapter5: BasicSQL

changeably with the word-based alternatives if you want to. However, we always use
the word-based versions, as that’s what you’ll see used in most SQL statements.

ORDER BY Clauses

We've so far discussed how to choose the columns and rows that are returned as part
of the query result, but not how to control how the result is displayed. In a relational
database, the rows in a table form a set; there is no intrinsic order between the rows,
and so we have to ask MySQL to sort the results if we want them in a particular order.
In this section, we explain how to use the ORDER BY clause to do this. Sorting has no
effect on what is returned, and only affects what order the results are returned.

Suppose you want to return a list of the artists in the music database, sorted in alpha-
betical order by the artist_name. Here’s what you’d type:

mysql> SELECT * FROM artist ORDER BY artist_name;
 EREEEEEEPEE oo +
| artist_id | artist_name

| Kylie Minogue
| Miles Davis |
| New Order

| Nick Cave & The Bad Seeds |
| The Rolling Stones |
| The Stone Roses |
B B e +
6 rows in set (0.03 sec)

+
|
|
|
|
|
|

The ORDER BY clause indicates that sorting is required, followed by the column that
should be used as the sort key. In this example, we’re sorting by alphabetically-as-
cending artist_name. The default sort is case-insensitive and in ascending order, and
MySQL automatically sorts alphabetically because the columns are character strings.
The way strings are sorted is determined by the character set and collation order that
are being used. We discuss these in “Collation and Character Sets.” For most of this
book, we assume that you’re using the default settings.

Consider a second example. This time, let’s sort the output from the track table by
ascending track length—that is, by the time column. Since it’s likely that two or more
tracks have the same length, we’ll add a second sort key to resolve collisions and de-
termine how such ties should be broken. In this case, when the track times are the same,
we’ll sort the answers alphabetically by track_name. Here’s what you type:

mysql> SELECT time, track_name FROM track ORDER BY time, track_name;

| | Intermission By Alan Wise [Olympia, Paris 12/11/01]

| | In A Silent Way |
| 2.38 | Rip This Joint

| | Jangling Jack |
| | Full Nelson |

The SELECT Statement and Basic Querying Techniques | 151

| I Just Want To See His Face
| Sweet Black Angel

| Your Star Will Shine

| Shake Your Hips

| Happy

| Dreams Never End

| Straight To The Man

| Under The Influence Of Love
| Ventilator Blues

| Cries And Whispers

| Mesh

e W W W WWW W W INNN
N
o

We’ve shown only part of the 153-row output. Notice that there’s a collision of track
times where the length is 3.40. In this case, the second sort key, track_name, is used to
resolve the collision so that “Under the Influence of Love” appears before “Ventilator
Blues.” You'll find you often use multiple columns in an ORDER BY clause when you’re
sorting people’s names, where typically you’ll use something like ORDER BY surname,
firstname, secondname.

You can also sort in descending order, and you can control this behavior for each sort
key. Suppose you want to sort the artists by descending alphabetical order. You type
this:

mysql> SELECT artist_name FROM artist ORDER BY artist_name DESC;

The Stone Roses

The Rolling Stones

Nick Cave & The Bad Seeds
New Order

Miles Davis

Kylie Minogue

6 rows in set (0.00 sec)

The DESC keyword specifies that the preceding sort key (in this case, artist_name) should
be sorted in descending order. You can use a mixture of ascending and descending
orders when multiple sort keys are used. For example, you can sort by descending
time and alphabetically increasing track_name:

mysql> SELECT time, track_name FROM track

-> WHERE time < 3.6

-> ORDER BY time DESC, track_name ASC;
+o--m-- B R T T +
| time | track name |
+o--m-- B R T T +
| 3.57 | Casino Boogie
3.57	Procession [Polytechnic of Central London, London 6/12/85]
3.56	Your Disco Needs You
3.55	I'm So High
3.55	On A Night Like This
3.54	Mr. Pastorius

152 | Chapter5: BasicSQL

.46 | Spinning Around

.44 | Mesh

Cries And Whispers

Under The Influence Of Love
Ventilator Blues

Straight To The Man

Dreams Never End

|
|
|
|
|
|
|
Happy |
Shake Your Hips
I
|
|
|
|
|
|

=
N

|

|

|

|

|

|

| Your Star Will Shine

| Sweet Black Angel

.90 | I Just Want To See His Face

| Full Nelson

| Jangling Jack

| Rip This Joint

| In A Silent Way
| Intermission By Alan Wise [Olympia, Paris 12/11/01]
+

P P NNNNMNNNDNDWWWWWWWWW
o
o

24 rows in set (0.06 sec)

In this example, the rows are sorted by descending time and, when there’s a collision,
by ascending track_name. We’ve used the optional keyword ASC to indicate an ascending
sort key. Whenever we sort, ascending order is assumed if the DESC keyword isn’t used.
Youdon’t need to explicitly include the ASC keyword, but including it does help to make
the statement’s behavior more obvious. Notice also that we’ve included a WHERE clause;
using WHERE and ORDER BY together is very common, and WHERE always appears before
ORDER BY in the SELECT statement.

If a collision of values occurs, and you don’t specify another sort key, the sort order is
undefined. This may not be important for you; you may not care about the order in
which two customers with the identical name “John A. Smith” appear. A common
source of collisions is string sorting, where MySQL ignores the case of characters. For
example, the strings john, John, and JOHN are treated as identical in the ORDER BY process.
If you do want sorting to behave like ASCII does (where uppercase comes before low-
ercase), then you can add a BINARY keyword to your sort as follows:

mysql> SELECT * FROM artist ORDER BY BINARY artist_name;

6 | Kylie Minogue |
3 | Miles Davis |
1 | New Order |
2 | Nick Cave & The Bad Seeds |
4 | The Rolling Stones |
5 | The Stone Roses

6 rows in set (0.01 sec)

Because there are no case collisions in the music database, this example doesn’t do
anything different from the example without the BINARY keyword.

The SELECT Statement and Basic Querying Techniques | 153

Note you can use the BINARY keyword in many places; for example, you can use it in
string comparisons. For example, searching for tracks with names alphabetically earlier
than the letter b returns 12 tracks:

mysql> SELECT track_name FROM track WHERE track_name < 'b';

| Ain't Gonna Rain Anymore |
| All Day Long |
| 1963 |
| Age Of Consent [Spectrum Arena, Warrington 1/3/86] |
| As It Is When It Was [Reading Festival 29/8/93] |
| Amandla

| Age Of Consent |
| 586 |
| All Down The Line |
| Angel Dust |
| A1l Day Long |
| As It Is When It Was |

12 rows in set (0.00 sec)

However, if we specify that we want to perform the search in ASCII order, we get all
153 tracks, since they all start with an uppercase letter, and uppercase letters appear
before lowercase letters in the ASCII table:

mysql> SELECT track_name FROM track WHERE track_name < BINARY 'b';

| Do You Love Me?

| Nobody's Baby Now
| Loverman

| Jangling Jack

| Red Right Hand

| I Let Love In

Broken Promise

As It Is When It Was
Weirdo

Paradise

153 rows in set (0.00 sec)

Sorting is performed as appropriate to the column type. For example, if you’re sorting
dates, it organizes the rows in ascending date order. You can force the sort to behave
differently, using the CAST() function and the AS keyword. Suppose, for example, you
want to sort the track table by ascending time, but you want the times to be treated as
strings. Here’s how you do it:

mysql> SELECT time, track_name FROM track ORDER BY CAST(time AS CHAR);

tommm - B L et +
| time | track_name

154 | Chapter5: BasicSQL

Hmmm e e e e +
1.34 | Intermission By Alan Wise [Olympia, Paris 12/11/01] |
1.81 | In A Silent Way

11.37 | Breaking Into Heaven
12.80 | Human Nature

2.38 | Rip This Joint
2.78 | Jangling Jack
2.81 | Full Nelson

|
| |
16.67	Shhh/Peaceful
16.67	In A Silent Way/It's About That Time

The results are ordered alphabetically, so that, for example, numbers beginning with
1 appear before numbers beginning with 2. The CAST() function forces a column to be
treated as a different type, in this example as a character string using the AS CHAR clause.
You can specify:

AS BINARY, to sort as binary, which has the same effect as ORDER BY BINARY
AS SIGNED, to sort as a signed integer

AS UNSIGNED, to sort as an unsigned integer

AS CHAR, to sort as a character string

AS DATE, to sort as a date

AS DATETIME, to sort as a date and time

AS TIME, to sort as a time

The types of columns are discussed in detail in “Column Types” in Chapter 6.

The LIMIT Clause

The LIMIT clause is a useful, nonstandard SQL tool that allows you to control which
rows are output. Its basic form allows you to limit the number of rows returned from
a SELECT statement, which is useful when you want to limit the amount of data com-
municated over a network or output to the screen. You might use it, for example, in a
web database application, where you want to find the rows that match a condition but
only want to show the user the first 10 rows in a web page. Here’s an example:

mysql> SELECT track_name FROM track LIMIT 10;
| track_name |

| Do You Love Me?
| Nobody's Baby Now
| Loverman

| Jangling Jack
| Red Right Hand
| I Let Love In

| Thirsty Dog

| Ain't Gonna Rain Anymore
| Lay Me Low

The SELECT Statement and Basic Querying Techniques | 155

| Do You Love Me? (Part Two) |
10 rows in set (0.00 sec)

The LIMIT clause in this example restricts the output to the first 10 rows, saving the
cost of buffering, communicating, and displaying the remaining 143 tracks.

The LIMIT clause can be used to return a fixed number of rows beginning anywhere in
the result set. Suppose you want five rows, but you want the first one displayed to be
the sixth row of the answer set. You do this by starting from after the fifth answer:

mysql> SELECT track_name FROM track LIMIT 5,5;

| I Let Love In |
| Thirsty Dog

| Ain't Gonna Rain Anymore |
| Lay Me Low

| Do You Love Me? (Part Two) |

5 rows in set (0.00 sec)

The output is rows 6 to 10 from the SELECT query.

If you want all rows after a start point, and you don’t know how many rows are in the
table, then you need to choose a large integer as the second parameter. Suppose you
want all rows after row 150 in the track table. Use the following command:

mysql> SELECT track_name FROM track LIMIT 150,999999999;

B it +
| track_name |
B et +
| As It Is When It Was |
| Weirdo |
| Paradise |
B +

3 rows in set (0.01 sec)

Since there are likely to be at most tens of thousands of rows in the track table, providing
999999999 as the second parameter guarantees all rows are returned. Technically, the
largest number you can use is 18446744073709551615; this is the maximum value that
can be stored in MySQL’s unsigned BIGINT variable type. MySQL will complain if you
try to use a larger value. We discuss variable types in “Other integer types” in Chapter 6.

There’s an alternative syntax that you might see for the LIMIT keyword: instead of
writing LIMIT 10,5, you can write LIMIT 10 OFFSET 5.

Joining Two Tables

We've so far worked with just one table in our SELECT queries. However, you know that
a relational database is all about working with the relationships between tables to an-
swer information needs. Indeed, as we’ve explored the tables in the music database, it’s

156 | Chapter5: BasicSQL

become obvious that by using these relationships, we can answer more interesting
queries. For example, it’d be useful to know what tracks make up an album, what
albums we own by each artist, or how long an album plays for. This section shows you
how to answer these queries by joining two tables. We’ll return to this issue as part of
a longer, more advanced discussion of joins in Chapter 7.

We use only one join syntax in this chapter. There are several more, and each gives you
a different way to bring together data from two or more tables. The syntax we use here
is the INNER JOIN, which hides some of the detail and is the easiest to learn. Consider
an example, and then we’ll explain more about how it works:

mysql> SELECT artist_name, album_name FROM artist INNER JOIN album
-> USING (artist_id);

e e e e +
| artist name | album name |
T DT T TR e e e +
| New Order | Retro - John McCready FAN

| New Order | Substance (Disc 2) |
| New Order | Retro - Miranda Sawyer POP

| New Order | Retro - New Order / Bobby Gillespie LIVE

New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
e e T T +

13 rows in set (0.00 sec)

The output shows the artists and their albums. You can see for the first time how many
albums we own by each artist and who made each one.

How does the INNER JOIN work? The statement has two parts: first, two table names
separated by the INNER JOIN keywords; second, the USING keyword that indicates which
column (or columns) holds the relationship between the two tables. In our first exam-
ple, the two tables to be joined are artist and album, expressed as artist INNER JOIN
album (for the basic INNER JOIN, it doesn’t matter what order you list the tables in, and
so using album INNER JOIN artist would have the same effect). The USING clause in the
example is USING (artist_id), which tells MySQL that the column that holds the re-
lationship between the tables is artist_id; you should recall this from our design and
our previous discussion in “The Music Database,” in Chapter 4.

The data comes from the artist table:

mysql> SELECT * FROM artist;

Hmmm e LG ET TR PR +
| artist_id | artist_name

Hmmm e e +
| 1 | New Order |

The SELECT Statement and Basic Querying Techniques | 157

| 2 | Nick Cave & The Bad Seeds |
| 3 | Miles Davis

| 4 | The Rolling Stones |
| 5 | The Stone Roses |
| 6 | Kylie Minogue

Hmmm e e +
6 rows in set (0.01 sec)

and the album table:

mysql> SELECT * FROM album;

Hmmm e Hmmmmmmmmen e +
| artist_id | album_id | album_name |
---------- ey
| Let Love In |
| Retro - John McCready FAN

| Substance (Disc 2) |
| Retro - Miranda Sawyer POP

| Retro - New Order / Bobby Gillespie LIVE |
| Live Around The World

| In A Silent Way |
| Power, Corruption & Lies |
| Exile On Main Street

| Substance 1987 (Disc 1)

| Second Coming |
| Light Years |
| Brotherhood |

13 rows in set (0.00 sec)

In response to our query, MySQL finds the artist_name and album_name value pairs that
have the same artist _id values. For each artist_id in the artist table (let’s use 1 as
an example):

e m e +
| artist id | artist_name

fmmmmm e e +
| 1 | New Order |
gmmmmm e B LT TR +

the server finds all the entries in the album table that have this value of artist_id:

$ommmmmmmen
| artist_id

+
|

+

| Retro - John McCready FAN

| Substance (Disc 2) |
| Retro - Miranda Sawyer POP

| Retro - New Order / Bobby Gillespie LIVE |
| Power, Corruption & Lies

| Substance 1987 (Disc 1)

| Brotherhood |
.

It can then form a new temporary table from these two sets:

158 | Chapter5: BasicSQL

Hmmm e Hmmm e Hmmm e e e e +
| artist_id | artist_name | album_id | album_name |
Hmmm e Hmmm e Hmmm e e e e e +
1	New Order	1	Retro - John McCready FAN
1	New Order	2	Substance (Disc 2)
1	New Order	3	Retro - Miranda Sawyer POP
1	New Order	4	Retro - New Order / Bobby Gillespie LIVE
1	New Order	5	Power, Corruption & Lies
1	New Order	6	Substance 1987 (Disc 1)
1	New Order	7	Brotherhood
Hmmmmmm e Hmmm e Hmmmmmm e e +

Once it has processed all the different artist_id values, it selects the colums you asked
for—artist_name and album_name—to display:

__ +
album_name |

+
|
et DT TR e e e +
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
mm e T LT T T +

There are a few important issues you need to know about when using the basic INNER
JOIN syntax:

* Tt works only when two tables share a column with the same name that you can
use as the join condition; otherwise, you must use an alternative syntax described
in Chapter 7. Note that MySQL can’t automatically determine the column you
want to use for the join, (even if there are columns with the same name in the two
tables), so you have to specify it explicitly.

* The result rows shown are those where the join column (or columns) match be-
tween the tables; rows from one table that don’t have a match in the other table
are ignored. In the previous example, any artist who had no albums would be
ignored.

* With the exception of the join column or columns after the USING keyword, any
columns you specify must be unambiguous. For example, if you want to SELECT
the artist_name, you can use just artist_name because it exists only in the artist
table. However, if you want artist_id, then you need to specify it explicitly as
artist.artist_id or album.artist_id because both tables have a column of the
same name.

* Don’t forget the USING clause. MySQL won’t complain if you omit it, but the results
won’t make sense because you’ll get a Cartesian product. We discuss this further
in Chapter 7.

The SELECT Statement and Basic Querying Techniques | 159

* The column or columns following the USING clause must be surrounded by paren-
theses. If you want to join on more than one column, separate the column names
with a comma. We’ll show you an example in a moment.

If you remember these rules, you’ll find joins with INNER JOIN are reasonably straight-
forward. Let’s now consider a few more examples that illustrate these ideas.

Suppose you want to list the track names for all your albums. Examining the album and
track tables, you identify that you would have to join two columns, artist id and
album_id. Let’s try the join operation:
mysql> SELECT album_name, track_name FROM album INNER JOIN track
-> USING (artist_id, album_id) LIMIT 15;
Hommmmmmm oo B e +
| album name track_name |

|
T T TR T T T TR R +
Let Love In	Do You Love Me?
Let Love In	Nobody's Baby Now
Let Love In	Loverman
Let Love In	Jangling Jack
Let Love In	Red Right Hand
Let Love In	I Let Love In
Let Love In	Thirsty Dog
Let Love In	Ain't Gonna Rain Anymore
Let Love In	Lay Me Low
Let Love In	Do You Love Me? (Part Two)
Retro - John McCready FAN	Elegia
Retro - John McCready FAN	In A Lonely Place
Retro - John McCready FAN	Procession
Retro - John McCready FAN	Your Silent Face
Retro - John McCready FAN	Sunrise
+ +

15 rows in set (0.00 sec)

We’ve specified the two join columns in the USING clause separated by commas as USING
(artist_id, album_id). The results show the tracks for the album Let Love In, and the
first few from Retro - John McReady FAN. To fit the results into the book, we’ve limited
the output to 15 rows, using the LIMIT clause we discussed earlier in “The LIMIT
Clause.”

We can improve our previous example by adding an ORDER BY clause. It makes sense
that we’d want to see the albums in alphabetical order, with the tracks shown in the
order they occur on the album, so we could modify our previous query to be:

mysql> SELECT album_name, track_name FROM album INNER JOIN track

-> USING (artist_id, album_id)
-> ORDER BY album_name, track_id LIMIT 15;

e e m e +
| album_name | track_name |
ST TR e m e +
Brotherhood	State of the Nation
Brotherhood	Every Little Counts
Brotherhood	Angel Dust

160 | Chapter5: BasicSQL

Brotherhood All Day Long

Exile On Main Street

Exile On Main Street | Shake Your Hips

Exile On Main Street | Casino Boogie

Exile On Main Street | Tumbling Dice

---------------------- R R EEE L LR PR
15 rows in set (0.00 sec)

Rip This Joint

I
Brotherhood | Bizarre Love Triangle
Brotherhood | Way of Life
Brotherhood | Broken Promise
Brotherhood | As It Is When It Was
Brotherhood | Weirdo
Brotherhood |

| Rocks Off

I

I

I

I I
I I
I I
I I
I I
I I
| Paradise |
| Exile On Main Street |
I I
I I
I I
I I
¥

You can see that the ORDER BY clause sorts the albums and tracks in the required order,
and that it’s listed last in the query after the join condition.

Let’s try a different query. Suppose you want to find out which tracks you’ve played.
You can do this with a join between the track and played tables, using the artist_id,
album_id, and track_id columns in the join condition. Here’s the query:

mysql> SELECT played, track_name FROM
-> track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY track.artist_id, track.album_id, track.track_id, played;

2006-08-14 10:54:02
2006-08-15 14:00:03
2006-08-15 14:26:12 | Intruder
2006-08-15 14:33:57 | New Blues
B et B e +
11 rows in set (0.00 sec)

Bizarre Love Triangle
In A Silent Way

R e e L R e e L +
| played | track name |
L e e LR e L +
2006-08-14 10:21:03	Fine Time
2006-08-14 10:25:22	Temptation
2006-08-14 10:30:25	True Faith
2006-08-14 10:36:54	The Perfect Kiss
2006-08-14 10:41:43	Ceremony
2006-08-14 10:43:37	Regret
2006-08-14 10:47:21	Crystal

We've sorted the results by artist, then album, then track, and then the play date and
time. Notice we’ve also had to unambiguously specify the columns in the ORDER BY
clause using the table name, since the first three columns occur in both tables. In prac-
tice, if columns are used in the join condition, it doesn’t matter whether you sort or
select using the column from either table; for example, in this query, track.artist id
and played.artist_id are interchangeable because they’re always the same for each
row.

Before we leave SELECT, we’ll give you a taste of one of the functions you can use to
aggregate values. Suppose you want to find out how long New Order’s Brotherhood

The SELECT Statement and Basic Querying Techniques | 161

album takes to play. You can do this by summing the times of the individual tracks
with the SQL SUM() function. Here’s how it works:

mysql> SELECT SUM(time) FROM
-> album INNER JOIN track USING (artist_id, album_id)
-> WHERE album.artist_id = 1 AND album.album_id = 7;

Fommmmmman- +
| SUM(time) |
Fommmm e +
| 43.78 |
Fommmm e +

1 row in set (0.00 sec)

You can see the album runs for just under 44 minutes. The SUM() function reports the
sum of all values for the column enclosed in the parentheses—in this case, time—and
not the individual values themselves. Because we’ve used a WHERE clause to choose only
rows for the Brotherhood album, the sum of the time values is the total play time of the
album. Of course, to run this query, we needed to know that New Order’s artist_id
is 1 and that the album_id of “Brotherhood” is 7. We discovered this by running two
other SELECT queries beforehand:

mysql> SELECT artist_id FROM artist WHERE artist_name = "New Order";

Hmmmm e +
| artist_id |
Hmmmm e +
| 1]
Hmm e +

1 row in set (0.00 sec)

mysql> SELECT album_id FROM album
-> WHERE artist_id = 1 AND album_name = "Brotherhood";

fmmmmm e +
| album id |
fmmmmm e +
| 71
fmmmmm e +

1 row in set (0.00 sec)

We explain more features of SELECT and aggregate functions in Chapter 7.

The INSERT Statement

The INSERT statement is used to add new data to tables. In this section, we explain its
basic syntax and show you simple examples that add new rows to the music database.
In Chapter 6, we’ll discuss how to load data from existing tables or from external data
sources.

162 | Chapter5: BasicSQL

INSERT Basics

Inserting data typically occurs in two situations: when you bulk-load in a large batch
as you create your database, and when you add data on an ad hoc basis as you use the
database. In MySQL, there are different optimizations built into the server for each
situation and, importantly, different SQL syntaxes available to make it easy for you to
work with the server in both cases. We explain a basic INSERT syntax in this section,
and show you examples of how to use it for bulk and single record insertion.

Let’s start with the basic task of inserting one new row into the artist table. To do this,
you need to understand the table’s structure. As we explained in Chapter 4 in “The
Music Database,” you can discover this with the SHOW COLUMNS statement:

mysql> SHOW COLUMNS FROM artist;

B il B it - +----- Fomm o Fommmm - +
| Field | Type | Null | Key | Default | Extra |
T TR B T Hmmm - e B dmmmmm e +
| artist id | smallint(5) | NO | PRI | 0 | |
| artist name | char(128) | NO | | | |
dmmmmm - B T mmm - e R dmmmmm e +

2 rows in set (0.00 sec)

This tells you that the two columns occur in the order artist id and then
artist_name, and you need to know this for the basic syntax we’re about to use.

Our new row is for a new artist, “Barry Adamson.” But what artist_id value do we
give him? You might recall that we already have six artists, so we should probably use
7.You can check this with:

mysql> SELECT MAX(artist_id) FROM artist;

Ao +
| MAX(artist_id) |
Ao +
| 6 |
Ao +

1 row in set (0.04 sec)

The MAX() function is an aggregate function, and it tells you the maximum value for
the column supplied as a parameter. This is a little cleaner than SELECT artist_id FROM
artist, which prints out all rows and requires you to inspect the rows to find the max-
imum value; adding an ORDER BY makes it easier. Using MAX() is also much simpler than
SELECT artist id FROM artist ORDER BY artist id DESC LIMIT 1, which also returns
the correct answer. You’ll learn more about the AUTO_INCREMENT shortcut to automati-
cally assign the next available identifier in Chapter 6, and about aggregate functions in
Chapter 7.

We’re now ready to insert the row. Here’s what you type:

mysql> INSERT INTO artist VALUES (7, "Barry Adamson");
Query OK, 1 row affected (0.00 sec)

The INSERT Statement | 163

A new row is created—MySQL reports that one row has been affected—and the value
7 isinserted as the artist idand Barry Adamson asthe artist_name. You can check with
a query:

mysql> SELECT * FROM artist WHERE artist_id = 7;

Hmmm e Hmmm e +
| artist_id | artist_name |
Hmmm e A +
| 7 | Barry Adamson |
Hmmm e Hmmm e +

1 row in set (0.01 sec)

You might be tempted to try out something like this:

mysql> INSERT INTO artist
VALUES((SELECT 1+MAX(artist_id) FROM artist), "Barry Adamson");

However, this won’t work because you can’t modify a table while you’re reading from
it. The query would work if you wanted to INSERT INTO a different table (here, a table
other than artist).

To continue our example, and illustrate the bulk-loading approach, let’s now insert
Barry Adamson’s album The Taming of the Shrewd and its tracks. First, check the
structure of the album table:

mysql> SHOW COLUMNS FROM album;

fmmmmm e dmmmmmmmmmen mmmm - o fommmmmmem mmmmmmm +
| Field | Type | Null | Key | Default | Extra |
fmmmmmmmmmee mmmmmmmmmn mmmm - B fmmmmmmmem mmmmmmm +
artist id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
album name	char(128)	YES		NULL	
fmmmmm e mmmmmmmmmen mmmm - B fommmmmmem mmmmmmm +

3 rows in set (0.00 sec)

Second, insert the album using the approach we used previously:

mysql> INSERT INTO album VALUES (7, 1, "The Taming of the Shrewd");
Query OK, 1 row affected (0.00 sec)

The first value is the artist_id, the value of which we know from creating the artist,
and the second value is the album_id, which must be 1 because this is the first album
we've added for Barry Adamson.

Third, check the track table structure:
mysql> SHOW COLUMNS FROM track;

B it Fommmm e - +----- Fomm o Fommmm - +
| Field | Type | Null | Key | Default | Extra |
dmmmmm e dmmmmmm e Hmmm - e B dmmmmm e +
track_id	int(3)		PRI	O	
track _name	char(128)	YES		NULL	
artist id	int(5)		PRI	O	
album_id	int(4)		PRI	O	
time	decimal(5,2)	YES		NULL	

164 | Chapter5: BasicSQL

e D EEEEEEEEE Hmmm e m Hmmmm e Hmmmmm e Hmmmmmm +
5 rows in set (0.01 sec)

Finally, insert the tracks:

mysql> INSERT INTO track VALUES (1, "Diamonds", 7, 1, 4.10),
-> (2, "Boppin Out / Eternal Morning", 7, 1, 3.22),
-> (3, "Splat Goes the Cat", 7, 1, 1.39),
-> (4, "From Rusholme With Love", 7, 1, 3.59);

Query OK, 4 rows affected (0.00 sec)

Records: 4 Duplicates: 0 Warnings: 0

Here, we’ve used a different INSERT style to add all four tracks in a single SQL query.
This style is recommended when you want to load more than one row. It has a similar
format to the single-insertion style, except that the values for several rows are collected
together in a comma-separated list. Giving MySQL all the data you want to insert in
one statement helps it optimize the insertion process, allowing queries that use this
syntax to be typically many times faster than repeated insertions of single rows. There
are other ways to speed up insertion, and we discuss several in Chapter 6.

The single-row INSERT style is unforgiving: if it finds a duplicate, it’ll stop as soon as it
finds a duplicate key. For example, suppose we try to insert the same tracks again:
mysql> INSERT INTO track VALUES (1, "Diamonds", 7, 1, 4.10),
-> (2, "Boppin Out / Eternal Morning", 7, 1, 3.22),
-> (3, "Splat Goes the Cat", 7, 1, 1.39),

-> (4, "From Rusholme With Love", 7, 1, 3.59);
ERROR 1062 (23000): Duplicate entry '7-1-1' for key 1

The INSERT operation stops on the first duplicate key. You can add an IGNORE clause to
prevent the error if you want:
mysql> INSERT IGNORE INTO track VALUES (1, "Diamonds", 7, 1, 4.10),
-> (2, "Boppin Out / Eternal Morning", 7, 1, 3.22),
-> (3, "Splat Goes the Cat", 7, 1, 1.39),
-> (4, "From Rusholme With Love", 7, 1, 3.59);

Query OK, 0 rows affected (0.01 sec)
Records: 4 Duplicates: 4 Warnings: 0

However, in most cases, you want to know about possible problems (after all, primary
keys are supposed to be unique), and so this IGNORE syntax is rarely used.

You’ll notice that MySQL reports the results of bulk insertion differently from single
insertion. From our initial bulk insertion, it reports:

Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

The first line tells you how many rows were inserted, while the first entry in the final
line tells you how many rows (or records) were actually processed. If you use INSERT
IGNORE and try to insert a duplicate record—for which the primary key matches that
of an existing row—then MySQL will quietly skip inserting itand reportit as a duplicate
in the second entry on the final line:

The INSERT Statement | 165

Query OK, 0 rows affected (0.01 sec)
Records: 4 Duplicates: 4 Warnings: 0

We discuss causes of warnings—shown as the third entry on the final line—in Chap-
ter 6.

Alternative Syntaxes

There are several alternatives to the VALUES syntax we’ve shown you so far. This section
shows you these and explains the advantages and drawbacks of each. If you’re happy
with the basic syntax we’ve described so far, and want to move on to a new topic, feel
free to skip ahead to “The DELETE Statement.”

There are three disadvantages of the VALUES syntax we’ve shown you. First, you need
to remember the order of the columns. Second, you need to provide a value for each
column. Last, it’s closely tied to the underlying table structure: if you change the table’s
structure, you need to change the INSERT statements, and the function of the INSERT
statement isn’t obvious unless you have the table structure at hand. However, the three
advantages of the approach are that it works for both single and bulk inserts, you get
an error message if you forget to supply values for all columns, and you don’t have to
type in column names. Fortunately, the disadvantages are easily avoided by varying the
syntax.

Suppose you know that the album table has three columns and you recall their names,
but you forget their order. You can insert using the following approach:
mysql> INSERT INTO album (artist_id, album_id, album_name)

-> VALUES (7, 2, "Oedipus Schmoedipus");
Query OK, 1 row affected (0.00 sec)

The column names are included in parentheses after the table name, and the values
stored in those columns are listed in parentheses after the VALUES keyword. So, in this
example, a new row is created and the value 7 is stored as the artist_id, 2 is stored as
the album_id, and Oedipus Schmoedipus is stored as the album_name. The advantages of
this syntax are that it’s readable and flexible (addressing the third disadvantage we
described) and order-independent (addressing the first disadvantage). The disadvant-
age is that you need to know the column names and type them in.

This new syntax can also address the second disadvantage of the simpler approach—
that is, it can allow you to insert values for only some columns. To understand how
this might be useful, let’s explore the played table:

mysql> SHOW COLUMNS FROM played;

fommmmmemem P e R B e e LR e +
| Field | Type | Null | Key | Default | Extra |
B P Fommm - o= B T TP e +
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
track_id	int(3)		PRI	0	
played	timestamp	YES	PRI	CURRENT_TIMESTAMP	

166 | Chapter5: BasicSQL

Hmmm e Hmmm e Hmmm e 4o Hmmm e Hmmmmm +
4 rows in set (0.00 sec)

Notice that the played column has a default value of CURRENT TIMESTAMP. This means
that if you don’t insert a value for the played column, it’ll insert the current date and
time by default. This is just what we want: when we play a track, we don’t want to
bother checking the date and time and typing it in. Here’s how you insert an incomplete
played entry:

mysql> INSERT INTO played (artist_id, album_id, track_id)

-> VALUES (7, 1, 1);
Query OK, 1 row affected (0.00 sec)

We didn’t set the played column, so MySQL defaults it to the current date and time.
You can check this with a query:

mysql> SELECT * FROM played WHERE artist_id = 7
-> AND album_id = 1;

Hmmmm e Hmmmm e Hmmmmmmmeee e +
| artist_id | album id | track id | played

Hmmmm e Hmmmm e 4o oo +
| 7 | 1 1 | 2006-08-09 12:03:00 |
Hmmmm e Hmmmm e 4o oo +

1 row in set (0.00 sec)

You can also use this approach for bulk insertion as follows:

mysql> INSERT INTO played (artist_id, album_id, track_id)
-> VALUES (7)1)2))(7)1:3): (7:1)4);

Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 0

The disadvantages of this approach are that you can accidentally omit values for col-
umns, and you need to remember and type column names. The omitted columns will
be set to the default values.

All columns in a MySQL table have a default value of NULL unless another default value
is explicitly assigned when the table is created or modified. Because of this, defaults
can often cause duplicate rows: if you add a row with the default primary key values
and repeat the process, you’ll get a duplicate error. However, the default isn’t always
sensible; for example, in the played table, the artist_id, album_id, and track_id col-
umns all default to 0, which doesn’t make sense in the context of our music collection.
Let’s try adding a row to played with only default values:

mysql> INSERT INTO played () VALUES ();
Query OK, 1 row affected (0.00 sec)

The () syntax is used to represent that all columns and values are to be set to their
defaults. Let’s find our new row by asking for the most recent played time:

mysql> SELECT * FROM played ORDER BY played DESC LIMIT 1;
B s B il B ittt B R E TP +
| artist id | album id | track id | played

B e B il B ittt B R E LT +

The INSERT Statement | 167

| 0 | 0 | 0 | 2006-08-09 12:20:40 |
Fommmemmee- Fommmmmmeeo L] Fomemmmmmee e +
1 row in set (0.00 sec)

The process worked, but the row doesn’t make any sense. We’ll discuss default values
further in Chapter 6.

You can set defaults and still use the original INSERT syntax with MySQL 4.0.3 or later
by using the DEFAULT keyword. Here’s an example that adds a played row:

mysql> INSERT INTO played VALUES (7, 1, 2, DEFAULT);
Query OK, 1 row affected (0.00 sec)

The keyword DEFAULT tells MySQL to use the default value for that column, and so the
current date and time are inserted in our example. The advantages of this approach are
that you can use the bulk-insert feature with default values, and you can never acci-
dentally omit a column.

There’s another alternative INSERT syntax. In this approach, you list the column name
and value together, giving the advantage that you don’t have to mentally map the list
of values to the earlier list of columns. Here’s an example that adds a new row to the
played table:

mysql> INSERT INTO played

-> SET artist_id = 7, album_id = 1, track_id = 1;

Query OK, 1 row affected (0.00 sec)
The syntax requires you list a table name, the keyword SET, and then column-equals-
value pairs, separated by commas. Columns that aren’t supplied are set to their default
values. The disadvantages are again that you can accidentally omit values for columns,
and that you need to remember and type in column names. A significant additional
disadvantage is that you can’t use this method for bulk insertion.

You can also insert using values returned from a query. We discuss this in Chapter 8.

The DELETE Statement

The DELETE statement is used to remove one or more rows from a database. We explain
single-table deletes here, and discuss multi-table deletes—which remove data from two
or more tables through one statement—in Chapter 8.

If you want to try out the steps in this section on your MySQL server, you’ll need to
reload your music database afterwards so that you can follow the examples in later
sections. To do this, follow the steps you used in “Loading the Sample Databases” in
Chapter 3 to load it in the first place.

DELETE Basics

The simplest use of DELETE is to remove all rows in a table. Suppose you want to empty
your played table, perhaps because it’s taking too much space or because you want to

168 | Chapter5: BasicSQL

share your music database with someone else and they don’t want your played data.
You do this with:

mysql> DELETE FROM played;
Query OK, 19 rows affected (0.07 sec)

This removes all rows, including those we just added in “The INSERT Statement”; you
can see that 19 rows have been affected.

The DELETE syntax doesn’t include column names, since it’s used to remove whole rows
and not just values from a row. To reset or modify a value in a row, you use the
UPDATE statement, described later in this chapter in “The UPDATE Statement.” The
DELETE statement doesn’t remove the table itself. For example, having deleted all rows
in the played table, you can still query the table:

mysql> SELECT * FROM played;
Empty set (0.00 sec)

Of course, you can also continue to explore its structure using DESCRIBE or SHOW CREATE
TABLE, and insert new rows using INSERT. To remove a table, you use the DROP statement
described in Chapter 6.

Using WHERE, ORDER BY, and LIMIT

If you’ve deleted rows in the previous section, reload your music database now. You
need the rows in the played table restored for the examples in this section.

To remove one or more rows, but not all rows in a table, you use a WHERE clause. This
works in the same way as it does for SELECT. For example, suppose you want to remove
all rows from the played table with played dates and times earlier than August 15, 2006.
You do this with:

mysql> DELETE FROM played WHERE played < "2006-08-15";
Query OK, 8 rows affected (0.00 sec)

The result is that the eight played rows that match the criteria are removed. Note that
the date is enclosed in quotes and that the date format is year, month, day, separated
by hyphens. MySQL supports several different ways of specifying times and dates but
saves dates in this internationally friendly, easy-to-sort format (it’s actually an ISO
standard). MySQL can also reasonably interpret two-digit years, but we recommend
against using them; remember all the work required to avoid the Y2K problem?

Suppose you want to remove an artist, his albums, and his album tracks. For example,
let’s remove everything by Miles Davis. Begin by finding out the artist_id from the
artist table, which we’ll use to remove data from all four tables:

mysql> SELECT artist_id FROM artist WHERE artist_name = "Miles Davis";

The DELETE Statement | 169

1 row in set (0.00 sec)

Next, remove the row from the artist table:

mysql> DELETE FROM artist WHERE artist_id = 3;
Query OK, 1 row affected (0.00 sec)

Then, do the same thing for the album, track, and played tables:

mysql> DELETE FROM album WHERE artist_id = 3;
Query OK, 2 rows affected (0.01 sec)

mysql> DELETE FROM track WHERE artist_id = 3;
Query OK, 13 rows affected (0.01 sec)

mysql> DELETE FROM played WHERE artist id = 3;
Query OK, 3 rows affected (0.00 sec)

Since all four tables can be joined using the artist_id column, you can accomplish this
whole deletion process in a single DELETE statement; we show you how in Chapter 8.

You can use the ORDER BY and LIMIT clauses with DELETE. You usually do this when you
want to limit the number of rows deleted, either so that the statement doesn’t run for
too long or because you want to keep a table to a specific size. Suppose your played
table contains 10,528 rows, but you want to have at most 10,000 rows. In this situation,
it may make sense to remove the 528 oldest rows, and you can do this with the following
statement:

mysql> DELETE FROM played ORDER BY played LIMIT 528;
Query OK, 528 rows affected (0.23 sec)

The query sorts the rows by ascending play date and then deletes at most 528 rows,
starting with the oldest. Typically, when you’re deleting, you use LIMIT and ORDER BY
together; it usually doesn’t make sense to use them separately. Note that sorting large
numbers of entries on a field that doesn’t have an index can be quite slow. We discuss
indexes in detail in “Keys and Indexes” in Chapter 6.

Removing All Rows with TRUNCATE

If you want to remove all rows in a table, there’s a faster method than removing them
with DELETE. By using the TRUNCATE TABLE statement, MySQL takes the shortcut of
dropping the table—that is, removing the table structures and then re-creating them.
When there are many rows in a table, this is much faster.

If you want to remove the data in the played table, you can write this:

mysql> TRUNCATE TABLE played;
Query OK, 0 rows affected (0.00 sec)

Notice that the number of rows affected is shown as zero: to quickly delete all the data
in the table, MySQL doesn’t count the number of rows that are deleted, so the number

170 | Chapter5: BasicSQL

shown (normally zero, but sometimes nonzero) does not reflect the actual number of
rows deleted.

The TRUNCATE TABLE statement has two other limitations:

* It’s actually identical to DELETE if you use InnoDB tables.

* It does not work with locking or transactions.

Table types, transactions, and locking are discussed in Chapter 7. In practice, none of
these limitations affect most applications, and you can use TRUNCATE TABLE to speed up
your processing. Of course, it’s not common to delete whole tables during normal
operation. An exception is temporary tables, which are used to temporarily store query
results for a particular user session and can be deleted without losing the original data.

The UPDATE Statement

The UPDATE statement is used to change data. In this section, we show you how to update
one or more rows in a single table. Multitable updates are discussed in Chapter 8.

If you’ve deleted rows from your music database, reload it by following the instructions
in “Loading the Sample Databases” in Chapter 3. You need a copy of the unmodified
music database to follow the examples in this section.

Examples

The simplest use of the UPDATE statement is to change all rows in a table. There isn’t
much need to change all rows from a table in the music database—any example is a
little contrived—but let’s do it anyway. To change the artist names to uppercase, you
can use:

mysql> UPDATE artist SET artist_name = UPPER(artist_name);

Query OK, 6 rows affected (0.04 sec)
Rows matched: 6 Changed: 6 Warnings: 0

The function UPPER() is a MySQL function that returns the uppercase version of the
text passed as the parameter; for example, New Order is returned as NEW ORDER. You can
see that all six artists are modified, since six rows are reported as affected. The function
LOWER() performs the reverse, converting all the text to lowercase.

The second row reported by an UPDATE statement shows the overall effect of the state-
ment. In our example, you see:

Rows matched: 6 Changed: 6 Warnings: 0

The first column reports the number of rows that were retrieved as answers by the
statement; in this case, since there’s no WHERE or LIMIT clause, all six rows in the table
match the query. The second column reports how many rows needed to be changed,
and this is always equal to or less than the number of rows that match; in this example,

The UPDATE Statement | 171

since none of the strings are entirely in uppercase, all six rows are changed. If you repeat
the statement, you’ll see a different result:
mysql> UPDATE artist SET artist_name = UPPER(artist_name);

Query OK, 0 rows affected (0.00 sec)
Rows matched: 6 Changed: 0 Warnings: 0

This time, since all of the artists are already in uppercase, six rows still match the
statement but none are changed. Note also the number of rows changed is always equal
to the number of rows affected, as reported on the first line of the output.

Our previous example updates each value relative to its current value. You can also set
columns to a single value. For example, if you want to set all played dates and times to
the current date and time, you can use:

mysql> UPDATE played SET played = NULL;

Query OK, 11 rows affected (0.00 sec)
Rows matched: 11 Changed: 11 Warnings: 0

You’ll recall from “Alternative Syntaxes” that since the default value of the played col-
umn is CURRENT_TIMESTAMP, passing a NULL value causes the current date and time to be
stored instead. Since all rows match and all rows are changed (affected), you can see
three 11s in the output.

Using WHERE, ORDER BY, and LIMIT

Often, you don’t want to change all rows in a table. Instead, you want to update one
or more rows that match a condition. As with SELECT and DELETE, the WHERE clause is
used for the task. In addition, in the same way as with DELETE, you can use ORDER BY
and LIMIT together to control how many rows are updated from an ordered list.

Let’s try an example that modifies one row in a table. If you browse the album database,
you’ll notice an inconsistency for the two albums beginning with “Substance”:

mysql> SELECT * FROM album WHERE album_name LIKE
-> "Substance’%";

dmmmmm e fmmmmm - B T P +
| artist id | album_id | album name

fmmmmm e fmm - m o +
| 1 2 | Substance (Disc 2)

| 1 6 | Substance 1987 (Disc 1) |

They’re actually part of the same two CD set, and the first-listed album is missing the
year 1987, which is part of the title. To change it, you use an UPDATE command with a
WHERE clause:

mysql> UPDATE album SET album_name = "Substance 1987 (Disc 2)"
-> WHERE artist_id = 1 AND album_id = 2;

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

172 | Chapter5: BasicSQL

As expected, one row was matched, and one row was changed.

To control how many updates occur, you can use the combination of ORDER BY and
LIMIT. As with DELETE, you would do this because you either want the statement to run
for a controlled amount of time, or you want to modify only some rows. Suppose you
want to set the 10 most recent played dates and times to the current date and time (the
default). You do this with:

mysql> UPDATE played SET played = NULL ORDER BY played DESC LIMIT 10;

Query OK, 10 rows affected (0.00 sec)
Rows matched: 10 Changed: 10 Warnings: 0

You can see that 10 rows were matched and were changed.

The previous query also illustrates an important aspect of updates. As you’ve seen,
updates have two phases: a matching phase—where rows are found that match the
WHERE clause—and a modification phase, where the rows that need changing are up-
dated. In our previous example, the ORDER BY played is used in the matching phase, to
sort the data after it’s read from the table. After that, the modification phase processes
the first 10 rows, updating those that need to be changed. Since MySQL 4.0.13, the
LIMIT clause controls the maximum number of rows that are matched. Prior to this, it
controlled the maximum number of rows that were changed. The new implementation
is better; under the old scheme, you had little control over the update processing time
when many rows matched but few required changes.

Exploring Databases and Tables with SHOW and mysqlshow

We've already explained how you can use the SHOW command to obtain information on
the structure of a database, its tables, and the table columns. In this section, we’ll review
the most common types of SHOW statement with brief examples using the music database.
The mysqlshow command-line program performs the same function as several SHOW
command variants, but without needing to start the monitor.

The SHOW DATABASES statement lists the databases you can access. If you’ve followed our
sample database installation steps in Chapter 3 in “Loading the Sample Databases,”
your output should be as follows:

mysql> SHOW DATABASES;

dmmmm e +
| Database |
dmmmm e +
| flight |
| music |
| mysql |
| test |
| university |
ommmmmmee +

5 rows in set (0.01 sec)

Exploring Databases and Tables with SHOW and mysqishow | 173

These are the databases that you can access with the USE command; as we explain in
Chapter 9, you can’t see databases for which you have no access privileges unless you
have the global SHOW DATABASES privilege. You can get the same effect from the command
line using the mysqlshow program:

$ mysqlshow --user=root --password=the_mysql_root_password

You can add a LIKE clause to SHOW DATABASES. This is useful only if you have many
databases and want a short list as output. For example, to see databases beginning with

m, type:
mysql> SHOW DATABASES LIKE "m%";

Hmmm e +
| Database (m%) |
Hmmmmm e +
| music |
| mysql |
Hmmm e +

2 rows in set (0.00 sec)
The syntax of the LIKE statement is identical to that in its use in SELECT.

To see the statement used to create a database, you can use the SHON CREATE DATA
BASE statement. For example, to see how music was created, type:

mysql> SHOW CREATE DATABASE music;

mmmmm e e +
| Database | Create Database |
mmmmm e e +
| music | CREATE DATABASE music /*!40100 DEFAULT CHARACTER SET latini */ |
mmmmm e e +

1 row in set (0.00 sec)
This is perhaps the least exciting SHOW statement; it only displays the statement:
CREATE DATABASE music

There are some additional keywords that are enclosed between the comment sym-

bols /*! and */:
40100 DEFAULT CHARACTER SET latini

These instructions contain MySQL-specific extensions to standard SQL that are un-
likely to be understood by other database programs. A database server other than
MySQL would ignore this comment text, and so the syntax is usable by both MySQL
and other database server software. The optional number 40100 indicates the minimum
version of MySQL that can process this particular instruction—in this case, version
4.01.00; older versions of MySQL ignore such instructions. You’ll learn about creating
databases in Chapter 6.

The SHOW TABLES statement lists the tables in a database. To check the tables in music,
type:

174 | Chapter5: BasicSQL

mysql> SHOW TABLES FROM music;

S EEnGEETEEEEEEE +
| Tables_in_music |
S EEneELCEECEEEE +
| album |
| artist

| played

| track |
S EERCEEEEEEEEEE +

4 rows in set (0.01 sec)

If you’ve already selected the music database with the USE music command, you can use
the shortcut:

mysql> SHOW TABLES;

 EEEECEEEEEEEES +
| Tables_in music |
Hmmm e +
| album |
| artist

| played |
| track |
mmmmmm e +

4 rows in set (0.01 sec)

You can get a similar result by specifying the database name to the mysqlshow program:

$ mysqlshow --user=root --password=the_mysql_root_password music

As with SHOW DATABASES, you can’t see tables that you don’t have privileges for. This
means you can’t see tables in a database you can’t access, even if you have the SHOW
DATABASES global privilege.

The SHOW COLUMNS statement lists the columns in a table. For example, to check the
columns of track, type:

mysql> SHOW COLUMNS FROM track;

fommmmmm e mmmmmmmmmemmem R Fomm-- Fommmmmmm S +
| Field | Type | Null | Key | Default | Extra |
D Rt mmmmmmmmmemeem mmmm - Fomm-- Fmmmmm e em et +
track_id	int(3)		PRI	o	
track name	char(128)	YES		NULL	
artist id	int(5)		PRI	O	
album id	int(4)		PRI	O	
time	decimal(5,2)	YES		NULL	
Fommmmmm e mmmmmm o R +o-m-- B LR e +

5 rows in set (0.01 sec)

The output reports all column names, their types and sizes, whether they can be NULL,
whether they are part of a key, their default value, and any extra information. Types,
keys, NULL values, and defaults are discussed further in Chapter 6. If you haven’t already
chosen the music database with the USE command, then you can add the database name
before the table name, as in music.track. Unlike the previous SHOW statements, you can
always see all column names if you have access to a table; it doesn’t matter that you

Exploring Databases and Tables with SHOW and mysqlshow | 175

don’t have certain privileges for all columns. You can get a similar result by using
mysqlshow with the database and table name:

$ mysqlshow --user=root --password=the_mysql_root_password music track
You can see the statement used to create a particular table using the SHOW CREATE
TABLE statement; creating tables is a subject of Chapter 6. Some users prefer this output

to that of SHOW COLUMNS, since it has the familiar format of a CREATE TABLE statement.
Here’s an example for the track table:

mysql> SHOW CREATE TABLE track;
Hmmm e e e e +
| Table | Create Table |
Hmmm B R EEnE LR +
| track | CREATE TABLE “track™ (|
| “track_id® int(3) NOT NULL default ‘0",

“track_name’ char(128) default NULL,

‘artist_id® int(5) NOT NULL default 'o',

“album_id® int(4) NOT NULL default '0',

“time® decimal(5,2) default NULL,

|

|
| |
| |
| |
| |
| | PRIMARY KEY (“artist_id", album_id", track id")
| |
¥

) ENGINE=MyISAM DEFAULT CHARSET=latini

We’ve reformatted the output slightly so it fits better in the book.

Exercises

All exercises here concern the music database. You’ll find the table structures in “The
Music Database” are a useful reference, or you can practice using the SHOW statement
as you work your way through the tasks:

1. Use one or more SELECT statements to find out how many tracks are on New Order’s
Brotherhood album.
2. Using a join, list the albums that we own by the band New Order.

3. With INSERT statements, add the artist Leftfield to the database. For this new
artist, add the album Leftism that has the following tracks:

a. Release the Pressure (Time: 7.39)
. Afro-Melt (Time: 7.33)

c. Melt (Time: 5.21)

d. Song of Life (Time: 6.55)

e. Original (Time: 6.00)

f. Black Flute (Time: 3.46)

g. Space Shanty (Time: 7.15)

h. Inspection Check One (Time: 6.30)
1. Storm 3000 (Time: 5.44)

lon

176 | Chapter5: BasicSQL

j. Open Up (Time: 6.52)
k. 21st Century Poem (Time: 5.42)
1. Bonus Track (Time: 1.22)

4. How long in minutes is the Leftism album you added in Question 3? Hint: use the
SUM() aggregate function.

5. Change the time for the Original track on the Leftism album to 6.22.

6. Remove the Bonus Track from the Leftism album.

Exercises | 177

CHAPTER 6
Working with Database Structures

This chapter shows you how to create your own databases, add and remove structures
such as tables and indexes, and make choices about column types in your tables. It
focuses on the syntax and features of SQL, and not the semantics of conceiving, spec-
ifying, and refining a database design; you’ll find an introductory description of data-
base design techniques in Chapter 4. To work through this chapter, you need to un-
derstand how to work with an existing database and its tables, as discussed in Chap-
ter 5.

This chapter lists the structures in the sample music database used in this book; detail
on how to load the database is presented in Chapter 2. If you’ve followed those in-
structions, you’ll already have the database available and know how to restore the
database after you’ve modified its structures.

When you finish this chapter, you’ll have all the basics required to create, modify, and
delete database structures. Together with the techniques you learned in Chapter 5,
you’ll have the skills to carry out a wide range of basic operations. Chapters 7, 8, and
9 cover skills that allow you to do more advanced operations with MySQL.

Creating and Using Databases

When you've finished designing a database, the first practical step to take with MySQL
is to create it. You do this with the CREATE DATABASE statement. Suppose you want to
create a database with the name lucy. Here’s the statement you’d type in the monitor:

mysql> CREATE DATABASE lucy;
Query OK, 1 row affected (0.10 sec)

We assume here that you know how to connect to and use the monitor, as described
in Chapter 3. We also assume that you’re able to connect as the root user or as another
user who can create, delete, and modify structures (you’ll find a detailed discussion on
user privileges in Chapter 9). Note that when you create the database, MySQL says that
one row was affected. This isn’t in fact a normal row in any specific database—but a
new entry added to the list that you see with SHOW DATABASES.

179

Behind the scenes, MySQL creates a new directory under the data directory for the new
database and stores the text file db.opt that lists the database options; for example, the
file might contain:

default-character-set=latini
default-collation=latini_swedish ci

These particular two lines specify the default character set and collation of the new
database. We'll look at what these mean later, but you generally won’t need to know
much about the db.opt file or access it directly.

Once you've created the database, the next step is to use it—that is, choose it as the
database you’re working with. You do this with the MySQL command:

mysql> USE lucy;
Database changed

As discussed previously in Chapter 5, this command must be entered on one line and
need not be terminated with a semicolon, though we usually do so automatically
through habit. Once you’ve used the database, you can start creating tables, indexes,
and other structures using the steps discussed next in “Creating Tables.”

Before we move on to creating other structures, let’s discuss a few features and limita-
tions of creating databases. First, let’s see what happens if you create a database that
already exists:

mysql> CREATE DATABASE lucy;
ERROR 1007 (HY000): Can't create database 'lucy'; database exists

You can avoid this error by adding the IF NOT EXISTS keyword phrase to the statement:

mysql> CREATE DATABASE IF NOT EXISTS lucy;
Query OK, 0 rows affected (0.00 sec)

You can see that MySQL didn’t complain, but it didn’t do anything either: the 0 rows
affected message indicates that no data was changed. This addition is useful when
you’re adding SQL statements to a script: it prevents the script from aborting on error.

Let’s discuss how to choose database names and the use of character case. Database
names define physical directory (or folder) names on disk. On some operating systems,
directory names are case-sensitive; on others, case doesn’t matter. For example, Unix-
like systems such as Linux and Mac OS X are typically case-sensitive, while Windows
isn’t. The result is that database names have the same restrictions: when case matters
to the operating system, it matters to MySQL. For example, on a Linux machine, LUCY,
lucy, and Lucy are different database names; on Windows, they refer to just one data-
base. Using incorrect capitalization under Linux or Mac OS X will cause MySQL to
complain:

mysql> select artIst.Artist_id from ARTist;
ERROR 1146 (42502): Table 'music.ARTist' doesn't exist

180 | Chapter6: Working with Database Structures

but under Windows, this will normally work. To make your SQL machine-independ-
ent, we recommend that you consistently use lowercase names for databases (and for
tables, columns, aliases, and indexes).

There are other restrictions on database names. They can be at most 64 characters in
length. You also shouldn’t use MySQL reserved words—such as SELECT, FROM, and USE
—as names for structures; these can confuse the MySQL parser, making it impossible
to interpret the meaning of your statements. There’s a way around this problem: you
can enclose the reserved word with the backtick symbol () on either side, but it’s more
trouble remembering to do so than it’s worth. In addition, you can’t use selected char-
acters in the names: specifically, you can’t use the forward slash, backward slash, sem-
icolon, and period characters, and a database name can’t end in whitespace. Again, the
use of these characters confuses the MySQL parser and can result in unpredictable
behavior. For example, here’s what happens when you insert a semicolon into a data-
base name:

mysql> CREATE DATABASE IF NOT EXISTS lujcy;
Query OK, 1 row affected (0.00 sec)

ERROR 1064 (42000): You have an error in your SQL syntax. Check the manual
that corresponds to your MySQL server version for the right syntax to use
near 'cy' at line 1

Since more than one SQL statement can be on a single line, the result is that a database
lu is created, and then an error is generated by the very short, unexpected SQL state-
ment cy;.

Creating Tables

This section covers topics on table structures. We show you how to:

* Create tables, through introductory examples
* Choose names for tables and table-related structures
* Understand and choose column types
* Understand and choose keys and indexes
* Use the proprietary MySQL AUTO_INCREMENT feature
When you finish this section, you’ll have completed all of the basic material on creating

database structures; the remainder of this chapter covers the sample music database
used in the book, and how to alter and remove existing structures.

Basics

For our examples in this section, we’ll assume that the database music hasn’t been
created. If you want to follow the examples, and you have already loaded the database,
you can drop it for this section and reload it later; dropping it removes the database,

Creating Tables | 181

tables, and all of the data, but the original is easy to restore by following the steps in
Chapter 2. Here’s how you drop it temporarily:

mysql> DROP DATABASE music;
Query OK, 4 rows affected (0.06 sec)

The DROP statement is discussed further at the end of this chapter in “Deleting Struc-
tures.”

To begin, create the database music using the statement:

mysql> CREATE DATABASE music;
Query OK, 1 row affected (0.00 sec)

Then select the database with:

mysql> USE music;
Database changed

We’re now ready to begin creating the tables that’ll hold our data. Let’s create a table
to hold artist details. Here’s the statement that we use:
mysql> CREATE TABLE artist (
-> artist_id SMALLINT(5) NOT NULL DEFAULT o,

-> artist_name CHAR(128) DEFAULT NULL,
-> PRIMARY KEY (artist id)

-)5

Query OK, 0 rows affected (0.06 sec)

Don’t panic: even though MySQL reports that zero rows were affected, it’s definitely
created the table:

mysql> SHOW TABLES;

dmmmm e +
| Tables in music |
dmm e +
| artist

o m e +

1 row in set (0.00 sec)
Let’s consider all this in detail. The CREATE TABLE statement has three major sections:
1. The CREATE TABLE statement, which is followed by the table name to create. In this
example, it’s artist.

2. A list of one or more columns to add to the table. In this example, we’ve added
two: artist_id SMALLINT(5) NOT NULL DEFAULT 0 and artist name CHAR(128)
default NULL. We'll discuss these in a moment.

3. Optional key definitions. In this example, we’ve defined a single key: PRIMARY KEY
(artist_id). We'll discuss keys and indexes in detail later in this section.

Notice that the CREATE TABLE component is followed by an opening parenthesis that’s
matched by a closing parenthesis at the end of the statement. Notice also that the other

182 | Chapter6: Working with Database Structures

components are separated by commas. There are other elements that you can add to a
CREATE TABLE statement, and we’ll discuss some in a moment.

Let’s discuss the column specifications. The basic syntax is as follows: name type [NOT
NULL | NULL] [DEFAULT value]. The name field is the column name, and it has the same
limitations as database names, as discussed in the previous section. It can be at most
64 characters in length, backward and forward slashes aren’t allowed, periods aren’t
allowed, it can’t end in whitespace, and case sensitivity is dependent on the underlying
operating system. The type defines how and what is stored in the column; for example,
we've seen that it can be set to CHAR for strings, SMALLINT for numbers, or TIMESTAMP for
a date and time.

If you specify NOT NULL, a row isn’t valid without a value for the column; if you specify
NULL or omit the clause, a row can exist without a value for the column. If you specify
a value with the DEFAULT clause, it’ll be used to populate the column when you don’t
otherwise provide data; this is particularly useful when you frequently reuse a default
value such as a country name. The value must be a constant (such as 0, "cat", or
20060812045623), except if the column is of the type TIMESTAMP. Types are discussed in
detail later in this section.

The NOT NULL and DEFAULT features can be used together. If you specify NOT NULL and
add a DEFAULT value, the default is used when you don’t provide a value for the column.
Sometimes, this works fine:

mysql> INSERT INTO artist SET artist_name = "Duran Duran";
Query OK, 1 row affected (0.05 sec)

And sometimes it doesn’t:

mysql> INSERT INTO artist SET artist_name = "Bob The Builder";
ERROR 1062 (23000): Duplicate entry '0' for key 1

Whether it works or not is dependent on the underlying constraints and conditions of
the database: in this example, artist_id hasa default value of 0, butit’s also the primary
key. Having two rows with the same primary-key value isn’t permitted, and so the
second attempt to insert a row with no values (and a resulting primary-key value of 0)
fails. We discuss primary keys in detail later in this section.

Column names have fewer restrictions than database and table names. What’s more,
they’re not dependent on the operating system: the names are case-insensitive and
portable across all platforms. All characters are allowed in column names, though if
you want terminate them with whitespace or include periods (or other special charac-
ters such as the semicolon), you’ll need to enclose the name with a backtick symbol
(*) on either side. We recommend that you consistently choose lowercase names for
developer-driven choices (such as database, alias, and table names) and avoid charac-
ters that require you to remember to use backticks. We also recommend being de-
scriptive with your choices: name doesn’t mean much outside of the context of the
artist table, butartist name has universal meaning across the music database. We like
using the underscore character to separate words, but that’s just a matter of style and

Creating Tables | 183

taste; you could use underscores or dashes, or omit the word-separating formatting
altogether. As with database and table names, the longest column name is 64 characters
in length.

Collation and Character Sets

Because not everyone wants to store English strings, it’s important that a database
server be able to manage non-English characters and different ways of sorting charac-
ters. When you’re comparing or sorting strings, how MySQL evaluates the result de-
pends on the character set and collation used. Character sets define what characters can
be stored; for example, you may need to store non-English characters such as 1 or ii. A
collation defines how strings are ordered, and there are different collations for different
languages: for example, the position of the character i in the alphabet is different in
two German orderings, and different again in Swedish and Finnish.

In our previous string-comparison examples, we ignored the collation and character-
set issue, and just let MySQL use its defaults; the default character set is 1latini, and
the default collation is latin1_swedish_ci. MySQL can be configured to use different
character sets and collation orders at the connection, database, table, and column
levels.

You can list the character sets available on your server with the SHOW CHARACTER SET
command. This shows a short description for each character set, its default collation,
and the maximum number of bytes used for each character in that character set:

mysql> SHOW CHARACTER SET;

B s et T T TP +
| Charset Description Default collation Maxlen |
B s et e LT TP +

bigs Big5 Traditional Chinese big5 chinese ci

dec8 DEC West European dec8 swedish ci

cp850 DOS West European cp850_general ci

hp8 HP West European hp8_english ci

koi8r KOI8-R Relcom Russian koi8r general ci

latini cp1252 West European latini swedish ci

latin2 ISO 8859-2 Central European | latin2 general ci

¥
I
¥
I
I
I
I
I
I
I
swe7 | 7bit Swedish
ascii | US ASCII ascii_general ci
I
I
I
I
I
I
I
I
I
I
I
I

—_—_—— e — + — +

+
I
+
I
I
I
I
I
I
I
swe7_swedish ci |
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
|
|
|
|
|
|
|
I
| sjis
|
I
I
I
I
I
I
I
I
I

WRRPNRPRREPNRNRPRRPRNWRREPRERRRERRLRRLRRLRN

ujis EUC-JP Japanese ujis_japanese ci
Shift-JIS Japanese sjis_japanese ci
hebrew IS0 8859-8 Hebrew hebrew_general ci
tis620 TIS620 Thai tis620_thai_ci
euckr EUC-KR Korean euckr_korean_ci
koi8u KOI8-U Ukrainian koi8u_general ci
gb2312 GB2312 Simplified Chinese gb2312 chinese ci
greek IS0 8859-7 Greek greek_general ci
cp1250 Windows Central European cp1250_general ci
gbk GBK Simplified Chinese gbk_chinese ci
latins IS0 8859-9 Turkish latin5_turkish_ci
armscii8 | ARMSCII-8 Armenian armscii8 general ci
utf8 UTF-8 Unicode utf8_general ci

184 | Chapter6: Working with Database Structures

|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

DOS Central European

Binary pseudo charset

ucs2 | UCS-2 Unicode
cp866 | DOS Russian
keybcs2 |

macce |

macroman | Mac West European
cp852 |

latin7 | ISO 8859-13 Baltic
cp1251 | Windows Cyrillic
cp1256 | Windows Arabic
cp1257 | Windows Baltic
binary |

geostd8 | GEOSTD8 Georgian
€p932 |

eucjpms |

36 rows in set (0.30 sec)

DOS Kamenicky Czech-Slovak
Mac Central European

SJIS for Windows Japanese
UJIS for Windows Japanese
__________ fm oo

‘- —_—

ucs2_general ci
cp866_general ci
keybcs2_general ci
macce_general ci
macroman_general_c
cp852_general ci
latin7_general ci
cp1251_general ci
cp1256_general ci
cp1257_general ci
binary
geostd8_general ci
€p932_japanese_ci
eucjpms_japanese c

i

i

S

WNRRPRRPRPRRRRRLRRLRRLRREN

For example, the latini character set is actually the Windows code page 1252 that
supports West European languages. The default collation for this character set is
latini_swedish_ci, which follows Swedish conventions to sort accented characters
(English is handled as you’d expect). This collation is case-insensitive, as indicated by
the letters ci. Finally, each character takes up one byte. By comparison, if you use the
ucs2 character set, each character would take up to two bytes of storage.

Similarly, you can list the collation orders and the character sets they apply to:

mysql> SHOW COLLATION;
mmmmmmmmmmmmmeeeeo

e

g

Collation
big5 chinese ci

latinl_germani ci
latini_swedish ci
latini_danish_ci
latini_german2_ci
latini_bin

latini_general ci
latini_general _cs

hebrew_general ci
gb2312 chinese ci

utf8_persian ci
utf8_esperanto_ci

eucjpms_japanese ci
eucjpms_bin

fmm e mmm
| Charset

| latina
| latina
| latina
| latina
| latina
| latina
| latina

| hebrew
| gb2312

| utf8
| utf8

| eucjpms
| eucjpms
[NP

126 rows in set (0.02 sec)

15
31
47
48
49

16

24

208
209

Fmmmmmmmen fmmmmm e
| Default | Compiled
Fmmmmmmmen P
| Yes | Yes
|
Yes | Yes
|
| Yes
| Yes
|
|
| Yes |
| Yes | Yes
| Yes
| Yes
Yes | Yes
| Yes
________ [

You can see the current defaults on your server as follows:

— — +

--------- +

Sortlen
--------- +

1

OO Rr NOBRrO

Creating Tables | 185

mysql> SHOW VARIABLES LIKE 'c%';

o o +
| Variable name | value |
e o +
character_set_client	latini
character_set_connection	latini
character set_database	latini
character_set filesystem	binary
character_set results	latini
character_set_server	latini
character_set_system	utfs
character_sets_dir	/usr/share/mysql/charsets/
collation_connection	latini_swedish _ci
collation database	latini swedish ci
collation server	latini swedish ci
o e +

14 rows in set (0.00 sec)

When you’re creating a database, you can set the default character set and sort order
for the database and its tables. For example, if you want to use the latini character set
and the latin1 swedish cs (case-sensitive) collation order, you would write:

mysql> CREATE DATABASE rose DEFAULT CHARACTER SET latini COLLATE latini_swedish_cs;
Query OK, 1 row affected (0.00 sec)

Aswe’ve previously discussed, there’s no need to do this if you’ve installed your MySQL
correctly for your language and region, and if you’re not planning on internationalizing
your application. You can also control the character set and collation for individual
tables or columns, but we won’t go into the detail of how to do that here.

Other Features

This section briefly describes other features of the MySQL CREATE TABLE statement. It
includes an example using the IF NOT EXISTS feature, and a list of advanced features
and where to find more about them in this book.

You can use the IF NOT EXISTS keyword phrase when creating a table, and it works
much as it does for databases. Here’s an example that won’t report an error even when
the artist table exists:
mysql> CREATE TABLE IF NOT EXISTS artist (
-> artist_id SMALLINT(5) NOT NULL DEFAULT o,

-> artist_name CHAR(128) DEFAULT NULL,
-> PRIMARY KEY (artist _id)

-)5
Query OK, 0 rows affected (0.00 sec)

It’s actually hard to tell success from failure here: zero rows are affected whether or not
the table exists, and no warning is reported when the table does exist.

186 | Chapter6: Working with Database Structures

There are a wide range of additional features you can add to a CREATE TABLE statement.
Many of these are advanced and aren’t discussed in this book, but you can find more
information in the MySQL manual under the heading “CREATE TABLE syntax.”
These additional features include:

The AUTO_INCREMENT feature for numeric columns
This feature allows you to automatically create unique identifiers for a table. We
discuss it in detail later in this chapter in “The AUTO_INCREMENT Feature.”

Column comments
You canadd a comment to a column; this is displayed when you use the SHOW CREATE
TABLE command that we discuss later in this section.

Foreign key constraints
You can tell MySQL to check whether data in one or more columns matches data
in another table. For example, you might want to prevent an album from being
added to the music database unless there’s a matching artist in the artist table. As
we explain in “Table Types,” we don’t recommend using foreign key constraints
for most applications. This feature is currently supported for only the InnoDB table
type.

Creating temporary tables
If you create a table using the keyword phrase CREATE TEMPORARY TABLE, it’ll be
removed (dropped) when the monitor connection is closed. This is useful for copy-
ing and reformatting data because you don’t have to remember to clean up.

Advanced table options
You can control a wide range of features of the table using table options. These
include the starting value of AUTO_INCREMENT, the way indexes and rows are stored,
and options to override the information that the MySQL query optimizer gathers
from the table.

Control over index structures
Since MySQL 4.1, for some table types, you’ve been able to control what type of
internal structure—such as a B-tree or hash table—MySQL uses for its indexes.
You can also tell MySQL that you want a full text or spatial data index on a column,
allowing special types of search.

You can check the CREATE TABLE statement for a table using the SHOW CREATE TABLE state-
ment introduced in Chapter 5. This often shows you output that includes some of the
advanced features we’ve just discussed; the output rarely matches what you actually
typed to create the table. Here’s an example for the artist table:

mysql> SHOW CREATE TABLE artist;
Fmmmmmm e B e e TR +
| Table | Create Table |
P B e T T PR +
| artist | CREATE TABLE ‘artist’ (
“artist id® smallint(5) NOT NULL default ‘o',
“artist name® char(128) default NULL,

Creating Tables | 187

PRIMARY KEY (artist id")
) ENGINE=MyISAM DEFAULT CHARSET=latini
D it B R E PP +

1 row in set (0.08 sec)

We've reformatted the output slightly to fit better in this book. You’ll notice that the
output includes content added by MySQL that wasn’t in our original CREATE TABLE
statement:

* Thenames of the table and columns are enclosed in backticks. This isn’t necessary,
butit does avoid any parsing problems that can occur through using reserved words
and special characters, as discussed previously

* An additional default ENGINE clause is included, which explicitly states the table
type that should be used. The setting in a default installation of MySQL is MyI
SAM, so it has no effect in this example

* Anadditional DEFAULT CHARSET=1latin1 clause is included, which tells MySQL what
character set is used by the columns in the table. Again, this has no effect in a
default, Latin-character-set-based installation

Column Types

This section describes the column types you can use in MySQL. It explains when each
should be used and any limitations it has. We’ve ordered the choices in two sections:
first, the commonly used, and, second, the less frequently used choices. Skip the second
partif you want to and revisit it when one of the common choices doesn’t fit your needs;
it’s certainly worth reviewing when you’re tackling the exercises at the end of this
chapter.

Common column types

The following are the six commonly used column types in MySQL tables:

INT[(width)] [UNSIGNED] [ZEROFILL]

The most commonly used numeric type. Stores integer (whole number) values in
the range —2,147,483,648 to 2,147,483,647. If the optional UNSIGNED keyword is
added, the range is 0 to 4,294,967,295. The keyword INT is short for INTEGER, and
they can be used interchangeably. An INT column requires four bytes of storage
space.

You can also include optional width and ZEROFILL arguments to left-pad the values
with zeros up to the specified length. The maximum width is 255. The width pa-
rameter has no effect on what is stored. If you store a value wider than the width,
the width value is ignored. Consider this example:

mysql> CREATE TABLE numbers (my_number INT(4) ZEROFILL);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO numbers VALUES(3),(33),(333),(3333),(33333),(333333);

188 | Chapter6: Working with Database Structures

Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM numbers;
| my_number |

+
| 0003 |
| 0033 |
| 0333 |
| 3333 |
| 33333 |
| 333333 |

+

6 rows in set (0.00 sec)

You can see that numbers shorter than four digits wide are zero-padded to four
digits; once the numbers are longer than four digits long, they are shown unaffected
by the width and the ZEROFILL parameters.

If you use ZEROFILL, MySQL automatically adds UNSIGNED to the declaration (since
zero filling makes sense only in the context of positive numbers).

DECIMAL[(width[,decimals])] [UNSIGNED] [ZEROFILL]

A commonly used numeric type. Stores a fixed-point number such as a salary or
distance, with a total of width digits of which some smaller number are decimals
that follow a decimal point. For example, a column declared as price DECI
MAL(4,2) should be used to store values in the range —99.99 to 99.99. If you try to
store a value that’s outside this range, it will be stored as the closest value in the
allowed range. For example, 100 would be stored as 99.99, and —100 would be
stored as—99.99. Note that MySQL versions before 5.03 would allow an extra digit
for positive values (numbers from —99.99 to 999.99 could be stored). The width is
optional, and a value of 10 is assumed when this is omitted. The maximum value
of width is 255.

The number of decimals is optional and, when omitted, a value of 0 is assumed;
the maximum value of decimals should be two less than the value of width. If you’re
storing only positive values, use the UNSIGNED keyword as described for INT. If you
want zero padding, use the ZEROFILL keyword for the same behavior as described
for INT. The keyword DECIMAL has three identical, interchangeable alternatives: DEC,
NUMERIC, and FIXED.

Prior to MySQL version 5.0.3, a DECIMAL column was stored as a string, and so
required exactly the number of bytes of storage space as the length of the value
(plus up to two bytes for a minus sign and a decimal point if required). Beginning
with version 5.0.3, a binary format was introduced that uses four bytes for every
nine digits. Under both approaches, the value retrieved is identical to the value
stored; this isn’t always the case with other types that contain decimal points, such
as the FLOAT and DOUBLE types described later.

Creating Tables | 189

DATE

Stores and displays a date in the format YYYY-MM-DD for the range 1000-01-01 to
9999-12-31. Dates must always be input as year, month, and day triples, but the
format of the input can vary, as shown in the following examples:

YYYY-MM-DD or YY-MM-DD
It’s optional whether you provide two-digit or four-digit years. We strongly
recommend that you use the four-digit version to avoid confusion about the
century. In practice, if you use the two-digit version, you’ll find that 70 to 99
are interpreted as 1970 to 1999, and 00 to 69 are interpreted as 2000 to 2069.

YYYY/MM/DD, YYYY:MM:DD, YY/MM/DD, or other punctuated formats
MySQL allows any punctuation characters to separate the components of a
date. We recommend using dashes and, again, avoiding the two-digit years.
YYYY-M-D, YYYY-MM-D, or YYYY-M-DD
When punctuation is used (again, any punctuation character is allowed),
single-digit days and months can be specified as such. For example, February
2,2006, can be specified as 2006-2-2. The two-digit year equivalent is available,
but not recommended.

YYYYMMDD or YYMMDD
Punctuation can be omitted in both date styles, but the digit sequences must
be six or eight digits in length.

You canalso inputa date by providing both a date and time in the formats described
later for DATETIME and TIMESTAMP, but only the date component is stored in a DATE
type column. Regardless of the input type, the storage and display type is always
YYYY-MM-DD. The zero date 0000-00-00 is allowed in all versions and can be used to
represent an unknown or dummy value. If an input date is out of range, the zero
date 0000-00-00 is stored. By default, from MySQL 5.0.2 onward, the zero date is
stored when you insert an invalid date such as 2007-02-31. Prior to that version,
invalid dates are stored provided the month is in the range 0 to 12, and the day is
in the range 0 to 31. Consider this example:

mysql> CREATE TABLE testdate (mydate DATE);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO testdate VALUES ('2007/02/0');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO testdate VALUES ('2007/02/1');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO testdate VALUES ('2007/02/31');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO testdate VALUES ('2007/02/100');
Query OK, 1 row affected, 1 warning (0.00 sec)

With a version of MySQL older than 5.0.2, we would have:

190 | Chapter6: Working with Database Structures

mysql> SELECT * FROM testdate;

| 2007-02-00 |
| 2007-02-01 |
| 2007-02-31 |
| 0000-00-00 |

4 rows in set (0.00 sec)

while with version 5.0.2 onwards, we have:

mysql> SELECT * FROM testdate;

| 2007-02-00 |
| 2007-02-01 |
| 0000-00-00 |
| 0000-00-00 |

4 rows in set (0.01 sec)

Note also that the date is displayed in the YYYY-MM-DD format, regardless of how it
was input.

TIME
Stores a time in the format HHH:MM: SS for the range -838:59:59 to 838:59:59. The
values that can be stored are outside the range of the 24-hour clock to allow large
differences between time values (up to 34 days, 22 hours, 59 minutes, and 59 sec-
onds) to be computed and stored. Times must always be input in the order days,
hours, minutes, and seconds, using the following formats:

DD HH:MM:SS, HH:MM:SS, DD HH:MM, HH:MM, DD HH, or SS
The DD represents a one-digit or two-digit value of days in the range 0 to 34.
The DD value is separated from the hour value, HH, by a space, while the other
components are separated by a colon. Note that MM: SS is not a valid combina-
tion, since it cannot be disambiguated from HH: MM.

For example, if you insert 2 13:25:59 into a TIME type column, the value
61:25:59 is stored, since the sum of 2 days (48 hours) and 13 hours is 61 hours.
If you try inserting a value that’s out of bounds, a warning is generated, and
the value is limited to the maximum time available. Similarly, if you try in-
serting an incorrect value, a warning is generated and the value is set to zero.
You can use the SHOW WARNINGS command to reports the details of the warning
generated by the previous SQL statement.

Let’s try all these out in practice:

mysql CREATE TABLE test_time(id SMALLINT, mytime TIME);
Query OK, 0 rows affected (0.00 sec)

mysql INSERT INTO test_time VALUES(1, "2 13:25:59");

Creating Tables | 191

Query OK, 1 row affected (0.00 sec)

mysql INSERT INTO test_time VALUES(2, "35 13:25:59");
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql SHOW WARNINGS;

Hmmmmmmmen +omm - o e +
| Level | Code | Message |
Hommmmmmen +omm - o e +
| Warning | 1264 | Out of range value adjusted for column 'mytime' at row 1 |
Hommmm e oo o +

1 row in set (0.00 sec)

mysql INSERT INTO test_time VALUES(3, "-35 13:25:59");
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql INSERT INTO test_time VALUES(4, "35 13:25:69");
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql SHOW WARNINGS;

T mmmmm- m e +
| Level | Code | Message |
mmmmm e mmm - e +
| Warning | 1265 | Data truncated for column 'mytime' at row 1 |
mmmmm e mmm - e +

1 row in set (0.00 sec)

mysql SELECT * FROM test_time;

61:25:59 |
838:59:59 |
-838:59:59 |
00:00:00 |

4 rows in set (0.00 sec)

Note how the out-of-range and invalid times are stored.

H:M:S, and single-, double-, and triple-digit combinations
You can use different combinations of digits when inserting or updating data;
MySQL converts them into the internal time format and displays them con-
sistently. For example, 1:1:3 is equivalent to 01:01:03. Different numbers of
digits can be mixed; for example, 1:12:3 is equivalent to 01:12:03. Consider
these examples:

mysql> CREATE TABLE mytime (testtime TIME);
Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO mytime VALUES

-> ('-1:1:1"), ('1:1:1"),

-> ('1:23:45'), ('123:4:5'),

-> ('123:45:6'), ('-123:45:6');
Query OK, 4 rows affected (0.00 sec)

192 | Chapter6: Working with Database Structures

Records: 4 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM mytime;
| testtime |

| -01:01:01 |
| o1:01:01 |
| 01:23:45 |
| 123:04:05 |
| 123:45:06 |
| -123:45:06 |

5 rows in set (0.01 sec)

Note that hours are shown with two digits for values within the range —99 to
+99.

HHMMSS, MMSS, and SS
Punctuation can be omitted, but the digit sequences must be two, four, or six
digits in length. Note that the rightmost pair of digits is always interpreted as
a SS (seconds) value, the second next rightmost pair (if present) as MM (minutes),
and the third rightmost pair (if present) as HH (hours). The result is that a value
such as 1222 is interpreted as 12 minutes and 22 seconds, not 12 hours and 22
minutes.

You canalsoinput a time by providing both a date and time in the formats described
for DATETIME and TIMESTAMP, but only the time component is stored in a TIME type
column. Regardless of the input type, the storage and display type is always
HH:MM:SS. The zero time 00:00:00 can be used to represent an unknown or dummy
value. If an input date is invalid or out of range, the zero time 00:00:00 is stored.
The TIME type has an additional fraction component for storing fractions of sec-
onds, but, while a time value can be input with a fractional component, it is pres-
ently truncated before storage by MySQL; we’ve therefore omitted it from our
discussions.

TIMESTAMP

Stores and displays a date and time pair in the format YYYY-MM-DD HH:MM:SS for the
range 1970-01-01 00:00:00 to sometime in 2037. The behavior of this type has
varied over the life of MySQL (and continues to do so!), and this section describes
only the version implemented since MySQL 4.1. The key features of a TIMESTAMP
column are twofold. First, if you assign NULL to it, it’s set to the current date and
time. Second, a developer-selected TIMESTAMP column in a table can be automati-
cally updated to the current date and time when a row is inserted or updated. You
can always explicitly set a column to a value you want by assigning that value to
the column, regardless of whether it’s the automatically updating column. The
automatic update feature is discussed later in this section. A nonupdating near-
equivalent is the DATETIME type described later in this section.

Creating Tables | 193

The value stored always matches the template YYYY-MM-DD HH:MM:SS, but the value
can be provided in a wide range of formats:

YYYY-MM-DD HH:MM:SS or YY-MM-DD HH:MM:SS
The date and time components follow the same relaxed restrictions as the
DATE and TIME components described previously (however, as of MySQL 5.0.2,
zero values aren’t permitted). This includes allowance for any punctuation
characters, including (unlike TIME) flexibility in the punctuation used in the
time component. For example, 2005/02/15 12+22+23 is valid.

YYYYMMDDHHMMSS or YYMMDDHHMMSS
Punctuation can be omitted, but the string should be either 12 or 14 digits in
length. We recommend only the unambiguous 14-digit version, for the reasons
discussed for the DATE type. You can specify values with other lengths without
providing separators, but we don’t recommend doing so.

Let’s discuss the automatic-update feature in detail. Only one TIMESTAMP column
per table can be automatically set to the current date and time on insert or update.
You control this by following these steps when creating a table:

1. Choose the column you want to be automatically updated.

2. If you have other TIMESTAMP columns in the table, set the ones that precede the
selected column in the CREATE TABLE statement to have a constant default (such
as DEFAULT o).

3. For the automatically updating column, decide which behavior you want:

a. If you want the timestamp to be set only when a new row is inserted into
the table, add DEFAULT CURRENT TIMESTAMP to the end of the column dec-
laration.

b. Ifyou don’t want a default timestamp but want the current time to be used
whenever the data in a row is updated, add ON UPDATE CURRENT TIME
STAMP to the end of the column declaration.

c. If you want both of the above—that is, you want the timestamp to be set
to the current time in each new row or whenever an existing row is modi-
fied— add DEFAULT CURRENT TIMESTAMP ON UPDATE CURRENT TIMESTAMP to
the end of the column declaration.

If you specify DEFAULT NULL for a TIMESTAMP column, it will be interpreted differently
depending on whether there are any other TIMESTAMP columns before it in the table.
DEFAULT NULL is handled as DEFAULT CURRENT_TIMESTAMP for the first timestamp col-
umn, but as DEFAULT 0 for any subsequent ones.

Consider this example:

mysql> CREATE TABLE mytime(id INT NOT NULL,
-> changetime TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytime VALUES(1,''),(2,'2006-07-16 1:2:3"'),(3,NULL);
Query OK, 3 rows affected, 2 warnings (0.01 sec)

194 | Chapter6: Working with Database Structures

Records: 3 Duplicates: 0 Warnings: 2

mysql> SELECT * FROM mytime;
e +
| id | changetime |
B e +
1	0000-00-00 00:00:00
2	2006-07-16 01:02:03
3	2006-07-16 01:05:24
B R LR PP PP +
3 rows in set (0.00 sec)

Note how the current time is stored when we ask to insert a NULL value. Now, let’s
change the id for the first row:
mysql> UPDATE mytime SET id=4 WHERE id=1;

Query OK, 1 row affected (0.08 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM mytime;
e e P P e +
| id | changetime |
B R e +
4	2006-07-16 01:05:42
2	2006-07-16 01:02:03
3	2006-07-16 01:05:24
B e e P +
3 rows in set (0.00 sec)

As you can see, the timestamp is updated to the current timestamp.

There are other variations on how you can control which column updates
automatically, but if you stick to the previous steps, you’ll get the behavior you
want. You can find more examples of using timestamps later in “The Sample Music
Database.”

CHAR[(width)]
The most commonly used string type. CHAR stores a fixed-length string (such as a
name, address, or city) of length width. If a width is not provided, CHAR(1) is as-
sumed. The maximum value of width is 255. With MySQL versions between 4.1.0
and 5.0.2, MySQL accepts values greater than 255 and silently changes the CHAR
type to the smallest TEXT type that is suitable; we discuss the TEXT type later in this
section.

You can in fact define a special CHAR(0) NULL column that takes up only one bit of
storage. This provides two handy features. First, it allows you to include a dummy
column in a table that doesn’t do anything (which might be useful as a placeholder
for a future feature, or to be backward-compatible with an old application). Sec-
ond, it allows you to store one of two values: NULL or the empty string ' ', giving
you very compact storage of binary (Boolean) values. To help you understand this
better, let’s create a table with a CHAR(0) field, and an id field to help differentiate
between entries:

Creating Tables | 195

mysql> CREATE TABLE bool(id INT, bit CHAR(0) NULL);
Query OK, 0 rows affected (0.02 sec)

Now, let’s add three values: an empty string ' ', NULL, and the character 1:

mysql> INSERT INTO bool VALUES (1,''), (2,NULL), (3,'1');
Query OK, 3 rows affected, 1 warning (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 1

These all look the same:

mysql> SELECT * FROM bool;

R EEEEE +
| id | bit |
R EEEEE +
[1 | |
|2 | |
3 | |
R EEEEE +

3 rows in set (0.00 sec)

However, one is NULL:
mysql> SELECT * FROM bool WHERE bit IS NULL;

R +
| id | bit |
e +
l2 | |
e +

1 row in set (0.00 sec)

and the other two aren’t:

mysql> SELECT * FROM bool WHERE bit IS NOT NULL;

Fommetmmmm-- +
| id | bit |
Fommetmmmm-- +
[1 | |
3 | |
-t +

2 rows in set (0.01 sec)

In all other cases, the CHAR type takes exactly the number of bytes in storage space
as the width of the column (assuming your chosen character set uses one byte per
character). Values that are less than width characters in length are stored left-
aligned in the allocated space, with space character padding on the right side. All
trailing spaces are ignored when retrieving and displaying values, as in this
example:

mysql> CREATE TABLE show_padding(mystring CHAR(10));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO show_padding VALUES ('a'),('abc'),('abcde'),('abcdefg ');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

196 | Chapter6: Working with Database Structures

mysql> SELECT * FROM show_padding;

| abcde

4 rows in set (0.01 sec)

Asyou can see, the trailing spaces aren’t shown in the last row. They’re also ignored
if you try to find strings that have a trailing space:

mysql> SELECT * FROM show_padding WHERE mystring LIKE '% ';
Empty set (0.00 sec)

Since trailing spaces are ignored, no matches are reported.

Note that this has an interesting side effect: you can’t differentiate between strings
of spaces alone; the strings " " and " are considered to be the same thing.
Consequently, you can’t use one value in the primary key if you’ve already got the
other. Consider an example; we can create a table to store names and email ad-
dresses, with the email address as the primary key:

mysql> CREATE TABLE contacts (name CHAR(40), email CHAR(40) PRIMARY KEY);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO contacts VALUES('Sarah', 'sarah@learningmysql.com');
Query OK, 1 row affected (0.01 sec)

So far, so good. Now, if we don’t know someone’s email address, we can store an
empty string:

mysql> INSERT INTO contacts VALUES('Zahra', '');
Query OK, 1 row affected (0.00 sec)

Note that an empty string is not NULL, so MySQL doesn’t complain; however, since
the email address is the primary key, we can’t store another empty string. Let’s try
storing a single space:

mysql> INSERT INTO Contacts VALUES('Samaneh', ' ');
ERROR 1062 (23000): Duplicate entry '' for key 1

MySQL complains about a duplicate key, since the single space is treated as an
empty string. Trying to insert the string "not sure" works, but then
"not sure " (with a trailing space) doesn’t work:

mysql> INSERT INTO Contacts VALUES('Samaneh', 'not sure');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Contacts VALUES('Sadri', 'not sure ');
ERROR 1062 (23000): Duplicate entry 'not sure' for key 1

Leading spaces don’t cause any problems:

Creating Tables | 197

mysql> INSERT INTO Contacts VALUES('Saleh', ' not sure');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Contacts VALUES('Susan', ' not sure');
Query OK, 1 row affected (0.00 sec)

You should use the BLOB or TEXT types described later if you don’t want this be-
havior.

That concludes our discussion of the six common column types used in MySQL. You’ll
find examples using some of these types in “The Sample Music Database,” later in this
chapter. The remainder of this section covers the other type choices available in
MySQL, beginning with the other choices for numeric values.

Other integer types

In “Common column types,” we saw the INT type for storing integer numbers. In this
section, we’ll look at a few other integer types that you can use. We recommend that
you always choose the smallest possible type to store values. For example, if you're
storing age values, choose TINYINT instead of the regular INT. Smaller types require less
storage space; this reduces disk and memory requirements and speeds up the retrieval
of data from disk. Indeed, column type tuning is a key step that professional database
tuners use in optimizing database applications.

Here is the list of the integer types—besides INT—that you can choose from. Be aware
that the general issues described for INT apply to these types as well:

BOOLEAN

A type introduced in MySQL 4.1 that stores a Boolean value of false (zero) or true
(nonzero). For example, it might be used to store whether a person is alive (true)
or dead (false), a customer is active (true) or inactive (false), or whether a customer
wants to receive emails (true) or not (false). The BOOLEAN type has the synonyms
BOOL and BIT. It is equivalent to TINYINT(1), and so requires one byte of storage
space; you can achieve more compact, one-bit Boolean values by using CHAR(0), as
described previously.

TINVINT[(width)] [UNSIGNED] [ZEROFILL]
Stores integer (whole number) values in the range —128 to 127. The width,
UNSIGNED, and ZEROFILL options behave as for INT. When UNSIGNED is used, a column
can store values in the range 0 t0 255. A TINYINT column requires one byte of storage
space.

SMALLINT[(width)] [UNSIGNED] [ZEROFILL]
Stores integer (whole number) values in the range —32,768 to 32,767. The width,
UNSIGNED, and ZEROFILL options behave as for INT. When UNSIGNED is used, a column
can store values in the range 0 to 65,535. A SMALLINT column requires two bytes of
storage space.

198 | Chapter6: Working with Database Structures

MEDIUMINT[(width)] [UNSIGNED] [ZEROFILL]
Stores integer (whole number) values in the range —8,388,608 to 8,388,607. The
width, UNSIGNED, and ZEROFILL options behave as for INT. When UNSIGNED is used,
a column can store values in the range 0 to 16,777,215. A MEDIUMINT column re-
quires three bytes of storage space.

BIGINT[(width)] [UNSIGNED] [ZEROFILL]
Stores integer (whole number) values in the range —9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. The width, UNSIGNED, and ZEROFILL options behave as
for INT. When UNSIGNED is used, a column can store values in the range O to
18,446,744,073,709,551,615. A BIGINT column requires eight bytes of storage
space.

Other rational number types

In “Common column types,” we discussed the fixed-point DECIMAL type. There are two
other types that support decimal points: DOUBLE (also known as REAL) and FLOAT. They’re
designed to store approximate numeric values rather than the exact values stored by
DECIMAL. Why would you want approximate values? The answer is that many numbers
with a decimal point are approximations of real quantities. For example, suppose you
earn $50,000 per annum and you want to store it as a monthly wage. When you convert
it to a per-month amount, it’s $4,166 plus 66 and 2/3rds cents. If you store this as
$4,166.67, it’s not exact enough to convert to a yearly wage (since 12 multiplied by
$4,166.67 is $50,000.04). However, if you store 2/3rds with enough decimal places,
it’s a closer approximation, and you’ll find that it is accurate enough to correctly mul-
tiply to obtain the original value in a high-precision environment such as MySQL.
That’s where DOUBLE and FLOAT are useful: they let you store values such as 2/3rds or
pi with a large number of decimal places, allowing accurate approximate representa-
tions of exact quantities.

Let’s continue the previous example using DOUBLE. Suppose you create a table as follows:

mysql> CREATE TABLE wage (monthly DOUBLE);
Query OK, 0 rows affected (0.09 sec)

You can now insert the monthly wage using:

mysql> INSERT INTO wage VALUES (50000/12);
Query OK, 1 row affected (0.00 sec)

When you multiply it to a yearly value, you get an accurate approximation:

mysql> SELECT monthly*12 FROM wage;

B ittt +
| monthly*12 |
B ettt +
| 50000 |
B et +

1 row in set (0.00 sec)

Here are the details of the DOUBLE and FLOAT types:

Creating Tables | 199

FLOAT[(width, decimals)] [UNSIGNED] [ZEROFILL] or FLOAT[(precision)] [UNSIGNED]

[ZEROFILL]
Stores floating-point numbers. It has two optional syntaxes: the first allows an
optional number of decimals and an optional display width, and the second allows
an optional precision that controls the accuracy of the approximation measured
in bits. Without parameters, the type stores small, four-byte, single-precision
floating-point values; usually, you use it without providing any parameters. When
precision is between 0 and 24, the default behavior occurs. When precision is
between 25 and 53, the type behaves as for DOUBLE. The width has no effect on what
is stored, only on what is displayed. The UNSIGNED and ZEROFILL options behave as
for INT.

DOUBLE[(width, decimals)] [UNSIGNED] [ZEROFILL]

Stores floating-point numbers. It has one optional syntax: it allows an optional
number of decimals and an optional display width. Without parameters, the type
stores normal, eight-byte, double-precision floating point values; usually, you use
it without providing any parameters. The width has no effect on what is stored,
only on what is displayed. The UNSIGNED and ZEROFILL options behave as for INT.
The DOUBLE type has two identical synonyms: REAL and DOUBLE PRECISION. The
REAL alternative can be made to behave as FLOAT using a nondefault parameter to
the MySQL server, but this is not discussed here.

Other date and time types

We discussed the DATE, TIME, and TIMESTAMP types in “Common column types.” There
are two more date and time types: YEAR for storing only year values, and DATETIME for
storing date and time combinations without the automatic-update feature of
TIMESTAMP. These work as follows:

YEAR[(digits)]

Stores a two- or four-digit year, depending on whether 2 or 4 is passed as the op-
tional digits parameter. Without the parameter, four digits is the default. The two-
digit version stores values from 70 to 69, representing 1970 to 2069; again, we
caution against using two-digit dates. The four-digit version stores values in the
range 1901 to 2155, as well as the zero year, 0000. Illegal values are converted to
the zero date. You can input year values as either strings (such as ' 2005 ") or integers
(such as 2005). The YEAR type requires one byte of storage space.

DATETIME

Stores and displays a date and time pair in the format YYYY-MM-DD HH:MM:SS for the
range 1000-01-01 00:00:00 to 9999-12-31 23:59:59. As for TIMESTAMP, the value
stored always matches the template YYYY-MM-DD HH:MM:SS, but the value can be
input in the same formats listed for the TIMESTAMP description. If you assign only a
date to a DATETIME column, the zero time 00:00:00 is assumed. If you assign only a
time to a DATETIME column, the zero date 0000-00-00 is assumed. This type does
not have the automatic update features of TIMESTAMP.

200 | Chapter6: Working with Database Structures

Other string types

The remaining types in MySQL are variants of the string type; here’s a list that you can
choose from—excepting CHAR, which was described in “Common column types”:

VARCHAR (width)
A commonly used string type. Stores variable-length strings (such as names, ad-
dresses, or cities) up to a maximum width. The maximum value of width is 65,535
characters.

Prior to MySQL version 5.0.3, the maximum length was 255 characters. Trying to
specify a longer length would cause an error in versions up to 4.1.0. Between ver-
sions 4.1.0 and 5.0.3, the server would silently change the column type to the
smallest TEXT type that would hold values of that length

A VARCHAR type incurs one or two extra bytes of overhead to store the length of the
string, depending on whether the string is shorter than or longer than 255
characters.

Trailing spaces are removed when a value is stored; you can use TEXT or BLOB types
to avoid this behavior.

BINARY(width) and VARBINARY(width)
Available since MySQL 4.1.2, these are equivalent to CHAR and VARCHAR but allow
you to store binary strings. Binary strings have no character set, and sorting them
is case-sensitive. Read the descriptions of CHAR and VARCHAR for other details. If
you’re using a MySQL version earlier than 4.1.2, you can create the same behavior
by adding the keyword BINARY after the CHAR or VARCHAR declaration, as in CHAR(12)
BINARY.

BLOB

The commonly used type for storing large data. Stores a variable amount of data
(such as an image, video, or other nontext file) up to 65,535 bytes in length. The
data is treated as binary—that is, no character set is assumed, and comparisons
and sorts are case-sensitive. There is no trailing-space-removal behavior as for the
CHAR or VARCHAR types. In addition, a DEFAULT clause is not permitted, and you must
take a prefix of the value when using it in an index (this is discussed in the next
section).

TEXT
A commonly used type for storing large string data objects. Stores a variable
amount of data (such as a document or other text file) up to 65,535 bytes in length.
Itis identical to BLOB, except that the data is treated as belonging to a character set.
Since MySQL 4.1, the character set can be set for each column, and prior to that
the character set of the server was assumed. Comparisons and sorts are case-in-
sensitive.

TINYBLOB and TINYTEXT
Identical to BLOB and TEXT, respectively, except that a maximum of 255 bytes can
be stored.

Creating Tables | 201

MEDIUMBLOB and MEDIUMTEXT
Identical to BLOB and TEXT, respectively, except thata maximum of 16,777,215 bytes
can be stored.

LONGBLOB and LONGTEXT
Identical to BLOB and TEXT, respectively, except that a maximum of four gigabytes
of data can be stored. The effective maximum can vary depending on the memory
available on the server and its configuration.

ENUM('value1'[, ' 'value2'[, ...]]

A list, or enumeration of string values. A column of type ENUM can be set to a value
from the list value1, value2, and so on, up to a maximum of 65,535 different values.
While the values are stored and retrieved as strings, what’s stored in the database
is an integer representation. The enumerated column can contain NULL (stored as
NULL), the empty string ' ' (stored as 0), or any of the valid elements (stored as 1, 2,
3, and so on). You can prevent NULL values from being accepted by declaring the
column as NOT NULL when creating the table.

This type is a compact way of storing values from a list of predefined values, such
as state or country names. Consider this example using fruit names; the name can
be any one of the predefined values Apple, Orange, or Pear (in addition to NULL and
the empty string):

mysql> CREATE TABLE fruits_enum (fruit_name ENUM('Apple', 'Orange', 'Pear'));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO fruits_enum VALUES ('Apple');
Query OK, 1 row affected (0.00 sec)

If you try inserting a value that’s not in the list, MySQL warns you that it didn’t
store the data you asked:

mysql> INSERT INTO fruits_enum VALUES ('Banana');
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;

Fommmm o o B LR L e P PP PP +
| Level | Code | Message |
Fommmm o to-mm - B R E e P PP P PP +
| Warning | 1265 | Data truncated for column 'fruit name' at row 1 |
Fommmm - e B et T L TR PP +

1 row in set (0.00 sec)

Similarly, a list of several allowed values isn’t accepted either:

mysql> INSERT INTO fruits_enum VALUES ('Apple,Orange');
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;

Hmmmmmmem 4 n e +
| Level | Code | Message |
Hmmmmm e 4 m e e +
| Warning | 1265 | Data truncated for column 'fruit name' at row 1 |

202 | Chapter6: Working with Database Structures

V413HAV
Typewritten Text
V413HAV

Hmmmmm e Hmmm e m e e e e +
1 row in set (0.00 sec)

Displaying the contents of the table, you can see that when you try to store anything
that’s not in the valid values, an empty string is stored instead:

mysql> SELECT * FROM fruits_enum;

Hmmm e +
| fruit_name |
Hmmm e +
| Apple |
| |
| |
Hmmmmm e +

3 rows in set (0.00 sec)

You can also specify a default value other than the empty string:

mysql> CREATE TABLE new_fruits_enum (fruit_name ENUM('Apple’, 'Orange', 'Pear')
-> DEFAULT 'Pear');
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO new_fruits_enum VALUES();
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM new_fruits_enum;

dmmmmm oo +
| fruit_name |
dmmmmm oo +
| Pear |
gmmmmm oo +

1 row in set (0.00 sec)

Here, not specifying a value results in the default value Pear being stored.

SET('value1'[, 'value2'[, ...]1])

A set of string values. A column of type SET can be set to zero or more values from
the list value1, value2, and so on, up to a maximum of 64 different values. While
the values are strings, what’s stored in the database is an integer representation.
SET differs from ENUM in that each row can store only one ENUM value in a column,
but can store multiple SET values. This type is useful for storing a selection of
choices from a list, such as user preferences. Consider this example using fruit
names; the name can be any combination of the predefined values:

mysql> CREATE TABLE fruits_set (fruit_name SET('Apple’, 'Orange', 'Pear'));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO fruits_set VALUES ('Apple');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO fruits_set VALUES ('Banana');
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
REEEEEEE Hommmo- e e e +

Creating Tables | 203

| Level | Code | Message |
Hmmmmm e Hmmm e m e e e +

| Warning | 1265 | Data truncated for column 'fruit_name' at row 1 |
Hmmmmm e Hmmm e e e e e +

1 row in set (0.00 sec)

mysql> INSERT INTO fruits_set VALUES ('Apple,Orange');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM fruits_set;

Hmmmm e +
| fruit_name |
Hmmmmmmmm e +
| Apple |
| Apple,Orange |
Hmm e mm e +

3 rows in set (0.01 sec)

Again, note that we can store multiple values from the set in a single field, and that
an empty string is stored for invalid input.

As with numeric types, we recommend that you always choose the smallest possible
type to store values. For example, if you’re storing a city name, use CHAR or VARCHAR,
rather than, say, the TEXT type. Having shorter columns helps keep your table size down,
which in turns helps performance when the server has to search through a table.

Using a fixed size with the CHAR type is often faster than using a variable size with
VARCHAR, since the MySQL server knows where each row starts and ends, and can
quickly skip over rows to find the one it needs. However, with fixed-length fields, any
space that you don’t use is wasted. For example, if you allow up to 40 characters in a
city name, then CHAR(40) will always use up 40 characters, no matter how long the city
name actually is. If you declare the city name to be VARCHAR(40), then you’ll use up only
as much space as you need, plus one byte to store the name length. If the average city
name is 10 characters long, this means that using a variable length field will take up 29
fewer bytes per entry; this can make a big difference if you’re storing millions of
addresses.

In general, if storage space is at a premium or you expect large variations in the length
of strings that are to be stored, use a variable-length field; if performance is a priority,
use a fixed length.

Keys and Indexes

You’ll find that almost all tables you use will have a PRIMARY KEY clause declared in their
CREATE TABLE statement. The reasons why you need a primary key are discussed in
Chapter 4. This section discusses how primary keys are declared, what happens behind
the scenes when you do so, and why you might want to also create other keys and
indexes on your data.

204 | Chapter6: Working with Database Structures

A primary key uniquely identifies each row in a table. When you declare one to MySQL,
it creates a new file on disk that stores information about where the data from each row
in the table is stored. This information is called an index, and its purpose is to speed
up searches that use the primary key. For example, when you declare PRIMARY KEY
(artist_id) in the artist table in the music database, MySQL creates a structure that
allows it to find rows that match a specificartist_id (or a range of identifiers) extremely
quickly. This is very useful to match artists to albums, tracks, and playlist information.
You can display the indexes available on a table using the SHOW INDEX command:

mysql> SHOW INDEX FROM artist;

Hmmm e Hmmm e Hmmm e O EEEEEEEEE Hmmmmmm e Hmmm e +o..
| Table | Non_unique | Key name | Seq_in_index | Column_name | Collation |...
Hmmmmm e e Hmmmmm e LR TR REEEEET Hmmm e +o..
| artist | o | PRIMARY | 1 | artist_id A [...
Hmmm e Hmmm e Hmmmmmmmm e O EEECEEEEEE Hmmm e R EREEEEEEE +
e b Hmmmmm e Hmmm e Hmmm e Hmmm e Ao +
... | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
e b Hmmmmmmmeem Hmmm e Hmmm e Hmmm e Hmmmmmmem +

| 6 | NULL | | | BTREE |

Hmmmmmm e Hmmmmm e Hmmm e Hmmm e O EEEEE Hmmm e +

1 row in set (0.00 sec)

We've wrapped the output here so that it would fit on the page. The cardinality is the
number of unique values in the index; for an index on a primary key, this is the same
as the number of rows in the table.

Note that all columns that are part of a primary key must be declared as NOT NULL, since
they must have a value for the row to be valid. Without the index, the only way to find
rows in the table is to read each one from disk and check whether it matches the
artist_id you’re searching for. For tables with many rows, this exhaustive, sequential
searching is extremely slow. However, you can’t just index everything; we’ll come back
to this point at the end of this section.

You can create other indexes on the data in a table. You do this so that other searches
—on other columns or combinations of columns—are extremely fast and in order to
avoid sequential scans. For example, suppose you often want to search by
artist_name. You can drop the table and modify the CREATE TABLE definition to add an
extra index:

mysql> DROP TABLE artist;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE artist (
-> artist_id SMALLINT(5) NOT NULL DEFAULT o,
-> artist_name CHAR(128) DEFAULT NULL,
-> PRIMARY KEY (artist_id),
-> KEY artist_name (artist_name)
-);
Query OK, 0 rows affected (0.06 sec)

Creating Tables | 205

You can see we’ve used the keyword KEY to tell MySQL that we want an extra index;
you can use the word INDEX in place of KEY. Following this, we’ve named the index—
in this example, we’ve named it after the column name—and then we’ve included the
column to index in parentheses. You can also add indexes after tables are created—in
fact, you can pretty much change anything about a table after its creation—and this is
discussed in “Altering Structures.”

You can build an index on more than one column. For example, consider the following
customer table:

mysql> CREATE TABLE customer (

-> cust_id INT(4) NOT NULL DEFAULT o,

-> firstname CHAR(50),

-> secondname CHAR(50),

-> surname CHAR(50),

-> PRIMARY KEY (cust_id),

-> KEY names (firstname, secondname, surname));
Query OK, 0 rows affected (0.01 sec)

You can see that we've added a primary key index on the cust_id identifier column,
and we’ve also added another index—called names—that includes the firstname,
secondname, and surname columns in this order. Let’s now consider how you can use
that extra index.

You can use the names index for fast searching by combinations of the three name
columns. For example, it’s useful in the following query:
mysql> SELECT * FROM customer WHERE
-> firstname = "Rose" AND

-> secondname = "Elizabeth" AND
-> surname = "Williams";

We know it helps the search, because all columns listed in the index are used in the
query. You can use the EXPLAIN statement to check whether what you think should
happen is in fact happening:
mysql> EXPLAIN SELECT * FROM customer WHERE
-> firstname = "Rose" AND

-> secondname = "Elizabeth" AND
-> surname = "Williams";

B e LR Fommmm oo EREEE T e +...

| id | select type | table | type | possible keys |...

B e LR Fommmm oo Fo--m-- e +...

| 1| SIMPLE | customer | ref | names [...

B e e Fommmm o Fo--m-- B b +
R tommmm oo B +---m-- B iatatats +
..| key | key_len | ref | rows | Extra |
R B o mm e mmmm e dmmmmm e +
..| names | 153 | const,const,const | 1 | Using where

mmmm B dmm e e Fmmmmm e +

1 row in set (0.00 sec)

206 | Chapter6: Working with Database Structures

We've reformatted the output slightly to fit better in the book. You can see that MySQL
reports that the possible_keys are names (meaning that the index could be used for this
query) and that the key that it’s decided to use is names. So, what you expect and what
is happening are the same, and that’s good news! You’ll find out more about the
EXPLAIN statement in Chapter 7.

The index we’ve created is also useful for queries on only the firstname column. For
example, it can be used by the following query:

mysql> SELECT * FROM customer WHERE
-> firstname = "Rose";

You can use EXPLAIN to check whether the index is being used. The reason it can be
used is because the firstname column is the first listed in the index. In practice, this
means that the index clusters, or stores together, information about rows for all people
with the same first name, and so the index can be used to find anyone with a matching
first name.

The index can also be used for searches involving combinations of first name and sec-
ond name, for exactly the same reasons we’ve just discussed. The index clusters to-
gether people with the same first name, and within that it clusters people with identical
first names ordered by second name. So, it can be used for this query:

mysql> SELECT * FROM customer WHERE

-> firstname = "Rose" AND
-> secondname = "Elizabeth";

However, the index can’t be used for this query because the leftmost column in the
index, firstname, does not appear in the query:
mysql> SELECT * FROM customer WHERE

-> surname = "Williams" AND
-> secondname = "Elizabeth";

The index should help narrow down the set of rows to a smaller set of possible answers.
For MySQL to be able to use an index, the query needs to meet both the following
conditions:

1. The leftmost column listed in the KEY (or PRIMARY KEY) clause must be in the query.
2. The query must contain no OR clauses for columns that aren’t indexed.

Again, you can always use the EXPLAIN statement to check whether an index can be used
for a particular query.

Before we finish this section, here are a few ideas on how to choose and design indexes.
When you’re considering adding an index, think about the following:

* Indexes cost space on disk, and they need to be updated whenever data changes.
If your data changes frequently, or lots of data changes when you do make a change,
indexes will slow the process down. However, in practice, since SELECT statements

Creating Tables | 207

(data reads) are usually much more common than other statements (data modifi-
cations), indexes are usually beneficial.

* Onlyaddanindex that’ll be used frequently. Don’t bother indexing columns before
you see what queries your users and your applications need. You can always add
indexes afterward.

* If all columns in an index are used in all queries, list the column with the highest
number of duplicates at the left of the KEY clause. This minimizes index size.

* The smaller the index, the faster it’ll be. If you index large columns, you’ll get a
larger index. This is a good reason to ensure your columns are as small as possible
when you design your tables.

* For long columns, you can use only a prefix of the values from a column to create
the index. You can do this by adding a value in parentheses after the column def-
inition, such as KEY names (firstname(3), secondname(2), surname(10)). This
means that only the first three characters of firstname are indexed, then the first
two characters of secondname, and then 10 characters from surname. This is a sig-
nificant saving over indexing 50 characters from each of the 3 columns! When you
do this, your index will be less able to uniquely identify rows, but it’ll be much
smaller and still reasonably good at finding matching rows.

The AUTO_INCREMENT Feature

MySQL’s proprietary AUTO_INCREMENT feature allows you to create a unique identifier
for a row without running a SELECT query. Here’s how it works. Suppose you drop and
re-create the artist table as follows:

mysql> DROP TABLE artist;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE artist (
-> artist_id SMALLINT(5) NOT NULL AUTO_INCREMENT,
-> artist_name CHAR(128) DEFAULT NULL,
-> PRIMARY KEY (artist_id)

-)5
Query OK, 0 rows affected (0.06 sec)

You can now insert rows, without providing an artist_id:

mysql> INSERT INTO artist VALUES (NULL, "The Shamen");
Query OK, 1 row affected (0.06 sec)

mysql> INSERT INTO artist VALUES (NULL, "Probot");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO artist VALUES (NULL, "The Cult");
Query OK, 1 row affected (0.00 sec)

208 | Chapter6: Working with Database Structures

When you view the data in this table you can see that each artist has a meaningful
artist_id:

mysql> SELECT * FROM artist;

Hmmm e Hmmm e +
| artist_id | artist_name |
Hmmm e Hmmm e +
1	The Shamen
2	Probot
3	The Cult
R CREEEEEEE Hmmm e +

3 rows in set (0.01 sec)
Each time an artist is inserted, a unique artist_id is created for the new row.

Let’s consider how the new feature works. You can see that the artist_id column is
declared as an integer with the clauses NOT NULL AUTO_INCREMENT. The AUTO_INCREMENT
keyword tells MySQL that when a value isn’t provided for this column, the value allo-
cated should be one more than the maximum currently stored in the table. The
AUTO_INCREMENT sequence begins at 1 for an empty table.

The NOT NULL is required for AUTO_INCREMENT columns; when you insert NULL (or O,
though this isn’t recommended), the MySQL server automatically finds the next avail-
able identifier and assigns it to the new row. You can manually insert negative values
if the column was not defined as UNSIGNED; however, for the next automatic increment,
MySQL will simply use the largest (most positive) value in the column, or start from 1
if there are no positive values.

The AUTO_INCREMENT feature has the following requirements:

¢ The column it is used on must be indexed.
¢ The column that is it used on cannot have a DEFAULT value.
* There can be only one AUTO_INCREMENT column per table.

MySQL supports different table types; we’ll learn more about these in “Table Types”
in Chapter 7. When you’re using the default MyISAM table type, you can use the
AUTO_INCREMENT feature on keys that comprise multiple columns. In our music database
example, we could create the album table as follows:
mysql> CREATE TABLE album (
-> artist_id INT(5) NOT NULL,
-> album_id INT(4) NOT NULL AUTO_INCREMENT,

-> album_name CHAR(128) DEFAULT NULL,
-> PRIMARY KEY (artist_id, album_id)

-);
Query OK, 0 rows affected (0.00 sec)

You can see that the primary key is on two columns—artist_id and album id—and
that the AUTO_INCREMENT feature is applied to the album_id column.

Creating Tables | 209

Suppose you want to insert two albums for The Shamen, the artist we added earlier
with an artist_id of 1. Here’s how you do it:

mysql> INSERT INTO album VALUES (1, NULL, "Boss Drum");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO album VALUES (1, NULL, "Entact");
Query OK, 1 row affected (0.00 sec)

Now, let’s inspect the results:

mysql> SELECT * FROM album WHERE artist_id = 1;

Hmmmm e Hmmmm e o +
| artist_id | album_id | album_name |
Hmmmm e Hmmmm e Hmmmmmmmmmee +
| 1| 1 | Boss Drum |
| 1| 2 | Entact |
Hmmmm e Hmmmm e Hmmmmmmmmmee +

2 rows in set (0.00 sec)

You can see that the correct album_id values are assigned; this is just as we’d expect.
Now, consider what happens when we add two albums for the artist “The Cult”:

mysql> INSERT INTO album VALUES (3, NULL, "Electric");
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO album VALUES (3, NULL, "Sonic Temple");
Query OK, 1 row affected (0.00 sec)

Here are the results:

mysql> SELECT * FROM album WHERE artist_id = 3;

mmmmm oo mmmmm e mmmmm e om +
| artist id | album id | album name |
fmmmmm e mmmmm mmmmm e +
| 3| 1 | Electric |
| 3| 2 | Sonic Temple |
mmmmm e mmmmm mmmm e +

2 rows in set (0.00 sec)

You can see how the feature works with two columns in the primary key: it’s reused
the artist_id value that was used for The Cult, and the weak key (album_id) is incre-
mented automatically. This ensures that the album primary key (the combination of
artist_id and album_id) is unique for each album. We now have albums 1 and 2 for
The Shamen (with an artist_id of 1), and albums 1 and 2 for The Cult (with an
artist_id of 3).

While the AUTO_INCREMENT feature is useful, it isn’t portable to other database environ-
ments, and it hides the logical steps to creating new identifiers. It can also lead to
ambiguity; for example, dropping or truncating a table will reset the counter, but de-
leting selected rows (with a WHERE clause) doesn’t reset the counter. Consider an ex-
ample; let’s create the table count that contains an auto-incrementing field counter:

mysql> CREATE TABLE count (counter INT AUTO_INCREMENT KEY);
Query OK, 0 rows affected (0.13 sec)

210 | Chapter6: Working with Database Structures

mysql> INSERT INTO count VALUES (),(),(),(),(),();
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM count;

Hmmmmmeae +
| counter |
Hmmmmmmeen +
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
Hmmmmmmnen +

6 rows in set (0.00 sec)

Inserting several values works as expected. Now, let’s delete a few rows and then add
SIX NEW rOws:

mysql> DELETE FROM count WHERE counter > 4;
Query OK, 2 rows affected (0.00 sec)

mysql> INSERT INTO count VALUES (),(),(),(),(),();
Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM count;

mmmmm e +
| counter |
mmmmm e +
| 1 |
| 2 |
| 3 |
| 4 |
| 7 |
| 8 |
|9 |
| 10 |
| 11 |
| 12 |
R +

10 rows in set (0.00 sec)
Here, we see that the counter is not reset, and continues from 7. If, however, we delete
all the data in the table, the counter is reset to 1:

mysql> TRUNCATE TABLE count;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO count VALUES (),(),(),(),(),();
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM count;

Creating Tables | 211

|
|
|
|
|
|
+
6 rows in set (0.00 sec)

Instead of relying on MySQL to handle incrementing fields as you hope, you can man-
age the process in program code that you write to interact with the database. We don’t
use an auto-incrementing field in the final music database specification, described fully
in the next section. However, we do use one in our wedding gift registry in Chapter 15.

The Sample Music Database

We’ve used the music database extensively in this and the previous chapter, so you’re
already familiar with its structure. This section explains the steps we took to express
our sample music database as SQL statements for loading into MySQL. It also lists the
complete SQL statements used to create the structures, which you’ll find a useful ref-
erence for discussions in later chapters.

Let’s begin by discussing how we structured the file that contains the SQL statements.
You can download the file music.sql from the book’s web site. We created the table
using the monitor, and created the file from the output of one of MySQL’s commands
for dumping SQL, and then edited it for readability. You’ll find more about how to
dump SQL statements to a file in Chapter 10.

The music.sql file is structured as follows:

1. Drop the database if it exists, and then create it.
2. Use the database.

3. Create the tables.

4. Insert the data.

This structure allows you to reload the database—using the SOURCE command discussed
in Chapter 3—at any time without having to worry about whether the database, tables,
or data exist. Loading the file just wipes the database and starts again. Of course, in a
production environment, always ensure your backups are reasonably up-to-date before
commencing a restore operation that involves dropping tables or deleting existing data.

The first three lines of the file carry out the first two steps:

DROP DATABASE IF EXISTS music;
CREATE DATABASE music;
USE music;

212 | Chapter6: Working with Database Structures

The next section of the file creates the tables (the third step), and that’s the focus of
this section; we don’t list the insert statements in this book, but they’re easily viewed
in music.sql. Let’s start by looking at how we created the artist table:
CREATE TABLE artist (
artist_id SMALLINT(5) NOT NULL DEFAULT o,

artist_name CHAR(128) DEFAULT NULL,
PRIMARY KEY (artist id)

)

The table has a structure that’s derived from the design in Chapter 4. The artist_id is
the primary key; because of this, and as required by MySQL, we’ve added a NOT NULL
clause. The DEFAULT clause inserts a default value for the column if we don’t provide
one. If a field doesn’t have a default value, MySQL reports an error if a value isn’t
provided for it during an insert operation. In the artist table, the artist_id will be set
to 0 if we don’t provide an artist_id ourselves. MySQL will complain the second time
we try to do this, since artist_id is the primary key of the artist table, and we can’t
have two rows with the same primary key.

We’ve used the SMALLINT type for the artist_id because it’s a numeric identifier, and
a SMALLINT allows us to have around 65,000 artists; we’ve limited its display width to
5 characters.

We’ve decided that 128 characters is more than we’d need for any likely artist_name.
We use the CHAR type instead of the VARCHAR type so that each row has an fixed, pre-
dictable size; this allows MySQL to better optimize the retrieval of rows from its files,
typically making the application faster despite the files being typically larger than if
VARCHAR was used. We haven’t added a NOT NULL clause to the artist name, and have
instead assumed that whatever application we build will do the checking for us. In
general, the fewer the constraints and conditions that are built into the database, the
faster it is for MySQL to work with. However, MySQL now optimizes for NOT NULL
columns, so it is better to declare NOT NULL where the data will never be NULL. See
the "Data Size" section of the MySQL manual for details.

The album table follows a similar rationale:

CREATE TABLE album (
artist_id SMALLINT(5) NOT NULL DEFAULT o,
album id SMALLINT(4) NOT NULL DEFAULT o,
album name CHAR(128) DEFAULT NULL,
PRIMARY KEY (artist id,album_id)

)
We've declared the artist_id to be the same type as in artist. This is important as
otherwise MySQL couldn’t use indexes to join tables together to resolve queries (which
is a very common cause of odd results in EXPLAIN output). We’ve used SMALLINT for the
album_id, since we don’t expect more than 65,000 albums per artist! We define
album_name as a CHAR(128) because 128 characters seems long enough for album titles.

The Sample Music Database | 213

Again, we’ve added NOT NULL for the primary key, added DEFAULT clauses to make the
behavior predictable, and gone with only fixed-length types to improve performance.

The track table is created as follows:

CREATE TABLE track (

track_id SMALLINT(3) NOT NULL DEFAULT o,

track_name CHAR(128) DEFAULT NULL,

artist_id SMALLINT(5) NOT NULL DEFAULT o,

album_id SMALLINT(4) NOT NULL DEFAULT o,

time TIME DEFAULT NULL,

PRIMARY KEY (artist id,album id,track id)

)
The reasoning behind the choices for the first four columns is the same as for the other
tables. The time column stores the duration of each track, and we’ve chosen to use the
TIME type to store this. Using the TIME type—in preference to a numeric type such as
DECIMAL—makes it easy to do math such as summing values to find the running time
for an album. It also gives you flexibility in formats for the time data, as discussed
previously. Despite this, you’ll see that in music.sql we use the format HH:MM: SS because
we prefer to keep SQL queries readable and unambiguous.

The final table is played:

CREATE TABLE played (

artist_id SMALLINT(5) NOT NULL DEFAULT o,

album_id SMALLINT(4) NOT NULL DEFAULT o,

track_id SMALLINT(3) NOT NULL DEFAULT o,

played TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP on update CURRENT TIMESTAMP,

PRIMARY KEY (artist id,album id,track id,played)

)
The choices for the first three columns are again as previously described. The played
column makes use of the TIMESTAMP type and its automatic-update feature: we want the
value to be set to the current date and time whenever a row is inserted (and, for good
measure, whenever it’s updated, which we don’t plan to do). To use the feature, when-
ever we play a track, we create a new row with the artist_id, album_id, and track_id,
and set the played column to NULL. Since all columns form the primary key, it’s accept-
able to have more than one entry for a specific combination of artist, album, and track,
as long as the timestamps aren’t the same. We can reasonably assume that two tracks
won’t be played at the same time in a single-user application, and can also add instruc-
tions to enforce this in any application that uses this database.

Altering Structures

We’ve shown you all the basics you need for creating databases, tables, indexes, and
columns. In this section, you’ll learn how to add, remove, and change columns, data-
bases, tables, and indexes in structures that already exist.

214 | Chapter6: Working with Database Structures

Adding, Removing, and Changing Columns

You can use the ALTER TABLE statement to add new columns to a table, remove existing
columns, and change column names, types, and lengths.

Let’s begin by considering how you modify existing columns. Consider an example in
which we rename a table column. The played table has a column—also called played
—that contains the time the track was played. To change the name of this column to
last_played, you would write:

mysql> ALTER TABLE played CHANGE played last_played TIMESTAMP;

Query OK, 12 rows affected (0.03 sec)
Records: 12 Duplicates: 0 Warnings: 0

You can see that MySQL processes and alters each row. What actually happens behind
the scenes is that MySQL creates a new table with the new structure, copies the data
into that table, removes the original played table, and renames the table to played. You
can check the result with the SHOW COLUMNS statement:

mysql> SHOW COLUMNS FROM played;

O ELETEEEEEE Hmmmmmm e Hmmm e - mm- Hmmm oo 4o +
| Field | Type | Null | Key | Default | Extra |
Hmmmmm e Hmmm e Hmmm e Hmmmme Hmmm e 4o +
artist_id	smallint(5)		PRI	0	
album_id	smallint(4)		PRI	0	
track_id	smallint(3)		PRI	0	
last_played	timestamp	YES	PRI	CURRENT_TIMESTAMP	
Hmmm e Hmmm e Hmmmmen Hmmmm e Hmmm e A +

4 rows in set (0.01 sec)

In the previous example, you can see that we provided four parameters to the ALTER
TABLE statement with the CHANGE keyword:

1. The table name, played

2. The original column name, played

3. The new column name, last_played

4. The column type, TIMESTAMP
You must provide all four; that means you need to respecify the type and any clauses

that go with it. In the previous example, it just happens that the TIMESTAMP type defaults
to:

DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
If you want to rename the artist_name column to artist-name, you would write:

ALTER TABLE artist CHANGE artist name artist-name CHAR(128) DEFAULT NULL;

If you want to modify the type and clauses of a column, but not its name, you can use
the MODIFY keyword:

Altering Structures | 215

mysql> ALTER TABLE artist MODIFY artist_name CHAR(64) DEFAULT "Unknown";
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

You can also do this with the CHANGE keyword, but by specifying the same column name
twice:
mysql> ALTER TABLE artist CHANGE artist_name artist_name CHAR(64) DEFAULT "Unknown";

Query OK, 6 rows affected (0.03 sec)
Records: 6 Duplicates: 0 Warnings: 0

Be careful when you’re modifying types:

* Don’t use incompatible types, since you’re relying on MySQL to successfully con-
vert data from one format to another (for example, converting an INT column to a
DATETIME column isn’t likely to do what you hoped).

* Don’t truncate the data unless that’s what you want. If you reduce the size of a
type, the values will be edited to match the new width, and you can lose data.

Suppose you want to add an extra column to an existing table. Here’s how to do it with
the ALTER TABLE statement:
mysql> ALTER TABLE artist ADD formed YEAR;

Query OK, 6 rows affected (0.02 sec)
Records: 6 Duplicates: 0 Warnings: 0

You must supply the ADD keyword, the new column name, and the column type and
clauses. This example adds the new column, formed, as the last column in the table, as
shown with the SHOW COLUMNS statement:

mysql> SHOW COLUMNS FROM artist;

B il B it - +----- Fomm o Fommmm - +
| Field | Type | Null | Key | Default | Extra |
T TR B T Hmmm - e B dmmmmm e +
artist id	smallint(s)		PRI	o	
artist _name	char(64)	YES		Unknown	
formed	year(4)	YES		NULL	
dmmmmm - B T mmm - e R dmmmmm e +

3 rows in set (0.02 sec)

If you want it to instead be the first column, use the FIRST keyword as follows:

mysql> ALTER TABLE artist ADD formed YEAR FIRST;
Query OK, 6 rows affected (0.04 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW COLUMNS FROM artist;

Hmmm e Hmmm e e m Hmmmm e Hmmm e m Hmmmmm +
| Field | Type | Null | Key | Default | Extra |
Hmmm e Hmmm e Hmmmmen Hmmmme A m Hmmmmm +
| formed | year(4) | YES | | NULL |

| artist id | smallint(s) | | PRI | 0 | |
| artist_name | char(64) | YES | | Unknown | |
Hmmm e Hmmm e Hmmm e m Hmmmm e Hmmmmm e Hmmmmmm +

3 rows in set (0.01 sec)

216 | Chapter6: Working with Database Structures

If you want it added in a specific position, use the AFTER keyword:

mysql> ALTER TABLE artist ADD formed YEAR AFTER artist_id;
Query OK, 6 rows affected (0.03 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW COLUMNS FROM artist;

Hmmm e Hmmm e Hmmm - Hmm - Hmmmmmm e Hmmmmm +
| Field | Type | Null | Key | Default | Extra |
Hmmm oo Hmmm e Hmmm - Hmm - Hmmmmm e Hmmmmm +
| artist id | smallint(s) | | PRI | 0 | |
| formed | year(4) | YES | | NULL |

| artist_name | char(64) | YES | | Unknown | |
Hmmm e Hmmm e Hmmm - Hmm - Hmmmmmm e Hmmmmm e +

3 rows in set (0.01 sec)

To remove a column, use the DROP keyword followed by the column name. Here’s how
to get rid of the newly added formed column:
mysql> ALTER TABLE artist DROP formed;

Query OK, 6 rows affected (0.02 sec)
Records: 6 Duplicates: 0 Warnings: 0

This removes both the column structure and any data contained in that column. It also
removes the column from any index it was in; if it’s the only column in the index, the
index is dropped, too. You can’t remove a column if it’s the only one in a table; to do
this, you drop the table instead as explained later in “Deleting Structures.” Be careful
when dropping columns; you discard both the data and the structure of your table.
When the structure of a table changes, you will generally have to modify any INSERT
statements that you use to insert values in a particular order. We described INSERT
statements in “The INSERT Statement” in Chapter 5.

MySQL allows you to specify multiple alterations in a single ALTER TABLE statement by
separating them with commas. Here’s an example that adds a new column and adjusts
another:

mysql> ALTER TABLE artist ADD formed YEAR, MODIFY artist_name char(256);

Query OK, 6 rows affected, 1 warning (0.08 sec)
Records: 6 Duplicates: 0 Warnings: 0

It’s very efficient to join multiple modifications in a single operation, as it potentially
saves the cost of creating a new table, copying data from the old table to the new table,
dropping the old table, and renaming the new table with the name of the old table for
each modification individually.

Adding, Removing, and Changing Indexes

As we discussed previously, it’s often hard to know what indexes are useful before the
application you’re building is used. You might find that a particular feature of the
application is much more popular than you expected, causing you to evaluate how to
improve performance for the associated queries. You’'ll therefore find it useful to be

Altering Structures | 217

able to add, alter, and remove indexes on the fly after your application is deployed.
This section shows you how. Modifying indexes does not affect the data stored in the

table.

We'll start with adding a new index. Imagine that the artist table is frequently queried
using a WHERE clause that specifies an artist_name. To speed this query, you’ve decided
to add a new index, which you’ve named by _name. Here’s how you add it after the table
is created:

mysql> ALTER TABLE artist ADD INDEX by name (artist_name);

Query OK, 6 rows affected (0.02 sec)
Records: 6 Duplicates: 0 Warnings: 0

Again, you can use the terms KEY and INDEX interchangeably. You can check the results
with the SHOW CREATE TABLE statement:
mysql> SHOW CREATE TABLE artist;

Hmmmm e e e +
| Table | Create Table |

artist | CREATE TABLE ‘artist® (|
| “artist_id® smallint(5) NOT NULL default '0', |
| “artist name’ char(128) default NULL, |
| PRIMARY KEY (‘artist id), |
| KEY “by name’ (artist name")

|) ENGINE=MyISAM DEFAULT CHARSET=latini |
+

As expected, the new index forms part of the table structure. You can also specify a
primary key for a table after it’s created:

mysql> ALTER TABLE artist ADD PRIMARY KEY (artist_id);
Now let’s consider how to remove an index. To remove a non-primary-key index, you
do the following:

mysql> ALTER TABLE artist DROP INDEX by name;
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

You can drop a primary-key index as follows:

mysql> ALTER TABLE artist DROP PRIMARY KEY;

MySQL won'’t allow you to have multiple primary keys in a table. If you want to change
the primary key, you’ll have to remove the existing index before adding the new one.
Consider this example:

mysql> CREATE TABLE staff (staff_id INT, name CHAR(40));
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE staff ADD PRIMARY KEY (staff_id);
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

218 | Chapter6: Working with Database Structures

mysql> ALTER TABLE staff ADD PRIMARY KEY (name);
ERROR 1068 (42000): Multiple primary key defined

mysql> ALTER TABLE staff DROP PRIMARY KEY;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE staff ADD PRIMARY KEY (name);
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

MySQL complains when we try to add the second primary key on name; we have to
drop the existing primary key on staff_id, and then add one on name.

You can’t modify an index once it’s been created. However, sometimes you’ll want to;
for example, you might want to reduce the number of characters indexed from a column
or add another column to the index. The best method to do this is to drop the index
and then create it again with the new specification. For example, suppose you decide
that you want the by name index to include only the first 10 characters of the
artist_name. Simply do the following:

mysql> ALTER TABLE artist DROP INDEX by name;

Query OK, 6 rows affected (0.02 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE artist ADD INDEX by name (artist_name(10));
Query OK, 6 rows affected (0.03 sec)
Records: 6 Duplicates: 0 Warnings: 0

Renaming Tables and Altering Other Structures

We’ve seen how to modify columns and indexes in a table; now let’s see how to modify
tables themselves. It’s easy to rename a table. Suppose you want to rename played to
playlist. Use the following command:

mysql> ALTER TABLE played RENAME TO playlist;
Query OK, 0 rows affected (0.00 sec)

The T0 keyword is optional.
There are several other things you can do with ALTER statements:
* Change the default character set and collation order for a database, a table, or a
column.

* Change the order of the rows in a table. This is useful only if you know you want
to access the rows in a particular order and you want to help get the data into or
near that order.

* Manage and change constraints. For example, you can add and remove foreign
keys.

Altering Structures | 219

You can find more about these operations in the MySQL manual under the “ALTER
DATABASE” and “ALTER TABLE” headings.

Beginning with MySQL 5.1, you can also change the name of a database using the new
RENAME DATABASE command:

mysql> RENAME DATABASE old database_name new_database_name;
Query OK, 0 rows affected (0.01 sec)

Deleting Structures

In the previous section, we showed how you can delete columns and rows from a
database; now we’ll describe how to remove databases and tables.

Dropping Databases

Removing, or dropping, a database is straightforward. Here’s how you drop the music
database:

mysql> DROP DATABASE music;
Query OK, 4 rows affected (0.01 sec)

The number of rows returned in the response is the number of tables removed. You
should take care when dropping a database, since all its tables, indexes, and columns
are deleted, as are all the associated disk-based files and directories that MySQL uses
to maintain them.

If a database doesn’t exist, trying to drop it causes MySQL to report an error. Let’s try
dropping the music database again:

mysql> DROP DATABASE music;
ERROR 1008 (HY000): Can't drop database 'music'; database doesn't exist

You can avoid the error, which is useful when including the statement in a script, by
using the IF EXISTS phrase:

mysq1> DROP DATABASE IF EXISTS music;
Query OK, 0 rows affected, 1 warning (0.00 sec)

You can see that a warning is reported, since the music database has already been drop-
ped. You can always check what the warning was with the SHON WARNINGS statement,
which has been available since MySQL 4.1.0:

mysql> SHOW WARNINGS;

Fommm o +------ B e it +
| Level | Code | Message |
Fommm o +------ B e il +
| Note | 1008 | Can't drop database 'music'; database doesn't exist |
mmmm fmmmm - e +

1 row in set (0.00 sec)

The warning is also generated with the error if you leave out the IF EXISTS clause.

220 | Chapter6: Working with Database Structures

Removing Tables

Removing tables is as easy as removing a database. Let’s create and remove a table from
the music database:

mysql> CREATE TABLE temp (temp INT(3), PRIMARY KEY (temp));
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE temp;
Query OK, 0 rows affected (0.00 sec)

Don’t worry: the 0 rows affected message is misleading. You’ll find the table is defi-
nitely gone.

You can use the IF EXISTS phrase to prevent errors. Let’s try dropping the temp table
again:

mysql> DROP TABLE IF EXISTS temp;
Query OK, 0 rows affected, 1 warning (0.00 sec)

Again, you can investigate the warning indicates with the SHOW WARNINGS statement:
mysql> SHOW WARNINGS;

Fmmmm B R T T T TR +
| Level | Code | Message |
ommmm oo Fommm - o mm e +
| Note | 1051 | Unknown table 'temp' |
ommmmm- Fommm - o mm e +

1 row in set (0.00 sec)

You can drop more than one table in a single statement by separating table names with
commas:

mysql> DROP TABLE IF EXISTS temp, tempi, temp2;
Query OK, 0 rows affected, 3 warnings (0.00 sec)

You can see three warnings because none of these tables existed.

Exercises

All exercises here concern the music database. You’ll find that the CREATE TABLE state-
ments in “The Sample Music Database” are a useful reference.

1. You’ve decided to store more information about artists and albums. Specifically,
for artists, you want to store the names of people who have worked with the artist
(for example, vocalists, guitarists, trumpeters, and drummers), when they began
working with the artist, and when they stopped working with the artist (if they
have done so).

For albums, you want to store the name of the album producer, when the album
was released, and where the album was recorded. Design tables or columns that
can store this information, and explain the advantages and disadvantages of your

Exercises | 221

design. Choose the column types you need, explaining the advantages and disad-
vantages of your choices.

2. There are five types for storing temporal data: DATETIME, DATE, TIME, YEAR, and
TIMESTAMP. Explain what each is used for, and give an example of a situation in
which you would choose to use it.

3. You’ve decided to use the AUTO_INCREMENT feature. List the three requirements that
must be met by the column you’re applying it to.

4. Why can only one column in a table have the AUTO_INCREMENT feature?
5. Using the monitor, create a table with the following statement:
mysql> CREATE TABLE exercise (fieldi INT(3));
Using the ALTER TABLE statement, make field1 the primary key, carrying out any
additional steps you need to make this possible. Add a second column, field2, of

type CHAR(64) with a DEFAULT 5 clause. Create an index on a prefix of 10 characters
from field2.

222 | Chapter6: Working with Database Structures

CHAPTER 7
Advanced Querying

Over the previous two chapters, you’ve completed an introduction to the basic features
of querying and modifying databases with SQL. You should now be able to create,
modify, and remove database structures, as well as work with data as you read, insert,
delete, and update entries. Over the next three chapters, we’ll look at more advanced
concepts. You can skim these chapters and return to read them thoroughly when you’re
comfortable with using MySQL.

This chapter teaches you more about querying, giving you skills to answer complex
information needs. You’ll learn how to:

* Use nicknames, or aliases, in queries to save typing and allow a table to be used
more than once in a query

* Aggregate data into groups so you can discover sums, averages, and counts

* Join tables in different ways

* Use nested queries

* Save query results in variables so they can be reused in other queries

* Understand why MySQL supports several table types

Aliases

Aliases are nicknames. They give you a shorthand way of expressing a column, table,
or function name, allowing you to:

* Write shorter queries

* Express your queries more clearly

* Use one table in two or more ways in a single query

* Access data more easily from programs (for example, from PHP scripts, as dis-
cussed in Chapter 14)

223

* Use special types of nested queries; these are the subject of “Nested Queries,”
discussed later in this chapter

Column Aliases

Column aliases are useful for improving the expression of your queries, reducing the
number of characters you need to type, and making it easier to work with languages
such as PHP. Consider a simple, not-very-useful example:

mysql> SELECT artist_name AS artists FROM artist;

| New Order

| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue

6 rows in set (0.00 sec)

The column artist_name is aliased as artists. You can see that in the output, the usual
column heading, artist_name, is replaced by the alias artists. The advantage is that
the alias artists might be more meaningful to users. Other than that, it’s not very
useful, but it does illustrate the idea: for a column, you add the keyword AS and then
a string that represents what you’d like the column to be known as.

Now let’s see column aliases doing something useful. Here’s an example that uses a
MySQL function and an ORDER BY clause:

mysql> SELECT CONCAT(artist_name, " recorded ", album_name) AS recording
-> FROM artist INNER JOIN album USING (artist_id)
-> ORDER BY recording;

| Kylie Minogue recorded Light Years |
| Miles Davis recorded In A Silent Way |
| Miles Davis recorded Live Around The World |
| New Order recorded Brotherhood |
| New Order recorded Power, Corruption & Lies |
| New Order recorded Retro - John McCready FAN |
| New Order recorded Retro - Miranda Sawyer POP |
| New Order recorded Retro - New Order / Bobby Gillespie LIVE |
| New Order recorded Substance (Disc 2) |
| New Order recorded Substance 1987 (Disc 1) |
| Nick Cave & The Bad Seeds recorded Let Love In
| The Rolling Stones recorded Exile On Main Street |
| The Stone Roses recorded Second Coming |

13 rows in set (0.03 sec)

224 | Chapter7: Advanced Querying

The MySQL function CONCAT() concatenates together the strings that are parameters
—in this case, the artist_name, a constant string recorded, and the album_name to give
output such as New Order recorded Brotherhood. We’ve added an alias to the function,
AS recording, so that we can refer to it easily as recording throughout the query. You
can see that we do this in the ORDER BY clause, where we ask MySQL to sort the output
by ascending recording value. This is much better than the unaliased alternative, which
requires you to write out the CONCAT() function again:

mysql> SELECT CONCAT(artist_name, " recorded ", album_name)
-> FROM artist INNER JOIN album USING (artist_id)
-> ORDER BY CONCAT(artist_name, " recorded ", album_name);

| Kylie Minogue recorded Light Years |
| Miles Davis recorded In A Silent Way |
| Miles Davis recorded Live Around The World |
| New Order recorded Brotherhood |
| New Order recorded Power, Corruption & Lies |
| New Order recorded Retro - John McCready FAN |
| New Order recorded Retro - Miranda Sawyer POP |
| New Order recorded Retro - New Order / Bobby Gillespie LIVE

| New Order recorded Substance (Disc 2) |
| New Order recorded Substance 1987 (Disc 1) |
| Nick Cave & The Bad Seeds recorded Let Love In
| The Rolling Stones recorded Exile On Main Street |
| The Stone Roses recorded Second Coming |

13 rows in set (0.21 sec)

The alternative is unwieldy, and worse, you risk mistyping some part of the ORDER BY
clause and getting a result different from what you expect. (Note that we’ve used as
recording on the first line so that the displayed column has the label recording.)

There are restrictions on where you can use column aliases. You can’t use them in a
WHERE clause, or in the USING and ON clauses that we discuss later in this chapter. This
means you can’t write a query such as:

mysql> SELECT artist_name AS a FROM artist WHERE a = "New Order";
ERROR 1054 (42522): Unknown column 'a' in 'where clause'

You can’t do this because MySQL doesn’t always know the column values before it
executes the WHERE clause. However, you can use column aliases in the ORDER BY clause,
and in the GROUP BY and HAVING clauses discussed later in this chapter.

The AS keyword is optional. Because of this, the following two queries are equivalent:

mysql> SELECT artist_id AS id FROM artist WHERE artist_name = "New Order";
+----t

| id |

+----t

I 1]

+----

1 row in set (0.05 sec)

Aliases | 225

mysql> SELECT artist_id id FROM artist WHERE artist name = "New Order"”;
Hommt

| id |

Hom-mt

I 1]

Hom-mt

1 row in set (0.00 sec)

We recommend using the AS keyword, since it helps to clearly distinguish an aliased
column, especially where you’re selecting multiple columns from a list of columns
separated by commas.

Alias names have few restrictions. They can be at most 255 characters in length and
can contain any character. If you plan to use characters that might confuse the MySQL
parser—such as periods, commas, or semicolons—make sure you enclose the alias
name in backticks. We recommend using lowercase alphanumeric strings for alias
names and using a consistent character choice—such as an underscore—to separate
words. Aliases are case-insensitive on all platforms.

Table Aliases

Table aliases are useful for the same reasons as column aliases, but they are also some-
times the only way to express a query. This section shows you how to use table aliases,
and “Nested Queries,” later in this chapter, shows you other sample queries where
table aliases are essential.

Here’s a basic table-alias example that shows you how to save some typing:

mysql> SELECT ar.artist_id, al.album_name, ar.artist_name FROM
-> album AS al INNER JOIN artist AS ar
-> USING (artist_id) WHERE al.album_name = "Brotherhood";

fmmmmm e gmmmm - mmmm e +
| artist id | album name | artist name |
gmmmmm e dmmmm - mmmmm e +
| 1 | Brotherhood | New Order |
e dmm - mmmm e +

1 row in set (0.00 sec)

You can see that the album and artist tables are aliased as al and ar, respectively, using
the AS keyword. This allows you to express column names more compactly, such as
ar.artist_id. Notice also that you can use table aliases in the WHERE clause; unlike
column aliases, there are no restrictions on where table aliases can be used in queries.
From our example, you can see that we’re referring to the table aliases before they have
been defined.

As with column aliases, the AS keyword is optional. This means that:

album AS al INNER JOIN artist AS ar

is the same as:

226 | Chapter7: Advanced Querying

album al INNER JOIN artist ar

Again, we prefer the AS style, as it’s clearer to anyone looking at your queries than the
alternative. The restrictions on table-alias-name characters and lengths are the same as
column aliases, and our recommendations on choosing them are the same, too.

As discussed in the introduction to this section, table aliases allow you to write queries
that you can’t otherwise easily express. Consider an example: suppose you want to
know whether two or more artists have released an album of the same name and, if so,
what the identifiers for those artists are. Let’s think about the basic requirement: you

want to know if two albums have the same name. To do this, you might try a query
like this:

mysql> SELECT * FROM album WHERE album name = album_name;

But that doesn’t make sense: an album has the same name as itself, and so it just pro-
duces all albums as output:

¥
|

¥

| | Let Love In |
| | Retro - John McCready FAN
| | Substance (Disc 2) |
| | Retro - Miranda Sawyer POP
| | Retro - New Order / Bobby Gillespie LIVE |
| | Live Around The World

| | In A Silent Way |
| | Power, Corruption & Lies

| | Exile On Main Street

| | Substance 1987 (Disc 1)

	Second Coming
	Light Years
	Brotherhood
+

13 rows in set (0.01 sec)

What you really want is to know if two different albums from the album table have the
same name. But how can you do that in a single query? The answer is to give the table
two different aliases; you then check if one row in the first aliased table matches a row
in the second:

mysql> SELECT ai.artist_id, a2.album_id

-> FROM album AS a1, album AS a2 WHERE
-> al.album_name = a2.album_name;

| 2
| 1
| 1
| 1
| 1
| 3

Aliases | 227

|
|
|
|
|
|
|
+
13 rows in set (0.01 sec)

But it still doesn’t work! We get all 13 albums as answers. The reason is that an album
still matches itself because it occurs in both aliased tables.

To get the query to work, we need to make sure an album from one aliased table doesn’t
match itself in the other aliased table. The way to do so is to specify that the albums in
each table shouldn’t have the same artist:
mysql> SELECT ai.artist_id, a2.album_id
-> FROM album AS a1, album AS a2
-> WHERE ai1.album_name = a2.album_name

-> AND ail.artist_id != a2.artist_id;
Empty set (0.00 sec)

You can now see that there aren’t two albums in the database with the same name but
by different artists. The additional AND a1.artist id != a2.artist_id stops answers
from being reported where the artist is the same in both tables.

Table aliases are also useful in nested queries that use the EXISTS and ON clauses. We
show you examples later in this chapter when we introduce nested techniques.

Aggregating Data

Aggregate functions allow you to discover the properties of a group of rows. You use
them for purposes such as discovering how many rows there are in a table, how many
rows in a table share a property (such as having the same name or date of birth), finding
averages (such as the average temperature in November), or finding the maximum or
minimum values of rows that meet some condition (such as finding the coldest day in
August).

This section explains the GROUP BY and HAVING clauses, the two most commonly used
SQL statements for aggregation. But first, it explains the DISTINCT clause, which is used
to report unique results for the output of a query. When neither the DISTINCT nor the
GROUP BY clause is specified, the returned raw data can still be processed using the
aggregate functions that we describe in this section.

The DISTINCT Clause

To begin our discussion on aggregate functions, we’ll focus on the DISTINCT clause.
This isn’t really an aggregate function, but more of a post-processing filter that allows

228 | Chapter7: Advanced Querying

you to remove duplicates. We've added it into this section because, like aggregate
functions, it’s concerned with picking examples from the output of a query, rather than
processing individual rows.

An example is the best way to understand DISTINCT. Consider this query:

mysql> SELECT DISTINCT artist_name FROM
-> artist INNER JOIN album USING (artist_id);

| New Order

| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue

6 rows in set (0.03 sec)

The query finds artists who have made albums—Dby joining together artist and
album with an INNER JOIN clause—and reports one example of each artist. You can see
that we have six artists in our database for whom we own albums. If you remove the
DISTINCT clause, you get one row of output for each album we own:

mysql> SELECT artist_name FROM
-> artist INNER JOIN album USING (artist_id);

| New Order
| New Order
| New Order
| New Order
| New Order
| New Order
| New Order
| Nick Cave & The Bad Seeds |
| Miles Davis |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue

13 rows in set (0.00 sec)

So, the DISTINCT clause helps get a summary.

The DISTINCT clause applies to the query output and removes rows that have identical
values in the columns selected for output in the query. If you rephrase the previous
query to output both artist name and album_name (but otherwise don’t change the
JOIN clause and still use DISTINCT), you’ll get all 13 rows in the output:

mysql> SELECT DISTINCT artist_name, album_name FROM
-> artist INNER JOIN album USING (artist_id);

Aggregating Data | 229

e e +
| artist_name | album_name |
T e +
| New Order | Retro - John McCready FAN

| New Order | Substance (Disc 2) |
| New Order | Retro - Miranda Sawyer POP

| New Order | Retro - New Order / Bobby Gillespie LIVE

New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
e e +

13 rows in set (0.00 sec)

Because none of the rows are identical, no duplicates are removed using DISTINCT. You
can check this by rephrasing the query to omit the DISTINCT clause; you’ll get the same
output.

To remove duplicates, MySQL needs to sort the output. If indexes are available that
are in the same order as required for the sort—or the data itself is in an order that’s
useful—this process has very little overhead. However, for large tables and without an
easy way of accessing the data in the right order, sorting can be very slow. You should
use DISTINCT (and other aggregate functions) with caution on large data sets. If you do
use it, you can check its behavior using the EXPLAIN statement discussed in Chapter 8.

The GROUP BY Clause

The GROUP BY clause sorts data into groups for the purpose of aggregation. It’s similar
to ORDER BY, but it occurs much earlier in the query process: GROUP BY is used to organize
the data before other clauses—such as WHERE, ORDER BY, and functions—are applied. In
contrast, ORDER BY is applied last—after the query has been resolved—to reorganize the
query output for display.

An example will help you understand what GROUP BY is used for. Suppose you want to
know how many albums we own by each artist. Using the techniques you’ve learned
so far, you could perform an INNER JOIN between artist and album, and use an ORDER
BY artist_name clause to organize the artists into an order to make it easy for you to
count. Here’s the query that you’d use:

mysql> SELECT artist_name FROM

-> artist INNER JOIN album USING (artist_id)
-> ORDER BY artist_name;

| Kylie Minogue

230 | Chapter7: Advanced Querying

| Miles Davis

| Miles Davis

| New Order

| New Order

| New Order

| New Order

| New Order

| New Order

| New Order

| Nick Cave & The Bad Seeds
| The Rolling Stones
| The Stone Roses

13 rows in set (0.00 sec)

By running down the list, it’s easy to count off how many albums we’ve got by each
artist: one by Kylie Minogue, two by Miles Davis, seven by New Order, and so on.

The GROUP BY clause can help automate this process by grouping the albums by artist;
we can then use the COUNT() function to count off the number of albums in each group.
Here’s the query that does what we want:

mysql> SELECT artist_name, COUNT(artist_name) FROM
-> artist INNER JOIN album USING (artist_id)
-> GROUP BY artist_name;
____________________ ¥
COUNT (artist_name) |

| Kylie Minogue

| Miles Davis

| New Order

| Nick Cave & The Bad Seeds
| The Rolling Stones

| The Stone Roses

+—_—+ — +

6 rows in set (0.01 sec)

You can see that the output we’ve asked for is artist_name, COUNT(artist_name), and
this tells us exactly what we wanted to know. Notice also that we’ve used GROUP BY
artist_name to sort early for aggregation, rather than using ORDER BY artist_name later
for presentation.

Let’s consider the query further. We’ll start with the GROUP BY clause. This tells us how
to put rows together into groups: in this example, we’re telling MySQL that the way to
group rows is by artist_name. The result is that rows for artists with the same name
form a cluster—that is, each distinct name becomes one group. Once the rows are
grouped, they’re treated in the rest of the query as if they’re one row. So, for example,
when we write SELECT artist_name, we get just one row for each group. This is exactly
the same as DISTINCT, which performs the same function as grouping by a column name
and then selecting that column for display. The COUNT() function tells us about the
properties of the group. More specifically, it tells us the number of rows that form each
group; you can count any column in a group, and you’ll get the same answer, so

Aggregating Data | 231

COUNT(artist_name) is the same as COUNT(*) or COUNT(artist_id). Of course, you can
use a column alias for the COUNT() column.

Let’s try another example. Suppose you want to know how many tracks are on each
album, along with the artist and album name. Here’s the query:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
-> artist INNER JOIN album USING (artist_id)
-> INNER JOIN track USING (artist_id, album_id)
-> GROUP BY artist.artist_id, album.album_id;

e e e Hmmmm e +
| artist name | album name | COUNT(*) |
Ll LT T TR e e Hmmmm e +
New Order	Retro - John McCready FAN	15
New Order	Substance (Disc 2)	12
New Order	Retro - Miranda Sawyer POP	14
New Order	Retro - New Order / Bobby Gillespie	15
New Order	Power, Corruption & Lies	8
New Order	Substance 1987 (Disc 1)	12
New Order	Brotherhood	10
Nick Cave & The Bad Seeds	Let Love In	10
Miles Davis	Live Around The World	11
Miles Davis	In A Silent Way	2
The Rolling Stones	Exile On Main Street	18
The Stone Roses	Second Coming	13
Kylie Minogue	Light Years	13
e T L dmmmmm e +

13 rows in set (0.12 sec)

Before we discuss what’s new, think about the general function of the query: it’s an
INNER JOIN between artist, album, and track using the primary-key (identifier) col-
umns. Forgetting the aggregation for a moment, the output of this query is one row per
track.

The GROUP BY clause puts the rows together into clusters. In this query, we want the
tracks grouped together for each album by an artist. So, the GROUP BY clause uses
artist_id and album_id to do that. You can use the artist_id from any of the three
tables; artist.artist_id, album.artist id, or track.artist_id are the same for this
purpose. It doesn’t matter since the INNER JOIN makes sure they match anyway. The
same applies to album_id.

Asin the previous example query, we’re using the COUNT() function to tell us how many
rows are in each group. For example, you can see that COUNT(*) tells us that there are
15 tracks on New Order’s Retro - John McReady FAN album. Again, it doesn’t matter
what column or columns you count in the query: for example, COUNT(*) has the same
effect as COUNT (artist.artist_id) or COUNT(artist name).

Let’s try another example. Say we want to know how many times we’ve listened to
tracks on each album. This query is a little trickier than the previous ones: we need to
think carefully about how to group the rows. We want rows for each album grouped
together—that is, we want to count the total number of times that any of the tracks on

232 | Chapter7: Advanced Querying

the album have been played. So, we want to group together by artist and by album; we
don’t want to group by track, since that’d split the tracks from each album into different
groups and tell us how many times we’d listened to each track. We also need a
four-way join between all four tables in the database, but that isn’t hard to do using
the skills we’ve developed so far. Here’s the query:
mysql> SELECT artist_name, album_name, COUNT(*) FROM
-> artist INNER JOIN album USING (artist_id)
-> INNER JOIN track USING (artist_id, album_id)

-> INNER JOIN played USING (artist_id, album_id, track_id)
-> GROUP BY album.artist_id, album.album_id;

Hmmmmmm oo e e mmm e +
| artist name | album_name | COUNT(*) |
Hmmm e B e Ao +
| New Order | Retro - Miranda Sawyer POP | 8 |
| Miles Davis | Live Around The World | 3|
Hmmm e e Ao +

2 rows in set (0.11 sec)

You can see we've only listened to two albums: we’ve listened to one or more tracks
on New Order’s Retro - Miranda Sawyer POP eight times, and one or more tracks on
the Miles Davis album Live Around The World three times. We don’t know whether
it’s the same track we’ve listened to multiple times, different tracks a few times, or many
tracks once: the GROUP BY clause hides the details. Again, we use COUNT(*) to do the
counting of rows in the groups, and you can see the INNER JOIN spread over lines 2 to
4 in the query.

Before we end this section, let’s consider how results are displayed for a grouping op-
eration. The output rows are grouped together according to the GROUP BY clause, with
one row displayed for each group. You will typically not ask for fields that are collected
together in the grouping process, since the result will be meaningless. For example,
grouping the tracks by artist will produce:

mysql> SELECT * FROM track GROUP BY artist_id;

fmmmmm e o m oo B Fmmmmmmm e mmmmmmmme +
| track id | track_name | artist id | album id | time |
fmmmmmmme B T TP B Fmmmmmmm e mmmmmmmme +
| o | Elegia | 1 | 1 | 00:04:93 |
| o | Do You Love Me? | 2 | 1 | 00:05:95

| o | In A Silent Way | 3 | 1 | 00:01:81 |
| o | Rocks Off | 4 | 1 | 00:04:54 |
| o | Breaking Into Heaven | 5 | 1 | 00:11:37

| o | Spinning Around | 6 | 1 | 00:03:46

Fmmmmmmm e o m e B Fmmmmmme e it +

6 rows in set (0.01 sec)

Only the artist_id here is meaningful; the rest of the columns just contain the first-
listed entry from each group. To illustrate this point, “Elegia” is the first track that
would be listed for artist_id 1 if we hadn’t performed any grouping:

mysql> SELECT * FROM track WHERE artist_id=1;
Fommmm - B L EE LR Bt Fommm e Fommmmmmm - ommmmm - +

Aggregating Data | 233

| track_id | track_name

|
Hmmmmmm e O EEECTEEEEEEEEEEEEE Ao e Hmmmmm e +
| o | Elegia | 1 | 1 | 00:04:93 |
| 1 | In A Lonely Place | 1 | 1 | 00:06:26
| 2 | Procession | 1 | 1 | 00:04:28 |
Hmmmmmmmmen Hmmm e e mmm e Ao Hmmmmm e +

86 rows in set (0.00 sec)

Other aggregate functions

We've seen examples of how the COUNT() function can be used to tell how many rows
are in a group. Here are other functions commonly used to explore the properties of
aggregated rows:

AVG()
Returns the average (mean) of the values in the specified column for all rows in a
group. For example, you could use it to find the average cost of a house in a city,
when the houses are grouped by city:

SELECT AVG(cost) FROM house_prices GROUP BY city;

MAX()
Returns the maximum value from rows in a group. For example, you could use it
to find the warmest day in a month, when the rows are grouped by month.

MIN()
Returns the minimum value from rows in a group. For example, you could use it
to find the youngest student in a class, when the rows are grouped by class.

STD() or STDDEV()
Returns the standard deviation of values from rows in a group. For example, you
could use it to understand the spread of test scores, when rows are grouped by
university course.

SUM()
Returns the sum of values from rows in a group. For example, you could use it to
compute the dollar amount of sales in a given month, when rows are grouped by
month.

There are other functions available for use with GROUP BY; they’re less frequently used
than the ones we’ve introduced. You can find more details on them in the MySQL
manual under the heading “GROUP BY (Aggregate) Functions.”

The HAVING Clause

You’re now familiar with the GROUP BY clause, which allows you to sort and cluster data.
You should now be able to use it find out about counts, averages, minimums, and
maximums. This section shows how you can use the HAVING clause to add additional
control to the aggregation of rows in a GROUP BY operation.

234 | Chapter7: Advanced Querying

Suppose you want to know how many times you’ve listened to tracks on popular al-
bums. You’ve decided to define an album as popular if you’ve listened to one or more
of its tracks at least five times. In the previous section, we tried an almost identical
query but without the popularity limitation. Here’s the new query, with an additional
HAVING clause that adds the constraint:

mysql> SELECT artist_name, album_name, COUNT(*) FROM

> artist INNER JOIN album USING (artist_id)

-> INNER JOIN track USING (artist_id, album_id)

-> INNER JOIN played USING (artist_id, album_id, track_id)
-> GROUP BY album.artist_id, album.album_id

-> HAVING COUNT(*) >= 5;

Hmm e T Hmmmmmmme +
| artist_name | album_name | COUNT(*) |
Hmm e e TR Hmmmmmmmee +
| New Order | Retro - Miranda Sawyer POP | 8 |
Hmmmmmm e e e Hmmmmmmmeae +

1 row in set (0.01 sec)
You can see there’s only one album that meets the new criteria.

The HAVING clause must contain an expression or column that’s listed in the SELECT
clause. In this example, we’ve used HAVING COUNT(*) >= 5, and you can see that
COUNT (*) is part of the SELECT clause. Typically, the expression in the HAVING clause uses
an aggregate function such as COUNT(), SUM(), MIN(), or MAX(). If you find yourself
wanting to write a HAVING clause that uses a column or expression that isn’t in the
SELECT clause, chances are you should be using a WHERE clause instead. The HAVING clause
is only for deciding how to form each group or cluster, not for choosing rows in the
output. We’ll show you an example later that illustrates when not to use HAVING.

Let’s try another example. Suppose you want a list of albums that have more than 10
tracks, together with the number of tracks they contain. Here’s the query you’d use:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
-> artist INNER JOIN album USING (artist_id)
-> INNER JOIN track USING (artist_id, album_id)
-> GROUP BY artist.artist_id, album.album_id
-> HAVING COUNT(*) > 10;

mmmmm e B e T TP Fmmmmm e +
| artist name | album_name | COUNT(*) |
mmmmm e B e T TP Fmmmmm e +
New Order	Retro - John McCready FAN	15
New Order	Substance (Disc 2)	12
New Order	Retro - Miranda Sawyer POP	14
New Order	Retro - New Order / Bobby Gillespie LIVE	15
New Order	Substance 1987 (Disc 1)	12
Miles Davis	Live Around The World	11
The Rolling Stones	Exile On Main Street	18
The Stone Roses	Second Coming	13
Kylie Minogue	Light Years	13
mmmm e R LT TP ET P fmmmmmmmeen +

9 rows in set (0.00 sec)

Aggregating Data | 235

You can again see that the expression COUNT(*) is used in both the SELECT and HAVING
clauses.

Now let’s consider an example where you shouldn’t use HAVING. You want to know
how many tracks are on albums by New Order. Here’s the query you shouldn’t use:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
-> artist INNER JOIN album USING (artist_id)
-> INNER JOIN track USING (artist_id, album_id)
-> GROUP BY artist.artist_id, album.album_id
-> HAVING artist_name = "New Order";

Hmm e e e e e Hmmmm e +
| artist name | album_name | COUNT(*) |
Hmm e e e e Hmmmm e +
New Order	Retro - John McCready FAN	15
New Order	Substance (Disc 2)	12
New Order	Retro - Miranda Sawyer POP	14
New Order	Retro - New Order / Bobby Gillespie LIVE	15
New Order	Power, Corruption & Lies	8
New Order	Substance 1987 (Disc 1)	12
New Order	Brotherhood	10
dmmmmm e e Fmmmmm e +

7 rows in set (0.00 sec)

It gets the right answer, but in the wrong—and, for large amounts of data, much slower
—way. It’s not the correct way to write the query because the HAVING clause isn’t being
used to decide what rows should form each group, but is instead being incorrectly used
to filter the answers to display. For this query, we should really use a WHERE clause as
follows:
mysql> SELECT artist_name, album_name, COUNT(*) FROM
-> artist INNER JOIN album USING (artist_id)
-> INNER JOIN track USING (artist_id, album_id)

-> WHERE artist_name = "New Order"
-> GROUP BY artist.artist_id, album.album_id;

B ettt B e e e PP PP ekt +
| artist name | album_name | COUNT(*) |
B et B L P T R P e el +
New Order	Retro - John McCready FAN	15
New Order	Substance (Disc 2)	12
New Order	Retro - Miranda Sawyer POP	14
New Order	Retro - New Order / Bobby Gillespie LIVE	15
New Order	Power, Corruption & Lies	8
New Order	Substance 1987 (Disc 1)	12
New Order	Brotherhood	10
dmmmmm - e e e dmmm +

7 rows in set (0.00 sec)

This correct query forms the groups, and then picks which groups to display based on
the WHERE clause.

236 | Chapter7: Advanced Querying

Advanced Joins

So far in the book, we’ve used the INNER JOIN clause to bring together rows from two
or more tables. We’ll explain the inner join in more detail in this section, contrasting
it with the other join types we explain: the union, left and right joins, and natural joins.
At the conclusion of this section, you’ll be able to answer difficult information needs
and be familiar with the correct choice of join for the task.

The Inner Join

The INNER JOIN clause matches rows between two tables based on the criteria you pro-
vide in the USING clause. For example, you’re very familiar now with an inner join of
the artist and album tables:

mysql> SELECT artist_name, album_name FROM
-> artist INNER JOIN album USING (artist_id);

O EEECEET TR A e e +
| artist_name | album_name |
e A e +
| New Order | Retro - John McCready FAN

| New Order | Substance (Disc 2) |
| New Order | Retro - Miranda Sawyer POP

| New Order | Retro - New Order / Bobby Gillespie LIVE

New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
e e +

13 rows in set (0.00 sec)
Let’s review the key features of an INNER JOIN:

* Two tables (or results of a previous join) are listed on either side of the INNER
JOIN keyphrase.

¢ The USING clause defines one or more columns that are in both tables or results,
and used to join or match rows.

* Rows that don’t match aren’t returned. For example, if you have a row in the
artist table that doesn’t have any matching albums in the album table, it won’t be
included in the output.

You can actually write inner-join queries with the WHERE clause without using the INNER
JOIN keyphrase. Here’s a rewritten version of the previous query that produces the same
result:

Advanced Joins | 237

mysql> SELECT artist_name, album_name FROM artist, album
-> WHERE artist.artist_id = album.artist_id;
L EEEEE P L T oo +

| artist_name | album_name |
T o e e +
| New Order | Retro - John McCready FAN

| New Order | Substance (Disc 2) |
| New Order | Retro - Miranda Sawyer POP

| New Order | Retro - New Order / Bobby Gillespie LIVE

New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
B e e T T +

13 rows in set (0.00 sec)

You can see that we’ve spelled out the inner join: we’re selecting from the artist and
album tables the rows where the identifiers match between the tables.

You can modify the INNER JOIN syntax to express the join criteria in a way that’s similar
to using a WHERE clause. This is useful if the names of the identifiers don’t match between
the tables. Here’s the previous query, rewritten in this style:

mysql> SELECT artist_name, album_name FROM
-> artist INNER JOIN album ON artist.artist_id = album.artist_id;

B e EE L L PR B L L e +
| artist name | album_name |
B L EE PR P B et it +
| New Order | Retro - John McCready FAN

| New Order | Substance (Disc 2) |
| New Order | Retro - Miranda Sawyer POP

New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
e e +

13 rows in set (0.00 sec)

You can see that the ON clause replaces the USING clause, and that the columns that
follow are fully specified to include the table and column names. There’s no real ad-
vantage or disadvantage in using ON or a WHERE clause; it’s just a matter of taste. Typically,
you’ll find most SQL professionals use the WHERE clause in preference to INNER JOIN,
most likely because it’s the technique they learned first.

238 | Chapter7: Advanced Querying

Before we move on, let’s consider what purpose the WHERE, ON, and USING clauses serve.
If you omit the WHERE clause from the query we showed you, you get a very different
result. Here’s the query, and the first few lines of output:

mysql> SELECT artist_name, album_name FROM artist, album;

Nick Cave & The Bad Seeds
Miles Davis

The Rolling Stones

The Stone Roses

Kylie Minogue

Retro - John McCready FAN
Retro - John McCready FAN
Retro - John McCready FAN
Retro - John McCready FAN
Retro - John McCready FAN

R R T e En LR +
| artist_name | album_name |
o T T T T TR +
New Order | Let Love In
Nick Cave & The Bad Seeds | Let Love In
Miles Davis | Let Love In
The Rolling Stones | Let Love In
The Stone Roses | Let Love In
|
New Order | Retro - John McCready FAN
|
|
|
|

| |
| |
| |
: :
| Kylie Minogue Let Love In |
| |
| |
| |
| |
| |
| |

The output is nonsensical: what’s happened is that each row from the artist table has
been output alongside each row from the album table, for all possible combinations.
Since there are 6 artists and 13 albums, there are 6 X 13 = 78 rows of output, and we
know that only 13 of those combinations actually make sense (there are only 13 al-
bums). This type of query, without a clause that matches rows, is known as a Cartesian
product. Incidentally, you also get the Cartesian product if you perform an inner join
without specifying a column with a USING or ON clause, as in the query:

SELECT artist name, album name FROM artist INNER JOIN album;

Later in “The Natural Join,” we’ll introduce the natural join, which is an inner join on
identically named columns. While the natural join doesn’t use explicitly specified col-
umns, it still produces an inner join, rather than a Cartesian product.

The keyphrase INNER JOIN can be replaced with JOIN or STRAIGHT JOIN; they all do the
same thing. However, STRAIGHT JOIN forces MySQL to always read the table on the left
before it reads the table on the right. We’ll have a look at how MySQL processes queries
behind the scenes in Chapter 8. The keyphrase INNER JOIN is the one you’ll see most
commonly used: it’s used by many other database systems besides MySQL, and we use
it in all our inner-join examples.

The Union

The UNION statement isn’t really a join operator. Rather, it allows you to combine the
output of more than one SELECT statement to give a consolidated result set. It’s useful
in cases where you want to produce a single list from more than one source, or you
want to create lists from a single source that are difficult to express in a single query.

Advanced Joins | 239

Let’s look at an example. If you wanted to output all of the text in the music database,
you could do this with a UNION statement. It’s a contrived example, but you might want
to do this just to list all of the text fragments, rather than to meaningfully present the
relationships between the data. There’s text in the artist name, album_name, and
track_name columns in the artist, album, and track tables, respectively. Here’s how to
display it:
mysql> SELECT artist_name FROM artist
-> UNION
-> SELECT album_name FROM album

-> UNION
-> SELECT track_name FROM track;

QU
=
+
.
wn
R
>
QU
E;
]

New Order

Nick Cave & The Bad Seeds
Miles Davis

The Rolling Stones

The Stone Roses

Kylie Minogue

Let Love In

Retro - John McCready FAN
Substance (Disc 2)

Retro - Miranda Sawyer POP
Retro - New Order / Bobby Gillespie LIVE
Live Around The World

In A Silent Way

Power, Corruption & Lies
Exile On Main Street
Substance 1987 (Disc 1)
Second Coming

Light Years

Brotherhood

Do You Love Me?

We’ve only shown the first 20 of 153 rows. The UNION statement outputs all results from
all queries together, under a heading appropriate to the first query.

A slightly less contrived example is to create a list of the first five and last five tracks
you’ve played. You can do this easily with the UNION operator:

mysql> (SELECT track_name FROM
-> track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played ASC LIMIT 5)
-> UNION
-> (SELECT track_name FROM
-> track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played DESC LIMIT 5);

| Fine Time

240 | Chapter7: Advanced Querying

Temptation

True Faith

The Perfect Kiss |
Ceremony

New Blues

Intruder |
In A Silent Way |
Bizarre Love Triangle |
Crystal

10 rows in set (0.09 sec)

The first query uses ORDER BY with the ASC (ascending) modifier and a LIMIT 5 clause to
find the first five tracks played. The second query uses ORDER BY with the DESC (de-
scending) modifier and a LIMIT 5 clause to find the last five tracks played. The UNION
combines the result sets.

The UNION operator has several limitations:

* The output is labeled with the names of the columns or expressions from the first
query. Use column aliases to change this behavior.

* The queries should output the same number of columns. If you try using different
numbers of columns, MySQL will report an error.

* All matching columns should have the same type. So, for example, if the first col-
umn output from the first query is a date, the first column output from any other
query must be a date.

* The results returned are unique, as if you’d applied a DISTINCT to the overall result
set. To see this in action, let’s add a new row for the track “Fine Time” to the
played table. This has artist_id 1, album id 3, and track_id O:

mysql> INSERT INTO played SET

-> artist_id = 1,

-> album_id = 3,

-> track_id = o,

-> played='2006-08-14 10:27:03";
Query OK, 1 row affected (0.02 sec)

We’ve used the more verbose INSERT format to clarify what we’re inserting.

Now, if you run the previous SELECT query again, you’ll see 9 rows instead of 10,
since “Fine Time” appears twice in the first 5 tracks placed, but the implicit DIS
TINCT operation means it’s shown only once:

mysql> (SELECT track_name FROM
-> track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played ASC LIMIT 5)
-> UNION
-> (SELECT track_name FROM
-> track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played DESC LIMIT 5);

| track_name |

Advanced Joins | 241

| Fine Time

| Temptation

| True Faith |
| The Perfect Kiss |
| New Blues

| Intruder |
| In A Silent Way |
| Bizarre Love Triangle |
| Crystal

9 rows in set (0.01 sec)

If you want to show any duplicates, replace UNION with UNION ALL:

mysql> (SELECT track_name FROM
-> track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played ASC LIMIT 5)
> UNION ALL
-> (SELECT track_name FROM
-> track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played DESC LIMIT 5);

Fine Time

Temptation

Fine Time

True Faith

The Perfect Kiss

New Blues

Intruder

In A Silent Way
Bizarre Love Triangle
Crystal

10 rows in set (0.00 sec)

Here, “Fine Time” appears twice.

* If you want to apply LIMIT or ORDER BY to an individual query that is part of a
UNION statement, enclose that query in parentheses (as shown in the previous ex-
ample). It’s useful to use parentheses anyway to keep the query easy to understand.

The UNION operation simply concatenates the results of the component queries with
no attention to order, so there’s not much point in using ORDER BY within one of
the subqueries. The only time that it makes sense to order a subquery in a UNION
operation is when you want to select a subset of results. In our example, we’ve
ordered the tracks by the time they were played, and then selected only the first
five (in the first subquery) and the last five (in the second subquery).

For efficiency, MySQL will actually ignore an ORDER BY clause within a subquery if
it’s used without LIMIT. Let’s look at some examples to see exactly how this works.

242 | Chapter7: Advanced Querying

First, let’s run a simple query to list the tracks that have been played, along with
the time each track was played. We’ve enclosed the query in parentheses for con-
sistency with our other examples—the parentheses don’t actually have any effect
here—and haven’t used an ORDER BY or LIMIT clause:

mysql> (SELECT track_name, played
-> FROM track INNER JOIN played USING (artist_id, album_id, track_id)

-)5

Ao e +
| track_name | played |
e Ao +
Fine Time	2006-08-14 10:21:03
Fine Time	2006-08-14 10:27:03
Temptation	2006-08-14 10:25:22
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
Ceremony	2006-08-14 10:41:43
Regret	2006-08-14 10:43:37
Crystal	2006-08-14 10:47:21
Bizarre Love Triangle	2006-08-14 10:54:02
In A Silent Way	2006-08-15 14:00:03
Intruder	2006-08-15 14:26:12
New Blues	2006-08-15 14:33:57
B e B T +
12 rows in set (0.00 sec)

The query returns all the played tracks, in no particular order (see the second and
third entries).

Now, let’s add an ORDER BY clause to this query:

mysql> (SELECT track_name, played
-> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played ASC);

B e EE L P e R LR L LT +
| track_name | played |
B L E L e TP L +
Fine Time	2006-08-14 10:21:03
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:27:03
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
Ceremony	2006-08-14 10:41:43
Regret	2006-08-14 10:43:37
Crystal	2006-08-14 10:47:21
Bizarre Love Triangle	2006-08-14 10:54:02
In A Silent Way	2006-08-15 14:00:03
Intruder	2006-08-15 14:26:12
New Blues	2006-08-15 14:33:57
B L EE L P L e R e PP +
12 rows in set (0.03 sec)

As expected, we get all the played tracks, in the order that they’ve been played.

Advanced Joins | 243

Adding a LIMIT clause to the previous query selects the first five tracks played, in
chronological order—no surprises here:
mysql> (SELECT track_name, played

-> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played ASC LIMIT 5);

Hmm e dmm e +
| track_name | played |
Hmm e S LLLET TR +
Fine Time	2006-08-14 10:21:03
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:27:03
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
Hmm e dmm e +

5 rows in set (0.00 sec)

Now, let’s see what happens when we perform a UNION operation. In this example,
we're using two subqueries, each with an ORDER BY clause. We've used a LIMIT
clause for the second subquery, but not for the first:

mysql> (SELECT track_name, played
-> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played ASC)
-> UNION ALL
-> (SELECT track_name,played
-> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played DESC LIMIT 5);

R R e e e +
| track_name | played |
Fomm e B e +
Fine Time	2006-08-14 10:21:03
Fine Time	2006-08-14 10:27:03
Temptation	2006-08-14 10:25:22
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
Ceremony	2006-08-14 10:41:43
Regret	2006-08-14 10:43:37
Crystal	2006-08-14 10:47:21
Bizarre Love Triangle	2006-08-14 10:54:02
In A Silent Way	2006-08-15 14:00:03
Intruder	2006-08-15 14:26:12
New Blues	2006-08-15 14:33:57
New Blues	2006-08-15 14:33:57
Intruder	2006-08-15 14:26:12
In A Silent Way	2006-08-15 14:00:03
Bizarre Love Triangle	2006-08-14 10:54:02
Crystal	2006-08-14 10:47:21
B B e e LT +
17 rows in set (0.00 sec)

As expected, the first subquery returns all the played tracks (the first 12 rows of
this output), and the second subquery returns the last 5 tracks (the last 5 rows of
this output). Notice how the first 12 rows are not in order (see the second and third

244 | Chapter7: Advanced Querying

rows), even though the first subquery does have a ORDER BY clause. Since we’re
performing a UNION operation, the MySQL server has decided that there’s no point
sorting the result of the subquery. The second subquery includes a LIMIT operation,
so the results of that subquery are sorted.

The output of a UNION operation isn’t guaranteed to be ordered, even if the subqu-
eries are ordered, so if you want the final output to be ordered, you should add an
ORDER BY clause at the end of the whole query:

mysql> (SELECT track_name, played
-> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played ASC)
-> UNION ALL
-> (SELECT track_name, played
-> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played DESC LIMIT 5)
-> ORDER BY played;

B T +

| track_name played |

B e T +
Fine Time 2006-08-14 10:21:03
Temptation 2006-08-14 10:25:22
Fine Time 2006-08-14 10:27:03
True Faith 2006-08-14 10:30:25
The Perfect Kiss 2006-08-14 10:36:54
Ceremony 2006-08-14 10:41:43
Regret 2006-08-14 10:43:37
Crystal 2006-08-14 10:47:21

Bizarre Love Triangle | 2006-08-14 10:54:02
Bizarre Love Triangle | 2006-08-14 10:54:02
In A Silent Way 2006-08-15 14:00:03
In A Silent Way 2006-08-15 14:00:03

Intruder 2006-08-15 14:26:12
Intruder 2006-08-15 14:26:12
New Blues 2006-08-15 14:33:57
New Blues 2006-08-15 14:33:57

"

|

+
Crystal	2006-08-14 10:47:21

+

)

17 rows in set (0.00 sec

Here’s another example of sorting the final results, including a limit on the number
of returned results:

mysql> (SELECT artist_name FROM artist WHERE artist_id < 5)
-> UNION
-> (SELECT artist_name FROM artist WHERE artist_id > 7)
-> ORDER BY artist_name LIMIT 4;

e +
| artist_name |
e +
| Miles Davis

| Nick Cave & The Bad Seeds

|
| New Order
|
| The Rolling Stones |

Advanced Joins | 245

4 rows in set (0.01 sec)

The UNION operation is somewhat unwieldy, and there are generally alternative ways of
getting the same result. For example, the previous query could have been written more
simply as:

mysql> SELECT artist_name FROM artist WHERE

-> artist_id < 3 OR artist_id > 5
-> ORDER BY artist_name LIMIT 4;

e +
| artist_name |
e +
| Kylie Minogue

| New Order

| Nick Cave & The Bad Seeds |
e +

3 rows in set (0.00 sec)

The Left and Right Joins

The joins we’ve discussed so far output only rows that match between tables. For ex-
ample, when you join the track and played tables, you see only the tracks that have
been played. Therefore, rows for tracks that haven’t been played are ignored and—if
they existed—would play data for tracks that don’t exist. This makes sense in many
cases, butitisn’t the only way to join data. This section explains other options you have.

Suppose you did want a comprehensive list of all albums and the number of times
you’ve played tracks from them. Unlike the example earlier in this chapter, included
in the list you want to see a zero next to albums that haven’t been played. You can do
this with a left join, a different type of join that’s driven by one of the two tables par-
ticipating in the join. A left join works like this: each row in the left table—the one
that’s doing the driving—is processed and output, with the matching data from the
second table if it exists and NULL values if there is no matching data in the second table.
We’ll show you how to write this type of query later in this section, but we’ll start with
a simpler example.

Here’s a simple LEFT JOIN example. You want to list all tracks, and next to each track

you want to show when it was played. If a track has been never been played, you want

to see that. If it’s been played many times, you want to see that too. Here’s the query:
mysql> SELECT track_name, played FROM

-> track LEFT JOIN played USING (artist_id, album_id, track_id)
-> ORDER BY played DESC;

| In A Silent Way
| Bizarre Love Triangle

2006-08-15 14:00:03 |
2006-08-14 10:54:02 |

e B T T +
| track_name | played |
e B e et +
| New Blues | 2006-08-15 14:33:57 |
| Intruder | 2006-08-15 14:26:12 |
|
|

246 | Chapter7: Advanced Querying

Crystal 2006-08-14 10:47:21

Regret	2006-08-14 10:43:37
Ceremony	2006-08-14 10:41:43
The Perfect Kiss	2006-08-14 10:36:54
True Faith	2006-08-14 10:30:25
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:21:03
Do You Love Me?	NULL
Nobody's Baby Now	NULL
Loverman	NULL
Jangling Jack	NULL
Red Right Hand	NULL
I Let Love In	NULL

You can see what happens: tracks that have been played have dates and times, and
those that haven’t don’t (the played value is NULL). We’ve added an ORDER BY played
DESC to display the output from most to least recently played, where “never played”
(NULL) is the smallest possible value.

The order of the tables in the LEFT JOIN is important. If you reverse the order in the
previous query, you get very different output:
mysql> SELECT track_name, played FROM

-> played LEFT JOIN track USING (artist_id, album_id, track_id)
-> ORDER BY played DESC;

e e E L e L +
| track_name | played |
L e EE L e e L e +
New Blues	2006-08-15 14:33:57
Intruder	2006-08-15 14:26:12
In A Silent Way	2006-08-15 14:00:03
Bizarre Love Triangle	2006-08-14 10:54:02
Crystal	2006-08-14 10:47:21
Regret	2006-08-14 10:43:37
Ceremony	2006-08-14 10:41:43
The Perfect Kiss	2006-08-14 10:36:54
True Faith	2006-08-14 10:30:25
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:21:03
e et L LT L et L LR +
11 rows in set (0.18 sec)

In this, the query is driven by the played table, and so all rows from it are output matched
against track values if they exist and NULL otherwise. Since all rows in the played table
have matching tracks, no NULL values are shown. Importantly, because the played table
drives the process, you don’t see all the rows from the track table (because not all tracks
have been played).

In the introduction to this section, we motivated left joins with the example of listing
all albums and the number of times they’ve been played, regardless of whether that
value is zero. You'll recall from “The GROUP BY Clause” the following query that
shows you that information, but only for albums you’ve played:

Advanced Joins | 247

mysql> SELECT artist_name, album_name, COUNT(*) FROM
-> artist INNER JOIN album USING (artist_id)
-> INNER JOIN track USING (artist_id, album_id)
-> INNER JOIN played USING (artist_id, album_id, track_id)
-> GROUP BY album.artist_id, album.album_id;

Hmmmmmm oo e e mmm e +
| artist name | album_name | COUNT(*) |
Hmmm e B e Ao +
| New Order | Retro - Miranda Sawyer POP | 8 |
| Miles Davis | Live Around The World | 3|
Hmmm e e Ao +

2 rows in set (0.11 sec)

Here’s how you modify that query to use a left join to list all albums, even those that
have never been played:

mysql> SELECT artist_name, album_name, COUNT(played) FROM
-> artist INNER JOIN album USING (artist_id)
-> INNER JOIN track USING (artist_id, album_id)
-> LEFT JOIN played USING (artist_id, album_id, track_id)

e oo Hmmmm e +
| artist name | album_name | COUNT(*) |
dmm e L n T TR mmmmm e +
New Order	Retro - John McCready FAN	0
New Order	Substance (Disc 2)	0
New Order	Retro - Miranda Sawyer POP	8
New Order	Retro - New Order / Bobby Gillespie LIVE	0
New Order	Power, Corruption & Lies	0
New Order	Substance 1987 (Disc 1)	0
New Order	Brotherhood	0
Nick Cave & The Bad Seeds	Let Love In	0
Miles Davis	Live Around The World	3
Miles Davis	In A Silent Way	0
The Rolling Stones	Exile On Main Street	0
The Stone Roses	Second Coming	0
Kylie Minogue	Light Years	0
e oo mm e +

13 rows in set (0.18 sec)

The only difference is that the final INNER JOIN is replaced by a LEFT JOIN, which means
that the data from the first two inner joins—of artist and album—drives the process.
The result is that all albums and their artists are displayed, along with the count of the
number of matching rows in the played table. You can see we haven’t listened to the
majority of the albums.

We’ve shown you that it matters what comes before and after the LEFT JOIN statement.
Whatever is on the left drives the process, hence the name “left join.” If you really don’t
want to reorganize your query so it matches that template, you can use rol1RIGHT
JOIN. It’s exactly the same, except whatever is on the right drives the process. Here’s
our earlier played and track example written as a right join:

mysql> SELECT track_name, played FROM
-> played RIGHT JOIN track USING (artist_id, album_id, track_id)

248 | Chapter7: Advanced Querying

-> ORDER BY played DESC;

EEEEEE TR e +

| track_name played |

T T B e n R +
New Blues 2006-08-15 14:33:57
Intruder 2006-08-15 14:26:12

|

+

In A Silent Way	2006-08-15 14:00:03
Bizarre Love Triangle	2006-08-14 10:54:02
Crystal	2006-08-14 10:47:21
Regret	2006-08-14 10:43:37
The Perfect Kiss	2006-08-14 10:36:54

Ceremony 2006-08-14 10:41:43
True Faith 2006-08-14 10:30:25
Temptation 2006-08-14 10:25:22
Fine Time 2006-08-14 10:21:03
Do You Love Me? NULL
Nobody's Baby Now NULL
Loverman NULL
Jangling Jack NULL

The right join is useful sometimes because it allows you to write a query more naturally,
expressing it in a way that’s more intuitive. However, you won’t often see it used, and
we’d recommend avoiding it where possible.

Both the LEFT JOIN and RIGHT JOIN can use either the USING or ON clauses discussed for
the INNER JOIN earlier in this chapter in “The Inner Join.” You should use one or the
other: without them, you’ll get the Cartesian product discussed in “The Inner Join.”

There’s an extra OUTER keyword that you can optionally use in left and right joins, to
make them read as LEFT OUTER JOIN and RIGHT OUTER JOIN. It’s just an alternative syntax
that doesn’t do anything different, and you won’t often see it used. We stick to the
basic versions in this book.

The Natural Join

We’re not big fans of the natural join that we’re about to describe in this section. It’s
in here only for completeness and because you’ll see it used sometimes in SQL state-
ments you’ll encounter. Our advice is to avoid using it where possible.

A natural join is, well, supposed to be magically natural. This means that you tell
MySQL what tables you want to join, and it figures out how to do it and gives you an
INNER JOIN result set. Here’s an example for the artist and album tables:

mysql> SELECT artist_name, album_name FROM artist NATURAL JOIN album;

o B L e LR EE PR +
| artist_name | album_name |
o o +
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies

Advanced Joins | 249

New Order Substance 1987 (Disc 1)
New Order Brotherhood
Nick Cave & The Bad Seeds | Let Love In

Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years

+

13 rows in set (0.03 sec)

In reality, it’s not quite magical: all MySQL does is look for columns with the same
names and, behind the scenes, adds these silently into an inner join with a USING clause.
So, the above query is actually translated into:

mysql> SELECT artist_name, album_name FROM
-> artist INNER JOIN album USING (artist_id);

If identifier columns don’t share the same name, natural joins won’t work. Also, more
dangerously, if columns that do share the same names aren’t identifiers, they’ll get
thrown into the behind-the-scenes USING clause anyway. For example, if you had
name columns in the artist and album tables (instead of artist _name and album_name),
you’d get USING (artist_id, name) and some unpredictable results. The magic and
mystery makes natural joins worth avoiding; spell out queries using an inner join or a
WHERE clause instead.

You’ll sometimes see the natural join mixed with left and right joins. The following are
valid join syntaxes: NATURAL LEFT JOIN, NATURAL LEFT OUTER JOIN, NATURAL RIGHT
JOIN, and NATURAL RIGHT OUTER JOIN. The former two are left joins without ON or
USING clauses, and the latter two are right joins. Again, avoid writing them when you
can, but you should understand what they mean if you see them used.

Nested Queries

Nested queries—supported by MySQL since version 4.1—are the most difficult to
learn. However, they provide a powerful, useful, and concise way of expressing difficult
information needs in short SQL statements. This section explains them, beginning with
simple examples and leading to the more complex features of the EXISTS and IN state-
ments. At the conclusion of this section, you’ll have completed everything this book
contains about querying data, and you should be comfortable understanding almost
any SQL query you encounter.

Nested Query Basics

You know how to find the name of an artist who made a particular album using an
INNER JOIN:

mysql> SELECT artist_name FROM
-> artist INNER JOIN album USING (artist_id)

250 | Chapter7: Advanced Querying

-> WHERE album_name = "In A Silent Way";

1 row in set (0.14 sec)

But there’s another way, using a nested query:

mysql> SELECT artist_name FROM artist WHERE artist id =
-> (SELECT artist_id FROM album WHERE album_name = "In A Silent Way");

1 row in set (0.28 sec)

It’s called a nested query because one query is inside another. The inner query, or
subquery—the one that is nested—is written in parentheses, and you can see that it
determines the artist_id for the album with the name In A Silent Way. The paren-
theses are required for inner queries. The outer query is the one that’s listed first and
isn’t parenthesized here: you can see that it finds the artist_name of the the artist with
an artist_id that matches the result of the subquery. So, overall, the inner query finds
the artist_id, and the outer query uses it to find the artist’s name.

So, which approach is preferable: nested or not nested? The answer isn’t easy. In terms
of performance, the answer is usually not: nested queries are hard to optimize, and so
they’re almost always slower to run than the unnested alternative. Does this mean you
should avoid nesting? The answer is no: sometimes it’s your only choice if you want to
write a single query, and sometimes nested queries can answer information needs that
can’t be easily solved otherwise. What’s more, nested queries are expressive. Once
you’re comfortable with the idea, they’re a very readable way to show how a query is
evaluated. In fact, many SQL designers advocate teaching nested queries before the
join-based alternatives we’ve shown you in the past few chapters. We’ll show you ex-
amples of where nesting is readable and powerful throughout this section.

Before we begin to cover the keywords that can be used in nested queries, let’s visit an
example that can’t be done easily in a single query—at least, not without MySQL’s
proprietary LIMIT clause! Suppose you want to know which track you listened to most
recently. To do this, following the methods we’ve learned previously, you could find
the date and time of the most recently stored row in the played table:

mysql> SELECT MAX(played) FROM played;

R e E LT +
| MAX(played)

L e E LT +
| 2006-08-15 14:33:57 |
R e E LT +

1 row in set (0.00 sec)

Nested Queries | 251

You can then use the output as input to another query to find the track name:

mysql> SELECT track_name FROM track INNER JOIN played
-> USING (artist_id, album_id, track_id)
-> WHERE played = "2006-08-15 14:33:57";

1 row in set (0.31 sec)

In “User Variables,” later in this chapter, we’ll show how you can use variables to avoid
having to type in the value in the second query.

With a nested query, you can do both steps in one shot:

mysql> SELECT track_name FROM track INNER JOIN played
-> USING (artist_id, album_id, track_id)
-> WHERE played = (SELECT MAX(played) FROM played);

1 row in set (0.28 sec)

You can see the nested query combines the two previous queries. Rather than using the
constant date and time value discovered from a previous query, it executes the query
directly as a subquery. This is the simplest type of nested query, one that returns a
scalar operand—that is, a single value.

The previous example used the equality operator, the equals sign, =. You can use all
types of comparison operators: < (less than), <= (less than or equal to), > (greater than),
>= (greater than or equal to), and != (not equals) or <> (not equals).

The ANY, SOME, ALL, IN, and NOT IN Clauses

Before we start to show some more advanced features of nested queries, we need to
create two new tables to use in our examples. Unfortunately, our music database is a
little too simple to effectively demonstrate the full power of nested querying. So, let’s
extend the database to give us something to play with.

We’'ll create two new tables that share common data, but store different types of facts.
The first table we’ll create contains information about producers—that is, the people
who oversee the music recording process. Here’s the structure and some data:

mysql> CREATE TABLE producer (
-> producer_id SMALLINT(4) NOT NULL DEFAULT o,
-> producer_name CHAR(128) DEFAULT NULL,
-> years SMALLINT(3) DEFAULT o,
-> PRIMARY KEY (producer_id));

252 | Chapter7: Advanced Querying

Query OK, 0 rows affected (1.03 sec)

mysql> INSERT INTO producer VALUES
-> (1, "Phil Spector", 36),
-> (2, "George Martin", 40),
-> (3, "Tina Weymouth", 20),
-> (4, "Chris Frantz", 20),
-> (5, "Ed Kuepper", 15);

Query OK, 5 rows affected (0.50 sec)
Records: 5 Duplicates: 0 Warnings: 0

You can download these instructions from the book’s web site in the file pro-
ducer.sql, and run them in the same way you ran the music.sql file.

You can seeit’s a fairly simple table: an identifier column, a textual name, and an integer
value of the number of years they’ve been producing. The second table is almost iden-
tical, but stores information about engineers—that is, the people who work the mixing
desks and other equipment that’s used in the music recording process. Here’s the table
and its data:

mysql> CREATE TABLE engineer (
-> engineer_id SMALLINT(4) NOT NULL DEFAULT o,
-> engineer_name CHAR(128) DEFAULT NULL,
-> years SMALLINT(3) DEFAULT o,
-> PRIMARY KEY (engineer_id));
Query OK, 0 rows affected (0.04 sec)

mysql> INSERT INTO engineer VALUES

-> (1, "George Martin", 40),

-> (2, "Eddie Kramer", 38),

-> (3, "Jeff Jarratt", 40),

-> (4, "Ed Stasium", 25);
Query OK, 4 rows affected (0.14 sec)
Records: 4 Duplicates: 0 Warnings: 0

You can download these instructions from the book’s web site in the file engineer.sql.

Using ANY and IN

Now that you’ve created the sample tables, you can try an example using ANY. Suppose
you’re looking to find engineers who’ve been working longer than the least experienced
producer. You can express this information need as follows:

mysql> SELECT engineer_name, years

-> FROM engineer WHERE years > ANY
-> (SELECT years FROM producer);

B e T e +
| engineer_name | years

Fmmmmm e R +
George Martin	40
Eddie Kramer	38
Jeff Jarratt	40
Ed Stasium	25

Nested Queries | 253

Hmmm e Hmmmmm +
4 rows in set (0.08 sec)

The subquery finds the years that the producers have worked:
mysql> SELECT years FROM producer;

Hmmm +
| years |
Hmmmmm +
| 36 |
| 40 |
|20 |
|20 |
15|
Hmmmmm +

5 rows in set (0.00 sec)

The outer query goes through each engineer, returning the engineer if their number of
years is greater than any of the values in the set returned by the subquery. So, for
example, Eddie Kramer is output because 38 is greater than at least one value in the set
(36, 40, 20, 15). The ANY keyword means just that: it’s true if the column or expression
preceding it is true for any of the values in the set returned by the subquery. Used in
this way, ANY has the alias SOME, which was included so that some queries can be read
more clearly as English expressions; it doesn’t do anything different and you’ll rarely
see it used.

The ANY keyword gives you more power in expressing nested queries. Indeed, the pre-
vious query is the first nested query in this section with a column subquery—that is, the
results returned by the subquery are one or more values from a column, instead of a
single scalar value as in the previous section. With this, you can now compare a column
value from an outer query to a set of values returned from a subquery.

Consider another example using ANY. Suppose you want to know the producers who
are also engineers. You can do this with the following nested query:
mysql> SELECT producer_name FROM producer WHERE

-> producer_name = ANY
-> (SELECT engineer_name FROM engineer);

1 row in set (0.04 sec)

The = ANY causes the outer query to return a producer when the producer_name is equal
to any of the engineer names returned by the subquery. The = ANY keyphrase has the
alias IN, which you’ll see commonly used in nested queries. Using IN, the previous
example can be rewritten:

mysql> SELECT producer_name FROM producer WHERE producer_name
-> IN (SELECT engineer_name FROM engineer);

254 | Chapter7: Advanced Querying

| producer name |

1 row in set (0.06 sec)

Of course, for this particular example, you could also have used a join query:

mysql> SELECT producer_name FROM producer INNER JOIN engineer
-> ON (producer_name = engineer_name);

1 row in set (0.17 sec)

Again, nested queries are expressive but typically slow in MySQL, so use a join where
you can.

Using ALL

Suppose you want to find engineers who are more experienced than all of the producers
—that is, more experienced than the most experienced producer. You can do this with
the ALL keyword in place of ANY:

mysql> SELECT engineer_name, years FROM engineer
-> WHERE years > ALL (SELECT years FROM producer);
Empty set (0.00 sec)

You can see that there are no answers: looking at the data, we see that George Martin
has been a producer for 40 years, equal to or longer than the time any engineer has been
engineering. While the ANY keyword returns values that satisfy at least one condition
(Boolean OR), the ALL keyword returns values when all the conditions are satisfied
(Boolean AND).

We can use the alias NOT INin place of <> ANY or != ANY. Let's find all the engineers who
aren't producers:

mysql> SELECT engineer_name FROM engineer WHERE
-> engineer_name NOT IN
-> (SELECT producer_name FROM producer);

| Eddie Kramer
| Jeff Jarratt |
| Ed Stasium |

3 rows in set (0.25 sec)

As an exercise, try writing the above query using the ANY syntax and in at least two ways
as a join query.

Nested Queries | 255

The ALL keyword has a few tricks and traps:

* If it’s false for any value, it’s false. Suppose that table a contains a row with the
value 14. Suppose table b contains the values 16, 1, and NULL. If you check whether
the value in a is greater than ALL values in b, you’ll get false, since 14 isn’t greater
than 16. It doesn’t matter that the other values are 1 and NULL.

e Ifitisn’t false for any value, it isn’t true unless it’s true for all values. Suppose that
table a again contains 14, and suppose b contains 1 and NULL. If you check whether
the value in a is greater than ALL values in b, you’ll get UNKNOWN (neither true or false)
because it can’t be determined whether NULL is greater than or less than 14.

* If the table in the subquery is empty, the result is always true. Hence, if a contains
14 and b is empty, you’ll get true when you check if the value in a is greater than

ALL values in b.

When using the ALL keyword, be very careful with tables that can have NULL values in
columns; consider disallowing NULL values in such cases. Also, be careful with empty

tables.

Writing row subqueries

In the previous examples, the subquery returned a single, scalar value (such as an
artist_id) or a set of values from one column (such as all of the engineer_name values).
This section describes another type of subquery, the row subquery that works with

multiple columns from multiple rows.

Suppose you’re interested in whether an engineer has been a producer for the same
length of time. To answer this need, you must match both names and years. You can

easily write this as a join query:

mysql> SELECT producer_name, producer.years FROM
-> producer, engineer WHERE producer_name =
-> producer.years = engineer.years;

Hmmmmm e Homm - +
| producer name | years

Hmmm e tommmme- +
| George Martin | 40 |
mm e mmmmm - +

1 row in set (0.30 sec)

But you can also write it as a nested query:

engineer_name AND

mysql> SELECT producer_name, years FROM producer WHERE

-> (producer_name, years) IN

-> (SELECT engineer_name, years FROM engineer);

fmmmm e mmmmm - +
| producer name | years

fmmmm e mmmmm - +
| George Martin | 40 |
mmmm e Hmmmmm e +

1 row in set (0.17 sec)

256 | Chapter7: Advanced Querying

You can see there’s a different syntax being used in this nested query: a list of two
column names in parentheses follows the WHERE statement, and the inner query returns
two columns. We’ll explain this syntax next.

The row subquery syntax allows you to compare multiple values per row. The expres-
sion (producer_name, years) means two values per row are compared to the output of
the subquery. You can see following the IN keyword that the subquery returns two
values, engineer name and years. So, the fragment:

(producer_name, years) IN (SELECT engineer name, years FROM engineer)

matches producer names and years to engineer names and years, and returns a true
value when a match is found. The result is that if a matching pair is found, the overall
query outputs a result. This is a typical row subquery: it finds rows that exist in two
tables.

To explain the syntax further, let’s consider another example. Suppose you want to see
if you own the Brotherhood album by New Order. You can do this with the following
query:

mysql> SELECT artist_name, album_name FROM artist, album WHERE
-> (artist.artist_id, artist_name, album_name) =
-> (album.artist_id, "New Order", "Brotherhood");

dmmmm e mmmm e +
| artist name | album name |
dmmmmm e mmmmm oo +
| New Order | Brotherhood |
dmmmm e mmmm e +

1 row in set (0.16 sec)

It’s not a nested query, but it shows you how the new row subquery syntax works. You
can see that the query matches the list of columns before the equals sign,
(artist.artist_id, artist name, album_name), to the list of columns and values after
the equals sign, (album.artist id, "New Order", "Brotherhood"). So, when the
artist _id values match, the artist is New Order, and the album is Brotherhood, we get
output from the query. We don’t recommend writing queries like this—use a WHERE
clause instead—but it does illustrate exactly what’s going on. For an exercise, try writ-
ing this query using a join.

Row subqueries require that the number, order, and type of values in the columns
match. So, for example, our previous example matches a SMALLINT to a SMALLINT, and
two character strings to two character strings.

The EXISTS and NOT EXISTS Clauses

You’ve now seen three types of subquery: scalar subqueries, column subqueries, and
row subqueries. In this section, you’ll learn about a fourth type, the correlated sub-
query, where a table used in the outer query is referenced in the subquery. Correlated

Nested Queries | 257

subqueries are often used with the IN statement we’ve already discussed, and almost
always used with the EXISTS and NOT EXISTS clauses that are the focus of this section.

EXISTS and NOT EXISTS basics

Before we start on our discussion of correlated subqueries, let’s investigate what the
EXISTS clause does. We'll need a simple but strange example to introduce the clause,
since we’re not discussing correlated subqueries just yet. So, here goes: suppose you
want to find a list of all artists in the database, but only if the database is active (which
you’ve defined to mean only if at least one track from any album by any artist has been
played). Here’s the query that does it:

mysql> SELECT * FROM artist WHERE EXISTS
-> (SELECT * FROM played);

Hmmm e T +

| artist_id | artist_name

Hmmm e T +

| New Order

| Nick Cave & The Bad Seeds |

| Miles Davis |

| The Rolling Stones |

| The Stone Roses |

| Kylie Minogue

Hmmm e e +

6 rows in set (0.18 sec)

| 1
| 2
| 3
| 4
| 5
| 6

The subquery returns all rows from the played table. However, what’s important is that
it returns at least one row; it doesn’t matter what’s in the row, how many rows there
are, or whether the row contains only NULL values. So, you can think of the subquery
as being true or false, and in this case it’s true because it produces some output. When
the subquery is true, the outer query that uses the EXISTS clause returns a row. The
overall result is that all rows in the artist table are displayed because, for each one,
the subquery is true.

Let’s try a query where the subquery isn’t true. Again, let’s contrive a query: this time,
we’ll output the names of all albums in the database, but only if we own at least one
album by John Coltrane. Here’s the query:

mysql> SELECT album_name FROM album WHERE EXISTS

-> (SELECT * FROM artist WHERE artist_name = "John Coltrane");
Empty set (0.10 sec)

Since the subquery isn’t true—no rows are returned because John Coltrane isn’t in our
database—no results are returned by the outer query.

The NOT EXISTS clause does the opposite. Imagine you want a list of all producers if you
don’t have an artist called New Order in the database. Here it is:
mysql> SELECT * FROM producer WHERE NOT EXISTS

-> (SELECT * FROM artist WHERE artist_name = "New Order");
Empty set (0.16 sec)

258 | Chapter7: Advanced Querying

This time, the inner query is true but the NOT EXISTS clause negates it to give false. Since
it’s false, the outer query doesn’t produce results.

You’ll notice that the subquery begins with SELECT * FROM artist. It doesn’t actually
matter what you select in an inner query when you’re using the EXISTS clause, since it’s
not used by the outer query anyway. You can select one column, everything, or even a
constant (as in SELECT "cat" from artist), and it’'ll have the same effect. Traditionally,
though, you’ll see most SQL authors write SELECT * by convention.

Correlated subqueries

So far, it’s difficult to imagine what you’d do with the EXISTS or NOT EXISTS clauses.
This section shows you how they’re really used, illustrating the most advanced type of
nested query that you’ll typically see in action.

Let’s think about a realistic information need you might want to answer from the
music database. Suppose you want a list of all artists who’ve produced a self-titled
album. You can do this easily with a join query, which we recommend you try to think
about before you continue. You can also do it with the following nested query that uses
a correlated subquery:

mysql> SELECT artist_name FROM artist WHERE EXISTS

-> (SELECT * FROM album WHERE album_name = artist_name);
Empty set (0.28 sec)

There’s no output because there are no self-titled albums. Let’s add an artist with a self-
titled album and try again:

mysql> INSERT INTO artist VALUES (7, "The Beatles");
Query OK, 1 row affected (0.13 sec)

mysql> INSERT INTO album VALUES (7, 1, "The Beatles");
Query OK, 1 row affected (0.14 sec)

Now the query:

mysql> SELECT artist_name FROM artist WHERE EXISTS
-> (SELECT * FROM album WHERE album_name = artist_name);

1 row in set (0.17 sec)
So, the query works; now, we just need to understand how!

Let’s examine the subquery in our previous example. You can see that it lists only the
album table in the FROM clause, but it uses a column from the artist table in the WHERE
clause. If you run it in isolation, you’ll see this isn’t allowed:

mysql> SELECT * FROM album WHERE album_name = artist_name;
ERROR 1054 (42522): Unknown column 'artist name' in 'where clause’

Nested Queries | 259

However, it’s legal when executed as a subquery because tables listed in the outer query
are allowed to be accessed in the subquery. So, in this example, the current value of
artist_name in the outer query is supplied to the subquery as a constant, scalar value
and compared to the album name. If the album name matches the artist name, the
subquery is true, and so the outer query outputs a row. Consider two cases thatillustrate
this more clearly:

* When the artist _name being processed by the outer query is New Order, the sub-
query is false because SELECT * FROM album WHERE album name = "New Order"
doesn’t return any rows, and so the artist row for New Order isn’t output as an
answer.

* When the artist_name being processed by the outer query is The Beatles, the sub-
query is true because SELECT * FROM album WHERE album name = "The Beatles"
returns at least one row. Overall, the artist row for The Beatles is output as an
answer.

Can you see the power of correlated subqueries? You can use values from the outer
query in the inner query to evaluate complex information needs.

We’'ll now explore another example using EXISTS. Let’s try to find all artists from whom
we own at least two albums. To do this with EXISTS, we need to think through what
the inner and outer queries should do. The inner query should produce a result only
when the condition we’re checking is true; in this case, it should produce output when
the artist has at least two albums in the database. The outer query should produce the
artist name whenever the inner query is true. Here’s the query:

mysql> SELECT artist_name FROM artist WHERE EXISTS

-> (SELECT * FROM album WHERE artist.artist_id = album.artist_id
-> GROUP BY artist.artist id HAVING COUNT(*) >= 2);

| New Order |
| Miles Davis |

2 rows in set (0.12 sec)

This is yet another query where nesting isn’t necessary and a join would suffice, but
let’s stick with this version for the purpose of explanation. Have a look at the inner
query: you can see that the WHERE clause ensures only album rows for the artist being
referenced by the outer query—the current artist—are considered by the subquery. The
GROUP BY clause clusters the rows for that artist, but only if there are at least two albums.
Therefore, the inner query only produces output when there are at least two albums
for the current artist. The outer query is straightforward: it outputs an artist’s name
when the subquery produces output.

Here’s one more example before we move on and discuss other issues. We’ve already
shown you a query that uses IN and finds producers who are also engineers:

260 | Chapter7: Advanced Querying

mysql> SELECT producer_name FROM producer WHERE producer_name
-> IN (SELECT engineer_name FROM engineer);

1 row in set (0.06 sec)

Let’s rewrite the query to use EXISTS. First, think about the subquery: it should produce
output when there’s an engineer with the same name as a producer.

Second, think about the outer query: it should return the producer’s name when the
inner query produces output. Here’s the rewritten query:

mysql> SELECT producer_name FROM producer WHERE EXISTS
-> (SELECT * FROM engineer WHERE producer_name = engineer_name);

1 row in set (0.06 sec)

Again, you can see that the subquery references the producer name column, which
comes from the outer query.

Correlated subqueries can be used with any nested query type. Here’s the previous
IN query rewritten with an outer reference:
mysql> SELECT producer_name FROM producer WHERE producer_name

-> IN (SELECT engineer_name FROM engineer WHERE
-> engineer_name = producer_name);

1 row in set (0.14 sec)

The query is more convoluted than it needs to be, but it illustrates the idea. You can
see that the producer_name in the subquery references the producer table from the outer
query. This query can also be rewritten to use an equals instead of IN:

mysql> SELECT producer_name FROM producer WHERE producer_name

-> = (SELECT engineer_name FROM engineer WHERE
-> engineer_name = producer_name);

1 row in set (0.01 sec)

Nested Queries | 261

This works because the subquery returns one scalar value—there’s only one engineer
and producer with each name—and so the column subquery operator IN isn’t neces-
sary. Of course, if names are duplicated, you’d need to use IN, ANY, or ALL instead.

Nested Queries in the FROM Clause

The techniques we’ve shown all use nested queries in the WHERE clause. This section
shows you how they can alternatively be used in the FROM clause. This is useful when
you want to manipulate the source of the data you’re using in a query.

The producer and engineer tables store the number of years that a person has been
producing and engineering, respectively. If you want that value in months, there are
several ways you can obtain it. One way—which we’ll show you in Chapter 8—is to
use a date and time function to do the conversion. Another way is to do some math in
the query; one option in this class is to do it with a subquery:

mysql> SELECT producer_name, months FROM
-> (SELECT producer_name, years*12 AS months FROM producer) AS prod;

Hmm e Hmmmmmne +
| producer name | months |
Hmm e Hmmmm e +
Phil Spector	432
George Martin	480
Tina Weymouth	240
Chris Frantz	240
Ed Kuepper	180
+

oo
5 rows in set (0.05 sec)

Focus on what follows the FROM clause: the subquery uses the producer table and returns
two columns. The first column is the producer name; the second column is aliased as
months, and is the years value multiplied by 12. The outer query is straightforward: it
just returns the producer name and the month value created through the subquery. Note
that we’ve added the table alias as prod for the subquery. When we use a subquery as
a table, that is, we use a SELECT FROM operation on it—this “derived table” must have
an alias—even if we don’t use the alias in our query. MySQL complains if we omit the
alias:
mysql> SELECT producer_name, months FROM

-> (SELECT producer_name, years*12 AS months FROM producer);
ERROR 1248 (42000): Every derived table must have its own alias

Here’s another example, where we’ll find out the average number of albums that we
own by each artist. Let’s begin by thinking through the subquery. It should return the
number of albums that we own by each artist. Then, the outer query should average
the values to give the answer. Here’s the query:

mysql> SELECT AVG(albums) FROM

-> (SELECT COUNT(*) AS albums FROM artist INNER JOIN album
-> USING (artist_id) GROUP BY artist.artist_id) AS alb;

262 | Chapter7: Advanced Querying

| AVG(albums) |

1 row in set (0.00 sec)

You can see that the inner query joins together artist and album, and groups the albums
together by artist so you can get a count for each artist. If you run it in isolation, here’s
what happens:

mysql> SELECT COUNT(*) AS albums FROM artist INNER JOIN album
-> USING (artist_id) GROUP BY artist.artist_id;

Hmmmm e +
| albums
Hmmmm e +
| 7 |
| 1|
| 2 |
| 1|
| 1|
| 1|
| 1|
Hmm e +

7 rows in set (0.00 sec)

Now, the outer query takes these counts—which are aliased as albums—and averages
them to give the final result. This query is the typical way that you apply two aggregate
functions to one set of data. You can’t apply aggregate functions in cascade, as in
AVG(COUNT(*)); it won’t work:

mysql> SELECT AVG(COUNT(*)) FROM album INNER JOIN artist

-> USING (artist_id) GROUP BY artist.artist_id;
ERROR 1111 (HY000): Invalid use of group function

With subqueries in FROM clauses, you can return a scalar value, a set of column values,
more than one row, or even a whole table. However, you can’t use correlated subqu-
eries, meaning that you can’t reference tables or columns from tables that aren’t ex-
plicitly listed in the subquery. Note also that you must alias the whole subquery using
the AS keyword and give it a name, even if you don’t use that name anywhere in the

query.

User Variables

Often you’ll want to save values that are returned from queries. You might want to do
this so that you can easily use a value in a later query. You might also simply want to
save a result for later display. In both cases, user variables solve the problem: they allow
you to store a result and use it later.

Let’sillustrate user variables with a simple example. The following query finds the name
of an artist and saves the result in a user variable:

User Variables | 263

mysql> SELECT @artist:=artist_name FROM artist WHERE artist_id = 1;

R EE TR R +
| @artist:=artist_name |
O EEnCEEEEE R +
| New Order |
e +

1 row in set (0.05 sec)

The user variable is named artist, and it’s denoted as a user variable by the @ character
that precedes it. The value is assigned using the := operator. You can print out the
contents of the user variable with the following very short query:

mysql> SELECT @artist;

Hmm e +
| @artist |
Hmmmm e +
| New Order |
Hmmmm e +

1 row in set (0.00 sec)

You can explicitly set a variable using the SET statement without a SELECT. Suppose you
want to initialize a counter to O:

mysql> SET @counter := 0;
Query OK, 0 rows affected (0.11 sec)

You should separate several assignments with a comma, or put each in a statement of
its own:

mysql> SET @counter := 0, @age:=23;
Query OK, 0 rows affected (0.00 sec)

The most common use of user variables is to save a result and use it later. You’ll recall
the following example from earlier in the chapter, which we used to motivate nested
queries (which are certainly a better solution for this problem). We want to find the
name of the track that was played most recently:

mysql> SELECT MAX(played) FROM played;

B e +
| max(played)

B T +
| 2006-08-15 14:33:57 |
B TR +

1 row in set (0.00 sec)
mysql> SELECT track_name FROM track INNER JOIN played

-> USING (artist_id, album_id, track_id)
-> WHERE played = "2006-08-15 14:33:57";

1 row in set (0.31 sec)

264 | Chapter7: Advanced Querying

You can use a user variable to save the result for input into the following query. Here’s
the same query pair rewritten using this approach:

mysql> SELECT @recent := MAX(played) FROM played;

O EEnCEETEEEEEEEEEEEEEEE +
| @recent := MAX(played) |
e +
| 2006-08-15 14:33:57 I
e +

1 row in set (0.00 sec)

mysql> SELECT track_name FROM track INNER JOIN played
-> USING (artist_id, album_id, track_id)
-> WHERE played = @recent;

1 row in set (0.44 sec)
This can save you cutting and pasting, and it certainly helps you avoid typing errors.
Here are some guidelines on using user variables:

» User variables are unique to a connection: variables that you create can’t be seen
by anyone else, and two different connections can have two different variables with
the same name.

* The variable names can be alphanumeric strings and can also include the period
(.), underscore (), and dollar ($) characters.

* Variable names are case-sensitive in MySQL versions earlier than version 5, and
case-insensitive from version 5 onward.

* Any variable that isn’t initialized has the value NULL; you can also manually set a
variable to be NULL.

* Variables are destroyed when a connection closes.

* You should avoid trying to both assign a value to a variable and use the variable as
part of a SELECT query. Two reasons for this are that the new value may not be
available for use immediately in the same statement, and a variable’s type is set
when it’s first assigned in a query; trying to use it later as a different type in the
same SQL statement can lead to unexpected results.

Let’s look at the first issue in more detail using the new variable @aid. Since we
haven’t used this variable before, it’s empty. Now, let’s show the artist_id for
artists who have an entry in the album table. Instead of showing it directly, we’ll
assign the artist_id to the @aid variable. Our query will show the variable twice:
once before the assignment operation, once as part of the assignment operation,
and once afterwards:

User Variables | 265

mysql> SELECT @aid, @aid:=artist.artist_id, @aid FROM artist,album
-> WHERE album.artist_id=@aid;
Empty set (0.00 sec)

This returns nothing; since there’s nothing in the variable to start with, the WHERE
clause tries to look for empty artist _id values. If we modify the query to use
artist.artist_id as part of the WHERE clause, things work as expected:

mysql> SELECT @aid, @aid:=artist.artist_id, @aid FROM artist,album
-> WHERE album.artist_id=artist.artist_id;

Hommm-- Hmmm e ommm-- +
| @aid | @aid:=artist.artist id | @aid |
ommm-- Hmmmm ommm-- +
| | 1 [1]
1 |1 [1]
1 |1 [1]
1 |1 [1]
1 |1 [1]
1 |1 1]
1 |1 1]
1]2 2 |
2 |3 [3 |
3 |3 [3 |
|3 |4 [4 |
l4 |5 5 |
5 |6 l6 |
R R O +

13 rows in set (0.01 sec)

Now that @aid isn’t empty, the initial query will produce some results:

mysql> SELECT @aid, @aid:=artist.artist_id, @aid FROM artist,album
-> WHERE album.artist_id=@aid;

e LT B +
| @aid | @aid:=artist.artist id | @aid |
e o m e R +
6 |1 [1 |
1 |1 [1 |
1 |2 2 |
o m e mmmm - +

3 rows in set (0.01 sec)

It’s best to avoid such circumstances where the behavior is not guaranteed and is
hence unpredictable.

Transactions and Locking

When a database is concurrently accessed by several users, you have to consider how
you may be affected if other users change the data that you’re accessing, and how
changes you make may affect other users. For example, you might get the wrong value
for the total sales so far this year if new sales are being added to the database while
you’re adding up the sales figures.

266 | Chapter7: Advanced Querying

Locks can be applied to prevent concurrent users from interacting destructively with
one other’s data. A read lock allows you to prevent other users from changing data
while you’re reading and processing the data, while a write lock tells other users that
the data is being changed and that they should not read or modify it. For example, you
need locks to avoid problems with reports when one user is trying to produce a report
while another user changes the data the report is derived from.

In some cases, you want all or none of a series of operations to succeed. For example,
if you want to travel from Melbourne to Seattle via Los Angeles, you need to have a
seat on the flight from Melbourne to Los Angeles, and a seat on the connecting flight
from Los Angeles to Seattle. Having a confirmed seat on just one leg of the route is no
use to you; you can’t fly without confirmed seats on both legs.

Transactions allow you to batch together SQL statements as an indivisible set that either
succeeds or has no effect on the database. This means you can start a transaction and
then issue a series of SQL statements. At the conclusion, you have the option of com-
mitting (saving) the transaction to the database or rolling back (canceling) the
transaction.

By default, MySQL operates in AUTOCOMMIT mode, where each update is treated as an
atomic transaction of its own, and changes are automatically committed. If this mode
is disabled, or a transaction is explicitly started, changes aren’t commited to the data-
base unless you execute a COMMIT or ROLLBACK instruction.

Locking and transaction support is complex, and you need to make choices about the
degree of isolation needed between users and the trade-offs involved in implementing
them for your application. This is a difficult and advanced topic that’s mostly outside
the scope of this book, but in the next section we discuss how the main table types
supported by MySQL allow locking and transactions. We also include a simple trans-
action example in “Transaction examples,” and we describe how simple locking can
be used—and avoided—for our PHP wedding-registry application in “Selecting and
Deselecting Gifts” in Chapter 15.

Table Types

In the book so far, we’ve used only the default MyISAM table type. There’s a good
reason behind this: you very rarely need to make any other choice in small- to medium-
size applications because it’s a very fast, reliable table type for most tasks. However, at
the time of writing, there are at least nine other choices you can make. This section
gives you an insight into these choices, explaining briefly the pros and cons of the
alternatives to MyISAM.

You can divide the MySQL table types up into two sets using a few different criteria.
The most common division is transaction-safe (TST) versus non-transaction-safe
(NTST):

Table Types | 267

transaction-safe tables (TSTs)
These include the InnoDB and the (no longer supported) Berkeley Database (BDB)
table types. TSTs support transactions and have advanced features that allow you
safely restore and recover from database failures.

Non-transaction-safe tables (NTSTs)
These include the MyISAM, Merge, and Memory (also called Heap) types descri-
bed in this section. They’re less advanced than the TSTs, but that isn’t always bad.
They’re typically much faster to query because there’s less overhead, and they use
much less disk and memory space. They’re also much easier to understand.

We've avoided TSTs in this book, because you’re unlikely to need to configure, set
parameters for, and use such tables for most applications.

Another consideration when choosing a table type is whether it supports foreign key
constraints. With foreign-key support, you can tell MySQL that a row in a table
shouldn’t exist without another matching row in another table. For example, you could
use it to stop you from adding a new album for an artist who doesn’t exist. We don’t
use foreign-key constraints, and instead rely on the application to do the checking, not
the database. Doing the checking in the database slows everything down because
MySQL needs to verify the foreign-key constraints before it modifies anything. It also
prevents you from ignoring the rules for good reasons—such as improved performance
—when you want to. Currently, only the InnoDB table type supports foreign-key con-
straints, although support s planned for MyISAM. If you’re not using the InnoDB table
type and specify foreign-key constraints for a field, MySQL won’t complain, but won’t
actually do anything, either. We won’t discuss foreign key constraints in further detail.

You can use the SHOW TABLE STATUS command to display technical information about
how your tables are stored:

mysql> USE music
mysql> SHOW TABLE STATUS;

Hmmm e Hmmm e Hmmmmmmmem 4 mmm e e m Hmmmmm oo Hmmm e +o..
| Name | Engine | Version | Row_format | Rows | Avg row length | Data_length |...
e Hmmm e Hmmmmmmm e Hmmmmm e Hmmm e Hmmm e Hmmmmmm e ..
| album | MyISAM | 10 | Fixed | 13 | 133 | 1729 [...
| artist | MyISAM | 10 | Fixed | 6 | 131 | 786 |...
| played | MyISAM | 10 | Fixed | 12 | 12 | 121 |...
| track | MyISAM | 10 | Fixed | 153 | 138 | 21114 |
Hmmmmm e Hmmm e Hmmmmm e o mmm e Hmm e m EEEEEEEE R Hmmmmmm e +
EECEEE R R EEEEEEEEEE Hmmm e e +.
| Max_data_length | Index_length | Data_free | Auto_increment |
B TR O EE EEEEEE Hmmmmm e L EEEE R +
... | 37436171902517247 | 2048 | o | NULL |
... | 36873221949095935 | 2048 | o | NULL |
... | 3096224743817215 | 2048 | o | NULL |
. | 38843546786070527 | 5120 | o | NULL |.
o O EEEEEEEEE Hmmm e EEEEEEEE R +.
e E R Ao EEEEEE R EEEEEEEEEEEEEEEE +
. | Create_time | Update_time | Check_time | Collation
e A o Hmmm e R EEEEEEEEEEEEEEEE +oa.

268 | Chapter7: Advanced Querying

2006-06-12 07:17:06 | 2006-06-12 07:17:06 | | latini_swedish_ci

| I |

.. | 2006-06-12 07:17:06 | 2006-06-12 07:17:06 | | latini_swedish ci |...
. | 2006-06-12 07:17:06 | 2006-06-12 07:17:06 | | latini_swedish ci |...

| 2006-06-12 07:17:06 | 2006-06-12 07:17:06 | | latini_swedish ci |

Fommmm e mmmmeemeeeeen R L L] tommmmmmmeeo R L L] +

Fommmm e e e +----mmm-—- +.

| Update_time | Check_time | Collation | Checksum |

L R] R L L +

| 2006-06-12 07:17:06 | | latini_swedish ci | NULL |

| 2006-06-12 07:17:06 | | latini_swedish_ci | NULL |...

| 2006-06-12 07:17:06 | | latini_swedish_ci | NULL |...

| 2006-06-12 07:17:06 | | latini_swedish_ci | NULL |.

Fommmm e e e Fo-mmmmm-—- +.

oo o +

| Create options | Comment |

oo oo +

| | |

| | |

| | |

| | |

R TP e R et +

4 rows in set (0.00 sec)

The SHOW ENGINES command displays a list of all table types and indicates whether
they’re available for use on your MySQL installation:

mysql> SHOW ENGINES;

fmmmmmmmmmee mmmmmm e R R e PP +
| Engine | Support | Comment |
B Rt mmmmmmme T et et +
mMyISAM	DEFAULT	Default engine as of MySQL 3.23 with great performance
MEMORY	YES	Hash based, stored in memory, useful for temporary tables
InnoDB	YES	Supports transactions, row-level locking, and foreign keys
BerkeleyDB	NO	Supports transactions and page-level locking

BLACKHOLE	NO	/dev/null storage engine (anything you write disappears)
EXAMPLE	NO	Example storage engine
ARCHIVE	NO	Archive storage engine
csv	NO	CSV storage engine
ndbcluster	NO	Clustered, fault-tolerant, memory-based tables

FEDERATED	NO	Federated MySQL storage engine
MRG_MYISAM	YES	Collection of identical MyISAM tables
ISAM	NO	Obsolete storage engine

B it Fommmm o B e e LT +
12 rows in set (0.00 sec)

For example, if we need a transaction-safe table on this server, we can use the InnoDB
table type.

If you decide you want to use a different table type, there are two ways to exercise your
choice. One way to do it is in the CREATE TABLE statement. For example, you can create
a new Memory table mytable as follows:

mysql> CREATE TABLE mytable (field INT(2)) type=Memory;
Query OK, 0 rows affected, 1 warning (0.08 sec)

Table Types | 269

Alternatively, you can use ALTER TABLE to adjust the type after it’s created. For example,
you could convert the artist table to the InnoDB type:

mysql> ALTER TABLE artist type = InnoDB;

In both examples, you can substitute the alias ENGINE for TYPE. Of course, much like
every other ALTER TABLE statement, the overhead of changing your choice can be high
for large tables.

Note that there are several, rarely used table types we don’t discuss at all in this book.
These include Merge (which is a variant of MyISAM used in large distributed installa-
tions), Example (a nonfunctioning type used to illustrate ideas for programmers), NDB
Cluster (a high-performance type used to partition tables across many computers),

Archive (a high-performance, index-free table type used for very large data collections),
CSV (a table type for working with data stored as comma-separated values in text files),
and Federated (a very new engine—added in MySQL 5.0.3—that’s used to store data
in remote databases). You can find out more about these under “Storage Engines and
Table Types” i