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Foreword

Maybe you don’t know our names. We spend our days writing the code for the 
 software you use in your daily job: We are part of the development team of  

Power BI, SQL Server Analysis Services, and . . . yes, we are among the authors of the 
DAX  language and the VertiPaq engine.

The language you are going to learn using this book is our creature. We spent 
years working on this language, optimizing the engine, finding ways to improve the 
 optimizer, and trying to build DAX into a simple, clean, and sound language to make 
your life as a data analyst easier and more productive.

But hey, this is intended to be the foreword of a book, no more words about us! Why 
are we writing a foreword for a book published by Marco and Alberto, the SQLBI guys? 
Well, because when you start learning DAX, it is a matter of a few clicks and searches 
on the web before you find articles written by them. You start reading their papers, 
learning the language, and hopefully appreciate our hard work. Having met them many 
years ago, we have great admiration for their deep knowledge of SQL Server Analysis 
Services. When the DAX adventure started, they were among the first to learn and 
adopt this new engine and language.

The articles, papers, and blog posts they publish and share on the web became the 
source of learning for thousands of people. We write the code, but we do not spend 
much time teaching how to use it; they are the ones who spread knowledge about 
DAX.

Alberto and Marco’s books are among the best sellers on this topic and now, with 
this new guide to DAX, they truly created a milestone publication about the language 
we author and love. We write the code, they write the books, and you learn DAX, 
 providing unprecedented analytical power to your business. This is what we love: 
 working all together as a team—we, they, and you—to get better insights from data.

Marius Dumitru, Architect, Power BI CTO’s Office

Cristian Petculescu, Chief Architect of Power BI

Jeffrey Wang, Principal Software Engineer Manager



This page intentionally left blank 



  xix

Introduction

We previously wrote about DAX many times: in books about Power Pivot and SSAS 
Tabular, in blog posts, articles, white papers, and finally in a book dedicated 

to DAX patterns. So why should we write (and, hopefully, you read) yet another book 
about DAX? Is there really so much to learn about this language? Of course, we think 
the answer is definitely yes.

When you write a book, the first thing that the editor wants to know is the  number 
of pages. There are very good reasons why this is important: price, management, 
 allocation of resources, and so on. At the end, nearly everything in a book goes back 
to the number of pages. As authors, this is somewhat frustrating. In fact, whenever 
we wrote a book, we had to carefully allocate space to the description of the product 
(either Power Pivot for Microsoft Excel or SSAS Tabular) and to the DAX language. 
This always left us with the bitter taste of not having enough pages to describe all we 
wanted to teach about DAX. After all, you cannot write 1,000 pages about Power Pivot; 
a book of such a size would be intimidating for anybody.

Thus, for some years we wrote about SSAS Tabular and Power Pivot, and we kept 
the project of a book completely dedicated to DAX in a drawer. Then we opened the 
drawer and decided to avoid choosing what to include in the next book: We wanted to 
explain everything about DAX, with no compromises. The result of that decision is this 
book.

Here you will not find a description of how to create a calculated column, or which 
dialog box to use to set some property. This is not a step-by-step book that teaches 
you how to use Microsoft Visual Studio, Power BI, or Power Pivot for Excel. Instead, this 
is a deep dive into the DAX language, starting from the beginning and then reaching 
very technical details about how to optimize your code and model.

We loved each page of this book while we were writing it. We reviewed the content 
so many times that we had it memorized. We continued adding content whenever we 
thought there was something important to include, thus increasing the page count 
and never cutting something because there were no pages left. Doing that, we learned 
more about DAX and we enjoyed every moment spent doing it.

But there is one more thing. Why should you read a book about DAX?
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Come on, you thought this after the first demo of Power Pivot or Power BI. You are 
not alone, we thought the same the first time we tried it. DAX is so easy! It looks so 
similar to Excel! Moreover, if you already learned other programming and/or query 
languages, you are probably used to learning a new language by looking at some 
 examples of the syntax, matching patterns you find to those you already know. We 
made this mistake, and we would like you to avoid doing the same.

DAX is a strong language, used in a growing number of analytical tools. It is very 
powerful, but it has a few concepts that are hard to understand by inductive reasoning. 
The evaluation context, for instance, is a topic that requires a deductive approach: You 
start with a theory, and then you see a few examples that demonstrate how the theory 
works. Deductive reasoning is the approach of this book. We know that a number of 
people do not like learning in this way, because they prefer a more practical approach, 
learning how to solve specific problems, and then with experience and practice, they 
understand the underlying theory with an inductive reasoning. If you are looking for 
that approach, this book is not for you. We wrote a book about DAX patterns, full of 
examples and without any explanation of why a formula works, or why a certain way 
of coding is better. That book is a good source for copying and pasting DAX formulas. 
This book has a different goal: to enable you to really master DAX. All the examples 
demonstrate a DAX behavior; they do not solve a specific problem. If you find formulas 
that you can reuse in your models, this is good for you. However, always remember that 
this is just a side effect, not the goal of the example. Finally, always read any note to 
make sure there are no possible pitfalls in the code used in examples. For educational 
purposes we often used code that is not the best practice.

We really hope you will enjoy spending time with us in this beautiful trip to learn 
DAX, at least in the same way as we enjoyed writing it.

Who this book is for

If you are a casual user of DAX, then this book is probably not the best choice for you. 
Many books provide a simple introduction to the tools that implement DAX and to 
the DAX language itself, starting from the ground and reaching a basic level of DAX 
 programming. We know this very well, because we wrote some of those books, too!

If, on the other hand, you are serious about DAX and you really want to understand 
every detail of this beautiful language, then this is your book. This might be your first 
book about DAX; in that case you should not expect to benefit from the most advanced 
topics too early. We suggest you read the book from cover to cover and then read 
again the most complex parts once you gained some experience; it is very likely that 
some concepts will become clearer at that point.
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DAX is useful to different people, for different purposes: Excel users can leverage 
DAX to author Power Pivot data models, business intelligence (BI) professionals might 
need to implement DAX code in BI solutions of any size, casual Power BI users might 
need to author some DAX formulas in their self-service BI models. In this book, we tried 
to provide information to all of these different kinds of people. Some of the content 
(specifically the optimization part) is probably more targeted to BI professionals, 
because the knowledge needed to optimize a DAX measure is very technical; but we 
believe that Excel users should understand the different performance of DAX expres-
sions to achieve the best results for their models, too.

Finally, we wanted to write a book to study, not only a book to read. At the 
 beginning, we try to keep it easy and follow a logical path from zero to DAX.  However, 
when the concepts to learn start to become more complex, we stop trying to be simple, 
and we are realistic. DAX is not a simple language. It took years for us to master it 
and to understand every detail of the engine. Do not expect to be able to learn all of 
this content in a few days, by reading casually. This book requires your attention at a 
very high level. In exchange for that, of course, we offer an unprecedented depth of 
 coverage of all aspects of DAX, giving you the option to become a real DAX expert.

Assumptions about you

We expect our reader to have a basic knowledge of Excel Pivot Tables and some 
 experience in analysis of numbers. If you already have some exposure to the DAX 
language, then this is good for you, since you will read the first part faster, but knowing 
DAX is not necessary, of course.

There are some references in the book to MDX and SQL code, but you do not really 
need to know these languages, because they are just parallels between different ways 
of writing expressions. If you do not understand those lines of code, it is just fine, it 
means that that specific topic is not for you.

In the most advanced parts of the book, we discuss parallelism, memory access, CPU 
usage, and other exquisitely geeky topics that might not be familiar to everybody. Any 
developer will feel at home there, whereas Excel power users might be a bit  intimidated. 
Nevertheless, when speaking about optimization that information is required. Thus, 
the most advanced part of the book is aimed more toward BI developers than to Excel 
 users. However, we think that everybody will benefit from reading it.
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Organization of this book

The book is designed to flow from introductory chapters to complex ones, in a  logical 
way. Each chapter is written with the assumption that the previous content is fully 
understood; there is nearly no repetition of concepts explained earlier. For this reason, 
we strongly suggest that you read it from cover to cover and avoid jumping to more 
advanced chapters too early.

Once you have read it for the first time, it becomes useful as a reference: If, for 
example, you are in doubt about the behavior of ALLSELECTED, then you can jump 
straight on to that section and clarify your mind on that. Nevertheless, reading that 
 section without having digested the previous content might result in some frustration 
or, worse, in an incomplete understanding of the concepts.

With that said, here is the content at a glance:

■■ Chapter 1 is a brief introduction to DAX, with a few sections dedicated to users 
who already have some knowledge of other languages, namely SQL, Excel, or 
MDX. We do not introduce any new concept here, we just give several hints 
about the difference between DAX and other languages that might be known to 
the reader.

■■ Chapter 2 introduces the DAX language itself. We cover basic concepts such as 
calculated columns, measures, error-handling functions, and we list most of the 
basic functions of the language.

■■ Chapter 3 is dedicated to basic table functions. Many functions in DAX work 
on tables and return tables as a result. In this chapter we cover the most basic 
 functions, whereas we cover advanced ones in Chapter 9.

■■ Chapter 4 is dedicated to the description of evaluation contexts. Evaluation 
 contexts are the foundation of the DAX language and this chapter, along with 
the next one, is probably the most important of the entire book.

■■ Chapter 5 covers only two functions: CALCULATE and CALCULATETABLE. These 
are the most important functions in DAX and they strongly rely on a good 
 understanding of evaluation contexts.

■■ Chapter 6 contains some examples of DAX code. However, you should not 
consider it as a set of patterns to reuse. Instead, we show how to solve some 
common scenarios with the basic concepts learned so far.
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■■ Chapter 7 covers time intelligence calculations at a very in-depth level. Year-
to-date, month-to-date, values of the previous year, week-based periods, and 
custom calendars are some of the calculations covered in this chapter.

■■ Chapter 8 is dedicated to statistical functions such as ranking, financial 
 calculations, and percentiles.

■■ Chapter 9 is the continuation of Chapter 3, where we introduce the basic table 
functions. In this chapter, we go forward explaining in great detail the full set of 
DAX functions that manipulate tables, most of which are very useful in writing 
DAX queries.

■■ Chapter 10 brings your knowledge of evaluation context one step further and 
discusses complex functions such as ALLSELECTED and KEEPFILTERS, with the aid 
of the theory of expanded tables. It is a hard chapter, which uncovers most of 
the secrets of complex DAX expressions.

■■ Chapter 11 shows you how to perform calculations over hierarchies and how to 
handle parent/child structures using DAX.

■■ Chapter 12 is about solving uncommon relationships in DAX. In fact, with the aid 
of DAX a data model might express any kind of relationship. In this chapter, we 
show many types of relationships. It is the last chapter about the DAX language; 
the remaining part of the book covers optimization techniques.

■■ Chapter 13 shows a detailed description of the VertiPaq engine; it is the most 
common database engine on top of which DAX runs. Understanding it is 
 essential to learn how to get the best performance in DAX.

■■ Chapter 14 uses the knowledge of Chapter 13 to show possible  optimizations 
that you can apply at the data model level. When to normalize, how to 
 reduce cardinality of columns, what kind of relationships to set to achieve top 
 performance and low memory usage in DAX.

■■ Chapter 15 teaches how to read a query plan and how to measure the 
 performance of a DAX query with the aid of tools such as SQL Server Profiler 
and DAX Studio.

■■ Chapter 16 shows several optimization techniques, based on the content of the 
previous chapters about optimization. We show many DAX expressions, measure 
their performance, and then show and explain optimized formulas.
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Conventions

The following conventions are used in this book:

■■ Boldface type is used to indicate text that you type.

■■ Italic type is used to indicate new terms, measures, calculated columns, and 
database names.

■■ The first letters of the names of dialog boxes, dialog box elements, and 
 commands are capitalized. For example, the Save As dialog box.

■■ The names of ribbon tabs are given in ALL CAPS.

■■ Keyboard shortcuts are indicated by a plus sign (+) separating the key names. 
For example, Ctrl+Alt+Delete means that you press Ctrl, Alt, and Delete keys at 
the same time.

About the companion content

We have included companion content to enrich your learning experience. The 
 companion content for this book can be downloaded from the following page:

http://aka.ms/GuidetoDAX/files

The companion content includes the following:

■■ A SQL Server backup of the Contoso Retail DW database that you can use to 
build the examples yourself. This is a standard demo database provided by 
Microsoft, which we enriched with some views, to make it easier to create a data 
model on top of it.

■■ A Power BI Desktop model that we used to generate all of the figures in the 
book. The database is always the same, and then for each chapter there is a 
document showing the steps required to reproduce the same example we used 
in the book. You can use this information in case you want to replicate on your 
system the same scenario we describe in our examples.

http://aka.ms/GuidetoDAX/files
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C H A P T E R  1

What is DAX?

DAX is the programming language of Microsoft SQL Server Analysis Services (SSAS) and Microsoft 
Power Pivot for Excel. It was created in 2010, with the first release of PowerPivot for Excel 2010 

(yes, in 2010 PowerPivot was spelled without the space; the space was introduced in the Power Pivot 
name in 2013). Over time, DAX gained popularity in the Excel community, which uses DAX to create 
Power Pivot data models in Excel, and in the Business Intelligence (BI) community, which uses DAX to 
build models with SSAS.

DAX is a simple language. That said, DAX is different from most programming languages and 
it might take some time to become acquainted with it. In our experience, having taught DAX to 
 thousands of people, learning the basics of DAX is straightforward: You will be able to start using it in 
a matter of hours. But when it comes to understanding advanced concepts like evaluation contexts, 
iterations, and context transition, everything will seem complex. Do not give up! Be patient. Once 
your brain starts to digest these concepts, you will discover that DAX is, indeed, an easy language.  
It just takes time to get used to.

This first chapter begins with a small recap of what a data model is, in terms of tables and 
 relationships. We recommend readers of all experience levels read this section in order to gain 
 familiarity with the terms we use throughout the book when referring to tables, models, and different 
kinds of relationships.

In the next sections, we offer advice to readers who have some experience with other  programming 
languages—namely Excel, SQL, and MDX. Each section is for readers who already know that language 
and might find it useful to read a very quick introduction to DAX in which we compare it to those 
 various languages. If you are an Excel user and find the MDX part nearly impossible to understand, that 
is totally expected. Just skip that part, since it contains information that is essentially meaningless to 
you, and move to the next chapter, where our journey into the DAX language really begins.

Understanding the data model

DAX is a language specifically designed to compute business formulas over a data model. You might 
already know what a data model is, but if you are not familiar with it, it is worth dedicating some 
pages to a description of data models and relationships, so as to create a foundation on which you 
will build your DAX knowledge.
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A data model is a set of tables, linked by relationships.

We all know what a table is: a set of rows containing data, with each row divided into columns. 
Each column has a data type and contains a single piece of information. We usually refer to a row in a 
table as a record. Tables are a convenient way to organize your data. By itself, a table is already a data 
model, although in its simplest form. Thus, when you write names and numbers in an Excel workbook, 
you are creating a data model.

If your data model contains many tables, it is very likely that they are linked through relationships. 
A relationship holds between two tables. When two tables are tied with a relationship, we say that 
they are related. Graphically, a relationship is represented by a line connecting the two tables.  
Figure 1-1 shows an example of a data model.

FIGURE 1-1 This is a simple example of a data model made of five tables.

Some important aspects of relationships to learn well:

■■ Two tables in a relationship do not have the same role. They are referred to as the one-side 
and many-side of the relationship. In Figure 1-1 focus on the relationship between  Product 
and Product Subcategory. A single subcategory contains many products, while a single 
 product has only one subcategory. Therefore, Product Subcategory is the one-side of the 
 relationship (having one subcategory) while Product is the many-side (having many products).

■■ The columns used to create the relationship (which usually have the same name in both tables) 
are called the keys of the relationship. On the one-side of the relationship, the column needs 
to have a unique value for each row. On the many-side the same value can be (and often is) 
repeated in many different rows. When a column has a unique value for each row, it is called a 
key for the table. Usually, tables have a column that is the key.
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■■ Relationships can form a chain. Each product has a subcategory and each subcategory has a 
category. Thus, each product has a category. In order to retrieve the category of a  product, 
you will need to traverse a chain of two relationships. Figure 1-1 includes an example of 
a chain made up of three relationships, starting with Sales and continuing on to Product 
 Category.

■■ In each relationship, there can be one or two small arrows. In Figure 1-1 you can see two 
 arrows in the relationship between Sales and Product, whereas all other relationships have a 
single arrow. The arrow indicates the direction of the automatic filtering of the relationship. 
We will discuss this in much more detail in later chapters, because determining the correct 
direction of filters is one of the most important skills to learn.

■■ In the tabular data model, relationships can be created on single columns only. Multiple 
 column relationships are not supported by the engine.

Understanding the direction of a relationship
As we said in the previous section, each relationship can have one or two directions of filtering. 
Filtering always happens from the one-side of the relationship to the many-side. If the relationship is 
bidirectional (that is, it has two arrows on it), then the filtering happens also from the many-side to 
the one-side.

An example might help you understand this behavior better. If you create a pivot table based on 
the data model previously shown in Figure 1-1, with the years on the rows and Sum of SalesAmount 
and Count of ProductName in the values area, you will see the result shown in Figure 1-2.

FIGURE 1-2 This pivot table shows the effect of filtering across multiple tables in action.

The Row Labels contain the years—that is, a column from the Date table. Date is on the one-side 
of the relationship with the Sales table. So when you put the Sum of SalesAmount in the pivot table, 
the engine filters Sales based on the year. The relationship between the Sales and Product tables is 
bidirectional; when you put the count of product names in the pivot table, you get, as the result, the 
number of products sold in each year. Said differently, the filter on the year propagates to the Product 
table using a chain of relationships.

If you now modify the pivot table by putting the Color on the rows and adding the Count of 
 FullDateLabel in the values area, the result is somewhat harder to understand, as you can see in  
Figure 1-3.
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FIGURE 1-3 This pivot table shows that if bidirectional filtering is not active, tables are not filtered.

The filter on the rows is the Color column in the Product table. Because Product is on the 
 one-side of the relationship with Sales, the Sum of SalesAmount is correctly filtered. The Count of 
 ProductNames is obviously filtered, because it is computing values from the same table that is on the 
rows (Product). The wrong number is the Count of FullDateLabel. In fact, it always shows the same 
value for all the rows—and by the way, this number is the total number of rows in the Date table.

The reason why the filter coming from the Color column does not propagate to Date is that the 
relationship between Date and Sales has a single arrow, pointing from Date to Sales. Thus, even if 
Sales has an active filter on it, the filter cannot propagate to Date, because the type of relationship 
prevents it.

If you change the relationship between Date and Sales to enable bidirectional filtering, then the 
result will be the one shown in Figure 1-4.

As you can see, the numbers are now different, reflecting the number of days on which at least 
one product of the particular color was sold. At first sight, it might look as if all the relationships 
should be defined as bidirectional, so as to let the filter propagate in any direction and always return 
meaningful results. As you will learn in this book, this is not always the correct way of designing a 
data model. In fact, depending on the scenario you are working with, you will choose the correct 
 propagation of relationships.
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FIGURE 1-4 If you enable bidirectional filtering, then the Date table is filtered using the Color column.

DAX for Excel users

Chances are you already know the Excel formula language, which DAX somewhat resembles. After 
all, the roots of DAX are in Power Pivot for Excel, and the development team tried to keep the two 
languages similar. This makes the transition to this new language easier. However, there are some very 
important differences.

Cells versus tables
In Excel, you perform calculations over cells. A cell is referenced using its coordinates. Thus, you write 
formulas as follows:

= (A1 * 1.25) - B2

DAX is different. In DAX, the concept of a cell and its coordinates does not exist. DAX works on 
tables and columns, not cells. So whenever you write DAX expressions, they will only refer to tables 
and columns. The concepts of tables and columns are not new in Excel. In fact, if you define an Excel 
range as a table (by using the Format as a Table function), you can write expressions in Excel that 
reference tables and columns. If you look at Figure 1-5, you see the column SalesAmount evaluates an 
expression that references columns in the same table, instead of cells in the workbook.
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FIGURE 1-5  You can use column names in Excel tables, too.

Using Excel, you refer to columns in a table using the [@ColumnName] format, where Column-
Name is the name of the column you want to use, and the @ symbol means “take the value for the 
current row.” Although the syntax is not very intuitive, normally you do not write these expressions. 
They appear by simply clicking a cell and Excel takes care of inserting the right code for you.

You might think of Excel as having two different ways of performing calculations: You can use 
 standard cell references (in which case, the formula for the cell F4 would have been E4*D4), or 
you can use column references, if you are working inside a table. Using column references has the 
 advantage that you can use the same expression in all of the cells of a column and Excel computes the 
formula with a different value for each row.

DAX works on tables, so all of the formulas need to reference columns. For example, in DAX you 
write the previous multiplication in this way:

Sales[SalesAmount] = Sales[ProductPrice] * Sales[ProductQuantity]

As you can see, each column is prefixed with the name of its table. In Excel you do not provide the 
table name, because Excel formulas work inside a single table. In DAX, on the other hand, references 
need to specify the table name because DAX works on a data model containing many tables and 
columns in different tables, which might have the same name.

Many functions in DAX work the same as the equivalent Excel function. The IF  function, for ex-
ample, reads in the same way in DAX and in Excel:

Excel   IF ( [@SalesAmount] > 10, 1, 0) 
DAX     IF ( Sales[SalesAmount] > 10, 1, 0)



 CHAPTER 1 What is DAX? 7

One important aspect where the syntax of Excel and DAX is different is in the way you reference 
the entire column. You might have noticed that when writing [@ProductQuantity] the @ means “the 
value in the current row.” When using DAX, you do not need to specify this. The default behavior 
of the language is to get the value of the current row. If, in Excel, you want to reference the entire 
column (that is, all the rows in that column), you do that by removing the @ symbol, as you can see in 
Figure 1-6.

FIGURE 1-6  In Excel you can refer to a whole column by omitting the @ symbol before the column name.

The value of the AllSales column is the same in all the rows, because it is the grand total of the 
SalesAmount column. In other words, there is a syntactical difference between the value of a column 
in the current row and the value of the column as a whole.

DAX is different. In DAX, you write the AllSales expression of Figure 1-6 in this way:

[AllSales] := SUM ( Sales[SalesAmount] )

There is no syntactical difference between using a column to grab its value for a specific row and 
using the column as a whole. DAX understands that you want to sum all the values of the column 
 because you used the column name inside an aggregator (in this case the SUM function), which 
requires a column name to be passed as a parameter. Thus, while Excel requires an explicit syntax to 
differentiate between the two types of data to retrieve, DAX does the disambiguation in an automatic 
way. At least at the beginning, this might be confusing.
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Excel and DAX: Two functional languages
One aspect where the two languages are very similar is in the fact that both Excel and DAX are 
 functional languages. A functional language is made of expressions that are—basically—function 
calls. Neither in Excel nor in DAX is there the concept of statements, loops, and jumps, which are 
common to many programming languages. In DAX, everything is an expression. This aspect of the 
language is often a challenge for programmers coming from different languages, but it should be no 
surprise at all for Excel users.

Using iterators
One concept that might be new to you is that of iterators. When working in Excel, you are used to 
performing calculations one step at a time. In the previous example, you have seen that, in order 
to compute the total of sales, you have created one column containing the price multiplied by the 
 quantity and then, as a second step, you summed it to compute the total sales. This number will then 
be useful, for example, as a denominator to compute the percentage of sales of each product.

Using DAX, you can perform the same operation in a single step, by using iterators. An iterator 
does exactly what it name suggests: it iterates over a table and performs a calculation on each row of 
the table, aggregating the result to produce the single value you needed.

In the previous example, you can compute the sum of all sales using the SUMX iterator:

[AllSales] := 
SUMX (  
    Sales, 
    Sales[ProductQuantity] * Sales[ProductPrice] 
)

Both advantages and disadvantages occur in this approach. The advantage is that you can perform 
many complex calculations as a single step without having to worry about adding many columns, 
which end up being useful only for some specific formulas. The disadvantage, on the other hand, 
is that programming with DAX is less visual than it is in Excel. In fact, you do not see the column 
 computing the price multiplied by the quantity; it exists only for the lifetime of the calculation. 

To tell the truth, you still have the option of creating a calculated column that computes the 
 multiplication of price and quantity. Nevertheless, as you will learn later, this is seldom a good 
 practice, because it uses precious memory and might slow down the calculations.

DAX requires some theory
Let’s be clear: This is not a difference between programming languages; this is a difference between 
mindsets. Like any human on this planet, you are probably used to searching on the web for complex 
formulas and solution patterns for the scenarios you are trying to solve. When using Excel, chances 
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are good that you will find a formula that does nearly what you need. You can copy the formula, 
 customize it to fit your needs, and then use it, without having to worry too much about how it works.

For example, in one of the worksheets that I use daily, I have this formula:

{=SUM(IF(('Transactions'!$B$5:$B$991>=M30)*('Transactions'!$B$5:$B$991<=N30),1,0))}

I do not really understand exactly how the formulas in curly brackets work and how that IF 
 statement is evaluated. To be honest, I only remember that I need to confirm them with a strange 
keyboard combination. That said, it works, it always worked and the number that it computes is of 
 interest rather than how it internally computes the value. Thus, as an author of books and a DAX 
expert, I fall in this category of users, too.

This approach, which works in Excel, does not work with DAX. You will need to study some theory 
and understand thoroughly how evaluation contexts work before you will be able to write good DAX 
code. Without the proper theoretical foundation, DAX will either compute values like magic or it will 
compute strange numbers which make no sense. The problem is not DAX, but the fact that you have 
not yet understood exactly how it works.

Luckily, the theory of DAX is limited to a couple of important concepts, which are explained in 
Chapter 4, “Understanding evaluation contexts.” When you reach that chapter, roll up your sleeves 
and be prepared to go back to school for some time. Once you have mastered its content, DAX will 
have no secrets for you, and learning it will be mainly a matter of gaining experience. However, please 
do not try to go further unless that piece of theory is well established. Remember: knowing is half the 
battle.

DAX for SQL developers

If you are used to the SQL language, then you have already worked with many tables and  created 
joins between columns in order to set relationships. From this point of view, you will feel at home 
in the DAX world, because computing in DAX is a matter of querying a set of tables joined by 
 relationships and aggregating values.

Understanding relationship handling
The first difference between SQL and DAX is in the way relationships work in the model. In SQL, you 
can set foreign keys between tables to declare relationships, but the engine never uses these foreign 
keys in queries, unless you are explicit about them. If, for example, you have a Customer table and a 
Sales table, where CustomerKey is a primary key in Customer and a foreign key in Sales, you can write 
a query such as the following:
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SELECT 
    Customers.CustomerName, 
    SUM ( Sales.SalesAmount ) AS SumOfSales 
FROM  
    Sales 
    INNER JOIN Customers 
        ON Sales.CustomerKey = Customers.CustomerKey 
GROUP BY 
    Customers.CustomerName

Even if you declared the relationship in the model using foreign keys, you still need to be explicit 
and state the join condition in the query. Although it makes queries a little more verbose, this is useful 
because it lets you use different join conditions in different queries, giving you a lot of freedom in the 
expressivity of the queries.

In DAX, relationships are part of the model and they are all LEFT OUTER JOINS. Once defined in 
the model, you no longer need to specify the join type in the query: DAX uses an automatic LEFT 
OUTER JOIN in the query whenever you use columns related to the primary table. Thus, you would 
write the previous SQL query in DAX as:

EVALUATE 
SUMMARIZE ( 
    Sales, 
    Customers[CustomerName], 
    "SumOfSales", SUM ( Sales[SalesAmount] ) 
)

Because DAX knows the existing relationship between Sales and Customers, it does the join 
automatically following the model. Finally, the SUMMARIZE function needs to perform a group by 
Customers[CustomerName], but you do not have any keyword for that: SUMMARIZE automatically 
groups data by columns selected.

DAX is a functional language
SQL is a declarative language. You define what you need by declaring the set of data you want to 
retrieve using SELECT statements, without worrying about how the engine will actually retrieve the 
information. DAX, on the other hand, is a functional language.

In DAX, every expression is a function call and function parameters can be, in turn, other  function 
calls. The evaluation of parameters might lead to very complex query plans that DAX executes in 
order to compute the result.
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For example, if you want to retrieve only customers who live in Europe, you can write this in SQL:

SELECT 
    Customers.CustomerName, 
    SUM ( Sales.SalesAmount ) AS SumOfSales 
FROM  
    Sales 
    INNER JOIN Customers 
        ON Sales.CustomerKey = Customers.CustomerKey 
WHERE 
    Customers.Continent = 'Europe' 
GROUP BY 
    Customers.CustomerName

Using DAX, you do not declare the WHERE condition in the query. Instead, you use a specific 
 function (FILTER) to filter the result:

EVALUATE 
SUMMARIZE ( 
    FILTER ( 
        Customers, 
        Customers[Continent] = "Europe" 
    ), 
    Customers[CustomerName], 
    "SumOfSales", SUM ( Sales[SalesAmount] ) 
)

You can see that FILTER is a function: It will return only the customers living in Europe, producing 
the expected result. The order in which you nest the function and the kind of functions you use have 
a strong impact on the final result and also the performance of the engine. This happens in SQL, too, 
even if, in SQL, you trust the query optimizer to find the optimal query plan. In DAX, although the 
query optimizer does a great job, the programmer has more responsibility in writing good code.

DAX as a programming and querying language
In SQL, there is a clear distinction between the query language and the programming language; that 
is, the set of instructions used to create stored procedures, views, and other pieces of code in the 
 database. Each SQL dialect has its own statements to let programmers enrich the data model with 
code. DAX, on the other hand, makes virtually no distinction between querying and programming.  
A rich set of functions manipulate tables and can, in turn, return tables. The FILTER function you have 
just seen in the previous query is a good example of this.

Thus, in respect to this, DAX is simpler than SQL. Once you learn it as a programming language (it 
is, normally, its first usage), you will know everything needed to also use it as a query language.
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Subqueries and conditions in DAX and SQL
One of the most powerful features of SQL as a query language is the option of using subqueries. 
DAX has some similar concepts even if, in the case of DAX subqueries, they naturally arise from the 
 functional nature of the language.

For example, in SQL, to retrieve customers and total sales for only the customers who bought more 
than US$100, you can write this query as follows: 

SELECT 
    CustomerName, 
    SumOfSales 
FROM ( 
    SELECT 
        Customers.CustomerName, 
        SUM ( Sales.SalesAmount ) AS SumOfSales 
    FROM  
        Sales 
        INNER JOIN Customers 
            ON Sales.CustomerKey = Customers.CustomerKey 
    GROUP BY 
        Customers.CustomerName 
    ) AS SubQuery 
WHERE 
    SubQuery.SumOfSales > 100

You can obtain the same result in DAX by simply nesting function calls:

EVALUATE 
FILTER ( 
    SUMMARIZE ( 
        Customers, 
        Customers[CustomerName], 
        "SumOfSales", SUM ( Sales[SalesAmount] ) 
    ), 
    [SumOfSales] > 100 
)

In this code, the subquery that retrieves CustomerName and SumOfSales is later fed into a FILTER 
function that retains only the rows where SumOfSales is greater than 100. Right now, this code might 
seem unreadable to you but, as soon as you start learning DAX, you will discover that the usage of 
subqueries is much easier than in SQL and it flows naturally because DAX is a functional language.
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DAX for MDX developers

Many BI professionals start to learn DAX because it is the new language of SSAS Tabular and, in the 
past, they have used the MDX language to build and query SSAS Multidimensional models. If you are 
among them, be prepared to learn a completely new language: DAX and MDX do not share much. 
Worse, some concepts in DAX will remind you of similar existing concepts in MDX, even if they are 
very different.

In fact, in our experience, learning DAX after MDX is the most challenging option. In order to 
learn DAX you will need to free your mind from MDX; try to forget everything you know about 
 multidimensional spaces and be prepared to learn this new language with a clear mind.

Multidimensional vs. Tabular
MDX works in the multidimensional space defined by your model. The shape of the multidimensional 
space is based on the architecture of dimensions and hierarchies that you define in the model and 
that in turn defines the set of coordinates of the multidimensional space. Intersections of sets of 
members in different dimensions define points in the multidimensional space. We guess it took some 
time for you to understand that the [All] member of any attribute hierarchy is indeed a point in the 
multidimensional space.

DAX works in a much simpler way. There are no dimensions, no members, and no points in 
the multidimensional space. In other words, there is no multidimensional space at all. There are 
 hierarchies, which you can define in the model, but they are very different from hierarchies in MDX. 
The DAX space is built on top of tables, columns, and relationships. Each table in a tabular model 
is neither a measure group nor a dimension: It is just a table and to compute values you have to 
scan it, filter it, or sum values inside it. Everything is based on the two simple concepts of tables and 
 relationships.

You will soon discover that, from the modeling point of view, Tabular offers fewer options than 
Multidimensional does. Having fewer options, in this case, does not mean being less powerful, 
because you have a programming language (that is, DAX) which lets you enrich the model. The real 
modeling power of Tabular is the tremendous speed of DAX. In fact, you are probably used to avoid 
using too much MDX in your model, because optimizing MDX speed is often a challenge. DAX, on 
the other hand, is amazingly fast. Thus, most of the complexity of the calculations will not be in the 
model, but in the DAX formulas instead.

DAX as a programming and querying language
DAX and MDX are both programming languages and query languages. In MDX, the difference is 
made clear by the presence of the MDX script. You use MDX in the MDX script, along with several 
special statements that can be used in the script only (for example, SCOPE statements) and you 
use MDX in queries when you write SELECT statements that retrieve data. In DAX, this is somewhat 
 different. You will use DAX as a programming language to define calculated columns (a concept 
new to DAX, which does not exist in MDX) and measures (similar to calculated members in MDX). 
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You can also use DAX as a query language, for example, to retrieve data from a tabular model using 
Reporting Services. Nevertheless, there are no special functions in DAX that are useful only for one of 
these two uses of the language. Moreover, you can query a tabular model using MDX, too. Thus, the 
querying part of MDX works with tabular models, whereas DAX is your only option when it comes to 
 programming a tabular model.

Hierarchies
Using MDX, you rely on hierarchies to perform most of the calculations. If, for instance, you wanted to 
compute the sales in the previous year, you had to retrieve the PrevMember of the CurrentMember on 
the Year hierarchy and use it to rewrite the MDX filter. For example, you write the formula this way to 
define a previous year calculation in MDX:

CREATE MEMBER CURRENTCUBE.[Measures].[SamePeriodPreviousYearSales] AS 
    ( 
        [Measures].[Sales Amount], 
        ParallelPeriod ( 
            [Date].[Calendar].[Calendar Year], 
            1, 
            [Date].[Calendar].CurrentMember 
        ) 
    );

The measure uses the ParallelPeriod function, which returns the cousin of the CurrentMember on 
the Calendar hierarchy. Thus, it is based on the hierarchies defined in the model. You write the same 
calculation in DAX using filter contexts and standard time intelligence functions:

[SamePeriodPreviousYearSales] := 
 
CALCULATE ( 
    SUM ( Sales[Sales Amount] ), 
    SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
)

You can write the same calculation in many other ways, using FILTER and other DAX functions, but 
the idea remains the same: instead of using hierarchies, you filter tables. This difference is huge, and 
you will probably miss hierarchy calculations until you get used to DAX.

Another important difference is that in MDX you refer to [Measures].[Sales Amount] and the 
 aggregation function that needs to be used is already defined in the model. In DAX, there is 
no  predefined aggregation. In fact, as you might have noticed, the expression to compute is 
SUM(Sales[Sales Amount]). The predefined aggregation is no longer in the model; you need to define 
it whenever you want to use it (you can always create a measure that holds the sum of sales, but we 
do not want to be too wordy here).
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Another important difference between DAX and MDX is that the latter makes heavy use of the 
SCOPE statement to implement business logic (again, using hierarchies), whereas the former needs a 
completely different approach, because hierarchy handling is missing in the language altogether.

For example, if you want to clear a measure at the Year level, in MDX you would write this 
 statement:

SCOPE ( [Measures].[SamePeriodPreviousYearSales], [Date].[Month].[All] ) 
    THIS = NULL; 
END SCOPE;

In DAX, there is no SCOPE statement. To obtain the same result, you need to check the presence of 
filters in the filter context and the scenario is much more complex:

[SamePeriodPreviousYearSales] :=  
IF ( 
    ISFILTERED ( 'Date'[Month] ), 
    CALCULATE ( 
        SUM ( Sales[Sales Amount] ), 
        SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
    ), 
    BLANK() 
)

You will learn later what this formula computes in detail but, intuitively, it returns a value only if the 
user is browsing the calendar hierarchy at the month level or below, returning a BLANK otherwise. This 
formula is much more error-prone than the equivalent MDX code. To be honest, hierarchy handling is 
one of the features that is really missing in DAX.

Leaf-level calculations
Finally, when using MDX you probably got used to avoiding leaf-level calculations. Performing 
 leaf-level computation in MDX turns out to be so slow that you always prefer to pre-compute values 
and leverage aggregations to return results. In DAX, leaf-level calculations work incredibly fast and 
aggregations do not exist at all. This will require a shift in your mind when it will be time to build the 
data models. In most cases, a data model that fits perfectly in SSAS Multidimensional is not the right 
one for Tabular, and vice-versa.
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C H A P T E R  2

Introducing DAX

After the quick introduction of the previous chapter, it is now time to start talking about the 
DAX language. In this chapter, you learn the syntax of the language, the difference between a 

calculated column and a measure (also called Calculated Field, in Excel terminology), and the most 
commonly used functions in DAX.

As this is an introductory chapter, many functions are not covered in depth. In later sections of the 
book we go deeper and explain them in more detail. For now, it is enough to introduce the functions 
and start looking at the DAX language in general.

Understanding DAX calculations

To express complex formulas, you need to learn the basics of DAX, which includes the syntax, the 
 different data types that DAX can handle, the basic operators, and how to refer to columns and 
tables. These concepts are discussed in the next few sections.

You use DAX to compute values over columns in tables. You can aggregate, calculate, and search 
for numbers but, at the end, all of the calculations involve tables and columns. Thus, the first syntax to 
learn is how to reference a column in a table.

The general format is to write the table name, enclosed in single quotes, followed by the column 
name, enclosed in square brackets, as in:

'Sales'[Quantity]

You can omit the single quotes if the table name does not start with a number, it does not contain 
spaces, and it is not a reserved word (like Date or Sum).

Note It is good practice not to use spaces in table names. This way, you avoid the quotes 
in formulas, which tend to make the code harder to read. Keep in mind, however, that the 
name of the table is the same name that you will see when browsing the model with pivot 
tables or any other client tool such as Power View. Thus, if you like to have spaces in the 
table names in your report, you need to use single quotes in your code.
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You can also avoid writing the table name at all, in case you are referencing a column or a measure 
in the same table where you are defining the formula. Thus, [Quantity] is a valid column reference, if 
written in a calculated column or in a measure in the Sales table. Even if this technique is syntactically 
correct, and the user interface might suggest its use when you select a column instead of writing it, 
we strongly discourage you from using that. Such a syntax makes the code rather difficult to read, so 
it’s better to always use the table name when you reference a column in a DAX expression.

DAX data types
DAX can perform computations with different numeric types, of which there are seven. In the list 
that follows, we show both the DAX name and the more usual name of the same data type. Boolean 
values, for example, are called TRUE/FALSE in DAX terminology. We prefer to adhere to the de-facto 
naming standard and we refer to them as Boolean values.

■■ Whole Number (Integer)

■■ Decimal Number (Float)

■■ Currency (Currency), a fixed decimal number internally stored as an integer

■■ Date (DateTime)

■■ Boolean (TRUE/FALSE)

■■ Text (String)

■■ Binary large object (BLOB)

DAX has a powerful type-handling system so that you do not have to worry about data types: 
When you write a DAX expression, the resulting type is based on the type of terms used in the 
expression. You need to be aware of this in case the type returned from a DAX expression is not the 
expected one: then you must investigate the data type of the terms used in the expression itself. 

For example, if one of the terms of a sum is a date, the result is a date, too; whereas, if the same 
operator is used with integers, the result is an integer. This is known as operator overloading and 
you can see an example of its behavior in Figure 2-1, where the OrderDatePlusOneWeek column is 
 calculated by adding 7 to the value of the Order Date column. The result is, as we said, a date.

FIGURE 2-1 Adding an integer to a date results in a date increased by the corresponding number of days.
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In addition to operator overloading, DAX automatically converts strings into numbers and 
 numbers into strings whenever required by the operator. For example, if you use the & operator, 
which concatenates strings, DAX converts its arguments into strings. If you look at the formula:

= 5 & 4

it returns “54” as a string. On the other hand, the formula:

= "5" + "4"

returns an integer result with the value of 9.

The resulting value depends on the operator and not on the source columns, which are converted 
following the requirements of the operator. Even if this behavior looks convenient, later in this  chapter 
you will see what kinds of errors might happen during these automatic conversions. We suggest 
avoiding automatic conversions. If some kind of conversion needs to happen, then it is much better 
if you take control over it and make the conversion explicit. In order to be more explicit, the previous 
example should be:

= VALUE ( "5" ) + VALUE ( "4" )

DAX data types might be familiar to people used to working with Excel or other languages. You 
can find specifications of DAX data types at http://msdn.microsoft.com/en-us/library/gg492146.aspx. 
However, it is useful to share a few considerations about each of these data types.

Whole number (Integer)
DAX has only one Integer data type that can store a 64-bit value. All the internal calculations between 
integer values in DAX also use a 64-bit value.

Decimal number (Float)
A decimal number is always stored as a double-precision floating point value. Do not confuse this 
DAX data type with the decimal and numeric data type of Transact-SQL: The corresponding data type 
of a DAX decimal number in SQL is Float.

Currency (Currency)
The Currency data type stores a fixed decimal number. It can represent four decimal points and it 
is internally stored as a 64-bit integer value divided by 10,000. All calculations performed between 
 Currency data types always ignore decimals beyond the fourth decimal point. If you need more 
 accuracy, you have to do a conversion to Decimal data type.

http://msdn.microsoft.com/en-us/library/gg492146.aspx
http://msdn.microsoft.com/en-us/library/gg492146.aspx
http://msdn.microsoft.com/en-us/library/gg492146.aspx
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The default format of the Currency data type includes the currency symbol. You can also apply the 
currency formatting to whole and decimal numbers, and you can use a format without the currency 
symbol for a Currency data type.

Date (DateTime)
DAX stores dates in a DateTime data type. This format uses a floating point number internally, 
wherein the integer corresponds to the number of days since December 30, 1899, and the decimal 
part identifies the fraction of the day. Hours, minutes, and seconds are converted to decimal fractions 
of a day. Thus, the following expression returns the current date plus one day (exactly 24 hours):

= NOW () + 1

Its result is the date of tomorrow at the same time of the evaluation. If you need to take only the 
date part of a DateTime, always remember to use TRUNC to get rid of the decimal part.

The leap year bug
Lotus 1-2-3, a popular spreadsheet released in 1983, had a bug in the handling of the DateTime 
data type. It considered 1900 a leap year, even though it is not (the final year in a century is 
a leap year only if the first two digits can be divided by 4 without a remainder). At that time, 
the development team of the first version of Excel deliberately replicated the bug, to maintain 
compatibility with Lotus 1-2-3. Since then, each new version of Excel maintained the bug as a 
feature, because of compatibility.

Now, in 2015, the bug is still in DAX, introduced for backward compatibility with Excel. The 
presence of the bug (should we call it a feature?) might lead to errors on periods before March 
1, 1900. Thus, by design, the first officially supported date by DAX is March 1, 1900. Date calcu-
lations executed on periods before that date might lead to errors and should be considered as 
inaccurate.

If you need to perform calculations before 1900, you should use math to move the dates 
after 1900, perform your calculations, and then move the dates back in time.

Boolean (TRUE/FALSE) 
The Boolean data type is used to express logical conditions. For example, a calculated column defined 
by the following expression is of type Boolean:

= Sales[Unit Price] > Sales[Unit Cost]
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You can see Boolean data types also as numbers where TRUE equals 1 and FALSE equals 0. This 
might be useful sometime for sorting purposes because TRUE > FALSE.

Text (String)
Every string in DAX is stored as a Unicode string, where each character is stored in 16 bits. By default, 
the comparison between strings is case-insensitive, so the two strings “Power Pivot” and “POWER 
PIVOT” are considered equal.

Binary large object (BLOB) 
The BLOB data type is used in the data model to store images and it is not accessible in DAX. It is 
mainly used by Power View or by other client tools to show pictures stored directly in the data model. 

DAX operators
Having seen the importance of operators in determining the type of an expression, you can now see a 
list of the operators available in DAX in Table 2-1.

TABLE 2-1 Operators.

Operator Type Symbol Use Example

Parenthesis ( ) Precedence order and grouping 
of arguments

(5 + 2) * 3

Arithmetic +
-
*
/

Addition
Subtraction/negation
Multiplication
Division

4 + 2
5 – 3
4 * 2
4 / 2

Comparison =
<>
>
>=
<
<=

Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

[CountryRegion] = “USA”
[CountryRegion] <> “USA”
[Quantity] > 0
[Quantity] >= 100
[Quantity] < 0
[Quantity] <= 100

Text concatenation & Concatenation of strings “Value is “ & [Amount]

Logical && 

|| 

AND condition between two 
Boolean expressions
OR condition between two 
Boolean expressions

[CountryRegion] = “USA” && [Quantity]>0
[CountryRegion] = “USA” || [Quantity] > 0

Moreover, the logical operators are available also as DAX functions, with syntax very similar to 
Excel. For example, you can write:

AND ( [CountryRegion] = "USA", [Quantity] > 0 ) 
OR ( [CountryRegion] = "USA", [Quantity] > 0 )
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that are equivalent, respectively, to:

[CountryRegion] = "USA" && [Quantity] > 0 
[CountryRegion] = "USA" || [Quantity] > 0

The use of functions instead of operators for Boolean logic becomes very useful when you have to 
write complex conditions. In fact, when it comes to formatting large sections of code, functions are 
much easier to format and read than operators. However, a major drawback of functions is that you 
can only pass in two parameters at a time. This requires you to nest functions if you have more than 
two conditions to evaluate.

Understanding calculated columns and measures

Now that you know the basics of DAX syntax, you need to learn one of the most important concepts 
in DAX: the difference between calculated columns and measures. Even though they might  appear 
similar at first sight because you can make some calculations both ways, they are in reality very 
 different and understanding the difference is a key to unlock the true power of DAX.

Calculated columns
If you want to create a calculated column in Excel, for example, you can simply move to the last 
column of the table, which is named Add Column, and start writing the formula. Other tools 
 implementing DAX might have a different user interface, of course. You create the DAX expression 
into the formula bar, and IntelliSense helps you during the writing of the expression.

A calculated column is just like any other column in a table and you can use it in rows, columns, 
filters, or values of a pivot table or any other report. You can also use a calculated column to define a 
relationship, if needed. The DAX expression defined for a calculated column operates in the context of 
the current row of the table to which it belongs. Any reference to a column returns the value of that 
column for the current row. You cannot directly access the values of other rows.

Note As you will see later, there are DAX functions that aggregate the value of a  column 
for the whole table. The only way to get the value of a subset of rows is to use DAX 
 functions that return a table and then operate on it. In this way, you aggregate column 
 values for a range of rows and possibly operating on a different row by filtering a table 
made of only one row. You will learn more on this topic in Chapter 4, “Understanding 
evaluation contexts.” 

One important concept that you need to remember about calculated columns is that they are 
computed during the database processing and then stored in the model. This might seem strange if 
you are accustomed to SQL-computed columns (not persisted), which are computed at query time 



 CHAPTER 2 Introducing DAX 23

and do not use memory. In Tabular, however, all calculated columns occupy space in memory and are 
computed during table processing.

This behavior is helpful whenever you create very complex calculated columns. The time required 
to compute them is always process time and not query time, resulting in a better user  experience. 
Nevertheless, you always must remember that a calculated column uses precious RAM. If, for 
 example, you have a complex formula for a calculated column, you might be tempted to separate 
the steps of computation in different intermediate columns. Although this technique is useful during 
project development, it is a bad habit in production because each intermediate calculation is stored 
in RAM and wastes precious space.

Measures
There is another way of defining calculations in a DAX model, useful whenever you do not want to 
compute values for each row but, rather, you want to aggregate values from many rows in a table. We 
call these calculations measures.

For example: You can define the GrossMargin column in the Sales table to compute the amount of 
the gross margin:

Sales[GrossMargin] = Sales[SalesAmount] – Sales[TotalProductCost] 

But what happens if you want to show the gross margin as a percentage of the sales amount? You 
could create a calculated column with the following formula:

Sales[GrossMarginPct] = Sales[GrossMargin] / Sales[SalesAmount]

This formula computes the right value at the row level, as you can see in Figure 2-2.

FIGURE 2-2  The GrossMarginPct column shows the GrossMargin as a percentage, calculated row by row.

Nevertheless, when you compute the aggregate value of a percentage, you cannot rely on 
 calculated columns. In fact, you need to compute the aggregate value as the sum of gross margin 
divided by the sum of sales amount. Therefore, in this case, you need to compute the ratio on the 
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aggregates; you cannot use an aggregation of calculated columns. In other words, you compute the 
ratio of the sum, not the sum of the ratio.

The correct implementation for the GrossMarginPct would be as a measure:

Sales[GrossMarginPct] := SUM ( Sales[GrossMargin] ) / SUM (Sales[SalesAmount] )

However, as we have already said, you cannot enter it into a calculated column. If you need to 
operate on aggregate values instead of on a row-by-row basis, you must create measures. You might 
have noticed that we used := to define a measure, instead of the equal sign (=). This is a standard we 
use throughout the book, to make it easier to differentiate between measures and columns in code.

Measures and calculated columns both use DAX expressions; the difference is the context of 
evaluation. A measure is evaluated in the context of the cell of the pivot table or DAX query, whereas 
a calculated column is computed at the row level of the table to which it belongs. The context of 
the cell (later in the book, you learn that this is a filter context) depends on the user selections in 
the pivot table or on the shape of the DAX query. So when you use SUM(Sales[SalesAmount]) in a 
measure, you mean the sum of all the cells that are aggregated under this cell, whereas when you use 
Sales[SalesAmount] in a calculated column, you mean the value of the SalesAmount column in the 
current row.

A measure needs to be defined in a table. This is one of the requirements of the DAX language. 
However, the measure does not really belong to the table. In fact, you can move a measure from one 
table to another one without losing its functionality.

Differences between calculated columns and measures
Even if they look similar, there is a big difference between calculated columns and measures. 
The value of a calculated column is computed during data refresh and uses the current row 
as a context; it does not depend on user activity on the pivot table. A measure operates on 
 aggregations of data defined by the current context. In a pivot table, for example, source 
tables are filtered according to the coordinates of cells, and data is aggregated and calculated 
using these filters. In other words, a measure always operates on aggregations of data under 
the evaluation context and for this reason the default execution mode does not reference any 
single row. The evaluation context is explained further in Chapter 4. 

Choosing between calculated columns and measures
Now that you have seen the difference between calculated columns and measures, you might be 
wondering when to use one over the other. Sometimes either is an option, but in most situations, your 
computation needs determine your choice.
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You have to define a calculated column whenever you want to do the following:

■■ Place the calculated results in an Excel Slicer, or see results in Rows or Columns in a pivot table 
(as opposed to the Values area), or use the result as a filter condition in a DAX query.

■■ Define an expression that is strictly bound to the current row. (For example, Price * Quantity 
cannot work on an average or on a sum of the two columns.)

■■ Categorize text or numbers. (For example, a range of values for a measure, a range of ages of 
customers, such as 0–18, 18–25, and so on.)

However, you must define a measure whenever you want to display resulting calculation values 
that reflect user selections and see them in the Values area of pivot tables, for example:

■■ When you calculate profit percentage of a pivot table selection.

■■ When you calculate ratios of a product compared to all products but keeping the filter both 
by year and region.

You can express some calculations both with calculated columns and with measures, even if you 
need to use different DAX expressions in these cases. For example, you can define the GrossMargin as 
a calculated column:

Sales[GrossMargin] = Sales[SalesAmount] - Sales[TotalProductCost]

but it can be defined as a measure, too: 

[GrossMargin] := SUM ( Sales[SalesAmount] ) – SUM ( Sales[TotalProductCost] )

We suggest you use measure in this case because being evaluated at query time it does not 
 consume memory and disk space, but this is really important only in large datasets. When the size of 
the model is not an issue, you can use the method you are more comfortable with.

Cross references
It is obvious that a measure can refer to one or more calculated columns. It might be less 
 intuitive that the opposite is also true. A calculated column can refer to a measure: In this way, 
it forces the calculation of a measure for the context defined by the current row. This operation 
transforms and consolidates the result of a measure into a column, which will not be influenced 
by user actions. Obviously, only certain operations can produce meaningful results because 
usually a measure makes computations that strongly depend on the selection made by the user 
in the pivot table.
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Variables

When writing a DAX expression, you can avoid repeating the same expression by using variables. For 
example, look at the following expression:

VAR 
    TotalSales = SUM ( Sales[SalesAmount] ) 
RETURN 
    ( TotalSales - SUM ( Sales[TotalProductCost] ) ) / TotalSales

You can define many variables and they are local to the expression in which you define them. 
Variables are very useful both to simplify the code, and because you can avoid repeating the same 
subexpression. Variables are computed using lazy evaluation. This means that if you define a variable 
that, for any reason, is not used in your code, then the variable will never be evaluated. If it needs 
to be computed, then this happens only once: Later usages of the variable will read the previously 
 computed value. Thus, they are useful also as an optimization technique when you use multiple times 
a complex expression.

Moreover, as you will learn in Chapter 4, variables are extremely useful because they use the 
 definition evaluation context instead of the one where the variable is used.

Handling errors in DAX expressions

Now that you have seen some of the basics of the syntax, you will learn how to handle invalid 
 calculations gracefully. A DAX expression might contain invalid calculations because the data it 
 references is not valid for the formula. For example, you might have a division by zero or a column 
value that is not a number and is used in an arithmetic operation, such as multiplication. You must 
learn how these errors are handled by default and how to intercept these conditions if you want some 
special handling.

Before you learn how to handle errors, it is worth spending a few words on describing the different 
kinds of errors that might appear during a DAX formula evaluation. They are:

■■ Conversion Errors

■■ Arithmetical Operations Errors

■■ Empty or Missing Values

Conversion errors
The first kind of error is the conversion error. As you have seen before in this chapter, DAX automatically 
converts values between strings and numbers whenever the operator requires it. To review the concept 
with examples, all of these are valid DAX expressions:
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"10" + 32 = 42 
"10" & 32 = "1032" 
10 & 32 = "1032" 
DATE (2010,3,25) = 3/25/2010 
DATE (2010,3,25) + 14 = 4/8/2010 
DATE (2010,3,25) & 14 = "3/25/201014"

These formulas are always correct because they operate with constant values. However, what 
about the following, if VatCode is a string?

SalesOrders[VatCode] + 100

Because the first operand of this sum is a column that, in this case, is of Text data type, you must 
be sure that DAX can convert all the values in that column to numbers. If DAX fails in converting some 
of the content to suit the operator needs, you will incur a conversion error. Here are typical situations: 

"1 + 1" + 0              = Cannot convert value '1+1' of type string to a number 
DATEVALUE ("25/14/2010") = Type mismatch

To avoid these errors, you need to add error detection logic in your DAX expressions to intercept 
error conditions and always return a meaningful result.

Arithmetical operations errors
The second category of errors is that of arithmetical operations, such as the division by zero or the 
square root of a negative number. These are not conversion-related errors: DAX raises them whenever 
you try to call a function or use an operator with invalid values.

The division by zero requires special handling because it behaves in such a way that is not very 
intuitive (except, maybe, for mathematicians). When you divide a number by zero, DAX usually returns 
the special value Infinity. Moreover, in the very special cases of 0 divided by 0 or Infinity divided by 
Infinity, DAX returns the special NaN (not a number) value. 

Because this is a strange behavior, it is worth summarizing in Table 2-2.

TABLE 2-2 Special result values for division by zero.

Expression Result

10 / 0 Infinity

7 / 0 Infinity

0 / 0 NaN

(10 / 0) / (7 / 0) NaN
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It is important to note that Infinity and NaN are not errors but special values in DAX. In fact, if you 
divide a number by Infinity the expression does not generate an error but returns 0:

9954 / ( 7 / 0 )     = 0

Apart from this special situation, DAX can return arithmetical errors when calling a function with a 
wrong parameter, such as the square root of a negative number:

SQRT ( -1 )     = An argument of function 'SQRT' has the wrong data type  
                  or the result is too large or too small

If DAX detects errors like this, it blocks any further computation of the expression and raises an er-
ror. You can use the ISERROR function to check if an expression leads to an error, something that you 
use later in this chapter.

Finally, keep in mind that special values like NaN are displayed in such a way in the Power Pivot 
or in the Visual Studio window, but they can be displayed as errors when shown by some client tools, 
such as an Excel pivot table. Moreover, these special values will be detected as errors by the error 
detection functions.

Empty or missing values
The third category that we examine is not a specific error condition, but the presence of empty values, 
which might result in unexpected returns or calculation errors when combining those empty values 
with other elements in a calculation. You need to understand how DAX treats these special values.

DAX handles missing values, blank values, or empty cells in the same way, using the value BLANK. 
BLANK is not a real value but a special way to identify these conditions. You can obtain the value 
BLANK in a DAX expression by calling the BLANK function, which is different from an empty string. 
For example, the following expression always returns a blank value, which will be displayed as an 
empty cell in a pivot table:

= BLANK ()

On its own, this expression is useless, but the BLANK function itself becomes useful every time you 
want to return an empty value. For example, you might want to display an empty cell instead of 0, 
as in the following expression that calculates the total discount for a sale transaction, leaving the cell 
blank if the discount is 0:

= IF ( Sales[DiscountPerc] = 0, BLANK (), Sales[DiscountPerc] * Sales[Amount] )
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BLANK, by itself, is not an error but an empty value. Therefore, an expression containing a BLANK 
might return a value or a blank, depending on the calculation required. For example, the following 
expression returns BLANK whenever Sales[Amount] is BLANK:

= 10 * Sales[Amount]

In other words, the result of an arithmetic product is BLANK whenever one or both terms are 
BLANK. This propagation of BLANK in a DAX expression happens in several other arithmetical and 
logical operations, as you can see in the following examples:

BLANK () + BLANK ()   = BLANK () 
10 * BLANK ()         = BLANK () 
BLANK () / 3          = BLANK () 
BLANK () / BLANK ()   = BLANK () 
BLANK () || BLANK ()  = FALSE 
BLANK () && BLANK ()  = FALSE 
BLANK () = BLANK ()   = TRUE

However, the propagation of BLANK in the result of an expression does not happen for all 
 formulas. Some calculations do not propagate BLANK but return a value depending on the other 
terms of the formula. Examples of these are addition, subtraction, division by BLANK, and a  logical 
operation between a BLANK and a valid value. In the following expressions, you can see some 
 examples of these conditions, along with their results:

BLANK () - 10           = -10 
18 + BLANK ()           = 18 
4 / BLANK ()            = Infinity 
0 / BLANK ()            = NaN 
FALSE || BLANK ()       = FALSE 
FALSE && BLANK ()       = FALSE 
TRUE || BLANK ()        = TRUE 
TRUE && BLANK ()        = FALSE

Empty values in Excel and SQL
Excel has a different way of handling empty values. In Excel, all empty values are considered 0 
whenever they are used in a sum or in multiplication, but they return an error if they are part of 
division or of a logical expression.

In SQL the null values are propagated in an expression in a different way than what happens 
with BLANK in DAX. As you see in the previous examples, the presence of a BLANK in a DAX 
expression does not always result in a BLANK result, whereas the presence of NULL in SQL often 
evaluates to NULL for the entire expression.
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Understanding the behavior of empty or missing values in a DAX expression and using BLANK to 
return an empty cell in a calculation are also important skills to control the results of a DAX expres-
sion. You can often use BLANK as a result when you detect wrong values or other errors, as you are 
going to learn in the next section. 

Intercepting errors 
Now that you have seen the various kinds of errors that can occur, you will learn the techniques to 
intercept errors and correct them or, at least, show an error message with some meaningful informa-
tion. The presence of errors in a DAX expression frequently depends on the value contained in tables 
and columns referenced in the expression itself. Therefore, you might want to control the presence of 
these error conditions and return an error message. The standard technique is to check whether an 
expression returns an error and, if so, replace the error with a message or a default value. There are a 
few DAX functions for this. 

The fi rst of them is the IFERROR function, which is very similar to the IF function, but instead of 
evaluating a Boolean condition, it checks whether an expression returns an error. You can see two 
typical uses of the IFERROR function here: 

= IFERROR ( Sales[Quantity] * Sales[Price], BLANK () )
= IFERROR ( SQRT ( Test[Omega] ), BLANK () ) 

In the fi rst expression, if either Sales[Quantity] or Sales[Price] are strings that cannot be converted 
into a number, the returned expression is an empty value; otherwise the product of Quantity and 
Price is returned.  

 In the second expression, the result is an empty cell every time the Test[Omega] column contains a 
negative number. 

When you use IFERROR this way, you follow a more general pattern that requires the use of 
ISERROR and IF:  

= IF ( 
    ISERROR ( Sales[Quantity] * Sales[Price] ), 
    BLANK (), 
    Sales[Quantity] * Sales[Price]
  )

= IF (
    ISERROR ( SQRT ( Test[Omega] ) ), 
    BLANK (), 
    SQRT ( Test[Omega] )
  ) 

= IFERROR ( Sales[Quantity] * Sales[Price], BLANK () )
= IFERROR ( SQRT ( Test[Omega] ), BLANK () )

= IF (
    ISERROR ( Sales[Quantity] * Sales[Price] ),
    BLANK (),
    Sales[Quantity] * Sales[Price]
  )

= IF (
    ISERROR ( SQRT ( Test[Omega] ) ),
    BLANK (),
    SQRT ( Test[Omega] )
  )
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You should use IFERROR whenever the expression that has to be returned is the same tested for 
an error; you do not have to duplicate the expression in two places, and the resulting formula is more 
readable and safer in case of future changes. You should use IF, however, when you want to return the 
result of a different expression. For example, you can detect whether the argument for SQRT is a valid 
one, calculating the square root only for positive numbers and returning BLANK for negative ones:

= IF ( Test[Omega] >= 0, SQRT ( Test[Omega] ), BLANK () )

Considering that the third argument of an IF statement has a default value BLANK, you can also 
write the same expression as:

= IF ( Test[Omega] >= 0, SQRT ( Test[Omega] ) )

A particular case is the test against the empty value. The ISBLANK function detects an empty value 
condition, returning TRUE if the argument is BLANK. This is important especially when a missing value 
has a meaning different from a value set to 0. In the following example, we calculate the cost of ship-
ping for a sales transaction, using a default shipping cost for the product if the transaction itself does 
not specify a weight:

= IF ( 
    ISBLANK ( Sales[Weight] ),  
    Sales[DefaultShippingCost],  
    Sales[Weight] * Sales[ShippingPrice] 
)

If we had just multiplied product weight and shipping price, we would have an empty cost for all 
the sales transactions with missing weight data.

Try to avoid the usage of error-handling functions
Even if it is not yet time to speak about DAX code optimization, you need to be aware that 
error-handling functions might create severe performance issues in your code. It is not that 
they are slow by themselves. The problem is that the DAX engine cannot use optimized paths in 
its code when errors happen. In most cases, it is more efficient to check operands for possible 
errors instead of using the error-handling engine. For example, instead of writing this:

= IFERROR ( 
    SQRT ( Test[Omega] ),  
    BLANK () 
  )
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 It is much better to write this:

= IF ( 
    Test[Omega] >= 0, 
    SQRT ( Test[Omega] ),  
    BLANK () 
  )

This second expression does not need to detect the error and it is faster than the previous 
one. This, of course, is a general rule. For a detailed explanation, see Chapter 16, “Optimizing 
DAX.”

Formatting DAX code

Before continuing with the explanation of the DAX language, it is useful to cover a very important 
aspect of DAX, that is, formatting the code. DAX is a functional language, meaning that—no  matter 
how complex it is—a DAX expression is always a single function call with some parameters. The 
 complexity of the code translates in the complexity of the expressions that you use as parameters to 
the outermost function.

For this reason, it is normal to see expressions that span over 10 lines or more. Seeing a 20-line 
DAX expression is not something strange and you will become acquainted with it. Nevertheless, as 
formulas start to grow in length and complexity, it is extremely important that you learn how to 
 format them, so that they are human-readable. 

There is no “official” standard to format DAX code, yet we believe it is important to describe 
the standard that we use on our code. It is probably not perfect and you might prefer something 
 different, and we have no problem with that. The only thing you need to remember is: “format your 
code, never write everything on a single line, or you will be in trouble sooner than you expect.”

In order to understand why formatting is very important, we show a formula that computes some 
time intelligence. It is a somewhat complex formula, but definitely not the most complex one you will 
author. Here is how the expression looks if you do not format it in some way:

IF (COUNTX (BalanceDate, CALCULATE (COUNT( Balances[Balance] ), ALLEXCEPT ( Balances, 
BalanceDate[Date] ))) > 0, SUMX (ALL ( Balances[Account] ), CALCULATE (SUM( 
Balances[Balance] ), LASTNONBLANK (DATESBETWEEN (BalanceDate[Date], BLANK(),LASTDATE( 
BalanceDate[Date] )), CALCULATE ( COUNT( Balances[Balance] ))))), BLANK ())

Trying to understand what this formula computes is nearly impossible, because you have no clue 
of which is the outermost function and how DAX evaluates the different parameters to create the 
complete flow of execution. We have seen too many examples of formulas written in this way by  
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customers who, at some point, ask for help in understanding why the formula returns incorrect 
 results. Guess what? The first thing we do is format the expression; only later do we start working  
on it.

The same expression, properly formatted, looks like this:

=IF ( 
    COUNTX ( 
        BalanceDate,  
        CALCULATE ( 
            COUNT ( Balances[Balance] ),  
            ALLEXCEPT ( Balances, BalanceDate[Date] )  
        ) 
    ) > 0,  
    SUMX ( 
        ALL ( Balances[Account] ),  
        CALCULATE ( 
            SUM ( Balances[Balance] ),  
            LASTNONBLANK ( 
                DATESBETWEEN (  
                    BalanceDate[Date],  
                    BLANK (),  
                    LASTDATE ( BalanceDate[Date] )  
                ),  
                CALCULATE ( COUNT ( Balances[Balance] ) ) 
            ) 
        ) 
    ), 
    BLANK ()  
)

The code is the same, but this time it is much easier to look at the three parameters of IF and, most 
important, following the blocks that arise naturally from indenting lines, and how they compose the 
complete flow of execution. Yes, the code is still hard to read, but now the problem is DAX, not the 
formatting.

DAXFormatter.com
We created a website that is dedicated to formatting DAX code. We did it for ourselves, 
 because formatting the code is a time-consuming operation and we did not want to spend our 
time doing it for every formula we write. Once the tool was working, we decided to donate it to 
the public domain, so that users can format their own DAX code (by the way, we have been able 
to promote our formatting rules in this way).

You can find it on www.daxformatter.com. The user interface is simple: just copy your DAX 
code, click FORMAT, and the page refreshes showing a nicely formatted version of your code, 
which you can then copy and paste in the original window.

http://www.daxformatter.com
http://www.daxformatter.com
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This is the set of rules that we use to format DAX:

■■ Keywords like IF, COUNTX, CALCULATE are always separated by any other term using a space 
and they are always written in uppercase.

■■ All column references are written in the form TableName[ColumnName], with no space be-
tween the table name and the opening square bracket. The table name is always included.

■■ All measure references are written in the form [MeasureName], without any table name.

■■ Commas are always followed by a space and never preceded by a space.

■■ If the formula fits one single line, then no other rule need be applied.

■■ If the formula does not fit a single line, then:

• The function name stands on a line by itself, with the opening parenthesis.

• All the parameters are in separate lines, indented with four spaces and with the comma at 
the end of the expression.

• The closing parenthesis is aligned with the function call and stands in a line by itself.

These are the basic rules we use. A more detailed list of these rules is available at  
http://sql.bi/daxrules.

If you find a way to express formulas that best fits your reading method, then use it. The goal of 
formatting is to make the formula easier to read, so use the technique that works better for you. 
The most important thing to remember when defining your personal set of formatting rules is that 
you  always need to see errors as soon as possible. If, in the unformatted code shown before, DAX 
 complains about a missing closing parenthesis, it will be very hard to spot the place where the error 
is. On the formatted formula, it is much easier to see how a closing parenthesis matches the opening 
function calls.

Help on formatting DAX
Formatting DAX is not an easy task because you need to write it using a small font in a text box. 
Unfortunately, at the time of this writing, neither Excel nor Visual Studio provides a good text 
editor for DAX. Nevertheless, a few hints might help in writing your DAX code:

■■ If you want to increase the font size, you can hold down Ctrl while rotating the wheel 
 button on the mouse, making it easier to look at the code.

■■ If you want to add a new line to the formula, you can press Shift+Enter.

■■ If editing in the text box is really a pain, you can always copy the code in another editor, 
like Notepad, and then paste the formula again in the text box.

http://sql.bi/daxrules
http://sql.bi/daxrules
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Finally, whenever you look at a DAX expression, it is hard to understand, at first glance, whether it 
is a calculated column or a measure. Thus, we use an equal sign (=) whenever we define a calculated 
column and the assignment operator (:=) to define measures:

CalcCol  = SUM (Sales[SalesAmount]) is a calculated column 
CalcFld := SUM (Sales[SalesAmount]) is a measure

Common DAX functions

Now that you have seen the fundamentals of DAX and how to handle error conditions, what follows 
is a brief tour through the most commonly used functions and expressions of DAX. In the remaining 
part of this chapter, you will see some of the most frequently used DAX functions, which you are likely 
to use in your own data models.

Aggregate functions
Almost every data model needs to operate on aggregated data. DAX offers a set of functions that 
aggregate the values of a column in a table and return a single value. We call this group of functions 
aggregate functions. For example, the following measure calculates the sum of all the numbers in the 
SalesAmount column of the Sales table:

Sales := SUM ( Sales[SalesAmount] )

This expression (SUM) aggregates all the rows of the table if it is used in a calculated column, but it 
considers only the rows that are filtered by slicers, row, columns, and filter conditions in a pivot table 
whenever it is used in a measure.

The aggregation functions (SUM, AVERAGE, MIN, MAX, STDEV, and VAR) operate only on numeric 
values or on dates.

Note MIN and MAX have another function: if used with two parameters, they will return 
the minimum or maximum of the two parameters. Thus, MIN (1, 2) will return 1 and MAX 
(1, 2) returns 2. This functionality, introduced in 2015, is very useful when you need to 
compute the minimum or maximum of complex expressions, because it avoids writing the 
same expression many times in IF statements.

Similarly to Excel, DAX offers an alternative syntax to these functions to make the calculation on 
columns that can contain both numeric and non-numeric values, such as a text column. That syntax 
simply adds the suffix A to the name of the function, just to get the same name and behavior as Excel. 
However, these functions are useful only for columns containing TRUE/FALSE values because TRUE is 
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evaluated as 1 and FALSE as 0. Text columns are always considered 0. Therefore, no matter what is in 
the content of a column, if you use, for example, MAXA on a text column, you will always get 0 as the 
result. Moreover, DAX never considers empty cells when it performs the aggregation.  

 Even if these functions can be used on non-numeric columns without returning an error, their 
results are not useful because there is no automatic conversion to numbers for text columns. These 
functions are named AVERAGEA, COUNTA, MINA, and MAXA. 

 Note Despite the same name of statistical functions, the difference in the way they are 
used in DAX and Excel exists because in DAX a column has a type, and its type  determines 
the behavior of aggregation functions. Excel handles a different data type for each 
cell, whereas DAX handles a single data type for each column. DAX deals with data in 
tabular form with well-defi ned types for each column, whereas Excel formulas work on 
 heterogeneous cell values, without well-defi ned types. If a column in Power Pivot has a 
Numeric data type, all the values can be only numbers or empty cells. If a column is of a 
text type, it is always 0 for these functions (except for COUNTA), even if the text can be 
converted to a number, whereas in Excel the value is considered a number on a cell-by-cell 
basis. For these reasons, these DAX functions are not very useful for Text columns. 

 The functions you learned before are useful to perform aggregation of values. Sometimes, you are 
not interested in aggregating values but only in counting them. Thus, DAX offers a set of functions 
that are useful to count rows or values: 

 ■  COUNT operates only on numeric columns 

 ■  COUNTA operates on any type of columns 

 ■  COUNTBLANK returns the number of empty cells in a column 

 ■  COUNTROWS returns the number of rows in a table 

 ■  DISTINCTCOUNT returns the number of distinct values of a column 

 COUNTA is the only interesting function in the group of A-suffi xed functions, because it returns 
the number of values of the column that are not empty and works on any type of column. If you 
want to count all the values in a column that contain an empty value, you can use the COUNTBLANK 
function. Finally, if you want to count the number of rows of a table, you can use the COUNTROWS 
function. Beware that COUNTROWS requires a table as a parameter, not a column. 

 Note For any column in any table, the result of COUNTA(table[column]) + 
COUNTBLANK(table[column]) will be always the same as COUNTROWS (table). 

 The last function, DISTINCTCOUNT, is very useful because it does exactly what its name suggests: 
counts the distinct values of a column, which it takes as its only parameter. DISTINCTCOUNT counts 
the BLANK value as one of the possible values. 
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Note DISTINCTCOUNT is a function introduced in the 2012 version of DAX. The earlier 
version of DAX did not include DISTINCTCOUNT and, to compute the number of distinct 
values of a column, you had to use COUNTROWS(DISTINCT(table[column])). The two 
 patterns return the very same result although DISTINCTCOUNT is easier to read, requiring 
only a single function call.

All the aggregation functions you learned so far work on columns (except for COUNTROWS, which 
works on tables). Therefore, they can aggregate values coming from a single column only. There 
are aggregation functions that can aggregate an expression, instead of a single column. This set of 
 functions is very useful, especially when you want to make calculations using columns of different 
related tables. For example, if a Sales table contains all the sales transactions and a related Product 
table contains all the information about a product, including its cost, you might calculate the total 
internal cost of a sales transaction by defining a measure with this expression:

Cost := SUMX ( Sales, Sales[Quantity] * RELATED ( Product[StandardCost] ) )

This measure calculates the product of Quantity (from Sales table) and StandardCost of the sold 
product (from the related Product table) for each row in the Sales table. Finally, it returns the sum of 
all these calculated values.

All the aggregation functions ending with an X suffix behave this way: they compute an  expression 
(the second parameter) for each of the rows of a table (the first parameter) and return a result 
 obtained by the corresponding aggregation function (SUM, MIN, MAX or COUNT) applied to the 
result of those calculations. 

You will learn more about this behavior further in Chapter 4 because, to understand their  behavior 
correctly, we will need to introduce the concept of evaluation contexts. The X-suffixed functions 
 available are SUMX, AVERAGEX, PRODUCTX, COUNTX, COUNTAX, CONCATENATEX, MINX, and 
MAXX. There are also iterators that do not have the X suffix, like FILTER and ADDCOLUMNS. All of 
them will be explained in great detail later.

Logical functions
Sometimes you want to build a logical condition in an expression—for example, to implement differ-
ent calculations depending on the value of a column or to intercept an error condition. In these cases, 
you can use one of the logical functions in DAX. You have already learned in the previous section, 
“Handling errors in DAX expressions,” the two most important functions of this group, which are IF 
and IFERROR. 

Logical functions are very simple and do what their names suggest, they are AND, FALSE, IF, IFERROR, 
NOT, TRUE, and OR. If, for example, you want to compute the amount as quantity multiplied by price 
only when the Price column contains a correct numeric value, you can use the following pattern:



38 The Defi nitive Guide to DAX

Amount = IFERROR ( Sales[Quantity] * Sales[Price], BLANK ( ) ) 

If you did not use the IFERROR and the Price column contains an invalid number, the result for the 
calculated column would be an error because if a single row generates a calculation error, the error 
propagates to the whole column. The usage of IFERROR, however, intercepts the error and replaces it 
with a blank value. 

 Another interesting function inside this category is SWITCH, which is useful when you have a column 
containing a low number of distinct values, and you want to get different behaviors, depending on its 
value. For example, the column Size in the Product table contains L, M, S, XL, and you might want to 
decode this value in a more meaningful column. You can obtain the result by using nested IF calls: 

SizeDesc = 
IF ( Product[Size] = "S", "Small",
    IF ( Product[Size] = "M", "Medium",
        IF ( Product[Size] = "L", "Large",
            IF ( Product[Size] = "XL", "Extra Large", "Other" ) ) ) ) 

A more convenient way to express the same formula, using SWITCH, is: 

SizeDesc = 
    SWITCH ( Product[Size],
      "S", "Small",
      "M", "Medium",
      "L", "Large",
      "XL", "Extra Large", 
      "Other"
    ) 

The code in this latter expression is more readable, even if not faster, because, internally, DAX 
translates SWITCH statements into a set of nested IF functions. 

Tip Here is an interesting way to use the SWITCH function to check for multiple conditions 
in the same expression. Because SWITCH is converted into a set of nested IF, where the fi rst 
one that matches wins, you can test multiple conditions using this pattern: 

SWITCH (
    TRUE (),
    Product[Size] = "XL" && Product[Color] = "Red", "Red and XL",
    Product[Size] = "XL" && Product[Color] = "Blue", "Blue and XL",
    Product[Size] = "L" && Product[Color] = "Green", "Green and L"
) 

Using TRUE as the fi rst parameter, in reality, says: “Return the fi rst result where the 
 condition evaluates to TRUE.” 

Amount = IFERROR ( Sales[Quantity] * Sales[Price], BLANK ( ) )

SizeDesc =
IF ( Product[Size] = "S", "Small",
    IF ( Product[Size] = "M", "Medium",
        IF ( Product[Size] = "L", "Large",
            IF ( Product[Size] = "XL", "Extra Large", "Other" ) ) ) )

SizeDesc =
    SWITCH ( Product[Size],
      "S", "Small",
      "M", "Medium",
      "L", "Large",
      "XL", "Extra Large",
      "Other"
    )
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Information functions
Whenever you need to analyze the type of an expression, you can use one of the information func-
tions. All of these functions return a TRUE/FALSE value and can be used in any logical expression. 
They are: ISBLANK, ISERROR, ISLOGICAL, ISNONTEXT, ISNUMBER, and ISTEXT.

It is important to note that when a column (instead of an expression) is passed as a parameter, the 
functions ISNUMBER, ISTEXT, and ISNONTEXT always return TRUE or FALSE, depending on the data 
type of the column and on the empty condition of each cell.

You might be wondering whether you can use ISNUMBER with a text column just to check whether 
a conversion to a number is possible. Unfortunately, you cannot use this approach; if you want to test 
whether a text value is convertible to a number, you must try the conversion and handle the error if 
it fails. For example, to test whether the column Price (which is of type text) contains a valid number, 
you must write:

IsPriceCorrect = NOT ( ISERROR ( Sales[Price] + 0 ) )

DAX tries to add a zero to the Price to force the conversion from a Text value to a number; if it 
succeeds, then it will return TRUE (because ISERROR will return FALSE), otherwise it will return FALSE 
(because ISERROR returns TRUE). The conversion will fail, for example, if for some rows the price has 
an “N/A” string value.

If, however, you try to use ISNUMBER, as in the following expression, you will always receive FALSE 
as a result:

IsPriceCorrect = ISNUMBER ( Sales[Price] )

In this case, ISNUMBER always returns FALSE because, based on metadata, the Price column is not 
a number but a string, regardless of the content of each row.

Mathematical functions
The set of mathematical functions available in DAX is very similar to the same set in Excel, with 
the same syntax and behavior. The mathematical functions of common use are ABS, EXP, FACT, 
LN, LOG, LOG10, MOD, PI, POWER, QUOTIENT, SIGN, and SQRT. Random functions are RAND and 
 RANDBETWEEN. EVEN and ODD let you test numbers. GCD and LCM are useful to compute the 
greatest common denominator and least common multiple of two numbers. QUOTIENT returns you 
the integer division of two numbers.

Finally, there are several rounding functions that deserve an example; in fact, you might use several 
approaches to get the same result. Consider these calculated columns, along with their results in 
Figure 2-3:
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FLOOR        = FLOOR ( Tests[Value], 0.01 ) 
TRUNC        = TRUNC ( Tests[Value], 2 ) 
ROUNDDOWN    = ROUNDDOWN ( Tests[Value], 2 ) 
MROUND       = MROUND ( Tests[Value], 0.01 ) 
ROUND        = ROUND ( Tests[Value], 2 ) 
CEILING      = CEILING ( Tests[Value], 0.01 ) 
ISO.CEILING  = ISO.CEILING ( Tests[Value], 0.01 ) 
ROUNDUP      = ROUNDUP ( Tests[Value], 2 ) 
INT          = INT ( Tests[Value] ) 
FIXED        = FIXED ( Tests[Value], 2, TRUE )

FIGURE 2-3  Summary of different rounding functions.

As you can see, FLOOR, TRUNC, and ROUNDDOWN are very similar, except in the way you can 
specify the number of digits to round on. In the opposite direction, CEILING and ROUNDUP are 
very similar in their results. You can see a few differences in the way the rounding is done between 
MROUND and ROUND function.

Trigonometric functions
DAX offers a rich set of trigonometric functions that are useful for some calculation. We do not go into 
 details of these functions, since their usage, if needed, is simple. They are COS, COSH, COT, COTH, SIN, 
SINH, TAN, and TANH. Prefixing them with A computes the arc version (arcsine, arccosine, and so on).

DEGREES and RADIANS perform conversion to degrees and radians, respectively, and SQRTPI  
computes the square root of its parameter after multiplying for Pi.

Text functions
Almost all of the text functions available in DAX are similar to those available in Excel, with only a few 
exceptions: they are CONCATENATE, EXACT, FIND, FIXED, FORMAT, LEFT, LEN, LOWER, MID, REPLACE, 
REPT, RIGHT, SEARCH, SUBSTITUTE, TRIM, UPPER, and VALUE. These functions are useful for manipu-
lating text and extracting data from strings that contain multiple values. For example, in Figure 2-4, 
you can see an example of the extraction of first and last name from a string containing these values 
separated by commas, with the title in the middle, which we want to remove. 

FIGURE 2-4  Here you can see an example of extracting first and last names using text functions.
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We start calculating the position of the two commas and then we use these numbers to extract the 
right part of the text. The SimpleConversion column implements a formula that might return wrong 
values if there are fewer than two commas in the string (and it raises an error if there are no commas 
at all), whereas the FirstLastName column implements a more complex expression that does not fail in 
case of missing commas:

Comma1 = IFERROR ( FIND ( ",", People[Name] ), BLANK ( ) ) 
Comma2 = IFERROR ( FIND ( ",", People[Name], People[Comma1] + 1 ), BLANK ( ) ) 
SimpleConversion = MID ( People[Name], People[Comma2] + 1, LEN ( People[Name] ) )  
                   & " " & LEFT ( People[Name], People[Comma1] - 1 ) 
FirstLastName = TRIM ( 
                    MID ( 
                        People[Name],  
                        IF ( 
                            ISNUMBER ( People[Comma2] ),  
                            People[Comma2],  
                            People[Comma1] 
                        ) + 1,  
                        LEN ( People[Name] ) 
                    ) 
                )  
                & IF ( 
                  ISNUMBER ( People[Comma1] ), 
                  " " & LEFT ( People[Name], People[Comma1] - 1 ), 
                  "" 
             )

As you can see, the FirstLastName column is defined by a long DAX expression, but you must use 
it to avoid possible errors that would propagate to the whole column if even a single value generates 
an error.

Conversion functions
You learned before that DAX performs automatic conversion of data types to adjust them to the 
need of the operators. Even if it happens automatically, a set of functions still can perform explicit 
 conversion of types.

CURRENCY can transform an expression in a currency type, whereas INT transforms an expres-
sion into an integer. DATE and TIME take the date and time parts as parameters and return a correct 
DATETIME. VALUE transforms a string into a numeric format, whereas FORMAT gets a numeric value 
as the first parameter and a string format as its second one and can transform numeric values into 
strings. FORMAT is very commonly used with DateTime. For example, the following expression returns 
“2015 Jan 12.”

= FORMAT ( DATE ( 2015, 01, 12 ), "yyyy mmm dd" )
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The opposite operation, that is converting strings into DateTime values, is performed through the 
usage of the DATEVALUE function.

Date and time functions
Almost in every type of data analysis, handling time and date is an important part of the job. DAX 
has a large number of functions that operate on date and time. Some of them correspond to  similar 
 functions in Excel and make simple transformations to and from a DateTime data type. The date 
and time functions are DATE, DATEVALUE, DAY, EDATE, EOMONTH, HOUR, MINUTE, MONTH, NOW, 
 SECOND, TIME, TIMEVALUE, TODAY, WEEKDAY, WEEKNUM, YEAR, and YEARFRAC.

To make a more complex operation on dates, such as comparing aggregated values year over 
year or calculating the year-to-date value of a measure, there is another set of functions called Time 
 Intelligence Functions that will be described in Chapter 7, “Time intelligence calculations.”

As mentioned before in this chapter, a DateTime data type internally uses a floating point  number 
wherein the integer part corresponds to the number of days after December 30, 1899, and the 
 decimal part indicates the fraction of the day in time. Hours, minutes, and seconds are converted into 
decimal fractions of the day. Thus, adding an integer number to a DateTime value increments the 
value by a corresponding amount of days. However, you will probably find it more convenient to use 
the conversion functions to extract day, month, and year from a date. In Figure 2-5, you can see how 
to extract this information from a table containing a list of dates:

Day    = DAY ( Calendar[Date] ) 
Month  = FORMAT ( Calendar[Date], "mmmm" ) 
Year   = YEAR ( Calendar[Date] )

FIGURE 2-5  Here you can see an example of extracting date information using date and time functions.

Relational functions
Two useful functions that enable you to navigate through relationships inside a DAX formula are 
RELATED and RELATEDTABLE.
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You already know that a calculated column can reference column values of the table in which it 
is defined. Thus, a calculated column defined in Sales can reference any column of the same table. 
However, what can you do if you must refer to a column in another table? In general, you cannot 
use columns in other tables unless a relationship is defined in the model between the two tables. If 
the two tables share a relationship, then the RELATED function enables you to access columns in the 
related table.

For example, you might want to compute a calculated column in the Sales table that checks 
whether the product that has been sold is in the “Cell phones” category and, in that case, apply a 
 reduction factor to the standard cost. To compute such a column, you must use a condition that 
checks the value of the product category, which is not in the Sales table. Nevertheless, a chain of 
relationships starts from Sales, reaching Product Category through Product and Product Subcategory, 
as you can see in Figure 2-6.

FIGURE 2-6 Sales has a chained relationship with Product Category.

It does not matter how many steps are necessary to travel from the original table to the related 
one, DAX will follow the complete chain of relationship and return the related column value. Thus, the 
formula for the AdjustedCost column can be:

Sales[AdjustedCost] =  
IF ( 
    RELATED ( 'Product Category'[Category] ) = "Cell Phone",  
    Sales[UnitCost] * 0.95,  
    Sales[UnitCost] 
)

In a one-to-many relationship, RELATED can access the one-side from the many-side because, in 
that case, only one row in the related table exists, if any. If no such row exists, RELATED simply returns 
BLANK.
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If you are on the one-side of the relationship and you want to access the many-side, then RELATED 
is not helpful because many rows from the other side might be available for a single row. In that 
case, you can use RELATEDTABLE. RELATEDTABLE returns a table containing all the rows related to 
the  current one. For example, if you want to know how many products are in each category, you can 
 create a column in Product Category with this formula:

= COUNTROWS ( RELATEDTABLE ( Product ) )

This calculated column will show, for each product category, the number of products related, as 
you can see in Figure 2-7. 

FIGURE 2-7 Count the number of products by using RELATEDTABLE.

As is the case for RELATED, RELATEDTABLE can follow a chain of relationships always starting from 
the one-side and going in the direction of the many-side.
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C H A P T E R  3

Using basic table functions

In this chapter, you will learn the difference between scalar functions and table functions in DAX. 
Table functions are very important for internal computations in DAX, and are useful when you write 

a DAX query instead of a DAX expression for a measure or a calculated column.

The goal here is to introduce the notion of table functions, but not to provide a detailed 
 explanation of all the functions that you will see here for the first time. A deeper analysis of table 
functions is included in Chapter 9, “Advanced table functions.” Here, we will explain the role of table 
functions in DAX, and how to use them in common scenarios, including in scalar DAX expressions.

Introducing table functions

DAX is a functional language, where you write expressions that produce a result after their  evaluation. 
Until now, you have seen that a DAX expression usually returns a single value, such as a string or 
a number. We call such expressions scalar expressions. When you define a measure or a calculated 
 column, you always write a scalar expression, as in the following examples:

= 4 + 3 
= "DAX is a beautiful language" 
= SUM ( Sales[Quantity] )

However, you can write a DAX expression that produces a table as a result. You cannot assign 
a  table expression directly to a measure or to a calculated column, but table expressions are an 
 important part of DAX. For example, there are DAX functions that receive a table expression as an 
argument, and a table expression is required to write a DAX query. 

The simplest example of a table expression is referencing the table name in a DAX expression, such 
as the following expression returning the entire content (all the columns and all the rows) of the Sales 
table:

= Sales



46 The Definitive Guide to DAX

However, if you try to assign the previous expression to a measure or to a calculated column, you 
get an error, because a measure needs a scalar value as a result. You need to manipulate the table 
expression in order to obtain a scalar value. This is possible by using functions that accept a table 
expression as an argument. For example, you count how many rows are included in a table by using 
COUNTROWS:

= COUNTROWS ( Sales )

The COUNTROWS function has the following definition:

COUNTROWS ( <table> )

Every time you have a DAX function that accepts a table expression as an argument, you can write 
the name of a table in that parameter, or you can write a function that returns a table.

We categorize DAX functions depending on their return type. We call “scalar functions” those that 
return a scalar value and “table functions” those that return a table. For example, COUNTROWS is a 
scalar function, because it returns a number, and accepts a table as an argument.

Many table functions usually manipulate a table, changing the rows and/or the columns of the 
original table. For example, you can count the number of rows in the Sales table with a unit price 
greater than 100 by using the following expression:

= COUNTROWS (  
      FILTER (  
          Sales, 
          Sales[Unit Price] > 100 
      ) 
  )

In the previous expression, FILTER returns a table containing only the rows of Sales having a unit 
price greater than 100. You will learn more about the FILTER function later in this chapter.

Typically, you use table expressions in your code to iterate over a table’s rows and aggregate 
some values, to return a scalar value as the result. You cannot assign a table expression directly to a 
 measure or to a calculated column. However, you can use a table expression in a calculated table  
(if this feature will be available in the future) or in a DAX query, materializing the content of the table 
expression.

For example, you can obtain a table containing all the sales with a unit price greater than 100 by 
executing a table expression such as the following, which results in the content you see in Figure 3-1.
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 = FILTER (  
      Sales, 
      Sales[Unit Price] > 100 
  )

FIGURE 3-1  Content of Sales table filtered by Unit_Price greater than 100.

DAX also offers you the EVALUATE statement, which you can use to evaluate table expressions:

EVALUATE 
FILTER (  
    Sales, 
    Sales[Unit Price] > 100 
)

You can execute the DAX query above in any client tool that executes DAX queries (Microsoft 
Excel, DAX Studio, SQL Server Management Studio, Reporting Services, and so on). In the following 
section, you will see a more detailed explanation of the EVALUATE syntax.

EVALUATE syntax

You can use DAX both as a programming language and as a query language.

A DAX query is a DAX expression that returns a table, used with the EVALUATE statement. The 
complete DAX query syntax is as follows:

[DEFINE { MEASURE <tableName>[<name>] = <expression> }] 
EVALUATE <table> 
[ORDER BY {<expression> [{ASC | DESC}]} [, …] 
    [START AT {<value>|<parameter>} [, …]] ]

The initial DEFINE MEASURE part can be useful to define measures that are local to the query (that 
is, they exist for the lifetime of the query). It becomes very useful when you are debugging  formulas, 
because you can define a local measure, test it, and then put it in the model once it behaves as 
 expected. You will see more examples of this syntax in Chapter 9.
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Most of the syntax is made of optional arguments. The simplest possible query retrieves all the 
columns and rows from an existing table:

EVALUATE Product

You can see the result in Figure 3-2.

FIGURE 3-2  Result of a query over Product table.

To control the sort order, you can use the ORDER BY clause:

EVALUATE Product 
ORDER BY  
    Product[Color], 
    Product[Brand] ASC, 
    Product[Class] DESC

Note Please note that the Sort By Column property defined in a model does not have 
an effect in a DAX query. Even if you might see sorted data by querying a single column 
 according to the Sort By Column property, you do not have to rely on this behavior, just 
as you cannot rely on a clustered index in an SQL query. A client that generates a dynamic 
DAX query should read the Sort By Column property in a model’s metadata and then 
 generate a corresponding ORDER BY condition. In both DAX and SQL, you must always use 
an explicit ORDER BY condition to get sorted data as a result.

The ASC and DESC keywords are optional; if they are not present, ASC is used by default. You can 
see in Figure 3-3 the result of the previous query, where data is sorted by Color, Brand, and Class.

FIGURE 3-3  Result of a query over Product table sorted by Color, Brand, and Class in descending order.

The START AT condition is also optional and can be used only in conjunction with an ORDER BY 
clause. You can specify the starting value for each column in the ORDER BY statement. The START AT 
condition is useful for pagination in stateless applications that fetch only a limited number of rows 
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from a query and then send another query when the user asks for the next page of data. For example, 
look at the following query:

EVALUATE Product 
ORDER BY  
    Product[Color], 
    Product[Brand] ASC, 
    Product[Class] DESC 
START AT  
    "Yellow", "Tailspin Toys" 

The query returns the table shown in Figure 3-4 which contains only the rows starting from Yellow, 
Tailspin Toys.

FIGURE 3-4  Result of a query over a sorted Product table skipping values until Yellow color and Tailspin Toys brand.

Please note that the notion of “starting from” depends from the order direction specified in the 
ORDER BY clause. If you specify DESC for Product[Brand] as in the following example, Wide World 
Importers is not included in the result, and other brands, such as Southridge Video and Northwind 
Traders, follow Tailspin Toys. You can see the result of the following query in Figure 3-5.

EVALUATE Product 
ORDER BY  
    Product[Color], 
    Product[Brand] DESC, 
    Product[Class] DESC 
START AT  
    "Yellow", "Tailspin Toys" 

FIGURE 3-5  Result of a query over a sorted Product table skipping values until Yellow color and Tailspin Toys 
brand, considering descending order for Brand.
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To filter rows and change the columns returned by a DAX query, you must manipulate the table 
expression after the EVALUATE keyword by using specific table functions. This chapter introduces 
some of the table expressions, whereas Chapter 9 describes additional ones.

Using table expressions

As you have seen at the beginning of this chapter, you often use table expressions as arguments of 
other DAX functions. A typical use is in functions that iterate a table, computing a DAX expression 
for each row. For example, this is the case of all the aggregation functions ending with an “X”, such as 
SUMX:

[Sales Amount] := 
SUMX (  
    Sales,  
    Sales[Quantity] * Sales[Unit Price]  
)

You can replace the simple Sales table reference with a table function. For example, you can 
 consider only sales with a quantity greater than one by using the FILTER function:

[Sales Amount Multiple Items] :=  
SUMX (  
    FILTER (  
        Sales, 
        Sales[Quantity] > 1 
    ), 
    Sales[Quantity] * Sales[Unit Price] 
)

In a calculated column, you can also use the RELATEDTABLE function to retrieve all the rows of a 
table that is on the many-side of a one-to-many relationship. For example, the following calculated 
column in the Product table computes the sales amount of the corresponding product:

Product[Product Sales Amount] =  
SUMX (  
    RELATEDTABLE ( Sales ), 
    Sales[Quantity] * Sales[Unit Price] 
)

You can find a detailed explanation of the RELATEDTABLE table function in Chapter 4, 
 “Understanding evaluation contexts,” within the section “Row context and relationships.”



 CHAPTER 3 Using basic table functions 51

You can nest table function calls within the same DAX expression, because any table expression 
can be a call to a table function. For example, the following calculated column in the Product table 
computes the product sales amount considering only sales with a quantity greater than one.

Product[Product Sales Amount Multiple Items] =  
SUMX (  
    FILTER (  
        RELATEDTABLE ( Sales ), 
        Sales[Quantity] > 1 
    ), 
    Sales[Quantity] * Sales[Unit Price] 
)

When you have nested calls of table functions, DAX evaluates the innermost function first, and 
then evaluates the others up to the outermost one. Do not confuse this rule with the order of the 
evaluation of arguments of a function call.

Note As you will see later, the execution order of nested calls can be a source of  confusion 
because CALCULATETABLE has a different order of evaluation than FILTER. In the next 
 section, you learn the FILTER behavior, and you will find the CALCULATETABLE description 
in Chapter 5, “Understanding CALCULATE and CALCULATETABLE.”

Understanding FILTER

The FILTER function has a simple role: It gets a table and returns a table that has the same columns as 
in the original table, but contains only the rows that satisfy a filter condition applied row by row.

The syntax of FILTER is the following:

FILTER ( <table>, <condition> ) 

FILTER iterates the <table> and, for each row, evaluates the <condition>, which is a Boolean 
 expression. When the <condition> evaluates to TRUE, FILTER returns the row; otherwise, it skips it.

Note From a logical point of view, FILTER executes the <condition> for each of the rows 
in <table>. However, internal optimizations in DAX might reduce the number of these 
 evaluations up to the number of unique values of column references included in the 
 <condition> expression. The actual number of evaluations of the <condition>  corresponds 
to the “granularity” of the FILTER operation. Such a granularity determines FILTER 
 performance, and it is an important element of DAX optimizations.
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For example, the following query filters products of Fabrikam brand, as you see in the result shown 
in Figure 3-6.

EVALUATE  
FILTER (  
    Product, 
    Product[Brand] = "Fabrikam"  
)

FIGURE 3-6  The query filters only products of Fabrikam brand.

You can nest FILTER calls in another FILTER function, because you can use any table expression 
as a filter argument. The first FILTER executed is the innermost one. In general, nesting two filters 
 produces the same result rather than a combination of logical conditions included in an AND function 
in the predicate. In other words, the following queries produce the same result:

FILTER ( <table>, AND ( <condition1>, < condition2> ) )  
FILTER ( FILTER ( <table>, < condition1> ), < condition2> ) ) 

However, you might observe a different performance if the <table> has many rows and the two 
predicates have different complexities. For example, consider the following query, which returns 
 Fabrikam products that have a Unit Price that is more than three times the Unit Cost, as shown in 
Figure 3-7.

EVALUATE  
FILTER (  
    Product, 
    AND (  
        Product[Brand] = "Fabrikam", 
        Product[Unit Price] > Product[Unit Cost] * 3 
    ) 
)
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FIGURE 3-7  The query filters only products of Fabrikam brand having a Unit Price more than three times than 
that of Unit Cost.

Such a query might apply both conditions to all the rows of the Product table. If you have one of 
the two conditions that is faster and more selective, you can apply it first by using a nested FILTER 
function. For example, the following query applies the filter over Unit Price and Unit Cost in the inner-
most FILTER function, and then filters by Brand only those products that satisfy the price condition.

EVALUATE  
FILTER (  
    FILTER (  
        Product, 
        Product[Unit Price] > Product[Unit Cost] * 3 
    ), 
    Product[Brand] = "Fabrikam" 
)

If you invert the conditions, you invert also their execution order. The following query applies the 
price condition only to products of Fabrikam brand:

EVALUATE 
FILTER (  
    FILTER (  
        Product, 
        Product[Brand] = "Fabrikam" 
    ), 
    Product[Unit Price] > Product[Unit Cost] * 3 
)

This knowledge will be useful when you optimize DAX expressions. You might choose the 
 execution order to apply the most selective filter first. However, do not start optimizing DAX without 
a clear understanding of evaluation contexts. You will find a more complete discussion about query 
optimizations in Chapter 16, “Optimizing DAX.” The goal of these examples was to make you aware of 
the order of execution of nested calls of table functions.
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Note Usually, the execution order of nested call functions is from the innermost to 
the outermost function. You will see that CALCULATE and CALCULATETABLE might be 
an  exception to this behavior, because of the particular order used to evaluate their 
 arguments. Because you might use FILTER and CALCULATETABLE in similar situations, be 
aware of this difference in case of nested calls.

Understanding ALL, ALLEXCEPT, and ALLNOBLANKROW

ALL is a useful function that returns all the rows of a table or all the values of a column, depending 
on the parameter you use. For example, the following DAX query returns all the rows in the Product 
table:

EVALUATE 
ALL ( Product )

You cannot specify a table expression in an ALL argument. You have to specify either a table name 
or a list of column names. If you use a single column, the result is a table that has only one column 
containing the list of its unique values, as you can see in Figure 3-8.

EVALUATE 
ALL ( Product[Class] )

FIGURE 3-8  The query over all values of a column returns a list of all unique values.

You can specify more columns from the same table in arguments of the ALL function. If you use 
many columns, the result will be a table with an equivalent number of columns, containing the list of 
the existing combination of values in those columns. For example, the following expression produces 
the result shown in Figure 3-9.

EVALUATE 
ALL ( Product[Class], Product[Color] ) 
ORDER BY Product[Color]
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FIGURE 3-9  The query over all values of more columns returns a list of only existing combinations of values. 

In all of its variations, ALL ignores any existing fi lter to produce its result. You can use ALL as an 
argument of an iteration function, such as SUMX and FILTER, or as a fi lter argument in a CALCULATE 
function (which you will see later). 

If you want to include most of the columns of a table in an ALL function call, you can use 
ALLEXCEPT instead. The syntax of ALLEXCEPT requires a table followed by the columns you want 
to exclude from the result. As a result, ALLEXCEPT returns a table with a unique list of existing 
 combination of values in the other columns of the table. 

In reality, ALLEXCEPT is a way to write a DAX expression that will automatically include in the ALL 
result any additional columns that could appear in the table in future versions. For example, if you 
have a Product table with fi ve columns (ProductKey, Product Name, Brand, Class, Color), the following 
syntaxes produce the same result: 

ALL ( Product[Product Name], Product[Brand], Product[Class] ) 
ALLEXCEPT ( Product, Product[ProductKey], Product[Color] ) 

However, if you later add two columns Product[Unit Cost] and Product[Unit Price], then the result of 
ALL will ignore them, whereas the previous ALLEXCEPT will return the equivalent of: 

 ALL ( 
    Product[Product Name], 
    Product[Brand], 
    Product[Class],
    Product[Unit Cost],

    Product[Unit Price] 

) 

 The following query returns a table that has all the columns other than ProductKey and Color 
from the Product table. The result in Figure 3-10 has the same number of rows of the original table, 

ALL ( Product[Product Name], Product[Brand], Product[Class] )
ALLEXCEPT ( Product, Product[ProductKey], Product[Color] )

ALL (
    Product[Product Name],
    Product[Brand],
    Product[Class],
    Product[Unit Cost],

    Product[Unit Price] 

)
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 because the result includes the Product_Name column, which has a unique value per row. Other 
comb inations of columns in the result might return a lower number of rows, because ALLEXCEPT 
removes duplicate combinations of values in the returned columns. 

EVALUATE ALLEXCEPT ( Product, Product[ProductKey], Product[Color] ) 

 
FIGURE 3-10  ALLEXCEPT returns existing combinations of values from all the columns not specifi ed in the 
 arguments. 

 In a previous example, you have seen ALL in an EVALUATE statement, which executes the DAX 
expression without any existing fi lter. For this reason, it is better to see an example using measures 
that count the rows returned by ALL in a pivot table, where each cell evaluates the measure using a 
different fi lter. Consider the following measures: 

 [Products] := COUNTROWS ( Product )
[All Products] := COUNTROWS ( ALL ( Product ) )
[All Brands] := COUNTROWS ( ALL ( Product[Brand] ) ) 

 You can see in Figure 3-11 an example of the different results for each measure. 

  
 FIGURE 3-11  All Products and All Brands measures ignore the class on rows and always show the same number. 

 For each product class, you always have the same number in All Products and All Brands  columns. 
The evaluation of the ALL statement ignores the fi lter defi ned by each cell of the pivot table. 

 When you call ALL on a parent table of a relationship, you retrieve an additional blank row if the 
child table contains one or more rows that do not match any values in the parent table. You can omit 
this special row from the result by using ALLNOBLANKROW instead of ALL. 

EVALUATE ALLEXCEPT ( Product, Product[ProductKey], Product[Color] )

[Products] := COUNTROWS ( Product )
[All Products] := COUNTROWS ( ALL ( Product ) )
[All Brands] := COUNTROWS ( ALL ( Product[Brand] ) )
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Consider the following measures: 

[All Products] := COUNTROWS ( ALL ( Product ) )
[All NoBlank Products] := COUNTROWS ( ALLNOBLANKROW ( Product ) )
[All Brands] := COUNTROWS ( ALL ( Product[Brand] ) )
[All NoBlank Brands] := COUNTROWS ( ALLNOBLANKROW ( Product[Brand] ) )
[All Sizes] := COUNTROWS ( ALL ( Product[Size] ) )
[All NoBlank Sizes] := COUNTROWS ( ALLNOBLANKROW ( Product[Size] ) ) 

In Figure 3-12 you can see the difference between ALL and ALLNOBLANKROW measures. The ALL 
versions of the measures return one more than the ALLNOBLANKROW version for the Product table 
and the Products[Brand] column. The reason is that there are rows in the Sales table that have no 
matching rows in the Product table, so an additional row is virtually added to the Product table and 
you can see the result of that in the (blank) row in Figure 3-12. 

 
FIGURE 3-12  The All and All NoBlank measures differ if the target table contains an additional blank row for 
unmatched values. 

 You should note that the All Sizes and All NoBlank Sizes measures always return the same value. 
Such measures query the number of values in the Products[Size] column. In this case ALL and ALLNO-
BLANKROW functions return the same value because the Products[Size] column already contains a 
blank value for a product. In the example in Figure 3-13, there are 569 products with a blank Size, plus 
an additional blank product that includes references to unmatched products in the Sales table, for a 
total of 570. All these rows are grouped within the same (blank) value for Products[Size]. 

  
 FIGURE 3-13  The pivot table rows have Product Name values for each Size. The fi rst (blank) value for Size 
includes both products with a blank size and the additional blank product for unmatched products in the Sales 
table. 

 You should use ALLNOBLANKROW only when you write a DAX formula that iterates  values 
 ignoring unmatched values in relationships. However, the use of ALL is common, whereas 
 ALLNOBLANKROW is seldom used. 

[All Products] := COUNTROWS ( ALL ( Product ) )
[All NoBlank Products] := COUNTROWS ( ALLNOBLANKROW ( Product ) )
[All Brands] := COUNTROWS ( ALL ( Product[Brand] ) )
[All NoBlank Brands] := COUNTROWS ( ALLNOBLANKROW ( Product[Brand] ) )
[All Sizes] := COUNTROWS ( ALL ( Product[Size] ) )
[All NoBlank Sizes] := COUNTROWS ( ALLNOBLANKROW ( Product[Size] ) )
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Understanding VALUES and DISTINCT

In the previous section, you have seen that ALL used with one column returns a table with all its 
unique values. DAX provides two other similar functions that return a list of unique values for a col-
umn: VALUES and DISTINCT. 

VALUES and DISTINCT seem identical to ALL if used in an EVALUATE statement without any other 
filter operation. However, when you put these functions in a DAX measure, you can observe a dif-
ferent behavior because the evaluation happens in a different context for every cell of a pivot table. 
Consider the following measures that count the number of unique values in columns Brand and Size 
of the Product table.

[Products] := COUNTROWS ( Product )  
[Values Brands] := COUNTROWS ( VALUES ( Product[Brand] ) )  
[Distinct Brands] := COUNTROWS ( DISTINCT ( Product[Brand] ) ) 
[Values Sizes] := COUNTROWS ( VALUES ( Product[Size] ) ) 
[Distinct Sizes] := COUNTROWS ( DISTINCT ( Product[Size] ) )

VALUES returns the list of unique values that are visible in the current cell, including the optional 
blank row for unmatched values. DISTINCT does the same, without returning the blank row for un-
matched values. However, both functions will include a blank row if a blank value appears as a valid 
value for the column. The only difference is that the blank row is added to handle missing values in a 
relationship.

An example might help in clarifying this difference. As you see in Figure 3-14, every product class 
filters a different number of products. For example, there are 360 products in Deluxe class, which has 
11 unique brands and 204 unique sizes. VALUES and DISTINCT return the same number with one 
exception: the (blank) product class on pivot table rows. The result includes this virtually added row in 
order to show the value of Sales Amount for unmatched products.

FIGURE 3-14  VALUES and DISTINCT differ only when a blank product is added to the model to include 
 unmatched rows, which is visible in the (blank) row of the report.

Another difference is visible in the Grand Total of Figure 3-14. VALUES applied to Product[Brand] 
returns one more value than DISTINCT applied to the same column. However, this does not happen 
to VALUES applied to Products[Size], which returns the same value as DISTINCT on the  corresponding 
column. The reason is that the Distinct Sizes column includes a blank value for at least one product, so 
the added blank product does not add a new unique value to the Distinct Sizes column.
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When there are no filters, the behavior of DISTINCT corresponds to ALLNOBLANKROW, whereas 
the behavior of VALUES corresponds to ALL.

VALUES also accepts a table as an argument. In that case, it returns the whole table that is visible in 
the current cell, optionally including the blank row for unmatched relationships. For example, consider 
the following measure in a data model where the Sales table has a relationship with Product and 
contains transactions with a product key that do not match any existing product.

[Products] := COUNTROWS ( Product )  
[Values Products] := COUNTROWS ( VALUES ( Product ) ) 
[All NoBlank Products] := COUNTROWS ( ALLNOBLANKROW ( Product ) ) 
[All Products] := COUNTROWS ( ALL ( Product ) )

You can see in Figure 3-15 that also in this case the result of VALUES when there are no filters cor-
responds to the behavior of ALL, including the blank row added to show Sales Amount for unmatched 
products. In this case, you cannot use DISTINCT over a table; in case there are duplicated rows, you 
do not have a single DAX function to remove duplicated rows (you have to use SUMMARIZE instead, 
which you will see later in Chapter 9). However, the [Products] measure counts the number of rows 
in a table, ignoring a possible blank row, with a behavior corresponding to ALLNOBLANKROW when 
there are no filters.

FIGURE 3-15  VALUES and ALL consider that added blank row in Product table for unmatched values in Sales.

Using VALUES as a scalar value
Even if VALUES is a table function, you will often use it to compute scalar values, because of a special 
feature in DAX you will learn in this section. For example, you can find VALUES in expressions such as 
the following one, which displays the color name in case all the products of a certain selection have 
the same color:

[Color Name] :=  
IF (  
    COUNTROWS ( VALUES ( Product[Color] ) ) = 1, 
    VALUES ( Product[Color] ) 
)

You can see the result in Figure 3-16. When the Color Name column contains blank, it means that 
there are two or more different colors.
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FIGURE 3-16  When VALUES returns a single row, you can use it as a scalar value, such as in Color Name measure.

The interesting point here is that we are using the result of VALUES as a scalar value, even if it 
returns a table. This is not a special behavior of VALUES, but it is a more general behavior of the DAX 
language:

If a table expression returns a table with one row and one column, a conversion to a scalar value is 
possible and done automatically if required.

In practice, you might use any table expression as a scalar value, if the result has exactly one row 
and one column. When the table returns more rows, you get this error at execution time: “A table of 
multiple values was supplied where a single value was expected.” For this reason, you should always 
protect the conversion to a scalar value with a condition that returns a different result in case the 
table expression returns more rows (you should already know whether a table expression returns only 
one row when you write the DAX expression).

The Color Name measure of the previous example used COUNTROWS to check whether the Color 
column of the Products table has only one value selected. A simpler way to do exactly the same 
 control is using HASONEVALUE, which performs the same check, returning TRUE if the column has 
only one value returned by VALUES, and FALSE otherwise. The following two syntaxes are equivalent:

COUNTROWS ( VALUES ( <column> ) ) = 1 
HASONEVALUE ( <column> )

You should use HASONEVALUE instead of COUNTROWS for two reasons: It is more readable, and 
it could be slightly faster. The following is a better implementation of the Color Name measure, based 
on HASONEVALUE: 

[Color Name] :=  
IF (  
    HASONEVALUE ( Product[Color] ), 
    VALUES ( Product[Color] ) 
)

The reason why you will often use VALUES as a scalar expression is that it returns a single column, 
and might return a single row, depending on the execution context. The use of VALUES as a scalar 
expression is common in many DAX patterns, and it appears repeatedly in this book. 
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C H A P T E R  4

Understanding evaluation contexts

At this point in the book, you have learned the basics of the DAX language. You know how to 
 create calculated columns and measures, and you have a good understanding of common 

functions used in DAX. This is the chapter where you move to the next level in this language: After 
learning a solid theoretical background of the DAX language, you will be able to become a real DAX 
champion.

With the knowledge you have gained so far, you can already create many interesting reports, 
but you will need to learn evaluation contexts in order to create reports that are more complex. 
 Evaluation contexts are the basis of all of the advanced features of DAX.

We want to give a few words of warning to our readers: The concept of evaluation context is 
an easy one, and you will learn and understand it soon. Nevertheless, you need to thoroughly 
 understand several subtle considerations and details. Otherwise, you will feel lost at a certain point 
during your DAX learning path. We teach DAX to many users in public and private classes. We know 
that this is absolutely normal. At a certain point—you have the feeling that formulas work like magic, 
because they work, but you do not understand why. Do not worry: you will be in good company. 
Most DAX students reach that point and many others will reach it in the future. It simply means that 
evaluation contexts are not clear enough to them. The solution, at that point, is an easy one: Come 
back to this chapter, read it again, and you will probably find something new, which you missed 
 during your first read.

Moreover, evaluation contexts play an important role with the usage of the function CALCULATE, 
which is probably the most powerful and hard-to-learn function in DAX. We will introduce CALCULATE 
in  Chapter 5, “Understanding CALCULATE and CALCULATETABLE,” and then use it through the rest 
of the book. Understanding CALCULATE without having a solid background on evaluation context is 
 problematic. On the other hand, understanding the importance of evaluation contexts without  having 
ever tried to use CALCULATE is nearly impossible. Thus, this chapter and the subsequent one are the two 
that, in our experience with the previous books we have written, are always marked up and have the 
 corners of pages folded over.



62 The Definitive Guide to DAX

Introduction to evaluation contexts

Let’s begin by understanding what an evaluation context is. Any DAX expression is evaluated  inside 
a context. The context is the “environment” under which the formula is evaluated. For example, 
 consider a very simple formula for a measure such as:

[Sales Amount] := SUMX ( Sales, Sales[Quantity] * Sales[UnitPrice] )

You already know what this formula computes: the sum of all the values of quantity multiplied by 
price in the Sales table. You can put this measure in a pivot table and look at the results, as you can 
see in Figure 4-1.

FIGURE 4-1 The measure Sales Amount, without a context, shows the grand total of sales.

Well, this number alone does not look interesting at all, does it? But, if you think carefully, the 
formula computes exactly what it is supposed to compute: the sum of all sales amount, which is a 
big number with no interesting meaning. This pivot table becomes more interesting as soon as we 
use some columns to slice the grand total and start investigating it. For example, you can take the 
 product color, put it on the rows, and the pivot table suddenly reveals some interesting business 
insights, as you can see in Figure 4-2.

The grand total is still there, but now it is the sum of smaller values and each value, together with 
all the others, has a meaning. However, if you think carefully again, you should note that something 
weird is happening here: the formula is not computing what we asked.

We supposed that the formula meant “the sum of all sales amount.” but inside each cell of the 
pivot table, the formula is not computing the sum of all sales, it is only computing the sum of sales of 
products with a specific color. Yet, we never specified that the computation had to work on a subset 
of the data model. In other words, the formula does not specify that it can work on subsets of data.

Why is the formula computing different values in different cells? The answer is very easy, indeed: 
because of the evaluation context under which DAX computes the formula. You can think of the 
evaluation context of a formula as the surrounding area of the cell where DAX evaluates the formula.
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FIGURE 4-2 Sum of Sales Amount, sliced by color, looks much more interesting.

Because the product color is on the rows, each row in the pivot table can see, out of the whole 
 database, only the subset of products of that specific color. This is the surrounding area of the 
 formula, that is, a set of filters applied to the database prior to the formula evaluation. When the 
 formula computes the sum of all sales amount, it does not compute it over the entire database, 
because it does not have the option to look at all the rows. When DAX computes the formula in the 
row with the value White, only white products are visible and, because of that, it only considers sales 
pertinent to white products. So the sum of all sales amount, when computed for a row in the pivot 
table that shows only white products, becomes the sum of all sales amount of white products.

Any DAX formula specifies a calculation, but DAX evaluates this calculation in a context, which 
defines the final value computed. The formula is always the same, but the value is different because 
DAX evaluates it against different subsets of data.

The only case where the formula behaves in the way it has been defined is on the grand total. At 
that level, because no filtering happens, the entire database is visible.

Note In these examples, we are using a pivot table for the sake of simplicity. Clearly, you 
can define an evaluation context with queries too, and you will learn more about it in 
 future chapters. For now, it is better to keep it simple and think of pivot tables only, so as 
to have a simplified and visual understanding of the concepts.

Now let’s put the year on the columns, to make the pivot table even more interesting. The report is 
now the one shown in Figure 4-3.
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FIGURE 4-3 Sum of SalesAmount is now sliced by color and year.

The rules of the game should be clear at this point: Each cell now has a different value even if the 
formula is always the same, because both row and column selections of the pivot table define the 
context. In fact, sales for white products in year 2008 are different from sales for white products in 
2007. Moreover, because you can put more than one field in both rows and columns, it is better to say 
that the set of fields on the rows and the set of fields on the columns define the context. Figure 4-4 
makes this more evident.

FIGURE 4-4 The context is defined by the set of fields on rows and on columns.
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Each cell has a different value because there are two fi elds on the rows, color and brand name. The 
complete set of fi elds on rows and columns defi nes the context. For example, the context of the cell 
highlighted in Figure 4-4 corresponds to color Black, brand Contoso, and Calendar Year 2007. 

Note It is not important whether a fi eld is on the rows or on the columns (or on the slicer 
and/or page fi lter, or in any other kind of fi lter you can create with a query). All of these 
 fi lters contribute to defi ne a single context, which DAX uses to evaluate the formula. 
Putting a fi eld on rows or columns has just some aesthetic consequences, but nothing 
changes in the way DAX computes values. 

 Let’s see the full picture now. In Figure 4-5, we added the product category on a slicer, and the 
month name on a fi lter, where we selected December. 

 
FIGURE 4-5 In a typical report, the context is defi ned in many ways, including slicers and fi lters. 

It is clear at this point that the values computed in each cell have a context defi ned by rows, col-
umns, slicers, and fi lters. All these fi lters contribute in the defi nition of a context that DAX applies to 
the data model prior to the formula evaluation. Moreover, it is important to learn that not all the cells 
have the same set of fi lters, not only in terms of values, but also in terms of fi elds. For example, the 
grand total on the columns contains only the fi lter for category, month, color, and brand, but it does 
not contain the fi lter for year. The fi elds for color and brand are on the rows and they do not fi lter the 
grand total. The same applies to the subtotal by color within the pivot table: for those cells there is no 
fi lter on the manufacturer, the only valid fi lter coming from the rows is the color. 

We call this context the Filter Context and, as its name suggests, it is a context that fi lters tables. 
Any formula you ever author will have a different value depending on the fi lter context that DAX uses 
to perform its evaluation. This behavior, although very intuitive, needs to be well understood.  

Now that you have learned what a fi lter context is, you know that the following DAX expression 
should be read as “the sum of all sales amount visible in the current fi lter context”: 

[Sales Amount] := SUMX ( Sales, Sales[Quantity] * Sales[UnitPrice] ) [Sales Amount] := SUMX ( Sales, Sales[Quantity] * Sales[UnitPrice] )
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You will learn later how to read, modify, and clear the filter context. As of now, it is enough having 
a solid understanding of the fact that the filter context is always present for any cell of the pivot table 
or any value in your report/query. You always need to take into account the filter context in order to 
understand how DAX evaluates a formula.

Understanding the row context
The filter context is one of the two contexts that exist in DAX. Its companion is the row context and, in 
this section, you will learn what it is and how it works.

This time, we use a different formula for our considerations:

Sales[GrossMargin] = Sales[SalesAmount] - Sales[TotalCost]

You are likely to write such an expression in a calculated column, in order to compute the gross 
margin. As soon as you define this formula in a calculated column, you will get the resulting table, as 
shown in Figure 4-6.

FIGURE 4-6 The GrossMargin is computed for all the rows of the table.

DAX computed the formula for all the rows of the table and, for each row, it computed a different 
value, as expected. In order to understand the row context, we need to be somewhat pedantic in our 
reading of the formula: we asked to subtract two columns, but where did we tell DAX from which row 
of the table to get the values of the columns? You might say that the row to use is implicit. Because it 
is a calculated column, DAX computes it row by row and, for each row, it evaluates a different result. 
This is correct, but, from the point of view of the DAX expression, the information about which row to 
use is still missing.

In fact, the row used to perform a calculation is not stored inside the formula. It is defined by 
 another kind of context: the row context. When you defined the calculated column, DAX started an  
iteration from the first row of the table; it created a row context containing that row and  evaluated 
the expression. Then it moved on to the second row and evaluated the expression again. This 
 happens for all the rows in the table and, if you have one million rows, you can think that DAX  created 
one million row contexts to evaluate the formula one million times. Clearly, in order to optimize 
calculations, this is not exactly what happens; otherwise, DAX would be a very slow language. Anyway, 
from the logical point of view, this is exactly how it works.
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Let us try to be more precise. A row context is a context that always contains a single row and DAX 
automatically defines it during the creation of calculated columns. You can create a row context using 
other techniques, which are discussed later in this chapter, but the easiest way to explain row context 
is to look at calculated columns, where the engine always creates it automatically.

There are always two contexts
So far, you have learned what the row context and the filter context are. They are the only kind 
of contexts in DAX. Thus, they are the only way to modify the result of a formula. Any formula 
will be evaluated under these two distinct contexts: the row context and the filter context.

We call both contexts “evaluation contexts,” because they are contexts that change the way 
a formula is evaluated, providing different results for the same formula.

This is one point that is very important and very hard to focus on at the beginning: there 
are always two contexts and the result of a formula depends on both. At this point of your DAX 
learning path, you probably think that this is obvious and very natural. You are probably right. 
However, later in the book, you will find formulas that will be a challenge to understand if you 
do not remember about the coexistence of the two contexts, each of which can change the 
result of the formula.

Testing your evaluation context understanding

Before we move on with more complex discussions about evaluation contexts, we would like to test 
your understanding of contexts with a couple of examples. Please do not look at the explanation 
 immediately; stop after the question and try to answer it. Then read the explanation to make sense 
out of it.

Using SUM in a calculated column
The first test is a very simple one. What is happening if you define a calculated column, in Sales, with 
this code?

Sales[SumOfSalesAmount] = SUM ( Sales[SalesAmount] )

Because it is a calculated column, it will be computed row by row and, for each row, you will obtain 
a result. What number do you expect to see? Choose one from among these options:

■■ The value of SalesAmount for that row, that is, a different value for each row.

■■ The total of SalesAmount for all the rows, that is, the same value for all the rows.

■■ An error; you cannot use SUM inside a calculated column.
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Stop reading, please, while we wait for your educated guess before moving on.

Now, let’s elaborate on what is happening when DAX evaluates the formula. You already learned 
what the formula meaning is: “the sum of all sales amount as seen in the current filter context.” As 
this is in a calculated column, DAX evaluates the formula row by row. Thus, it creates a row context 
for the first row, and then invokes the formula evaluation and proceeds iterating the entire table. The 
formula computes the sum of all sales amount values in the current filter context, so the real  question 
is “What is the current filter context?” Answer: It is the full database, because DAX evaluates the 
 formula  outside of any pivot table or any other kind of filtering. In fact, DAX computes it as part of 
the  definition of a calculated column, when no filter is active.

Even if there is a row context, SUM ignores it. Instead, it uses the filter context and the filter 
 context right now is the full database. Thus, the second option is correct: You will get the grand total 
of sales amount, the same value for all the rows of Sales, as you can see in Figure 4-7.

FIGURE 4-7 SUM ( Sales[SalesAmount] ), in a calculated column, is computed against the full database.

This example shows that the two contexts exist together. They both work on the result of a 
 formula, but in different ways. Aggregate functions like SUM, MIN, and MAX used in calculated 
 columns use the filter context only and ignore the row context, which DAX uses only to determine 
column values. If you have chosen the first answer, as many students typically do, it is perfectly 
 normal. The point is that you are not yet thinking that the two contexts are working together to 
change the formula result in different ways. The first answer is the most common, when using  
intuitive logic, but it is the wrong one, and now you know why.

Using columns in a measure
The second test we want to do with you is slightly different. Imagine you want to define the formula 
for gross margin in a measure instead of in a calculated column. You have a column with the sales 
amount, another column for the product cost, and you might write the following expression:
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[GrossMargin] := Sales[SalesAmount] - Sales[ProductCost]

What result should you expect if you try to author such a measure?

1. The expression works correctly, we will need to test the result in a report.

2. An error, you cannot even author this formula.

3. You can define the formula, but it will give an error when used in a pivot table or in a query.

As before, stop reading, think about the answer, and then read the following explanation.

In the formula, we used Sales[SalesAmount], which is a column name, that is, the value of 
 SalesAmount in the Sales table. Is this definition lacking something? You should recall, from previ-
ous arguments, that the information missing here is the row from where to get the current value of 
SalesAmount. When you write this code inside a calculated column, DAX knows the row to use when 
it computes the expression, thanks to the row context. However, what happens for a measure? There 
is no iteration, there is no current row, that is, there is no row context.

Thus, the second answer is correct. You cannot even write the formula; it is syntactically wrong and 
you will receive an error when you try to enter it.

Remember that a column does not have a value by itself. Instead, it has a different value for each 
row of a table. Thus, if you want a single value, you need to specify the row to use. The only way to 
specify the row to use is the row context. Because inside this measure there is no row context, the 
formula is incorrect and DAX will refuse it.

The correct way to specify this calculation in a measure is to use aggregate functions, as in:

[GrossMargin] := SUM ( Sales[SalesAmount] ) - SUM ( Sales[ProductCost] )

Using this formula, you are now asking for an aggregation through SUM. Therefore, this latter 
formula does not depend on a row context; it only requires a filter context and it provides the correct 
result.

Creating a row context with iterators

You learned that DAX automatically creates a row context when you define a calculated column. In 
that case, the engine evaluates the DAX expression on a row-by-row basis. Now, it is time to learn 
how to create a row context inside a DAX expression by using iterators.

You might recall from Chapter 2, “Introducing DAX,” that all the X-ending functions are  iterators, 
that is, they iterate over a table and evaluate an expression for each row, finally aggregating the 
 results using different algorithms. For example, look at the following DAX expression:
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[IncreasedSales] := SUMX ( Sales, Sales[SalesAmount] * 1.1 )

SUMX is an iterator, it iterates the Sales table and, for each row of the table, it evaluates the 
sales amount adding 10 percent to its value, finally returning the sum of all these values. In order 
to  evaluate the expression for each row, SUMX creates a row context on the Sales table and uses it 
during the iteration. DAX evaluates the inner expression (the second parameter of SUMX) in a row 
context containing the currently iterated row.

It is important to note that different parameters of SUMX use different contexts during the full 
evaluation flow. Let’s look closer at the same expression:

= SUMX ( 
    Sales,     External contexts 
    Sales[SalesAmount] * 1.1  External contexts + new Row Context 
)

The first parameter, Sales, is evaluated using the context coming from the caller (for example, it 
might be a pivot table cell, another measure, or part of a query), whereas the second parameter (the 
expression) is evaluated using both the external context plus the newly created row context.

All iterators behave in the same way:

1. Create a new row context for each row of the table received as the first parameter.

2. Evaluate the second parameter inside the newly created row context (plus any other context 
which existed before the iteration started), for each row of the table.

3. Aggregate the values computed during step 2.

It is important to remember that the original contexts are still valid inside the expression: Iterators 
only add a new row context; they do not modify existing ones in any way. This rule is usually valid, but 
there is an important exception: If the previous contexts already contained a row context for the same 
table, then the newly created row context hides the previously existing row context. We are going to 
discuss this in more detail in the next section.

Using the EARLIER function
The scenario of having many nested row contexts on the same table might seem very rare, but, in 
reality, it happens quite often. Let’s see the concept with an example. Imagine you want to count, for 
each product, the number of other products with a higher price. This will produce a sort of ranking of 
the product based on price. 

To solve this exercise, we use the FILTER function, which you learned in the previous chapter. As 
you might recall, FILTER is an iterator that loops through all the rows of a table and returns a new  
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table containing only the ones that satisfy the condition defined by the second parameter. For  
example, if you want to retrieve the table of products with a price higher than US$100, you can use:

= FILTER ( Product, Product[UnitPrice] > 100 )

Note The careful reader will have noted that FILTER needs to be an iterator because the 
expression Product[UnitPrice]>100 can be evaluated if and only if a valid row context  exists 
for Product; otherwise the effective value of Unit Price would be indeterminate. FILTER 
is an iterator function that creates a row context for each row of the table in the first 
 argument, which makes it possible to evaluate the condition in the second argument.

Now, let’s go back to our original example: creating a calculated column that counts the number 
of products that have a higher price than the current one. If you would name the price of the current 
product PriceOfCurrentProduct, then it is easy to see that this pseudo-DAX formula would do what 
is needed:

Product[UnitPriceRank] =  
COUNTROWS ( 
    FILTER ( 
        Product,  
        Product[UnitPrice] > PriceOfCurrentProduct 
    ) 
)

FILTER returns only the products with a price higher than the current one and COUNTROWS 
counts those products. The only remaining issue is a way to express the price of the current product, 
replacing PriceOfCurrentProduct with a valid DAX syntax. With “current,” we mean the value of the 
column in the current row when DAX computes the column. It is harder than you might expect.

You define this new calculated column inside the Product table. Thus, DAX evaluates the 
 expression inside a row context. However, the expression uses a FILTER that creates a new row context 
on the same table. In fact, Product[UnitPrice] used in the fifth row of the previous expression is the 
value of the unit price for the current row iterated by FILTER - our inner iteration. Therefore, this 
new row context hides the original row context introduced by the calculated column. Do you see 
the issue? You want to access the current value of the unit price but not use the last introduced row 
 context. Instead, you want to use the previous row context, that is, the one of the calculated column.

DAX provides a function that makes it possible: EARLIER. EARLIER retrieves the value of a 
 column by using the previous row context instead of the last one. So you can express the value of 
 PriceOfCurrentProduct using EARLIER(Product[UnitPrice]).

EARLIER is one of the strangest functions in DAX. Many users feel intimidated by EARLIER, because 
they do not think in terms of row contexts and they do not take into account the fact that you can 
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nest row contexts by creating multiple iterations over the same table. In reality, EARLIER is a very 
simple function that will be useful many times. The following code finally solves the scenario:

Product[UnitPriceRank] =  
COUNTROWS ( 
    FILTER ( 
        Product,  
        Product[UnitPrice] > EARLIER ( Product[UnitPrice] ) 
    ) 
) + 1

In Figure 4-8 you can see the calculated column defined in the Product table, which has been 
sorted using Unit Price in a descending order.

FIGURE 4-8 UnitPriceRank is a useful example of how EARLIER is useful to navigate in nested row contexts.

Because there are fourteen products with the same unit price, their rank is always one; the 
 fifteenth product has a rank of 15, shared with other products with the same price. We suggest you 
study and understand this small example closely, because it is a very good test to check your ability to 
use and understand row contexts, how to create them using iterators (FILTER, in this case), and how to 
access values outside of them through the usage of EARLIER.

Note EARLIER accepts a second parameter, which is the number of steps to skip, so that you 
can skip two or more row contexts. Moreover, there is also a function named EARLIEST that 
lets you access directly the outermost row context defined for a table. To be honest, neither 
the second parameter of EARLIER nor EARLIEST is used often: while having two nested row 
 contexts is a common scenario, having three or more of them is something that happens rarely.
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Before leaving this example, it is worth noting that, if you want to transform this value into a 
 better ranking (that is, a value that starts with 1 and grows of one, creating a sequence 1, 2, 3…) then 
 counting the prices instead of counting the products is sufficient. Here, the VALUES function, which 
you learned in the previous chapter, comes to help:

Product[UnitPriceRankDense] =  
COUNTROWS ( 
    FILTER ( 
        VALUES ( Product[UnitPrice] ),  
        Product[UnitPrice] > EARLIER ( Product[UnitPrice] ) 
    ) 
) + 1

In Figure 4-9 you can see the new calculated column.

 
FIGURE 4-9 UnitPriceRankDense shows a better ranking, because it counts the prices, not the products.

We strongly suggest you learn and understand EARLIER thoroughly, because you will use it very 
often. Nevertheless, it is important to note that variables can be used—in many scenarios—to avoid 
the use of EARLIER. Moreover, a careful use of variables makes the code much easier to read. For 
example, you can compute the previous calculated column using this expression:

Product[UnitPriceRankDense] =  
VAR 
    CurrentPrice = Product[UnitPrice] 
RETURN 
    COUNTROWS ( 
        FILTER ( 
            VALUES ( Product[UnitPrice] ),  
            Product[UnitPrice] > CurrentPrice 
        ) 
    ) + 1
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In this final example, using a variable, you store the current unit price in the CurrentPrice  variable, 
which you use later to perform the comparison. Giving a name to the variable, you make the 
code easier to read, without having to traverse the stack of row contexts every time you read the 
 expression to make sense of the evaluation flow.

Understanding FILTER, ALL, and context interactions

In the preceding example, we have used FILTER as a convenient way of filtering a table. FILTER is a very 
common function to use, whenever you want to apply a filter that further restricts the existing context.

Imagine that you want to create a measure that counts the number of red products. With the 
knowledge you gained so far, the formula is an easy one:

[NumOfRedProducts] :=  
COUNTROWS ( 
    FILTER ( 
        Product, 
        Product[Color] = "Red" 
    ) 
)

This formula works fine and you can use it inside a pivot table; for example, putting the brand on 
the rows to produce the report shown in Figure 4-10.

FIGURE 4-10 You can easily count the number of red products using the FILTER function.

Before moving on with this example, it is useful to stop for a moment and think carefully how 
DAX computed these values. The brand is a column of the Product table. The engine evaluates 
 NumOfRedProducts inside each cell, in a context defined by the brand on the rows. Thus, each cell 
shows the number of red products that also have the brand indicated by the corresponding row. 
This happens because, when you ask to iterate over the Product table, you are really asking to iterate 
the Product table as it is visible in the current filter context, which contains only products with that 
specific brand. It might seem trivial, but it is better to remember it multiple times than take a chance 
of forgetting it.
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This is more evident if you put a slicer on the worksheet containing the color. In Figure 4-11 we 
have created two identical pivot tables with the slicer on color. You can see that the left one has the 
color Red selected, and the numbers are the same as in Figure 4-10, whereas in the right one the 
pivot table is empty because the slicer has the color Green selected.

FIGURE 4-11 DAX evaluates NumOfRedProducts taking into account the outer context defined by the slicer.

In the right pivot table, the Product table passed into FILTER contains only Green products and, 
because there are no products that can be red and green at the same time, it always evaluates to 
BLANK (that is, FILTER does not return any row that COUNTROWS can work on).

The important part of this example is the fact that, in the same formula, there are both a filter 
context coming from the outside (the pivot table cell, which is affected by the slicer selection) and a 
row context introduced in the formula. Both contexts work at the same time and modify the formula 
result. DAX uses the filter context to evaluate the Product table, and the row context to filter rows 
during the iteration.

At this point, you might want to define another formula that returns the number of red products 
regardless of the selection done on the slicer. Thus, you want to ignore the selection made on the 
slicer and always return the number of the red products.

You can easily do this by using the ALL function. ALL returns the content of a table ignoring the 
filter context, that is, it always returns all the rows of a table. You can define a new measure, named 
NumOfAllRedProducts, by using this expression:

[NumOfAllRedProducts] :=  
COUNTROWS ( 
    FILTER ( 
        ALL ( Product ), 

        Product[Color] = "Red" 
    ) 
)

This time, instead of referring to Product only, we use ALL ( Product ), meaning that we want to 
ignore the existing filter context and always iterate over all products. The result is definitely not what 
we would expect, as you can see in Figure 4-12.
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FIGURE 4-12 The NumOfAllRedProducts returns strange results.

There are a couple of interesting things to note in here:

■■ The result is always 99, regardless of the brand selected on the rows.

■■ The brands in the left pivot table are different from the ones in the right one.

Let us investigate both topics. First, 99 is the total number of red products in the database.  Having 
used ALL, we have removed all the filters from the Product table, that is, we have removed both the 
filter on color and the filter on brand. This is an unwanted effect but, unfortunately, we do not have 
any other option with the limited knowledge we have of DAX as of now. ALL is very powerful, but 
it is an all-or-nothing function: if used, it removes all of the filters; it has no options to remove only 
part of them. To be more specific, we wanted to remove only the filter on color, leaving all other 
filters untouched. In the next chapter, you will learn how to solve this issue with the introduction of 
 CALCULATE.

The second point is easier to understand: Because we have selected Green, we are seeing the 
manufacturers of green products, not the manufacturers of all the products. Thus, the rightmost 
pivot table shows green product manufacturers with the total of red products in the database. This 
happens because the list of manufacturers, used to populate the axis of the pivot table, is computed 
in the original filter context, which contains a filter on color equal to green. Once the axes have been 
computed, then the values are computed, always returning 99 as a result.

Note This behavior of DAX is called “AutoExists logic.” It looks very natural, because it 
hides nonexisting values, despite some internal complexity. In Chapter 10, “Advanced 
 evaluation context,” we will dedicate a section to describe the AutoExists behavior in full 
detail.

We do not want to solve this scenario right now. The solution will come later when you learn 
CALCULATE, which has specific features to solve scenarios like this one. As of now, we have used this 
example to show that you might find strange results coming from relatively simple formulas because 
of context interactions and the coexistence, in the same expression, of filter and row contexts.
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Working with many tables

We just started learning contexts, and this led us to some interesting (and surprising) results up to 
now. You might have noticed that we deliberately used only one table: Product. With only one table, 
you need to face only interactions between row context and filter context in the same expression.

Very few data models contain just one single table. It is most likely that in your data model you  
will have many tables linked by relationships. Thus, an interesting question is “How do the two 
 contexts behave regarding relationships?” Moreover, because relationships have a direction, we need 
to  understand what happens on the one and on the many side of a relationship. Finally, to make 
things a bit harder, please recall that relationships can be unidirectional or bidirectional, depending 
on how you defined the cross-filter direction on relationship itself.

If you create a row context on a table on the many side of the relationship, do you expect it to 
let you use columns of the one side? Moreover, if you create a row context on the one side of the 
 relationship, do you expect to be able to access columns from the table on the many side? In addition, 
what about the filter context? Do you expect to put a filter on the many table and see it propagated 
to the table on the one side? Any answer could be the correct one, but we are interested in learning 
how DAX behaves in these situations, that is, understand how the DAX language defines propaga-
tion of contexts through relationships. As you are going to learn, there are some subtle interactions 
between contexts and relationships and learning them requires some patience.

In order to examine the scenario, we use a data model containing six tables, which you can see in 
Figure 4-13.

 
FIGURE 4-13 Here you can see the data model used to learn interaction between contexts and relationships.
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There are a couple of things to note about this model:

■■ There is a chain of one-to-many relationships starting from Sales and reaching Product 
 Category, through Product and Product Subcategory.

■■ The only bidirectional relationship is the one between Sales and Product. All  remaining rela-
tionships are set to be one-way cross-filter direction.

Now that we have defined the model, let’s start looking at how the contexts behave by looking at 
some DAX formulas.

Row contexts and relationships
The interaction of row contexts and relationships is very easy to understand, because there is nothing 
to understand: they do not interact in any way, at least not automatically.

Imagine you want to create a calculated column in the Sales table containing the difference 
 between the unit price stored in the fact table and the product list price stored in the Product table. 
You could try this formula:

Sales[UnitPriceVariance] = Sales[UnitPrice] - Product[UnitPrice]

This expression uses two columns from two different tables and DAX evaluates it in a row context 
that iterates over Sales only, because you defined the calculated column within that table (Sales). 
Product is on the one side of a relationship with Sales (which is on the many side), so you might 
expect to be able to gain access to the unit price of the related row (the product sold). Unfortunately, 
this does not happen. The row context in Sales does not propagate automatically to Product and DAX 
returns an error if you try to create a calculated column by using the previous formula.

If you want to access columns on the one side of a relationship from the table on the many side of 
the relationship, as is the case in this example, you must use the RELATED function. RELATED accepts 
a column name as the parameter and retrieves the value of the column in a corresponding row that is 
found by following one or more relationships in the many-to-one direction, starting from the current 
row context.

You can correct the previous formula with the following code:

Sales[UnitPriceVariance] = Sales[UnitPrice] - RELATED ( Product[UnitPrice] )

RELATED works when you have a row context on the table on the many side of a relationship. 
If the row context is active on the one side of a relationship, then you cannot use it because many 
rows would potentially be detected by following the relationship. In this case, you need to use 
 RELATEDTABLE, which is the companion of RELATED. You can use RELATEDTABLE on the one side of 
the relationship and it returns all the rows (of the table on the many side) that are related with the 
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current one. For example, if you want to compute the number of sales of each product, you can use 
the following formula, defined as a calculated column on Product:

Product[NumberOfSales] = COUNTROWS ( RELATEDTABLE ( Sales ) )

This expression counts the number of rows in the Sales table that correspond to the current 
 product. You can see the result in Figure 4-14.

FIGURE 4-14 RELATEDTABLE is very useful when you have a row context on the one side of the relationship.

It is worth noting that both, RELATED and RELATEDTABLE, can traverse a long chain of relation-
ships to gather their result; they are not limited to a single hop. For example, you can create a column 
with the same code as before but, this time, in the Product Category table:

'Product Category'[NumberOfSales] = COUNTROWS ( RELATEDTABLE ( Sales ) )

The result is the number of sales for the category, which traverses the chain of relationships from 
Product Category to Product Subcategory, then to Product to finally reach the Sales table.

Note The only exception to the general rule of RELATED and RELATEDTABLE is for one-
to-one relationships. If two tables share a 1:1 relationship, then you can use both RELATED 
and RELATEDTABLE in both tables and you will get as a result either a column value or a 
table with a single row, depending on the function you have used.

The only limitation—with regards to chains of relationships—is that all the relationships need to be 
of the same type (that is, one-to-many or many-to-one), and all of them going in the same direction. 
If you have two tables related through one-to-many and then many-to-one, with an intermediate 
bridge table in the middle, then neither RELATED nor RELATEDTABLE will work. A 1:1 relationship be-
haves at the same time as a one-to-many and as a many-to-one. Thus, you can have a 1:1 relationship 
in a chain of one-to-many without interrupting the chain.
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Let’s make this concept clearer with an example. You might think that Customer is related with 
Product because there is a one-to-many relationship between Customer and Sales, and then a many-
to-one relationship between Sales and Product. Thus, a chain of relationships links the two tables. 
Nevertheless, the two relationships are not in the same direction.

We call this scenario a many-to-many relationship. In other words, a customer is related to many 
products (the ones bought) and a product is related to many customers (the ones who bought the 
product). You will learn the details of how to make many-to-many relationships work later; let’s focus 
on row context, for the moment. If you try to apply RELATEDTABLE through a many-to-many relation-
ship, the result could be not what you might expect. For example, consider a calculated column in 
Product with this formula:

Product[NumOfBuyingCustomers] = COUNTROWS ( RELATEDTABLE ( Customer ) )

You might expect to see, for each row, the number of customers who bought that product. 
 Unexpectedly, the result will always be 18869, that is, the total number of customers in the database, 
as you can see in Figure 4-15.

 
FIGURE 4-15 RELATEDTABLE does not work if you try to traverse a many-to-many relationship.

RELATEDTABLE cannot follow the chain of relationships because they are not in the same  direction: 
one is one-to-many, the other one is many-to-one. Thus, the filter from Product cannot reach 
 Customers. It is worth noting that if you try the formula in the opposite direction, that is, you count, 
for each of the customers, the number of bought products, the result will be correct: a  different 
number for each row representing the number of products bought by the customer. The reason for 
this behavior is not the propagation of a filter context but, rather, the context  transition created by a 
hidden CALCULATE inside RELATEDTABLE. We added this final note for the sake of completeness. It is 
not yet time to elaborate on this: You will have a better understanding of this after reading Chapter 5, 
“Understanding CALCULATE and CALCULATETABLE.”

Filter context and relationships
You have learned that row context does not interact with relationships and that, if you want to 
 traverse relationships, you have two different functions to use, depending on which side of the 
 relationship you are on while accessing the target table.
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Filter contexts behave in a different way: They interact with relationships in an automatic way and 
they have different behaviors depending on how you set the filtering of the relationship. The general 
rule is that the filter context propagates through a relationship if the filtering direction set on the 
relationship itself makes propagation feasible.

This behavior is very easy to understand by using a simple pivot table with a few measures. In 
Figure 4-16 you can see a pivot table browsing the data model we have used so far, with three very 
simple measures defined as follows:

[NumOfSales]  := COUNTROWS ( Sales ) 
[NumOfProducts] := COUNTROWS ( Product ) 
[NumOfCustomers] := COUNTROWS ( Customer )

 
FIGURE 4-16 Here you can see the behavior of filter context and relationships.

The filter is on the product color. Product is the source of a one-to-many relationship with Sales, 
so the filter context propagates from Product to Sales, and you can see this because the  NumOfSales 
measure counts only the sales of products with the specific color. NumOfProducts shows the  number 
of products of each color, and a different value for each row (color) is what you would expect, 
 because the filter is on the same table where we are counting.

On the other hand, NumOfCustomers, which counts the number of customers, always shows the 
same value, that is, the total number of customers. This is because the relationship between Customer 
and Sales, as you can see Figure 4-17, has an arrow in the direction of Sales. 
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FIGURE 4-17 The relationship between Customer and Sales is a one-way relationship.

The filter started from Product, then propagated to Sales (following the arrow from Product to 
Sales, which is enabled) but then, when it tried to propagate to Customer, it did not find the arrow 
letting it continue. Thus, it stopped. One-way relationships permit propagation of the filter context in 
a single direction, not in both.

You can think that the arrows on the relationships are like semaphores. If they are enabled, then 
the semaphore light is green and the propagation happens. If, on the other hand, the arrow is not 
enabled, then the semaphore light is red and the filter cannot be propagated.

The arrow is always enabled from the one side to the many side of any relationship. You have the 
option of enabling it from the many side to the one side as well. If you let the arrow disable, then the 
propagation will not happen from the many to the one side.

You can better appreciate the behavior if you look at the pivot table shown in Figure 4-18. Instead 
of using the product color on the rows, this time we slice by customer education.

 
FIGURE 4-18 Filtering by customer education, the Product table is filtered too.

This time the filter starts from Customer. It can reach the Sales table, because the arrow is enabled 
in the corresponding relationship. Then, from Sales, it can further propagate to Product because the 
relationship between Sales and Product is bidirectional.
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Now you add to the model a similar measure that counts the number of subcategories, such as the 
following one:

NumOfSubcategories := COUNTROWS ( 'Product Subcategory' )

Adding it to the report, you will see that the number of subcategories is not filtered by the 
 customer education, as shown in Figure 4-19.

 
FIGURE 4-19 If the relationship is unidirectional, customers cannot filter subcategories.

This is because the relationship between Product and Product Subcategory is unidirectional, that is it 
lets the filter propagate in a single direction. As soon as you enable the arrow starting from Product and 
going to Product Subcategory, you will see that the filter propagates, as you can see in Figure 4-20.

FIGURE 4-20 If the relationship is bidirectional, customers can filter subcategories too.

As it happened with the row context, it is not important how many steps you need to traverse to 
reach a table: as long as there is a chain of enabled relationships, automatic propagation happens. For 
example, if you put a filter on Product Category, the filter propagates to Product Subcategory, then to 
Product, and finally to Sales.

It is important to note that there are no functions available to access columns or values from tables 
following the chain of filter contexts, because propagation of the filter context in a DAX expression 
happens automatically, whereas propagation of row contexts does not and it is required to specify 
the propagation using RELATED and RELATEDTABLE.
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Introducing VALUES
The previous example is very interesting, because it shows how to compute the number of  customers 
who bought a product by using the direction of filtering. Nevertheless, if you are interested only 
in counting the number of customers, then there is an interesting alternative that we take as an 
 opportunity to introduce as another powerful function: VALUES.

VALUES is a table function that returns a table of one column only, containing all the values of a 
column currently visible in the filter context. There are many advanced uses of VALUES, which we will 
introduce later. As of now, it is helpful to start using VALUES just to be acquainted with its behavior.

In the previous pivot table, you can modify the definition of NumOfCustomers with the following 
DAX expression:

[NumOfCustomers] := COUNTROWS ( VALUES ( Sales[CustomerKey] ) )

This expression does not count the number of customers in the Customer table. Instead, it counts 
the number of values visible in the current filter context for the CustomerKey column in Sales. Thus, 
the expression does not depend on the relationship between Sales and Customers; it uses only the 
Sales table.

When you put a filter on Products, it also always filters Sales, because of the propagation of the 
filter from Product to Sales. Therefore, not all the values of CustomerKey will be visible, but only the 
ones present in rows corresponding to sales of the filtered products.

The meaning of the expression is “count the number of customer keys for the sales related to the 
selected products.” Because a customer key represents a customer, the expression effectively counts 
the number of customers who bought those products.

Note You can achieve the same result using DISTINCTCOUNT, which counts the  number 
of distinct values of a column. As a general rule, it is better to use DISTINCTCOUNT than 
COUNTROWS of VALUES. We used COUNTROWS and VALUES, here, for educational 
 purposes, because VALUES is a useful function to learn even if its most common usages will 
be clear in later chapters.

Using VALUES instead of capitalizing on the direction of relationships comes with both advantages 
and disadvantages. Certainly setting the filtering in the model is much more flexible, because it uses 
relationships. Thus, you can count not only the customers using the CustomerKey, but also any other 
attribute of a customer (number of customer categories, for example). With that said, there might be 
reasons that force you to use one-way filtering or you might need to use VALUES for performance 
reasons. We will discuss these topics in much more detail in Chapter 12, “Advanced relationship 
 handling.”
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Introducing ISFILTERED, ISCROSSFILTERED 
Two functions are very useful and might help you gain a better understanding of the propagation 
of fi lter contexts. Moreover, learning them is a good way to introduce one of the most interesting 
concepts of pivot table computation, that is, detection of the cell for which you are computing a value 
from inside DAX. 

These two functions aim to let you detect whether all the values of a column are visible in the 
 current fi lter context or not; they are:  

 ■ ISFILTERED: returns TRUE or FALSE, depending on whether the column passed as an argument 
has a direct fi lter on it, that is, it has been put on rows, columns, on a slicer or fi lter and the 
 fi ltering is happening for the current cell. 

 ■ ISCROSSFILTERED returns TRUE or FALSE depending on whether the column has a fi lter be-
cause of automatic propagation of another fi lter and not because of a direct fi lter on it. 

In this section, we are interested in using the functions to understand the propagation of fi lter 
contexts. Thus, we are going to create dummy expressions, which are only useful as learning tools. 

If you create a new measure with this defi nition: 

[CategoryFilter] := ISFILTERED ( 'Product Category'[Category] ) 

This simple measure returns the value of the ISFILTERED function applied to the product category 
name. You can then create a second measure that makes the same test with the product color. So the 
code will be: 

[ColorFilter] := ISFILTERED ( Product[Color] ) 

If you add both measures to a pivot table, placing the categories in a slicer and the colors on the 
rows, the result will be similar to Figure 4-21. 

 The interesting part is that the category is never fi ltered because, even if we added a slicer, we did 
not make a selection on it. The color, on the other hand, is always fi ltered on rows, because each row 
has a specifi c color, but not in the grand total, because the fi lter context there does not include any 
selection of products. 

 Note This behavior of the grand total, that is, no fi lter is applied from the ones  coming 
from rows and columns, is very useful whenever you want to modify the behavior of a 
formula so that, at the grand total level, it shows a different value. In fact, you will check 
ISFILTERED for an attribute present in the pivot table report in order to understand 
 whether the cell you are evaluating is in the inner part of the pivot table or if it is at the 
grand total level. 

[CategoryFilter] := ISFILTERED ( 'Product Category'[Category] )

[ColorFilter] := ISFILTERED ( Product[Color] )
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FIGURE 4-21 You can see that Category is never filtered and Color is filtered everywhere but on the grand total.

If you now select some values from the Category slicer, the result changes. Now the category 
always has a filter, as you can see in Figure 4-22. In fact, the filter context introduced by the slicer is 
effective even at the grand total level of the pivot table.

 
FIGURE 4-22 The filter introduced by the slicer works at the grand total level too.

ISFILTERED is useful to detect when a direct filter is working on a column. There are situations 
where a column does not show all of its values, not because you are filtering the column, but because 
you placed a filter on another column. For example, if you filter the color and ask for the VALUES of 
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the product brand, you will get as a result only the brands of products of that specific color. When a 
column is filtered because of a filter on another column, we say that the column is cross-filtered and 
the ISCROSSFILTERED function detects this scenario.

If you add these two new measures to the data model that check, this time, the ISCROSSFILTERED 
of color and category:

[CrossCategory] := ISCROSSFILTERED ( 'Product Category'[Category] ) 
[CrossColor] := ISCROSSFILTERED ( Product[Color] )

Then you will see the result shown in Figure 4-23.

FIGURE 4-23 Cross-filtering is visible using the ISCROSSFILTERED function.

You can see that color is cross-filtered and category is not. An interesting question, at this point, 
is “Why is the category not filtered?” When you filter a color, you might expect to see only the 
 categories of product of that specific color. To answer the question you need to remember that the 
category is not a column of the Product table. Instead, it is part of Product Category and the arrows 
on the relationship do not let the relationship propagate. If you change the data model, enabling 
bidirectional filtering on the full chain of relationships from Product to Product Category, then the 
result will be different, as is visible in Figure 4-24.
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FIGURE 4-24 Enabling two-way filtering shows that now the category is cross-filtered, even if not filtered directly.

In this section, you have seen some examples of ISFILTERED and ISCROSSFILTERED, mainly for 
 educational purposes, because you used them only to get a better understanding of how a filter 
 context propagates through relationships. In following chapters, by writing advanced DAX code, you 
will learn why these two functions are so useful.

Evaluation contexts recap

Let’s recap all what we have learned about evaluation contexts.

■■ Evaluation context is the context that modifies the value of a DAX expression by filtering the 
data model and providing the concept of current row, when needed to access a column value.

■■ The evaluation context consists of two parts: the row context and the filter context. They  
co-exist and they are present for all the formulas. In order to understand a formula’s behavior, 
you always need to take into account both contexts, because they operate at the same time.

■■ DAX creates a row context automatically when you define a calculated column. You can also 
create a row context programmatically by using iterator functions. All iterators define a row 
context.

■■ You can nest row contexts and, in such a case, the EARLIER function is useful to get access to 
the previous row context.

■■ DAX creates a filter context when you use a pivot table by using fields on rows, columns, slic-
ers, and filters. There is a way to programmatically create filter contexts by using CALCULATE, 
but we still have not learned it yet. We hope that at this point you should be very curious to 
learn more about it!
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■■ Row context does not propagate through relationships automatically. Propagation happens 
manually by using RELATED and RELATEDTABLE. You need to use these functions on the 
 correct side of a one-to-many relationship: RELATED on the many side, RELATEDTABLE on the 
one side.

■■ Filter context automatically propagates following the filtering of the relationship. It always 
propagates from the one side of the relationship to the many side. In addition, you also have 
the option of enabling the propagation from the many side to the one side. No functions are 
available to force the propagation: Everything happens inside the engine in an  automatic way, 
according to the definition of relationships in the data model.

■■ VALUES returns a table containing a one-column table with all the unique values of the 
 column that are visible in the current filter context. You can use the resulting table as a 
 parameter to any iterator.

At this point, you have learned the most complex conceptual topics of the DAX language. These 
points rule all the evaluation flows of your formulas and they are the pillars of the DAX language. 
Whenever you encounter an expression that does not compute what you want, there’s a huge chance 
that was because you have not fully understood these rules.

As we said in the introduction, at a first reading all these topics look very simple. In fact, they are. 
What makes them complex is the fact that in a complex expression you might have several evalua-
tion contexts active in different parts of the formula. Mastering evaluation context is a skill that you 
will gain with experience, and we will try to help you on this by showing many examples in the next 
chapters. After some DAX formulas on your own, you will intuitively know which contexts are used 
and which functions they require and you will finally master the DAX language.

Creating a parameter table

In this chapter, you learned many theoretical concepts about evaluation contexts. It is now time to 
use some of them to solve an interesting scenario and learn a very useful technique, that is, the use of 
parameter tables.

The idea of a parameter table is to create a table that is unrelated to the rest of the data model, 
but you will use it internally in DAX expressions to modify their behavior. An example might help to 
clarify this. Imagine you have created a report that shows the sum of sales amount and, because your 
company sells many goods, the numbers shown in the report are very large. Because our sample 
 database does not suffer from this problem, instead of using the SalesAmount column, we have 
 created a measure that sums the SalesAmount cubed, so that numbers are bigger and the described 
scenario is more realistic. In Figure 4-25 you can see this report.
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FIGURE 4-25 Reading reports with big numbers is sometimes difficult.

The issue with this report is that the numbers are large and they tend to be hard to read. Are they 
millions, billions, trillions? Moreover, they use a lot of space in the report, without carrying much 
information. A common request, for this kind of report, is to show the numbers using a different 
scale. For example, you might want to show the values divided by a thousand or a million, so that they 
result in smaller numbers, still carrying the useful information.

You can easily solve this scenario by modifying the measure and dividing it by a thousand. The 
only problem is that, depending on the relative scale of numbers, you might want to see them as 
real values (if they are small enough), divided by thousands or divided by millions. Creating three 
 measures seems cumbersome at this point and we want to find a better solution that removes the 
need of creating many different measures.

The idea is to let the user decide which scale to apply in the report when using a slicer. In  
Figure 4-26 you can see an example of the report we want to build.

FIGURE 4-26 The slicer does not filter values here. It is used to change the way numbers are shown.



 CHAPTER 4 Understanding evaluation contexts 91

The interesting idea of the report is that you do not use the ShowValueAs slicer to fi lter data. 
 Instead, you will use it to change the scale used by the numbers. When the user selects Real Value, 
the actual numbers will be shown. If Thousands is selected, then the actual numbers are divided by 
one thousand and are shown in the same measure without having to change the layout of the pivot 
table. The same applies to Millions and Billions. 

 To create this report, the fi rst thing that you need is a table containing the values you want to 
show on the slicer. In our example, made with Excel, we use an Excel table to store the scales. In a 
more professional solution, it would be better to store the table in an SQL database. In Figure 4-27 
you can see the content of such a table. 

  
 FIGURE 4-27 This Excel table will be the source for the slicer in the report. 

 Obviously, you cannot create any relationship with this table, because Sales does not contain any 
column that you can use to relate to this table. Nevertheless, once the table is in the data model, you 
can use the ShowValueAs column as the source for a slicer. Yes, you end up with a slicer that does 
nothing, but some DAX code will perform the magic of reading user selections and further modifying 
the content of the report. 

 The DAX expression that you need to use for the measure is the following: 

[ScaledSalesAmount] :=
IF (
    HASONEVALUE ( Scale[DivideBy] ), 
    DIVIDE ( [Sales Amount], VALUES ( Scale[DivideBy] ) ),
    [Sales Amount] 
) 

There are two interesting things to note in this formula: 

 ■  The condition tested by the IF function is: HASONEVALUE ( Scale[ShowValueAs] ). This pattern 
is very common: you check whether the column of the Scale table has only one value visible. 
If the user did not select anything in the slicer, then all of the values of the column are visible 
in the current fi lter context; that is, HASONEVALUE will return FALSE (because the column has 
many different values). If, on the other hand, the user selected a single value, then only that 
one is visible and HASONEVALUE will return TRUE. Thus, the condition reads as: “if the user has 
selected a single value for ShowValueAs attribute.” 

[ScaledSalesAmount] :=
IF (
    HASONEVALUE ( Scale[DivideBy] ),
    DIVIDE ( [Sales Amount], VALUES ( Scale[DivideBy] ) ),
    [Sales Amount]
)
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■■ If a single value is selected, then you know that a single row is visible. Thus, you can compute 
VALUES ( Scale[DivideBy] ) and you are sure that the resulting table contains only one column 
and one row (the one visible in the filter context). DAX will convert the one-row-one-column 
table returned by VALUES in a scalar value. If you try to use VALUES to read a single value 
when the result is a table with multiple rows, you will get an error. However, in this specific 
 scenario, you are sure that the value returned will be only one, because of the previous 
 condition tested by the IF function.

Therefore, you can read the expression as: “If the user has selected a single value in the slicer, then 
show the sales amount divided by the corresponding denominator, otherwise show the original sales 
amount.” The result is a report that changes the values shown interactively, using the slicer as if it was 
a button. Clearly, because the report uses only standard DAX formulas, it will work when deployed to 
SharePoint or Power BI, too.

Parameter tables are very useful in building reports. We have shown a very simple (yet very 
 common) example, but the only limit is your imagination. You can create parameter tables to modify 
the way a number is computed, to change parameters for a specific algorithm, or to perform other 
complex operations that change the value returned by your DAX code.
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C H A P T E R  5

Understanding CALCULATE and 
CALCULATETABLE

In this chapter we continue our journey in discovering the power of the DAX language with a detailed 
explanation of a single function: CALCULATE. In reality, the same considerations are valid also for  

CALCULATETABLE, which evaluates and returns a table instead of a scalar value. For simplicity, we will  
refer to CALCULATE in the examples, but remember that CALCULATETABLE has the same behavior.

It might seem strange to dedicate a full chapter to a single function, but this is essential because 
of its richness and side effects. CALCULATE is by far the most important, useful, and complex function 
of the DAX language. In reality, the function itself is an easy one. It only performs a few tasks, but the 
number of scenarios where CALCULATE is necessary, along with the complexity of the formulas that 
can be written with CALCULATE, make a full chapter absolutely necessary.

This, as in the previous chapter, is a tough one. We strongly suggest you read it once, get a general 
feeling of CALCULATE and then move on to the remaining part of the book. Then, as soon as you feel 
lost in a specific formula, come back to this chapter and read it again from the beginning. You will 
probably discover new information each time you read it.

Another important aspect of this chapter is that we will need to be somewhat pedantic. Thus, if at 
some point you find a section that looks boring and that it seems to just be stating the obvious, read 
it again carefully to make sure you understand it perfectly.

Understanding CALCULATE

You have learned in the previous chapter that there are two different contexts: row context and filter 
context. You have learned that you can create the row context programmatically by using iterators 
and you learned the ALL function that lets you ignore the filter context. It is important to remember 
that ALL ignores the filter context, it does not change it. Thus, in the following formula:

[Sales Amount Margin] :=  
SUMX (  
    ALL ( Sales ),  
    Sales[SalesAmount] * AVERAGE ( Sales[MarginPct] ) 
)
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ALL ignores the existing filter context and always returns the entire table, but it does not change 
in any way the evaluation of other parts of the formula. In fact, in the innermost expression, AVERAGE 
will compute the average of the MarginPct column in the filter context under which DAX evaluates 
the entire expression. There is a single function in DAX that has the ability to change a filter context, 
and it is CALCULATE.

Let’s start introducing CALCULATE by looking at a scenario where you will find it useful. Imagine 
you want to build the report shown in Figure 5-1, which contains categories, subcategories, and the 
sum of sales amount.

FIGURE 5-1 Here you can see a simple report showing sales divided by category and subcategory. The SalesPct 
column shows the percentage to total of the row.

The report shows the percentage of each row to the grand total. You can easily produce such a 
report using Microsoft Excel PivotTable features, but we are interested in computing the percentage 
as a measure, so that users have it available whenever they want to add it to a pivot table.

The following is a naïve solution:

SalesPct :=  
DIVIDE ( 
    SUM ( Sales[SalesAmount] ), 
    SUMX ( ALL ( Sales ), Sales[SalesAmount] ) 
)
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The numerator is SUM of SalesAmount. The denominator ignores the filter context and always 
returns the grand total of SalesAmount, regardless of any filter. This formula works as long as you do 
not select anything from the slicer. For example, if you select the color Black in the slicer then the 
values are wrong; the percentage of the grand total is 18.76 percent instead of 100 percent since the 
denominator used for the percentage calculation is a higher number, as you can see in Figure 5-2.

FIGURE 5-2 Selecting a color from the slicer shows wrong percentage results.

The problem here is easy to understand. By using ALL, we are ignoring the filter context. Thus, the 
denominator is always the grand total of all sales, whereas if you select a color, you want to keep the 
filter on color, clearing only the filters on category and subcategory. ALL and iterators are not the 
right choice here; you need something more powerful. In other words, you need CALCULATE.

Understanding the filter context
Before continuing with the description of CALCULATE, it is important to start a small digression to 
refine your understanding of a filter context. The filter context is a complex concept and you will have 
a final understanding of how it works only by the end of Chapter 10, “Advanced evaluation context.” 
Before then, we give different descriptions of the filter context, in order of complexity, in order to 
reach the final explanation one step at a time.

In the previous chapter we gave a first definition of the filter context: “a set of filters applied to the 
model, which changes the rows that are visible in the entire database.” Even if it is a correct definition, 
it is still very naïve. In order to move to the next level, you need to remember that VertiPaq (the data-
base on which DAX works) is a columnar database. You should stop thinking about tables and think in 
terms of columns instead.
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As an example, you can think of Product as a regular table, as in Figure 5-3.

FIGURE 5-3 You can look at the Product table as a standard table, made of rows, each divided into columns.

However, because VertiPaq is a columnar database, the correct representation of the table would 
be as a set of columns, not a single entity. Thus, a better visualization of the same table would be the 
one shown in Figure 5-4.

FIGURE 5-4 The correct visualization of Product is as a set of columns, each divided into rows.

The content is the same, of course, but now it is easier to see the different columns as different 
items stored in memory. Obviously, the same representation works for any table in the data model. 
Thus, you should mentally divide each table in the model into separate columns, and you will end up 
with a set of columns, logically divided into tables, but each column separated from the other ones.
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When you put Color in a slicer, DAX applies a filter to that column. Read this carefully, please: It 
does not apply a filter to the table containing the column. It applies the filter to the column only. 
Then, because the column is part of a table, as a result the table will have a filter, too.  Nevertheless, 
the filter works on a single column at a time (we are describing an approximation of what really 
 happens; we will reach the final understanding of the filter context later in the book).

When you do a selection in the slicer filtering only, say, red products, the model will have this filter 
as shown in Figure 5-5.

FIGURE 5-5 Filtering the red products results in a filter applied to the Color column only.

You can imagine representing the filter on a single column as a bitmap over the values of the 
 column or, in a more human-readable way, as the list of active values for the column.

We can finally state a better definition of the filter context: A filter context is a set of tables. Each 
table contains a single column and lists all the values for that column, which the engine considers 
 visible in the current context. All of these filters, when put in a logical AND, form the filter context.

In a single cell of a pivot table, you have filters coming from slicers and filters; from the rows 
and from the columns. Each of these filters operate on sets of table columns. Thus, in our previous 
 example, the filter context contains three separate filters: one for the category, one for the subcat-
egory (both are on the rows in the pivot table), and one for the color (coming from the slicer).

All this digression leads us to a better understanding of what it means to update a filter context. 
If you want to update a filter context, you need to provide a new list of values for some or all of the 
filtered columns in the model. DAX will replace the filter on that column (and that column only) with 
the new list of values and, in this way, it generates a new filter context.

The two important aspects to remember are:

■■ A filter is a set of active values for one column.

■■ A filter always applies to a single column only.
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Remember that this is not the correct defi nition of a fi lter context yet. You have to learn many 
other aspects before becoming a real master of DAX. Nevertheless, this defi nition will already be very 
useful to start working with the fi lter context. 

Having fi nished the digression, you now have a better understanding of what a fi lter context is, 
and we can continue describing how CALCULATE can modify it. 

Introducing CALCULATE 
CALCULATE (with its companion, CALCULATETABLE, which you will learn later) is the only function 
that can modify the fi lter context. In reality, CALCULATE creates a new fi lter context and then evalu-
ates an expression in that new context. Because the starting point of the new context is the existing 
one, we can say that it modifi es the evaluation context. 

Let’s start examining the syntax of CALCULATE:  

 [Measure] := CALCULATE ( Expression, Condition1, … ConditionN ) 

CALCULATE accepts any number of parameters and the only mandatory one is the fi rst, that is, 
the expression to evaluate. We call the conditions following the fi rst parameter fi lter arguments. 
CALCULATE does the following: 

 ■ It takes the current fi lter context and makes a copy of it into a new fi lter context. 

 ■ It evaluates each fi lter argument and produces, for each condition, the list of valid values for 
that specifi c column. 

 ■ If two or more fi lter arguments affect the same column, they are merged together using an 
AND operator (or, in mathematical terms, using the set intersection). 

 ■ It uses the new condition to replace existing fi lters on the columns in the model. If a column 
already has a fi lter, then the new fi lter replaces the existing one. If, on the other hand, the 
column does not have a fi lter, then DAX simply applies the new fi lter to the column. 

 ■ Once the new fi lter context is evaluated, CALCULATE computes the fi rst argument (the expres-
sion) in the new fi lter context. At the end, it will restore the original fi lter context, returning the 
computed result. 

Note CALCULATE does another very important task: it transforms any existing row  context 
into an equivalent fi lter context. Later in this chapter there is a more detailed  discussion 
of this topic. The reason we mention it here is that it is better to remember this very 
 important fact, in case you make a second reading of this section: CALCULATE creates a 
fi lter context out of existing row contexts. 

[Measure] := CALCULATE ( Expression, Condition1, … ConditionN )
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The filters accepted by CALCULATE can be of two types:

■■ List of values, in the form of a table expression. In that case, you provide the exact list of 
values you want to see in the new filter context. The filter can be a table with a single column 
or with many columns, as is the case of a filter on a whole table.

■■ Boolean conditions, such as Product[Color] = “White”. These filters need to work on a single 
column because the result has to be a list of values of a single column.

If you use the syntax with a Boolean condition, DAX will transform it into a list of values. So when-
ever you write:

[Sales Amount Red Products] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ),  
    Product[Color] = "Red"  
)

DAX transforms the expression into the following one:

[Sales Amount Red Products] :=  
CALCULATE (  
    SUM ( Sales[SalesAmount] ),  
    FILTER ( 
        ALL ( Product[Color] ), 
        Product[Color] = "Red"  
    ) 
)

For this reason, you can reference only one column in a filter argument with a Boolean condition. 
DAX has to detect the column to iterate in the FILTER expression, which are generated in the back-
ground automatically. If the Boolean expression references more columns, then you have to write the 
FILTER iteration in an explicit way, as you will see later.

At this point, we can go back to the example of computing the percentage of sales against the 
total for all the categories and subcategories, still taking into account the filter on color. You can write 
that measure using CALCULATE:

[SalesPctWithCalculate] := 
DIVIDE ( 
    SUM ( Sales[SalesAmount] ), 
    CALCULATE ( 

        SUM ( Sales[SalesAmount] ),  

        ALL ( 'Product Category' ),  

        ALL ( 'Product Subcategory' ) 

    ) 

)
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Let’s focus on the use of CALCULATE in the denominator of this formula. The expression to 
 compute is always the same: the sum of sales amount. However, we already know that a formula 
by  itself can have many different values, depending on the context under which DAX evaluates it. 
Because the expression is inside CALCULATE, the context of the expression is not the original one. 
We only need to understand how the context is going to be and this information comes from the 
 additional parameters of CALCULATE.

The first filter parameter is ALL ( ‘Product Category‘ ). ALL returns all the rows in a table, in this 
case all the categories. DAX retrieves the Product Category table and uses its values as the new filter, 
 replacing any previously existing filter on any column of Product Category which in this example 
comes from the pivot table row.

The same happens, obviously, with its second filter parameter: ALL ( ‘Product Subcategory’ ) 
 removes any filter from any column of Product Subcategory.

The important part to note is that CALCULATE does not replace the filter coming from the slicer, 
that is, the filter on Color. It only removes filters from columns of the Product Category and Product 
Subcategory table. Thus, the final filter context contains all the categories and subcategories, but only 
the selected color.

Using this new formula inside the pivot table shows correct values, as you can see in Figure 5-6.

FIGURE 5-6 Percentage computed with CALCULATE shows correct values.

At this point, the very careful reader might stop and ask: “Well, this does not make sense. You 
have removed the filter from Product Category and Product Subcategory, but you are summing 
values from Sales. Who removed the filter from that table?” A very good question, indeed. In fact, our 
 description is missing something very important: Once CALCULATE computed the new filter context, 
it applied it to the data model prior to evaluate the expression.

When DAX applies a filter context to a table, we already know from the previous chapter that 
the filter propagates through relationships following their definitions (unidirectional or bidirectional 
 filtering). It turns out that we removed the filter from both Product Category and Product Subcat-
egory and, when DAX applies the new filter context, it propagates it to the fact table, which is on 
the many-side of the chain of relationships starting from Product Category and ending at Sales. 
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By removing the filters from Product Category and Product Subcategory, we also removed their 
 corresponding  propagated filters on Sales.

CALCULATE examples

Now that you have seen the basics of CALCULATE, or at least you learned why it is so useful, the 
 following part of the chapter is dedicated to various examples of its usage. They are important 
to study and understand thoroughly. In fact, CALCULATE by itself is a very simple function. The 
 complexity (hence the importance we give to it) comes from the fact that, using CALCULATE, you 
are forced to think in terms of filter contexts and you might end up with several contexts in a single 
formula, which makes the flow of the code hard to follow. According to our experience (as trainers), 
learning by  example is the best way to understand CALCULATE and filter contexts.

Filtering a single column
The simplest way to use CALCULATE is to filter a single column. As an example, assume you want to 
create a measure that always returns the sales amount of black products, regardless of the selection 
made on the color. The formula is very easy to author:

[SalesAmountBlack] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    Product[Color] = "Black" 
)

If you use the previous formula in a pivot table, you will get the result shown in Figure 5-7.

FIGURE 5-7 SalesAmountBlack always shows the sales of black products, regardless of the current filter context.
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You can see that SalesAmountBlack always shows the sales for black products, even if on the rows 
the filter context selects different colors.

If you focus on the third row (Blue), this is what happened: The formula started the evaluation 
in a filter context where the only value for the color was Blue. Then, CALCULATE evaluated a new 
 condition (Color = Black) and, when it had to apply it to the new filter context, it replaced the existing 
condition, removing the filter on Blue and replacing it with the filter on Black. This happened for all of 
the rows (that is, all the colors) and this is the reason why you see the same number for all the rows.

Clearly, because the only column for which CALCULATE overrides the selection is the color, other 
columns maintain their filters. For example, if you put the calendar year on the columns, you see that the 
result is always the same for all the colors but it changes for different years, as shown in Figure 5-8.

Filtering a single column is straightforward. A less evident fact is that you can only filter one 
 column at a time if you use conditions as filters for CALCULATE. For example, you might want to 
 create a measure that computes the sales amount for only the products where the unit price is at  
least twice the unit cost. You can try this formula:

[HighProfitabilitySales] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    Product[Unit Price] >= Product[Unit Cost] * 2 
)

FIGURE 5-8 SalesAmountBlack overrides only the color; it still obeys the filtering on other columns (year).

You can see that, this time, the condition involves two columns: Unit Cost and Unit Price. Even if 
DAX can easily evaluate the condition for each product, it does not allow this syntax. The reason is 
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that, during its evaluation algorithm, CALCULATE cannot determine whether the condition should 
replace any existing filter on Unit Price, on Unit Cost, or on none of them. In fact, if you try to write 
the formula above, you will get an error as a result:

Calculation error in measure 'Sales'[HighProfitabilitySales]: The expression contains 
multiple columns, but only a single column can be used in a True/False expression that is 
used as a table filter expression.

There is no way to author such a formula using the Boolean syntax. If you need to invoke 
 CALCULATE using more than one column in the condition, you need to use a different syntax,  
which provides a list of values instead of a condition.

The correct way to author the previous expression is to use this syntax:

[HighProfitabilitySales] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    FILTER ( Product, Product[Unit Price] >= Product[Unit Cost] * 2 ) 
)

Instead of using a Boolean expression, this time we used the Table syntax for the filter argument 
of CALCULATE. Moreover, we did not filter only one column; we filtered the entire Product table. In 
Figure 5-9 you can see the HighProfitabilitySales measure in action.

FIGURE 5-9 HighProfitabilitySales shows the sales of products with a high price compared to their cost.
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In this case, CALCULATE evaluates the condition: The result of FILTER is a table containing multiple 
columns (it contains all of the columns of Product). When the new condition is inserted into the filter 
context, in reality all the existing conditions on Product are replaced with this new filter. In other 
words, using the actual table as the first parameter of the FILTER function, we effectively replace all 
conditions on all of the columns of that table.

Having read the previous explanations, you should observe that something is not completely clear 
here. We said that the FILTER expression in CALCULATE replaces all of the previously existing filters 
on the Product table, because the table returned by FILTER contains all of the columns of Product. 
Nevertheless, the value returned by our formula is different for each row.

On the Blue row, for example, HighProfitabilitySales returns the sales of blue products with high 
profitability even if, for what we learned until now, it should return the sales of all the high profitable 
products, regardless of the color. Either DAX did not replace the filter on color, or something more 
complex is happening. Because we already know that DAX replaced the filter on color, we need to 
investigate more to understand the exact flow of evaluation. The following code is the formula for our 
measure: We numbered the lines to make it easier to reference the various parts of the formula.

1.   CALCULATE ( 
2.       SUM ( Sales[SalesAmount] ), 
3.       FILTER ( 
4.           Product,  
5.           Product[Unit Price] >= Product[Unit Cost] * 2 
6.       ) 
7.   )

The first function is CALCULATE. We know that CALCULATE, as its first step, evaluates the filter 
arguments. Before doing anything else, CALCULATE evaluates the FILTER expression starting at line 3.

FILTER is an iterator and it iterates over the Product table (see line 4). FILTER will not see all the 
products; it will be able to see only the rows that are visible under the current filter context. Now, 
the question is “under which filter context does DAX evaluate Product at line 4?” Remember that 
 CALCULATE still did not create its new evaluation context. It will do this later, after the evaluation 
of the filters. You can deduce that the filters of CALCULATE are evaluated under the original filter 
context, not under the filter context created by CALCULATE. While it might seem obvious, this simple 
consideration is one of the main sources of errors in many DAX formulas.

Product, at line 4, refers to the products that are visible under the original filter context. For the 
Blue row in Figure 5-9, that context shows only the blue products. Thus, FILTER will iterate over blue 
products and it will return only blue products with high profitability. Then CALCULATE will remove 
the existing filter for the color, but such a filter is now already incorporated in the result of FILTER, 
leading to the behavior you are observing. It is important to understand correctly the flow of filters 
and that the filter on color is replaced inside the expression evaluated by CALCULATE but not inside 
the filters of CALCULATE. In other words, the filter parameters of CALCULATE are evaluated under the 
previous filter context. Only later CALCULATE creates its new filter context, under which it computes 
its expression parameter.
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To have a complete picture, you can check the following formula:

[HighProfitabilityALLSales] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    FILTER ( 
        ALL ( Product ),  
        Product[Unit Price] >= Product[Unit Cost] * 2  
    ) 
)

This time, instead of using FILTER ( Product ) we used FILTER ( ALL ( Product ) ). FILTER will not 
 iterate only the blue products; it will always iterate all of the products and, because CALCULATE 
 replaces the filter on color, the behavior is the one shown in Figure 5-10.

 
FIGURE 5-10 HighProfitabilityALLSales shows that the filter on color is effectively replaced inside CALCULATE.

HighProfitabilityALLSales always shows the sales of all high profitability products, effectively 
 ignoring the pre-existing filter on color.

Let’s start drawing some conclusions from this first example.

■■ You can use Boolean conditions inside CALCULATE, but in order to use them, you need to 
reference only one column in the expression, otherwise you will get a syntax error as a result.

■■ You can use FILTER or any other table function as a filter parameter in CALCULATE and, in  
this case, all the columns in the table are part of the new filter context. This means that 
 CALCULATE will replace any existing filter on those columns.
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■■ If you use FILTER, then CALCULATE evaluates FILTER in the original filter context. If, on the 
other hand, you use a Boolean condition, then CALCULATE replaces the existing filter context, 
but only for the affected column.

Filtering with complex conditions
When you use multiple filters, CALCULATE performs a logical AND of all its filter conditions when 
it creates the new filter context. So if you want to filter all of the black products manufactured by 
 Tailspin Toys, you can use an expression like this:

[Calculate Version] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    Product[Brand] = "Tailspin Toys", 
    Product[Color] = "Black" 
)

Because CALCULATE puts the two conditions in AND, you might think that this formulation of the 
expression is equivalent:

[FILTER Version] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount]), 
    FILTER ( 
        Product, 
        AND ( 
            Product[Brand] = "Tailspin Toys", 
            Product[Color] = "Black" 
        ) 
    ) 
)

In reality, the two expressions are different and this section explains the reason. You have already 
learned this, but it is worth repeating because of the complexity of the topic and importance of the 
concepts that are discussed later in this section. In the formula with Boolean expressions, the existing 
filter context is ignored for both the brand and the color; whereas in the formula with FILTER, the  
pre-existing filter context (prior to the formula being applied) is considered for both columns.

Thus, Calculate Version always returns the sales amount for black Tailspin Toys, whereas  FILTER 
 Version returns the sales only when they are already present in the pre-existing filter context; 
 otherwise it returns an empty value. You can observe this behavior in Figure 5-11.
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FIGURE 5-11 The two formulas result in different computations, even if they look very similar.

The difference is because FILTER iterates a table filtered by the external filter context. Remember 
that the following formula:

[Sales of Tailspin Toys] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    Product[Brand] = "Tailspin Toys", 
)

is equivalent to the next one:

[Sales of Tailspin Toys] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    FILTER ( 
        ALL (  Product[Brand]  ), 
        Product[Brand] = "Tailspin Toys", 
    )  
)

In the second formula, by means of using ALL ( Product[Brand] ), we explicitly ask to ignore the 
current filter context just for the manufacturer column. We cannot stress enough the importance of 
understanding the behavior of these formulas. Even if the expressions used here are for educational 
purposes, you will encounter similar scenarios when authoring your own expressions and be sure that, 
eventually, you will see strange results. In order to understand how the formula behaves, you have to 
understand the context behavior.

Working on a single column, the equivalence stated above works fine. In our example, we have 
two columns and you might be tempted to extend the equivalence to a multicolumn scenario by 
 trying the following formula:
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FilterAll Version := 
CALCULATE (
    SUM ( Sales[SalesAmount] ),
    FILTER (
        ALL ( Product ),
        AND (
            Product[Brand] = "Tailspin Toys",
            Product[Color] = "Black"
        )
    )
) 

This formula does not satisfy the requirements solved by the fi rst formula you have seen in this 
section. If you use ALL ( Product ), you ignore the fi lter context on both columns by means of  ignoring 
the fi lter context on the entire table. However, by ignoring the fi lter context on the entire table, you 
still get a different behavior. To see the effect, we need to make the pivot table more complex. In 
Figure 5-12 we added the category name on the rows. 

  
FIGURE 5-12 Using FILTER and ALL on the Product table still does not solve the scenario. 

As you can see, FilterAll Version ignores the fi lter context on the entire Product table, showing the 
value even for the Computers category, for which Calculate Version shows a blank value. The reason 
is that the Calculate Version ignores the fi lter context for the color and model name only, whereas 
FilterAll Version ignores the fi lter context on the entire table, thereby ignoring the category. 

In order to fi nd the correct formula, you have to think in terms of columns instead of tables. We 
can neither provide the Product table to FILTER (because it contains the full original fi lter context) 
nor ALL ( Product ) (because it ignores all of the fi lters). Instead we need to compute a Product table 
in which we removed the fi lters on brand, but where any other existing fi lter is still active. 
We already know of a function that lets us work on the fi lter context in this very granular way: it is 
CALCULATE. The only problem is that CALCULATE requires an expression returning a single value and, 

FilterAll Version :=
CALCULATE (
    SUM ( Sales[SalesAmount] ),
    FILTER (
        ALL ( Product ),
        AND (
            Product[Brand] = "Tailspin Toys",
            Product[Color] = "Black"
        )
    )
)
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this time, we want to return a whole table, because we need it as a parameter of the FILTER function. 
Luckily, there is a companion to CALCULATE that, instead of returning a single value, returns a table. It 
is CALCULATETABLE, which is introduced in the next section.

Using CALCULATETABLE
CALCULATETABLE works the same way as CALCULATE. The only difference is in the type of the result: 
CALCULATE computes a scalar value, whereas CALCULATETABLE evaluates a table expression and 
returns a table. The next formula performs exactly what we need: It removes the filter context from 
both, Brand and Color, but lets other filters flow inside the FILTER function.

[CalcTable Version] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    FILTER ( 
        CALCULATETABLE ( 

            Product, 

            ALL ( Product[Brand] ), 

            ALL ( Product[Color]  ) 

        ), 

        AND ( 
            Product[Brand] = "Tailspin Toys", 
            Product[Color] = "Black" 
        ) 
    ) 
)

As you can see in Figure 5-13, this last formula in CalcTable Version computes the correct value, 
which is the same returned by Calculate Version.

 
FIGURE 5-13 The use of CALCULATETABLE results in correct values being computed.
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This digression about equivalent results is important because knowing the correct technique to 
transform a Boolean filter into a FILTER equivalent will greatly help you for conditions that are more 
complex. For example, if you wanted to express an OR condition, instead of an AND one, you would 
need to use this technique.

For example, if you want to compute the sum of all brands and colors where the condition is that 
the brand can be Tailspin Toys or the color is Black (OR condition), then you need to define it using 
CALCULATETABLE, as in the following code:

[CalcTable Version OR] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    FILTER ( 
        CALCULATETABLE ( 
            Product, 
            ALL ( Product[Brand] ), 
            ALL ( Product[Color]  ) 
        ), 
        OR ( 

            Product[Brand] = "Tailspin Toys", 

            Product[Color] = "Black" 

        ) 

    ) 
)

In fact, using CALCULATETABLE is a convenient way to remove the filter from Brand and Color, 
keeping all other filters untouched. Thus, AND conditions with many columns can be easily solved 
with a simple CALCULATE, because CALCULATE automatically puts all its filter parameters in AND. 
On the other hand, OR conditions between different columns are much more complex, because you 
 cannot rely on the automatic AND of CALCULATE and you need to manually write complex DAX code.

It is worth noting that, as an alternative formula, you can also use the following code, which uses 
the ALL function with two columns:

[ALL Version OR] :=  
CALCULATE ( 
    SUM ( Sales[SalesAmount] ), 
    FILTER ( 
        ALL ( Product[Brand], Product[Color]  ), 

        OR ( 
            Product[Brand] = "Tailspin Toys", 
            Product[Color] = "Black" 
        ) 
    ) 
)

This latter formulation is much more elegant even if, at the beginning, it is not very intuitive.
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In this section, you have seen that as soon as you use more than one column or in general make 
more complex conditions, the results become hard to understand. Even seasoned DAX programmers 
often find it hard to follow the evaluation path. Therefore, don’t be scared by the complexity of this 
section; only experience will lead you to a natural path where you will learn how to read formulas at 
first glance.

Understanding context transition

We have previously anticipated that CALCULATE does another very important task: It transforms any 
existing row context into an equivalent filter context.

In order to illustrate the behavior, you create a calculated column containing a CALCULATE 
 expression. The calculated column always has a row context, so this will trigger a context transition. 
For example, you define a calculated column in Product containing the following DAX expression:

Product[SumOfUnitPrice] = SUM ( Product[Unit Price] )

This formula sums all the list prices of all the products. The expression is evaluated within a row 
context and without a filter context, so it returns the grand total of unit price for all the products in 
the table, and not the list price of the product on which it is evaluated. You can see the behavior in 
Figure 5-14.

FIGURE 5-14 SumOfUnitPrice, computed inside a calculated column, returns the grand total of unit prices.

Now you can create a new calculated column with a slightly modified version of the expression, 
this time involving CALCULATE:

Product[SumOfUnitPriceCalc] = CALCULATE ( SUM ( Product[Unit Price] ) )
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What? CALCULATE with a single expression parameter? Where have the filters gone? Nowhere. In 
fact, we are using CALCULATE in its simplest form. We said earlier that the only mandatory  argument 
of CALCULATE is the first one, so it is perfectly legal to invoke CALCULATE without any filters. In 
such a case, CALCULATE does not change the existing filter context with other conditions, but it still 
performs the behavior you are learning now: It takes the existing row contexts (if any) and transforms 
them into an equivalent filter context. Be aware that all the existing row contexts are merged into the 
new filter context, as we will see in more detail later.

In the example, CALCULATE searches for existing row contexts and it finds that there is one on 
Product, because CALCULATE runs inside a calculated column definition. CALCULATE takes this row 
context and replaces it with a filter context that contains only the row currently iterated by the row 
context. We refer to this behavior as a context transition. Generally speaking, we say that CALCULATE 
performs a context transition, merging all the row contexts into a new—equivalent—filter context.

Inside CALCULATE, the expression SUM ( Product[Unit Price] ) computes its value under a filter 
context that contains only the current row of Product, because of the context transition performed by 
CALCULATE. It turns out that this time the result is the same unit price of the product, as you can see 
in Figure 5-15.

FIGURE 5-15 Using CALCULATE, the row context has been transformed into a filter context, changing the result.

The first time you observe this behavior, it is hard to understand why CALCULATE performs context 
transition. After you start using this feature, it is something you will love, because of the powerful 
formulas you will be able to author.

Moreover, there is another very important side effect of context transition. You might remember 
that filter context and row context behave in different ways regarding relationships: The row  context 
does not automatically propagate through relationships, whereas the filter context propagates 
 following the relationships. Thus, when context transition happens, the filter context automatically 
propagates to related tables. 

You can observe this behavior if, instead of summing the list price, you create two new calculated 
columns, still in Product, using the following definitions:
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Product[SalesAmount] = SUM ( Sales[SalesAmount] ) 
 
Product[SalesAmountCalc]  = CALCULATE ( SUM ( Sales[SalesAmount] ) )

In Figure 5-16 you can see the result, which is obviously different.

 
FIGURE 5-16 Context transition induced by CALCULATE affects filtering of related tables.

As you can see, the SalesAmount column contains the grand total of all sales, and  SalesAmountCalc 
contains the sales of the current product. The presence of CALCULATE and the related context 
transition of the row context on Product propagates the filter to Sales, showing only the sales of one 
product.

Please note that context transition happens for all the row contexts that are active when 
 CALCULATE is executed. In fact, you might have more than one row context on different tables. For 
example, if you iterate the customers using AVERAGEX in a calculated column created in Product, 
then context transition will happen for both row contexts (Product and Customer), and the Sales table 
will receive both filters. Consider the following expression:

Product[SalesWithSUMX] = 
AVERAGEX ( 
    Customer, 
    CALCULATE ( SUM ( Sales[SalesAmount] ) ) 
)

The formula computes the average amount that customers spent to buy this product (not the 
average price, but the average of total amount spent). SUM inside CALCULATE is executed in a filter 
context that shows only the sales of the current customer (iterated by AVERAGEX) and of the current 
product (iterated by calculated column evaluation). Here is an easy way to remember this rule: Inside 
CALCULATE there are no row contexts; only a filter context is present.
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Understanding context transition with measures
Understanding context transition is very important because of another hidden aspect of DAX. Up to 
now, we have always written the expression inside CALCULATE using functions and columns. However, 
you can also write an expression that contains a measure invocation. What happens if you invoke a 
measure from inside a calculated column? More generally, what happens if you call a measure from 
inside a row context? 

As an example, you can define a measure SumOfSalesAmount in this way:

[SumOfSalesAmount] := SUM ( Sales[SalesAmount] )

Then, you can define the SalesWithSUMX calculated column using this simpler code:

Product[SalesWithSUMX] =  
SUMX ( 
    Customer, 
    CALCULATE ( [SumOfSalesAmount] ) 
)

The presence of CALCULATE suggests that context transition happens. The issue is that, whenever 
you invoke a measure from inside another expression, DAX automatically encapsulates the measure 
inside CALCULATE. Thus, the previous expression has a behavior that is identical to the following one:

Product[SalesWithSUMX] =  
SUMX ( 
    Customer, 
    [SumOfSalesAmount] 
)

This time, no CALCULATE is visible in the formula, yet context transition happens, because of the 
automatic CALCULATE added by DAX.

This is the reason for which it is very important that you always write your code differentiating 
between columns and measures. The de-facto standard used by DAX authors is to avoid putting 
the table name in front of measures and always prefix columns with the table name. In fact, in the 
 previous formula, the absence of the table name before SumOfSalesAmount suggests that SumOf-
SalesAmount is a measure and, because of that, you know that context transition happens.

Automatic context transition makes it very easy to author formulas that perform complex 
 calculations with iterations. With that said, it takes some time before you get acquainted to read and 
to use it. For example, if you want to compute the sum of sales only for the customers who bought 
more than the overall average, you can write a measure as in the following:
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[SalesMoreThanAverage] := 
VAR 
    AverageSales = AVERAGEX ( Customer, [SumOfSalesAmount] ) 
RETURN 
    SUMX ( 
        Customer, 
        IF ( 
            [SumOfSalesAmount] > AverageSales, 
            [SumOfSalesAmount] 
        ) 
    )

In the preceding code, we use SumOfSalesAmount as a measure inside a different row context. In 
the variable definition, we use it to compute the average of customer sales, whereas in the iteration 
with SUMX, we use it to check the sales of the current customer against the average, previously stored 
in the variable.

Warning The syntax based on VAR is simpler to read and maintain (it could also be faster). 
However, it is important to understand the different behavior using different syntaxes, also 
without VAR, regardless of the version of DAX you are using. If you don’t understand and 
master automatic context transition, you will probably end up spending a lot of frustrating 
time looking at a formula, without fully understanding what value is being computed.

Context transition happens automatically when calling a measure and there is no way to avoid it. 
This means that the only way to avoid context transition when calling a measure is to expand its code. 
As an example, imagine that you wrote the previous code in a different way. Instead of using a vari-
able, you define a measure called AverageSales that represents the average sales of customers, as in 
the following code:

[AverageSales] := AVERAGEX ( Customer, [SumOfSalesAmount] ) 
 
[SalesMoreThanAverage] := 
SUMX ( 
    Customer, 
    IF ( 
        [SumOfSalesAmount] > [AverageSales], 

        [SumOfSalesAmount] 
    ) 
)

In the highlighted row, you use [AverageSales] to compute the average sales of customers. The 
problem is that—this time—you are calling a measure inside an iteration (SUMX) and this makes 
 context transition happen. Thus, the result of [AverageSales] will not be the average sales over all 
 customers, but only over the customer you are iterating. As a result, the test will always fail and the 
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measure returns a BLANK, because the true branch of IF is never executed. If you want to avoid 
 context transition, you need to expand the code of the measure, as in the following example:

[SalesMoreThanAverage] := 
SUMX ( 
    Customer, 
    IF ( 
        [SumOfSalesAmount] > AVERAGEX ( Customer, [SumOfSalesAmount] ), 

        [SumOfSalesAmount] 
    ) 
)

Having replaced the measure invocation with the expanded code, now  SalesMoreThanAverage 
returns correct results. Moreover, it is worth it to note that—in this case—there are two nested 
row contexts over Customer and three measure invocations. Two of them compute the sales of the 
 currently iterated customer by SUMX, the other one (inside AVERAGEX) computes the sales of the 
currently iterated customer by AVERAGEX.

We will use these features extensively in the next chapters, when we will start to write complex 
DAX code to solve specific scenarios.

How many rows are visible after context transition?
Context transition transforms a row context into an equivalent filter context. This statement requires 
some clarification. The row context always contains a single row, whereas the filter context that 
 CALCULATE creates after context transition might contain multiple rows, and the filter created by 
CALCULATE might affect one or more columns, depending on the table structure.

If the table has a primary key, defined in the model, then CALCULATE creates a filter context that 
filters only the primary key. In fact, such a filter context contains a single row, uniquely identified by the 
primary key. It is worth remembering that a primary key can be defined either by using the  metadata 
of the table or by creating a relationship that has the table as a target. In both scenarios, context tran-
sition will filter a single column and, because the column is an identity for the table, a single row.

If the table does not have a primary key, then context transition creates a filter on all of the 
 columns of the table. This might result in a filter that contains one or many rows, depending on the 
table content. In fact, if all the rows are different, then the filter context uniquely identifies a row. 
However, if there are identical rows in the table, then all of them will be included in the filter context.

In the following example, Wrong Sales and Correct Sales result in different values returned:

[Sales Amount] := SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
 
[Wrong Sales] := SUMX ( Sales, [Sales Amount] ) 
 
[Correct Sales] := SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] )
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In fact, Wrong Sales iterates over Sales and, for each row, it computes [Sales Amount] for all the 
identical rows, while Correct Sales computes the amount for each individual row. As a result, if there 
are multiple identical rows in Sales, Wrong Sales results in a higher value.

When working with dimension tables, this is not normally an issue, because dimensions always 
have a primary key. In this case, the only row that is identical to the current one is the row itself. On 
fact tables or—in general—on tables that do not have a primary key, you need to consider that you 
might have duplicated rows; otherwise you might end up with unexpected results.

Understanding evaluation order of context transition
At this point of your learning experience, you know the difference between these two calculated 
columns, created in the Product table:

Product[SumOfUnitPrice] = CALCULATE ( SUM ( Product[Unit Price] ) ) 
 
Product[SumOfAllUnitPrice] = CALCULATE ( SUM ( Product[Unit Price] ), ALL ( Product ) )

They are both calculated columns and they both use the CALCULATE function. Thus, context 
 transition happens for both.

SumOfUnitPrice should contain the value of Unit Price for the current row only. However, what is 
the value of SumOfAllUnitPrice? Intuitively, because there is an ALL ( Product ), you should expect the 
column to contain the sum of all the unit prices. This is exactly what it computes. Nevertheless, if you 
follow the rules we have described so far, you see that there is something wrong.

In fact, ALL ( Product ) returns the entire Product table, effectively removing any filter from the 
filter context. However, at the same time, context transition should filter Product and make only one 
row visible. If you put these two conditions in AND, the context transition is much more restrictive 
and, as a result, it should win. So, why is the result the sum of all unit prices, instead of the current unit 
price only?

Because there is an order of precedence between the filter context created by context transition 
and the filter context created by conditions in CALCULATE. CALCULATE executes context transition 
before, and it applies the filters later. Thus, any of the conditions of CALCULATE can override the filter 
created by the context transition.

This behavior is harder to describe than to use. In fact, the two formulas above compute exactly 
what—intuitively—one would expect. Nevertheless, it is important to understand why this happens 
and, most important, that filters in CALCULATE overwrite filters coming from context transition (in 
other words, filter arguments are applied later).



118 The Defi nitive Guide to DAX

Variables and evaluation contexts 

In Chapter 2, “Introducing DAX,” we showed the concept of variables, created by using expressions 
such as the following one: 

VAR Denominator = SUMX ( Sales, Sales[Line Amount] – Sales[Line Cost] )
VAR Numerator = SUM ( Sales[Line Amount] )
RETURN
    DIVIDE ( Numerator, Denominator ) 

Variables are convenient to make the code easier to read and to avoid duplicating the same 
 subexpression multiple times, but they have another very important use because of the way they 
work with evaluation context. In fact, DAX computes variables in the evaluation context where you 
defi ned them, not in the one where you use them. 

 This feature becomes extremely useful for complex formulas where you want to refer to values 
based on a previous evaluation context. Let’s see this with an example. Imagine you want to use a 
pivot table to show the categories and, for each category, the number of high sales products. You 
defi ne a product as being a high sale if its sales are more than 10 percent of the total sales of the 
category. You can see the result to achieve in Figure 5-17. 

  
 FIGURE 5-17 This pivot table shows how many high sales products are present in each category. 

 This measure is very easy to compute using variables. Moreover, the use of variables makes it sim-
pler to read, too, as you can see in the following code: 

 [HighSalesProducts] :=
VAR
    TenPercentOfSales = [SalesAmount] * 0.1
RETURN
    COUNTROWS (
        FILTER (
            Product,
            [SalesAmount] >= TenPercentOfSales
        )
    ) 

 The interesting part of this formula is that DAX computes the variable TenPercentOfSales outside of 
the FILTER iteration. If the evaluation of TenPercentOfSales was inside the iteration, it would  compute 

VAR Denominator = SUMX ( Sales, Sales[Line Amount] – Sales[Line Cost] )
VAR Numerator = SUM ( Sales[Line Amount] )
RETURN
    DIVIDE ( Numerator, Denominator )

[HighSalesProducts] :=
VAR
    TenPercentOfSales = [SalesAmount] * 0.1
RETURN
    COUNTROWS (
        FILTER (
            Product,
            [SalesAmount] >= TenPercentOfSales
        )
    )
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the 10 percent of sales of the currently iterated product due to context transition, making the whole 
measure fail in computing its value. Instead, DAX computes the value outside of the iteration and 
then uses it inside, making it possible to refer to the value of an expression outside of the current 
filter context. If you were to write the same measure without variables, you should have written an 
 expression as in the following one:

[HighSalesProductsCalculate] := 
COUNTROWS ( 
    FILTER ( 
        Product, 
         [SalesAmount] >= CALCULATE (  
             [SalesAmount],  
             ALL ( Product ),  
             'Product Category'  
         ) * 0.1 
     ) 
)

This latter code is much harder to read because, basically, you need to rebuild the  previous 
 evaluation context inside the iteration and this is not an easy task, even for seasoned DAX 
 programmers. In fact, you will learn the details of the previous expression only in Chapter 10, where 
we will uncover all the details of filter contexts.

Note If, when reading the previous example, you discovered that you can use variables to 
compute something such as EARLIER for evaluation context, then we can happily welcome 
you to the elite of DAX programmers who understand evaluation context really well. If not, do 
not worry. It never happens during the first read of the chapter. There is still a lot of con-
tent in the book dedicated to these complex topics that will help you in acquiring the skills 
needed to master evaluation contexts.

Understanding circular dependencies

When you design a data model, you should pay attention to a complex topic, which is that of circular 
dependencies in formulas. In this section, you are going to learn what circular dependencies are and 
how to avoid them in your model.

Before speaking about circular dependencies, it is worth discussing simple, linear dependencies. 
Let’s look at an example with the following calculated column:

Product[Profit] = Product[Unit Price] - Product[Unit Cost]
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The new calculated column depends on two columns of the same table. In such a case, we say 
that the column Profit depends on Unit Price and Unit Cost. You might then create a new column, like 
ProfitPct with the following formula:

Product[ProfitPct] = Product[Profit] / Product[Unit Price]

It is clear that ProfitPct depends on Profit and Unit Price. Thus, when DAX computes the calculated 
columns in the table, it knows that it will compute ProfitPct only after Profit. Otherwise, it will not be 
able to compute a valid value for the ProfitPct formula.

Linear dependency is not something you should normally worry about. Internally, DAX uses it 
to detect the correct order of computation of calculated columns during the data model refresh. 
In a normal data model with many calculated columns, the dependency of calculations turns into a 
 complex graph that, again, the engine handles gracefully. 

Circular dependency is a situation that happens when a loop appears in this graph. For example, a 
clear situation where circular dependency appears is if you try to modify the definition of Profit to this 
formula:

Product[Profit] := Product[ProfitPct] * Product[Unit Price]

Because ProfitPct depends on Profit and, in this new formula, Profit depends on ProfitPct, DAX 
refuses to modify the formula and shows the error “A circular dependency was detected.”

Up to now, you have learned what circular dependencies are from the point of view of the 
 formulas; that is, you have detected the existence of a dependency looking at the expression, without 
paying attention to the table content. Nevertheless, there is a more subtle and complex type of 
dependency that you can introduce by using CALCULATE. Let us show this scenario with an example, 
starting from a subset of columns of Product, as shown in Figure 5-18. Please note that—for this 
example—we loaded only the Product table, removing all other tables from the model, in order to 
make the scenario more evident.

 
FIGURE 5-18 This subset of columns of Product table is useful to understand circular dependencies.
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We are interested in understanding the dependency list for a new calculated column that makes 
use of the CALCULATE function, as in the following one:

Product[SumOfUnitPrice] = CALCULATE ( SUM ( Product[Unit Price] ) )

At first glance, it might seem that the column depends from Unit Price only, as this is the only 
column used in the formula. Nevertheless, we used CALCULATE to transform the current row context 
into a filter context. Because we have not defined any relationship with the table and we did not set 
the primary key for it, when CALCULATE makes the context transition, it filters all the columns of the 
table. If we expand the meaning of the CALCULATE call, the formula really says:

Sum the value of Unit Price for all the rows in the Product table that have the same value for 
ProductKey, Product Name, Unit Cost, and Unit Price.

If you read the formula in this way, it is now clear that the code depends on all of the columns of 
Product because the newly introduced filter context will filter all the columns of the table. You can see 
the resulting table in Figure 5-19.

FIGURE 5-19 Here you can see the Product table with the SumOfUnitPrice calculated column.

You might try to define a new calculated column, using the very same formula, in the same table. 
Consider defining NewSumOfUnitPrice with the following formula, which is identical to the previous 
one.

Product[NewSumOfUnitPrice] = CALCULATE ( SUM ( Product[Unit Price] ) )

Surprisingly, at this point, DAX raises an error saying it detected a circular dependency. It is strange 
because it has detected a circular dependency in the formula that it has not detected before, with 
the very same code. Something has changed indeed, and it is the number of columns in the table. If 
we were able to add the NewSumOfUnitPrice to the table, we would reach a situation where the two 
formulas have these meanings:

■■ SumOfUnitPrice Sum the value of Unit Price for all the rows in the Product table that have the 
same value for ProductKey, Product Name, Unit Cost, and Unit Price, and  NewSumOfUnitPrice.
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■■ NewSumOfUnitPrice Sum the value of Unit Price for all the rows in the Product table 
that have the same value for ProductKey, Product Name, Unit Cost, and Unit Price, and 
 SumOfUnitPrice.

Calculated columns, as with any other column in the table, become part of the filter context 
introduced by CALCULATE and, therefore, all of the calculated columns are part of the dependencies 
list. If you read the previous definitions, it is clear that there is a circular dependency between the two 
formulas and this is the reason why DAX refuses to allow the creation of NewSumOfUnitPrice.

Understanding this error is not very easy. However, finding a solution is straightforward, even if 
not very intuitive. The problem is that if the table does not have a primary key, then any calculated 
 column containing CALCULATE (or a call to any measure, which adds an automatic CALCULATE) 
 creates a dependency from all of the columns of the table—including calculated columns. The 
 scenario would be different if the table had a row identifier (a primary key, in database terms). If 
the table had a column which acts as a row identifier, then all the columns containing a CALCULATE 
 function would depend on just the row identifier, reducing their dependency list to a single column.

In Product, the ProductKey column can uniquely identify each row, because it is the primary key. In 
order to mark Product Key as a row identifier there are two options:

■■ You can create a relationship from any table into Product using ProductKey as the destination 
column. Performing this operation will ensure that ProductKey is a unique value for Product.

■■ You can manually set the property of a row identifier for ProductKey column using the Table 
Behavior properties.

Either one of these operations tells the DAX engine that the table has a row identifier. In such a 
scenario, you can define the NewSumOfUnitPrice column avoiding circular dependency because both 
calculated columns using CALCULATE will depend from the new key only.

CALCULATE rules

It is useful to recap the way CALCULATE works. You can use this set of rules to test your knowledge of 
CALCULATE: If you can read and understand all of them, then you are on the right track to becoming 
a real DAX master.

■■ CALCULATE and CALCULATETABLE are the only functions in DAX that directly manipulate the 
filter context.

■■ CALCULATE has only one required parameter, which is the expression to evaluate. Other 
 parameters (also known as filter arguments) are filters that it will use to build the new  filter 
context; they could be omitted in case you only want to invoke CALCULATE to perform 
 context transition.

■■ Filter arguments in CALCULATE can have three shapes:

(a) Boolean conditions such as Product[Color] = “White”.
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(b)  List of values for one column, in the form of a one-column table, as in ALL ( Product[Color] ) 
or with more complex FILTER expressions like FILTER ( ALL ( Product[Color], Product[Color] ) = 
“White” ) .

(c)  List of rows for one table, as in ALL ( Product ) or with more complex FILTER conditions, 
like FILTER ( ALL ( Product ), Product[Color] = “White” ). 

 Conditions written using (a) or (b) can operate on a single column only. Conditions  written 
 using the (c) shape can work on any number of columns. 

 ■  All the fi lter arguments of CALCULATE are evaluated independently, then they are put in a 
logical AND together. Finally, they are used to determine the newly created fi lter context. 

 ■  The fi lter arguments of CALCULATE (from the second parameter onward) are evaluated in 
the original fi lter context and they can narrow, expand, or replace the scope of a calculation. 
For example, when using a direct Boolean expression as a parameter, CALCULATE replaces 
the original fi lter context, whereas when passing an expression that uses FILTER on a table, 
 CALCULATE takes the original fi lter context into account. The fi rst parameter of CALCULATE 
(the expression to evaluate) is evaluated in the newly created fi lter context. 

 ■  There is a precedence order between context transition and fi lter arguments of CALCULATE. 
CALCULATE applies the fi lters after it has performed context transition. Thus, fi lters can 
 override the context created by the transition. 

 Introducing ALLSELECTED 

 ALLSELECTED is a very useful function whenever you want to perform computations using the page-
fi lter or slicer selections in the pivot table as one of the parameters. Imagine, for example, that you 
want to build a report such as the one shown in Figure 5-20. 

  
 FIGURE 5-20 The percentage shown in the pivot table is computed against the total shown, not the total of all 
colors. 
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In this report, you show the percentage of the current row against the total of the column. What 
makes this percentage difficult to compute is the fact that the product color is used both as a slicer 
(in the example we removed some of the available colors) and on the rows. If you use the knowledge 
gained so far, you might try this formula:

[SalesPct] := 
DIVIDE ( 
    [Sales Amount], 
    CALCULATE ( 
        [Sales Amount], 
        ALL ( Product[Color] ) 
    ) 
)

Using ALL ( Product[Color] ) you remove constraints from Color and you try to compute the total 
at the column level. Unfortunately, ALL removes all of the constraints, both the one coming from the 
row and the ones coming from the slicer, resulting in a wrong percentage. In Figure 5-21 you can 
see the result of the formula in a pivot table, where the grand total does not show 100 percent, but a 
smaller value.

FIGURE 5-21 The percentage computed using ALL is not correct, because it is a percentage against ALL colors.

The issue here is that you compute the denominator for all of the colors, even if the user has only 
selected some of them in the slicer. For each row, you compute the percentage of that line against a 
denominator that is bigger than the total shown in the pivot table.

What you need here is a function that does not return all of the colors, but only the ones 
 selected in the original filter context, that is, the one of the complete pivot table. We call this kind of 
 computation Visual Totals, because it uses as the grand total that is visible to the user instead of the 
total of the complete data model. The function to use here is ALLSELECTED. If you write the formula 
in this way:
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[SalesPct] := 
DIVIDE ( 
    [Sales], 
    CALCULATE ( 
        [Sales], 
        ALLSELECTED ( Product[Color] ) 
    ) 
)

The result will be the correct one shown at the beginning of this section. 

ALLSELECTED returns only the values that are visible in the original filter context, that is, the one 
of the pivot table. In other words, ALLSELECTED ignores filters on the rows and columns of the pivot 
table and considers the ones used to compute the grand total.

You can invoke ALLSELECTED with three different types of parameters:

■■ Single column As in ALLSELECTED ( Product[Color] ), which returns the originally selected 
colors.

■■ Full table As in ALLSELECTED ( Product ), that will perform an ALLSELECTED operation on all 
the columns of the table, returning all the rows originally selected.

■■ No parameters You can also use ALLSELECTED () with no parameters and it will perform 
ALLSELECTED on all of the tables in the data model, making it possible to compute the grand 
total of a pivot table, with no filters on rows and columns.

You will mainly use ALLSELECTED to compute percentages and ratios in a very dynamic way. 
In Chapter 10 we will go much deeper in the description of ALLSELECTED, which hides some 
 complexities that we will cover later, when speaking about advanced evaluation contexts.

Understanding USERELATIONSHIP

Another functionality that is available with CALCULATE is that of activating a relationship during the 
evaluation of an expression. In fact, as you already know, a data model might contain both active and 
inactive relationships. You might have inactive relationships in the model because, for example, you 
have many relationships between two tables and you can keep only one active.

As an example, you might have order date and delivery date stored in your Sales table for each 
order. Typically, you want to perform analysis of sales based on the order date but, for some  specific 
measures, you want to consider the delivery date. In such a case, you create two relationships 
 between Sales and Date: one based on OrderDateKey and another one based on DeliveryDateKey. 
Only one of them can be active at a time and, because you typically analyze sales by their order date, 
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you keep the relationship with OrderDateKey active, leaving the other one inactive. Then, you want 
to author a measure that shows the delivered value on a given date, in order to compare it with the 
ordered value. This new measure (Delivered Amount) should compute the sales amount using the 
inactive relationship, deactivating—at the same time—the relationship with the order date. 

In this scenario, you can use CALCULATE with the USERELATIONSHIP keyword, as in the following 
code:

[Delivered Amount] := 
CALCULATE ( 
    [Sales Amount],  
    USERELATIONSHIP ( Sales[DeliveryDateKey], Date[DateKey] )  
)

The relationship between DeliveryDateKey and DateKey will be activated during the evaluation 
of [Sales Amount] and, in the meantime, the relationship with OrderDateKey will be deactivated. In 
 Figure 5-22 you can see a pivot table showing the different values between Sales Amount based on 
the OrderDateKey and the new Delivered Amount measure.

FIGURE 5-22 The figure illustrates the difference between ordered and delivered sales.

When using USERELATIONSHIP to activate a relationship you need to be aware of a very  important 
aspect: Relationships are defined when a table reference is invoked, not when RELATED or other 
 relational functions are invoked. 
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For example, if you want to compute all amounts delivered in 2007, this formulation will not work:

[Delivered Amount in 2007] := 
CALCULATE ( 
    [Sales Amount],  
    FILTER ( 
        Sales, 
        CALCULATE (  
            RELATED ( Date[CalendarYear] ), 
            USERELATIONSHIP ( Sales[DeliveryDateKey], Date[DateKey] )  
        ) = 2007 
    ) 
)

The reason is that FILTER iterates the Sales table (invocation of the Sales table), and then, it 
 evaluates the condition. During the evaluation of the condition it changes the active relationship, and 
then it invokes RELATED. However, the relationship between Sales and Date has been defined when 
Sales was invoked, not when RELATED is used.

If you want to perform a calculation such as the previous one, you need to rewrite the measure in 
the following way:

[Delivered Amount in 2007] := 
CALCULATE ( 
    [Sales Amount],  
    FILTER ( 
        CALCULATETABLE ( 
            Sales, 
            USERELATIONSHIP( Sales[DeliveryDateKey], Date[DateKey] ) 
        ), 
        RELATED ( Date[Calendar Year] ) = 2007 
    ) 
)

In this latter formulation, Sales is invoked after CALCULATE has activated the needed relationship.  
Therefore, the invocation of RELATED inside FILTER happens with the relationship with Delivery-
DateKey active.

This behavior makes the use of nondefault relationships a complex operation in calculated 
columns expressions because there the invocation of the table is implicit in the calculated column 
 definition and, therefore, you do not have control over it and you cannot change that behavior using 
 CALCULATE and USERELATIONSHIP.
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C H A P T E R  6

DAX examples

At this point of the book, you have a solid background in the DAX theory and it is time to start 
using DAX to solve some interesting scenarios. In this chapter we show some examples of DAX 

usage.

Be aware that the goal of the chapter is not that of providing ready-to-use patterns. For each 
 scenario, we will build the formulas and describe the calculations with the intent of showing the 
 process of solving a problem using DAX.

The goal of the chapter is to help you begin “thinking in DAX.” In our experience, DAX  becomes 
simple to use as soon as you acquire this unique skill. The way you describe an algorithm in DAX 
is very different from SQL, Microsoft Excel, MDX, or any other programming language. At the 
 beginning, the feeling of students is always: “Yes, I understand the formula, but I would have never 
been able to write it alone.” After some time, the feeling fades away and you will be able to write 
formulas more complex than those we show here.

Computing ratios and percentages

The first example is a very simple one, which we partially covered in the previous chapters.  Computing 
percentages is probably one of the first kinds of calculation you will need to author,  because it is a 
very common way of expressing trends and shares.

A percentage is always in the form of a division: the partial sum of a measure divided by the grand 
total of the same measure. For example, the percentage of sales against the total sales. A typical 
report containing percentages is the one shown in Figure 6-1.

In Figure 6-1, the percentage shown is the percentage against the grand total. In fact, the only cell 
where you can see 100 percent is the grand total. All remaining cells show a smaller percentage, that 
is, the contribution of that year and color to the grand total.
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FIGURE 6-1 A typical report containing sales shown both in absolute value and as a percentage.

The canonical way of expressing such a measure is that of using a simple division:

[Sales %] :=  
DIVIDE ( 
    [Sales Amount],  
    CALCULATE ( [Sales Amount], ALLSELECTED () )  
)

At the denominator, CALCULATE creates a filter context where the original context is visible, by 
 using the ALLSELECTED function. You use ALLSELECTED in order to obey the filters that were set in 
the pivot table using slicers and filters.

Sometimes you do not want to compute only the percentage of sales against the grand total. For 
example, you might want to show, for each year, the percentage of sales of that color against the total 
of that year only, in order to produce a report such as the one in Figure 6-2.

In order to compute the total of the year, at the denominator, you need to restrict its filter  context 
so that it contains the selected products and, for the year, only the currently visible ones. You can 
 easily accomplish this by adding the VALUES function, which returns the values of a column as 
 currently visible in the filter context:

[Yearly %] :=  
DIVIDE ( 
    [Sales Amount],  
    CALCULATE (  
        [Sales Amount],  
        ALLSELECTED (),  
        VALUES ( Date[CalendarYear] )  
    ) 
)
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FIGURE 6-2 In this report, the percentages shown are against the years’ total, not the grand total.

It is worthwhile to remember that filters in CALCULATE are put in AND before they are applied to 
the model. Thus, the first ALLSELECTED will show the original filter context, while VALUES returns the 
currently visible years and, in each cell, it will contain that year only. The only exception will be at the 
grand total for the columns. There, inside each row, VALUES returns the two visible years.

As you have seen, so far we have used a pattern to compute the denominator:

1. Restore the original filter context.

2. Re-apply any filter to restrict the original context (for example, to the current year).

You can also apply the opposite pattern, with similar results, that is, instead of restoring the 
 original filter and then re-applying filters, you can start with the current filter context removing filters 
from the columns you want to total. For example, to reproduce the report in Figure 6-1 you can 
 restore the filters on Color and Calendar Year, leaving other filters untouched, as in:

[Yearly %] :=  
DIVIDE ( 
    [Sales Amount],  
    CALCULATE (  
        [Sales Amount],  
        ALLSELECTED ( Product[Color] ), 
        ALLSELECTED ( Date[CalendarYear] ) 
    )  
)
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You can also obtain the measure of Figure 6-2 with this code, which removes the filter from the 
color only, keeping the filter on the year untouched:

[Yearly %-2] :=  
DIVIDE ( 
    [Sales Amount],  
    CALCULATE (  
        [Sales Amount],  
        ALLSELECTED ( Product[Color] ) 
    )  
)

Although these measures look similar, meaning that in the pivot table shown as an example they 
return the same values, there is a big difference among them. In fact, this latter version of Yearly % 
restores the original filter on the color but keeps any other filter in place. If year is the only column 
filtered, the result is the same but, as soon as you add more filters on the calendar table, the two 
measures return different values, as you can see in Figure 6-3.

FIGURE 6-3 If you add more filters to the pivot table, the two measures return different values.

As you can see, Yearly % returns the percentage of sales against the year, whereas Yearly %-2 
 returns the percentage against the month, because we added the month to the pivot table. It is not 
that one number is correct and the other one is wrong. As usual, it depends from what number you 
want to compute.

The important thing to remember here is that, whenever you are computing percentages, you 
need to be very clear on what the denominator needs to be and what should happen when the user 
adds more filters to the pivot table or the report.

Computing cumulative totals

Another pattern that you will probably find useful many times is the cumulative total pattern. We 
speak about cumulative total whenever you have a set of transactions and you are interested in 
 accumulating their value over some sequence, typically the time. For example, you might want to 
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compute the total sales of a product over all time, as an accumulating total, or the total number of 
distinct customers you had over time, again as an accumulating value.

Let’s start by analyzing a simple pivot table that shows the number of products sold over time. You 
can see it in Figure 6-4.

FIGURE 6-4 This pivot table shows the total number of products sold in each year and month.

The measure shown is a very simple one:

[NumOfProducts] := SUM ( Sales[Quantity] )

You know that this measure sums the Quantity column from Sales for all the rows that are visible 
in the current filter context. If, for example, you take the value of May 2007, then the filter context has 
one filter on the year (2007), and one filter for the month (May 2007). The filter works on Date, which 
has a one-to-many relationship with Sales. Thus, it filters Sales, showing only the sales of May 2007.

If you want to compute an accumulating total, you have to find a new filter context that, instead of 
filtering only May 2007, filters all the periods that are before the end of May 2007. As simple as it is, 
this sentence hides a bigger complexity. In fact, what you need to do is:

1. Determine the end of the current visible dates, shown in the example at the end of May 2007.

2. Using that value, create a filter that shows all the dates that are before the end of May 2007.

The hidden complexity lies in the fact that the new filter context depends on the current one. 
Moreover, it is worth noting that the new filter context will be larger than the original one, because it 
will contain, for example, all the dates in 2007 and earlier. In Figure 6-5, you can see the set of dates 
that you need to retrieve in order to compute the cumulative number of products sold.
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FIGURE 6-5 Cumulative number of products sold needs to take into account dates before the end of the current 
one.

With the algorithm in mind, it is now time to look at the formula that solves the scenario:

[CumulativeProducts] := 
CALCULATE ( 
    SUM ( Sales[Quantity] ), 
    FILTER ( 

        ALL ( 'Date' ), 

        'Date'[Datekey] <= MAX ( 'Date'[Datekey] ) 

    ) 
)

The core of the formula is the new filter you set using CALCULATE, highlighted in bold. You have to 
focus your attention on two important points about this expression:

■■ The use of ALL ( Date ) in order to ignore the current context. In fact, FILTER iterates over the 
entire table, analyzing dates that are outside of the current filter context. In this way, it will 
return dates that are lower than or equal to the current filter (which, in our example, contains 
only May 2007). This also makes the calculation work with any other columns of the Date table 
such as Weeks or Quarters.

■■ The comparison of Date[DateKey] against MAX ( Date[DateKey] ). When you are not familiar with 
DAX, these expressions look strange. However, if you recall the exact meaning of MAX, you see 
that it means “the maximum value of DateKey in the current context.” Because the expression is 
part of CALCULATE filters, it still works in the original filter context (that is, May 2007).  Therefore, 
the maximum date will be the last day of May 2007. On the other hand, the expression 
Date[DateKey] is a column name, meaning “the value of DateKey in the current row context.” 
Because the current row context is the one created by FILTER during its iteration, the expression 
reads as: “filter all the dates that are lower than or equal to the last day of May 2007.”
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You can see the formula in action in Figure 6-6.

FIGURE 6-6 CumulativeProducts sums the values until the current date.

Although this formula computes correct values, accumulating products over time, it has an issue. 
In fact, it shows data for 2010 and later, even if there is no data in our database for 2010. In general, it 
will show data for future periods. Its behavior is correct because the cumulative number of products 
sold in the future is, with the present knowledge, the total number of sales so far. Nevertheless, you 
probably do not want to show these numbers.

You can remove the unwanted rows by replacing them with a blank. In fact, as you might already 
know, pivot tables by default hide rows where all the values are blank (same applies also to columns). 
To hide the rows you can simply use an IF function to check if there are sales in the current context, as 
in the following code:

[CumulativeProducts] := 
IF (  
    COUNTROWS ( Sales ) > 0, 
    CALCULATE ( 
        SUM ( Sales[Quantity] ), 
        FILTER ( 
            ALL ( 'Date' ), 
            'Date'[Datekey] <= MAX ( 'Date'[Datekey] ) 
        ) 
    ) 
)



136 The Defi nitive Guide to DAX

 In this measure, we rely on the fact that the else branch of IF returns a blank if it is missing. You will 
learn many more formulas similar to this one, in Chapter 7, “Time intelligence functions.” Our goal, 
here, is not that of learning a pattern, but to familiarize you with the idea of computing values over 
different fi lter contexts. 

 Using ABC (Pareto) classifi cation 

 Calculated columns are stored inside the database. This is a simple fact that you learned during the 
fi rst chapters of this book, and, at this point, it should no longer surprise you. That said, this simple 
fact opens new ways of modeling data, and in this section you look at a scenario that you can solve 
very effi ciently with calculated columns. 

 As an example of the use of calculated columns, you will learn how to solve the scenario of ABC 
analysis using DAX. ABC analysis is a variation of the Pareto principle, and it is also known as ABC/
Pareto Analysis. This is a very common technique to determine the core business of a company, in 
terms of best products or best customers. In the example, we focus on products. 

 The goal of ABC analysis is to assign to each product a category (A, B, or C) by which: 

 ■  Products in class A account for 70 percent of the profi ts. 

 ■  Products in class B account for 20 percent of the profi ts. 

 ■  Products in class C account for the remaining 10 percent of the profi ts. 

 The goal of ABC analysis is to identify which products have a signifi cant impact on the overall busi-
ness so that managers can focus their effort on them. You can fi nd more information on ABC analysis 
at http://en.wikipedia.org/wiki/ABC_analysis. 

 The ABC class of a product needs to be stored in a physical column, because you want to use it to 
perform analysis on products slicing information by class. For example, in Figure 6-7 you can see a 
simple pivot table using ABC class on the rows. 

  

 FIGURE 6-7 This simple pivot table shows an analysis of products and profi ts segmented by ABC 
class. 

 Products in class A are the core business. Products in class B are less important, but still vital for the 
company, whereas products in class C are good candidates for removal, because there are many of 
them and the profi ts are tiny when compared with the core products. 

http://en.wikipedia.org/wiki/ABC_analysis
http://en.wikipedia.org/wiki/ABC_analysis
http://en.wikipedia.org/wiki/ABC_analysis
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The definition of ABC is very simple. The implementation, on the other hand, requires some more 
efforts. Intuitively, you can compute the ABC class by sorting the products based on the total profit 
and then assign classes based on their position in the rank. The problem is that the very concept of 
sort order is missing in DAX. Thus, you need to find a way to determine the ranking position of a 
product without relying on sort. Let’s follow the steps, one at a time. The first value we need is the  
total profit for each product. You can compute it as a calculated column in the Product table very 
easily:

Product[TotalProfit] =  
CALCULATE ( 
    SUMX ( 
        Sales, 
        Sales[Quantity] * ( Sales[Unit Price] - Sales[Unit Cost] ) 
    ) 
)

This creates a new calculated column in Product that contains the total profit for each row. As we 
said earlier, there is no way to physically sort the table by this column. DAX requires you to think in 
a slightly different way: instead of sorting, you need to think in terms of sets and filters. If a  product 
 belongs to class A, for example, it means that it contributes to the first 70 percent of the sales. The 
idea is to compute, for each product, the cumulative total of sales of the product and of all the 
 products that had higher sales.

Thus, the top product’s cumulative total will include only its own sales. The second top product’s 
cumulative total will be the sum of the top product’s plus its own sales. This is for all the products. 
Once you computed the cumulative total sales for each product, it will be easy to transform it into an 
ABC class. In fact, if the ratio between the cumulative sales and the total sales is less than 70 percent, 
then it means that the product belongs to class A. If, on the other hand, it is less than 90 percent, then 
it is in class B. Otherwise, if that ratio is higher than 90 percent, the product is in class C.

This part is the only complex part of ABC calculation. It is hard not because the DAX code 
is  complex, but because it forces you to think in a different way. Let’s review the code of the 
 IncrementalProfit calculated column:

Product[IncrementalProfit] =  
VAR 
    CurrentProfit = Product[TotalProfit] 
RETURN 
    SUMX (  
        FILTER ( 
            Product, 
            Product[TotalProfit] >= CurrentProfit 
        ), 
        Product[TotalProfit] 
    )
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This calculated column is based on the previous one, TotalProfit. The inner filter retrieves the 
 products that have a total profit higher than or equal to the current one. In other words, it retrieves 
the products that made more profit than the current one (including the current one). Once FILTER 
returns this list of products, the outer SUMX sums their total profit.

Using EARLIER instead of variables
You can author the previous formula without using variables, by using the EARLIER function, as 
in the following code:

Product[IncrementalProfit] =  
SUMX (  
    FILTER ( 
        Product, 
        Product[TotalProfit] >= EARLIER (Product[TotalProfit] ) 
    ), 
    Product[TotalProfit] 
)

Generally, we prefer using variables whenever possible, because the code is much more 
readable and easy to maintain over time. However, if you use a version of DAX that does not 
support variables, you have to use the EARLIER version.

You can see the behavior of IncrementalProfit in Figure 6-8.

FIGURE 6-8 IncrementalProfit contains the profit of all the products with a profit higher than the current one.

At this point, converting the incremental profit into the ABC class is straightforward. First, you have to 
transform the incremental profit into a percentage over the total profit, by making a simple division:

Product[IncrementalPct] = 
DIVIDE ( 
    Product[IncrementalProfit],  
    SUM ( Product[TotalProfit] )  
)
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Because SUM at the denominator is outside of any CALCULATE, such a sum is the grand total of 
profits, whereas the IncrementalProfit is the running total of the row inside which DAX evaluates the 
formula. The IncrementalPct column indicates the percentage of profits that the product produces, 
along with all the higher profitability products. You can see the new column in Figure 6-9.

FIGURE 6-9 IncrementalPct transforms IncrementalProfit in a percentage against all profits.

Reading the table, you can see that the most profitable product is responsible for 3.99 percent of 
total profits. The first two products, together, make 6.52 percent, and so on.

The final step is to convert this percentage in the ABC segment, which you can accomplish with a 
very simple IF statement:

Product[ABC Class] = 
IF ( 
    Product[IncrementalPct] <= 0.7, 
    "A", 
    IF (  
        Product[IncrementalPct] <= 0.9, 
        "B", 
        "C" 
    ) 
)

Because ABC Class is a calculated column, it is stored inside the database, and you can use it on 
slicers, filters, and rows or columns to produce reports.

In case you are interested in computing the ABC class using a different measure, for example  using 
profit of a specific year, all you need to modify is the code that computes the TotalProfit column, 
 using, for example, a different filter:

Product[TotalProfit] =  
CALCULATE ( 
    SUMX ( 
        Sales, 
        Sales[Quantity] * ( Sales[Unit Price] - Sales[Unit Cost] ) 
    ), 
    Date[Calendar Year] = "CY2008" 
)
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Other variations of ABC analysis are worth mentioning here, mostly for educational  purposes. In 
fact, computing the ABC class for all the products is somewhat easy but simple variations typically 
hide much complexity.

For example, you might want to compute the ABC class for product category. The  segmentation 
we computed so far assigns to each product the ABC class considering all the products in the 
 classification. However, if you put a slicer for category, you will retrieve the product of that category 
with the global ABC class. Computing the class by category means assigning to each product its class, 
computing the values for that category only.

Thus, you will have ABC class for cellular phones, ABC class for TV sets, and so on. This kind of 
analysis lets you focus on the most important products for a specific category. We will see two 
 variations of this analysis. The first one, which is simpler, uses a denormalized column in the Product 
table Category, which you can define with the following code:

Product[Category] =  
    RELATED ( 'ProductCategory'[Category] )

The TotalProfit column definition is the same as before, because it computes the sales for a  specific 
product. The difference starts with the calculation of IncrementalProfit. In fact, to compute the 
 IncrementalProfit column, you take into account only products with the same category of the current 
one. Moreover, instead of using SUMX and FILTER, as we did in the previous example, we can now 
dare to write some more elegant DAX:

Product[IncrementalProfit] = 
CALCULATE ( 
    SUM ( Product[TotalProfit] ), 
    ALLEXCEPT ( Product, 'Product'[Category] ), 
    Product[TotalProfit] >= EARLIER ( Product[TotalProfit] ) 
)

Despite being a short expression, this formula hides a lot of complexity and it is worth some words 
of explanation.

■■ The outer CALCULATE will perform a context transition. Its internal expression (sum of total 
profit) should compute the value of total profit for the current line only. However, context 
transition does not have precedence over the additional filters of CALCULATE. Thus, the goal 
of the additional filter will be that of creating a filter context such that the inner SUM will 
 compute the incremental profit within the current category only.

■■ ALLEXCEPT removes all the filters from the table, except for the columns specified in its 
 arguments. Because we use ALLEXCEPT on Product, apart from the product category, this 
means that all the filters coming from the context transition will be removed, keeping only the 
one on ProductCategory. In other words, we are asking to compute the sum of total profit for 
all the products with the same category as the current one.
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■■ The second condition, which will be in AND with the first one, filters the products where the 
total profit is greater or equal than the current total profit, calculated with EARLIER. This looks 
strange because, as you might remember, EARLIER is useful whenever you have nested row 
contexts. In this formula, there seems to be no other row context, apart from the one created 
by the calculated column definition.

However, you might also recall that the condition: 

Product[TotalProfit] >= EARLIER ( Product[TotalProfit] )

corresponds to this table expression:

FILTER ( 
    ALL ( Product[TotalProfit] ),  
    Product[TotalProfit] >= EARLIER ( Product[TotalProfit] ) 
)

In the expanded version, it is now evident that there are two nested row contexts on Product: 
one created by FILTER and one created by the calculated column definition, hence the need to 
use EARLIER.

This formula is probably not the first one that will come to your mind to solve the problem. We 
decided to use this formula because it shows some very common and elegant patterns to describe 
the sets of data on which you want to compute values. Once you get used to this way of expressing 
formulas, the IncrementalPct definition should look straightforward:

Product[IncrementalPct] =  
DIVIDE (  
    Product[IncrementalProfit],  
    CALCULATE ( 
        SUM ( Product[TotalProfit] ), 
        ALLEXCEPT ( Product, Product[Category] ) 
    ) 
)

In order to transform the incremental profit into a percentage, we again used ALLEXCEPT as the 
denominator to compute the sum of total profit only for the products of the current category. Take 
your time to carefully read and understand these formulas; they are useful to help your mind adapt to 
the way DAX code looks and works.
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In Figure 6-10 you can see these calculated columns in the Product table.

FIGURE 6-10 Values for ABC classification are computed for each category.

You can see that, now, the incremental percentage does not grow linearly as it did with the global 
ABC class. The first product, for example, is responsible for 27.67 percent of the margin on TV and 
Video, whereas the second one is responsible for 11.58 percent of the margin of Cameras and cam-
corders.

You can easily use this ABC class to show, for a specific category, the segmentation in classes and/
or the specific products that belong to a class, as you can see in Figure 6-11.

FIGURE 6-11 Using the ABC class for category, you can see the most important products for each 
category.

If your data model is more normalized, that is, you do not have columns in Product that  contain 
the category, then the formulas tend to be a bit more complex. The reason is that you can no 
 longer filter only Product. Instead, you will need to put (or remove) the filters on related tables. As it 
 happened with the previous model, the only two columns requiring an adjustment are Incremental-
Profit and IncrementalPct, which you can see here:

Product[IncrementalProfit] = 
CALCULATE ( 
    SUM ( Product[TotalProfit] ), 
    FILTER ( 

        Product,  

        RELATED ( 'Product Category'[ProductCategoryKey] ) =  

        EARLIER ( RELATED ( 'Product Category'[ProductCategoryKey] ) )  
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    ), 
    Product[TotalProfit] >= EARLIER ( Product[TotalProfit] ) 
) 
 
Product[IncrementalPct] = 
DIVIDE (  
    Product[IncrementalProfit],  
    CALCULATE ( 
        SUM ( Product[TotalProfit] ), 
        FILTER ( 

            Product,  

            RELATED ( 'Product Category'[ProductCategoryKey] ) =  

            EARLIER ( RELATED ( 'Product Category'[ProductCategoryKey] ) )  

        ) 
    ) 
)

We highlighted the FILTER function that retrieves the product with the same category of the 
 current one. It is worth it to note the use of EARLIER ( RELATED ( ) ), which retrieves the product 
 category key using the relationship starting from the current row in the previous row context.

Let’s briefly recap what you learned with the ABC classification example:

■■ The use of calculated columns as a modeling tool. In fact, you can put very complex logic in 
calculated columns that, being computed at process time, can execute complex calculations 
without affecting the speed of the model.

■■ Because you can neither sort data, nor retrieve values of the previous row (as you would, for 
example, in Excel), there is the need to define the sets on which you want to work using sets, 
defined with FILTER.

■■ The use of ALLEXCEPT, to remove all filters from a table, apart from some columns.

■■ EARLIER is very useful whenever you want to filter one table based on the current value of a 
column of the same table. Moreover, you can also use EARLIER ( RELATED ( ) ) to grab values 
from related tables, using the previous row’s context.

ABC is an interesting example of how to produce segmentation using calculated columns. We 
suggest you study this example in depth, because it contains many interesting details that will prove 
useful later in the book and in your everyday DAX authoring.

Computing sales per day and working day

Another interesting example of how to compute values in DAX, and that comes up frequently in the 
design of analytical models, is that of performing calculations over working days. In the next chapter, 
you will learn many details about time intelligence calculations; here we want to focus on a simpler 
scenario.
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You want to produce a report such as the one shown in Figure 6-12.

FIGURE 6-12 In this pivot table you can see sales divided by days and by working days.

The numbers shown have different meanings:

■■ Sales Amount is the total sales in the period.

■■ DailySales is the average amount sold by day.

■■ WorkDailySales is the average amount sold by working day, and it accounts for nonworking 
days, which are not expected to be profitable.

Following is the definition of these measures:

[NumOfDays] := 
COUNTROWS ( Date ) 
 
[NumOfWorkingDays] := 
CALCULATE ( [NumOfDays], Date[WorkingDay] = "WorkDay" ) 
 
[Sales Amount] :=  
SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
 
[DailySales] :=  
DIVIDE ( [Sales Amount], [NumOfDays] ) 
 
[WorkDailySales] :=  
DIVIDE ( [Sales Amount], [NumOfWorkingDays] )

These measures are very simple, but they hide some problems that we have to fix. In fact, in the pre-
vious picture, we filtered only two years: 2007 and 2008. The numbers made perfect sense. If we remove 
the filter, so as to show all the years, the problem becomes evident, as you can see in Figure 6-13.
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FIGURE 6-13 The grand total of this pivot table shows wrong values.

If you look at the grand total of both DailySales and WorkDailySales, you immediately see that the 
numbers are wrong. In fact, they cannot be an average of the values shown in the rows. The problem 
should be easy to understand, because in the pivot table we are showing the number of days and the 
number of working days. At the grand total, we are accounting for periods in which there are no sales 
and, because the number of days is at the denominator, the final value is lower than expected.

Instead of showing you the correct formula immediately, in this scenario we prefer to show you 
several trials, in order to have the opportunity of looking at the effects of choosing the wrong 
 solution to the problem. At the end, of course, we will provide the correct formula.

Because the two measures share the same issue, let us focus on DailySales and, when we have  
corrected this formula, we will bring the same update to NumOfWorkingDays.

A first trial could be clearing the number of days when there are no sales. Thus, you might try this 
new formula for NumOfDays:

[NumOfDays] := 
IF ( 
    [Sales Amount] > 0,  
    COUNTROWS ( Date ) 
)
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This update will make the pivot table look better, because rows with no sales will disappear from 
it, but it does not fix the grand total. Thus, it is not only wrong, but also misleading, because it makes 
the problem less evident, as you can see in Figure 6-14.

FIGURE 6-14 Rows of periods without sales disappeared, but the grand total is still wrong.

As you can see, the grand total is still wrong, even if all the rows with no sales disappeared from 
the pivot table. They disappeared because we set NumOfDays to Blank, hence the pivot table hides 
the rows. At the grand total, on the other hand, the value of sales is greater than zero, so our formula 
still takes into account all of the days. The first trial is clearly going in the wrong direction.

This measure is suffering from a problem that has a clear pattern: we call it “granularity mismatch.” 
If you look carefully at the numbers, they are correct at the month level and at the year level; they 
are wrong only at the grand total. The reason is that, for some years, there are no sales. We do not 
want to count those years. Thus, we say that at year granularity the numbers are correct, whereas 
at the grand total granularity the numbers are wrong. The issue, here, is that we need to compute 
the  formula at the correct granularity, and then consolidate the results in a single value. You cannot 
 compute this kind of measure at higher granularities.

This raises a problem: What is the correct granularity? It may be the year, the month, the day. It all 
depends on the business rules, and it is something you need to define in the business rules, so as to 
set the correct expectations. While we are looking at errors at the grand total, but we are still happy 
with the yearly values, we can set the granularity at the year level, using this new formula:

[DailySales] := 
DIVIDE (  
    [Sales Amount],  
    SUMX ( 
        VALUES ( 'Date'[Calendar Year] ),  
        IF ( 
            [Sales Amount] > 0,  
            [NumOfDays]  
        ) 
    ) 
)
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You can see that the denominator now iterates over the years and, for each year, it checks whether 
there are sales in that specific year. If sales are present, then the IF function returns the number of 
days; otherwise it returns a BLANK and does not contribute to the total number of the denominator.

Note It is worthwhile to remember that the two measures Sales Amount and NumOfDays 
work correctly because there is a CALCULATE around them, automatically inserted by 
DAX. If that CALCULATE was not there, the formula would not work correctly. You can 
easily check it by replacing, in the previous code, Sales Amount and NumOfDays with 
their  corresponding code in the measure definition. You will see wrong results, because a 
CALCULATE and the associated context transition will be missing.

In Figure 6-15, you can see that the result is now correct, even at the grand total.

FIGURE 6-15 Adding the iteration over the years fixed the grand total.

This measure is not yet final. In fact, in the database we use for these tests, all the years are 
completed, meaning that there is data from January 1 up to December 31. In the real world, you are 
likely to produce reports for years which are not completely filled with data. For example, when you 
produce a report in August you have data up to August, and no information about future months.

In such a case, the measure will still report incorrect numbers. In the report in Figure 6-16 we have 
removed sales after August 8, 2009.
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FIGURE 6-16 When a year is not complete, the measure still reports incorrect results.

You can see that August is the last month (and, by the way, it is incomplete) and all the totals 
above it (that is, quarter, year, and grand total) are reporting wrong numbers. The reason for this 
 behavior is that we (intentionally) used the wrong granularity in our code. The correct granularity is 
not the year; it is the month. We used the year because it seemed correct at the year level but, even if 
we fixed the formula for the grand total, we are still experiencing the same issue at the year level, as 
soon as some months in the year are missing.

Thus, the correct formulation of the measure needs to account for both years and months, as in:

[DailySales] :=  
DIVIDE ( 
    [Sales Amount],  
    SUMX ( 
        VALUES ( Date[Calendar Year] ), 
        SUMX (  
            VALUES ( Date[Month] ), 
            IF (  
                [Sales Amount] > 0, 
                [NumOfDays]  
            ) 
        ) 
    ) 
)

Now the denominator performs two nested loops, on years and months, and checks, for each pair 
(year, month), if there are sales in that month of the year, correctly accumulating days for only the 
months where there are sales. You can see the result in Figure 6-17.
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FIGURE 6-17 Once granularity is correctly set, the formula reports correct numbers.

A more elegant formulation for the same expression can be the following one, which uses 
 CROSSJOIN (you will learn CROSSJOIN in Chapter 9, “Advanced table functions”). 

[DailySales] :=  
DIVIDE ( 
    [Sales Amount],  
    SUMX ( 
        CROSSJOIN ( 
            VALUES ( Date[Calendar Year] ), 
            VALUES ( Date[Month] ) 
        ), 
        IF (  
            [Sales Amount] > 0, 
            [NumOfDays]  
        ) 
    ) 
)

The granularity mismatch issue appears often in a model design. There are measures that you can 
compute only at a defined granularity, and if this is the case you need to iterate over the columns that 
define the granularity and finally aggregate the partial results. We suggest you study this example in 
detail, because it will become useful in several data models.

It is worth it to note that there is still a small issue on the last month. In fact, the number of days 
reported by NumOfDays does not take into account that the month might be incomplete. In fact, if 
you produce a report on August 15, you should not take into account days in the future, for which 
sales are clearly not present. If you want to produce a correct result also in the last month, you should 
further restrict the Date table by removing dates which come after the last sale, as in the following 
example:
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[DailySalesCorrected] := 
CALCULATE ( 
    DIVIDE ( 
        [Sales Amount], 
        SUMX ( 
            CROSSJOIN ( 
                VALUES ( Date[Calendar Year] ), 
                VALUES ( Date[Month] ) 
            ), 
            IF ( [Sales Amount] > 0, [NumOfDays] ) 
        ) 
    ), 
    FILTER ( 'Date', 'Date'[Date] <= MAX ( Sales[OrderDate] ) ) 
)

Computing differences in working days

The next example we want to show is a very simple one, yet it is very interesting because it shows a 
way to compute values, using DAX, which is not usual in other analytical engines, such as Analysis 
 Services Multidimensional.

In the fact table, for each order, you have two dates:

■■ OrderDate is the date at which the order was placed.

■■ ShipDate is the date at which the order was shipped.

You might be interested in computing how many days it takes to handle an order and this is very 
easy to do, thanks to the way DAX stores dates. In fact, it is enough to perform a simple  subtraction 
ShipDate – OrderDate to compute the number of days. With that said, a much more interesting 
number to compute is the number of working days between the two dates; that is, during holidays or 
nonworking days, when the company does not work. Thus, it is much fairer to compute the time to 
process an order using the working days, instead of the nonworking days.

This proves to be a bit more challenging than a simple subtraction. As in the previous example, the 
calendar table contains a column that indicates whether a specific day is a working day or not. You 
need to find a way to use that column to compute the difference between the two dates, expressed in 
working days.

In the data model, the Calendar table is useful to slice orders by order date, year, and so on. The 
relationship between the Calendar and the fact table is based on the order date. In order to solve this 
scenario, you need to stop thinking of the Calendar table as a dimension (something used only to 
filter data) and think that the Calendar table is just a table. You can use it to compute numbers in a 
different way other than if it was only a dimension.
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For example, you can count the number of rows in the Calendar table that are between OrderDate 
and ShipDate and that, at the same time, are working days. If you express the algorithm in this way, it 
translates to DAX very quickly with a calculated column:

Sales[WorkinDaysHandling] = 
COUNTROWS ( 
    FILTER ( 
        Date, 
        AND ( 
            AND ( 
                Date[Date] >= Sales[OrderDate], 
                Date[Date] <= Sales[ShipDate] 
            ), 
            Date[Working Day] = "WorkDay" 
        ) 
    ) 
)

One way to express the same algorithm which is more elegant, is as follows:

Sales[WorkinDaysHandling] = 
CALCULATE ( 
    COUNTROWS ( Date ), 
    ALL ( Date ), 
    DATESBETWEEN ( Date[Date], Sales[OrderDate], Sales[ShipDate] ), 
    Date[WorkingDay] = "WorkDay" 
)

This latter formulation makes use of the DATESBETWEEN function, which you will learn in the next 
chapter. As of now, it is enough to say that the DATESBETWEEN function returns a table with all the 
dates between the boundaries you pass as parameters. The result being a table, you can use it as a 
filter to CALCULATE to change the existing selection over time.

Computing static moving averages

Moving averages are another common pattern that you can solve in many ways using DAX. In this 
section, we will provide an example of how to compute moving averages in a static way. As an 
 example, you use a stock database that contains prices for some stocks. Using this data model, you 
want to compute the average price of the last 50 and 200 periods. In the stock market, a common 
trading technique is to look at when the faster-moving average (over 50 periods) crosses the slower 
one (200 periods) to determine the buy and sell points.

This example has the further requirement that, because of holidays and holes in the database (as 
in days where the price of a stock is not determined), 50 periods do not correspond to a fixed number 
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of days. You want to account for holes in the database and always ensure that the average covers 50 
points where the stock has a defined price.

The data model to use for this example is a very simple one, containing only a Calendar table and 
another table holding the close price of the stock, which you can see in Figure 6-18, where there are 
no prices for January 6–7.

FIGURE 6-18 Stock prices contain several holes, for holidays and other nonworking days.

In order to compute the averages, you can use a calculated column. The main reason is that 
you want to show this average on a chart and this means that DAX will need to compute hundreds 
of  values to plot the lines. Because the average over many points might be a slow operation, you 
 consolidate the calculation in a calculated column, in order to generate a faster chart.

You need to compute the dates to use as boundaries for the moving average, and these dates 
might be different from stock to stock. The first step to solve the problem is to assign to each row in 
the table a number that monotonically increases for each stock. Thus, you assign the number 1 to the 
first price of Microsoft and you do the same for Apple. The number 2 will be for the second price, and 
so on. The result is visible in Figure 6-19.

FIGURE 6-19 The DayNumber column is the index of the price for the stock.

To compute this number, you simply count, for each row, the number of rows with the same stock 
as the current row and with an earlier date:
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Prices[DayNumber] = 
COUNTROWS ( 
    FILTER ( 
        Prices, 
        AND ( 
            Prices[Date] <= EARLIER ( Prices[Date] ), 
            Prices[Stock] = EARLIER ( Prices[Stock] ) 
        ) 
    ) 
)

The second step in solving the scenario is computing the moving average. Now that each row has 
an index, it is very easy to determine the boundaries of the 50 or 200 periods. In fact, it is enough to 
take the current DayNumber, subtract the number of periods you want to consider, and then take the 
date of the determined row.

You can use two different techniques to compute the column. The first one is easier to understand, 
even if the code is not optimal and less elegant than the second solution. Nevertheless, its biggest 
 advantage is that it follows the algorithm outlined previously in a very simple way:

Prices[MovingAverage200] = 
CALCULATE ( 
    AVERAGE ( Prices[Close] ), 
    FILTER ( 
        ALL ( Prices[Date] ), 
        AND ( 
            Prices[Date] 
                >= LOOKUPVALUE ( 
                    Prices[Date], 
                    Prices[Stock], EARLIER ( Prices[Stock] ), 
                    Prices[DayNumber], EARLIER ( Prices[DayNumber] ) – 200 
                ), 
            Prices[Date] <= EARLIER ( Prices[Date] ) 
        ) 
    ), 
    ALLEXCEPT ( Prices, Prices[Stock] ) 
)

As you can see, the core of the formula is in the innermost condition, which filters the dates 
 between the current one and the one of DayNumber – 200. The outer ALLEXCEPT is required to 
 restrict the calculation to only the rows of the same stock.
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The second version of the formula is a better solution: 

Prices[MovingAverage200] =
CALCULATE (
    CALCULATE (
        AVERAGE ( Prices[Close] ),
        Prices[DayNumber] > VALUES ( Prices[DayNumber] ) - 200,
        Prices[DayNumber] <= VALUES ( Prices[DayNumber] )
   ),
   ALLEXCEPT ( Prices, Prices[Stock], Prices[DayNumber] )
) 

This version of the moving average uses two nested CALCULATE. The outer CALCULATE uses 
ALLEXCEPT to fi x both the stock and the day number in the fi lter context. Once these two columns 
are set, you can safely use VALUES to retrieve their value, because you know that there will be a 
single value for both, thanks to the context transition. The inner CALCULATE replaces the existing 
fi lter on DayNumber (set by the outer CALCULATE) with a new fi lter that shows the last 200 values 
of DayNumber. Thus, the outer CALCULATE sets a fi lter on DayNumber that the inner CALCULATE 
immediately removes. The Stock fi lter, on the other hand, is set in the outer CALCULATE and is never 
removed, so that it is still effective when DAX computes the average. 

Once the calculated columns for MovingAverage200 and MovingAverage50 are set in the model, 
you can easily defi ne measures based on them: 

[AVG 200]   := AVERAGE ( Prices[MovingAverage200] )
[AVG 50]    := AVERAGE ( Prices[MovingAverage50] )
[AVG Close] := AVERAGE ( Prices[Close] ) 

Finally you use the measures to show a chart that indicates, for each stock, the buy and sell points 
at the intersection of the moving averages, as you can see in Figure 6-20. 

FIGURE 6-20 Moving averages are useful to show the direction of a stock over time. 

Prices[MovingAverage200] =
CALCULATE (
    CALCULATE (
        AVERAGE ( Prices[Close] ),
        Prices[DayNumber] > VALUES ( Prices[DayNumber] ) - 200,
        Prices[DayNumber] <= VALUES ( Prices[DayNumber] )
   ),
   ALLEXCEPT ( Prices, Prices[Stock], Prices[DayNumber] )
)

[AVG 200]   := AVERAGE ( Prices[MovingAverage200] )
[AVG 50]    := AVERAGE ( Prices[MovingAverage50] )
[AVG Close] := AVERAGE ( Prices[Close] )
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C H A P T E R  7

Time intelligence calculations

Almost any data model includes some sort of calculation related to dates. DAX offers several 
 functions to simplify these calculations, which work fine if the underlying data model respects 

some specific requirements.

In this chapter, you will learn how to implement common date-related calculations such as year-to-
date, year-over-year, and comparisons over years, including nonadditive and semi-additive measures. 
You will learn how to compute both using specific time intelligence functions, and custom DAX code 
that is required for nonstandard calendars and week-based calculations.

Introduction to time intelligence

Typically, your data model will contain a calendar table. In fact, it is usually better to aggregate data 
by year and month using columns of a calendar table (containing one row for each day) instead 
of  extracting the date parts from a single column of type date or datetime in calculated columns. 
There are a few reasons for this choice. You obtain a model wherein all date attributes are included 
in a separate table making it easier to browse data using a generic client, and you can use special 
DAX functions that perform time intelligence calculations. Moreover, most of the time intelligence 
 functions require a separate Date table to work correctly.

Defining a separate Date table is a common practice in any star schema. You should use this 
 technique for any model, even if you do not have a star schema as a starting point. Whenever you 
have a date column you want to analyze, you should create a relationship with a Date table. If you 
have multiple date columns in a table, you can create multiple inactive relationships to the Date table 
in addition to a single active one, as shown in the Sales table in Figure 7-1.

You can also choose to create a different Date table for each date column. Later in this chapter, 
we will discuss these two alternatives. In any case, you should always create at least one Date table in 
your model whenever you have one or more dates in your data.
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FIGURE 7-1 The Sales table has one active and two inactive relationships with the Date table.

Building a Date table

The first step for handling date calculation in a data model is to create a Date table, which simplifies 
any date-related calculation. Because of its importance, you should be careful when you create a Date 
table. In this section, you learn the best practices regarding the creation these kind of tables.

First, you need a data source that contains at least one column with all days included in the period 
of time you want to analyze. For example, if the minimum and maximum dates contained in sales data 
are July 3, 2001, and July 27, 2004, respectively, the range of dates you should consider is between 
January 1, 2001, and December 31, 2004. In this way, you have all the days for all the years containing 
sales data.

Important Every year in a Date table must contain all the days for that year; otherwise, 
time intelligence functions will not work properly.

After you have a list of dates, you can choose to create other columns, such as Day, Month, and 
Year, and calculated columns by using DAX expressions. However, it is best to move these simple 
 calculations in the data source reducing the use of calculated columns only when strictly needed. 
In this way, you obtain a better memory use for the imported columns, because imported columns 
result in better storage compression when compared to calculated columns.

Next, the table has to be marked as a Date table. This defines metadata used by clients and by the 
DAX calculation engine when it evaluates a time intelligence function. In case you have unexpected 
results from one of these functions, always check that the Date table has all the days for each year, 
and that it is marked as a Date table in the data model.

If you are building a model by using a star schema as a data source, you will probably find an 
existing Date table and use it (in Figure 7-2 you can see an example of the Date table used in many 
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examples of this book). If you do not have such a table in your data source and you cannot create one 
there, you can generate one using the CALENDAR and CALENDARAUTO functions.

FIGURE 7-2 The Date table included in a star schema already has the columns required.

Note Because the term Date is a reserved keyword in DAX (it corresponds to the function 
DATE), in previous versions of the DAX language you must embed the Date name in quotes 
when referring to the table name, even if there are no spaces or special characters in that 
name. You might prefer using Dates instead of Date as the name of the table to avoid this 
requirement. However, it is better to be consistent in table names, so if you use the singu-
lar form for all the other table names, it is better to keep it singular for the Date table, too.

Using CALENDAR and CALENDARAUTO
If you do not have a Date table in your data source, you can create such a table directly in the data 
model by adding calculated columns to a table built by using either CALENDAR or CALENDARAUTO. 
These functions return a table of one column of Date data type. For example, CALENDARAUTO 
 automatically finds the minimum and maximum year of all the date columns included across the 
whole data model, and generates all the dates included between these years.
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Note Not all the products supporting DAX allow you to create tables in the data model 
using a DAX expression. Power Pivot for Microsoft Excel does not support that in any 
 version. Such a feature might appear in future versions of Power BI and Analysis Services 
Tabular.

CALENDARAUTO scans all of the date columns in your model, with the exception of calculated 
columns, which are not considered. For example, if you use CALENDARAUTO to create a Date table in 
a model that contains sales between 2007 and 2011 and has an AvailableForSaleDate column in the 
Product table starting in 2004, you will get all the days between January 1, 2004, and December 31, 
2011. However, if the data model contains other date columns, they affect the date range considered 
by CALENDARAUTO. For example, in Figure 7-3 you can see that the range starts on January 1, 1910, 
because the data model includes a Customer table with a Birth Date column, and one customer was 
born in 1910.

FIGURE 7-3 The Date table obtained with CALENDARAUTO has a Date column and includes all the days of the 
years available in date columns of tables in the data model.

You can specify a month number as an argument to CALENDARAUTO. If provided, it  generates 
dates from the first day of the following months to the last day of the month indicated as an 
 argument. This is useful when you have a fiscal year that ends in a month other than December. For 
example, the following expression generates a Date table for fiscal year starting on July 1 and ending 
on June 30, as you can see in Figure 7-4:

CALENDARAUTO ( 6 )
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FIGURE 7-4 The result of CALENDARAUTO receiving 6 as an argument starts from July 1, 1910.

As you have seen, CALENDARAUTO might consider date columns you want to ignore. In the previous 
examples, the birth date in Customer table extended the range of years even if you will never relate such a 
column to the Date table. In similar cases, you might want to use the CALENDAR function, which has two 
arguments: the start date and the end date. The following expression generates a date column covering all 
the years used in the Sales table, and its result is shown in Figure 7-5.

CALENDAR (  
    DATE ( YEAR ( MIN ( Sales[Order Date] ) ), 1, 1 ), 
    DATE ( YEAR ( MAX ( Sales[Order Date] ) ), 12, 31 ) 
)

FIGURE 7-5 The result of CALENDAR starts from January 1, 2007, which is the year of the first date in the Order 
Date column of the Sales table.
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Once you have a date column, you have to create other columns for the Date table using DAX 
expressions. Following is a list of commonly used expressions for this scope, with an example of their 
results in Figure 7-6:

'Date'[Year] = YEAR ( 'Date'[Date] ) 
'Date'[Quarter Number] = INT ( FORMAT ( [Date], "q") ) 
'Date'[Quarter] = "Q" & INT ( FORMAT ( [Date], "q") ) 
'Date'[Month Number] = MONTH ( 'Date'[Date] ) 
'Date'[Month] = FORMAT ( 'Date'[Date], "mmmm" ) 
'Date'[Week Day Number] = WEEKDAY ( 'Date'[Date] ) 
'Date'[Week Day] = FORMAT ( 'Date'[Date], "dddd" ) 
'Date'[Year Month Number] = YEAR ( 'Date'[Date] ) * 100 + MONTH ( 'Date'[Date] ) 
'Date'[Year Month] = FORMAT ( 'Date'[Date], "mmmm" ) & " " & YEAR ( 'Date'[Date] ) 
'Date'[Year Quarter Number] = YEAR ( 'Date'[Date] ) * 100 + INT ( FORMAT ( [Date], "q") ) 
'Date'[Year Quarter] = "Q" & FORMAT ( [Date], "q") & "-" & YEAR ( 'Date'[Date] )

FIGURE 7-6 The columns added using DAX expressions complete the Date table.

Important It is a best practice to create natural hierarchies for performance reasons. 
Hierarchies in a Date table should use columns that have unique values regardless of the 
parent in the hierarchy. For this reason, you should use the Year Month and Year Quarter 
columns as levels of hierarchies such as Year-Quarter-Month-Day. You have to sort these 
columns by using the Year Month Number and Year Quarter Number columns,  respectively. 
In order to enable a pivot table with years on columns and quarters or months on rows, 
you can make the Quarter and Month columns visible, sorting them by using hidden 
 columns Quarter Number and Month Number, respectively.

Working with multiple dates

You can easily relate every table that has a single date column to the Date table. However, when you 
have multiple date columns in the same table, you have to consider two design options: creating mul-
tiple relationships to the same Date table, or creating several Date tables, creating a relationship with 
a different Date table for each date column. Choosing between the two options is not simply a design 
decision because it also affects the DAX code you have to write in your expressions and also the kind 
of analysis that is possible later on.
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Consider a Sales table having the following three dates for every sales transaction:

■■ Order Date: the date when an order has been received.

■■ Due Date: the date when the order was expected to be delivered.

■■ Delivery Date: the actual delivery date.

In the next sections, you will see how to handle these dates using the two design options and how 
to write the required DAX code.

Handling multiple relationships to the Date table
Even if you can create multiple relationships between two tables, only one can be active at a time. The 
remaining one can be used by DAX formulas calling USERELATIONSHIP in CALCULATE or CALCULA-
TETABLE. This affects every measure that has to filter the time by using a date column other than the 
one used by the active relationship.

For example, consider the data model shown in Figure 7-7. There are three different relationships 
between Sales and Date, and only the one between Sales[OrderDateKey] and Date[DateKey] is active.

FIGURE 7-7 The active relationship connects the OrderDateKey column in the Sales table to the DateKey column 
in the Date table.

You can create two measures for sales amount, based on different usage of the selection on the 
Date table. 

[Ordered Amount] :=  
SUMX ( Sales, Sales[Unit Price] * Sales[Quantity] ) 
 
[Delivered Amount] :=  
CALCULATE (  
    SUMX ( Sales, Sales[Unit Price] * Sales[Quantity] ), 
    USERELATIONSHIP ( Sales[DeliveryDateKey], 'Date'[DateKey] ) 
)
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The first measure, Ordered Amount, uses the active relationship between Sales and Date, based 
on Sales[OrderDateKey]. The second measure, Delivered Amount, executes the same DAX  expression 
 using the relationship based on Sales[DeliveryDateKey]. USERELATIONSHIP changes the active 
 relationship between Sales and Date in the filter context defined by CALCULATE. You can see in  
Figure 7-8 an example of a report using these measures.

FIGURE 7-8 The Ordered Amount and Delivered Amount measures are different for each period, because the date 
of delivery might be in the following month.

Using multiple relationships with a single Date table increases the number of measures in the data 
model, but you can also define only the measures that are meaningful with certain dates. If you do 
not want to handle a high number of measures, or if you want to give complete freedom of using any 
measure with any Date, then you might consider implementing multiple Date tables, as explained in 
the following section. 

Handling multiple Date tables
Instead of duplicating every measure, the alternative approach is that you can show the user different 
Date tables, one for each date you have, so that every measure aggregates data according to the date 
selected by the end user (or used in a query to the data model). From a maintenance point of view, 
this might seem a better solution because it lowers the number of measures, and it allows selecting 
sales that intersect two months. For example, you can easily see the total number of orders received 
in January and delivered in February of the same year. This approach is also known as the role-playing 
dimension approach. The Date table is a dimension that you duplicate once for each relationship (that 
is, once for each of its roles). In reality, these two options (using inactive relationships and duplicating 
the Date table) are complementary to each other, as you will realize after the example in Figure 7-9, 
which shows how to create duplicated Date tables in the model.

To create a Delivery Date table and a Due Date table, you add the same table twice in the data 
model. You have to rename at least the table name when doing so. You can see in Figure 7-9 the data 
model containing three different Date tables related to Sales.
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 FIGURE 7-9 Each date column in Sales has a relationship with a different Date table (Due, Order, Delivery). 

 Important Because you must physically duplicate the Date table, it is a best practice to 
create different views in the data source, one for each “role dimension,” so that each Date 
table has different column names and different content. For example, instead of having 
the same column Year in all Date tables, it is better if you use Order Year, Delivery Year, and 
Due Year, so that it will be easier to navigate into a pivot table. This is also visible in Figure 7-9. 
Furthermore, it is also a good idea to change the content; for instance, by placing a prefi x for 
the year that depends on the role of the date. As an example, you might use OY prefi x for 
the order year and DY for the Delivery Year, so that looking at a report containing OY 2014 
it is clear that it refers to order date, whereas DY 2014 refers to delivery date. 

 Figure 7-10 shows an example of the resulting pivot table using multiple date tables. You can see 
that renaming column names and content is important to produce a readable result. In order to avoid 
confusion between order and delivery dates, we used OY as a prefi x for order years, and DY as a 
 prefi x for delivery years. 

  
 FIGURE 7-10 The different prefi xes for Year help the user see which is the order year (OY) and which is the 
 delivery year (DY). 
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If you do not rename columns and content of a table imported multiple times, you will obtain an 
almost unreadable result, as the one shown in Figure 7-11. 

FIGURE 7-11 If you import the same table twice in the data model, the only difference is the table name. Column 
names (for example, Calendar Year) and their content (for example, CY 2007, CY 2008, CY 2009) are identical.

Using multiple Date tables, you do not have to change the DAX measures, so you have lower 
 maintenance involved. However, it would be wrong to choose a single method, either  duplicating 
tables or using multiple relationships, in handling multiple Date tables. They are both useful for 
 different needs, and your choice should correspond to existing requirements.

Introduction to time intelligence

Having one or more Date tables in your model is an important prerequisite to perform  date-based 
calculations such as aggregation and comparison. DAX provides a number of time  intelligence 
 functions that simplify such calculations. In reality, you can rewrite all of these special functions by 
 using standard DAX functions such as CALCULATE, CALCULATETABLE, FILTER, and VALUES. There 
could be different reasons for doing so: A model using DirectQuery might not support the use of DAX 
time intelligence functions, or you might have a nonstandard calendar that existing  specialized DAX 
functions would not handle correctly.

Before moving forward, here is a general explanation of how time intelligence functions work. 
Consider a simple measure: its evaluation happens in the current filter context.

Sales[Sales Amount] := SUMX ( Sales, Sales[Unit Price] * Sales[Quantity] )

The Sales table has a relationship with the Date table, so the current selection of Date determines 
the filter over Sales. The filter context, if propagated, uses a list of dates, which are the granularity 
defined by the relationship. If you want to calculate the year-to-date value, you can simply extend the 
selection of dates, including all the days since the beginning of the year. You can obtain this using a 
filter argument in a CALCULATE function, which returns the year-to-date up to February 2008, as you 
can see in Figure 7-12.
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[Sales Amount Jan-Feb 2008] := 
CALCULATE ( 
    SUMX ( Sales, Sales[Unit Price] * Sales[Quantity] ), 
    FILTER ( 
        ALL ( 'Date' ), 
        AND ( 
            'Date'[Date] >= DATE ( 2008, 1, 1 ) 
            'Date'[Date] <= DATE ( 2008, 2, 29 ) 
        ) 
    ) 
)

FIGURE 7-12 The measure Sales Amount Jan-Feb 2008 always displays the sum of January and February of year 
2008, regardless of the date range selection on rows.

The filter argument of CALCULATE specifies a list of days that have to be included in the filter 
context, replacing any existing selection of the Date table. You might rewrite the previous example by 
iterating in the filter only the values in the ‘Date’[Date] column, instead of the entire table. In reality 
this does not change the cardinality of the operation (so we can expect the same performance), but it 
is important to understand this behavior, because it is the one used by the time intelligence functions 
in DAX.

Consider the following version of the previous measure: the only difference is that FILTER iterates 
the values in Date[Date], instead of iterating the entire Date table:

[Sales Amount Jan-Feb 2008 Single Column] := 
CALCULATE ( 
    SUMX ( Sales, Sales[Unit Price] * Sales[Quantity] ), 
    FILTER ( 
        ALL ( 'Date'[Date] ), 
        AND ( 
            'Date'[Date] >= DATE ( 2008, 1, 1 ), 
            'Date'[Date] <= DATE ( 2008, 2, 29 ) 
        ) 
    ) 
)

FILTER returns a table that has only one column in this case. Thus, it replaces only that column 
in the filter context, keeping the other filters active. For example, if you have a selection of years 
and/or months in a pivot table, these filters will be still active and the resulting filter context would 
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include them. If the relationship between Sales and Date uses a datetime data type column that you 
replace in the fi lter context, then DAX ignores all the fi lters in other columns of the Date table. 

 Note Every time you apply a fi lter on the column that defi nes a one-to-many  relationship 
with another table and such a column is of datetime data type, DAX automatically 
 propagates the fi lter to the other table and  overrides any other fi lter on other columns of 
the same Lookup table. 

 Using Mark as Date Table 
 Applying a fi lter on the date column of a calendar table works well if the date column also defi nes the 
relationship. However, you might have a relationship based on another column. Many existing Date tables 
could have an integer column such as the Date[DateKey] of our example, as you can see in Figure 7-13. 

  
 FIGURE 7-13 The relationship between Sales and Date tables previously used the Date column (of date data type), 
and now uses the DateKey column, which contains an integer value in the format YYYYMMDD (for example, 
20080120 stands for January 20, 2008). 

 In this case, the Mark as Date Table feature has to be active in the Date table, otherwise the fi lter 
over the Date[DateKey] column does not override other existing fi lters active on the Date table. For 
example, consider the pivot table in Figure 7-14: The measure Sales Amount Jan-Feb 2008 Single 
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Column does not work, because it always returns the same value as the original Sale Amount measure, 
just filtering only data in January and February 2008 (returning blank if the selection does not include 
those dates).

FIGURE 7-14 The Sales Amount Jan-Feb 2008 Single Column measure does not extend the selection to days 
 outside the row selection in the report, because it does not replace existing filters on years and months.

The reason for such behavior is that you have other filters active on the Date table, depending on 
the content you have on the rows of the pivot table. For example, the rows for the months January 
and February only show the value of each single month instead of the sum of both, whereas other 
months return a blank value instead of the same value duplicate in any date selection, as it was the 
case in Figure 7-12. If you enable the Mark as Date Table feature specifying that the date column is 
the ‘Date’[Date] column, then DAX automatically removes the filter from all the other columns of the 
Date table whenever a filter argument of a CALCULATE or CALCULATETABLE function includes a filter 
over that date column. (Doing that, you will obtain the same result you have seen in Figure 7-12.)

Consider the following template formula:

CALCULATE ( 
    <expr>, 
    'Date'[Date] >= DATE ( 2008, 1, 1 ) && 'Date'[Date] <= DATE ( 2008, 2, 29 ), 
    <filter2>, 
    ... 
    <filterN> 
)

When any of the filter arguments include the date column of a table marked as a Date table, DAX 
removes any previous filter from that same table by using a technique corresponding to this DAX 
function:

CALCULATE ( 
    <expr>, 
    'Date'[Date] >= DATE ( 2008, 1, 1 ) && 'Date'[Date] <= DATE ( 2008, 2, 29 ), 
    <filter2>, 
    ... 
    <filterN>, 
    ALL ( 'Date' ) 
)
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The time intelligence functions work properly only if you use the Mark as Date Table feature in 
the correct way. If you write a time-related measure in a model that does not have the Mark as Date 
Table setting activated on the Date table, then you can place the ALL ( ‘Date’ ) function in the filter 
arguments of CALCULATE in order to remove the filters on other columns of the Date table that could 
affect the required result.

If you write a filter argument that iterates the entire Date table and not only one column, then 
the new filter over Date overrides any existing filter context on the Date table, and the ALL ( ‘Date’ ) 
 function is not required. For example, you can write the previous template formula in this way, so that 
it will always work even if the Mark as Date Table setting is not active on the Date table:

CALCULATE ( 
    <expr>, 
    FILTER (  

        ALL ( 'Date' ), 
        'Date'[Date] >= DATE ( 2008, 1, 1 ) && 'Date'[Date] <= DATE ( 2008, 2, 29 ), 
    ), 
    <filter2>, 
    ... 
    <filterN> 
)

Aggregating and comparing over time

DAX provides a number of functions that simplify the aggregation and the comparison of data 
over time. For example, you might want to calculate the aggregated value of a measure from the 
 beginning of the year up to the period you are selecting (also known as year-to-date  aggregation). 
You might also want to compare the sales of this year with the sales of the previous year (also 
known as year-over-year). In the next sections, you see the functions available in DAX to implement 
 measures for these and other scenarios.

Note The time intelligence functions in DAX always apply a filter condition on the date 
column of a Date table. You can find some examples of how to write these calculations in 
DAX later in this book, and a complete list of all the time intelligence features rewritten in 
plain DAX at http://www.daxpatterns.com/time-patterns/.

Year-to-date, quarter-to-date, month-to-date
The calculations of year-to-date (YTD), quarter-to-date (QTD), and month-to-date (MTD) are all very 
similar. Month-to-date is meaningful only when you are looking at data at the day level, whereas 
you will often use year-to-date and quarter-to-date calculations to look at data at the month level. 

http://www.daxpatterns.com/time-patterns/
http://www.daxpatterns.com/time-patterns/
http://www.daxpatterns.com/time-patterns/
http://www.daxpatterns.com/time-patterns/
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For example, in Figure 7-15, you can see the measure Sales Amount aggregated by year, quarter, and 
month.  

 
FIGURE 7-15 The Sales Amount measure is aggregated by the corresponding period in each row. 

You can calculate the year-to-date value of Sales for each month by modifying the fi lter context 
on dates for a range that starts on January 1 and ends on the month corresponding to the calculated 
cell, as in the following DAX formula: 

[YTD Sales] := CALCULATE ( [Sales Amount], DATESYTD( 'Date'[Date] ) ) 

DATESYTD is a function that returns a list of all the dates from the beginning of the year until the 
last date included in the current fi lter context. This list is used by CALCULATE to set the new fi lter for 
the Sales Amount calculation. 

Tip For example, when the YTD Sales measure is evaluated for the March 2007 cell, 
DATESYTD corresponds to a fi lter over the date column similar to the following code. 

[YTD Sales] := 
CALCULATE ( 
    [Sales Amount], 
    FILTER ( 
        ALL ( 'Date'[Date] ),
        AND ( 
            'Date'[Date] >= DATE ( 2007,  1,  1 ),
            'Date'[Date] <= DATE ( 2007,  3, 31 )
        ) 
    )
) 

You will fi nd a more detailed explanation of the real underlying DAX code for the 
DATESYTD function in the section “Understanding periods to date,” later in this chapter. 

[YTD Sales] := CALCULATE ( [Sales Amount], DATESYTD( 'Date'[Date] ) )
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You can see the YTD Sales measure in action in Figure 7-16.

FIGURE 7-16 The YTD Sales measure is side by side with the regular Sales Amount measure.

This approach requires you to use the CALCULATE function, but because this pattern (using 
 CALCULATE and DATESYTD) is very common, DAX offers a function to simplify (and make more 
 readable) the syntax of YTD calculation: TOTALYTD. In the following code, you can see the same 
 expression using TOTALYTD:

[YTD Sales] := TOTALYTD ( [Sales Amount] , 'Date'[Date] )

The syntax requires the expression to aggregate as the first parameter and the date column as the 
second parameter. The behavior is identical to the original measure, but the name TOTALYTD makes 
the behavior of the formula clearer. However, it is good to learn the behavior of the original CALCU-
LATE syntax, too, because it lets you perform more advanced calculations, which you will see later in 
this chapter.

Similar to year-to-date, you can also define quarter-to-date and month-to-date with built-in 
 functions, as in these measures:

[QTD Sales] := TOTALQTD ( [Sales Amount], 'Date'[Date] ) 
[QTD Sales] := CALCULATE ( [Sales Amount], DATESQTD ( 'Date'[Date] ) ) 
 
[MTD Sales] := TOTALMTD ( [Sales Amount], 'Date'[Date] ) 
[MTD Sales] := CALCULATE ( [Sales Amount], DATESMTD ( 'Date'[Date] ) )

In Figure 7-17, you can see the year-to-date and quarter-to-date measures used in a pivot table. 
Note that the quarter-to-date measure (QTD Sales) makes the year total equal to the value of Sales 
Amount of the last quarter of the year.
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FIGURE 7-17 The YTD and QTD Sales measures are shown next to the regular Sales Amount measure.

To calculate a year-to-date measure over a fiscal year that does not end on December 31, you 
must use an optional third parameter that specifies the end day of the fiscal year. For example, you 
can calculate the fiscal year-to-date for Sales by using one of the following measures:

[Fiscal YTD Sales] := TOTALYTD ( [Sales Amount], 'Date'[Date], "06-30" ) 
[Fiscal YTD Sales] := CALCULATE ( [Sales Amount], DATESYTD ( 'Date'[Date], "06-30" ) )

The last parameter corresponds to June 30, that is, the end of the fiscal year. There are several time 
intelligence functions that have a last, optional year-end date parameter for this purpose:  STARTOFYEAR, 
ENDOFYEAR, PREVIOUSYEAR, NEXTYEAR, DATESYTD, TOTALYTD, OPENINGBALANCEYEAR, and 
 CLOSINGBALANCEYEAR.

Important Depending on your local language settings, you might have to use the day 
number first:

[Fiscal YTD Sales] := TOTALYTD ( [Sales Amount], 'Date'[Date], "30-06" ) 
[Fiscal YTD Sales] := CALCULATE ( [Sales Amount], DATESYTD ( 'Date'[Date], "30-06" ) )

Computing periods from prior periods
Users commonly need to get a value from a period of the prior year (PY). This can be useful for mak-
ing comparisons of trends during a period this year to the same period last year. You must calculate 
this DAX expression for that value:

[PY Sales] := CALCULATE ( [Sales Amount], SAMEPERIODLASTYEAR ( 'Date'[Date] ) )

SAMEPERIODLASTYEAR returns a set of dates shifted one year back in time. It is a specialized version 
of the more generic DATEADD function, which accepts the number and type of period to shift. The 
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types of period supported are YEAR, QUARTER, MONTH, and DAY. For example, you can define the 
same PY Sales measure using this equivalent expression:

[PY Sales] := CALCULATE( [Sales Amount], DATEADD( 'Date'[Date], -1, YEAR ) )

In a similar way, you can compute the value from a previous quarter (PQ), month (PM), or day (PD), 
as you can see in the following examples:

[PQ Sales] := CALCULATE ( [Sales Amount], DATEADD ( 'Date'[Date], -1, QUARTER ) ) 
 
[PM Sales] := CALCULATE ( [Sales Amount], DATEADD ( 'Date'[Date], -1, MONTH ) ) 
 
[PD Sales] := CALCULATE ( [Sales Amount], DATEADD ( 'Date'[Date], -1, DAY ) )

Sometimes, you must look at the total amount of a measure for the previous year, usually to 
compare it with the year-to-date total. To do that, you can use PARALLELPERIOD, which is similar to 
DATEADD, but returns the full period specified in the third parameter instead of the partial period 
returned by DATEADD. You can define the PY Sales measure that calculates the total of sales for the 
previous year in this way:

[PY Total Sales] :=  
CALCULATE ( [Sales Amount], PARALLELPERIOD ( 'Date'[Date], -1, YEAR ) )

In Figure 7-18, you can see the result of the PY Sales and PY Total Sales measures. The report shows 
the quarters’ data in 2008 for the Sales Amount column in the respective quarters of year 2009, in the 
PY Sales column. PY Total Sales reports for every period the total amount of the Sales Amount column 
for the previous year.

FIGURE 7-18 The prior year calculations show the data shifted by one year.

The PY Total Sales measure can be useful to calculate the ratio between current year-to-date and 
total of previous year, providing a simple Key Performance Indicator (KPI) to detect whether the  current 
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YTD sales reached the total sales of the previous year. As you see in Figure 7-18, the  YTDOPYT Sales % 
measure calculates the year-to-date over the previous year’s total using the following formula:

[YTDOPYT Sales %] := DIVIDE ( [YTD Sales], [PY Total Sales] )

You can also compare the year-to-date with the corresponding value in the previous year. 
When you want to calculate the year-to-date of the prior year, you can mix the two techniques you 
have seen so far. Instead of passing the Date[Date] parameter to SAMEPERIODLASTYEAR, which 
 corresponds to the list of dates that are active in the current filter context, you can use the DATESYTD 
function to make a transformation of these dates, defining the year-to-date group first. However, you 
can also invert the order of these calls without affecting the result. The following two definitions of PY 
YTD Sales are equivalent, even if the second one could be slightly faster (but barely measureable).

[PY YTD Sales] := 
CALCULATE ( 
    [Sales Amount], 
    SAMEPERIODLASTYEAR ( DATESYTD ( 'Date'[Date] ) ) 
) 
 
[PY YTD Sales] := 
CALCULATE ( 
    [Sales Amount], 
    DATESYTD ( SAMEPERIODLASTYEAR ( 'Date'[Date] ) ) 
)

You can also use the prior year calculation over the year-to-date measure or the year-to-date 
technique over the prior year measure. You can write these other two definitions of PY YTD Sales that 
are equivalent to the previous two:

[PY YTD Sales] := 
CALCULATE ( 
    [YTD Sales], 
    SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
) 
 
[PY YTD Sales] := 
CALCULATE ( 
    [PY Sales], 
    DATESYTD ( 'Date'[Date] ) 
)

You can see the results of the PY YTD Sales in Figure 7-19. The values of YTD Sales are reported for 
PY YTD Sales shifted by one year. In the same result, you can also see the Fiscal YTD Sales measure 
that you saw at the end of the previous section. Note that the year-to-date calculation restarts at Q3 
of each year.
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FIGURE 7-19 The year-to-date calculation for prior year and fiscal year can appear in the same pivot table.

All the examples you have seen in this section can operate on year, quarter, month, and day level, 
but not at the week level. Time intelligence functions are not available for week-based calculations, 
because there are too many variations of periods based on weeks. For this reason, you have to imple-
ment DAX expressions to handle week-based calculations. You can find more details and an example 
of this approach in the “Custom calendars” section, later in this chapter. 

Computing difference over previous periods
A common operation is calculating the difference between a measure and its value in the prior year. 
You can express that difference as an absolute value or as a percentage. You have already seen how 
to obtain the value for the prior year with the PY Sales measure:

[PY Sales] := CALCULATE ( [Sales Amount], SAMEPERIODLASTYEAR ( 'Date'[Date] ) )

The absolute difference of Sales Amount over previous year (year-over-year, YOY) is a simple 
 subtraction. You can define a YOY Sales measure with the following expression:

[YOY Sales] := [Sales Amount] - [PY Sales]

The analogous calculation for comparing the year-to-date measure with a corresponding value in 
the prior year is a simple subtraction of two measures, YTD Sales and PY YTD Sales, which you saw in 
the previous section; we report it here as a reminder:

[YTD Sales] := TOTALYTD ( [Sales Amount], 'Date'[Date] ) 
 
[PY YTD Sales] := 
CALCULATE (  
    [Sales Amount],  
    DATESYTD ( SAMEPERIODLASTYEAR ( 'Date'[Date] ) ) 
) 
 
[YOY YTD Sales] := [YTD Sales] - [PY YTD Sales]
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Most of the time, the year-over-year difference is better expressed as a percentage in a report. You 
can define this calculation by dividing YOY Sales by the PY Sales; in this way, the difference uses the 
prior read value as a reference for the percentage difference (100 percent corresponds to a value that 
is doubled in one year). In the following expressions that define the YOY Sales% measure, the DIVIDE 
function avoids a divide-by-zero error if there is no corresponding data in the prior year:

[YOY Sales%] := DIVIDE ( [YOY Sales], [PY Sales] )

You can create a similar calculation to display the percentage difference of a year-over-year 
comparison for the year-to-date aggregation. You can define YOY YTD Sales% by using the following 
formula:

[YOY YTD Sales%] := DIVIDE ( [YOY YTD Sales], [PY YTD Sales] )

In Figure 7-20, you can see the results of these measures in a pivot table.

FIGURE 7-20 All the year-over-year (YOY) measures can be used in the same report.

Computing the moving annual total
Another commonly requested calculation that eliminates seasonal changes in sales is the moving 
 annual total (MAT), which always considers the past 12 months. For example, you can calculate the 
value of MAT Sales for March 2008 by summing the range of dates from April 2007 to March 2008. 
The easiest way is using the DATESINPERIOD function, which returns all the dates included within 
a period (fourth argument, YEAR, QUARTER, MONTH, or DAY) applying an offset (third parameter, 
a negative number gets a period in the past, a positive number in the future) to a date (second 
 argument) existing in the column specified in the first argument.
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[MAT Sales] := 
CALCULATE ( 
    [Sales Amount], 
    DATESINPERIOD ( 
        'Date'[Date], 
        LASTDATE ( 'Date'[Date] ), 
        -1, 
        YEAR 
    ) 
)

Using DATESINPERIOD is usually the best option for the moving annual total calculation. For 
 didactical purposes, it is useful to see other techniques to obtain the same filter. Consider this 
 alternative MAT Sales definition, which calculates the moving annual total for Sales.

[MAT Sales] := 
CALCULATE ( 
    [Sales Amount], 
    DATESBETWEEN ( 
        'Date'[Date], 
        NEXTDAY ( SAMEPERIODLASTYEAR ( LASTDATE ( 'Date'[Date] ) ) ), 
        LASTDATE ( 'Date'[Date] ) 
    ) 
)

The implementation of this measure requires some attention. You must use the DATESBETWEEN 
function, which returns the dates from a column included between two specified dates. Because this 
calculation always works at the day level, even if you are querying data at the month level, you must 
calculate the first day and the last day of the required interval. You can obtain the last day by calling 
the LASTDATE function, which returns the last date of a given column (always considering the  current 
filter context). Starting from this date, you can get the first day of the interval by requesting the 
 following day (by calling NEXTDAY ) of the corresponding last date one year before. (You can do this 
by using SAMEPERIODLASTYEAR.)

In Figure 7-21, you can see a report that includes the moving annual total calculation. For example, 
the Q1-2008 value of MAT Sales is the result obtained by summing the Sales Amount value of Q2-2007, 
Q3-2007, Q4-2007, and Q1-2008. In the middle, you see the classic year-to-date calculation, which has the 
same value of moving annual total only for the last period of each year (in this case, Q4).
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FIGURE 7-21 This report is using measures that display only days for which there is balance data.

Use the right call order for nested time intelligence functions

When you create nested calls of time intelligence functions, you might wonder what the right 
call order is. In the previous example, we used the following DAX expression to retrieve the first 
day of the “moving annual total” period:

NEXTDAY ( SAMEPERIODLASTYEAR ( LASTDATE ( 'Date'[Date] ) ) )

In this case, LASTDATE returns the last date of Q1-2008 (March 31, 2008), SAMEPERIODLAS-
TYEAR returns March 31, 2007, and NEXTDAY returns April 1, 2007. You might invert the call 
order between NEXTDAY and SAMEPERIODLASTYEAR:

SAMEPERIODLASTYEAR ( NEXTDAY ( LASTDATE ( 'Date'[Date] ) ) )

It returns the same result (April 1, 2007), but you have one risk. If your Date table ends on 
December 31, 2011, and you consider the result for Q4-2011, this is what happens: LASTDATE 
returns the last date of Q4-2011 (December 31, 2011), NEXTDAY should return January 1, 2012, 
and SAMEPERIODLASTYEAR should return January 1, 2011. However, all these functions can 
only return existing values of the Date[Date] column. If the Date table does not have any row 
for year 2012, the NEXTDAY call cannot return January 1, 2012, and it would return BLANK 
instead. For example, consider the following wrong MAT calculation:

MAT Sales Wrong := CALCULATE ( 
    [Sales Amount], 
    DATESBETWEEN ( 
        'Date'[Date], 
        SAMEPERIODLASTYEAR ( NEXTDAY ( LASTDATE( 'Date'[Date] ) ) ), 
        LASTDATE ( 'Date'[Date] ) 
    ) 
)

As you see in Figure 7-22, this result provides a wrong value for both Q4 2011 and for CY 
2011, regardless of the fact that there are no sales in both 2010 and 2011. This happens because  
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the lower boundary of DATESBETWEEN is BLANK and this creates a calculation that spans the 
entire range of dates available.

FIGURE 7-22 The MAT Sales Wrong measure shows a value for Q4 2011 and for CY 2011 that is wrong.

In general, you should always consider that time intelligence functions work with existing 
values in the date column only, and are not able to handle values out of that set.

Closing balance over time

In the previous section, you saw how to create time-related aggregations in DAX. However, some 
measures cannot aggregate data over time. For example, you can aggregate measures such as bal-
ance account and product inventory units over any attribute but time. We call these measures semi-
additive, and in this section, you will see how to define them in DAX.

Semi-additive measures
Whenever you define a measure by using either SUM, COUNT, MIN, or MAX, the measure is a fully 
additive measure because DAX uniformly applies the aggregation to all dimensions.

Sometimes you need measures to behave in a different way. For example, think about the  product 
inventory. If you consider several products, you can calculate the quantity on hand for a product 
 category by summing the quantities of the products belonging to that category in a particular day. 
However, you cannot sum quantities of the same product over multiple days, because the result 
would no longer represent the quantity on hand.
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If you consider the Quantity column in an Inventory table, the only dimension that does not use 
SUM is the Date. The term “dimension Date” includes all the attributes of a Date table related to 
Inventory. For the Date attributes, you must consider only the values belonging to the last date in the 
evaluated period. In other words, you must implement a logic that can produce the results that you 
see in Figure 7-23, in which the aggregate value is the same as the last period. (For example, the value 
for Q1-2008 is the same as March 2008, the value for Q2-2008 is the same as June 2008, and so on.)

FIGURE 7-23 The semi-additive On Hand Quantity measure is not aggregated on quarter and year.

The On Hand Quantity Simple measure used in Figure 7-23 displays the total of a quarter showing 
the value corresponding to the last month in the same quarter. In case the Inventory table has data 
measured every day, you might use the following measure (please note that this is not the optimal 
solution; the best approach is later in this section).

[On Hand Quantity Simple] := 
CALCULATE ( 
    SUM ( Inventory[Quantity] ), 
    LASTDATE ( Inventory[Date] ) 
)

The definition of On Hand Quantity Simple uses LASTDATE to keep only the last date that is active 
in the current filter context. Therefore, only the last date for which there is available data in the filter 
of every cell is considered in the CALCULATE call.

It is interesting to note that, in this case, the Inventory[Date] used in LASTDATE is a date column 
in the Inventory table, which is related to the Date table for navigation on other Date attributes. By 
using the date column in the Inventory table, only filtered rows in Inventory are considered. This can 
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have an interesting side effect. For every cell, only the last date available for the product selected and 
the period selected is considered. For example, look at the result produced in Figure 7-24, where the 
last column shows the Grand Total of products.

FIGURE 7-24 The Grand Total of On Hand Quantity Simple measure does not aggregate product quantities as 
expected.

If you consider data in January 2008, the “Contoso In-Line Coupler E180 White” product has a 
quantity of 42 on January 26, whereas the “Contoso Touch Stylus Pen E150 Silver” has a quantity 
of 200 on January 12. The Grand Total for January 2008 displays 42, but what should be the right 
value? It depends on the way data is measured in the Inventory table. When you have the inventory 
of all the products every day, then you would not see this behavior. If a date is missing for a product, 
then the meaning should be that such a product does not have a quantity on hand on that day. In 
this  common scenario, the value in the Grand Total would be correct, but the value for the “Contoso 
Touch Stylus Pen E150 Silver” at the month level would be wrong, because it should be blank (such 
a product was not in stock on January 26). In order to fix this issue, it is better to use the Date[Date] 
column instead of the Inventory[Date] column as the parameter passed to the LASTDATE function.

[On Hand Quantity Last Date] := 
CALCULATE ( 
    SUM ( Inventory[Quantity] ), 
    LASTDATE ( 'Date'[Date] ) 
)

In this case, the last date in a period is the last date available in the Date table (mentioned in the 
preceding formula) and not the last date for which there is raw data. Thus, for January, it will always 
be January 31, even if there are no rows in the Inventory table. However, this might have unwanted 
consequences. If your data does not have values for the last day of a month, and the Date table 
 contains all the days for that month (as it should), the On Hand Quantity Last Date formula defined 
with LASTDATE returns no data (a BLANK value) for that month, as you can see in Figure 7-25.

FIGURE 7-25 The On Hand Quantity Last Date measure is blank in January because there is no data on January 31.
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If there were Inventory data measured on January 31 and the two products in Figure 7-25 did not 
have units on hand, the formula based on LASTDATE would be good. However, this is not the case. 
The Inventory data in the Contoso database has a weekly granularity. This is visible by displaying 
the On Hand Quantity Last Date measure by aggregating all the products by date, as you can see in 
Figure 7-26.

FIGURE 7-26 The On Hand Quantity Last Date has a weekly granularity and might not include the last day of 
month.

If you want to see at the month level the value of the last day with at least one transaction, 
 ignoring days that have no transactions at all, you have to use another approach. The solution is to 
use the LASTNONBLANK function, which returns the last date for which a particular expression is not 
blank. This is a formula for the On Hand Quantity measure using the LASTNONBLANK function:

[On Hand Quantity] := 
CALCULATE ( 
    SUM ( Inventory[Quantity] ), 
    LASTNONBLANK ( 
        'Date'[Date], 
        CALCULATE ( COUNTROWS ( Inventory ), ALL ( Product ) ) 
    ) 
)

By using On Hand Quantity, you can see that the January month value now corresponds to January 
26 for both products that we considered previously, as you can see in Figure 7-27.

FIGURE 7-27 The On Hand Quantity measure correctly represents the value of January 2008 for the products 
selected.
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In Figure 7-28 you can see that, for every product category, the month value corresponds to the 
last day with rows in the Inventory table.

FIGURE 7-28 The On Hand Quantity measure shows the value corresponding to the last day with data in the 
period considered.

If the Inventory data contains a row for a product only when its quantity on hand changed since 
previous value, then you want to obtain the result shown in Figure 7-29.

FIGURE 7-29 The On Hand Quantity Last Date by Product measure returns the last quantity on hand found in the 
Inventory table for each product.

In this case, the data in Inventory table eliminates duplicated rows for products that have the 
same quantity on hand than the previous snapshot. In practice, the quantity zero requires a specific 
row in the Inventory table. This method of storing data is typical of those systems that create a new 
 inventory value for each transaction, updating only those products that had some transactions, and 
not all the others. You can implement this calculation by using the On Hand Quantity Last Date by 
Product measure.

The basic idea is that, for each product, you must get the last nonblank date included in the 
 selected period. The calculation for a single account can be made by using the CALCULATE  function 
and by filtering data on the LASTNONBLANK date included in the period between the first date 
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 available and the last date in the period. Notice that the date range considered begins even outside 
the period: You might request the balance for February and there might be no rows in that month, 
so you must consider also previous dates for the interval. (In Figure 7-29, the value of “Contoso Touch 
Stylus Pen E150 Silver” is 120 on January 5, 2008, because there is a previous transaction in 2007, even 
if it is not included in the selection of the report.) You use a SUMX function to iterate all the available 
products. To get the calculation only for dates that have at least one transaction (for any product), 
you must check whether at least one row in the Inventory table exists for any product in the current 
selection of dates. This is the definition of such a measure.

[On Hand Quantity Last Date by Product] := 
IF ( 
    CALCULATE ( COUNTROWS ( Inventory ), ALL ( 'Product' ) ) > 0, 
    SUMX ( 
        'Product', 
        CALCULATE ( 
            SUM ( Inventory[Quantity] ), 
            LASTNONBLANK ( 
                DATESBETWEEN ( 
                    'Date'[Date], 
                    BLANK (), 
                    LASTDATE ( 'Date'[Date] ) 
                ), 
                CALCULATE ( COUNTROWS ( Inventory ) ) 
            ) 
        ) 
    ) 
)

In Figure 7-30 you can see that, for every product category, the values are different from what 
you have seen in Figure 7-28, because in every cell the measure sums the value of the last available 
 Inventory row for each product, even if the dates are different.

Important You have to know how the data is stored in the data model in order to choose 
what is the right formula to use for the On Hand Quantity calculation.
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FIGURE 7-30 The result produced by On Hand Quantity Last Date by Product sums the last value available for 
each product.

Up to now, you have seen two functions that might seem similar, but have a very different 
 behavior: LASTDATE and LASTNONBLANK. There are two other corresponding functions to get the 
first date, instead of the last date within a period: FIRSTDATE and FIRSTNONBLANK. You will find 
more examples and details about all of these functions in the “Advanced time intelligence” section, 
later in this chapter.

OPENINGBALANCE and CLOSINGBALANCE functions
DAX provides several functions to get the first and last date of a period (year, quarter, or month) that 
are useful whenever you need to get that value of a selection that is smaller than the whole period 
considered. For example, looking at the month level (which may be displayed in rows), you might 
want to display also the value of the end of the quarter and the end of the year in the same row, as 
you can see in Figure 7-31.

Note Please note that raw data used in this example includes balances for dates through 
December 31. For this reason, the DAX function we are going to use provides complete 
results because the data based on the LASTDATE function would not work if the last day of 
a period (such as month, quarter, or year) were missing.
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FIGURE 7-31 The value at end of month, quarter, and year for each month is always the corresponding closing 
balance.

The formulas used to calculate ClosingBalanceMonth, ClosingBalanceQuarter, and ClosingBalanc-
eYear measures are the following:

[ClosingBalanceMonth] :=  
    CLOSINGBALANCEMONTH ( SUM ( Balances[Balance] ), 'Date'[Date] ) 
 
[ClosingBalanceQuarter] :=  
    CLOSINGBALANCEQUARTER ( SUM ( Balances[Balance] ), 'Date'[Date] ) 
 
[ClosingBalanceYear] :=  
    CLOSINGBALANCEYEAR ( SUM ( Balances[Balance] ), 'Date'[Date] )

These formulas use the LASTDATE function internally, but they operate on a set of dates that 
can extend the current selection in the pivot table. For example, the CLOSINGBALANCEYEAR 
 function considers the LASTDATE of ‘Date’[Date], which is applied to the last year period of the dates 
 included in the filter context. So for February 2010 (and for any month or quarter of 2010), this date 
is  December 31, 2010. The CLOSINGBALANCEYEAR function behaves like a CALCULATE  expression 
 using the ENDOFYEAR function as a filter. As usual, the use of CALCULATE is more generic and 
 flexible, but specific DAX functions like CLOSINGBALANCEYEAR better express the intention of the 
measure designer. The following are measures equivalent to the ones previously shown using CALCU-
LATE syntax:
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[ClosingBalanceEOM] :=  
    CALCULATE ( SUM ( Balances[Balance] ), ENDOFMONTH ( 'Date'[Date] ) ) 
 
[ClosingBalanceEOQ] :=  
    CALCULATE ( SUM ( Balances[Balance] ), ENDOFQUARTER ( 'Date'[Date] ) ) 
 
[ClosingBalanceEOY] :=  
    CALCULATE ( SUM ( Balances[Balance] ), ENDOFYEAR ( 'Date'[Date] ) )

Tip The DAX functions OPENINGBALANCEMONTH, OPENINGBALANCEQUARTER, 
and OPENINGBALANCEYEAR use the FIRSTDATE internally instead of the LASTDATE 
of the  considered period. They correspond to the CALCULATE formula, which uses 
STARTOFMONTH, STARTOFQUARTER, and STARTOFYEAR internally as its filter, respectively.

An important consideration has to be made about dates for which there is available data in your 
model. You can see this if you drill down to data at the day level in the pivot table. Before doing that, 
consider the raw data set we used in this example, shown in Figure 7-32.

FIGURE 7-32 The balances appear many times for each month, making calculation more difficult.

As you can see, there are more balances for each month. For example, in January there are 
 balances for days 8, 15, 22, and 31.

Note In this example, we always have a balance value for each account, as if we took 
a snapshot on a certain date for every account available, even if it has not changed 
its value since the previous date. When this condition is not true, you cannot use 
OPENINGBALANCE and CLOSINGBALANCE functions, and you have to rely on techniques 
described in the previous section “Semi-additive measures.”

If you browse this data at the day level in the pivot table by using the same measures as the 
 previous example, you see the results shown in Figure 7-33.
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FIGURE 7-33 Browsing data at the day level displays rows with no balance data.

The calculated fields defined to display values at the end of the period suffer an unpleasant side 
effect: all the dates are visible, even those for which there is no balance data available. If you want 
to display just the rows corresponding to dates with balance data defined, you have to modify the 
 measures, checking the existence of data in the Balances table, in this way:

[ClosingBalanceMonth2] := 
IF ( 
    COUNTROWS ( Balances ) > 0,  
    CLOSINGBALANCEMONTH ( SUM ( Balances[Balance] ), 'Date'[Date] ) 
) 
 
[ClosingBalanceQuarter2] := 
IF ( 
    COUNTROWS ( Balances ) > 0,  
    CLOSINGBALANCEQUARTER ( SUM ( Balances[Balance] ), 'Date'[Date] ) 
) 
 
[ClosingBalanceYear2] : = 
IF ( 
    COUNTROWS ( Balances ) > 0,  
    CLOSINGBALANCEYEAR ( SUM ( Balances[Balance] ), 'Date'[Date] ) 
)
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Browsing data using these measures results in a report such as the one shown in Figure 7-34.

FIGURE 7-34 This report is using measures that display only days for which there is balance data.

By default, many client tools (including the Microsoft Excel pivot table used in this example) do not 
display empty rows and columns. For this reason, the days containing no balance date are not shown. 
All the measures used in Figure 7-34 return BLANK for those days, making them disappear from the 
report.

Advanced time intelligence

In this section, you learn how to rewrite in plain DAX code each time intelligence calculation you have 
seen so far by using standard DAX functions such as FILTER, ALL, VALUES, MIN, and MAX. We are not 
suggesting doing so as a rule. Knowing the exact behavior of time intelligence functions will help you 
understand particular side cases you might not be able to explain at first sight, and will enable you to 
write custom calculations whenever the available functions do not provide the exact calculation you 
need. You might want to rewrite a time intelligence calculation in DAX for two main reasons.

First, you might want to use DirectQuery, which transforms a DAX query into a SQL query sent to 
the original data source and does not support the DAX time intelligence functions. When you create a 
Microsoft Visual Studio project enabled for DirectQuery, any access to these functions is blocked and 
you see a syntax error in DAX expressions calling them. In this case, writing the filter using standard 
DAX functions as described later is required.

Second, you might have a nonstandard calendar, where the first day of the year is not always the 
same for all the years (for example, this is the case for ISO calendars based on weeks). In this case, the 
assumption made by the time intelligence function (year, month, and quarter can be always extracted 
from the date value) is no longer true. You can write a different logic by changing the DAX code in 
the filter conditions, or you can simply take advantage of other columns in the Date table, so you do 
not have a complex DAX expression to maintain. You will find more examples of this latter approach 
in the section “Custom calendars,” later in this chapter.
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Understanding periods to date
Previously, you have seen the DAX functions that calculate month-to-date, quarter-to-date, and 
 year-to-date. If you use TOTALYTD, TOTALQTD, or TOTALMTD scalar functions, their  implementation 
determines the date filters by calling DATESYTD, DATESQTD, and DATESMTD. Each of these filter 
 functions is similar to the result of a FILTER statement that you can write in DAX.

For example, consider the following DATESYTD function:

DATESYTD ( 'Date'[Date] )

It corresponds to a filter over the date column using FILTER called by CALCULATETABLE, such as in 
the following code:

CALCULATETABLE ( 
    FILTER (  
        ALL ( 'Date'[Date] ), 
        AND (  
            'Date'[Date] <= MAX ( 'Date'[Date] ), 
            YEAR ( 'Date'[Date] ) = YEAR ( MAX ( 'Date'[Date] ) ) 
        ) 
    ) 
)

In a similar way, the following DATESMTD function: 

DATESMTD ( 'Date'[Date] )

corresponds to the following code:

CALCULATETABLE (  
    FILTER (  
        ALL ( 'Date'[Date] ), 
        AND (  
            'Date'[Date] <= MAX ( 'Date'[Date] ), 
            AND (  
                YEAR ( 'Date'[Date] ) = YEAR ( MAX ( 'Date'[Date] ) ), 
                MONTH ( 'Date'[Date] ) = MONTH ( MAX ( 'Date'[Date] ) ) 
            ) 
        ) 
    ) 
)
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The DATESQTD function would be similar to DATESMTD, just replacing the MONTH function call 
with QUARTER.

All of these alternative implementations have a common characteristic: they extract the 
 information about year, month, and quarter, from the last day available in the current selection. The 
reason why CALCULATETABLE calls FILTER is to transform a row context in a filter context. However, 
this technique could be expensive if used in a calculated column. The internal implementation of 
these functions is optimized and you can use two different techniques in order to achieve better 
performance.

If you do not have a row context, you can simply remove CALCULATETABLE. Usually, this is the case 
for a filter argument in a CALCULATE call, a place where DATESYTD is used often. So, for DATESYTD 
you can write:

FILTER (  
    ALL ( 'Date'[Date] ), 
    AND (  
        'Date'[Date] <= MAX ( 'Date'[Date] ), 
        YEAR ( 'Date'[Date] ) = YEAR ( MAX ( 'Date'[Date] ) ) 
    ) 
)

If you have a row context for the date you want to use, for example in a calculated column, then 
you can use EARLIER instead of MAX:

FILTER (  
    ALL ( 'Date'[Date] ), 
    AND (  
        'Date'[Date] <= EARLIER ( 'Date'[Date] ), 
        YEAR ( 'Date'[Date] ) = YEAR ( EARLIER ( 'Date'[Date] ) ) 
    ) 
)

The second argument of DATESYTD allows you to specify a date that defines the year-end date. 
For example, for a fiscal year starting on July 1, you specify June 30 in the second argument (using 
one of the following versions, depending on your local language settings):

DATESYTD ( 'Date'[Date], "06-30" ) 
 
DATESYTD ( 'Date'[Date], "30-06" )

Regardless of the local language settings, let us assume you specified <day> and <month>. The 
corresponding FILTER of DATESYTD using these placeholders is the following:
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FILTER (  
    ALL ( 'Date'[Date] ), 
    AND (  
        'Date'[Date] > DATE ( YEAR ( MAX ( 'Date'[Date] ) ) - 1, <month>, <day> ) 
        'Date'[Date] <= MAX ( 'Date'[Date] ) 
    ) 
)

Understanding DATEADD
As you have seen, DATEADD is a function commonly used to get a corresponding set of dates moved 
by a certain offset. It is important to understand that DATEADD is a table function that only handles 
existing values in the date column passed as an argument. DATEADD also applies a particular logic in 
specific conditions, especially related to the month selection, as you will see in a few examples.

DATEADD uses only the values of the date column passed as a first argument. It ignores all other 
columns present in the Date table, so it has to extract other information (such as year, quarter, and 
day) from the available date value. Consider the following formula:

DATEADD ( 'Date'[Date], -1, MONTH )

The closest (but not correct) DAX formula we can write is the following:

FILTER ( 
    ALL ( 'Date'[Date] ), 
    CONTAINS ( 
        VALUES ( 'Date'[Date] ), 
        'Date'[Date],  
        DATE ( YEAR ( 'Date'[Date] ), MONTH ( 'Date'[Date] ) - 1, DAY ( 'Date'[Date] ) ) 
    ) 
)

Note In the previous example and in other formulas in this chapter we use the CONTAINS 
function, which returns true if the table passed as first argument has at least one row 
where the value of the column specified in the second argument corresponds to the 
 expression passed in the third argument. You can read a more complete description  
of this function in Chapter 9, “Advanced table functions.”

The formula is not correct because it is trying to find the corresponding days in the previous 
month by subtracting one from the month. However, if you start from January, you should decrease 
the year value and put 12 in the month argument. A slightly better version is:
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FILTER ( 
    ALL ( 'Date'[Date] ), 
    CONTAINS ( 
        VALUES ( 'Date'[Date] ), 
        'Date'[Date],  
        DATE ( 
            YEAR ( 'Date'[Date] ) - IF ( MONTH ( 'Date'[Date] ) = 1 ), 1, 0 ),  
            IF ( MONTH ( 'Date'[Date] ) = 1 ), 12, MONTH ( 'Date'[Date] ) - 1 ), 
            DAY ( 'Date'[Date] )  
        ) 
    ) 
)

This version works correctly between January and December, and only with negative offsets. 
 However, we should change the DAX expression in order to handle offsets other than –1 (for example, 
you might use –2 to go back two months), and we do not handle properly the shift between months 
with a different number of days. In fact, the last implementation works well if the destination month 
has a smaller number of days, but if you move from February to January, you will miss two or three 
days, depending on the year.

At this point, the logic becomes much more complex to implement in DAX if you do not want to 
rely on other columns in the Date table. In the “Custom calendars” section later in this chapter, you 
will find a simpler and more flexible approach to implement time intelligence in DAX based on the 
content of the Date table. Now, let’s see what the exact behavior of DATEADD is. In the following 
descriptions the term “selection” means the values of ‘Date’[Date] active in filter context.

■■ DATEADD only works with a contiguous date selection and raises an error otherwise.

■■ DATEADD only returns days existing in the date column received as first argument.

■■ When a corresponding day does not exist in the corresponding month after the shift 
 operation, the result of DATEADD includes the last day of the corresponding month.

■■ When the selection includes the last day of a month, and the selection is more than one 
day, then the result of DATEADD includes all the days between the corresponding day in the 
shifted month and the end of the shifted month.

A few examples are helpful to understand the effects of these behaviors. Consider the following 
measure: Days counts the number of days selected, PM Days counts the number of days returned by 
DATEADD shifted back one month, and PM Day returns the day value if the result includes only one 
day.



 CHAPTER 7 Time intelligence calculations 193

[Days] := COUNTROWS ( 'Date' )

[PM Days] := COUNTROWS ( DATEADD ( 'Date'[Date], -1, MONTH ) )

[PM Day] :=
IF (
    HASONEVALUE ( 'Date'[Date] ),
    DATEADD ( 'Date'[Date], -1, MONTH )
) 

 ■ Rule 1 Rule 1 is simple to explain. If you try to select January 2008 and March 2008 without 
selecting February 2008, you get the following error: 

Function 'DATEADD' only works with contiguous date selections. 

If you have to handle noncontiguous date selections with time intelligence calculations, you have 
to write custom DAX calculations, as explained later in the “Computing over noncontiguous periods” 
section. 

 ■ Rule 2 Rule 2 has effects when the selection is near the boundary of the range of dates 
included in the Date table. For example, by selecting the fi rst four days in January 2008, the 
result includes the fi rst four days of December 2007. As you can see in Figure 7-35, in this case 
the result of PM Days corresponds to Days, because no special rules apply. 

 
FIGURE 7-35 The dates selected are shifted back one month. 

The Date table used in the example includes all the days between 2005 and 2011. If the initial 
 selection includes days in January 2005 then the result is blank, because there are no values in the 
Date table for December 2004. You see this behavior in Figure 7-36. 

 
FIGURE 7-36 The result of DATEADD is blank if it should return dates not existing in the Date table. 

[Days] := COUNTROWS ( 'Date' )

[PM Days] := COUNTROWS ( DATEADD ( 'Date'[Date], -1, MONTH ) )

[PM Day] :=
IF (
    HASONEVALUE ( 'Date'[Date] ),
    DATEADD ( 'Date'[Date], -1, MONTH )
)

Function 'DATEADD' only works with contiguous date selections.
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Note The main reason why the Date table should include all the days within one year is 
because of DATEADD behavior. Remember that several time intelligence functions in DAX 
internally use DATEADD, so having a complete Date table is fundamental for a correct 
 behavior of DAX time intelligence functions.

■■ Rule 3 Rule 3 is relevant when the months have a different number of days. For example, if 
you select July 31, 2008, the result is June 30, 2008, as you see in Figure 7-37.

FIGURE 7-37 A date that does not exist in the destination month is replaced by the last day of the month.

The consequence of this rule is that you might obtain as a result a lower number of days than the 
initial selection. This is intuitive when the selection of 31 days in March should result in a  corresponding 
selection 28 or 29 days in February (depending on the year). However, the effect of Rule 3 is that 
 every day always has a corresponding day, so you always compare the last day of a month with the 
last day of the corresponding month. In Figure 7-38 you can see that every day between March 29 
and March 31 always corresponds to February 29. At the month level, an initial selection of three 
days (see Days column) corresponds to a resulting selection of only one day (see PM Days), because 
DATEADD does not return duplicates.

FIGURE 7-38 Several days in the starting selection might result in the same day in the DATEADD result.

■■ Rule 4 Rule 4 generates a different behavior when the last day of a month is included within 
a range of dates. For example, consider the initial selection of two days, June 30, 2008, and 
July 1, 2008. What is the result you expect by shifting the dates back one month?  Considering 
each single day, the result is the corresponding day in the previous month (May 30, 2008, 
and June 1, 2008, respectively). However, when you consider the entire selection of two days, 
then the result will also contain the dates included between the first and the last day of the 
 selection, which in this case corresponds to May 31, 2008. You can see in Figure 7-39 that the 
value returned by the PM Days measure is three instead of two when you consider the row CY 
2008.
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FIGURE 7-39 The result of DATEADD includes all days between the first and the last day of the selection 
after the shift operation.

The result at the month level is interesting: even if you selected the last day of the month (June 30,  
2008), the result only has May 30, 2008. In this case, you would not compare the last day of the 
month with the last day of the previous month. You can see in Figure 7-40 that the values of Days 
and PM Days are 1 at both the day level and the month level. However, if the selection in the month 
includes at least two days, then the Rule 4 effect is to add also May 31, 2008, to the selection. This is 
visible only in the value of PM Days, which is 3 in the rows June 2008 and CY 2008.

FIGURE 7-40 The selection of two or more days in a month, including the last day of that month, might 
extend the result by adding the days until the end of the month.

An extreme case of Rule 4 is the extension from two days to five days that happens when you 
select February 27 and February 28 in a non-leap year, as you can see in Figure 7-41.

FIGURE 7-41 The measure PM Days shows that the selection of two days in February results in a selection 
of five days in January.

The result of these rules is to provide an intuitive behavior when you operate at the month level. 
As you can see in Figure 7-42, when you compare the selections at the month level, the result is 
 intuitive and expected, showing the number of days of the previous month. Understanding the 
rules described in this section is important to handle side conditions that might happen with partial 
 selections of days in months. We used the number of days just to make clear the behavior, but you 
will certainly use other measures (for example, quantity or sales amount) in order to simplify the 
 comparison of values between two periods (in this case, the previous month). 
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FIGURE 7-42 The measure PM Days shows the number of days of the previous month.

Understanding FIRSTDATE and LASTDATE
In the “Semi-additive measures” section earlier in this chapter, you have seen two functions that 
might seem similar, but have a very different behavior: LASTDATE and LASTNONBLANK. Two other 
 corresponding functions get the first date, instead of the last date within a period: FIRSTDATE and 
FIRSTNONBLANK. This section describes the behavior of FIRSTDATE and LASTDATE, and the next 
 section will explain FIRSTNONBLANK and LASTNONBLANK in detail.

FIRSTDATE and LASTDATE operate only on a date column and they return the first and the last 
date in the active filter context, respectively, ignoring the data existing in other related tables:

FIRSTDATE ( <dates> ) 
LASTDATE ( <dates> )

The <dates> argument is a table containing only one column of date data type. If you write the 
name of a column, a VALUES call is implicitly made using that column. For example, these expressions:

FIRSTDATE ( 'Date'[Date] ) 
 
LASTDATE ( 'Date'[Date] )

correspond to these expressions:

FIRSTDATE ( VALUES ( 'Date'[Date] ) ) 
 
LASTDATE ( VALUES ( 'Date'[Date] ) )
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FIRSTDATE returns the minimum value of the column received in the current filter context, whereas 
LASTDATE returns the maximum value (remember that a date is internally represented as a floating-
point number). The semantic difference between FIRSTDATE/LASTDATE and MIN/MAX functions is 
that the former returns a table and performs a context transition, whereas the latter returns a scalar 
value without doing any context transition. The reason for that is to simplify the DAX syntax when you 
place these expressions in the filter argument of a CALCULATE function. 

For example, consider the following expression:

CALCULATE ( 
    SUM ( Inventory[Quantity] ),  
    LASTDATE ( 'Date'[Date] ) 
)

You can rewrite such expressions into this equivalent DAX syntax, using MAX instead of LASTDATE, 
but this would result in a longer code:

CALCULATE ( 
    SUM ( Inventory[Quantity] ),  
    FILTER ( 
        ALL ( 'Date'[Date] ), 
        'Date'[Date] = MAX ( 'Date'[Date] ) 
    ) 
)

In reality, the LASTDATE function also performs a context transition. The exact correspondence of 
LASTDATE in plain DAX is as follows:

CALCULATE ( 
    SUM ( Inventory[Quantity] ),  
    CALCULATETABLE (  
        VALUES ( 'Date'[Date] ), 
        FILTER ( 
            ALL ( 'Date'[Date] ), 
            'Date'[Date] = MAX ( 'Date'[Date] ) 
        ) 
    ) 
)

The context transition is relevant when you execute FIRSTDATE/LASTDATE in a row context. The 
best practice is using FIRSTDATE/LASTDATE when you write a filter expression (because a table 
 expression is expected), whereas MIN/MAX functions are better when you are writing a logical 
 expression in a row context (which usually requires a scalar value), because LASTDATE implies a 
 context transition that hides the external filter context.
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For example, you will favor FIRSTDATE/LASTDATE over MIN/MAX in a filter argument of 
 CALCULATE/CALCULATETABLE functions, because the syntax is simpler (we have already seen 
 several  examples of this usage). However, you should use the MIN/MAX approach when the context 
 transition implied by FIRSTDATE/LASTDATE would modify the result. This is the case of the condition 
in a FILTER function. The following expression filters the dates for computing a running total:

FILTER ( 
    ALL ( 'Date'[Date] ), 
    'Date'[Date] <= MAX ( 'Date'[Date] ) 
)

Using MAX is the right method to use. In fact, if you write LASTDATE instead of MAX, you would 
not get any syntax error, but the result would always be all the dates, regardless of the current selec-
tion. Thus, the following expression is always wrong:

FILTER ( 
    ALL ( 'Date'[Date] ), 
    'Date'[Date] <= LASTDATE ( 'Date'[Date] ) 
)

You can see the problem by just counting the number of days returned by the two versions of the 
running total filter using the following measures:

[RT Days MAX] := 
COUNTROWS ( 
    FILTER ( 
        ALL ( 'Date'[Date] ), 
        'Date'[Date] <= MAX ( 'Date'[Date] ) 
    ) 
) 
 
[RT Days LASTDATE] := 
COUNTROWS ( 
    FILTER ( 
        ALL ( 'Date'[Date] ), 
        'Date'[Date] <= LASTDATE ( 'Date'[Date] ) 
    ) 
)

Figure 7-43 shows that the number of days filtered for the running total is correct for the RT 
Days MAX measure, but it is wrong for RT Days LASTDATE. The reason is that the context transition 
performed by LASTDATE for each date always returns the same value of the current FILTER iteration, 
resulting in all the dates being returned by FILTER.
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FIGURE 7-43 The RT Days LASTDATE measure always counts all the rows in Date table.

Understanding FIRSTNONBLANK and LASTNONBLANK
The LASTNONBLANK function, which you have previously seen in the “Semi-additive measures” 
 section, has a particular behavior, shared also by FIRSTNONBLANK. The syntax of these functions  
is as follows:

FIRSTNONBLANK ( <column>, <expression> )  
LASTNONBLANK ( <column>, <expression> )

These functions return the first or last value in <column>, filtered by the current context, wherein 
the <expression> is not blank. These functions behave like SUMX or similar functions in this regard, 
because they are iterators. They set a row context for a value of <column> and then evaluate the 
 <expression> by using that row context. If <expression> and <column> manage data of the same 
table, everything works fine. However, whenever <expression> uses columns of tables other than 
the one to which <column> belongs, you have to make a context transition by using RELATEDTABLE, 
CALCULATETABLE, or CALCULATE. This is the best practice for every date-related calculation and it is 
a very common situation every time you have a separate Date table. 

To get the right value for the last nonblank date for a given measure/table, you have to use an 
expression like this:

LASTNONBLANK ( Dates[Date], CALCULATE ( COUNT ( Inventory[Quantity] ) ) )
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It returns the last date (in the current filter context) for which there are values for the Quantity 
column in the Inventory table. You can also use an equivalent formula:

LASTNONBLANK ( Dates[Date], COUNTROWS ( RELATEDTABLE ( Inventory ) ) )

The last expression returns the last date (in the current filter context) for which there is a related 
row in the Inventory table.

Note The FIRSTNONBLANK/LASTNONBLANK functions accept any data type as their 
first argument, whereas the FIRSTDATE/LASTDATE functions require a column of date 
data type. You might also use FIRSTNONBLANK/LASTNONBLANK instead of FIRSTDATE/
LASTDATE when you have a date concept expressed in another data type and you want 
the first or last value in the filter context, passing any nonblank expression as a second 
 argument. However, you might consider also using the TOPN function in such a condition.

Using drillthrough with time intelligence
A drillthrough operation is a request for the data source rows corresponding to the filter context 
used in a certain calculation. Every time you use a time intelligence function, you change the filter 
context on the Date table, producing a different result for a measure from the one obtained with the 
initial filter context. When you use a client that performs a drillthrough action over a report, such as 
a pivot table in Excel, you could observe a behavior that is not what you might expect. In fact, the 
drillthrough operation made in MDX does not consider the changes in the filter context defined by 
the measure itself but only the filter context defined by rows, columns, filters, and slicers of the pivot 
table.

For example, the drillthrough on March 2007 always returns the same rows, regardless of the time 
intelligence function applied in the measure. By using TOTALYTD you would expect all the days from 
January to March 2007, by using SAMEPERIODLASTYEAR you would expect March 2006, and by using 
LASTDATE you would expect only the rows for March 31, 2007. However, any of these filters always 
returns all the rows for all the days in March 2007. Unfortunately, this behavior is by design.

Custom calendars

As you have seen so far, the standard time intelligence functions in DAX only support standard 
 Gregorian calendars based on a solar calendar divided into 12 months, each one with a different 
number of days. This works well when you want to analyze the data by year, quarter, month, and 
day. However, you might have a different definition of periods, not corresponding to months, or you 
might have week-based calendars, such as the ISO week date system. Whatever the reason is, you 
need to rewrite the time intelligence logic in DAX when you cannot use the standard time intelligence 
functions.
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This final section shows the main techniques to implement time intelligence calculations in DAX 
when you cannot use standard functions. A common technique is to move part of the business logic 
to the Date table. The standard DAX time intelligence functions do not read any information from 
the Date table other than the date column. This is a design choice of DAX, because in this way the 
behavior of the language does not depend on defining more metadata to identify the columns to use 
to determine year, quarter, and month of a date (as it was in the case with MDX and Analysis Services 
Multidimensional). You can make more assumptions in your code, and this helps in simplifying the 
code to write in order to handle custom time-related calculation.

You will find more information, examples, and DAX formulas ready to use in the following articles:

■■ Time Patterns: http://www.daxpatterns.com/time-patterns/

■■ Week-Based Time Intelligence in DAX: http://sql.bi/isoweeks/ 

Working with weeks
DAX does not provide any time intelligence function to handle weeks. The reason is that there are 
many different standards and techniques to define weeks within a year, and to define the notion of 
calculation over weeks. Often a single week crosses the boundaries of years, quarters, and months. 
You have to write the code to handle your own definition of a week-based calendar. For example, in 
ISO a week-date system of January 1 and January 2 in 2011 belongs to week 52 of year 2010, and the 
first week of 2011 starts on January 3.

Even if there are different standards, you can learn a generic approach that should work in most of 
the cases, moving in Date table data the assignment of a week to a month/quarter/year. Changing the 
rules will just require changing the content of the Date table, without modifying the DAX code of the 
measures.

For example, you can extend a Date table to support ISO weeks by using the following calculated 
columns:

Date[Calendar Week Number] = WEEKNUM ( 'Date'[Date], 1 ) 
  
Date [ISO Week Number] = WEEKNUM ( [Date], 21 ) 
 
Date [ISO Year Number] = 
IF ( 
    [ISO Week Number] < 5 && [Calendar Week Number] > 50, 
    [Calendar Year Number] + 1, 
    IF ( 
        [ISO Week Number] > 50 && [Calendar Week Number] < 5, 
        [Calendar Year Number] - 1, 
        [Calendar Year Number] 
    ) 
) 
 
 

http://www.daxpatterns.com/time-patterns/
http://www.daxpatterns.com/time-patterns/
http://sql.bi/isoweeks/
http://www.daxpatterns.com/time-patterns/
http://sql.bi/isoweeks/
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Date [ISO Week] = "W" & [ISO Week Number] & "-" & [ISO Year Number] 
 
Date [ISO Week Sequential] = INT ( ( 'Date'[Date] - 2 ) / 7 ) 
 
Date [ISO Year Day Number] = 
COUNTROWS ( 
    FILTER ( 
        Date, 
        AND ( 
            'Date'[ISO Year Number] = EARLIER ( 'Date'[ISO Year Number] ), 
            'Date'[Date] <= EARLIER ( 'Date'[Date] ) 
        ) 
    ) 
)

You can see in Figure 7-44 the result of these columns. The ISO Week column will be visible to 
users, whereas the ISO Week Sequential Number will not be visible to client tools. The ISO Year Day 
Number is the number of days since the beginning of the ISO year. Such numbers will make it easy to 
compare different periods.

FIGURE 7-44 The calculated columns extend the Date table to support ISO weeks.

Using the new columns, you can write year-to-date aggregations by using the ISO Year Number 
 column instead of extracting the year number from the date. The technique is the same as you have 
seen in the “Understanding periods to date” section earlier in this chapter. We just make sure that only 
one ISO Year is selected in order to execute the VALUES function, thus avoiding any execution error.

[ISO YTD Sales] := 
IF ( 
    HASONEVALUE ( 'Date'[ISO Year Number] ), 
    CALCULATE ( 
        [Sales Amount], 
        FILTER ( 
            ALL ( 'Date' ), 
            AND ( 
                'Date'[ISO Year Number] = VALUES ( 'Date'[ISO Year Number] ), 
                'Date'[Date] <= MAX ( 'Date'[Date] ) 
            ) 
        ) 
    ) 
)
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Figure 7-45 shows the result of the ISO YTD Sales measure for the first week of year 2008, which 
includes December 31, 2007.

FIGURE 7-45 The ISO YTD Sales correctly includes December 31, 2007, in the first week of 2008.

The comparison with the prior year should compare the relative weeks of the year with the same 
weeks in the previous year. Since the dates might be very different, it is simpler to use other columns 
in the Date table to implement the comparison logic. The distribution of weeks within each year is 
very regular, because each week always has seven days, whereas calendar months have different 
lengths and cannot benefit from the same assumption. In week-based calendars, you can simplify 
the calculation by looking in the “previous” year for the same “relative” days that were selected in the 
current filter context.

The following ISO PY Sales measure filters the same selection of days in the previous year. Such a 
technique works also when the selection includes complete weeks, because the days are selected us-
ing the ISO Year Day Number value, and not the effective date.

[ISO PY Sales] := 
IF ( 
    HASONEVALUE ( 'Date'[ISO Year Number] ), 
    CALCULATE ( 
        [Sales Amount], 
        FILTER ( 
            ALL ( 'Date' ), 
            AND ( 
                'Date'[ISO Year Number] = VALUES ( 'Date'[ISO Year Number] ) - 1, 
                CONTAINS ( 
                    VALUES ( 'Date'[ISO Year Day Number] ), 
                    'Date'[ISO Year Day Number], 'Date'[ISO Year Day Number] 
                ) 
            ) 
        ) 
    ) 
)

You can see in Figure 7-46 the result produced by the ISO PY Sales measure. 



204 The Definitive Guide to DAX

FIGURE 7-46 The ISO PY Sales shows the value of the same weeks one year earlier.

The week-based calendars are simple to manage because of the assumption you can make about 
the symmetry between days in different years. This is usually not compatible with the calendar month, 
so if you want to use both hierarchies (months and weeks), you have to create different time-intelligence 
 calculations for each hierarchy.

Custom year-to-date, quarter-to-date, month-to-date
You have seen how to rewrite DATESYTD and similar functions in the “Understanding periods to 
date” section, earlier in this chapter. In this section, we will show how to replace the logic that extracts 
 information from the date value by using other columns of the Date table.

For example, consider the following YTD Sales measure:

[YTD Sales] :=  
CALCULATE ( 
    [Sales Amount], 
    DATESYTD ( 'Date'[Date] ) 
)

The corresponding syntax in DAX without time intelligence is the following one:

[YTD Sales] :=  
CALCULATE ( 
    [Sales Amount], 
    FILTER (  
        ALL ( 'Date'[Date] ), 
        AND (  
            'Date'[Date] <= MAX ( 'Date'[Date] ), 
            YEAR ( 'Date'[Date] ) = YEAR ( MAX ( 'Date'[Date] ) ) 
        ) 
    ) 
)
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If you use a custom calendar, you have to replace the YEAR function call with an access to the Year 
column, such as in the following YTD Sales Custom measure. In this case, the filter iterates the Date 
table, so the row context can access all the columns. If the selection includes more than one year, you 
get the last one by using MAX.

[YTD Sales Custom] :=  
CALCULATE ( 
    [Sales Amount], 
    FILTER (  
        ALL ( 'Date' ), 
        AND (  
            'Date'[Date] <= MAX ( 'Date'[Date] ), 
            'Date'[Calendar Year Number] = MAX ( 'Date'[Calendar Year Number] ) 
        ) 
    ) 
)

You use the same template to implement quarter-to-date and month-to-date calculations. The 
only difference is the column used instead of Calendar Year Number:

[QTD Sales Custom] := 
CALCULATE ( 
    [Sales Amount], 
    FILTER (  
        ALL ( 'Date' ), 
        AND (  
            'Date'[Date] <= MAX ( 'Date'[Date] ), 
            'Date'[Calendar Year Quarter Number]  
                = MAX ( 'Date'[Calendar Year Quarter Number] ) 
        ) 
    ) 
)  
[MTD Sales Custom] := 
CALCULATE ( 
    [Sales Amount], 
    FILTER (  
        ALL ( 'Date' ), 
        AND (  
            'Date'[Date] <= MAX ( 'Date'[Date] ), 
            'Date'[Calendar Year Month Number]  
                = MAX ( 'Date'[Calendar Year Month Number] ) 
        ) 
    ) 
)

You can use these formulas to implement both standard calendars (in case you have to use 
 DirectQuery) and custom calendars (in case the periods are not standard).
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Computing over noncontiguous periods
The standard DAX time intelligence functions do not support operations over noncontiguous  periods. 
As you have seen in the “Understanding DATEADD” section earlier in this chapter, the function 
DATEADD only works with contiguous date selections. By implementing a custom DAX formula, you 
can also support this scenario. In an earlier section, “Working with weeks,” you have already seen a 
technique based on CONTAINS that looks for the same relative day number in a previous year. How-
ever, if you have a standard calendar based on months, the implementation is more complex.

We make a few initial assumptions:

■■ Because the calendar is month-based, we will implement a calculation that works on one 
month, repeating the same calculation for every month included in the selection.

■■ If the selection includes all the days in a month, the shifted month will include all days, too 
(even when their number is different, for example, moving from 30 to 31 days or vice versa).

■■ If the selection includes only a few days in a month, the shifted month will include only the 
same relative days in the month, if they exist in the shifted month.

You create a few calculated columns to simplify the calculation in the DAX measure.

Date[Month Sequential Number] =  
'Date'[Calendar Year Number] * 12 + 'Date'[Month Number] - 1 
 
Date[Days in Month] =  
COUNTROWS ( 
    FILTER ( 
        ALL ( Date ), 
        'Date'[Month Sequential Number] = EARLIER ( 'Date'[Month Sequential Number] ) 
    ) 
) 
 
Date[Day of Month] = DAY ( 'Date'[Date] )

The Month Sequential Number is a unique value for each combination of month and year, and it 
 increases by one every month. This also makes it easier to move from January to December of the 
previous year, you just look in this column for the value of January minus one. The Days in Month 
 column contains the total number of days of the month (for example, January 31, February 28 or 29, 
and so on). The Day of Month column is simply the day number within the month. You can see in 
Figure 7-47 an example of the content of these columns.
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FIGURE 7-47 The calculated columns extend the Date table to support custom time intelligence calculations over 
noncontiguous periods.

Let’s see how to build step by step the complete formula to get the value of the previous month 
without using DATEADD, which would have this syntax:

DATEADD ( 'Date'[Date], -1, MONTH )

As we said in the first assumption, we will iterate the months selected, repeating the same calcula-
tion for each month selected in the filter context:

SUMX ( 
    VALUES ( 'Date'[Month Sequential Number] ), 
    <calculation for the month> 
)

The calculation for each month is different depending on whether all the days of the month are 
included in the selection or not. The first part of the calculation for the month performs this check, 
comparing the number of days selected with the number of days in the month. Remember that this 
step is executed within a single month, thanks to the SUMX iteration over Month Sequential Number 
values.

IF ( 
    CALCULATE ( COUNTROWS ( VALUES ( 'Date'[Date] ) ) ) 
        = CALCULATE ( VALUES ( 'Date'[Days in Month] ) ), 
    <calculation for all days selected in the month>, 
    <calculation for partial selection of the days in the month> 
)

Tip Iterating over the values of a column guarantees that for each iteration, with a  context 
transition, there is only one value selected for the column iterated. This makes it  useless 
to add the HASONEVALUE test to protect the call to VALUES. Nevertheless, a call to 
CALCULATE or CALCULATETABLE is required to perform the context transition.
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If the number of days selected is equal to the number of days in the month, then we need to 
 create a filter that selects all the days in the previous month, by subtracting one from the Month 
Sequential Number column. Please note that the following code excerpt is included within a SUMX 
iteration over the Month Sequential Number column of the Date table, which is the row context we 
want to refer to, using the EARLIER function.

CALCULATE ( 
    [Sales Amount], 
    ALL ( 'Date' ), 
    FILTER ( 
        ALL ( 'Date'[Month Sequential Number] ), 
        'Date'[Month Sequential Number]  
            = EARLIER ( 'Date'[Month Sequential Number] ) - 1 
    ) 
)

Otherwise, the filter also includes the days selected in the month iterated, getting the current 
filtered values from the Day of Month column; such a filter is highlighted in the following formula:

CALCULATE ( 
    [Sales Amount], 
    ALL ( 'Date' ), 
    CALCULATETABLE ( VALUES ( 'Date'[Day of Month] ) ), 
    FILTER ( 
        ALL ( 'Date'[Month Sequential Number] ), 
        'Date'[Month Sequential Number]  
            = EARLIER ( 'Date'[Month Sequential Number] ) - 1 
    ) 
)

Tip You might be surprised to see the following syntax in a filter argument:

CALCULATETABLE ( VALUES ( 'Date'[Day of Month] )

The reason is that CALCULATETABLE performs a context transition, transforming the 
 current value of Month Sequential Number iterated by SUMX in a filter context. In this way, 
only values of Day of Month corresponding to active dates in the iterated month will be 
included in the new filter context to evaluate Sales Amount.
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Combining all the steps, you obtain the following complete formula for the previous month sales 
(PM Sales Custom):

[PM Sales Custom] := 
SUMX ( 
    VALUES ( 'Date'[Month Sequential Number] ), 
    IF ( 
        CALCULATE ( COUNTROWS ( VALUES ( 'Date'[Date] ) ) ) 
            = CALCULATE ( VALUES ( 'Date'[Days in Month] ) ), 
        CALCULATE ( 
            [Sales], 
            ALL ( 'Date' ), 
            FILTER ( 
                ALL ( 'Date'[Month Sequential Number] ), 
                'Date'[Month Sequential Number] 
                    = EARLIER ( 'Date'[Month Sequential Number] ) - 1 
            ) 
        ), 
        CALCULATE ( 
            [Sales], 
            ALL ( 'Date' ), 
            CALCULATETABLE ( VALUES ( 'Date'[Day of Month] ) ), 
            FILTER ( 
                ALL ( 'Date'[Month Sequential Number] ), 
                'Date'[Month Sequential Number] 
                    = EARLIER ( 'Date'[Month Sequential Number] ) - 1 
            ) 
        ) 
    ) 
)

You can see in Figure 7-48 that the measure works also with a noncontiguous selection, because 
months between March 2008 and August 2008 are not selected on rows. However, the column PM 
Sales Custom returns the value of December 2007 corresponding to the row January 2008, and 
 returns the value of August 2008 corresponding to the row September 2008.

FIGURE 7-48 The PM Sales Custom measure shows the value of the previous month.

Using the same formulas, you can implement a comparison over the previous quarter or year by 
simply subtracting 3 or 12 instead of 1 from the Month Sequential Number.
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Custom comparison between periods
In the previous section, you have seen how to implement calculations for previous periods in month-
based calendars. You can apply the same technique to any period that splits a year. However, a 
custom calendar might require applying special rules for comparison, with exceptions for particular 
periods of the year (for example, Thanksgiving, Black Friday, Easter, New Year, and any other world 
holidays that might change the calendar day every year). In this section, you learn a technique to 
handle these exceptions in data instead of including special conditions in the DAX expression.

The initial assumption is that it should be possible to define, for each day, what the corresponding 
day is in the previous year. For example, we can assume that by default it will be the same week day, 
by subtracting 364 days (exactly 52 weeks) from the current day number. However, exceptions such 
as  Thanksgiving might modify these dates (for example, it was November 27 in 2008 and November 
22 in 2007). Handling the calculation of the fourth Thursday in November within the time intelligence 
calculation would add complexity and slow down execution time. Therefore, we define a column in 
the Date table that we populate with the corresponding day to use in a previous year comparison, as 
you see in Figure 7-49.

FIGURE 7-49 The Date Previous Year column defines what is the corresponding date to use in a previous year 
comparison.

The formula that applies the previous year calculation using the custom formula is the following:

[PY Sales Custom] := 
CALCULATE ( 
    [Sales Amount], 
    FILTER ( 
        ALL ( 'Date' ), 
        CONTAINS ( 
            VALUES ( 'Date'[Date Previous Year] ), 
            'Date'[Date Previous Year],  
            'Date'[Date] 
        ) 
    ) 
)
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The FILTER function returns Date rows that correspond to active dates in the Date Previous Year 
column. For example, the user selected January 8, 2005; the current filter for Date Previous Year 
 column is January 10, 2004. The FILTER iterates all the dates and returns one row having the Date 
column equal to January 10, 2004. Using CONTAINS, any number of dates selected is processed.

The dates returned by FILTER must exist in the Date column of the Date table. Moreover, the 
result will never include duplicated dates. If in Date Previous Year column the same value appears in 
 different rows, the duplicated value will be returned only once by the filter. For these reasons, the 
number of rows returned by the FILTER might be lower than the number of dates initially selected in 
the filter context.

In Figure 7-50 you see the result of PY Sales Custom. In order to understand which range of dates is 
considered for the previous year, the following measures have also been added:

[MIN Date PY] := MIN ( 'Date'[Date Previous Year] )  
 
[MAX Date PY] := MAX ( 'Date'[Date Previous Year] )

FIGURE 7-50 The PY Sales Custom returns the Sales Amount of the dates between MIN Date PY and MAX Date PY.

With this approach, you will never change the DAX measure to calculate the value of the previous 
year, and you will handle exceptions only by modifying the content of the Date Previous Year column 
in the Date table.
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C H A P T E R  8

Statistical functions

DAX provides a number of statistical functions that simplify the code you write to perform the 
 corresponding calculations. New DAX versions introduced a few statistical functions not  present 

in previous versions, so you will find corresponding workarounds and patterns in case the DAX 
 version you use does not support the function you need.

In this chapter, you will learn how to obtain the ranking value of an element, how to calculate 
variances, standard deviations, and percentiles. You will also learn functions for calculating interest, 
computing the geometric mean, and obtaining a sample from a table.

Using RANKX

If you want to show the ranking value of an element according to a specific sort order, you can use 
the RANKX function. Its syntax is the following:

RANKX( <table>, <expression> [, <value>[, <order>[, <ties>]]] 
             [, <expression> [, <value>[, <order>[, <ties>]]]] … )

The <value> argument is ranked over the values returned by <expression> for every row of 
the <table>. If <value> is omitted, <expression> is used to compute the value for ranking in the 
 evaluation context that calls the RANKX function.

Note Both <expression> and <value> are evaluated in different contexts. The <expres-
sion> argument is evaluated in a row context defined for each row of <table>. The <value> 
argument is evaluated in the context defined by the caller of the RANKX function, which 
could have either a row context or not. In both cases, you can use CALCULATE to convert 
a row context into a filter context (but note that a row context might not exist for the third 
argument). Remember that a measure implicitly performs a CALCULATE operation.

The <order> parameter is 0 or False (default) to rank in descending order and 1 or True to rank in 
ascending order. The <ties> argument is a string that can be DENSE or SKIP to control the rank value 
after a tie. DENSE always returns the next rank value after a tie, whereas SKIP returns a value that 
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skips as many values as tied values. For instance, if four values are tied with a rank of 5, the next value 
will receive a rank of 9 for SKIP and a rank of 6 for DENSE.

For example, you can define a measure that ranks product brands in this way:

[Rank by Brand A] := 
RANKX ( ALL ( Product[Brand] ), [Sales Amount] )

The result of this measure displays a number even when more brands are selected, such as in 
the case of the Grand Total. You can avoid that by testing whether only one brand is selected using 
 HASONEVALUE. The result of the two measures is visible in Figure 8-1.

[Rank by Brand B] := 
IF ( 
    HASONEVALUE ( Product[Brand] ), 
    RANKX ( ALL ( Product[Brand] ), [Sales Amount] ) 
) 

FIGURE 8-1 The Rank by Brand B hides the ranking for Grand Total row.

It is important to consider which <table> parameter to pass to the RANKX function to obtain the 
desired result. In the previous query, it was necessary to specify ALL ( Product[Brand] ) because you 
want to obtain the ranking of each brand. If you put the color on the rows, and no selection of the 
brand, you obtain the strange result you see in Figure 8-2.

The measure Rank by Brand A always returns 1, because for each color there could be one or more 
brands, but the Sales Amount displayed for each row in the report corresponds to the sum of all the 
brands for that color. Such a value is always greater than or equal to the value of the brands that, 
 within that color, have the higher value. In fact, the second argument of RANKX is [Sales Amount], 
which is restricted by the filter context of each cell (it is worthwhile to remind you that RANKX 
 computes the value of all product brands for each cell of the report). Why do you see 1 for the Rank by 
Brand B measure only in a few rows? The reason is that when a color has products belonging to only 
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one brand (which is the case of Azure and Transparent colors), then the HASONEVALUE condition is 
satisfied,  otherwise there is more than one brand for the color, and the result forced by the IF  condition 
is BLANK.

FIGURE 8-2 The measures rank Sales Amount by product model, but the report splits data by product color.

The ranking computed by Rank by Brand A measure is an absolute ranking of all the brands. If you 
filter only a few brands, the ranking always considers those that are not visible. For example, in Figure 
8-3 you can see that if you unselect the top three brands, the first one visible is the fourth one.

FIGURE 8-3 The first brand visible has ranking number 4, because the ranking is applied to all the brands.

If you want to calculate a ranking that considers only the visible brands, you have to use 
 ALLSELECTED instead of ALL, as you can see in the following measure that produces the result  
shown in Figure 8-4.

Note We introduced the ALLSELECTED function in Chapter 5, “Understanding CALCULATE 
and CALCULATETABLE,” and you will see a more complete explanation of it later in Chapter 
10, “Advanced evaluation context.” In this context, ALLSELECTED removes the filter context 
introduced by rows and columns members in the pivot table, keeping the selection defined 
by slicers and filters of the pivot table.
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[Rank by Brand C] := 
IF ( 
    HASONEVALUE ( Product[Brand] ), 
    RANKX ( ALLSELECTED ( Product[Brand] ), [Sales Amount] ) 
)

FIGURE 8-4 The first brand visible has ranking number 1, because the ranking is applied to only the visible 
brands.

Common pitfalls using RANKX
You might fall into a few common mistakes by using RANKX in your measures. The first pitfall is that 
the first argument usually contains ALL for a column or a table. When you use a table, you might 
forget to include ALL, something that would not happen when specifying a single column, because a 
table function is required and you would get an error by specifying a simple column name as the first 
argument.

For example, consider the following measures to compute the rank by product category. The 
wrong formula has Product Category table specified as a first argument of RANKX, whereas the 
 correct formula uses ALL ( ‘Product Category’ ). The results of both measures are visible in Figure 8-5. 

[Wrong Rank by Category] := 
IF ( 
    HASONEVALUE ( 'Product Category' ), 
    RANKX ( 'Product Category', [Sales Amount] ) 
) 
 
[Rank by Category] := 
IF ( 
    HASONEVALUE ( 'Product Category' ), 
    RANKX ( ALL ( 'Product Category' ), [Sales Amount] ) 
)
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FIGURE 8-5 The Wrong Rank by Category measure always displays 1 as a result.

The other common pitfall is using a DAX formula to aggregate rows without wrapping the expression 
in a CALCULATE function. In the previous examples, we always used the measure Sales Amount as the 
expression to use in the ranking. If you use an aggregation function such as SUMX, you should consider 
that the expression is evaluated for each row of the table passed as a first argument to RANKX. The 
row context defined in this iteration is not transformed into a filter context unless a context transition is 
invoked by CALCULATE, which is an implicit operation when you evaluate a measure. Thus, for each row 
the filter context is always the same (that is, the existing filter in the cell where RANKX is evaluated), and 
all the items have the same rank of 1 in this way. The correct formula simply wraps the expression in a 
CALCULATE function that performs the context transition for each row of the table iterated by RANKX. 
You can see the result of the wrong and correct formulas in Figure 8-6.

[Wrong Rank by Quantity] := 
IF ( 
    HASONEVALUE ( 'Product Category' ), 
    RANKX ( 
        ALL ( 'Product Category' ), 
        SUM ( Sales[Quantity] ) 
    ) 
)  
 
[Rank by Quantity] := 
IF ( 
    HASONEVALUE ( 'Product Category' ), 
    RANKX ( 
        ALL ( 'Product Category' ), 
        CALCULATE ( SUM ( Sales[Quantity] ) ) 
    ) 
)

FIGURE 8-6 The Wrong Rank by Quantity measure always displays 1 as a result.
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Using the third argument of RANKX
In the previous examples, you have seen RANKX called with only two arguments. By default, the third 
corresponds to the second one, and usually this is the correct choice whenever you are ranking by a 
DAX measure or an aggregation expression. However, if you want to perform the ranking over a table 
by the value of one of the columns of the table itself, then you probably need to specify a different 
expression in the third argument.

The second argument defines the expression to evaluate for each row of the table passed as a first 
argument of RANKX. Such an expression is always executed in a row context, so it can directly access 
the value of any column of the same table. However, the third argument does not have a row context 
if the RANKX is included in a measure, as in the examples you have seen so far. A row context would 
 exist for the third argument if the RANKX function were part of a calculated column expression.

For example, the following measure produces a syntax error, saying that the value for column ‘Unit 
Price’ in table ‘Product’ cannot be determined in the current context:

[Wrong Rank by Price] := 
IF ( 
    HASONEVALUE ( Product ), 
    RANKX ( 
        ALLSELECTED ( Product ), 
        Product[Unit Price]  
    ) 
)

The following measure is identical to the previous one, because the third argument is by default 
the same as the second one:

[Wrong Rank by Price] := 
IF ( 
    HASONEVALUE ( Product ), 
    RANKX ( 
        ALLSELECTED ( Product ), 
        Product[Unit Price], 
        Product[Unit Price] 
    ) 
)

The evaluation of the third argument requires a row context, which does not exist when the 
measure is evaluated in a report such as the pivot tables you have seen previously. Thus, in order to 
retrieve the price of the “current” product you can use VALUES, knowing that the HASONEVALUE con-
dition does not evaluate RANKX in case more than one product is selected. The following measure 
implements such a technique, and Figure 8-7 shows the result.
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[Rank by Price] := 
IF ( 
    HASONEVALUE ( Product ), 
    RANKX ( 
        ALLSELECTED ( Product ), 
        Product[Unit Price], 
        VALUES ( Product[Unit Price] ) 
    ) 
)

FIGURE 8-7 The report shows only the product of the brand selected in the slicer. Rank by Price retrieves the 
price for the current row in the report (which has only a filter context and not a row context) using the VALUES 
function. The report contains the average price in another measure, which corresponds to the unit product of the 
product in each row (the measure requires the use of an aggregation function).

Using RANK.EQ

The RANK.EQ function in DAX is similar to the same function in Microsoft Excel and returns the  ranking 
of a number in a list of numbers, offering a subset of the features available with the RANKX functions. 
You rarely use it in DAX unless you are migrating an Excel formula. It has the following syntax:

RANK.EQ ( <value>, <column> [, <order>] )

The <value> argument can be a DAX expression that has to be evaluated, and <column> is the 
name of an existing column against which rank will be determined. The order is optional and can be 
0 for descending order and 1 for ascending order. In Excel, the same function can accept a range of 
cells for column argument, whereas in DAX it is often the same column used for value expression, 
meaning that you want to calculate the ranking of a column over itself. One scenario in which you 
might want to use a different column is when you have two tables, one with elements that you want 
to rank (for example, a specific group of products) and another with the entire set of elements to 
use for ranking (for example, the list of all the products). However, because of the limitations applied 
to the column parameter (it cannot be an expression or a column created by using ADDCOLUMNS, 
ROW, or SUMMARIZE), RANK.EQ is commonly used by passing the same column for value and 
 column parameters in a calculated column expression, referring to columns of the same table as in 
the following example:
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Product[Price Rank] :=  
RANK.EQ ( Product[Unit Price], Product[Unit Price] )

If you need a more flexible or dynamic ranking, you can use RANKX instead of RANK.EQ, which is 
provided mainly for Excel compatibility.

Computing average and moving average

You can calculate the mean (arithmetic average) of a set of values by using one of the following DAX 
functions:

■■ AVERAGE returns the average of all the numbers in a numeric column.

■■ AVERAGEX calculates the average of an expression evaluated over a table.

Note DAX provides a function called AVERAGEA, which returns the average of all the 
numbers in a text column, but you should not use it. Such a function exists in DAX for 
Excel compatibility only. However, when you use a text column as an argument, instead of 
getting an error (as it would be the case in using AVERAGE), you always get 0 as a result, 
whereas the Excel function converts each value where possible, assuming 0 for the values 
that are not a number.

The moving average is a calculation to analyze data points by creating a series of averages of 
 different subsets of the full data set. You can use many DAX techniques to implement this calculation. 
The simplest technique is using AVERAGEX, iterating a table of the desired granularity and calculating 
for each iteration the expression that generates the single data point to use in the average.

For example, the following formulas calculate the simple average of each Sales transaction of the 
period selected and of the last 90 days. In the latter case, you apply the filter for the period using a 
CALCULATE function. You can see in Figure 8-8 the result of these measures:

[Average Sales] := 
AVERAGEX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
 
[Moving Average Sales 90 Days] := 
CALCULATE ( 
    AVERAGEX ( Sales, Sales[Quantity] * Sales[Unit Price] ), 
    DATESINPERIOD ( 
        'Date'[Date], 
        LASTDATE ( 'Date'[Date] ), 
        -90, 
        DAY 
    ) 
)
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FIGURE 8-8 The line chart compares the simple average for the period selected and the moving average over 90 
days.

You might want to calculate the daily average for both the period selected and the last 90 days. 
In this case, the AVERAGEX function has to iterate the days, and you can implement the filter for 
the moving average directly in the first argument of the AVERAGEX function, without relying on 
 CALCULATE to do that. You can see the result of the following measures in Figure 8-9.

[Average Daily Sales] := 
AVERAGEX ( 'Date', [Sales Amount] ) 
 
[Moving Average Daily Sales 90 Days] := 
AVERAGEX ( 
    DATESINPERIOD ( 
        'Date'[Date], 
        LASTDATE ( 'Date'[Date] ), 
        -90, 
        DAY 
    ), 
    [Sales Amount] 
)

FIGURE 8-9 The line chart compares the daily average for the period selected with the daily moving average of 
90 days.
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Computing variance and standard deviation

The variance of a variable is the squared deviation of that variable from its mean and is calculated 
with the following formula:

We indicate with  the average of the values and with  the resulting value of the standard 
 deviation, which is the square root of the variance. Thus, the standard deviation is defined as follows:

The standard deviation is expressed in the same units as the data and for this reason is simpler to 
use. You can read more details about its use on http://en.wikipedia.org/wiki/Standard_deviation.

In DAX there are several aggregation functions available to calculate variance and standard 
 deviation of a population, beginning with STDEV and VAR, respectively. Here is the syntax of the 
available functions:

VAR.S( <column> ) 
VAR.P( <column> ) 
VARX.S( <table>, <expression> ) 
VARX.P( <table>, <expression> ) 
STDEV.S( <column> ) 
STDEV.P( <column> ) 
STDEVX.S( <table>, <expression> ) 
STDEVX.P( <table>, <expression> )

The difference between the .P and the .S suffix (which stand for Population and Sample) is in 
the formula used to perform the calculation. Functions ending with .P use the formulas previously 
 described, assuming that the data in the filter context represents the entire population. You have to 
use functions ending with .S when the available data represents a sample of the entire population, 
which requires the following slightly different formula:

As in the other [Aggregate]X functions, you should use VARX and STDEVX whenever the  expression 
is more complex than a single column. You can use VAR and STDEV when the calculation only 
 requires the value of one column.

For example, the following measures calculate the standard deviation of the sales quantity for each 
color and Figure 8-10 shows the range of values that includes 95 percent of the sales for that color.

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
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[Average Qty] :=
AVERAGE ( Sales[Quantity] )

[StDev.P Qty] :=
STDEV.P ( Sales[Quantity] )

[StDev.S Qty] :=
STDEV.S ( Sales[Quantity] )

[Min Qty] :=
MIN ( Sales[Quantity] )

[Max Qty] :=
MAX ( Sales[Quantity] )

[Distribution] :=
"95% between" & ROUND ( [Average Qty] – 2 * [StDev.P Qty], 2 )
   & "and" & ROUND ( [Average Qty] + 2 * [StDev.P Qty], 2 ) 

 
FIGURE 8-10 Every color has a slightly different distribution, even when the average is identical. 

As you can see, the standard deviation is calculated assuming a sample of population (STDEV.S) 
has a slightly higher value than the calculation over the entire population (STDEV.P). This results in 
extending the estimated distribution range of values obtained as a result, even if there is no apparent 
difference in the Distribution comment because of the rounding chosen for display. 

Computing median and percentiles 

 Median and percentiles are two measures used in statistics. Given a population, the median is the 
number separating the higher half from the lower half (this is usually done using a sample of the 
entire population). The percentile is the value below which a corresponding percentage of values 

[Average Qty] :=
AVERAGE ( Sales[Quantity] )

[StDev.P Qty] :=
STDEV.P ( Sales[Quantity] )

[StDev.S Qty] :=
STDEV.S ( Sales[Quantity] )

[Min Qty] :=
MIN ( Sales[Quantity] )

[Max Qty] :=
MAX ( Sales[Quantity] )

[Distribution] :=
"95% between" & ROUND ( [Average Qty] – 2 * [StDev.P Qty], 2 )
  & "and" & ROUND ( [Average Qty] + 2 * [StDev.P Qty], 2 )
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fall. For example, the twentieth percentile is the value below 20 percent of the values. The median 
 corresponds to the fiftieth percentile.

You can calculate the median by using one of the following DAX functions, which both ignore 
blanks:

■■ MEDIAN returns the median of numbers in a numeric column.

■■ MEDIANX calculates the median number of an expression evaluated for each row in a table.

The median might be calculated as the fiftieth percentile, but it has a specific function because it 
can be calculated using a faster algorithm. You can calculate any percentile using one of these other 
DAX functions:

■■ PERCENTILE.EXC returns the k-th percentile of values in a range, where k is in the range 0..1 
exclusive.

■■ PERCENTILE.INC returns the k-th percentile of values in a range, where k is in the range 0..1 
inclusive.

■■ PERCENTILEX.EXC returns the k-th percentile of an expression evaluated for each row in a 
table, where k is in the range 0..1 exclusive.

■■ PERCENTILEX.INC returns the k-th percentile of an expression evaluated for each row in a 
table, where k is in the range 0..1 inclusive.

The behavior of the functions MEDIAN, PERCENTILE.EXC, and PERCENTILE.INC is identical to the 
Excel functions with the same name. For example, the following measures produce the result you can 
see in Figure 8-11.

[Median Unit Price] := 
MEDIAN ( Sales[Unit Price] ) 
 
[75 Percentile Inc] := 
PERCENTILE.INC ( Sales[Unit Price], 0.75 ) 
 
[75 Percentile Exc] := 
PERCENTILE.EXC ( Sales[Unit Price], 0.75 )

FIGURE 8-11 Median and the seventy-fifth percentile calculated for each product category; the inclusive and 
exclusive percentiles are different only for the Computers category.
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Note In case your version of DAX does not implement the functions described in this 
 section to calculate median and percentile, you can implement the same calculation using 
the DAX formulas described in this article: http://www.daxpatterns.com/statistical-patterns/. 
The same article also contains the DAX measure to compute the mode, returning a result 
identical to the MODE and MODE.SNGL functions in Excel.

Computing interests

You can apply specific functions and formulas for interest-related calculations. For example, you can 
calulate compound interest and average interest rate using the following functions: 

■■ PRODUCT returns the product of numbers in a numeric column.

■■ PRODUCTX calculates the product of an expression evaluated for each row in a table.

■■ GEOMEAN returns the geometric mean of numbers in a numeric column.

■■ GEOMEANX calculates the geometric mean of an expression evaluated for each row in a 
table.

The product of a data set {a1, a2, ... , an} corresponds to the products of its members:

p = a1 a2 ... an

The geometric mean of the same set is given by the following equation:

For example, consider the table in Figure 8-12, where each year has an interest rate.

FIGURE 8-12 The table Rate contains interest rates by year.

http://www.daxpatterns.com/statistical-patterns/
http://www.daxpatterns.com/statistical-patterns/
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You can use PRODUCTX and GEOMEANX to calculate the compound interest and the geometric 
mean. In Figure 8-13 you can see the result of these measures applied in a running total pattern, 
implemented using the following measures:

[Compound Interest] := 
PRODUCTX ( Rates, 1 + Rates[Rate] )  
 
[Geometric Mean] := 
GEOMEAN ( Rates[Rate] ) 
 
[Running Compound Interest] := 
CALCULATE ( 
    [Compound Interest], 
    FILTER ( ALL ( Rates ), Rates[Year] <= MAX ( Rates[Year] ) ) 
) 
 
[Running Geometric Mean] := 
CALCULATE ( 
    [Geometric Mean], 
    FILTER ( ALL ( Rates ), Rates[Year] <= MAX ( Rates[Year] ) ) 
)

FIGURE 8-13 The report shows the running total for compound interest and geometric mean of interest rates.

Alternative implementation of PRODUCT and GEOMEAN
If you are using a version of DAX that does not have the functions PRODUCT and GEOMEAN, you 
can implement them with other DAX expressions. You can implement PRODUCTX and GEOMEANX 
using the following measures, where <value> is the column containing the numbers to compute and 
<table> is the table to which the column belongs.
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[ProductX] := POWER ( 10, SUMX ( <table>, LOG ( <value> ) ) ) 
[GeoMeanX] := EXP ( AVERAGEX ( <table>, LN ( <value> ) ) )

You have to use the [Aggregate]X version every time, because you have to sum the result of LOG or 
LN computed for each number. You can compute the measures of the previous example with the fol-
lowing code (which replaces the corresponding measures called by the running total in Figure 8-13):

[Compound Interest] := 
POWER ( 10, SUMX ( Rates, LOG ( 1 + Rates[Rate] ) ) ) - 1  
 
[Geometric Mean] := 
EXP ( AVERAGEX ( Rates, LN ( Rates[Rate] ) ) )

Using internal rate of return (XIRR)
The internal rate of return is an indicator of profitability of investment. It is also known as effective 
 interest rate when applied to savings and loans. In Excel, this calculation is available with the XIRR 
function. For example, a loan of 1,000 returned in a single solution paying 1,100 has an effective 
interest rate of 10 percent, as you can see in Figure 8-14.

FIGURE 8-14 An intuitive calculation of effective interest rate in Excel.

However, if the return of the same amount is in 11 monthly payments of 100, starting two months after 
the beginning of the loan, the resulting effective interest rate is 18.03 percent, as shown in Figure 8-15.

FIGURE 8-15 An example of effective interest rate for a monthly payment of a loan.
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The Excel XIRR function has an equivalent function in recent versions of DAX, with the following 
syntax:

XIRR ( <table>, <value>, <date> [, <guess>] )

For each row in <table>, there is an evaluation of the <value> and <date> expressions, so you can 
use a syntax that is valid in the row context of <table>. The optional <guess> argument is a number 
that you guess is close to the result of XIRR, and if omitted it is 0.1 (10 percent) by default.

Tip The guess argument might be important to improve performance of the XIRR func-
tion, which uses a heuristic method that attempts up to 100 tries until it finds a result that 
is  accurate enough. Most of the time, you can omit it.

For example, if you have the data shown in Figure 8-15 in a table called LoanRates, you can obtain 
the effective interest rate by using the following DAX measure:

[Effective Interest Rate] := 
XIRR ( LoanRates, LoanRates[Amount], LoanRates[Date] )

Using net present value (XNPV)
The net present value is the sum of the present values for a schedule of cash flow, which is not 
 necessarily periodic. In Excel, this calculation is available with the XNPV function (and with the NPV 
function for a periodic schedule of cash flow, but the NPV function is not available in DAX).

The net present value formula is useful also to evaluate the remaining balance on loan. For 
 example, consider a loan of 1,000 at an interest rate of 10 percent. After a single payment of 1,100 
one year after the loan, the net present value is zero, as you can see in Figure 8-16. 

FIGURE 8-16 A simple calculation of net present value in Excel.

Now consider an example similar to the one used for the internal rate of return in the previous 
section. You have a loan of 1,000 at an interest rate of 18.03 percent and you want to evaluate the 
net present value after 11 monthly payments of 100 paid regularly, starting two months after the 
beginning of the loan. In this case, the net present value is 84.73, which corresponds to the capital 
part of the loan. The last payment should be made on December 31, 2015, with a value of 100, which 
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is exactly 84.73 (capital) plus 15.28 (interest, obtained as 18.03 percent of 84.73). You can see the 
calculation of net present value (XNPV) in Figure 8-17. 

FIGURE 8-17 An example of net present value for a monthly loan payment.

The Excel XNPV function has an equivalent function in recent versions of DAX, with the following 
syntax:

XNPV ( <table>, <value>, <date>, <rate> )

For each row in <table>, there is an evaluation of the <value> and <date> expressions, so you can 
use a syntax that is valid in the row context of <table>. The <rate> argument is the interest rate to 
apply.

For example, if you have the data shown in Figure 8-17 in a table called LoanRates, you can obtain 
the net present value by using the following DAX measure, where the last argument corresponds to 
the 18.03 percent interest rate applied to the loan:

[Net Present Value] := 
XNPV ( LoanRates, LoanRates[Amount], LoanRates[Date], 0.1803 )

Using Excel statistical functions

Recent versions of DAX include a number of statistical functions with the same behavior as their Excel 
counterpart. Because these functions have a specific interest only for advanced statistical calculations 
and they are identical to the Excel version, a complete description is out of the scope of this book and 
we suggest considering documentation and examples available for Excel in order to get more details 
about them. This is the list of these functions (which are not available in Power Pivot for Excel 2013 
and in Analysis Services 2012/2014):

■■ BETA.DIST returns the beta distribution.
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■■ BETA.INV returns the inverse of the beta cumulative probability density function (BETA.
DIST).

■■ CHISQ.DIST returns the chi-squared distribution.

■■ CHISQ.DIST.RT returns the right-tailed probability of the chi-squared distribution.

■■ CHISQ.INV returns the inverse of the left-tailed probability of the chi-squared distribution.

■■ CHISQ.INV.RT returns the inverse of the right-tailed probability of the chi-squared 
 distribution.

■■ COMBIN returns the number of combinations for a given number of items.

■■ COMBINA returns the number of combinations (with repetitions) for a given number of 
items.

■■ CONFIDENCE.NORM returns the confidence interval for a population mean, using a normal 
distribution.

■■ CONFIDENCE.T returns the confidence interval for a population mean, using a Student’s t 
distribution.

■■ EXPON.DIST returns the exponential distribution.

■■ PERMUT returns the number of permutations for a given number of objects that can be 
selected from number of objects.

■■ POISSON.DIST returns the Poisson distribution.

Sampling by using the SAMPLE function

If you need to query a sample of data from a table, you can use the SAMPLE function, which has the 
following syntax:

SAMPLE( <number_of_rows>, <table>,  
        <columnName_0> [, <order_0>]  
        [, <columnName_1> [, <order_1>]] […] )

The SAMPLE function returns the rows defined by the <number_of_rows> parameter from the 
<table> specified in the second argument, which can be either a physical table or the result of a 
 function returning a table.

The remaining arguments specify one or more columns that will be used to order data before 
choosing the row that will be returned as a sample. The algorithm logically sorts data according to 
these parameters and then divides it in <number_of_rows> blocks, returning one row from each 
block. The <column_name> usually corresponds to a column name, but can be any DAX expression 
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evaluated in a row context of <table>. The <order> parameter is 0 to return data sorted by <column> 
in descendant order and 1 for ascendant order; if missing, it defaults to 0 (descendant).

For example, the following query returns just one row for every month:

EVALUATE SAMPLE ( 12, 'Date', 'Date'[Month] )

Date DateKey Month Month Number …

28/09/2009 20090928 September 9 …

21/10/2010 20101021 October 10 …

15/11/2009 20091115 November 11 …

08/05/2005 20050508 May 5 …

21/03/2005 20050321 March 3 …

15/06/2006 20060615 June 6 …

06/07/2010 20100706 July 7 …

03/01/2008 20080103 January 1 …

20/02/2011 20110220 February 2 …

20/12/2010 20101220 December 12 …

27/08/2006 20060827 August 8 …

30/04/2011 20110430 April 4 …

The Date column seems randomly distributed, whereas the Month column (other columns have 
been omitted for readability) is sorted in a descendant order, because by omitting the <order> 
 column the default value of 0 is considered.

You can repeat <column> and <order> and you can omit <order> in order to specify two columns:

EVALUATE  
SAMPLE (  
    100,  
    SUMMARIZE (  
        'Date',  
        'Date'[Date], 
        'Date'[Calendar Year], 
        'Date'[Month Number] 
    ), 
    'Date'[Month Number],  
    ,  
    'Date'[Calendar Year]  
)
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Date Calendar Year Month Number …

25/12/2011 CY 2011 12 …

10/12/2011 CY 2011 12 …

29/12/2010 CY 2010 12 …

16/12/2009 CY 2009 12 …

05/12/2008 CY 2008 12 …

21/12/2007 CY 2007 12 …

18/12/2006 CY 2006 12 …

16/12/2006 CY 2006 12 …

02/12/2005 CY 2005 12 …

17/11/2011 CY 2011 11 …

15/11/2010 CY 2010 11 …

05/11/2009 CY 2009 11 …

If the column you specify is not regularly distributed, you should see the same distribution of data 
in the sample extracted. For example, consider the following query that extracts six rows from the 
Customer table considering the Country/Region for distribution.

EVALUATE  
SAMPLE (  
    6,  
    SUMMARIZE (  
        Customer,  
        Customer[City],  
        Customer[Country/Region]  
    ),  
    Customer[Country/Region]  
)

City Country/Region

Martinsville United States

Germantown United States

Tallahassee United States

Warrington United Kingdom

Boulogne-sur-Mer France

Yerevan Armenia

Many countries/regions are missing, whereas the United States is present several times. However, this 
is  because there are many more cities listed for the United States and for this reason it appears more 
often than other countries/regions. Certain client tools use the SAMPLE function in order to evaluate 
distribution of data without having to query the whole data set and defining the axis scale accordingly.
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C H A P T E R  9

Advanced table functions

In Chapter 3, “Using basic table functions,” when you were starting to learn DAX, we introduced the 
notion of table functions because they are extremely important in using and understanding  iterators 

and filters. Now that your learning experience with DAX is increasing, it is time to cover the full, 
 extremely rich set of DAX table functions.

Because there are many table functions, we grouped them in sets, according to their scope:

■■ Filter functions

■■ Projection functions

■■ Grouping/Joining functions

■■ Set functions

■■ Utility functions

While learning about table functions, we want to take the opportunity to speak about an 
 important concept: column lineage. Column lineage is important for both semantic reasons 
 (obtaining the result you want) and performance considerations (getting faster results).

Understanding EVALUATE

In Chapter 3 you learned the syntax of EVALUATE, which is the DAX statement to evaluate and 
 materialize a table expression. There we anticipated that the DEFINE MEASURE part is useful to debug 
a formula. We include this explanation in this chapter because usually you will use table  functions 
as filter arguments in scalar expressions used in measures, but it is much easier to test them in 
 environments such as SQL Server Management Studio and DAX Studio, where you have to write a 
query returning a table.

First, consider the syntax for DEFINE MEASURE:

[DEFINE { MEASURE <tableName>[<name>] = <expression> }] 
EVALUATE <table>
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You can define one or more measures with an EVALUATE statement, as in the following example:

DEFINE 
    MEASURE Sales[Quantity] = SUM ( Sales[Quantity] ) 
    MEASURE Sales[Total Cost] = SUMX ( Sales, Sales[Quantity] * Sales[Unit Cost] ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Brand] ), 
    "Quantity", [Quantity], 
    "Cost", [Total Cost] 
)

You have to associate the measure to a table name, just as you define a measure within a table in the 
data model. If you use a name already defined in the table, you override such a name in the  EVALUATE 
expression when a row context is not present. For instance, the preceding example  overrides the column 
name Quantity defining a measure with the same name. The value you see in each row of the result is the 
sum of the Quantity column for all the rows aggregated for each product brand.

Brand Quantity Cost

Contoso 6,454,061 407,989,158.93

Wide World Importers 825,241 121,376,015.93

… … …

In general, it is not a good idea to override existing names in a query. Nevertheless, this is  useful 
when you want to replace a measure defined in a data model with a temporary definition in the 
query, typically for debugging or optimizing reasons. For example, imagine you have a query such as 
the following, where the measure Discounted Sales is not working correctly:

EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Brand] ), 
    "Discounted Sales", [Discounted Sales]  
)

You can create a local measure with the same name, modifying and testing it until it works, and 
only at that point do you copy the corrected measure in the data model:

DEFINE 
    MEASURE Sales[Discounted Sales] =  
        SUMX ( Sales, Sales[Quantity] * ( Sales[Unit Price] - Sales[Unit Discount] ) ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Brand] ), 
    "Discounted Sales", [Discounted Sales]  
)



 CHAPTER 9 Advanced table functions 235

Overriding a measure of the data model in a query does not affect existing references to that 
measure in other code of the data model. For instance, consider these two measures defined in the 
data model:

[Total Sales] := SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ) 
[Average Price] := [Total Sales] / SUM ( Sales[Quantity] )

If you override Total Sales in a query, you will not see this affecting the Average Price calculation, as 
you see in the following example:

DEFINE 
    MEASURE Sales[Total Sales] = 0 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Brand] ), 
    "Total Sales", [Total Sales], 
    "Average Price", [Average Price] 
)

Average Price returns the value computed in the data model, using the original definition of Total 
Sales instead of the one defined locally to the query.

Brand Total Sales Average Price

Contoso 0 135.0315

Wide World Importers 0 308.9448

… … …

Using VAR in EVALUATE
You can define variables in an EVALUATE statement with a syntax that is slightly different from the 
standard one used for variable definitions. Usually you define a variable using this syntax:

VAR 
    <variableName> = <expression> 
RETURN 
    <expressionConsumingVariable>
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The expression after RETURN can access the previously defined variable. Such a syntax can replace 
any scalar or table expression in DAX. However, when you write an EVALUATE statement, you can also 
define a variable in the DEFINE section, without having to write RETURN after that:

DEFINE 
    VAR ExpensiveProducts = FILTER ( Product, Product[Unit Price] > 3000 ) 
EVALUATE 
    CALCULATETABLE ( Product, ExpensiveProducts )

A more complete syntax definition for EVALUATE is the following:

[DEFINE  

    [{ MEASURE <tableName>[<name>] = <expression> }] 

    [{ VAR <variableName> = <expression> }] 

] 
EVALUATE <table>

In any case, the evaluation of the variable happens only if the variable is used in the table 
 expression after EVALUATE, and the evaluation does not depend on filter context manipulation made 
after the variable definition. In other words, you might use the VAR/RETURN syntax as well, as in the 
following example:

EVALUATE 
VAR 
    ExpensiveProducts = FILTER ( Product, Product[Unit Price] > 3000 ) 
RETURN  
    CALCULATETABLE ( Product, ExpensiveProducts )

Understanding filter functions

DAX has many table functions used to filter other tables. If you have an SQL background, we might 
say that these functions correspond to the WHERE condition of a SELECT statement in SQL, even if 
this is too restrictive when you consider the behavior of CALCULATETABLE.

Using CALCULATETABLE
You have seen in Chapter 5, “Understanding CALCULATE and CALCULATETABLE,” a complete 
 description of CALCULATE and CALCULATETABLE. These two functions have the same behavior. The 
only difference is that CALCULATE evaluates a scalar expression, whereas CALCULATETABLE evaluates 
a table expression.
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It is useful to remember that you can combine different filter conditions in the same 
 CALCULATETABLE function call, and they will be considered as in a logical AND condition. For 
 example, the following query returns products of the brand Wide World Importers with a Red color:

EVALUATE 
CALCULATETABLE (  
    Product, 
    Product[Brand] = "Wide World Importers", 
    Product[Color] = "Red" 
)

Particular attention goes to the evaluation order of the arguments. CALCULATE and CALCULATETABLE 
evaluate the first argument after all the other arguments (called filter arguments) have been evaluated. 
This behavior is not common in other languages and is the source of common mistakes when you have 
two or more CALCULATETABLE functions nested together. For instance, consider the following query 
that applies a conflicting filter over the Color column of the Product table:

EVALUATE 
CALCULATETABLE (  
    CALCULATETABLE (  
        VALUES ( Product[Color] ), 
         Product[Color] = "Blue" 
    ), 
    Product[Color] = "Red" 
)

At first sight, many people new to DAX erroneously think that the result of the query is the Red 
color. Nevertheless, the result is Blue.

Color

Blue

The reason is that the outermost CALCULATETABLE expression evaluates the filter first (Color Red), 
then it evaluates the innermost CALCULATETABLE, which receives a filter (Color Red) overridden by the 
new filter (Color Blue). The innermost expression evaluates VALUES in a filter context where only the Blue 
color is visible. You have to get used to this way of writing and reading filter arguments of CALCULATE 
and CALCULATETABLE because it is the more efficient way to apply filters to table expressions.

Differences between FILTER and CALCULATETABLE
The previous example of CALCULATETABLE showed a way to apply filters that is not intuitive but very 
efficient. In fact, the evaluation of the table expression is delayed until all the filters are applied, so 
this guarantees a minimal cost in terms of materialization (you will read more about materialization 
in Chapter 13, “The VertiPaq engine”). The behavior of FILTER is much easier, because every call to 
FILTER returns a table that you can use in other iterators.
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For instance, the following query filter returns products of the brand Wide World Importers with a 
Red color, just as we did with CALCULATETABLE at the beginning of the previous section:

EVALUATE 
FILTER (  
    Product, 
    Product[Brand] = "Wide World Importers" && Product[Color] = "Red" 
)

From a semantic point of view, you are asking to apply the filter specified in the second argument 
for every row of the Product table. You can use the result of a filter as an argument for another filter. 
Depending on the version of the DAX engine, you might see different performances, even if the result 
will always be the same. You will see a more complete discussion about performance in Chapter 16, 
“Optimizing DAX.” Here you should concentrate your attention only on the different syntaxes you can 
use to obtain the same result.

For example, the following query filters products that sold at least 100,000 units, then filters this 
subset of products returning only those that are Red:

EVALUATE 
FILTER (  
    FILTER (  
        Product, 
        CALCULATE ( SUM ( Sales[Quantity] ) ) > 100000 
    ), 
    Product[Color] = "Red" 
)

You can write the same expression inverting the filters between the two FILTER iterators. In this 
case, the filter over the Red color is the first one, and the filter over the quantity is the second one:

EVALUATE 
FILTER (  
    FILTER (  
        Product, 
        Product[Color] = "Red" 
    ), 
    CALCULATE ( SUM ( Sales[Quantity] ) ) > 100000 
)

The result is the same for the two earlier queries, but the performance might be different. In 
 theory, the innermost filter should apply the more restrictive filter condition, so that subsequent 
 operations iterate a smaller number of rows. In practice, however, the DAX query engine might 
 rearrange filters and follow a different execution pattern from the one you defined with nested 
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iterators. Our experience is to consider different ways to obtain the same result whenever you have 
very complex expressions, in order to reduce the number of iterations requiring the more expensive 
calculations.

Using TOPN
The TOPN function filters data according to the value of one or more expressions specified in the 
arguments, returning only the first N elements specified in the first parameter of the function. For 
instance, you can filter the first product by Weight using the following query:

EVALUATE  
TOPN (  
    1, 
    Product, 
    Product[Weight] 
)

However, this query might return more than one row, because if there are more products having 
the same value for Weight, the TOPN function retrieves all the rows that produce a tie.

ProductKey Product Code Product Name Weight Unit Price …

1832 0801006 Litware Washer & Dryer 27in L420 
Silver 239 2652 …

1849 0801023 NT Washer & Dryer 24in M2400 
White 239 1818.9 …

1864 0801038 NT Washer & Dryer 24in M2400 
Green 239 1818.9 …

You can specify the sort order using more columns, and whether the order should be descendant 
(default) or ascendant, as you see in the following syntax:

TOPN (  
    <n_value>,  
    <table>,  
    <orderBy_expression> [, <order>  
    [,<orderBy_expression> [, <order>] ] 
    …]  
)

The <n_value> parameter specifies the number of rows that should be returned from <table> 
 according to the sort order specified by <orderBy_expression> and <order> parameters. You  
can have multiple <orderBy_expression>; if multiple rows have the same value for the first  
<orderBy_expression>, the second one will be evaluated and so on. The <order> parameter is  
0 or FALSE (default) to rank in descending order and 1 or TRUE to rank in ascending order.
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You can rewrite the previous query sorting by Weight and Unit Price as follows:

EVALUATE  
TOPN (  
    1, 
    Product, 
    Product[Weight], 
    , 
    Product[Unit Price] 
)

In this case, the result has only one row, but you do not have a guarantee that the result is always 
one row; in case of ties you will have more rows.

ProductKey Product Code Product Name Weight Unit Price …

1832 0801006 Litware Washer & Dryer 27in L420 
Silver 239 2652 …

If you want an exact number of rows in the result, you have to include a unique column in the 
TOPN arguments. For example, including the ProductKey will retrieve the product that has the highest 
value for ProductKey, in case all the other order expressions produce a tie, as in the following query:

EVALUATE  
TOPN (  
    1, 
    Product, 
    Product[Weight], 
    , 
    Product[Unit Price], 
    , 
    Product[ProductKey] 
)

Use of FIRSTNONBLANK to restrict results to a single row
In Chapter 7, “Time intelligence calculations,” you have seen the use of the FIRSTNONBLANK 
 function for semi-additive measures. You can also use FIRSTNONBLANK to retrieve a single  
row from a set that might contain ties, such as the result provided by TOPN:

EVALUATE 
FIRSTNONBLANK ( TOPN ( 1, Product, Product[Weight] ), 0 )

As you see in this example, you can specify any expression in the second argument that 
returns a nonblank value (in this case we used the constant value 0).
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Understanding projection functions

In relational algebra, a projection operation is the request of a subset of columns for an operation. 
DAX is not a language like SQL, designed for relational operations, but we can see many similarities 
in the goal of the operations you can perform with DAX table functions. In this section you will find 
the operations that can manipulate the columns provided by a table expression by selecting existing 
columns or by adding new ones to your final result.

Using ADDCOLUMNS
As its name implies, ADDCOLUMNS adds new columns to the table expression you provide as the 
first parameter. For each column you add, you provide a string with the column name and a scalar 
 expression, as defined by the following syntax:

ADDCOLUMNS ( 
    <table>,  
    <column_name1>, <column_expression1> 
    [, <column_name2>, <column_expression2>]… 
)

For example, you can add two columns with the number of subcategories and products for each 
product category by using the following syntax:

EVALUATE 
ADDCOLUMNS ( 
    'Product Category', 
    "Subcategories", CALCULATE ( COUNTROWS ( 'Product Subcategory' ) ), 
    "Products", CALCULATE ( COUNTROWS ( Product ) ) 
)

The result includes columns from Product Category and the additional columns calculated by the 
ADDCOLUMNS iteration. You can see these new columns highlighted in italic. 

ProductCategoryKey Category Code Category Subcategories Products

1 01 Audio 8 115

2 02 TV and Video 5 222

3 03 Computers 8 2652

… … … … …

You will see later that there is an important difference between original columns and derived col-
umns, which we highlight in italic in this chapter. Columns highlighted in italic do not have a lineage 
mapping a physical column of the data model, and you cannot use them in a filter context, as we will 
describe in more detail in the “Understanding lineage and relationships” section, later in this chapter.
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ADDCOLUMNS is an iterator that evaluates in a row context every expression specified for the 
added columns. In other words, ADDCOLUMNS provides you with the same semantics of calculated 
columns, but the result of the computation is local to the query and not persisted in the data model. 
Also for this reason, you can filter the result of ADDCOLUMNS accessing the new columns in other 
iterators (such as FILTER or other ADDCOLUMNS calls), but you cannot apply a filter argument in 
 CALCULATE or CALCULATETABLE to such columns.

For instance, you can filter only the categories having at least 500 products using a FILTER that 
calls ADDCOLUMNS, as in the following example:

EVALUATE 
FILTER ( 
    ADDCOLUMNS ( 
        'Product Category', 
        "Subcategories", CALCULATE ( COUNTROWS ( 'Product Subcategory' ) ), 
        "Products", CALCULATE ( COUNTROWS ( Product ) ) 
    ), 
    [Products] > 500 
)

The result produces a smaller number of rows.

ProductCategoryKey Category Code Category Subcategories Products

3 03 Computers 8 606

8 08 Home Appliances 8 661

In the previous example, the column Products had a name without a table identifier.  Referencing 
such a name in following expressions (such as the filter condition) requires the use of the syntax we 
prefer to use for measure references. The column you added has the semantics of a column, but 
does not “belong” to a table, so it does not have a fully qualified name that includes a table name. 
 However, you can define a column name with a fully qualified name, shown as follows: 

EVALUATE 
FILTER ( 
    ADDCOLUMNS ( 
        'Product Category', 
        "Subcategories", CALCULATE ( COUNTROWS ( 'Product Subcategory' ) ), 
        "'Product Category'[Products]", CALCULATE ( COUNTROWS ( Product ) ) 
    ), 
    'Product Category'[Products] > 500 
)

Using a fully qualified name does not add the column to the table; it simply enables the syntax to reach 
such a column using a fully qualified name in subsequent expressions, such as our filter. This syntax is 
important to enable the use of an added column by other functions, such as SUMMARIZE (which requires 
a fully qualified name for all the columns you want to group by, as you will see later in this chapter).
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The name of the column needs to be unique in the result of ADDCOLUMNS. Thus, you can 
 override a column name that exists in the data model if it is not part of the result, and you can output 
more columns with the same name but different table names. Moreover, the table name you use does 
not have to be a related table in the data model. Consider the table name of an added column as a 
placeholder. You have to use an existing table name of the data model, but we suggest you avoid 
inconsistent naming and avoid overriding existing names. For example, the following syntax is valid, 
even if it is not helpful in understanding the result (adding two columns to Product Category would 
be more intuitive here):

EVALUATE 
ADDCOLUMNS ( 
    'Product Category', 
    "'Product Subcategory'[Rows]", CALCULATE ( COUNTROWS ( 'Product Subcategory' ) ), 
    "Product[Rows]", CALCULATE ( COUNTROWS ( Product ) ) 
)

The result is identical to the initial example; you just have different column names in the result.

ProductCategoryKey Category Code Category ‘Product 
Subcategory’[Rows] Product[Rows]

1 01 Audio 8 115

2 02 TV and Video 5 222

3 03 Computers 8 2652

… … … … …

Note The string you provide for a column name has to be a constant string, and you 
 cannot use a dynamic expression for these names. 

If you want to select a subset of the columns of a table, you should use SELECTCOLUMNS, 
which you will see in the next section. However, older versions of the DAX language do not have 
 SELECTCOLUMNS and you can only use ADDCOLUMNS to manipulate the result. In this case, you 
should include only one or more columns that represent a unique key for a row in the table, and then 
add the columns you need. For example, if you want to obtain a table that has only three columns 
from the Product table (ProductKey, Product Name, and Unit Price), you can use the following query:

EVALUATE 
ADDCOLUMNS ( 
    DISTINCT ( Product[ProductKey] ), 
    "Product Name", CALCULATE ( VALUES ( Product[Product Name] ) ), 
    "Price", CALCULATE ( VALUES ( Product[Unit Price] ) ) 
) 
ORDER BY Product[ProductKey]
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Please note that the result has only one column that maps to the physical table (ProductKey), 
whereas the other two are derived columns (highlighted in italic). This is important for the limitations 
you have in a filter context (you cannot filter derived columns through a filter context). 

ProductKey Product Name Price

1 Contoso 512MB MP3 Player E51 Silver 12.99

2 Contoso 512MB MP3 Player E51 Blue 12.99

3 Contoso 1G MP3 Player E100 White 14.52

… … …

For this reason, you should use SELECTCOLUMNS whenever possible to select and create columns 
you want to project in the result.

Using SELECTCOLUMNS
SELECTCOLUMNS selects existing columns from and adds new columns to the ones available in a 
table expression. You provide a string with the column name and a scalar expression for each column 
you want to include in the output, as defined by the following syntax:

SELECTCOLUMNS ( 
    <table>,  
    <name>, <expression> 
    [, <name>, <expression>]… 
)

Note The SELECTCOLUMNS function is not available in older versions of the DAX engine.

For instance, you can rewrite the final example you have seen in ADDCOLUMNS using the 
 following query:

EVALUATE 
SELECTCOLUMNS ( 
    Product, 
    "ProductKey", Product[ProductKey], 
    "Product Name", Product[Product Name], 
    "Price", Product[Unit Price]  
) 
ORDER BY [ProductKey]

The result is the same, but with an important difference: All the columns correspond to  physical 
columns of the data model (you no longer see columns highlighted in italic). This is true for both 
Product Name and Price columns. The latter corresponds to Unit Price, even if you change the name 
in the output of SELECTCOLUMNS.
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ProductKey Product Name Price Category

1 Contoso 512MB MP3 Player E51 Silver 12.99 Audio

2 Contoso 512MB MP3 Player E51 Blue 12.99 Audio

3 Contoso 1G MP3 Player E100 White 14.52 Audio

… … … …

SELECTCOLUMNS preserves the lineage of a column whenever possible. If you rename a column, 
provided that the expression simply references an existing column of the data model, the result maps 
that column using the same data lineage. You lose the lineage as soon as you use any expression. You 
will see a more detailed explanation in the section “Understanding lineage and relationships,” later in 
this chapter.

Regardless of the lineage, any reference to columns defined by SELECTCOLUMNS has to use the 
exact name assigned to the column. Therefore, if you define columns without using fully qualified 
names, you have to use the syntax to access a column without the table name. For example, the 
 following syntax is not valid:

EVALUATE 
FILTER ( 
    SELECTCOLUMNS ( 
        Product, 
        "ProductKey", Product[ProductKey], 
        "Product Name", Product[Product Name], 
        "Unit Price", Product[Unit Price] 
    ), 
    Product[Unit Price] > 10 
) 
ORDER BY [ProductKey]

The reference to Product[Unit Price] is not valid, because the column defined by SELECTCOLUMNS 
has Unit Price only as a name. It is interesting to note that ProductKey used in ORDER BY does not 
have this issue, because it is referenced using the column name without the table name. You can solve 
the problem by using the unqualified name also in the filter condition, as in the following query:

EVALUATE 
FILTER ( 
    SELECTCOLUMNS ( 
        Product, 
        "ProductKey", Product[ProductKey], 
        "Product Name", Product[Product Name], 
        "Unit Price", Product[Unit Price] 
    ), 
    [Unit Price] > 10 
) 
ORDER BY [ProductKey]
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You can also use the fully qualified names in SELECTCOLUMNS, so that you keep the same syntax 
in subsequent references, as in the next example:

EVALUATE 
FILTER ( 
    SELECTCOLUMNS ( 
        Product, 
        "Product[ProductKey]", Product[ProductKey], 
        "Product[Product Name]", Product[Product Name], 
        "Product[Unit Price]", Product[Unit Price] 
    ), 
    Product[Unit Price] > 10 
) 
ORDER BY [ProductKey]

Even if you define a fully qualified name for each column, you can still reference a column  using 
only the column name, as it is the case of ORDER BY referencing the ProductKey column. Such a 
 syntax is valid until you do not have two columns with the same column name and different table 
names in the final result (you would obtain an ambiguous column reference error in that case).

You can also use SELECTCOLUMNS to add new columns, as you do in ADDCOLUMNS. The 
 difference is that you have to reference explicitly every single column to include in the result, instead 
of adding new columns to the existing ones. For instance, the following query returns the number 
of subcategories and products for each product category, showing only the category name without 
other columns from the Product Category table:

EVALUATE 
SELECTCOLUMNS ( 
    'Product Category', 
    "Category Name", 'Product Category'[Category], 
    "Subcategories", CALCULATE ( COUNTROWS ( 'Product Subcategory' ) ), 
    "Products", CALCULATE ( COUNTROWS ( Product ) ) 
)

The result keeps the lineage of the Category Name column with the physical Category column in 
the Product Category table, adding two calculated columns highlighted in italic because they have no 
lineage with a physical column.

Category Name Subcategories Products

Audio 8 115

TV and Video 5 222

Computers 8 2652

… … …
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Using ROW
The EVALUATE statement has to return a table. If you want to perform a computation of one or more 
scalar values and you do not have a corresponding table, you can use the ROW function, which 
 returns a table with a single row containing the desired columns:

ROW ( 
    <column1_name>, <column1_expression> 
    [,<column2_name>, <column2_expression>]… 
)

Similar to what you do in ADDCOLUMNS and SELECTCOLUMNS, for each column you specify a 
name (which has to be a constant string) and the expression evaluated to provide a value for that 
column in the returned row. The rules for the naming convention are the same as those for the 
 ADDCOLUMNS and SELECTCOLUMNS functions. You can add as many columns as you want.

You might consider using this function whenever you need to return more than one scalar value; 
instead of performing several DAX queries, you can execute just one. For example, the following 
query returns a row with two columns containing the quantity sold in 2008 and 2009:

EVALUATE 
ROW ( 
    "Quantity 2008", CALCULATE ( 
        SUM ( Sales[Quantity] ), 
        'Date'[Calendar Year Number] = 2008 
    ), 
    "Quantity 2009", CALCULATE ( 
        SUM ( Sales[Quantity] ), 
        'Date'[Calendar Year Number] = 2009 
    ) 
)

No columns included in the result have a lineage corresponding to a physical column of the data 
model.

Quantity 2008 Quantity 2009

5,029,924 6,956,456

You can include the ROW function in any DAX expression that requires a table. If available in your 
DAX version, you can use the UNION function to combine several ROW calls returning a table made 
by more rows arbitrarily defined.
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Understanding lineage and relationships

Any table function returns one or more columns, each one with a particular lineage. When a column 
corresponds to a physical column of the data model, its lineage provides information to the engine 
allowing faster filter operations. The lineage does not depend on the name of the column and it is 
technically an internal reference that uniquely identifies the column. You cannot display the lineage of 
a column in DAX, but you can observe its effects.

For example, consider this initial query, which returns all the products belonging to a Style that 
sold a quantity greater than 200,000:

EVALUATE 
CALCULATETABLE ( 
    Product, 
    FILTER ( 
        VALUES ( Product[Style] ), 
        CALCULATE ( SUM ( Sales[Quantity] ) ) > 200000 
    ) 
)

The filter argument used in CALCULATETABLE is a filtered list of values for the column Style of the 
Product table. In this case, it is clear that you are applying a filter on a column of the Product table to 
evaluate the expression in CALCULATETABLE. The query above returns two rows.

ProductKey Product Code Product Name Style …

1832 0801006 Litware Washer & Dryer 27in L420 Silver Product0202011 …

1849 0801023 NT Washer & Dryer 24in M2400 White Product0201038 …

What happens if you apply a different filter argument using SELECTCOLUMNS? As we said, you will 
see the same result if you do not lose the lineage of the physical column. The following query applies 
the same filter with a different implementation. The SELECTCOLUMNS function generates a table 
with two columns (Key and Sales). The Key column has the same lineage of the ProductKey column, 
so it applies a filter over that column, whereas the Sales column does not correspond to any physical 
column, so it does not affect the filter context in the CALCULATETABLE statement:

EVALUATE 
CALCULATETABLE ( 
    Product, 
    FILTER ( 
        SELECTCOLUMNS ( 
            Product, 
            "Key", Product[ProductKey], 
            "Sales", CALCULATE ( SUM ( Sales[Quantity] ) ) 
        ), 
        [Sales] > 200000 
    ) 
)
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The result is the same as for the previous query. Renaming the column does not affect the lineage.

ProductKey Product Code Product Name Style …

1832 0801006 Litware Washer & Dryer 27in L420 Silver Product0202011 …

1849 0801023 NT Washer & Dryer 24in M2400 White Product0201038 …

Any expression used in the column expression generates a different lineage, breaking the link 
to the physical column. For example, by simply adding 0 to the previous expression, you obtain a 
 different column (regardless of the fact that we try to use the same fully qualified name):

EVALUATE 
CALCULATETABLE ( 
    Product, 
    FILTER ( 
        SELECTCOLUMNS ( 
            Product, 
            "Product[ProductKey]", Product[ProductKey] + 0, 
            "Sales", CALCULATE ( SUM ( Sales[Quantity] ) ) 
        ), 
        [Sales] > 200000 
    ) 
)

Therefore, the result of the query includes all the products, because the filter argument of 
 CALCULATETABLE does not receive filters on any existing column. 

ProductKey Product Code Product Name Style …

1722 0702016 MGS Zoo Tycoon 2: End range Species … Product0702016 …

1723 0702017 MGS Age of Empires III: The Asian … Product0702017 …

1724 0702018 MGS Fable: The Lost Chapters … Product0702018 …

… … … … …

However, the result of RELATED is not an expression; it is actually a keyword that enables the 
access to a column of the expanded table (more about this in Chapter 10, “Advanced evaluation 
context”). For this reason, you can create a query such as the following one, which returns the list of 
categories with at least one product having a Unit Price greater than 1,000:

EVALUATE 
CALCULATETABLE ( 
    'Product Category', 
    SELECTCOLUMNS ( 
        FILTER ( Product, Product[Unit Price] > 1000 ), 
        "Category", RELATED ( 'Product Category'[Category] ) 
    ) 
)
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It is interesting to note that the SELECTCOLUMNS function returns more than the four rows you 
see in the result. The table expression receives 154 rows from the FILTER. However, the filter argument 
of CALCULATETABLE will consider only the unique values in the Category column.

ProductCategoryKey Category Code Category

2 02 TV and Video

3 03 Computers

4 04 Cameras and camcorders

8 08 Home Appliances

Understanding grouping/joining functions

DAX has several functions that aggregate data and join tables using existing relationships in the data 
model. Only SUMMARIZE exists in all the versions of DAX, whereas other functions are present only in 
more recent versions of the language. Even if you will use other functions in current DAX versions, it is 
a good idea to familiarize yourself with SUMMARIZE first, also because most of the existing patterns 
and examples are still based on this function.

In this section, you will find functions that are similar and might be confused about their use. In 
general, you should heed the following best practices:

■■ If you write a query, such as EVALUATE, you should use SUMMARIZECOLUMNS for computing 
aggregates over base table columns, instead of using SUMMARIZE or GROUPBY.

■■ If you write a scalar expression (such as when defining a measure, or an expression used by a 
table expression), you should use aggregation functions from the Agg*X family, such as SUMX 
or AVERAGEX, instead of using SUMMARIZE, GROUPBY, and SUMMARIZECOLUMNS. In other 
words, there is no need to invoke a table-valued function to aggregate intermediate values, 
when an “X” scalar aggregate function can do the job instead.

■■ You should use SUMMARIZECOLUMNS instead of SUMMARIZE whenever possible.

■■ You should use GROUPBY only to aggregate intermediate/aggregate results returned by 
 SUMMARIZECOLUMNS and ADDCOLUMNS, when you have to do some extra computation 
with measure values (created in these functions), and not over base columns.

Using SUMMARIZE
You can produce a summary table of data by using SUMMARIZE. This function groups data by one or 
more columns, and for each row it can add new columns that evaluate the specified expressions. The 
syntax is as follows:



 CHAPTER 9 Advanced table functions 251

 

 
SUMMARIZE (  
    <table>, 
    <group_by_column1> 
    [,<group_by_column2>][, …] 
    [,ROLLUP( <group_by_columnX> [,<group_by_columnY>] [, …] )] 
    [,<column1_name>, { <column1_expression> | ISSUBTOTAL( <group_by_column> ) } ] 
    [,<column2_name>, { <column2_expression> | ISSUBTOTAL( <group_by_column> ) } ][, …]  
)

You can group the table in the first argument by using any column of any table that can be 
reached using a many-to-one or a one-to-one relationship. In other words, you can use any column 
reachable by using RELATED, without having to use such a function. For instance, the following query 
returns the quantities sold every year:

EVALUATE 
SUMMARIZE ( 
    Sales, 
    'Date'[Calendar Year], 
    "Quantity", SUM ( Sales[Quantity] ) 
)

The result includes only values for Calendar Year column that have at least one corresponding row 
in the Sales table.

Calendar Year Quantity

CY 2007 5,551,636

CY 2008 5,029,924

CY 2009 6,956,456

The expression you write for each column added by SUMMARIZE has a filter context that makes 
the use of CALCULATE unnecessary. However, SUMMARIZE also has a row context available that 
 enables access to the values of the grouped columns, as you see in the following example:

EVALUATE 
SUMMARIZE ( 
    Sales, 
    'Date'[Calendar Year Number], 
    "Short Year", 'Date'[Calendar Year Number] - 2000, 
    "Quantity", SUM ( Sales[Quantity] ) 
)
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You can see the result in this table.

Calendar Year Number Short Year Quantity

2007 7 5,551,636

2008 8 5,029,924

2009 9 6,956,456

 However, for a number of reasons, mainly related to performances, it is a best practice to avoid 
using SUMMARIZE to evaluate expressions. Whenever possible, you should generate additional 
columns by using ADDCOLUMNS instead. The conversion is usually simple. You only have to add a 
CALCULATE statement for all the columns that include aggregations requiring a filter context of the 
rows grouped together. For instance, you can write the previous query in this more efficient way:

EVALUATE 
ADDCOLUMNS ( 
    SUMMARIZE (  
        Sales,  
        'Date'[Calendar Year Number]  
    ), 
    "Short Year", 'Date'[Calendar Year Number] - 2000, 
    "Quantity", CALCULATE ( SUM ( Sales[Quantity] ) ) 
)

Important You can find a longer explanation about this best practice in the following 
article: http://www.sqlbi.com/articles/best-practices-using-summarize-and-addcolumns/. 
However, consider using SUMMARIZECOLUMNS instead of SUMMARIZE in more recent 
versions of DAX when you write an EVALUATE statement. In general, follow the best 
 practices described in the introduction to the grouping functions.

You can choose to include roll-up rows in the result of a SUMMARIZE function based on one or 
more of the groups you specified. In this case, you have to include a column expression within the 
SUMMARIZE syntax. The roll-up rows have a BLANK value for the column used to group results. For 
example, the following query adds a row with the total for all the years, identified by a BLANK value 
for Calendar Year:

EVALUATE 
SUMMARIZE ( 
    Sales, 
    ROLLUP ( 'Date'[Calendar Year] ), 
    "Quantity", SUM ( Sales[Quantity] ) 
) 
ORDER BY 'Date'[Calendar Year]

http://www.sqlbi.com/articles/best-practices-using-summarize-and-addcolumns/
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Calendar Year Quantity

17,538,016

CY 2007 5,551,636

CY 2008 5,029,924

CY 2009 6,956,456

Because the roll-up rows have a BLANK value for the grouping columns, if the result is sorted, you 
get the roll-up row before the detail rows that it represents. If you want to roll up more columns, 
you must specify all of them as parameters of a single ROLLUP call, whereas you can specify other 
 grouping columns before or after the ROLLUP call. In other words, you can use only one ROLLUP call 
in a single SUMMARIZE statement. For example, the following query calculates rollup for Category 
and Weight Unit Measure of products without calculating a total for all the years. (Calendar Year is out 
of the ROLLUP function.) 

EVALUATE
SUMMARIZE (
    Sales,
    'Date'[Calendar Year],

ROLLUP ( 'Product Category'[Category], Product[Weight Unit Measure] ),
    "Quantity", SUM ( Sales[Quantity] )
)
ORDER BY
    'Date'[Calendar Year],
    'Product Category'[Category],
    Product[Weight Unit Measure] 

Calendar Year Category Weight Unit Measure Quantity

CY 2009  6,956,456

… … … …

CY 2009 Computers  236,026

CY 2009 Computers  1,253,907

CY 2009 Computers pounds 1,017,881

CY 2009 Games and Toys  487,185

CY 2009 Games and Toys  924,866

CY 2009 Games and Toys pounds 437,681

… … … …

 As you can see from the previous result, just checking the BLANK value in a column is not a 
reliable way to identify roll-up rows. In fact, there are two rows for Computers in 2009 that have a 
BLANK value in the Weight Unit Measure column. One of these two rows corresponds to the total 
of  Computers that does not have a Weight Unit Measure specifi ed in the Product table, and the 
other row is the total of Computers in 2009 for any Weight Unit Measure of products. Moreover, 

EVALUATE
SUMMARIZE (
   Sales,
   'Date'[Calendar Year],

ROLLUP ( 'Product Category'[Category], Product[Weight Unit Measure] ),
   "Quantity", SUM ( Sales[Quantity] )

)
ORDER BY
   'Date'[Calendar Year],
   'Product Category'[Category],
   Product[Weight Unit Measure]
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the  ordering does not guarantee the order of these two rows, and in this case the roll-up row (the 
one with the higher Quantity value) is after the row that represents only those products without a 
Weight Unit Measure specified. For these reasons, do not assume that the BLANK value in a column 
 corresponds to a  roll-up row.

Tip Using a foreign key that contains only existing values in the lookup table is a best 
practice for a tabular model. You can apply the classic transformation used in a star 
 schema, in which a surrogate key for “unknown” members is used in fact tables to map 
application keys not found in the corresponding dimension table. Relying on the built-in 
tabular mechanism that displays data in blank rows should be a second choice.

To understand whether a row is the roll-up result for a grouping column, you can add columns to 
the result by using the ISSUBTOTAL function, which accepts a grouping column as a parameter and 
returns TRUE if the row contains a subtotal value (which is the case in a roll-up row); otherwise, it 
returns FALSE. The following query adds two columns that identify whether the row is a roll-up row 
for the specified grouping column:

EVALUATE 
SUMMARIZE ( 
    Sales, 
    'Date'[Calendar Year], 
    ROLLUP ( 'Product Category'[Category], Product[Weight Unit Measure] ), 
    "Quantity", SUM ( Sales[Quantity] ), 
    "Category Subtotal", ISSUBTOTAL ( 'Product Category'[Category] ), 
    "W.U.M. Subtotal", ISSUBTOTAL ( Product[Weight Unit Measure] )  

) 
ORDER BY 
    'Date'[Calendar Year], 
    'Product Category'[Category], 
    Product[Weight Unit Measure]

Calendar Year Category Weight Unit Measure Quantity Category 
Subtotal

W.U.M. 
Subtotal

CY 2009  6,956,456 True True

… … … … … …

CY 2009 Computers  236,026 False False

CY 2009 Computers  1,253,907 False True

CY 2009 Computers pounds 1,017,881 False False

CY 2009 Games and Toys  487,185 False False

CY 2009 Games and Toys  924,866 False True

CY 2009 Games and Toys pounds 437,681 False False

… … … … … …
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As you can see in the result, the W.U.M. Subtotal column contains True for the Computers in 2009 row 
that is a sum of all the weight unit measures of products, and contains False for the row that  represents 
Computers in 2009 without a weight unit measure specified in the Products table. The ISSUBTOTAL 
 function is useful to obtain information for conditional formatting of the result in a report.

Using SUMMARIZECOLUMNS
The function SUMMARIZECOLUMNS is a more flexible and efficient implementation of SUMMARIZE. 
It is a best practice to use SUMMARIZECOLUMNS instead of SUMMARIZE. Its syntax is as follows:

SUMMARIZECOLUMNS (  
    <group_by_column1> 
    [,<group_by_column2>][, …] 
    [,<filterTable1>[,<filterTable2>] [, …]] 
    [,<column1_name>, { <column1_expression> | IGNORE ( <group_by_column> ) } ] 
    [,<column2_name>, { <column2_expression> | IGNORE ( <group_by_column> ) } ][, …]  
)

For instance, you can write the first example you have seen for SUMMARIZE by using 
 SUMMARIZECOLUMNS in this way:

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    "Quantity", SUM ( Sales[Quantity] ) 
)

Calendar Year Quantity

CY 2007 5,551,636

CY 2008 5,029,924

CY 2009 6,956,456

In reality, the internal behavior is somewhat different. SUMMARIZECOLUMNS removes from the 
output all the rows that have a BLANK value for all of the supplied column expressions. For example, 
the previous syntax corresponds to the following:

EVALUATE 
FILTER (  
    ADDCOLUMNS (  
        VALUES ( 'Date'[Calendar Year] ), 
        "Quantity", CALCULATE ( SUM ( Sales[Quantity] ) ) 
    ), 
    NOT ISBLANK ( [Quantity] ) 
)
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If you do not specify any new column, the result does not filter any value present in the columns 
specified.

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year]  
)

Calendar Year

CY 2005

CY 2006

CY 2007

CY 2008

CY 2009

CY 2010

CY 2011

Important The following part of the SUMMARIZECOLUMNS explanation requires the no-
tion of expanded tables, explained in Chapter 10. You will not use SUMMARIZECOLUMNS 
in measures, because it cannot have an outside filter context. This function is useful in 
DAX queries. You can continue the reading assuming that the behavior of a filter table in 
SUMMARIZECOLUMNS is similar to the table you use in SUMMARIZE, which can group all 
the columns reachable through a chain of many-to-one relationships. However, the use of 
filter tables in SUMMARIZECOLUMNS can do more, especially in data models that have 
relationships with bidirectional cross filters.

If you want to get only the years for which at least one row exists in a Sales table, you might want 
to specify such a table as a filter context. However, you cannot specify an outside filter context for 
SUMMARIZECOLUMNS, so you cannot embed it within a CALCULATE or CALCULATETABLE call. The 
following syntax is invalid:

EVALUATE 
CALCULATETABLE (  
    SUMMARIZECOLUMNS ( 
        'Date'[Calendar Year] 
    ), 
    Sales 
)
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Instead, you can specify one or more filter tables, which correspond to filter arguments you would 
specify in an external CALCULATETABLE:

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    Sales  
)

This query returns a list of three years, which are the same filtered by the first query, where we 
specified an expression that was aggregating the Quantity column in the Sales table.

Calendar Year

CY 2007

CY 2008

CY 2009

Important SUMMARIZE can have an outside filter context, whereas this is not  possible 
for SUMMARIZECOLUMNS. This can be an important difference, especially if you are 
generating a DAX query dynamically by code. You have to implement the filter  directly in 
the SUMMARIZECOLUMNS filter arguments, instead of relying on outside filter  contexts 
defined by CALCULATE or CALCULATETABLE. However, you can filter the result of 
SUMMARIZECOLUMNS by using the FILTER function.

You do not have to specify a table as first argument, but you can optionally specify one or more 
tables after the grouping columns that become part of the filter context. You have to apply filters to 
evaluation here, because SUMMARIZECOLUMNS cannot have an outside filter context. For example, 
the following query returns all the combinations of calendar years and product classes available (it is a 
total of 21 rows):

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    Product[Class] 
)

Calendar Year Class

CY 2005 Economy

CY 2006 Economy

CY 2007 Economy

… (total 21 rows)
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Note In the previous example, SUMMARIZECOLUMNS has the same behavior of 
CROSSJOIN. Usually, you will use SUMMARIZECOLUMNS for more complex requests, 
 continuing to use CROSSJOIN for this particular case.

You can obtain only the combinations of calendar years and product classes where there is at least 
one corresponding row in the Sales table (the total is nine rows):

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    Product[Class], 
    Sales 
)

Calendar Year Class

CY 2007 Economy

CY 2008 Economy

CY 2009 Economy

CY 2007 Regular

… … (total 9 rows)

The following query returns the combination of calendar years and product classes for products 
that have a unit price greater than 3,000 (the total is seven rows):

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    Product[Class],  
    CALCULATETABLE ( Product, Product[Unit Price] > 3000 ) 
)

Calendar Year Class

CY 2005 Deluxe

CY 2006 Deluxe

CY 2007 Deluxe

CY 2008 Deluxe

… … (total 7 rows)

Finally, this is the query returning the combination of calendar years and product classes for 
products that have a unit price greater than 3,000, considering only those combinations that have at 
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least one corresponding row in Sales table (the total is three rows). In this case, we also add the sum 
of quantity in a new column:

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    Product[Class],  
    CALCULATETABLE ( Sales, Product[Unit Price] > 3000 ), 
    "Quantity", SUM ( Sales[Quantity] ) 

)

Calendar Year Class Quantity

CY 2007 Deluxe 5,667

CY 2008 Deluxe 10,375

CY 2009 Deluxe 14,829

If you add the column that evaluates the sum of quantity from the Sales table, you might use the 
previous filter that only considered the rows in Product table. In fact, SUMMARIZECOLUMNS removes 
the rows that have a BLANK result in all the column expressions you evaluate. You can keep them by 
using the IGNORE function, as you see in the following example:

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    Product[Class],  
    CALCULATETABLE ( Product, Product[Unit Price] > 3000 ), 
    "Quantity", IGNORE ( SUM ( Sales[Quantity] ) ) 

)

Calendar Year Class Quantity

CY 2005 Deluxe

CY 2006 Deluxe

CY 2007 Deluxe 5,667

CY 2008 Deluxe 10,375

CY 2009 Deluxe 14,829

CY 2010 Deluxe

CY 2011 Deluxe

The expression you evaluate in SUMMARIZECOLUMNS only has a filter context, and does not have 
a row context (as you have in SUMMARIZE). However, you can access the grouped columns by using 
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VALUES, which returns a table of one column and one row that is automatically converted in a scalar 
value, as you see in the following example.

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    Product[Class],  
    CALCULATETABLE ( Sales, Product[Unit Price] > 3000 ), 
    "Upper", UPPER ( VALUES ( Product[Class] ) ), 

    "Quantity", SUM ( Sales[Quantity] ) 

)

Calendar Year Class Upper Quantity

CY 2007 Deluxe DELUXE 5,667

CY 2008 Deluxe DELUXE 10,375

CY 2009 Deluxe DELUXE 14,829

Using ROLLUPADDISSUBTOTAL, you can create subtotals adding columns with the flag that 
 indicates whether the row is a subtotal or not for that column. This is a simplified way of combining 
the ROLLUP and ISSUBTOTAL functions that you have seen in the SUMMARIZE function. The following 
query adds a subtotal for the Calendar Year column:

EVALUATE 
SUMMARIZECOLUMNS ( 
    Product[Class], 
    Product[Weight Unit Measure],      
    ROLLUPADDISSUBTOTAL ( 'Date'[Calendar Year], "Subtotal Year" ), 
    CALCULATETABLE ( Sales, Product[Unit Price] > 3000 ), 
    "Quantity", SUM ( Sales[Quantity] ) 
)

Calendar Year Class Weight Unit Measure Subtotal Year Quantity

CY 2007 Deluxe pounds False 5,667

CY 2008 Deluxe pounds False 10,375

CY 2009 Deluxe pounds False 14,829

 Deluxe pounds True 30,871

You can call ROLLUPADDISSUBTOTAL several times, and you can include several pairs of column 
references and column names in a single call to ROLLUPADDISSUBTOTAL (the result is identical).

If you want to create a single subtotal for two or more columns, you can use ROLLUPGROUP. 
The following query creates a single subtotal for class and weight unit measure of product, and the 
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 subtotal per year. In practice, you see the subtotal of all the products for every year, and then the 
total of all the years and all the products:

EVALUATE 
SUMMARIZECOLUMNS ( 
    ROLLUPADDISSUBTOTAL ( 
        'Date'[Calendar Year], "Subtotal Year", 

        ROLLUPGROUP ( Product[Class], Product[Weight Unit Measure] ), "Subtotal Product" 

    ), 
    CALCULATETABLE ( Sales, Product[Unit Price] > 1000 ), 
    "Quantity", SUM ( Sales[Quantity] ) 
)

Calendar Year Class Weight Unit Measure Subtotal Year Subtotal Product Quantity

CY 2007 Regular pounds False False 71,763

CY 2008 Regular pounds False False 83,203

CY 2009 Regular pounds False False 49,332

CY 2007 Deluxe pounds False False 86,883

CY 2008 Deluxe pounds False False 101,219

CY 2009 Deluxe pounds False False 103,386

CY 2007   False True 158,646

CY 2008   False True 184,422

CY 2009   False True 152,718

   True True 495,786

The order of arguments for ROLLUPADDISSUBTOTAL is important because by inverting them 
you would obtain the subtotal of all the years for every class and weight unit measure of product, 
 followed by the same grand total.

Using GROUPBY
The GROUPBY function is similar to SUMMARIZE, but does not provide the filter context generated by 
SUMMARIZE, and does not have a row context that you can use for a context transition. Its purpose is 
to apply an iterator over the rows of the group thanks to the CURRENTGROUP function. For instance, 
you can write the first example of SUMMARIZE using GROUPBY in this way:

EVALUATE 
GROUPBY ( 
    Sales, 
    'Date'[Calendar Year Number], 
    "Quantity", SUMX ( CURRENTGROUP(), Sales[Quantity] ) 
)
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Calendar Year Quantity

CY 2007 5,551,636

CY 2008 5,029,924

CY 2009 6,956,456

You must use the CURRENTGROUP function at the top level of table scans in the column 
 expression, so you cannot use it in nested iterators. The GROUPBY function can be useful if you 
 generate DAX queries dynamically in your code, and you want to apply a particular aggregation on 
the result of another table expression.

Important You should use GROUPBY only for post-processing small result sets obtained 
by other table functions, typically SUMMARIZECOLUMNS and ADDCOLUMNS. GROUPBY 
should not be used to aggregate physical tables of the data model because it does not 
push the computation in the storage engine (you will realize why this is important for 
 performance in Chapter 16). Even if the name resembles the GROUPBY condition of SQL 
language, its goal is different.

Using ADDMISSINGITEMS
The ADDMISSINGITEMS function is fundamentally a tool that includes the items with no data that 
would be hidden in the result of SUMMARIZECOLUMNS because of no data in the expression for the 
new columns.

For example, consider the result of the following query with SUMMARIZECOLUMNS:

EVALUATE 
SUMMARIZECOLUMNS ( 
    'Date'[Calendar Year], 
    "Quantity", SUM ( Sales[Quantity] ) 
)

Calendar Year Quantity

CY 2007 5,551,636

CY 2008 5,029,924

CY 2009 6,956,456

The Date table includes years ranging from 2005 to 2011, but SUMMARIZECOLUMNS only shows 
years that have a result in Quantity. You can include years without any corresponding quantity by 
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wrapping the expression in ADDMISSINGITEMS, specifying the columns for which you want to include 
“empty” members. The next query adds the years without data to the result of SUMMARIZE: 

EVALUATE 
ADDMISSINGITEMS ( 
    'Date'[Calendar Year], 
    SUMMARIZECOLUMNS ( 
        'Date'[Calendar Year], 
        "Quantity", SUM ( Sales[Quantity] ) 
    ), 
    'Date'[Calendar Year] 
)

Calendar Year Quantity

CY 2007 5,551,636

CY 2008 5,029,924

CY 2009 6,956,456

CY 2005

CY 2006

CY 2010

CY 2011

When you aggregate two or more columns, you can define individual columns for which you want 
to include “missing” items. For example, consider the following query that returns quantity of sales for 
product with a price greater than 3,000, grouped by Stock Type and Gender:

EVALUATE 
SUMMARIZECOLUMNS ( 
    Product[Stock Type], 
    Customer[Gender], 
    CALCULATETABLE ( Sales, Product[Unit Price] > 3000 ), 
    "Quantity", SUM ( Sales[Quantity] ) 
)

Stock Type Gender Quantity

Mid 29,106

Mid M 926

Mid F 839
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As you see, there is only one type of stock (Mid). If you apply ADDMISSINGITEMS only to the Stock 
Type column, you obtain two more rows, one for each missing stock type (Low and High):

EVALUATE 
ADDMISSINGITEMS ( 
    Product[Stock Type], 
    SUMMARIZECOLUMNS ( 
        Product[Stock Type], 
        Customer[Gender], 
        CALCULATETABLE ( Sales, Product[Unit Price] > 3000 ), 
        "Quantity", SUM ( Sales[Quantity] ) 
    ), 
    Product[Stock Type] 
)

Stock Type Gender Quantity

Mid 29,106

Mid M 926

Mid F 839

High

Low

However, you can extend the missing items also to the Gender column, as in the following example:

EVALUATE 
ADDMISSINGITEMS ( 
    Product[Stock Type], 
    Customer[Gender], 
    SUMMARIZECOLUMNS ( 
        Product[Stock Type], 
        Customer[Gender], 
        CALCULATETABLE ( Sales, Product[Unit Price] > 3000 ), 
        "Quantity", SUM ( Sales[Quantity] ) 
    ), 
    Product[Stock Type], 
    Customer[Gender] 
)

Stock Type Gender Quantity

Mid 29,106

Mid M 926

Mid F 839

High

Low
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Stock Type Gender Quantity

High M

Low M

High F

Low F

Using NATURALINNERJOIN
The NATURALINNERJOIN function performs an inner join between two tables. You can use tables that 
have no relationships because the join uses common columns between the two tables, and the data type 
must be identical, too. There should be at least one column with the same name and type between the 
two tables. The syntax is very simple; the function has two table expressions as arguments:

NATURALINNERJOIN ( <leftJoinTable>, <rightJoinTable> )

Important The join condition of NATURALINNERJOIN is automatically defined by the 
 columns having the same name and type in the two tables. You use this function when 
you do not have a relationship in the data model between two tables, and you can join the 
 result of table functions, too.

In the following example, you see the join between two tables created within the query, just to 
demonstrate you can join any table regardless of the presence of relationships in the data model:

EVALUATE 
VAR A = 
    UNION ( 
        ROW ( "Name", "Audio", "Value", 1 ), 
        ROW ( "Name", "Audio", "Value", 2 ), 
        ROW ( "Name", "Computers", "Value", 3 ), 
        ROW ( "Name", "Games", "Value", 4 ), 
        ROW ( "Name", "Music", "Value", 5 ) 
    ) 
VAR B = 
    UNION ( 
        ROW ( "Name", "Audio", "Ext", 6 ), 
        ROW ( "Name", "Computers", "Ext", 7 ), 
        ROW ( "Name", "Computers", "Ext", 8 ), 
        ROW ( "Name", "Games", "Ext", 9 ), 
        ROW ( "Name", "TV", "Ext", 10 ) 
    ) 
RETURN 
    NATURALINNERJOIN ( A, B )
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Name Value Ext

Audio 1 6

Audio 2 6

Computers 3 7

Computers 3 8

Games 4 9

Using NATURALLEFTOUTERJOIN
The NATURALLEFTOUTERJOIN function has a behavior similar to NATURALINNERJOIN, with the only 
difference that it executes a left outer join of the first table expression passed as argument, with the 
second table expression passed in the other argument. The syntax requires two table expressions as 
arguments, and their order is important:

NATURALLEFTOUTERJOIN ( <leftJoinTable>, <rightJoinTable > )

Important The join condition of NATURALLEFTOUTERJOIN is similar to 
NATURALINNERJOIN, and it is automatically defined by the columns having the same 
name and type in the two tables. It is common to use this function when there are no 
 relationships in the data model between the two tables to join.

As seen here, table A is joined with B, applying a left outer join instead of an inner join:

EVALUATE 
VAR A = 
    UNION ( 
        ROW ( "Name", "Audio", "Value", 1 ), 
        ROW ( "Name", "Audio", "Value", 2 ), 
        ROW ( "Name", "Computers", "Value", 3 ), 
        ROW ( "Name", "Games", "Value", 4 ), 
        ROW ( "Name", "Music", "Value", 5 ) 
    ) 
VAR B = 
    UNION ( 
        ROW ( "Name", "Audio", "Ext", 6 ), 
        ROW ( "Name", "Computers", "Ext", 7 ), 
        ROW ( "Name", "Computers", "Ext", 8 ), 
        ROW ( "Name", "Games", "Ext", 9 ), 
        ROW ( "Name", "TV", "Ext", 10 ) 
    ) 
RETURN 
    NATURALLEFTOUTERJOIN  ( A, B )
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In this case the result also includes the rows in the first table (where name is equal to Music) that 
are not present in the second table.

Name Value Ext

Audio 1 6

Audio 2 6

Computers 3 7

Computers 3 8

Games 4 9

Music 5

Understanding set functions

A number of DAX functions manipulate tables, or sets of rows. We included them in this section about 
sets, because you can see them as set manipulation functions (such as UNION, INTERSECT, EXCEPT). 
The expressivity of the language is higher when it provides access to all set operators (Cartesian 
 product, union, intersection, complement).

Using CROSSJOIN
The CROSSJOIN function generates the Cartesian product between two or more tables. You can use 
any table expression as an argument; simply put all of them in the arguments, as in the following 
syntax:

CROSSJOIN ( <tableExpression1>, <tableExpression2> [, <tableExpressionN>] … )

A typical case of CROSSJOIN usage is combining the values of different columns, as in the 
 following example:

EVALUATE 
CROSSJOIN ( 
    VALUES ( Product[Stock Type] ), 
    VALUES ( 'Product Category'[Category] ) 
)

Stock Type Category

High Audio

Mid Audio

Low Audio
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Stock Type Category

High TV and Video

Mid TV and Video

Low TV and Video

… …

The result includes all the combinations of all the rows of a table with all the rows of other tables, 
including all the columns of all the tables. In case there is the same column name in two or more 
tables used in CROSSJOIN, it is necessary to use the fully qualified name (including table and column 
name) to identify the column, as in the following example:

EVALUATE 
CROSSJOIN ( 'Product Category', 'Product Subcategory' ) 

The column ProductCategoryKey is present in two columns, with two different fully qualified 
names.

Product Category 
[ProductCategoryKey]

Product 
Category 
[Category]

Product Subcategory 
[ProductSubcategoryKey]

Product Subcategory 
[ProductCategoryKey]

Product 
Subcategory 
[Subcategory]

 1 Audio  1  1 MP4&MP3

 2 TV and Video  1  1 MP4&MP3

 3 Computers  1  1 MP4&MP3

 4 Cameras and 
camcorders  1  1 MP4&MP3

 … … … … …

 1 Audio  2  1 Recorder

 2 TV and Video  2  1 Recorder

 3 Computers  2  1 Recorder

 4 Cameras and 
camcorders  2  1 Recorder

 … … … … …

 1 Audio  9  2 Televisions

 2 TV and Video  9  2 Televisions

 3 Computers  9  2 Televisions

 4 Cameras and 
camcorders  9  2 Televisions

… … … … …
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If you want to duplicate a column in the result of CROSSJOIN without having to worry about fully 
qualifi ed names, you have to rename the column in advance. For example, the following query returns 
all the combinations of product stock types with themselves: 

EVALUATE
CROSSJOIN (
    VALUES ( Product[Stock Type] ),
    SELECTCOLUMNS (
        VALUES ( Product[Stock Type] ),
        "Alternate Type", Product[Stock Type]
    )
)  

As you see in the result, it is not an issue having two columns with the same lineage in the result. 

Stock Type Alternate Type

High High

Mid High

Low High

High Mid

Mid Mid

Low Mid

High Low

Mid Low

Low Low

 Using UNION 
UNION generates a single table using all the rows of the tables passed as arguments. The tables must 
have the same number of columns and the columns are combined by position in their respective 
tables. The fi rst argument defi nes the name of the columns in the result (subsequent arguments add 
rows but do not affect column names): 

UNION ( <tableExpression1>, <tableExpression2> [, <tableExpressionN>] … ) 

The result retains duplicate rows, and it preserves the lineage whenever possible. For instance, the 
following query keeps the lineage to the physical columns of the data model, because the two table 
expressions return columns from the same table and in the same position: 

EVALUATE
CROSSJOIN (
   VALUES ( Product[Stock Type] ),
   SELECTCOLUMNS (
       VALUES ( Product[Stock Type] ),
       "Alternate Type", Product[Stock Type]
   )

) 

UNION ( <tableExpression1>, <tableExpression2> [, <tableExpressionN>] … )
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EVALUATE 
UNION ( 
    FILTER ( 
        'Product Subcategory', 
        'Product Subcategory'[ProductCategoryKey] = 6 
    ), 
    FILTER ( 
        'Product Subcategory', 
        'Product Subcategory'[Subcategory Code] = "0602" 
        || 'Product Subcategory'[Subcategory Code] = "0702" 
    ) 
)

The query produces two duplicated rows, highlighted in the following result.

ProductSubcategoryKey Subcategory Code Subcategory ProductCategoryKey

34 0601 Music CD 6

35 0602 Movie DVD 6

36 0603 Audio Books 6

35 0602 Movie DVD 6

39 0702 Download Games 7

The lineage is important when you use the result of UNION in a filter context. For example, the 
following query returns all the product categories having at least one of the subcategories produced 
by the UNION function, which merges two tables having different column names (Code 1 and Code 2) 
with the same lineage:

EVALUATE 
CALCULATETABLE ( 
    'Product Category', 
    UNION ( 
        CALCULATETABLE ( 
            SELECTCOLUMNS ( 
                'Product Subcategory', 
                "Code 1", 'Product Subcategory'[Subcategory Code] 
            ), 
            'Product Subcategory'[Subcategory Code] = "0601"  
                || 'Product Subcategory'[Subcategory Code] = "0602"  
        ), 
        CALCULATETABLE ( 
            SELECTCOLUMNS ( 
                'Product Subcategory', 
                "Code 2", 'Product Subcategory'[Subcategory Code] 
            ), 
            'Product Subcategory'[Subcategory Code] = "0702"  
        ) 
    ) 
)
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ProductCategoryKey Category Code Category

6 06 Music, Movies and Audio 
Books

7 07 Games and Toys

If you add a value losing the lineage, the result no longer filters the original columns. In fact, the follow-
ing example has a UNION function that returns the same list of subcategory codes (0601, 0602, and 0702), 
but the use of ROW in the second argument of UNION breaks the lineage with the original column:

EVALUATE 
CALCULATETABLE ( 
    'Product Category', 
    UNION ( 
        CALCULATETABLE ( 
            SELECTCOLUMNS ( 
                'Product Subcategory', 
                "Code 1", 'Product Subcategory'[Subcategory Code] 
            ), 
            'Product Subcategory'[ProductCategoryKey] = 6 
        ), 
        ROW ( "Code 2", "0702" ) 
    ) 
)

The result includes all of the categories, because the result of the UNION does not affect the filter 
context.

ProductCategoryKey Category Code Category

1 01 Audio

2 02 TV and Video

3 03 Computers

4 04 Cameras and camcorders

… … …

The data type of a column in the result depends on the content of all the tables merged by 
UNION, using the type that makes the implicit conversion always possible without any error. The 
 following query merges two rows with an integer value:

EVALUATE 
ADDCOLUMNS ( 
    UNION (  
        ROW ( "Value", 1 ),  
        ROW ( "Value", 2 )  
    ), 
    "IsText", ISTEXT ( [Value] ), 
    "IsNumber", ISNUMBER ( [Value] ) 
)
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The column Value in the result is a number.

Value IsText IsNumber

1 False True

2 False True

However, if one of the two rows has a string instead of a number, the result will have a string data 
type for the column Value. In the following example, the second row has a different column name:

EVALUATE 
ADDCOLUMNS ( 
    UNION (  
        ROW ( "Value", 1 ),  
        ROW ( "AnotherName", "2" )  
    ), 
    "IsText", ISTEXT ( [Value] ), 
    "IsNumber", ISNUMBER ( [Value] ) 
)

The column name (Value) depends only on the first argument of UNION, whereas the data type 
depends on the content of all the rows.

Value IsText IsNumber

1 True False

2 True False

Using INTERSECT
INTERSECT returns a table containing only the rows that exist in both table expressions passed as 
arguments. The tables must have the same number and data type of columns and the columns are 
combined by position in their respective tables. The first argument defines the name of the columns 
in the result (any ensuing arguments add rows but do not affect column names):

INTERSECT ( <tableExpression1>, <tableExpression2> )

The result keeps the lineage from the first table of the two arguments. For example, the following 
query keeps the lineage to the physical columns of the data model, even if the second table does not 
have the same lineage:

EVALUATE 
INTERSECT ( 
    VALUES ( Product[Color] ), 
    UNION (  
        ROW ( "Color", "Red" ),  
        ROW ( "Color", "Blue" )  
    ) 
)
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Color

Blue

Red

If you invert the two arguments, the result is the same, but you cannot use it in a filter argument 
because it does not have a lineage with the physical column:

EVALUATE 
INTERSECT ( 
    UNION (  
        ROW ( "Color", "Red" ),  
        ROW ( "Color", "Blue" )  
    ), 
    VALUES ( Product[Color] ) 
)

Color

Blue

Red

 It is important to understand how to use INTERSECT in a filter context, because it is one of the 
most frequent applications of this function. In the following example, you see how to obtain a list of 
customers who bought a product of the Cell phones category in both 2008 and 2009:

EVALUATE 
CALCULATETABLE ( 
    VALUES ( Customer[Customer Code] ), 
    INTERSECT ( 
        CALCULATETABLE ( 
            SUMMARIZE ( 
                Sales, 
                Customer[CustomerKey], 
                Product[ProductKey] 
            ), 
            'Date'[Calendar Year Number] = 2008, 
            'Product Category'[Category] = "Cell phones" 
        ), 
        CALCULATETABLE ( 
            SUMMARIZE ( 
                Sales, 
                Customer[CustomerKey], 
                Product[ProductKey] 
            ), 
            'Date'[Calendar Year Number] = 2009, 
            'Product Category'[Category] = "Cell phones" 
        ) 
    ) 
)
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The result has only three customers.

Customer Code

CS676

CS679

CS810

Using EXCEPT
The EXCEPT function implements the complement operators over two sets. It returns a table 
 containing only the rows that exist in the first table expressions passed as an argument, but not in the 
second one. The tables must have the same number and data type of columns and the columns are 
combined by position in their respective tables. The first argument defines the name of the columns 
in the result (following arguments add rows but do not affect column names):

EXCEPT ( <tableExpression1>, <tableExpression2> )

The result keeps the lineage from the first table of the two arguments. For instance, the following 
query keeps the lineage to the physical columns of the data model, even if the second table does not 
have the same lineage:

EVALUATE 
EXCEPT ( 
    VALUES ( Product[Color] ), 
    UNION (  
        ROW ( "Color", "Red" ),  
        ROW ( "Color", "Blue" )  
    ) 
)

Color

Silver

White

… (all colors but Red and Blue)

An example of EXCEPT usage is displaying the customer who bought a product in 2008 (code 
0202011) and did not buy another product (code 0201038) in the same year.
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EVALUATE 
CALCULATETABLE ( 
    VALUES ( Customer[Customer Code] ), 
    EXCEPT ( 
        CALCULATETABLE ( 
            SUMMARIZE ( 
                Sales, 
                Customer[CustomerKey] 
            ), 
            'Date'[Calendar Year Number] = 2008, 
            Product[Product Code] = "0202011" 
        ), 
        CALCULATETABLE ( 
            SUMMARIZE ( 
                Sales, 
                Customer[CustomerKey] 
            ), 
            'Date'[Calendar Year Number] = 2008, 
            Product[Product Code] = "0201038" 
        ) 
    ) 
)

Customer Code

25044

25047

26676

26681

… (376 rows in total)

Using GENERATE, GENERATEALL
The GENERATE function evaluates the tableExpression2 for each row in tableExpression1, returning a 
Cartesian product between each row in tableExpression1 and the corresponding rows generated by 
tableExpression2. The syntax requires two table expressions:

GENERATE ( <tableExpression1>, <tableExpression2> )

A trivial use of GENERATE is the generation of a table that contains all the valid combinations of 
product categories and subcategories, as you can do with this query:

EVALUATE 
GENERATE ( 
    'Product Category', 
    RELATEDTABLE ( 'Product Subcategory' ) 
)
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Category Code Category Subcategory Code Subcategory …

01 Audio 0101 MP4&MP3 …

01 Audio 0102 Recorder …

01 Audio 0103 Radio …

… … … … …

02 TV and Video 0201 Televisions …

02 TV and Video 0202 VCD & DVD …

… … … … …

The tableExpression2 in a GENERATE call usually contains a RELATEDTABLE or CALCULATETABLE 
function, in order to leverage the context transition using the row iterated in tableExpression1. 

Note If you omitted the RELATEDTABLE function in the second parameter, you would 
achieve the same result you obtained by using CROSSJOIN instead of GENERATE  because 
you would lack the transformation of a row context into a filter context provided by 
RELATEDTABLE, which is an alias for CALCULATEDTABLE. In fact, the following queries are 
equivalent:

EVALUATE 
GENERATE( 'Product Category', 'Product Subcategory' ) 
 
EVALUATE 
CROSSJOIN( 'Product Category', 'Product Subcategory' )

A more interesting example of GENERATE is how you can obtain a table that contains the top two 
products for each year. The following query executes the TOPN function for each year, calculating the 
ranking of products locally to each year:

EVALUATE 
GENERATE ( 
    VALUES ( 'Date'[Calendar Year] ), 
    TOPN ( 
        2, 
        SUMMARIZE ( RELATEDTABLE ( Sales ), Product[Product Name] ), 
        CALCULATE ( SUM ( Sales[Quantity] ) ) 
    ) 
)
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Calendar Year Product Name

CY 2007 SV 16xDVD M360 Black

CY 2007 Adventure Works 26” 720p LCD HDTV M140 Silver

CY 2008 Contoso Touch Stylus Pen E150 White

CY 2008 Contoso In-Line Coupler E180 Silver

CY 2009 Contoso In-Line Coupler E180 Silver

CY 2009 Headphone Adapter for Contoso Phone E130 Black

The previous query returns just those years containing at least one sale. If you want to also include 
years without any corresponding rows in Sales, you can use GENERATEALL instead of GENERATE, as in 
the following query:

EVALUATE 
GENERATEALL ( 
    VALUES ( 'Date'[Calendar Year] ), 
    TOPN ( 
        2, 
        SUMMARIZE ( RELATEDTABLE ( Sales ), Product[Product Name] ), 
        CALCULATE ( SUM ( Sales[Quantity] ) ) 
    ) 
)

Calendar Year Product Name

CY 2005

CY 2006

CY 2007 SV 16xDVD M360 Black

CY 2007 Adventure Works 26” 720p LCD HDTV M140 
Silver

CY 2008 Contoso Touch Stylus Pen E150 White

CY 2008 Contoso In-Line Coupler E180 Silver

CY 2009 Contoso In-Line Coupler E180 Silver

CY 2009 Headphone Adapter for Contoso Phone E130 
Black

CY 2010

CY 2011

If you are used to SQL, you might consider the GENERATE function similar to the CROSS APPLY 
condition in SQL, whereas GENERATEALL is similar to OUTER APPLY in SQL.
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Understanding utility functions

The DAX language includes several functions that you will use often in iterators. Two of the  logical 
functions that you will frequently use in filter conditions are CONTAINS and ISONORAFTER. The 
LOOKUPVALUE function is very common in scenarios where you want to retrieve a value from a table 
when a physical relationship does not exist, but you can set a logical filter on one or more columns 
obtaining a single value for a column. The SUBSTITUTEWITHINDEX function might be useful if you 
generate DAX queries dynamically in your code.

Using CONTAINS
You can use FILTER and CALCULATETABLE functions to filter rows from a table. However, if you need 
to check whether at least one row exists in a table within certain conditions, you might calculate more 
rows than necessary by using these functions. In the table passed as first argument, the CONTAINS 
function checks the existence of at least one row that contains all the column values specified in the 
following parameters. This is the syntax:

CONTAINS ( 
    <table>, 
    <column1_name>, <column1_expression> 
    [,<column2_name>, <column2_expression>][, …] 
)

You might also want to check whether the Sales table contains at least one sale with a unit price 
of 99.99. Because the result of CONTAINS is a scalar value, you can embed it in a ROW function to 
execute the query:

EVALUATE 
ROW ( 
    "Sales Exist",  
    CONTAINS (  
        Sales,  
        Sales[Unit Price], 99.99  
    ) 
)

Sales Exists

True
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The preceding query corresponds to the following:

EVALUATE 
ROW ( 
    "Sales Exist",   
    COUNTROWS ( 
        CALCULATETABLE ( Sales, Sales[Unit Price] = 99.99 ) 
    ) > 0 
)

Usually CONTAINS provides a better performance for simple filter conditions, whereas 
 CALCULATETABLE is preferable for more complex expressions. CONTAINS just checks for an exact 
match, and you must use CALCULATETABLE, FILTER, or both if you need more complex filtering 
conditions. However, you can combine more column conditions, and the columns can also belong to 
related tables. For example, the following query returns TRUE when at least one sale has been made 
in Australia with a unit price of 99.99:

EVALUATE 
ROW ( 
    "Sales Australia",  
    CONTAINS ( 
        Sales, 
        Sales[Unit Price], 99.99, 
        Customer[CountryRegion], "Australia" 
    ) 
)

Sales Australia

True

In this case, the preceding query corresponds to the following:

EVALUATE 
ROW ( 
    "Sales Australia", 
    COUNTROWS ( 
        CALCULATETABLE ( 
            Sales, 
            Sales[Unit Price] = 99.99, 
            Customer[CountryRegion] = "Australia" 
        ) 
    ) > 0 
)
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A practical use of CONTAINS is as a filter condition when you want to obtain a list of elements that 
has at least one corresponding row in another table. The following query returns the list of dates in 
which there has been at least one sale in the city of Columbus:

EVALUATE 
FILTER ( 
    VALUES ( 'Date'[Date] ), 
    CONTAINS ( 
        RELATEDTABLE ( Sales ), 
        Customer[City], "Columbus" 
    ) 
) 
ORDER BY 'Date'[Date]

Date

01/22/2007

01/23/2007

01/26/2007

…

As you see, the CONTAINS function is executed within a different row context for each date. The 
row context for each date is transformed into a filter context by the RELATEDTABLE function, so that 
CONTAINS considers only the sales for these rows and returns TRUE when at least one row exists for 
the city of Columbus on that particular date.

Using LOOKUPVALUE
In the previous section, you saw how to check whether at least one row exists in a table. However, you 
will often need to decode a value in a lookup table. To do this, the LOOKUPVALUE function in DAX 
has the following syntax:

LOOKUPVALUE ( 
    <result_column_name>, 
    <search_column1_name>, <search_column1_expression> 
    [,<search_column2_name>, <search_column2_expression>] [, …]  
)

The first argument is the column that contains the value to return. The other parameters are 
pairs of column name and value (as scalar expressions) to perform the lookup operation in the table 
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 containing the column specified in the first argument. For instance, the following query transforms 
the CAD currency code into the corresponding currency name:

EVALUATE 
ROW ( 
    "Currency", LOOKUPVALUE ( 
        Currency[Currency], 
        Currency[Currency Code], "CAD" 
    ) 
)

Currency

Canadian Dollar

Note The LOOKUPVALUE function ignores the existing filter context, performing a direct 
lookup in the target table. This behavior is particularly useful when you are executing an 
expression within a context transition during an iteration.

You can specify more columns to perform the matching operation, and you can refer to columns 
of related tables. The following query returns the name of the product of brand Contoso and class 
Deluxe that has a Silver color and belongs to the Audio category:

EVALUATE 
ROW ( 
    "Product", LOOKUPVALUE ( 
        Product[Product Name], 
        Product[Color], "Silver", 
        Product[Brand], "Contoso", 
        Product[Class], "Deluxe", 
        'Product Category'[Category], "Audio" 
    ) 
)

Product

Contoso 8GB Clock & Radio MP3 Player X850 Silver

If there are multiple rows matching the search values, the function returns an error if  different 
 values are returned in <result_column_name>, whereas it returns a BLANK value if there are no 
 matching rows. However, if there is a single distinct value for <result_column_name>, even if multiple 
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rows in the underlying table match the search values, the LOOKUPVALUE function returns only that 
unique value. For example, the following query returns the name of the month corresponding to the 
month number 3:

EVALUATE 
ROW ( 
    "Month Name", LOOKUPVALUE ( 
        'Date'[Month], 
        'Date'[Month Number], 3 
    ) 
)

Month Name

March

Even if the Date table contains hundreds of rows corresponding to the month number 3 (31 days 
for each year in the Date table), all of them have the same value in the Month column (March).

Tip Most of the time, a RELATED function performs the required lookup operation when 
you have a row context and you need to get the value of a column in a related table. 
However, if you do not have a relationship between two tables in an underlying data 
model, or if you have to implement a particular logic for a lookup operation, you can use 
LOOKUPVALUE instead of RELATED. You might also rewrite the LOOKUPVALUE call by 
 using the CALCULATE function, even if it is not a best practice. For example, the previous 
query can be rewritten as follows:

EVALUATE 
ROW ( 
    "Month Name", CALCULATE ( 
        VALUES ( 'Date'[Month] ), 
        'Date'[Month Number] = 3 
    ) 
)

Using LOOKUPVALUE instead of CALCULATE makes the intent more explicit. Thus, using 
LOOKUPVALUE is the preferred way to implement a lookup operation if you cannot use 
RELATED. Use CALCULATE only if the matching condition cannot be expressed through 
LOOKUPVALUE arguments.
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Using SUBSTITUTEWITHINDEX
The function SUBSTITUTEWITHINDEX can replace those columns in a rowset corresponding to 
 column headers of a matrix by indexes representing their positions. You might find this function 
useful only if you create a dynamic user interface for querying DAX. In fact, Power BI internally uses 
SUBSTITUTEWITHINDEX for matrix charts. The syntax is as follows:

SUBSTITUTEWITHINDEX ( 
    <table>, 
    <columnName>, 
    <indexTable>, 
    <expression> 
    [,<order>]  
)

The result corresponds to the table passed as first argument, where the columns that match the 
ones in <indexTable> are replaced with a single column named according to the <columnName> 
 argument. Such a column contains the index of the value in tables found in the corresponding column 
of <indexTable>. The two tables (<table> and <indexTable>) must have at least one matching column, 
and all the matching columns are replaced with the corresponding index. You see an example with 
local tables in the following query:

EVALUATE 
SUBSTITUTEWITHINDEX ( 
    UNION ( 
        ROW ( "Name", "Marco", "Company", "Sqlbi", "User", "marcor" ), 
        ROW ( "Name", "Alberto", "Company", "Sqlbi", "User", "hal" ), 
        ROW ( "Name", "Bob", "Company", "Contoso", "User", "bob97" ) 
    ), 
    "index", UNION ( 
        ROW ( "Company", "Sqlbi", "Name", "Alberto" ), 
        ROW ( "Company", "Contoso", "Name", "Bob" ), 
        ROW ( "Company", "Sqlbi", "Name", "Marco" ) 
    ), 
    0 
) 

The result only includes the User column from the first table, and the Name and Company columns 
are replaced by the Index column that corresponds to the 0-based position of the values found in the 
<indexTable> argument.

User Index

marcor 2

hal 0

bob97 1
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Using ISONORAFTER
The ISONORAFTER function emulates the behavior of a START AT clause in EVALUATE, and returns 
TRUE when all of the values passed as argument meet the condition specified. Usually you evaluate 
this function in a filter condition during an iteration, applying it to the current row context:

ISONORAFTER (  
    <scalar_expression>,  
    <scalar_expression>, [sort_order]  
    [,<scalar_expression>, <scalar_expression>, [sort_order]] [,…] 
)

For example, you can filter the months greater than or equal to October 2008 by using the 
ISONORAFTER function in the filter condition of the following query:

EVALUATE 
FILTER ( 
    SUMMARIZE ( 
        'Date', 
        'Date'[Calendar Year], 
        'Date'[Month], 
        'Date'[Month Number] 
    ), 
    ISONORAFTER ( 
        'Date'[Calendar Year], "CY 2008", ASC, 
        'Date'[Month Number], 10, ASC 
    ) 
) 
ORDER BY 
    'Date'[Calendar Year], 
    'Date'[Month Number]

The result does not have any month before October 2008. It is important to note that you can use 
the result of the FILTER in other DAX expressions, regardless of the order defined by ORDER BY, which 
is only useful to display the result in a meaningful way.

Calendar Year Month Month Number

CY 2008 October 10

CY 2008 November 11

CY 2008 December 12

CY 2009 January 1

CY 2009 February 2

… … …
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Advanced evaluation context

We introduced evaluation contexts in Chapter 4, “Understanding evaluation contexts,” and up 
to now you have learned how to use them to compute simple formulas. The definition of 

 evaluation contexts used so far is incomplete or, rather, an approximation of what evaluation contexts 
really are. In order to proceed with more intricate calculations and to obtain a full understanding of 
how DAX evaluates expressions, you need to move to the next level and to thoroughly learn the way 
evaluation contexts work and how they interact.

In this chapter we are going to uncover all the complexities of evaluation contexts and show many 
examples of expressions that look wrong at first sight, but only because you do not have a full under-
standing of how they work.

This chapter is a very complex one, and chances are good that you will need to read it more than 
once. Nevertheless, learning these detailed topics is mandatory if you want to fully understand DAX 
and learn the more complicated scenarios we will present to you in later chapters. If you are curious 
to understand how tough it will be, you can jump to the section “Learning and mastering evaluation 
contexts” at the end of the chapter, and then come back here and continue reading. 

Understanding ALLSELECTED

ALLSELECTED, which we introduced in Chapter 5, “Understanding CALCULATE and  CALCULATETABLE,” 
looks like a special function that is able to understand what the user selected in the pivot  table. 
In fact, it lets you retrieve the original filter context under which the pivot table is running. 
 Unfortunately, there is a big issue with this description of ALLSELECTED, regarding how it is possible 
that a DAX function knows what a user selected in a pivot table. If the source of a report is not a 
pivot table but a DAX query, is ALLSELECTED still going to work? In order to provide an answer to this 
(legitimate) question, we need to closely investigate the description of ALLSELECTED to understand 
exactly how it works. 

Let us state this simple fact from the beginning: ALLSELECTED has no clue as to what the user 
selected in the pivot table. ALLSELECTED does not even know that a pivot table exists. Therefore, how 
does it work?
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ALLSELECTED removes from the context the last filter generated from context transition.

The side effect of this operation is that—in most cases—it retrieves the original filter context. 
Unfortunately, this does not always happen and you might write formulas where you expect ALLSE-
LECTED to compute a value (based on the first definition we gave for ALLSELECTED) and you end up 
with an unexpected result.

In order to fully understand the behavior of ALLSELECTED, we need to refine the knowledge we 
have about context transition a bit. In Chapter 5, you learned that context transition transforms all 
existing row contexts into equivalent filter contexts. Thus, you know that after context transition all 
row contexts are gone and they are replaced with a single filter context containing all the equivalent 
filters. This is not completely correct. In reality, context transition generates two new filter contexts: 
one containing the full iterated table and one containing the current row. Let’s elaborate on this, 
analyzing the following simple measure:

AverageSales := 
AVERAGEX (  
    Customer, 
    CALCULATE ( SUM ( Sales[Quantity] ) ) 
)

During iteration we invoke CALCULATE, so context transition happens. The engine transforms the 
current row on Customer into two filter contexts, which are applied one after the other:

■■ The first one contains Customer.

■■ The second one contains the currently iterated row on Customer.

This behavior is transparent to your code in most cases. The reason is that the two filters are 
placed one after the other in the stack of filter contexts. Therefore, the last one (containing a single 
 customer) is always more restrictive than the previous one, effectively hiding it. We refer to the first 
filter as the outer filter, whereas the second one is the inner filter. When CALCULATE ends, both 
filters are removed from the stack. Thus, your code typically ignores the existence of the outer filter, 
because it has no effect during CALCULATE and no effect after CALCULATE ends. However, as you are 
learning, the outer filter is extremely important to understand the behavior of ALLSELECTED.

Keep in mind that this behavior always happens, even if you do not notice it. Look at the following 
example:

AverageSalesInEurope := 
AVERAGEX (  
    FILTER ( Customer, Customer[Contintent] = "Europe" ), 
    CALCULATE ( SUM ( Sales[Quantity] ) ) 
)
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In this case, iteration happens for only the customers in Europe. Thus the two filters are:

■■ Outer: customers in Europe.

■■ Inner: currently iterated customer from the ones in Europe.

Again, the currently iterated one is more restrictive than the list of all customers in Europe, so 
you normally ignore the existence of the outer filter. You can safely ignore it, until you start using 
ALLSELECTED. In fact, ALLSELECTED will remove the more restrictive filter (inner), leaving the outer 
one working. This behavior is somewhat complex to follow until you get used to it, so some examples 
might help in learning it better.

In order to understand the behavior of ALLSELECTED, we use a very simple data model, containing 
a single table (called Table) with only three rows and two columns (Col and Val), which you can see in 
Figure 10-1.

FIGURE 10-1 This is the table we will use to understand exactly how ALLSELECTED works.

Based on this table, you can easily create a pivot table with a slicer that selects only two rows and 
the Sum of Val in the value area, which you can see in Figure 10-2.

FIGURE 10-2 Here you can see a very simple pivot table based on our one table model.

There is nothing special here. We filter two values, and all the numbers are correct. Now, to intro-
duce ALLSELECTED, you define a new measure, using this code:

[SumAllSelected] := 
CALCULATE ( 
    SUM ( Table[Val] ),  
    ALLSELECTED ( )  
)



288 The Definitive Guide to DAX

Intuitively, you expect this measure to compute the value of 4 for all the rows. This is because you 
use ALLSELECTED without parameters, which means you want to retrieve the original filter context. In 
fact, the result is correct, as you can see in Figure 10-3.

FIGURE 10-3 Using ALLSELECTED, the value shown in all the rows is the grand total of our original calculation.

Even if the result is what we expected, we now know that this is not because ALLSELECTED 
 retrieved the original filter context as it had no way of doing so. Let us review how the correct value 
came up, with the new definition of ALLSELECTED. Nevertheless, before moving on, we need to be a 
bit more accurate about how DAX computed the formula in the cells. There are two different steps in 
evaluating the full pivot table:

■■ One step computes the values for the individual rows.

■■ One step computes the values for the grand total.

The reason for this is that the individual rows contain a filter on Table[Col] that filters a single value 
(either A or C), whereas at the grand total level the filter context contains both A and C. Both steps 
run under a filter created by the slicer. 

Note In reality, the code executed is MDX, not DAX. Nevertheless, for the sake of this 
 example, we use DAX to make it easier to follow the flow of execution. What you see here 
is a very good approximation of what happens under the cover.

The code for the individual rows is similar to this:

EVALUATE 
CALCULATETABLE ( 
    ADDCOLUMNS ( 
        VALUES ( Table[Col] ), 
        "Sum of Val", [Sum of Val], 
        "SumAllSelected", [SumAllSelected] 
    ), 
    OR ( Table[Col] = "A", Table[Col] = "C" ) 
)
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On the other hand, the code for the grand total looks like this:

EVALUATE 
CALCULATETABLE ( 
    ROW ( 
        "Grand Total Sum of Val", [Sum of Val], 
        "Grand Total SumAllSelected", [SumAllSelected] 
    ), 
    OR ( Table[Col] = "A", Table[Col] = "C" ) 
)

As you can see, even if your original code in the measures does not contain any iteration, there is a 
hidden iteration introduced by ADDCOLUMNS during the evaluation of the rows. Moreover, note that 
this iteration is not present during the evaluation of the grand total rows. For all practical purposes, 
they are two different steps of execution with different semantics.

Now let us focus on what happens during the evaluation of SumAllSelected for the individual rows. 
The outer CALCULATETABLE sets the original filter context to A or C. Then ADDCOLUMNS starts to 
iterate over the values of Table[Col], which contains A and C. When it is on A, it performs context 
transition, because it is calling a measure (SumAllSelected). This context transition creates two filters:

■■ The outer one, containing the currently iterated table: (A, C).

■■ The inner one, containing the currently iterated row: (A).

At this point, DAX evaluates SumAllSelected which again executes CALCULATE, this time invoking 
it with ALLSELECTED. ALLSELECTED removes the last filter context generated from context transition, 
which is the inner one, making the outer one visible. Because the outer filter context contains (A, C), it 
computes the sum of A and C together, generating the visual total, as expected.

At the grand total level, on the other hand, there is no filter context generated by  context 
 transition. Therefore, ALLSELECTED has nothing to do and it is ignored. Because the outer 
 CALCULATETABLE is still in effect, the filter context still contains (A, C), generating the visual total.

You are already familiar with most of these evaluation steps. Probably the only new  information 
you are gathering at this point is the presence of the hidden row context generated during the 
 iteration over the fields you put on rows and columns of the pivot table. You do not really need 
to care about that row context in most scenarios, because the engine generates it and quickly 
 transforms it into a filter context. Thus, from inside your code, you cannot access it. ALLSELECTED is 
the only function that interacts with it and this is the reason we are speaking in so much detail about 
the evaluation process of a pivot table here.

What is important to learn and to understand is that ALLSELECTED shows the visual totals because 
of the specific format of the query executed by the engine when it resolves a query coming from a 
pivot table. However, ALLSELECTED by itself has nothing to do with visual totals.
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So far, it seems as if we are providing a complex explanation to a very simple behavior. To some 
extent this is true because you will probably use ALLSELECTED for a long time without ever having to 
recall this theory. Nevertheless, look at what happens if you write a measure that contains an iteration 
and another context transition, as in the following measure:

[SumxAllSelected] := SUMX ( Table, [SumAllSelected] )

It is worth remembering the code of SumAllSelected:

[SumAllSelected] := 
CALCULATE ( 
    SUM ( Table[Val] ),  
    ALLSELECTED ( )  
)

At this point, the scenario is much more complex. We have the hidden iteration created by the 
pivot table (in reality, by the MDX code generated by the pivot table), and inside it, another iteration 
created by SUMX that performs an additional context transition. The result is surprising; as you can 
see in Figure 10-4.

FIGURE 10-4 Iterating and performing ALLSELECTED later produces numbers that are hard to explain.

You probably would expect SumxAllSelected to return 4 in each inner row of the pivot table and 8 
at the grand total, because it iterates over the table (which shows one row in the inner cells and two 
rows at the grand total) and sums a measure of which we already know the result: It should be 4.  
Surprisingly, the value at the grand total makes sense, whereas the values in the inner cells seem 
completely wrong. Let us examine what happened by expanding the code. Since we are interested in 
only the last measure, SumxAllSelected, we are using a somewhat simplified version of the code, which 
ignores other measures:
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EVALUATE 
CALCULATETABLE ( 
    ADDCOLUMNS ( 
        VALUES ( Table[Col] ), 
        "SumxAllSelected", [SumxAllSelected] 
    ), 
    OR ( Table[Col] = "A", Table[Col] = "C" ) 
) 
 
EVALUATE 
CALCULATETABLE ( 
    ROW ( 
        "Grand Total SumxAllSelected", [SumxAllSelected] 
    ), 
    OR ( Table[Col] = "A", Table[Col] = "C" ) 
)

In order to understand it even better, let us fully expand the code of SumxAllSelected to its 
 definition, focusing on the portion that computes the individual rows:

EVALUATE 
CALCULATETABLE ( 
    ADDCOLUMNS ( 
        VALUES ( Table[Col] ), 
        "SumxAllSelected",  
        CALCULATE ( 
            SUMX ( 
                Table, 
                CALCULATE ( SUM ( Table[Val] ), ALLSELECTED () ) 
            ) 
        ) 
    ), 
    OR ( Table[Col] = "A", Table[Col] = "C" ) 
)

With the fully expanded code, it is now more evident that the innermost CALCULATE is executed 
when there are two nested row contexts: The first one generated by the outer ADDCOLUMNS and 
the inner one generated by SUMX. In reality, the outer one has already been converted into a filter 
context by CALCULATE when the inner row context starts.
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In Table 10.1 you can see the set of filter contexts generated by the various calls right before the 
innermost CALCULATE is executed:

TABLE 10-1 Set of filter contexts generated during the evaluation of the pivot table.

Function Call Filter Context Notes

CALCULATETABLE (A, C)

CALCULATE when iterating ADDCOLUMNS (A, C) Table

(A) Row

CALCULATE when iterating SUMX (A) Table

(A) Row

In this scenario, the innermost CALCULATE invokes ALLSELECTED, which removes the last filter 
 context generated by context transition. As you can easily check, this time ALLSELECTED does not 
 restore the original filter context. Instead, it restores a context containing only A. This is the reason 
why the pivot table shows the value for A or C in the value rows. Moreover, it is worth noting that 
the filter restored is not the original one, because the iteration started in the measure hides the row 
context generated by the pivot table.

At the grand total level, things are different. In fact, the fully expanded code of the grand total 
looks like the following:

EVALUATE 
CALCULATETABLE ( 
    ROW ( 
        "Grand Total SumxAllSelected",  
        CALCULATE ( 
            SUMX ( 
                Table, 
                CALCULATE ( SUM ( Table[Val] ), ALLSELECTED () ) 
            ) 
        ) 
    ), 
    OR ( Table[Col] = "A", Table[Col] = "C" ) 
)

In this case, the only iteration is the one introduced by SUMX. In Table 10-2 you can see the flow of 
contexts that, for the grand total, is much easier:

TABLE 10-2 Set of filter contexts generated during the evaluation of the pivot table.

Function Call Filter Context Notes

CALCULATETABLE (A, C)

CALCULATE when iterating SUMX (A, C) Table

(A) Row
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The innermost CALCULATE performs context transition, removing the row (either A or C) and 
 restoring the table over which SUMX is iterating, namely a table containing both A and C. In fact, at 
the grand total, you see a value of 8, which is 2 times 4.

 Before leaving this topic, it is worth showing another example where a naïve interpretation of 
ALLSELECTED fails in explaining how DAX computes numbers. Look at this measure, which is basically 
a variation of the previous one where, instead of iterating Table, we iterate ALL ( Table ):

SumxAllSelectedOnAll :=  
SUMX (  
    ALL ( Table ), 

    CALCULATE ( 
        SUM ( Table[Val] ),  
        ALLSELECTED ( )  
    ) 
)

This time, context transition generated by CALCULATE will put on the filter context its two  filters: 
the outer is ALL ( Table ) and the inner is the currently iterated row over ALL ( Table ). What is  relevant 
is the fact that the outer filter is now different from the original filter introduced by the slicer. 
Thus, ALLSELECTED will not restore the filter generated by the slicer. Instead, it will restore a filter 
 containing all the rows, summing the value of all the rows, even those originally hidden by the slicer. 
You can see the result in Figure 10-5.

FIGURE 10-5 Iterating and performing ALLSELECTED later produces numbers that are difficult to explain.

Let us review this in more detail. The code for the rows of the pivot table is the following:

EVALUATE 
CALCULATETABLE ( 
    ADDCOLUMNS ( 
        VALUES ( Table[Col] ), 
        "SumxAllSelectedOnAll",  
        CALCULATE ( 
            SUMX ( 
                ALL ( Table ),  
                CALCULATE ( SUM ( Table[Val] ), ALLSELECTED () ) 
            ) 
        ) 
    ), 
    OR ( Table[Col] = "A", Table[Col] = "C" ) 
)
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Table 10-3 shows the set of filter contexts generated by the various calls right before the innermost 
CALCULATE is executed:

TABLE 10-3 Set of filter contexts generated during the evaluation of the pivot table.

Function Call Filter Context Notes

CALCULATETABLE (A, C)

CALCULATE when iterating ADDCOLUMNS (A, C) Table

(A) Row

CALCULATE when iterating SUMX ALL (Table) Table
(A) Row

When ALLSELECTED removes the last filter context containing A, it exposes the previous one, 
which is filtering ALL (Table). Thus, the innermost SUM computes the sum of Table[Val] for all the 
rows, yielding a result of 6. This happens three times, because the iteration is running over ALL (Table) 
and the result is 18, which is 3 times (1+2+3).

As you see, until you understand exactly how ALLSELECTED works, it is nearly impossible to 
 understand how DAX computes its values. ALLSELECTED works in an intuitive way only when it is used 
as a filter in CALCULATE for a measure that is used directly inside a pivot table. However, as soon as 
you start mixing iterations and context transitions, then deeper context transitions are generated and 
ALLSELECTED becomes very complex to follow and understand, up to a point where numbers seem to 
make no sense at all. ALLSELECTED by itself is not a complex function. What is complex is the fact that 
we tend to think that ALLSELECTED restores the original filter context of the pivot table. Once you 
forget about this and you think of ALLSELECTED as restoring the outer filter of the last context transi-
tion, numbers start to make sense again.

Understanding KEEPFILTERS

In the ranking of complex DAX functions, KEEPFILTERS has a very good position. In fact, its behavior 
is somewhat easy to learn and remember, but it is it is difficult to know precisely when to use it and 
what the result of using it will be. As it happened with ALLSELECTED, KEEPFILTERS requires you to 
understand exactly its semantics before you can safely use it. And, as it happened with ALLSELECTED, 
we use KEEPFILTERS to expose some more details about the internals of filter contexts.

The purpose of KEEPFILTERS is a very simple one: It combines with an AND the result of a new  
filter context with the previous one. An example helps to understand it better. In the pivot table in 
Figure 10-6, these are the formula definitions:
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[Sales Amount] := 
SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
 
[RedSalesCalc] :=  
CALCULATE (  
    [Sales Amount],  
    Product[Color] = "Red"  
) 
 
[RedSalesValues] :=  
CALCULATE (  
    [Sales Amount],  
    Product[Color] = "Red",  
    VALUES ( Product[Color] )  
) 
 
[RedSalesKeepFilter] :=  
CALCULATE (  
    [Sales Amount],  
    KEEPFILTERS ( Product[Color] = "Red" ) 
)

 
FIGURE 10-6 In this pivot table, you can see that the last two measures compute the same value.

As you can see, RedSalesCalc always computes sales of red products, while RedSalesValues and 
RedSalesKeepFilter compute the value of red sales only when Red is already present in the filter 
 context. However, each of them uses a different technique:

■■ RedSalesValues explicitly uses the VALUES function to retrieve the active colors that 
 CALCULATE merges in AND with the condition on Product[Color].
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■■ RedSalesKeepFilter uses the KEEPFILTER function. KEEPFILTERS evaluates its inner condition and 
then puts the result in a logical AND with the previous filter context.

Although they look very similar and, in this example, they produce the same result, the two 
 techniques are different:

■■ KEEPFILTERS is not a table function: Its result is not a table. In fact, you can use KEEPFILTERS 
only in CALCULATE or as a top-level function in iterations (a feature that we will see shortly).

■■ KEEPFILTERS puts the inner condition in AND with the previous filter context as a whole, 
whereas VALUES put the AND with a single column only. This fact is not evident in the 
 previous example; it will become clearer with the following examples.

To appreciate the difference between using VALUES and using KEEPFILTERS, you need to mix, in 
the same query, context transition and complex filters. Imagine that you want to compute a measure 
that shows the average monthly sales. Such a measure needs to iterate over the years and months 
and, for each individual month, compute the total sales. You then aggregate the partial results using a 
standard AVERAGEX function, as in the following example:

[AvgMonthlySales] := 
AVERAGEX ( 
    CROSSJOIN (  
        VALUES ( 'Date'[Calendar Year] ), 
        VALUES ( 'Date'[Month] ) 
    ), 
    [Sales Amount] 
)

If you use this measure in a simple report, showing the average sales over the years, the result is 
correct, as you can see in Figure 10-7. 

Note Please note that, for educational purposes and to make this example clearer, we 
modified the hierarchy Calendar on the Date table using the month name (without the 
year) as the second level. Technically, this modification made the hierarchy an unnatural 
one, resulting in a hierarchy that does not follow best practices, but we needed it to better 
show the effects of KEEPFILTERS.
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FIGURE 10-7 The average of monthly sales is computed correctly for the years and the grand total in this pivot 
table.

In order to explain why KEEPFILTERS is useful, you need to create a complex filter on the  calendar. 
In doing that, you will see that the formula will stop computing the correct values. A complex filter 
(also known as an “arbitrarily shaped set,” which we will introduce later in this chapter) is a filter 
 containing columns that are not independently filtered.

The set visible in the report shows all the months of 2007 and 2008 and you can express it as:

FILTER ( 
    CROSSJOIN (  
        VALUES ( 'Date'[Calendar Year] ), 
        VALUES ( 'Date'[Month] ) 
    ), 
    OR ( 
        'Date'[Calendar Year] = 2007, 
        'Date'[Calendar Year] = 2008 
    ) 
)
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The only condition is on Calendar Year, so this is not a complex filter. You can create a complex 
filter by selecting the last two months of 2007 and the first two months of 2008, using, for example, 
the filter on the hierarchy, as you can see in Figure 10-8.

FIGURE 10-8 By selecting multiple items, you can create a complex filter.

This filter is no longer a simple one. In fact, you can write it only using a condition that includes 
both the year and the month in the same expression, as in:

FILTER ( 
    CROSSJOIN (  
        VALUES ( 'Date'[Calendar Year] ), 
        VALUES ( 'Date'[Month] ) 
    ), 
    OR ( 
        OR ( 
            'Date'[Calendar Year] = 2007 && 'Date'[Month] = "November", 
            'Date'[Calendar Year] = 2007 && 'Date'[Month] = "December" 
        ), 
        OR ( 
            'Date'[Calendar Year] = 2008 && 'Date'[Month] = "January", 
            'Date'[Calendar Year] = 2008 && 'Date'[Month] = "February" 
        ) 
    ) 
)
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In other words, an arbitrarily shaped filter is a filter that expresses a relationship among the 
 columns involved in the filter itself. These kinds of filters are not an issue by themselves; DAX can 
handle them smoothly. The problem arises when you combine them with other filters, as you can see 
in Figure 10-9, where we show the AvgMonthlySales projected on the filter shown in Figure 10-8.

FIGURE 10-9 The Grand Total is wrong, showing a value that is not the correct monthly average.

As you can see, the total on the column is wrong (it is worth computing the average  manually 
because you will then see that the total shown is wrong). Before solving the issue, we need to 
 understand better what is happening. At the column grand total, there are two years and four months 
visible in the filter context. Because of the relationships stated in the condition, only two months of 
each year are present, but if you look at the individual columns, you have the following values:

■■ Year: 2007, 2008

■■ Month: January, February, November, December

AVERAGEX iterates the CROSSJOIN of the two columns. Thus, CROSSJOIN generates eight pairs, 
including January and February of 2007 and November and December of 2008, which were excluded 
by the previous condition. Finally, context transition introduced by CALCULATE replaces the filter on 
both year and month, resulting in the evaluation of the average over the whole eight months, instead 
of the original four.

To put it differently, we started with a complex filter defining an implicit relationship between 
the columns, and because we used CROSSJOIN and CALCULATE in the measure, we ended with a 
simple filter that removed the relationship and restored a simple filter. Unfortunately, in doing so, 
we  computed the wrong value. We call this scenario complex filter reduction. It is one of the most 
 dangerous causes of errors in DAX code.

In such a scenario, KEEPFILTERS is the solution. KEEPFILTERS modifies the semantics of context 
manipulation of CALCULATE. The normal behavior of CALCULATE is to replace existing filters. KEEP-
FILTERS instructs CALCULATE not to replace the filter. Instead, it will put the new filter in a logical 
AND with the previous one. Therefore, if the previous filter contained a relationship between some 
columns, that relationship will remain active.

In the example, if you write the AvgMonthlySales leveraging KEEPFILTERS, the result will be the 
 correct one. So the correct formula would be this one:
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[AvgMonthlySales] := 
AVERAGEX ( 
    KEEPFILTERS ( 

        CROSSJOIN (  
            VALUES ( 'Date'[Calendar Year] ), 
            VALUES ( 'Date'[Month] ) 
        ) 
    ), 
    [Sales Amount] 
)

By using this formula, the result is the expected one, as you can see in Figure 10-10.

 
FIGURE 10-10 Using KEEPFILTERS, AVERAGEX computes the correct result.

The presence of KEEPFILTERS forces the CROSSJOIN to put its result in AND with the previous 
filter. Thus, CROSSJOIN still generates eight rows, but then these rows are further filtered using the 
 previous filter context.

At this point, you have learned the difference between KEEPFILTERS and VALUES. VALUES, used 
inside CALCULATE or as a parameter of a CROSSJOIN in a FILTER statement, works on a single column 
only. So it is not useful when the filter you want to preserve is composed of many columns with 
a  relationship defined in an arbitrarily shaped set. KEEPFILTERS, on the other hand, is much more 
 powerful.

It is not easy to decide when to use KEEPFILTERS. The reason is that your measure might behave in 
the correct way, but when used inside a complex filter, it starts to compute wrong values.  Generally, 
you do not know in advance how your code is used in later reports, which is a major issue when 
 authoring a formula.

When deciding whether it is worthwhile to think about adding a KEEPFILTERS in your code, here 
are two of the evidences you need to pay attention to:

■■ You are using iterations and leveraging context transition inside your formula.

■■ The user is likely to use the same columns you iterate as a complex filter.
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 If your formula does not include iterations, and most important, context transition at all, then 
KEEPFILTERS is not necessary. Subsequently, when having the option of using an iteration of a normal 
aggregator, it is always better to use the aggregator, to avoid the danger of complex fi lter reduction. 

 Beware that users might introduce complex fi lters in many different ways, and most of the time, 
they are not aware of the problem. For example, Microsoft Excel includes, among the many fi ltering 
options, a “Top 10 fi lter” that lets the user select the top N elements from a list of values, sorting the 
list with a measure. 

 In Figure 10-11, you can see a pivot table where the user selected the top three product names 
sorted by AvgMonthlySales. 

 Because the year is on the rows, the user expects to see three products each year (the top three), 
while the pivot table shows four products. The reason is that fi lter reduction changed the fi lter under 
which it computes the AvgMonthlySales. 

 In this case, the relationship stored in the condition is similar to the TOPN operation (the MDX 
function used is TOPCOUNT, which corresponds to the TOPN function in DAX). Such operation 
 retrieves some products for each year (only the top three of that given year). It stores a relationship 
between years and products, and this relationship is destroyed by the fi lter reduction. 

  
 FIGURE 10-11 TOPN fi ltering frequently creates complex fi lters that lead to wrong results after fi lter reduction. 

 For the same pivot table, if you use the correct formula for AvgMonthlySales (the one using 
 KEEPFILTERS), the result is the expected one, as you can see in Figure 10-12. 
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FIGURE 10-12 Using KEEPFILTERS the report shows, correctly, three products for each year.

It is finally helpful to note that KEEPFILTERS is useful not only in some measures, as we have 
 demonstrated, but also in queries. As an example, look at the following query:

EVALUATE 
FILTER ( 
    CALCULATETABLE ( 
        ADDCOLUMNS ( 
            CROSSJOIN ( 

                VALUES ( 'Date'[Calendar Year] ), 

                VALUES ( Product[Product Name] ) 

            ), 
            "Sales", [Sales Amount] 
        ), 
        GENERATE ( 
            VALUES ( 'Date'[Calendar Year] ), 
            TOPN ( 3, VALUES ( Product[Product Name] ), [Sales Amount] ) 
        ) 
    ), 
    NOT ( ISBLANK ( [Sales] ) ) 
) 
ORDER BY 'Date'[Calendar Year], 'Product'[Product Name]

You probably would not want to write a query like this, because there is a much better way of 
expressing it, by making the GENERATE function as a parameter of ADDCOLUMNS, as in the following 
code:
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EVALUATE 
FILTER ( 
    CALCULATETABLE ( 
        ADDCOLUMNS ( 
            GENERATE ( 
                VALUES ( 'Date'[Calendar Year] ), 
                TOPN ( 3, VALUES ( Product[Product Name] ), [Sales Amount] ) 
            ), 
            "Sales", [Sales Amount] 
        ) 
    ), 
    NOT ( ISBLANK ( [Sales] ) ) 
) 
ORDER BY 'Date'[Calendar Year], Product[Product Name]

Nevertheless, queries like the more complex one shown previously are very common when 
they are generated by code generators and other automated tools, because they clearly separate 
the  filtering from the projection over rows and columns. In such a case, you might encounter filter 
 reduction because the inner ADDCOLUMNS iterates over the same columns which are filtered by 
the GENERATE used as a parameter of CALCULATE. As a result, you will not retrieve the top three 
 products of each year but, again, a larger list of products.

In such a case, the correct formulation of the query is the following:

EVALUATE 
FILTER ( 
    CALCULATETABLE ( 
        ADDCOLUMNS ( 
            KEEPFILTERS ( 

                CROSSJOIN ( 
                    VALUES ( 'Date'[Calendar Year] ), 
                    VALUES ( Product[Product Name] ) 
                ) 
            ), 
            "Sales", [Sales Amount] 
        ), 
        GENERATE ( 
            VALUES ( 'Date'[Calendar Year] ), 
            TOPN ( 3, VALUES ( Product[Product Name] ), [Sales Amount] ) 
        ) 
    ), 
    NOT ( ISBLANK ( [Sales] ) ) 
) 
ORDER BY 'Date'[Calendar Year], 'Product'[Product Name]

In this case, KEEPFILTERS has to operate on CROSSJOIN to retrieve, for each year, only the top 
three products previously selected by GENERATE. It is important to note that, in this specific case, 
iteration does not happen inside the measure but in ADDCOLUMNS.
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Understanding AutoExists

AutoExists is a feature of the MDX language which restricts the results of a query to only existing 
combinations of attributes. It is a relevant topic in a book about DAX because you can use DAX to 
create a Tabular solution that users will query, for example, using a pivot table. Excel uses MDX to 
query the model. Thus, even if you authored all of your code with DAX, you still need to understand 
the  behavior of the model when it resolves MDX queries.

In order to understand AutoExists, look at the data model in Figure 10-13.

FIGURE 10-13 In this model, product category and subcategory are both normalized and denormalized.

In the model, there is the usual chain of relationships between products, subcategories, and 
 categories. Using the RELATED function, we also added the denormalized category and subcategory 
in the Product table.

Based on this model, you can easily build two pivot tables that show sales sliced by category and 
subcategory. At first sight, the two results look identical, as you can see in Figure 10-14.

 
FIGURE 10-14 Browsing normalized and denormalized columns provides the same experience.

In reality, DAX computes the two pivot tables in two different ways and the identical result is the 
consequence of two different features that, in standard queries, provide the same result. They are 
AutoExists and empty row removal. AutoExists is a server feature, while empty row removal is a pivot 
table feature. Let us analyze them in more detail.

■■ AutoExists is a feature of the MDX query engine that avoids calculation over nonexisting sets. 
In fact, while it is meaningful to compute the amount of sales for the pair (Audio, MP4&MP3), 
it makes no sense to compute the same value for the pair (Audio, Camcorders), because the 
subcategory Camcorders does not belong to the category Audio. Thus, because there is no 
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product that is at the same time, both Camcorders and  Audio, DAX can avoid computing this 
value at all, reducing the overall execution time.

■■ Empty row removal, on the other hand, is a feature of the pivot table that automatically hides rows 
if all the measures are BLANK. For example, if there was a product that never sold a single item, 
then the pivot table would hide it, because that row would not contain any useful information.

It is important to highlight that AutoExists is a server feature, whereas empty row removal is a 
client feature of the pivot table. You can control the behavior of empty row removal by selecting the 
“Show items with no data on rows” check box in the pivot table options; in this way you disable blank 
lines removal and the two pivot tables will look very different, as you can see in Figure 10-15.

 
FIGURE 10-15 If you disable empty row removal, this makes the two pivot tables show different results.

If you disable empty row removal, you can see that the normalized model performs the calculation 
of sales even for nonexisting pairs of category and subcategory. In the denormalized model, on the 
other hand, calculation happens only for existing pairs. The reason why the denormalized model be-
haves in a different way is AutoExists. In fact, because the two columns belong to the same table, the 
engine performs a first step in which it determines existing combinations and only later it computes 
the effective values. In DAX, you would notice the same difference by using these two queries:

EVALUATE  
ADDCOLUMNS ( 
    CROSSJOIN ( 
        VALUES ( 'Product Category'[Category] ), 
        VALUES ( 'Product Subcategory'[Subcategory] ) 
    ), 
    "Sales Amount", [Sales Amount] 
) 
 
EVALUATE  
ADDCOLUMNS ( 
    SUMMARIZE ( 
        Sales, 
        'Product Category'[Category], 
        'Product Subcategory'[Subcategory] 
    ), 
    "Sales Amount", [Sales Amount] 
)
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The first one returns nonexisting pairs of category and subcategory, while the second one returns 
only existing combinations. 

Up to this point, the difference looks subtle, but not relevant. In reality, it becomes a very 
 important one as soon as you start to write measures that modify the filter context. Imagine, for 
example, that you write a measure to compute sales of the Audio category, as in:

[Audio Sales] := 
CALCULATE (  
    [Sales Amount],  
    'Product Category'[Category] = "Audio"  
)

Clearly, the formulas will be slightly different in the two models, but the logic remains the same.  
Using this measure, the pivot table yields some surprising results, as you can appreciate in Figure 10-16.

FIGURE 10-16 The Audio Sales measure shows strange results in the normalized data model.

You can see in the denormalized model that audio sales are visible only under the Audio  category. 
On the left, in the normalized model, the pivot table shows audio sales under the Cameras and 
Camcorders category. This time, even with empty row removal turned on, the two results are very 
different.

The reason is not hard to understand. The Audio Sales measure replaces the filter on the  category 
with the fixed value “Audio.” In the denormalized model, this has no effect on the Cameras and 
 Camcorders category because there, DAX computes values only for subcategories of Cameras. 
 However, in the normalized model, DAX evaluates the measure for all the combinations of category 
and subcategory, regardless of their existence. When DAX computes the value for the pair (Cameras 
and Camcorders, Bluetooth Headphones), the measure replaces the category with Audio, resulting in 
(Audio, Bluetooth Headphones), which yields to a value, which is, in turn, shown in the pivot table.
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AutoExists, by definition, works only with sets of columns from the same table. This is the reason 
why the denormalized model works as expected, while the normalized one does not.

Understanding expanded tables

As you have seen by reading all the previous sections, understanding evaluation contexts, context 
propagation, context transition, and filter reduction are very important skills for you to acquire in 
order to understand exactly how DAX evaluates expressions.

In all the previous descriptions, we gave a somewhat simplified vision of what evaluation contexts 
are. In fact, there was always some sort of disclaimer saying that, later in the book, you would have 
learned all the internals of DAX evaluation contexts. That moment has arrived: You are about to begin 
learning the most hidden secrets of evaluation contexts.

Before showing you the complete picture, let us recall what you have learned so far about 
 evaluation contexts:

■■ There are two contexts: row context and filter context.

■■ Row context does not propagate through relationships.

■■ Row context always contains a single row and it is introduced by calculated columns or by 
iterations

■■ Filter context propagates as indicated by the relationship definition.

■■ Filter context can operate either on a table or on a column. If working on a column, it filters 
that column only. When working with a table, it filters all the columns of the table.

All the previous statements are correct, and you learned them by reading this far in the book. 
 Nevertheless, in order to complete your evaluation context understanding, you need to understand 
the foundation of evaluation contexts and DAX, which is the concept of expanded tables.

In DAX, every table has a corresponding expanded version. The expanded version of a table 
contains all the columns of the original table, plus all the columns of tables that can filter the original 
table through many-to-one relationships.
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For example, consider the model in Figure 10-17.

FIGURE 10-17 You use this simple model to learn the concept of expanded tables.

Sales has a many-to-one relationship with Product, so the expanded version of Sales contains all 
the columns of Product. Repeating the process starting from Product, you can easily see that the 
expanded version of Sales contains the entire data model. The expanded version of Product, on the 
other hand, contains all the columns of Product, Product Subcategory, and Product Category.

The Date table requires a bit more attention. In fact, it can be filtered by Sales because the 
relationship that links them is bidirectional. Even if the relationship is bidirectional, it is not a many-
to-one: it is a one-to-many. The expanded version of Date contains only Date itself, even if Date can 
be filtered by Sales, Product, Product Subcategory, and Product Category. When filtering happens 
because a relationship is bidirectional, we do not speak about expanded columns; instead, we speak 
about filtering columns. For the sake of this description, filtering columns and expanded columns 
behave in the same way even if they are different. Thus, for the moment, we keep them in the same 
basket and only at the end of this section will we discuss in greater detail the difference between 
filtering columns and expanded ones.

When repeating the same exercise for the other tables in the data model, you create the expanded 
tables shown in Table 10-4.

TABLE 10-4 Expanded versions of the tables.

Table Expanded Version

Date Date. Plus the whole model as filtering columns

Sales The whole model

Product Product, Product Subcategory, Product Category

Product Subcategory Product Subcategory, Product Category

Product Category Product Category
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Expanded tables are a useful concept because they show, for each table, the list of columns that 
propagate their filter context to the original table. If you take, for example, Product, you can easily check 
that if you filter any of the columns in its expanded version, then the engine will filter Product, too.

Most important, is the fact that DAX uses expanded tables to place any filter in the filter context. 
To understand it better, visualize the expanded tables on a chart, which you can see in Figure 10-18.

 
FIGURE 10-18 Visualizing the data model on a chart makes it easier to look at expanded tables.

The chart lists all the columns in the model on the rows and each table on the columns. We 
 colored the cells to indicate the three kinds of columns inside:

■■ Native columns are the columns that originally belong to the table.

■■ Derived columns are the columns added to the expanded table following relationships.

■■ Filtering columns are the columns that can filter the table, even if they do not belong to the 
expanded version of the table.

When you put a filter on a column, you can color the row containing the column, to visually 
 indicate which tables are filtered. If you write the following:

[RedSales] :=  
CALCULATE (  
    SUM ( Sales[Quantity] ),  
    Product[Color] = "Red"  
)

Then because the filter is on the Color column, the corresponding chart will be the one visible in 
Figure 10-19.
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FIGURE 10-19 Coloring the line of a column makes it evident which tables are filtered.

The filter on Color is a column filter, that is, a filter that operates on a single column. So we can 
now state the general rule for a column filter: “A filter context placed on a column operates on all the 
expanded tables that contain it.” As you can see, this rule is the same as the one we stated earlier, when 
we were still speaking about tables and relationships. The filter context does not really “propagate” 
through relationships. It applies its effect to all the tables that contain the column, because it works on 
expanded tables.

Note Please note that the filter on Color propagates to Date, too, even if—technically— 
Color does not belong to the expanded version of Date. This is the effect of bidirectional 
filtering working. It is important to note that the filter on Color reaches Date through a 
filtering column, not through the expanded tables. Internally, DAX injects a specific  filtering 
code to make bidirectional relationships work, whereas filtering on expanded tables 
 happens automatically based on the way the engine works. As we said, the difference is 
only internal, yet it is important to point it out.

You already know that you can create both column filters, similar to the one you have seen previ-
ously, and table filters, by using the FILTER function passing a whole table to it. How do table filters 
work? They work on expanded tables, too. In fact, whenever you use a table as a filter condition in 
CALCULATE, you are—in reality—filtering the expanded table.

In order to understand it, look at these two measure definitions:

[NumOfCategories] := 
    COUNTROWS ( 'Product Category') 
 
[NumOfCategoriesFilteredByProduct] := 
    CALCULATE ( COUNTROWS ( 'Product Category' ), Product )
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The first measure computes the number of categories. The second one computes the number of 
categories, but before doing so, it applies a filter context that contains the Product table (as filtered in the 
context, of course). The result is visible in Figure 10-20, where we used the product color on the rows.

FIGURE 10-20 This pivot table shows the effect of applying a table filter in CALCULATE.

The first column, NumOfCategories, always shows the same number. The reason is that we used 
the product color on the rows and, if you look at the expanded table diagram in Figure 10-18, the 
Product Category table does not contain the Color column. Thus, filtering the color has no effect on 
the number of categories visible in the filter context. However, when you put Product on the filter 
context, you are using the expanded version of Product. Because the expanded version of Product 
contains all the columns of the Product Subcategory, the number of visible categories will no longer 
be eight but, instead, the number of categories containing products of that specific color.

Using a table as a filter parameter in CALCULATE filters all the columns in the expanded version of 
the table. As a result, there is a big difference between the following two measures:

[NumOfCategoriesFilteredByColor] := 
CALCULATE (  
    COUNTROWS ( 'Product Category' ),  
    FILTER (  
        ALL ( Product[Color] ),  

        Product[Color] = "Green"  
    ) 
) 
 
[NumOfCategoriesFilteredByProduct] := 
CALCULATE (  
    COUNTROWS ( 'Product Category' ),  
    FILTER (  
        ALL ( Product ),  

        Product[Color] = "Green"  
    ) 
)
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Although the two measures look nearly identical, they are not. The first one places a filter on the 
Color column only and, because of this, its filtering effect is isolated to the expanded tables contain-
ing the Product[Color] column. Therefore, it has no effect on the Product Category table. The second 
one, however, places a filter on the entire Product expanded table. Because the expanded Product 
table contains the columns of Product Category, it turns out that the second measure computes 
only the number of categories containing green products, while the first one always shows the total 
 number of categories, as you can better appreciate in Figure 10-21.

FIGURE 10-21 This pivot table shows the effect of applying a table filter in CALCULATE.

Let us look a bit more into the difference between derived columns and filtering ones. We said 
earlier that the expanded version of Date, which has a bidirectional relationship with Sales, does not 
contain the columns of Sales. When you filter Date, you obtain a filter on Sales because the expanded 
version of Sales contains Date, not vice versa. This last sentence is very important, so we want to 
 reinforce the concept by stating it again: Filtering Date filters Sales, even if the expanded version of 
Date does not contain Sales.

Nevertheless, because Date has a bidirectional relationship with Sales, and the expanded  version 
of Sales contains the entire data model, we say that Date has a filtering set that represents the 
whole model. When you filter any column in the model, because you are filtering one of the filtering 
 columns of Date, you are filtering Date, too. This is the reason why, if you define a simple measure 
such as the following:

[NumOfDates] := COUNTROWS ( 'Date' )
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You can use it in a pivot table, filtering by color, and you obtain, for each color, the number of 
dates where that color was sold, as you can see in Figure 10-22.

FIGURE 10-22 The filter on color is propagated to Date because of the bidirectional relationship.

The filtering happens because the color belongs to the filtering columns of Date. Nevertheless, the 
 expanded version of Date contains neither the Color column nor any other column of Product. You can 
verify this if you create a set of measures that count the number of products using different tables as filters:

[NumOfProducts] := COUNTROWS ( 'Product' ) 
 
[NumOfProductsFilteredByDate] := CALCULATE ( COUNTROWS ( 'Product' ), 'Date' ) 
 
[NumOfProductsFilteredBySales] := CALCULATE ( COUNTROWS ( 'Product' ), Sales )

NumOfProductsFilteredByDate uses Date as a filter argument in CALCULATE, which is the expanded 
version of Date, whereas NumOfProductsFilteredBySales uses the expanded version of Sales. As you 
can easily check in Figure 10-23, the filter reaches Products only when you use Sales in the filter. This 
is because the expanded version of Date does not contain columns of Product, whereas the expanded 
version of Sales does.
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FIGURE 10-23 Only the last column shows the number of products sold in the period, because it uses the 
 expanded version of Sales. The expanded version of Date does not contain any Product columns.

Expanded tables are a powerful tool to aid you in understanding the direction of filter context 
propagation. In fact, they are the real foundation of the theory of filter context propagation in DAX. 
We needed some time to introduce them, because their use is not very intuitive and we preferred to 
introduce other concepts before it to help you feel comfortable with the language. Once you master 
the use of expanded tables, you will find it very easy to understand how DAX works.

ALLEXCEPT with expanded tables

You know that ALLEXCEPT performs ALL on all the columns of a table except for the ones 
you pass as a parameter. What is less evident is the fact that you can use ALLEXCEPT with 
the expanded table, too. For example, the following measure works just fine:

[SalesOfSameColorAndCategory] := 
CALCULATETABLE ( 
    SUMX (  
        Sales, 
        Sales[Quantity] * Sales[UnitPrice] 
    ), 
    ALLEXCEPT ( Product, Product[Color], 'Product Category'[Category] ) 
)

In fact, the expanded version of Product contains all the columns of Product Category, too. 
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You can also specify one entire table instead of all the columns of a table that is part of the 
expanded table. For example, the following two expressions of ALLEXCEPT are equivalent:

ALLEXCEPT ( Product, 'Product Category' ) 
ALLEXCEPT ( Product, 'Product Category'[ProductCategoryKey], 'Product Category'[Category] )

The tables you specify in the second or following arguments are excluded from the ALL 
condition and have to be part of the expanded table that you specify in the first argument.

Difference between table expansion and filtering
As we said earlier, table expansion happens only from the many-side to the one-side of a  relationship. 
Thus, even if Product had a bidirectional relationship with Product Subcategories, the expanded 
 version of Product contains subcategories, whereas the expanded version of Product Subcategories 
does not contain Product.

The DAX engine injects filtering code in the expressions (as you can do using the CROSSFILTER 
function), in order to make bidirectional filtering work as if the expansion happened in both ways. 
Thus, in most cases, your code will work just fine as if table expansion happened in both directions. 
For this reason, you have seen in Figures 10-17 and 10-18 that filtering columns are different from 
derived columns. The filtering columns are those that apply filters, thanks to this behavior of the DAX 
engine, and not because of the expanded table (which they are not part of).

However, the difference becomes important with the use of SUMMARIZE or RELATED. If, for ex-
ample, you use SUMMARIZE to perform a grouping of a table based on another one, you have to use 
one of the columns of the expanded version of the base table (and you cannot use filtering columns).

For instance, the following SUMMARIZE statement works very well:

EVALUATE 
SUMMARIZE ( Product, 'Product Subcategory'[Subcategory] )

Whereas the next one, which tries to summarize subcategories based on product color, does not:

EVALUATE 
SUMMARIZE ( 'Product Subcategory', Product[Color] )

The error you get as a result is “The column ‘Color’ specified in the ‘SUMMARIZE’ function was 
not found in the input table,” meaning that the expanded version of Product Subcategory does not 
contain Product[Color]. Similarly to SUMMARIZE, RELATED works only with columns that belong to the 
expanded table.
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This is more evident if you try to use one of the filtering columns, which are not part of the 
 expanded version of the table. For example, you cannot group the Date table by using columns of 
other tables, even if these columns are filtering columns:

EVALUATE 
SUMMARIZE ( Date, Product[Color] )

There is only a special case where table expansion happens in both directions, which is a relation-
ship defined as one to one. If a relationship is a 1:1 relationship, then both tables are expanded one 
into the other. This is because a one-to-one relationship makes the two tables semantically identical: 
Each row in one table has a direct relationship with a single row in the other table. So it is correct to 
think of the two tables as being a single one, split into two sets of columns.

Redefining the filter context

Now that you are confident in using expanded tables and the way they work in DAX, it is time to 
perform a deeper analysis of the evaluation contexts interaction and write the final definition of an 
evaluation context.

Let us start by defining a tuple. A tuple is a set of column values. For example, in the Date table, a 
tuple might be:

« Year = 2007, Month = January »

Columns in a tuple might belong to different tables. You can think of a tuple as being a row of a 
table containing columns from different tables.

A tuple defines a value for some of the columns of the model. Thus, intuitively, a tuple behaves as a 
filter on the data model. The tuple «2007, January», applied to a model containing sales, for example, 
filters the sales of January 2007.

To see an example of a tuple used as a filter, look at the following expression:

CALCULATE ( 
    … 
    FILTER ( 
        CROSSJOIN ( 
            ALL ( Date[Year] ), 
            ALL ( Date[Month] ) 
        ), 
        OR ( 
            AND ( Date[Year] = 2007, Date[Month] = "January" ), 
            AND ( Date[Year] = 2006, Date[Month] = "December" ) 
        ) 
    ) 
)
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The filter argument of CALCULATE is the following list of tuples:

« Year=2006, Month=December » 
« Year=2007, Month=January »

A list of tuples is a filter. A filter is not yet a filter context. A filter context is, indeed, a set of filters. 
In fact, if you look at the following code:

CALCULATE ( 
    … 
    FILTER ( 
        CROSSJOIN ( 
            ALL ( Date[Year] ), 
            ALL ( Date[Month] ) 
        ), 
        OR ( 
            AND ( Date[Year] = 2007, Date[Month] = "January" ), 
            AND ( Date[Year] = 2006, Date[Month] = "December" ) 
        ) 
    ), 
    OR ( Product[Color] = "Black", Product[Color] = "Yellow" ) 
) 

The resulting filter context contains two different sets of tuples: one filtering two columns from the 
Date table and another one filtering the product color. Graphically, a filter is identical to a table. To 
make the difference between a filter and a table more evident, we use a filter icon whenever the tables 
in a figure represent a filter. The filter produced by the previous formula is visible in Figure 10-24.

 
FIGURE 10-24 Filters are represented as tables, with a filter icon to highlight their role.

A set of filters, such as the one in Figure 10-24, is a filter context. A filter context is very similar to a 
set of tables. We say that a column is filtered by a filter context if it belongs to one of its filters. Thus, 
in the example the three columns, year, month, and color, belong to the filter context.

At first sight, a tuple looks like a normal row and a filter looks like a table. In reality, the two 
 concepts are very similar but we prefer to use different names because of their use. For instance, in 
the previous code, the result of FILTER is a table. It becomes a filter context only when you use it as a 
filter argument for CALCULATE. Then DAX transforms the table into a filter context and the individual 
rows of the table become tuples. The difference is subtle, yet we find it useful when describing the 
behavior of the filter context.
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For example, there is a big difference between transforming a real table or the result of a 
CROSSJOIN into a fi lter. When you use a CROSSJOIN as fi lter context, the fi lter context contains the 
individual columns resulting from the CROSSJOIN, whereas when you use a full table as a fi lter context, 
the fi lter context will contain all the columns of the expanded version of the original table. If you look 
at the following two expressions, the fi lter arguments used in them have different tuples as a result: 

CALCULATE (
    SUM ( Sales[Quantity] ),
    'Product Subcategory'[Subcategory] = "Radio"
)

CALCULATE (
    SUM ( Sales[Quantity] ),
    FILTER ( 
        'Product Subcategory', 
        'Product Subcategory'[Subcategory] = "Radio" 
    ) 
) 

In fact, the fi rst fi lter argument generates a fi lter context made of tuples with a single column: 

« Subcategory = Radio » 

Alternately, the second expression sets the fi lter on the table. In this way, the resulting fi lter context 
contains tuples with all the columns of the expanded version of subcategories: 

«
    'Product Subcategory'[Subcategory] = Radio, 
    'Product Subcategory'[ProductSubcategoryKey] = 3, 
    'Product Subcategory'[ProductCategoryKey] = 1,
    'Product Category'[ProductCategoryKey] = 1,
    'Product Category'[Category] = Audio
» 

As you learn in this chapter, that difference is very important and might be the cause of misunder-
standings when using tables as fi lters. 

Now that you learned what a tuple and a fi lter context are, it is time to defi ne two operators that 
DAX uses on fi lter contexts. They are INTERSECTION and OVERWRITE. 

Understanding fi lter context intersection 
Given two fi lter contexts, A and B, the intersection of A and B is computed by adding the fi lters in A 
to the fi lters in B. Intersection is used by CALCULATE when it needs to merge its fi lter arguments. 

CALCULATE (
    SUM ( Sales[Quantity] ),
    'Product Subcategory'[Subcategory] = "Radio"
)

CALCULATE (
    SUM ( Sales[Quantity] ),
    FILTER (
        'Product Subcategory',
        'Product Subcategory'[Subcategory] = "Radio"
    )
)

« Subcategory = Radio »

«
    'Product Subcategory'[Subcategory] = Radio,
    'Product Subcategory'[ProductSubcategoryKey] = 3,
    'Product Subcategory'[ProductCategoryKey] = 1,
    'Product Category'[ProductCategoryKey] = 1,
    'Product Category'[Category] = Audio
»
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Some examples are very useful to clarify the concept. Look at the following expression:

CALCULATETABLE ( 
    … 
    Date[Year] = 2008, 
    OR (  
        Product[Color] = "Black",  
        Product[Color] = "Yellow"  
    ) 
)

There are two filters, one on Year and the other one on Color. We have always said that filter 
 arguments of CALCULATE are combined with AND, but now that we are speaking about tuples, we 
can be more specific and say that they are combined with intersection. In fact, the resulting filter 
context is visible in Figure 10-25.

  
FIGURE 10-25 Intersection of two filters is the union of the filters, that is, a logical AND between them.

Intersection is a very simple operation and, in fact, you can think of an intersection as a simple 
AND operation between the sets defined by the filters. Moreover, an intersection has the beautiful 
feature that it works fine with complex filters. In fact, if you look at the following expression, you will 
note that the Date table is filtered by two conditions, using a completely different pattern. The first 
condition filters January 2007 and December 2006, and the second condition filters only dates where 
the quantity sold is greater than 100 (regardless of the year and month). Yet an intersection leads to a 
correct calculation (January 2007 and December 2006 for only the days where quantity sold is greater 
than the given value of 100).
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CALCULATE ( 
    … 
    FILTER ( 
        CROSSJOIN ( 
            ALL ( Date[Year] ), 
            ALL ( Date[Month] ) 
        ), 
        OR ( 
            AND ( Date[Year] = 2007, Date[Month] = "January" ), 
            AND ( Date[Year] = 2006, Date[Month] = "December" ) 
        ) 
    ), 
    FILTER ( 
        ALL ( Date[Date] ), 
        CALCULATE ( SUM (Sales[Quantity] ) ) > 100) 
    ) 
)

Finally, intersection is symmetric: A intersected with B leads to the same result as B intersected with 
A. This is expected, but as you learn in the next section, the overwrite operator is not symmetric and 
you will need to use it with more care.

Understanding filter context overwrite
Now that you have learned the intersection operation, it is time to introduce the second operation 
that DAX can perform on filter contexts: OVERWRITE. Overwrite is the operator used by  CALCULATE 
when it merges the new filter context, computed by intersecting its filter arguments, with the 
 previous filter context, to create the new filter context under which it computes its expression.

As an example, look at the following expression:

CALCULATE ( 
    CALCULATE (  
        …, 
        Product[Color] = "Yellow" 
    ), 
    Product[Color] = "Black" 
)

The inner CALCULATE overwrites the previous filter and, in fact, DAX computes the result for the 
yellow color, ignoring the filter on black. This is expected but it shows that, in this case, the two filter 
contexts are not combined using intersection, but instead are using the overwrite operator.

Overwrite is simple in its definition but leads to very complex scenarios when used in DAX 
 formulas whenever you have nontrivial filters. Let us start with its definition:
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In computing A overwrite B, we use B for the previous filter context and A for the filter context 
which overwrites B. This makes it easier to read the sentence “A overwrites B” because the new filter 
(A) overwrites the old filter (B). In the previous example, A is yellow and B is black. 

To compute A overwrite B, DAX does two operations:

1. It removes from all the filters in B the columns filtered in A, generating a new filter context 
that we call B-Cleaned.

2. It intersects A with B-Cleaned.

In the previous example, the B filter contained black. B-Cleaned becomes empty because DAX 
 removes the only column present (Color) and finally generates the new filter context that contains 
only the filter on yellow. In Figure 10-26 you can see a graphical representation of the overwrite 
operation.

 
FIGURE 10-26 Overwrite semantics removes columns from B and then intersects the resulting filter with A.

Overwrite is a powerful operator, but it requires much more attention. In fact, it works in an 
 intuitive way as long as the filters are well shaped while, for arbitrarily shaped filters, it starts to be 
much more complex. Before moving on with the description, it is now time to introduce arbitrarily 
shaped filters, because they play an important role in the explanation.

Understanding arbitrarily shaped filters
A well-shaped filter is a filter that you can express as the CROSSJOIN of single-column filters. An 
example of a well-shaped filter is as follows:
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CALCULATETABLE ( 
    … 
    OR ( 
        Date[Year] = 2007, 
        Date[Year] = 2006 
    ), 
    OR (  
        Product[Color] = "Black",  
        Product[Color] = "Yellow"  
    ) 
)

In fact, the previous filter is equivalent to this one:

CALCULATETABLE ( 
    … 
    CROSSJOIN ( 
        FILTER (  
            ALL ( Date[Year] ), 
            OR ( 
                Date[Year] = 2007, 
                Date[Year] = 2006 
            ) 
        ), 
        FILTER ( 
            ALL (Product[Color] ), 
            OR (  
                Product[Color] = "Black",  
                Product[Color] = "Yellow"  
            ) 
        ) 
    ) 
)

You can easily represent graphically a well-shaped filter as a set of filters on individual columns, as 
you can see in Figure 10-27.

FIGURE 10-27 You can represent well-shaped filters as filters on individual columns.

Well-shaped filters always lead to simple expressions and both intersection and overwrite work in 
an intuitive way with well-shaped filters.
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An arbitrarily shaped filter, on the other hand, is a filter that is not well shaped. In other words, 
you cannot express arbitrarily shaped filters as the CROSSJOIN of filters on individual columns. We 
 previously used (by intent) an arbitrarily shaped filter, which you can see in the following expression:

CALCULATE ( 
    … 
    FILTER ( 
        CROSSJOIN ( 
            VALUES ( Date[Year] ), 
            VALUES ( Date[Month] ) 
        ), 
        OR ( 
            AND ( Date[Year] = 2007, Date[Month] = "January" ), 
            AND ( Date[Year] = 2006, Date[Month] = "December" ) 
        ) 
    ) 
)

The result of this filter is visible in Figure 10-28. As you can see, you cannot show the filter as 
two separate columns. Instead, you need to put the columns in the same table, because they have a 
 relationship which is stored in the filter itself.

 
FIGURE 10-28 An arbitrarily shaped filter is not the CROSSJOIN of simple column filters.

You cannot express the filter containing one month in 2007 and one month in 2006 as the CROSS-
JOIN of simpler filters. In fact, DAX can evaluate the filter only by taking into account the two columns 
together. That is to say, an arbitrarily shaped filter defines a relationship between its columns. In fact, 
we call a filter (or more generically, a table) a relation in academic papers. We preferred to avoid this 
term in the book because it conflicts with the more widely used concept of relationship between 
tables. Yet a table (and a filter, in this case) defines a relationship between columns.

Arbitrarily shaped filters become a problem with the overwrite semantics. In fact, while intersection 
works perfectly fine with arbitrarily shaped filters, overwrite leads to much more complex scenarios. 
As an example, let us take the previous expression and add to another condition on the year, as in:
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CALCULATE ( 
    … 
    FILTER ( 
        CROSSJOIN ( 
            VALUES ( Date[Year] ), 
            VALUES ( Date[Month] ) 
        ), 
        OR ( 
            AND ( Date[Year] = 2007, Date[Month] = "January" ), 
            AND ( Date[Year] = 2006, Date[Month] = "December" ) 
        ) 
    ), 
    Date[Year] = 2007 
)

As you might expect, this expression computes the value for January 2007 because the first filter 
returns January 2007 and December 2006 that, intersected with the second filter, returns only January 
2007. In Figure 10-29 you can see the graphical representation of intersection.

 
FIGURE 10-29 Intersection with arbitrarily shaped filters works just fine.
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Things become different if you write the same expression in this way:

CALCULATE ( 
    CALCULATE ( 
        … 
        Date[Year] = 2007 
    ), 
    FILTER ( 
        CROSSJOIN ( 
            VALUES ( Date[Year] ), 
            VALUES ( Date[Month] ) 
        ), 
        OR ( 
            AND ( Date[Year] = 2007, Date[Month] = "January" ), 
            AND ( Date[Year] = 2006, Date[Month] = "December" ) 
        ) 
    ) 
)

In this last expression, we moved the filter on the year in an inner CALCULATE. The difference 
 between the previous version and this last one is that now CALCULATE uses overwrite to merge the 
two filters. Overwrite removes the calendar year from the first filter, leaving only the filter on the 
month label, and it then intersects this filter with the filter on the year, as you can see in Figure 10-30.

 
FIGURE 10-30 Applying overwrite to an arbitrarily shaped set might lead to unexpected results.

The resulting filter now contains January and December 2007, because the new filter on the Year 
removed the column Year from the previous filter. In doing this it destroyed the relationship stored in 
the filter and replaced it with a well-shaped filter, which is not what you might have expected when 
writing the formula.



326 The Definitive Guide to DAX

As a rule, we can state the following: Both intersect and overwrite work in an intuitive way when 
used on well-shaped filters. When working with arbitrarily shaped filters, intersect preserves their 
shape by intersecting their results, while overwrite might disrupt the filter generating a result which 
lost some of the relationships stored in the original filters.

More on KEEPFILTERS

In a previous section of this chapter, you learned the behavior of KEEPFILTERS. We gave 
that description before speaking about filter contexts and operators so that we could start 
speaking about arbitrarily shaped filters and to avoid introducing the whole complexity of 
filter context before introducing KEEPFILTERS.

Now that you have a solid understanding of filter contexts and filter context operators, you 
can think of KEEPFILTERS in a much simpler way: When you use KEEPFILTERS you are asking 
CALCULATE to merge the new filter context with the previous one using intersect instead 
of overwrite. The result is that you will keep arbitrarily shaped sets intact, because intersect 
preserves them, whereas overwrite potentially destroys them.

Understanding the ALL function

We used the ALL function extensively in most of the code written so far, yet there is still  something 
to learn about it. In fact, you learned that ALL returns all the values of one or more columns, or 
of an  entire table, depending on its parameter(s). While this holds true when you use ALL as a 
table  function, its behavior, when used as a filter argument in CALCULATE, is a different one. It is 
so  different that we think its name should have been another one, that is, REMOVEFILTER. Let us 
 elaborate on this.

When you write an expression such as the following, you trust the fact that ALL, as a table function, 
returns all the values of the calendar year. This new filter replaces the previous one and produces a 
filter context containing all the possible values for the year:

CALCULATE ( 
    CALCULATE ( 
        … 
        ALL ( Date[Year] ) 
    ), 
    Date[Year] = 2007 
)

Unfortunately, this is not the way it works. What ALL does, when used as a filter argument in  
CALCULATE, is not that of returning all the values of a column. Instead, it removes the column from 
the filter context. This is the reason why we suggested the name of REMOVEFILTER.
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The difference is subtle but, as you learn in this section, it is an important one. If ALL returned all 
the years, you would have expected the behavior shown in Figure 10-31.

 
FIGURE 10-31 You might expect ALL to return all the values of a table, but this is not what happens.

In reality, when ALL is a top-level function in a filter argument of CALCULATE, it removes the 
 columns on which it works from the filter context. Thus, the resulting behavior is the one shown in 
Figure 10-32.

 
FIGURE 10-32 ALL removes the filter from the column on which it works, resulting in an empty filter.

At first sight, it looks as if there is no difference between the two operations. In reality, the 
 behavior is very different and to make it more evident, we need to create some complex filters. As 
you already learned, when a table is transformed in a filter, the filter contains the expanded version of 
the table. Therefore, you know that the following measure calculates the number of dates referenced 
in the Sales table:
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[NumberOfSales] := 
CALCULATE ( 
    COUNTROWS ( 'Date' ), 
    Sales 
)

In fact, the expanded version of Sales contains all the columns of the Date table (because of the 
relationship). Using the whole Sales table as a filter, you effectively filter the Date table and the result 
(1,096) is the total number of dates in the Date table that are referenced from Sales.

What is less evident is the fact that you might expect this other formulation of the same measure 
to behave the same way:

[NumberOfSalesWithAll] := 
CALCULATE ( 
    COUNTROWS ( 'Date' ), 
    ALL ( Sales ) 

)

The only difference is that, this time, we used ALL around Sales in the filter argument of 
 CALCULATE. If ALL returned all the rows of Sales, the two measures would behave in the same way. 
Nevertheless, this is not what happens. You should read ALL as REMOVEFILTERS. ALL removes all the 
columns of Sales from the current filter context before evaluating COUNTROWS. Because the current 
filter context does not contain any filter, ALL does nothing at all, that is, it does not modify the filter 
context. In fact, the result of NumberOfSalesWithAll is not the number of referenced dates. Instead, it 
returns 2,556: the total number of dates in the Date table.

It is worth it to note that ALL behaves as REMOVEFILTERS only when you use it as a top-level 
parameter in a filter argument of CALCULATE. When you use it as a regular table function, it does 
 exactly what it is supposed to do: It returns a table. Thus, if you write the measure in the following 
way, you will get the expected result.

[NumberOfSalesWithAllAndFilter] := 
CALCULATE ( 
    COUNTROWS ( 'Date' ), 
    FILTER ( ALL ( Sales ), TRUE () ) 

)

In fact, this time you use ALL inside a FILTER operation and not as a top-level function in a filter 
argument. Because of this, FILTER iterates over the whole fact table and returns all of its rows. Then, 
because the full fact table is a filter argument of CALCULATE, it is expanded and used as a filter, in this 
way, reaching the Date table.
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Understanding lineage

We introduced the concept of lineage in Chapter 9, “Advanced table functions.” You have seen there 
that the result of a table function might preserve lineage or destroy it. For example, the following 
table preserves lineage, because it only renames a column:

SELECTCOLUMNS ( 
    Product, 
    "NewNameForProductKey", 
    Product[ProductKey] 
)

If, on the other hand, you use an expression instead of a column name, then you kill the lineage of 
the column, meaning that the resulting table is no longer linked to the original one. For instance, the 
following expression is no longer a table of Product[ProductKey]. It becomes a table of values:

SELECTCOLUMNS ( 
    Product, 
    "NewNameForProductKey", 
    Product[ProductKey] + 0 
)

This difference is very important when you use a table as a filter in the filter context. In fact, you 
can use any table as a filter in the filter context, but the columns without lineage corresponding to a 
physical column of the data model will be ignored.

Imagine, for example, that you write a query such as the following one:

EVALUATE 
ROW ( 
    "Result", CALCULATE ( 
        SUM ( Sales[Quantity] ), 
        UNION ( 
            ROW ( "Column1", "DAX" ), 
            ROW ( "Column1", "IS" ), 
            ROW ( "Column1", "SIMPLE" ) 
        ) 
    ) 
)
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The table defined with UNION is just a table, so you can use it as a filter parameter in  CALCULATE. 
Nevertheless, because the columns in the table have no lineage pointing to a physical column in the 
data model, the table has no relationships with other tables and filtering it makes no sense, because 
it will not affect any value in the model. Thus, when the engine analyzes the filter arguments of 
 CALCULATE to create the filter context, it ignores columns with lineage not pointing to a physical 
column. In other words, such a filter is completely useless.

The same happens when you use a table function that makes you lose the lineage of a column. 
Look, for example, at the following query:

EVALUATE 
ROW ( 
    "Result", CALCULATE ( 
        SUM ( Sales[Quantity] ), 
        CALCULATETABLE ( 
            SELECTCOLUMNS ( Product, "MyProductBrand", Product[Brand] ), 
            Product[Color] = "Red" 
        ) 
    ) 
)

The inner CALCULATETABLE returns a table containing a single column, named MyProductBrand, 
which is just a renamed version of Product[Brand], for only the red products. Even if the column is 
named MyProductBrand, it preserves the lineage and the engine knows that, in reality, this is a table 
of Product[Brand]. Thus, when it merges this table in the filter context, it filters Sales, returning the 
amount of sales for only the brands that have at least one red product.

If you change the query by replacing Product[Brand] with an expression, then you lose  lineage 
and the following query returns the sales of all products, because the table resulting from 
 SELECTCOLUMNS no longer has a lineage that links it to Product[Brand]:

EVALUATE 
ROW ( 
    "Result", CALCULATE ( 
        SUM ( Sales[Quantity] ), 
        CALCULATETABLE ( 
            SELECTCOLUMNS ( Product, "MyProductBrand", Product[Brand] & ""), 
            Product[Color] = "Red" 
        ) 
    ) 
)
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Understanding lineage is helpful to understand why, for example, the following query returns two 
different values in Inner Sales and Outer Sales:

EVALUATE 
ADDCOLUMNS ( 
    SELECTCOLUMNS ( 
        ADDCOLUMNS ( 
            SUMMARIZE ( 
                'Date', 
                'Date'[Calendar Year], 
                'Date'[Month] 
            ), 
            "YYYYMM", [Calendar Year] & " - " & [Month]  
        ), 
        "YYYYMM", [YYYYMM], 
        "Inner Sales", CALCULATE ( SUM ( Sales[Quantity] ) ) 
    ), 
    "Outer Sales", CALCULATE ( SUM ( Sales[Quantity] ) ) 
)

In the previous expression, Inner Sales runs in a filter context containing year and month, whereas 
Outer Sales has a filter context containing only the newly introduced YYYYMM column that, having 
no lineage, cannot filter Sales, as you can see in Figure 10-33.

 
FIGURE 10-33 The result of Inner Sales and Outer Sales is different, due to different filter contexts.

Using advanced SetFilter

All the theory outlined so far becomes useful when you need to author any nontrivial formula. As an 
example, you are going to analyze a simple scenario, which has many complexities because of the 
filter context interactions.
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Imagine that you receive some form of contract request (loans, for example). You receive the 
 request, take some time to validate it and, at the end, you either approve or deny it. The data model 
is a very simple one, consisting of only two tables: Contracts and Date, as you can see in Figure 10-34.

FIGURE 10-34 The example data model contains only contracts and dates.

The relationship between the two tables is based on ReceiveDate, to compute the number of contracts 
received over time. On this data model, you want to create a new measure that computes the number of 
pending contracts for each date. You start validating the contract at StartDate and the validation ends at 
EndDate. During that period, the contract is in a pending state. This number gives a rough estimate of the 
amount of work that the validation office has to perform. The measure should report:

■■ The number of pending contracts of a date, if the date is in the pivot table.

■■ The number of pending contracts as of today, on the grand total, or when the user does not 
select a specific date.

You start by creating two measures that compute the boundaries of the count. Using ISFILTERED 
you check if the Date table has an active filter and, based on this, you return either TODAY or the first 
or last date, with the following two measures:

[FirstDate] := 
IF (  
    ISCROSSFILTERED ( 'Date'[Date] ),  
    MIN ( 'Date'[Date] ),  
    TODAY ()  
) 
 
[LastDate] := 
IF (  
    ISCROSSFILTERED ( 'Date'[Date] ),  
    MAX ( 'Date'[Date] ),  
    TODAY ()  
)

The next step is to count the number of contracts whose StartDate is earlier or equal than 
 FirstDate, and EndDate is later or equal than LastDate. Instead of showing the process of writing the 
measure, we show first the correct result, analyzing it in detail. Then, after the correct code, we will 



 CHAPTER 10 Advanced evaluation context 333

show you several variations of the same expression, which all turn out to be wrong, due to some 
 mistakes in the context propagation.

It would be very useful if you now take some time (10 minutes is a fair time) to think of how you 
would write the formula, before continuing to read.

The correct formulation of the OpenContracts measure is the following one:

 1 OpenContracts := 
 2 SUMX ( 
 3     FILTER ( 
 4         CALCULATETABLE ( 
 5            ADDCOLUMNS ( 
 6                 SUMMARIZE ( 
 7                     Contracts, 
 8                     Contracts[StartDate], 
 9                     Contracts[EndDate] 
10                 ), 
11                 "NumOfContracts", CALCULATE ( COUNTROWS ( Contracts ) ) 
12             ), 
13             ALL ( 'Date' ) 
14         ), 
15         AND (  
16             Contracts[StartDate] <= [FirstDate], 
17             Contracts[EndDate] >= [LastDate] 
18         ) 
19     ), 
20     [NumOfContracts] 
21 )

Let us start analyzing the code to understand how it computes the desired value.

When you analyze a DAX expression, starting from the innermost part is always a good idea. 
The innermost function here is SUMMARIZE (lines 6–10). It generates a table containing the  existing 
 combinations of StartDate and EndDate from the Contracts table. Later on, ADDCOLUMNS (lines 
5–12) adds a column to that table with the number of contracts for each pair of dates. The result of 
this ADDCOLUMNS function call is visible in Figure 10-35.

FIGURE 10-35 The result of ADDCOLUMNS contains StartDate, EndDate, and NumOfContracts.
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It is worth noting that ADDCOLUMNS is called inside a CALCULATETABLE that removes any filter 
from the date, to get rid of the filtering that might happen because the user selected a specific date 
or period. Thus, regardless of the outer filter on the date, this table always returns the same result.

Then FILTER (lines 3–19) removes from this table the rows where StartDate is not earlier than 
FirstDate, and EndDate is not later than LastDate, by calling the two measures defined earlier. The 
final step is SUMX (lines 2–21), which sums all the NumOfContracts of the remaining rows in the table, 
after that FILTER removed the unwanted ones.

The measure computes the correct values, as you can see in the report in Figure 10-36. Please note 
that, for the reports, we used February 17, 2015, as the date for TODAY.

FIGURE 10-36 OpenContracts reports the number of contracts being validated in each date.

At the Grand Total, the number reported is the number of today’s contracts, dates after today are 
a forecast. There is still a problem with February, where there is no value shown. In fact, for periods 
larger than one day, the number still needs a definition. Based on your specific needs, you could 
either use the average of the days, the value on the last day of the period, or another definition. 
For what concerns this exercise, we are not interested in computing values at the aggregate level 
(apart from the Grand Total). Rather, we want to analyze different formulations of the same measure 
highlighting the reasons why they will report the wrong number. Maybe the formula that you tried to 
write before looking at the solution falls into one of the categories we will show.
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The first simple, bad formula is the following:

[OpenContracts] :=  
COUNTROWS ( 
    FILTER ( 
        ALL ( Contracts ), 
        AND (  
            Contracts[StartDate] <= [FirstDate], 
            Contracts[EndDate] >= [LastDate] 
        ) 
    ) 
)

This formula always returns the same number, regardless of any selection, as you can see in the 
report in Figure 10-37.

FIGURE 10-37 The simplest formula of OpenContracts reports wrong results.

There are two different problems in this formula. First, we had to use ALL ( Contracts ) to get rid of 
the filter from the date (which filters the contracts based on the receive date), but this ALL removed 
the filter from the contract status, too, as you can see from the pivot table where both Accepted and 
Denied report the same number. You might try to solve it by replacing ALL ( Contracts ) with a more 
granular CALCULATETABLE, as in the following code:

OpenContracts :=  
COUNTROWS ( 
    FILTER ( 
        CALCULATETABLE ( Contracts, ALL ( Date ) ), 

        AND (  
            Contracts[StartDate] <= [FirstDate], 
            Contracts[EndDate] >= [LastDate] 
        ) 
    ) 
)
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Yet this code still does not solve the issue. In fact, context transition is happening inside the FILTER, 
so that FirstDate and LastDate show only the dates related to the current contract being filtered. 
In order to avoid context transition, you need to filter individual columns, not the table. This is the 
 reason for which we used the expression:

SUMMARIZE ( 
    Contracts, 
    Contracts[StartDate], 
    Contracts[EndDate] 
)

In fact, this expression contains only StartDate and EndDate. When context transition happens, it 
applies to the two columns only, not to the expanded table. It is worth mentioning that the expanded 
version of Contracts contains all the columns of Date.

Variables to avoid context transition
Using variables, you can avoid context transition by computing the value of FirstDate and Last-
Date before entering the FILTER loop. In fact, the following code works fine (we did not show it 
at the beginning for educational purposes only):

[OpenContracts] := 
VAR First = [FirstDate] 
VAR Last  = [LastDate] 
RETURN 
    COUNTROWS ( 
        FILTER ( 
            CALCULATETABLE ( Contracts, ALL ( Date ) ), 
            AND (  
                Contracts[StartDate] <= First, 
                Contracts[EndDate] >= Last 
            ) 
        ) 
    )
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Using SUMMARIZE, you can generate a table that you can later iterate on avoiding the problem of 
context transition, but you still have to pay attention to some details. For example, as in the following 
formulation:

[OpenContracts] := 
SUMX ( 
    FILTER ( 
        ADDCOLUMNS ( 
            SUMMARIZE ( 
                CALCULATETABLE ( Contracts, ALL ( 'Date' ) ), 
                Contracts[StartDate], 
                Contracts[EndDate] 
            ), 
            "NumOfContracts", CALCULATE ( COUNTROWS ( Contracts ) ) 
        ), 
        AND ( 
            Contracts[StartDate] <= [FirstDate], 
            Contracts[EndDate] >= [LastDate] 
        ) 
    ), 
    [NumOfContracts] 
)

This last version is very similar to the correct one. The only difference is that the CALCULATETABLE 
is put around Contracts only, as the innermost function. The problem with this formula is that the 
NumOfContracts column added by ADDCOLUMN is computed in a filter context that contains the 
current StartDate and EndDate iterated by ADDCOLUMN plus the original filter context of the report, 
which contains a single date. Thus, the resulting number of contracts will not be correct.

As you have seen with this example, DAX is particularly powerful and it can be used to compute 
very complex measures if you pay close attention to the details of context propagation and context 
transition. In fact, when authoring the code for the OpenContracts measure, if you slightly change the 
order of function calls or miss the intricacies of context transition, you are quite likely to produce a 
measure that does not compute a correct value.

You cannot expect, in your first try, to write a measure correctly as done in the previous example. 
At the beginning, you will make mistakes and might see incorrect results. With more experience, 
you will understand the interactions between row context, filter context, relationships, and context 
 transition, and you will write correct formulas on your first attempt.



338 The Definitive Guide to DAX

Learning and mastering evaluation contexts

Evaluation contexts are hard to fully understand. They not only require you to learn some new con-
cepts, they really require you to alter what you know when writing code. This is, in our experience, the 
hard part of DAX: changing the way you think and start thinking in DAX.

If you found the whole chapter a tough one, and you had to read it again and again, that is very 
normal; you are in good company. This company includes us, the authors. We started learning DAX 
in 2010 and we are writing this book in 2015. Unbelievably, it took us five years to master the code 
of DAX and of the engine, with a lot of discussions and meetings with the development team in the 
meantime.

The good news is that these concepts, once fixed in your mind, are unlikely to go away and be 
forgotten: They will stay with you and help you come out from very complex formulas with a smile 
on your face—the smile of someone who knows that he or she really understands what is happening 
under the cover.

We did our best to explain the internals of evaluation contexts and give you a clear view of how 
they work, yet we know that our best is probably not enough. Our suggestion is to read this chapter 
multiple times, until you can read it very fast, because you totally understand it. Doing that is still 
hard for us, too.
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C H A P T E R  1 1

Handling hierarchies

DAX does not have any built-in function that provides calculations over hierarchies between 
 attributes and entities. However, the underlying data model can include the definition of 

 hierarchies used by client tools to simplify the browsing experience over data. A data model supports 
only regular hierarchies between columns of the same table, and does not have a native support for 
parent-child hierarchies.

In this chapter, you will learn how to create calculations over hierarchies and how to use DAX to 
transform a parent-child hierarchy into a regular hierarchy managed by the data model.

Computing percentages over hierarchies 

When you have a hierarchy in the data model, a common requirement is a measure that has a 
 different behavior depending on the level of the item selected, such as a ratio to parent that displays, 
for each member, the percentage of that member against its parent.

For instance, consider a hierarchy made by product category, subcategory, and product name. 
A ratio to parent calculation shows the percentage of a category against the grand total, of a 
 subcategory against the total of its category, and of a product against its subcategory.

You can see an example of this report in Figure 11-1.

In Microsoft Excel, you might create such a measure by using the pivot table feature Show Values 
As, so that the computation is performed by Excel. However, if you want to use such a calculation 
regardless of specific features of the client you use, you can create a new measure that performs the 
computation, so that the value is computed in the data model.
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FIGURE 11-1 The PercOfParent measure is useful to better understand the values in a table.

Unfortunately, performing such a calculation in DAX is not so easy. Before we start, it is worth 
pointing out the first big limitation that we will have in DAX: There is no way to build a generic 
percentage-to-parent measure that works on any arbitrary combination of columns in a report. The 
reason is that, inside DAX, there is no way to know how the report has been created, or how the hier-
archy has been used in the client tool.

Even if you cannot write a generic formula, you can create some measures that compute the 
correct percentages when used in a proper way. Because the hierarchy has three levels (category, 
subcategory, and product), you can start with three different measures, one for each level, as in the 
following code: 

[PercOfSubcategory] :=  
[Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[Product Name] ) ) 
 
[PercOfCategory] :=  
[Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[Subcategory] ) )  
 
[PercOfTotal] :=  
[Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[Category] ) )  

These three measures compute the needed percentages. Putting them into a pivot table leads to 
the result shown in Figure 11-2.
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FIGURE 11-2 The three measures work fine, but only at their specific level.

You can see that the measures show correct values only where they are meaningful. Otherwise, 
they show a useless 100 percent. Moreover, as of now, we have three different measures, but our goal 
is to have only one showing different percentages at different levels. 

Let’s start clearing the 100 percent out of the PercOfSubcategory measure. What you need to do is 
avoid performing the calculation if the hierarchy is not showing the Product Name column on rows. 
You can test whether a column is filtered or not by using ISFILTERED. In fact, when the product name 
is on the rows, it is filtered (usually it shows only one value out of all its possible ones). Thus, you can 
change the formula with this new expression: 

[PercOfSubcategory] :=  
IF (  
    ISFILTERED ( Product[Product Name] ),  
    [Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[Product Name] ) )  
)

Figure 11-3 shows the pivot table using this new formula.
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FIGURE 11-3 Using ISFILTERED, you remove the useless 100 percent values from the PercOfSubcategory column.

Using the same technique, you can remove the 100 percent from the other measures. Beware of 
the fact that, in PercOfCategory, you need to check that Subcategory is filtered and Product Name 
is not. This is because when you filter by Product Name using the hierarchy, you are also filtering a 
 Subcategory, displaying a product rather than a subcategory. In order to avoid duplicated code to 
check these conditions, you can write a single measure that executes a different operation depending 
on the level of the hierarchy that is visible based on the ISFILTERED conditions tested from the bottom 
to the top of the hierarchy levels. Here is the final code for the PercOfParent measure:

PercOfParent :=  
IF (  
    ISFILTERED ( Product[Product Name] ),  
    [Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[Product Name] ) ),  
    IF (  
        ISFILTERED ( Product[Subcategory] ),  
        [Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[Subcategory] ) ),  
        IF (  
            ISFILTERED ( Product[Category] ),  
            [Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[Category] ) )  
        )  
    ) 
)
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Using the PercOfParent measure, you obtain the desired result, which you can see in Figure 11-4. 

FIGURE 11-4 The PercOfParent measure merges the three columns computed previously into a single column. 

You can delete the three measures created previously, because now you have a single measure 
which computes everything, putting the right value in a single column, detecting the level at which 
you are browsing the hierarchy by using ISFILTERED. 

Note The order of the IF is important. You need to start testing the innermost level of 
the hierarchy and then go one step at a time to outer levels. Otherwise, if you reverse the 
 order of the conditions, you will get incorrect results. You need to remember that when the 
Subcategory is filtered through the hierarchy, the Category is filtered, too. 

The PercOfParent measure written in DAX works only if you put the correct hierarchy on rows. If 
you replace the category hierarchy with the color, for example, you will not get the percentage ratio 
between selected color and all the colors. The measure you created always considers the product 
hierarchy, regardless of whether or not it is used in the report, resulting in a blank result when it is not 
used (as you see in the Grand Total row of Figure 11-4).



344 The Definitive Guide to DAX

Moreover, because PercOfParent uses the ISFILTERED function to detect the current level of the 
hierarchy, it might be fooled by the presence of any additional filter (created, for example, by a slicer). 
This is a big issue. If, for instance, you put a slicer on Product Name on the report and select a few 
products belonging to the same subcategory, you will produce a report similar to the one shown in 
Figure 11-5.

FIGURE 11-5 The PercOfParent measure does not work if you filter the Product Name with a slicer.

You can easily see in Figure 11-5 that PercOfParent does not show correct percentages. To solve 
this problem, you might use a DAX trick, which is worth learning because it can prove useful in many 
other scenarios.

First of all, we have to investigate why the measure does not work. The percentage shown for each 
“1GB Pulse Smart pen” computes the percentage of sales amount for the product against all the prod-
ucts of the same category and, to perform this, it uses ALL ( Product[Product Name] ). By doing this 
it is actually removing both the filter introduced by the product on rows and the filter created by the 
slicer. Thus, it is removing too many filters. In fact, the sum of all percentages for products does not 
yield 100 percent because there are other products not shown in the report that cover the remaining 
percentage.

What we would like to do is to remove the filter from the Product Name introduced by the rows 
but still keep the filter introduced by the slicer. Unfortunately, because both filters operate on the 
same column, there is no way to differentiate between the two using the ISFILTERED function. In fact, 
ISFILTERED tells you whether a column is filtered, but it has no way to detect whether the filter comes 
from the slicer or from rows or columns.

Note The ALLSELECTED function is not useful here. You might try to detect if a column is 
filtered by counting the values of the column for the current filter and for the ALLSELECTED 
filter, mixing COUNTROWS and ALLSELECTED. However, this test would fail in the special 
case where a hierarchy has a level with a single value. In that case, the result will always be 
1 because you are selecting, on the rows, the only visible value of the column.

The solution, which is not very intuitive, is to make the two filters operate on different columns. 
You create three new columns, called H Product Name, H Category, and H Subcategory, where the 
initial H stands for “Hierarchy.” Then you build the hierarchy using the H columns, renaming them 
inside the hierarchy, and finally, you hide the H columns from client tools so that they cannot be used 
on slicers, rows, or columns.
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In Figure 11-6, you can see the Product table with all these duplicated columns. Note that the H 
columns are hidden from client tools.

FIGURE 11-6 In order to solve the scenario, you duplicate several columns in the Product table.

In Figure 11-7, you can see the newly created hierarchy, based on the H columns.

FIGURE 11-7 The Products hierarchy in the Product table is now based on the H columns.

Finally, you need to update the formula of PercOfParent so that it uses the H columns instead of 
the original ones: 

= 
IF ( 
    ISFILTERED ( Product[H Product Name] ), 
    [Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[H Product Name] ) ), 
    IF ( 
        ISFILTERED ( Product[H Subcategory] ), 
        [Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[H Subcategory] ) ), 
        IF ( 
            ISFILTERED ( Product[H Category] ), 
            [Sales Amount] / CALCULATE ( [Sales Amount], ALL ( Product[H Category] ) ) 
        ) 
    ) 
)

With this new data model, the user will be able to put Product Name on the slicer, but this will not 
filter the H Product Name column directly. Thus, ISFILTERED ( [H Product Name] ) will return FALSE on 
all the rows that do not display the product name. 
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In Figure 11-8, you can see both measures used in the same pivot table. 

FIGURE 11-8 PercOfParentCorrect now computes the correct results.

Note This approach works only if the user selects regular columns for the slicer and selects 
the Products hierarchy on pivot table rows. If the user selects one or more levels from the 
hierarchy and puts them in one or more slicers, the same issue shown previously in Figure 
11-5 will happen. Unfortunately, in that case, DAX does not offer you more control. You 
have to instruct the user to select the correct columns for the slicers.

From the point of view of the filter contexts, there is no practical difference between filtering 
a column from the hierarchy or from the visible ones. In fact, if the user filters a product category, 
only products of that category will be visible. The only notable difference is internal to DAX; that is, 
ISFILTERED will return TRUE only when a column of the hierarchy has been used to filter the table. 
Otherwise, it will return FALSE, even if not all the values of the column are visible.

At this point, you might think why not use the Excel built-in function “Show Values As” to obtain 
the same result. The reasons are that this technique defines the business logic in the data model, it 
does not require any user intervention to work, and it works on clients other than Excel. Moreover, the 
same technique of duplicating columns in hierarchies can prove useful in many different scenarios, 
not natively handled by Excel.

Handling parent-child hierarchies

The data model used by DAX does not support true parent/child hierarchies, as it is the case of a 
Multidimensional database in Analysis Services. However, there are some very useful DAX functions 
for flattening parent/child hierarchies into regular column-based hierarchies. This is good enough for 
most scenarios, although it means that you will have to make an educated guess at design time about 
the maximum depth of your hierarchy. In this section, you will learn how to use DAX functions and 
create a parent/child hierarchy, often abbreviated as P/C.
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You can see an example of P/C hierarchy in Figure 11-9.

FIGURE 11-9 A graphical representation of a P/C hierarchy.

P/C hierarchies have two unique qualities:

■■ The number of levels in the hierarchy is not always the same. For example, the path from 
 Annabel to Michael has a depth of two levels, whereas in the same hierarchy, the path from 
Bill to Chris has a depth of three levels.

■■ The hierarchy is normally represented in a single table, storing for each row a link to the 
 parent.

You can see the canonical representation of P/C hierarchies in Figure 11-10.

FIGURE 11-10 A table containing a P/C hierarchy.

It is easy to see that the ParentNodeId is the ID of the parent of each node. In fact, for Catherine, 
it stores 6, which is the ID of Annabel, her parent. The issue with this data model is that, this time, the 
relationship is a self-referenced one; that is, the two tables involved in the relationship are really the 
same table.

A data model for DAX does not support self-referencing relationships, so you have to modify the 
data model itself, turning the parent/child hierarchy into a regular one, based on one column for each 
level of the hierarchy.

Before delving into the details of how to handle the P/C hierarchies, it is worth noting one last 
point. Look at the table in Figure 11-11 containing the values we want to aggregate using the 
 hierarchy.
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FIGURE 11-11 This Sales table contains the data for the P/C hierarchy.

The rows in the Sales table contain references to both leaf-levels and nodes in the hierarchy. For 
example, the sixth row references NodeId 6, which is Annabel. Annabel has three children nodes, so 
when we look at her data, we will need to aggregate both her numbers and her children’s values.

Figure 11-12 displays the result we want to achieve.

FIGURE 11-12 This report shows the result of browsing a P/C hierarchy with a pivot table.

There are many steps to cover before reaching the final goal. Once the tables have been loaded in 
the data model, the first step is to create a calculated column that contains, for each node, the path 
to reach it. In fact, because we cannot use standard relationships, we will need to use a set of special 
functions, available in DAX, designed for handling P/C hierarchies. 

The new calculated column named HPath uses the PATH function: 

PC[HPath] = 
PATH ( PC[NodeId], PC[ParentNodeId] ) 

PATH is a function that receives two parameters. The first is the key of the table (in this case, the 
table name is PC), and the second is the name of the column that holds the parent node ID. The PATH 
function performs a recursive traversal of the table, and for each node it builds the path as a list of 
keys separated by the pipe (|) character. In Figure 11-13, you can see the PC table with the HPath 
calculated column.
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FIGURE 11-13 The HPath column contains, for each node, the complete path to reach it.

The HPath column, by itself, is not useful. It is so important because it is the basis for another set 
of calculated columns, which you will use to build the hierarchy. In fact, the next step is to build three 
calculated columns (one for each level of the hierarchy) by following this pattern:

PC[Level1] = LOOKUPVALUE ( PC[Node], PC[NodeId], PATHITEM ( PC[HPath], 1, INTEGER ) ) 
PC[Level2] = LOOKUPVALUE ( PC[Node], PC[NodeId], PATHITEM ( PC[HPath], 2, INTEGER ) ) 
PC[Level3] = LOOKUPVALUE ( PC[Node], PC[NodeId], PATHITEM ( PC[HPath], 3, INTEGER ) )

The three columns will be Level1, Level2, and Level3; the only change is in the second parameter 
to PATHITEM, which will be 1, 2, and 3. The calculated column uses LOOKUPVALUE to search a row 
where the NodeId equals the result of PATHITEM inside the PC table. PATHITEM returns the nth item 
in a column built with PATH (or BLANK if there is no such item, because you are requesting a number 
higher than the length of the path). The resulting table is shown in Figure 11-14.

FIGURE 11-14 The Level columns contain the values to show in the hierarchy.

In this example, you have used three columns because the maximum depth of the hierarchy is 
three. In a real-world scenario, you need to count the maximum number of levels of your hierarchy 
and build a number of columns that is big enough to hold all the levels. Thus, you can see that even 
if the number of levels in a P/C hierarchy should be flexible, in order to implement them in a data 
model, you will need to fix it by defining its maximum number in advance. It is a good practice to add 
a couple more levels to create space for a future growth of the hierarchy without needing to update 
the data model. 
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Now you need to transform the set of Level columns into a hierarchy and, because none of the 
other columns in the PC table is useful, you should hide everything else from the client tools. Your 
data model will look like Figure 11-15.

FIGURE 11-15 The data model containing the final P/C structure.

At this point, you can create a report using the hierarchy and putting the sum of amounts on the 
values. Figure 11-16 displays the result using a pivot table.

FIGURE 11-16 The P/C hierarchy is not exactly what we want because it shows too many rows.

There are several problems with this P/C hierarchy:

■■ Under Annabel, two blank rows contain the value of Annabel herself.

■■ Under Catherine, there is a blank row containing the value of Catherine herself.

The hierarchy always shows three levels, even for paths where the maximum depth should be two 
(such as Harry, who has no children).
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Apart from these issues, which are basically visualization problems, the hierarchy computes correct 
values because, under the Annabel node, you can see the values of all of her children. The important 
aspect of this solution is that you have been able to mimic a self-referencing relationship by using the 
PATH function to create a calculated column. The remaining part is to solve the aesthetic issues, but 
now, at least, you are moving toward the correct solution.

The first problem to solve is the removal of all the blank values. The second row of the pivot table, 
for example, accounts for an amount of 600 that should be visible for Annabel, not for (blank). You 
can solve this by modifying the formula for the Level columns. You remove all the blanks, repeating 
the previous level if you reached the end of the path. Here, you can see the pattern for Level2:

PC[Level2] =  
IF (  
    PATHLENGTH ( PC[HPath] ) >= 2,  
    LOOKUPVALUE ( PC[Node], PC[NodeId], PATHITEM ( PC[HPath], 2, INTEGER ) ),  
    PC[Level1]  
)

With this new formula, the table looks like Figure 11-17.

FIGURE 11-17 With the new formula, the Level columns never contain a blank.

If you look at this point of the pivot table, the blank rows are gone. Yet there are still too many 
rows. In Figure 11-18, you can see the pivot table, and, beside it, the filter context for each row.
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FIGURE 11-18 At the right of the pivot table, there is a corresponding description of the filter context for each 
row. 

Pay attention to the second and third rows of the pivot table. In both cases, the pivot table shows 
a single row of the hierarchy (that is, the row of Annabel). You might want to show the second row 
because it contains a good value for Annabel, but you do not want to see the third row, since the 
hierarchy is browsing too deep and the path of Annabel is no longer valid. We need to make a more 
accurate search for a correct way to hide nodes.

If we assign to each row of the hierarchy the length of the path needed to reach it, it is easy to see 
that Annabel is a root node, which means it is a node of level 1. Catherine, on the other hand, is a 
node of level 2 because she is a child of Annabel. Thus, the path of Catherine is of length 2. Moreover, 
even if it might not be so evident, Catherine is visible at level 1 because her value is aggregated under 
the first node of Annabel.

At this point, we can say that each node should be visible whenever we are browsing the hierarchy 
up to its level. Then, when the pivot table shows a level that is too deep, we want to hide the node. In 
order to check this algorithm, we need two values: 

■■ The depth of each node, which can be stored in a calculated column, because it is a fixed value 
for each row of the hierarchy. 

■■ The current browsing depth of the pivot table, which is a dynamic value that depends on 
the current filter context, meaning that you will need a measure, because the value changes 
depending on the pivot table and has different values for each row. For example, Annabel is 
a node at level 1, but it appears in three rows, where the current depth of the pivot table has 
three different values. 

If you could compute these two values, then the solution to the problem would be much closer. 
Yes, you will still need a way to hide the rows, but we can forget about this issue for now. Focus your 
attention on the identification of the unwanted rows. 
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The depth of each node is easy to compute. You can add a new calculated column to the PC table 
with this simple expression:

PC[NodeDepth] =  
PATHLENGTH ( PC[HPath] )

PATHLENGTH returns the length of a column computed by PATH, and you can see that there is 
nothing complex here. The resulting calculated column is shown in Figure 11-19.

FIGURE 11-19 The NodeDepth column stores the depth of each node in a calculated column.

The NodeDepth column is easy to create. Computing the browsing depth is more difficult because 
you need to compute it in a measure. Nevertheless, the logic behind it is not very complex, and it 
is similar to the technique you have already learned for standard hierarchies: it uses the ISFILTERED 
function to let you discover whether a Level column is filtered or not. 

The formula takes advantage of the fact that a Boolean value can be converted to a number, 
where TRUE has a value of 1 and FALSE has a value of 0.

[BrowseDepth] := 
ISFILTERED ( PC[Level1] ) + 
ISFILTERED ( PC[Level2] ) + 
ISFILTERED ( PC[Level3] )

Therefore, if only Level1 is filtered, then the result is 1. If both Level1 and Level2 are filtered, but not 
Level3, then the result is 2. You can see the result for the BrowseDepth column in Figure 11-20. 
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FIGURE 11-20 The BrowseDepth measure computes the depth of browsing in the pivot table.

It is interesting to see that this new pivot table shows more rows than before. Now you can see 
that Bill has three rows, whereas in the previous reports, Bill had only one row. The reason is that in 
the previous report, these additional Bill rows were hidden because the value for the sum of amounts 
returned a BLANK value. By default, the pivot table in Excel automatically hides rows that result in 
a blank value for all the displayed measures. This may look like a small piece of information, but it 
is  going to turn into a much more valuable one. In fact, it shows the path to hide a row: If the value 
of the measure is a BLANK, then the row will be hidden in Excel (the behavior might be different on 
other clients). Thus, you now have all the necessary pieces of information to complete the formula: 

■■ The depth of each node, in the NodeDepth calculated column. 

■■ The depth of the current cell in the pivot table, in the BrowseDepth measure. 

■■ A way to hide unwanted columns, by means of blanking the value of the result.

It is time to merge all this information into a single measure, as follows:

[PC_Amount] :=  
IF (  
    MAX ( PC[NodeDepth] ) >= [BrowseDepth],  
    SUM ( Sales[Amount] )  
)

To understand how this measure works, look at the pivot table in Figure 11-21, where we put all 
the values that are useful to grab the formula behavior.
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FIGURE 11-21 This report shows the final result and all the intermediate values used by the formula.

If you look at the first row, which is Annabel, you see that BrowseDepth equals 1, because this is 
the root of the hierarchy. MaxNodeDepth, which is defined as MAX ( PC[NodeDepth] ), has a value of 
2, meaning that the current node is showing not only data at level 1, but also data for some children 
that are at level 2. The current node is now showing data for some children too, and for this reason, 
it needs to be visible. The second line of Annabel, on the other hand, has a BrowseDepth of 2 and 
MaxNodeDepth of 1. The reason is that the filter context filters all the rows where Level1 equals  
Annabel and Level2 equals Annabel, and there is only one row in the hierarchy satisfying this 
 condition, which is Annabel herself. But Annabel has a NodeDepth of 1 and, because the pivot table is 
browsing at level 2, then we need to hide the node. In fact, the PC Amount measure returns a BLANK. 

It is useful to verify the behavior for other nodes by yourself so you can improve your understanding 
of how the formula is working and of its behavior. Although it is clear that you can simply return to this 
part of the book and copy the formula whenever you need to, understanding it is a good exercise be-
cause it forces you to think in terms of how the filter context interacts with various parts of the formula.

To reach the result, you only need to remove from the pivot table all the columns that are not 
needed, leaving PC Amount alone, and the visualization will be the desired one, as you can see in 
Figure 11-22.

FIGURE 11-22 Once the measure is left alone in the pivot table, all unwanted rows disappear.
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As you might imagine at this point, you will need to use the same pattern for any measure you 
might want to add to your pivot table when the P/C hierarchy is in place. If you put in a single 
 measure that does not have a BLANK value for unwanted rows, then all of them will suddenly appear 
and disrupt the pattern.

At this point the result is already satisfactory. Yet there is still a small problem. In fact, if you 
look at the total of Annabel, it is 3,200. Her children, summed up, show a total of 2,600. There is a 
 missing amount of 600, which is the value of Annabel herself. You might already be satisfied by this 
 visualization, because the value of a node is detectable by looking at the difference between its total 
and the total of its children. However, if you compare this figure to the original goal (we compare 
them for you in Figure 11-23), you see that, there, the value of each node was clearly visible as a child 
of the node itself.

FIGURE 11-23 The original goal represented on the left is not yet reached in the right-hand pivot table—you still 
need to show some rows.

At this point, the technique should be clear enough. In order to show the value for Annabel, you 
only need to find a suitable condition that lets you identify it as a node that should be made visible. 
In this case, the condition is somewhat complex. You should be aware that the nodes that must be 
visible can be non-leaf nodes (that is, they have some children) that have values. These nodes will 
be made visible for one additional level. All other nodes (that is, leaf nodes or nodes with no value 
 associated) will follow the original rule. 

First, you need to create a calculated column in the PC table that indicates whether a node is a 
leaf. The DAX expression is easy: leaves are nodes that are not parents of any other node. In order to 
check the condition, you can count the number of nodes that have the current node as the parent. If 
it equals zero, then you know that the current node is a leaf. The following code does this:

PC[IsLeaf] = 
CALCULATE (  
    COUNTROWS ( PC ),  
    ALL ( PC ),  
    PC[ParentNodeId] = EARLIER ( PC[NodeId] )  
) = 0
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In Figure 11-24, the IsLeaf column has been added to the data model.

FIGURE 11-24 The IsLeaf column indicates which nodes are leaves of the hierarchy.

Now that you can identify leaves, it is time to write the final formula for handling the P/C hierarchy 
(you see numbers added to the lines to make them easier to identify):

 1.  FinalFormula := 
 2.      IF ( 
 3.          [MaxNodeDepth] + 1 >= [BrowseDepth], 
 4.          IF ( 
 5.              [MaxNodeDepth] + 1 = [BrowseDepth], 
 6.              IF ( 
 7.                  VALUES ( PC[IsLeaf] ) = FALSE && SUM ( Sales[Amount] ) <> 0, 
 8.                  SUM ( Sales[Amount] ) 
 9.              ), 
10.              SUM ( Sales[Amount] ) 
11.          ) 
12.      )

The beginning of this formula is identical to the previous one: there is only a +1 in [MaxNodeDepth]  
at line 3 (also repeated in line 5), to take into account the next level. The reason why we add 1 to 
[MaxNodeDepth] is to allow certain nodes to show at specified browse levels; without it, the nodes that we 
are interested in showing will always be hidden as the [MaxNodeDepth] is less than their [BrowseDepth]. 
Not all the nodes should be visible at the next level—only the ones that are not leaves and have some 
value to show. This is the purpose of the remaining lines. On line 7, we check the special case of a node 
that should be made visible for one more level. If it is on that special level, then we check whether it is 
not a leaf (using VALUES, because here we are sure only a single row is visible in the P/C hierarchy) and 
whether there is some value to show. If this is the case, then the measure returns the sum of the amounts; 
otherwise, it returns BLANK, hiding the row.

It is clear that, if the data model had the ability to handle P/C hierarchies natively, then all this hard 
work could have been avoided. After all, this is not an easy formula to digest, because it requires a full 
understanding of evaluation contexts and data modeling.
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Important If you create a model in Analysis Services Tabular 2012/2014, you can enable 
the behavior of a special property called HideMemberIf, which automatically hides a node 
under certain conditions, such as having no children. Please note that this feature is not 
supported by Microsoft and might change in future versions of Analysis Services. In order 
to turn on this setting you need the BIDS Helper Visual Studio Add-In. A complete descrip-
tion of how to use this property in Tabular is available at https://bidshelper.codeplex.com/
wikipage?title=Tabular%20HideMemberIf.

Handling unary operators

As you have seen previously in this chapter, DAX does not have a native support of hierarchies in the 
underlying data model. This support exists in a Multidimensional database in Analysis Services, which 
also handles two other features that are not available in Tabular: unary operators and custom rollup 
formulas. The use of these two features is common in financial applications. Although the native data 
model for DAX does not include built-in support for unary operators, in this section you find out how 
it is possible to reproduce the functionality to a certain extent in DAX. It is not possible to re-create 
custom rollup formulas, unfortunately, and the only option is to write extremely long and compli-
cated DAX expressions in measures.

Note A custom rollup formula allows you to define a different aggregation formula for 
each node of a hierarchy. For example, you might calculate the sum of the months for 2015 
and the average of the months for 2014, and such a calculation would be applied to all of 
the measures. This is something that is not possible in DAX, because you cannot apply a 
different aggregation rule to an existing DAX expression used in a measure.

You can find in Books Online the full details about how unary operators work in the Multidimen-
sional model: http://technet.microsoft.com/en-us/library/ms175417.aspx, but here is a quick summary. 
Each item in the hierarchy can be associated with an operator that controls how the total for that 
member aggregates up to its parent. Operators can be one of the following values:

■■ + The plus sign means the value for the current item is added to the aggregate of its siblings 
(that is, all the items with the same parent) that occurs before the current item on the same 
level of the hierarchy.

■■ – The minus sign means the value for the current item is subtracted from the value of its 
siblings that occurs before the current item on the same level of the hierarchy.

■■ * The asterisk means the value for the current item is multiplied by the aggregate of all the 
siblings that occurs before the current item on the same level of the hierarchy.

https://bidshelper.codeplex.com/wikipage?title=Tabular%20HideMemberIf
https://bidshelper.codeplex.com/wikipage?title=Tabular%20HideMemberIf
http://technet.microsoft.com/en-us/library/ms175417.aspx
https://bidshelper.codeplex.com/wikipage?title=Tabular%20HideMemberIf
https://bidshelper.codeplex.com/wikipage?title=Tabular%20HideMemberIf
http://technet.microsoft.com/en-us/library/ms175417.aspx
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■■ / The forward slash means the value for the current item is divided by the aggregate of all 
the siblings that occurs before the current item on the same level of the hierarchy.

■■ ~ The tilde means the value for the current item is ignored when calculating the value of the 
parent.

■■ A value between 0 and 1 This means the value of the current item is multiplied by this 
value when aggregation takes place, and the result is added to the aggregate of its siblings.

The DAX code for implementing unary operators gets more complex the more operators are 
used in a hierarchy, so for the sake of clarity and simplicity, in this section only, we use the two most 
 common operators: the plus sign (+), and the minus sign (-). Calculations that use the forward slash 
and asterisk unary operators, (/) and (*), return different results, depending on the order in which 
they are executed, so any DAX implementation would be even more complicated. Table 11-1 shows a 
simple example of how these three operators behave when used in a hierarchy.

TABLE 11-1 How unary operators are calculated.

Item Name Unary Operator Measure Value

Profit 150

- Sales + (add) 100

- Other Income + (add) 75

- Costs - (subtract) 25

- Headcount ~ (ignore) 493

In this example, the Sales, Other Income, Costs, and Headcount items appear as children of the 
Profit item in the hierarchy. The value of Profit is calculated as:

+ [Sales Amount] + [Other Income] - [Costs]

with the value of Headcount ignored, to give the total of 150.

Implementing unary operators by using DAX
The key to implementing unary operator functionality in DAX is to recalculate the value of your mea-
sure at each level of the hierarchy rather than to calculate it at a low level and aggregate it up. This 
means that the DAX needed can be very complicated, and it is a good idea to split the calculation 
into multiple steps so that you can debug it more easily.

Note The best implementation for unary operators in DAX is to avoid them, putting 
the sign in the table containing the values to compute instead of applying them to 
the  members of the parent-child hierarchy table. If you cannot apply the operator to 
the  transactions transforming data before loading the data model, you should use the 
 technique described in this section only as a last resort.
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To illustrate how to implement unary operators, you need a dimension with some unary operators 
on it. The table you see in Figure 11-25 defines a parent-child hierarchy of accounts in a simple profits 
and losses report.

FIGURE 11-25 The parent-child hierarchy has a column with a unary operator applied to each account.

Each account has a corresponding unary operator defined in the UnaryOperator column. For 
 example, the account Revenues has a plus sign, whereas the account Expenses has a minus sign. 
Both of these accounts have the same parent, Final Total, which will return the difference between 
 Revenues (having the plus sign) and Expenses (having the minus sign). In reality, the presence of the 
minus sign in the Expenses account row means that all the transactions related to the Expenses are 
considered with an inverted sign.

Consider how the transactions in Figure 11-26 relate to the accounts we just described.

FIGURE 11-26 Each account has one or more transactions, always with a positive amount value.

All the transactions have a positive value, but you can see in a simple report that the resulting 
hierarchy has nodes reporting negative values. This is possible because the unary operator inverts the 
sign of a node in the hierarchy, inverting the sign of all the corresponding transactions. You can see 
an example of such a report in Figure 11-27.



 CHAPTER 11 Handling hierarchies 361

FIGURE 11-27 The final report shows negative values in certain accounts because of the applied unary operators.

You create the parent-child hierarchy following the same technique described in the previous 
section, obtaining the calculated columns you see in Figure 11-28, which are accessible through a 
hierarchy in the data model built using the columns Level1, Level2, Level3, and Level4.

FIGURE 11-28 The parent-child hierarchy generates a flattened hierarchy of four levels.

The DAX implementation of unary operators that you see in this section only supports plus and 
minus operators, which are the most common ones. In this way, you might sum or subtract every 
value, depending on the projection level. Because inverting a value is possible by multiplying it by -1, 
you will convert each operator in a corresponding multiplier, where 1 is the plus (+) operator, and -1 
represents the minus (-) operator. This inversion is possible, creating the following calculation in the 
Multiplier calculated column:

Accounts[Multiplier] =  
SWITCH (  
    Accounts[UnaryOperator],  
    "+", 1,  
    "-", -1  
)
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Once you have the multiplier as an integer number, you can simply multiply the value of an 
 account with its multiplier in order to apply the unary operator at the account level. Moreover, 
when you aggregate several accounts into a node, you can multiply each account’s value for all the 
 multipliers that you have through the hierarchy until you reach the evaluated node. For example, 
consider the account 10, Travels Refund. It has a minus unary operator, and its parent is the account 
9, Travel, which has a plus unary operator. In this case, when grouped by the Travel node, the Travels 
Paid  account value keeps its negative operation. In other words, you can sum the children of account 
Travel (Travels Refund and Travels Paid) by summing the corresponding transactions, applying the 
minus operator only to transactions of account Travels Refund. At this point, consider the account 8, 
Expenses. It groups other accounts including account 9 (Travel), and it applies the minus operator to 
them. Thus, the values of transactions for account Travels Refund will get two minus operators going 
up in the hierarchy to the Expenses level. Because applying two minus operators to a number returns 
the original number, we do not have to change the sign of the transactions of the Travels Refund 
 account when we aggregate them in the Expenses account.

In order to create an efficient DAX calculation for this model, we can create a column for each 
level that evaluates in advance the final multiplier that you have to apply depending on the level of 
the hierarchy used to group transactions. In Figure 11-29 you can see that the account 10 (Travels 
Refund) has a multiplier –1 for its original level (SignAtLevel4) and for the parent level (SignAtLevel3, 
corresponding to the Travel account), whereas it has a multiplier 1 for the upper level (SignAtLevel2, 
corresponding to the Expenses account, and SignAtLevel1, corresponding to the Final Total account).

FIGURE 11-29 Each account has a multiplier to apply when aggregating the account at that particular level.

You can create the columns SignAtLevel<n> as calculated columns in DAX if you cannot generate 
these values before importing data in the data model. When an account is displayed in its own level 
(the leaf-level of the hierarchy), you simply copy its multiplier; otherwise, you get the multiplier of the 
account in the hierarchy at the level displayed and multiply its multiplier by the multiplier you ob-
tained for the level below. The evaluation of multipliers starts at the lowest level of the hierarchy, and 
then continues toward the first level. In the example in Figure 11-29, the evaluation of SignAtLevel4 is 
the first one, because the SignAtLevel3 evaluation might depend on SignAtLevel4.

The DAX engine automatically solves the evaluation order of calculated columns based on the 
DAX dependencies in formulas. Here you can see the definitions of the calculated columns for the 
 multipliers defined for each level of the hierarchy, listed from level 1 to level 4, even if the  execution 
order will be from level 4 to level 1 because of the dependencies between the column names 
 highlighted in bold.
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Accounts[SignAtLevel1] =  
IF ( 
    Accounts[NodeDepth] = 1, 
    Accounts[Multiplier], 
    LOOKUPVALUE ( 
        Accounts[Multiplier], 
        Accounts[AccountId], PATHITEM ( Accounts[HierarchyPath], 1, INTEGER ) 
    ) 
        * Accounts[SignAtLevel2] 
) 
 
Accounts[SignAtLevel2] =  
IF ( 
    Accounts[NodeDepth] = 2, 
    Accounts[Multiplier], 
    LOOKUPVALUE ( 
        Accounts[Multiplier], 
        Accounts[AccountId], PATHITEM ( Accounts[HierarchyPath], 2, INTEGER ) 
    ) 
        * [SignAtLevel3] 
) 
 
Accounts[SignAtLevel3] = 
IF ( 
    Accounts[NodeDepth] = 3, 
    Accounts[Multiplier], 
    LOOKUPVALUE ( 
        Accounts[Multiplier], 
        Accounts[AccountId], PATHITEM ( Accounts[HierarchyPath], 3, INTEGER ) 
    ) 
        * [SignAtLevel4] 
)  
 
Accounts[SignAtLevel4] =  
IF ( Accounts[NodeDepth] = 4, Accounts[Multiplier] )

The reason why you want a multiplier defined for each level is that it simplifies the calculation of 
the measure that aggregates all accounts to a maximum of two groups (plus and minus) for each 
cell of the report. Depending on the browse depth of the report, you have to use the corresponding 
SignAtLevel<n> column to aggregate accounts based on their multipliers at that level. As you see in 
the following definition, the AmountParentChild measure performs this operation in an efficient way 
(the BrowseDepth measure applies a technique described in the previous section):
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[BrowseDepth] :=  
ISFILTERED ( Accounts[Level1] ) 
    + ISFILTERED ( Accounts[Level2] ) 
    + ISFILTERED ( Accounts[Level3] ) 
    + ISFILTERED ( Accounts[Level4] ) 
 
[AmountParentChild] := 
IF ( 
    MIN ( Accounts[NodeDepth] ) >= [BrowseDepth] && [BrowseDepth] > 0, 
    ( [BrowseDepth] = 1 ) * ( 
        CALCULATE ( 
            SUM ( Transactions[Amount] ), 
            Accounts[SignAtLevel1] = 1 
        )   - CALCULATE ( 
                SUM ( Transactions[Amount] ), 
                Accounts[SignAtLevel1] = -1 
            ) 
    ) 
    + ( [BrowseDepth] = 2 ) * ( 
        CALCULATE ( 
            SUM ( Transactions[Amount] ), 
            Accounts[SignAtLevel2] = 1 
        )   - CALCULATE ( 
                SUM ( Transactions[Amount] ), 
                Accounts[SignAtLevel2] = -1 
            ) 
    ) 
    + ( [BrowseDepth] = 3 ) * ( 
        CALCULATE ( 
            SUM ( Transactions[Amount] ), 
            Accounts[SignAtLevel3] = 1 
        )   - CALCULATE ( 
                SUM ( Transactions[Amount] ), 
                Accounts[SignAtLevel3] = -1 
            ) 
    ) 
    + ( [BrowseDepth] = 4 ) * ( 
        CALCULATE ( 
            SUM ( Transactions[Amount] ), 
            Accounts[SignAtLevel4] = 1 
        )   - CALCULATE ( 
                SUM ( Transactions[Amount] ), 
                Accounts[SignAtLevel4] = -1 
            ) 
    ) 
)

The logic for the AmountParentChild calculation is as follows:

■■ If the item on the hierarchy is below the maximum depth that you want to display, return a 
BLANK value. This is the same technique described in the “Handling parent-child hierarchies” 
section earlier in this chapter.
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■■ Otherwise:

■■ Find the sum of all leaves underneath the current item that have the multiplier 1.

■■ Subtract the sum of all leaves underneath the current item that have the multiplier –1.

Notice that in the code relating to the last bullet, CALCULATE sums all the items that have effective 
multipliers of 1 or –1; this is more efficient than using SUMX() and iterating over each individual leaf, 
even if that approach might be more readable.

Alternative implementations of unary operator measure
The implementation of the AmountParentChild measure with unary operators you have seen 
optimizes the performance, at the cost of a lower readability. However, newer versions of the 
DAX engine optimize the performance providing a way to write good performing code with a 
better readability. If you use Excel 2016, Power BI Designer, or Analysis Services 2016, or newer 
versions of these products, you might consider using one of the following alternative tech-
niques.

For example, you can implement AmountParentChild by multiplying each transaction 
amount by the corresponding multiplier in the SignAtLevel<n> column of the Accounts table, as 
shown in the following example:

[AmountParentChild1] := 
IF ( 
    MIN ( Accounts[NodeDepth] ) >= [BrowseDepth], 
    SWITCH ( 
        [BrowseDepth], 
        1, SUMX ( 
            Transactions, 
            Transactions[Amount] * RELATED ( Accounts[SignAtLevel1] ) 
        ), 
        2, SUMX ( 
            Transactions, 
            Transactions[Amount] * RELATED ( Accounts[SignAtLevel2] ) 
        ), 
        3, SUMX ( 
            Transactions, 
            Transactions[Amount] * RELATED ( Accounts[SignAtLevel3] ) 
        ), 
        4, SUMX ( 
            Transactions, 
            Transactions[Amount] * RELATED ( Accounts[SignAtLevel4] ) 
        ) 
    ) 
)
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     In a similar way, you can also iterate the values in the SignAtLevel<n> column, depending on 
the level displayed, and sum the corresponding transactions for that multiplier, executing only 
one multiplication per item displayed:

[AmountParentChild2] := 
IF ( 
    MIN ( Accounts[NodeDepth] ) >= [BrowseDepth], 
    SWITCH ( 
        [BrowseDepth], 
        1, SUMX ( 
            VALUES ( Accounts[SignAtLevel1] ), 
            Accounts[SignAtLevel1] * CALCULATE ( SUM ( Transactions[Amount] ) ) 
        ), 
        2, SUMX ( 
            VALUES ( Accounts[SignAtLevel2] ), 
            Accounts[SignAtLevel2] * CALCULATE ( SUM ( Transactions[Amount] ) ) 
        ), 
        3, SUMX ( 
            VALUES ( Accounts[SignAtLevel3] ), 
            Accounts[SignAtLevel3] * CALCULATE ( SUM ( Transactions[Amount] ) ) 
        ), 
        4, SUMX ( 
            VALUES ( Accounts[SignAtLevel4] ), 
            Accounts[SignAtLevel4] * CALCULATE ( SUM ( Transactions[Amount] ) ) 
        ) 
    ) 
)

You should consider using the simplest formula that provides good performance for the 
 version of the DAX engine you use.
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C H A P T E R  1 2

Advanced relationships

This is the last chapter on DAX. The remaining part of the book covers internals of the engine and 
optimization techniques to make your code run faster. This means that after reading this chapter 

we will have shared with you all of our DAX knowledge.

In this chapter, you will learn how to handle complex relationships between tables by leveraging 
the DAX language. Tabular models, in fact, can handle simple or bidirectional relationships between 
tables and this might look somewhat limited. However, taking advantage of the DAX language, you 
can create very advanced models with basically any kind of relationship, including virtual ones. As 
usual, DAX is the key to solve complex scenarios.

We will highlight several techniques to model complex relationships. The goal of this chapter is not 
to give you pre-built patterns that you can use in your model. Instead, we want to show you  unusual 
ways of using DAX to build complex models, to widen your idea of relationships, and to let you 
 experience what you can achieve with DAX formulas.

Using calculated physical relationships

The first set of relationships you are about to learn is that of calculated physical relationships. In 
 scenarios where the relationship cannot be set because a key is missing, or you need to compute it 
with complex formulas, then you can leverage calculated columns to set up the relationship. At the 
end, you will create a physical relationship; the only difference from a standard one is the fact that the 
key of the relationship is a calculated column.

Computing multiple-column relationships
The VertiPaq engine allows you to create relationships based on a single column only. It does not 
 support relationships based on more than one column. Besides, relationships based on multiple 
 columns are very useful and they appear in many data models. If you need to work with these kinds 
of models, here are two methods to do so:

■■ Define a calculated column containing the composition of the keys, and then use it as the new 
key for the relationship.

■■ Denormalize the columns of the target table (the “one-side” in a one-to-many relationship) 
using the LOOKUPVALUE function.
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 As an example, imagine that you have a special “Product of the Day” promotion. On some days, you 
make a special promotion for a single product with a given discount, as you can see in Figure 12-1.

FIGURE 12-1 The SpecialDiscounts table needs a relationship based on two columns with Sales.

The table containing the promotion (SpecialDiscounts) contains three columns: ProductKey, Order-
DateKey, and Discount. If you need to use this information to compute, for example, the amount of 
the discount, you face the problem that for any given sale the discount depends on ProductKey and 
OrderDateKey. Thus, you cannot create the relationship between Sales and SpecialDiscounts, because 
it would involve two columns and VertiPaq supports only single-column relationships.

You can create a new column in both the SpecialDiscount and Sales tables containing the combi-
nation of the two columns, using the following code:

Sales[SpecialDiscountKey] = Sales[OrderDateKey] & "-" & Sales[ProductKey]

You use a similar expression in SpecialDiscount, and once you defined the two columns, you can 
finally create the relationship between the two tables. In fact, it is always useful to remember that you 
can create relationships on calculated columns, too.

This solution is straightforward and works just fine. Yet there are several scenarios where this is not 
the best solution. It requires you to create two calculated columns (using precious RAM) that might 
have many different values.

Another possible solution to the same scenario is to use the LOOKUPVALUE function. Using LOOK-
UPVALUE you can denormalize the discount directly in the fact table, by defining a new calculated 
column in Sales containing:

Sales[SpecialDiscount] =  
LOOKUPVALUE ( 
    SpecialDiscounts[Discount], 
    SpecialDiscounts[ProductKey], Sales[ProductKey], 
    SpecialDiscounts[OrderDateKey], Sales[OrderDateKey] 
)
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Following this second pattern, you do not create any relationship. Instead, you move the Discount 
value in the fact table performing a lookup. 

Both options work fine and the choice between them depends on several factors. If Discount is the 
only column you need to use from the SpecialDiscount table, then denormalization is the best option 
because it reduces memory usage (you create a single calculated column, with fewer distinct values) 
and makes the code simple to author.

If, on the other hand, SpecialDiscounts contains many columns that you need to use in your code, 
then each of them would have to be denormalized in the fact table, resulting in a waste of memory 
and possibly in worse performance. In that case, the calculated column with the new composite key is 
the way to go.

This first simple example is important because it demonstrates a common and important feature 
of DAX: the ability to create relationships based on calculated columns. This capability shows that you 
can create any kind of relationship, as long as you can compute it and materialize it in a calculated 
column. In the next example, we show you how to create relationships based on static ranges but, by 
extending the concept, you can create really any kind of relationship.

Computing static segmentation
Static segmentation is a very common scenario where you have a value in a table and, rather than 
being interested in the analysis of the value itself (it might have hundreds or thousands of different 
values), you want to analyze it by splitting the value into segments. Two very common examples are 
the analysis of sales by customer age or by list price. Actually, it is pointless to partition sales amount 
by all unique values of list price, because there are too many different values in list price. However, 
if you group different prices in ranges, then there are very good chances that you can obtain good 
insights from the analysis of these groups.

In this example, you have a table containing price ranges where, for each range, you define the 
boundaries of the range itself, as you can see in Figure 12-2.

FIGURE 12-2 This is the Configuration table for the price ranges.

As it happened in the previous example, you cannot create a direct relationship between the fact 
table, containing sales, and this Configuration table. The reason is that the key in the Configuration 
table depends on a range relationship, not supported by DAX.

In this case, the solution is to denormalize the price range directly in the fact table, by using a 
 calculated column. The pattern of the code is very similar to the previous one, the main difference 
being the formula:
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Sales[PriceRange] = 
CALCULATE ( 
    VALUES ( PriceRanges[PriceRange] ), 
    FILTER ( 
        PriceRanges, 
        AND ( 
            PriceRanges[MinPrice] <= Sales[Net Price], 
            PriceRanges[MaxPrice] > Sales[Net Price] 
        ) 
    ) 
)

It is interesting to note, in this code, the use of VALUES to retrieve a single value: VALUES returns 
a table, not a value. However, as you might recall from the DAX specifications, whenever a table 
 contains a single row and a single column, it is automatically converted into a scalar value, if needed 
by the expression.

Because of the way FILTER computes its result, it will always return a single row from the 
 configuration table. Thus, VALUES is guaranteed to always return a single row and the result of 
CALCULATE is the description of the price range containing the current net price. Obviously, this 
expression works fine as long as the configuration table is well designed. If, for any reason, the ranges 
contain holes or overlaps, then VALUES returns many rows and the expression might result in an error.

A better way to author the previous code is to leverage the error handling function, detect the 
presence of a wrong configuration, and return an appropriate message, as in the following code:

Sales[PriceRange] = 
VAR ResultValue =  
    CALCULATE ( 
        IFERROR ( 
            VALUES ( PriceRanges[PriceRange] ), 
            "Overlapping Configuration" 
        ), 
        FILTER ( 
            PriceRanges, 
            AND ( 
                PriceRanges[MinPrice] <= Sales[Net Price], 
                PriceRanges[MaxPrice] > Sales[Net Price] 
            ) 
        ) 
    ) 
RETURN 
    IF (  
        ISEMPTY ( ResultValue ),  
        "Holes in Configuration",  
        ResultValue 
    )
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The previous code detects both overlapping values (with the internal IFERROR) and holes in the 
configuration (by checking with ISEMPTY the result value, before returning it to the caller). Hence, it is 
much safer to use, because it is guaranteed to always return a good value.

Calculated physical relationships are a very powerful tool in DAX modeling, because the 
 computation of the relationship happens during process time. Thus, they result in very good query 
performance, regardless of their complexity.

Using virtual relationships

There are many scenarios where you cannot set the logical relationship between tables in a static 
way. In these cases, you cannot use calculated static relationships. Instead, you need to define the 
 relationship in the measure, handling the calculations in a more dynamic way. Because in this case 
the relationship does not belong to the model, we speak of virtual relationships, in contrast with the 
physical relationships you learned so far.

Using dynamic segmentation
The first example of a dynamic relationship solves a variation of the static segmentation you learned 
earlier in this chapter. In the static segmentation, you assigned each sale to a specific segment using a 
calculated column. In dynamic segmentation, the assignment happens dynamically.

Imagine that you want to cluster your customers based on the sales amount. The sales amount 
 depends on the slicers used in the report. Therefore, the segmentation cannot be static. If, for 
 example, you filter a single year, then a customer might belong to a specific cluster but by changing 
the year, the same customer will belong to a different cluster. In this scenario, you cannot rely on a 
physical relationship.

You start defining the Configuration table, which you can see in Figure 12-3.

FIGURE 12-3 Configuration table for dynamic segmentation.

The measure to compute is the number of customers belonging to a specific cluster. In other 
words, you want to count how many customers belong to a segment taking into account all the filters 
in the current filter context. The formula is a simple one:
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CustInSegment := 
COUNTROWS ( 
    FILTER ( 
        Customer, 
        AND ( 
            [Sales Amount] > MIN ( Segments[MinSale] ), 
            [Sales Amount] <= MAX ( Segments[MaxSale] ) 
        ) 
    ) 
)

In order to understand the formula behavior, it is useful to look at a report that shows the 
 segments on the rows, and the calendar year on columns. You can see the report in Figure 12-4.

FIGURE 12-4 This pivot table shows the dynamic segmentation pattern in action.

For instance, look at the highlighted cell, which shows 76 customers belonging to the Medium 
cluster in 2008. The formula iterated over Customer and for each customer it checked if the value 
of Sales Amount for that customer falls between MIN of MinSale and MAX of MaxSale. The value of 
Sales Amount represents the sales of the individual customer, due to context transition (remember the 
automatic CALCULATE that is inserted around any measure invocation). DAX evaluates MIN and MAX 
in the current filter context for that specific cell, which shows only the Medium row of Segments. As a 
result, MIN is the value of MinSale for the Medium segment, and MAX is the value of MaxSale for the 
same segment. In other words, for that specific row, using MIN, MAX, or VALUES leads to the same 
result. Nevertheless, we used MIN and MAX to make the formula work at the grand total level too, 
where the filter context might contain multiple rows for the Segments table and VALUES would return 
an error.

The resulting measure is, as expected, additive against segments and customers and nonadditive 
against all other dimensions.

The formula works as long as you do not select some of the segments. If you select, for example, 
only Very Low and Very High (removing the three intermediate segments from the selection), then 
MIN and MAX will not be the correct choice, because they will enclose all the customers, resulting 
in wrong results in the grand total. If you want to let the user select some of the segments, then you 
need to write the formula in a slightly different way:
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CustInSegmentSUMX :=  
SUMX (  
    Segments, 
    COUNTROWS ( 
        FILTER ( 
            Customer, 
            AND ( 
                [Sales Amount] > Segments[MinSale], 
                [Sales Amount] <= Segments[MaxSale] 
            ) 
        ) 
    ) 
)

This version of the formula does not suffer from the issue of partial selection of segments but it 
might result in worse performance, because it requires a double iteration over the tables. You can 
 appreciate the difference between the two measures in the grand total of the report in Figure 12-5, 
with the two measures side by side.

FIGURE 12-5 At the grand total, the two measures show different values because of partial selection of segments.

Many-to-many relationships
Many-to-many relationships are a very common type of relationship that requires an additional table 
in the model, known as the bridge table. There are several types of many-to-many relationships. The 
goal of this section is to show you how to handle basic many-to-many relationships, and provide 
some information about more advanced ones.

As an example, we use the Promotion table in the Contoso database. Over time, Contoso makes 
promotions on specific products. This is a good example of a many-to-many relationship, because:

■■ One product can participate in many promotions over time.

■■ One promotion is active on many products at the same time.

The data model defines a bridge table between Product and Promotion, resulting in the diagram 
you can see in Figure 12-6.

You can easily handle this simple model using the bidirectional relationships of DAX. In fact, if the 
relationship between the bridge table and product is set bidirectional (when the model allows that), 
then you will be able to use Promotion to filter Products and, finally, Sales and other related tables.
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FIGURE 12-6 The diagram shows the bridge table linking Product and Promotion using a bridge table.

Note It is important to note that many-to-many relationships always lead to nonadditive 
measures. In fact, if you project in a report the amount sold sliced by the promotion, you 
will see the amount sold by all the products in promotion and, because a single product 
can participate in many promotions, its value will be aggregated under multiple rows. 
However, in the grand total it will only be treated as a single product and so the grand total 
value might not be the same as the sum of all single promotions. This is not an error. It is the 
normal behavior of many-to-many relationships.

As easy as this solution is, it has some drawbacks that you need to take into account when building 
a data model. Let’s examine them in detail:

■■ Bidirectional relationships are not available in all versions of DAX. At the time of writing, they 
are supported in Power BI Desktop and in Analysis Services 2016, but not in any version of 
Microsoft Excel. If you do not have such a feature available, then you need to implement a 
different solution.

■■ You do not have full control over the relationship. There are models (such as the examples we 
provide later) where you need a finer control over the relationship, or where you want to use 
the relationship as a helper to compute more sophisticated expressions.

■■ Occasionally, in order to support a physical relationship (as in the previous example), you 
build a complex table preparing data before the data model (this phase is also called Extract, 
Transform & Load (ETL), and its implementation might correspond to an SQL query, or a Power 
Query transformation, or an Integration Services package). An example we will analyze later is 
that of temporal relationships.

In order to elaborate on the preceding topics, let’s perform a deeper analysis of the data model 
of Figure 12-6. If you link promotions only to products, you are missing an important piece of 
 information, that is, the period of time when the promotion was active. A more accurate data model 
also contains a link to the date. In fact, if you build a report based on the simple relationship outlined 



 CHAPTER 12 Advanced relationships 375

so far, you get a wrong result, as you can see in Figure 12-7, where it is evident that the report shows 
sales in years when the promotion was not active.

FIGURE 12-7 If you do not take dates into account, the promotions report sales outside of their validity.

The reason is that the bridge table filters the products based on the promotion, and then the 
 report includes all the sales of those products, even outside the promotion validity. Therefore, you 
need to take into account the date, too. The scenario becomes more complicated and it is worth 
spending some time to study it well, because it hides a lot of complexity.

A first trial might be that of expanding the bridge table by adding a date key. Clearly, you would 
need to create one row in the bridge table for each of the dates in the range of the promotion’s validity, 
thus increasing the size of the bridge table. The resulting data model is the one in Figure 12-8.

FIGURE 12-8 The model shows the expanded bridge table, with the relationship to Date.

As you can see, we have replicated the bidirectional relationship between the bridge and  Product 
with the Date table. Unfortunately, this model cannot work because, by defining it, you create an 
ambiguous set of relationships, which DAX does not support. In fact, starting from Sales, you can 
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reach the bridge table following two different paths: one from Product to BridgePromotionProduct, 
the other one from Date to BridgePromotionProduct. You cannot rely on the data model supporting 
bidirectional relationships to create this structure. It’s time to get started and use DAX to compute the 
correct amount of sales.

First we remove the bidirectional propagation from both relationships, making all the relationships 
linked to the bridge table simple ones, as you can see in Figure 12-9. You can create this model with 
any version of DAX data models, because it does not use bidirectional relationships.

FIGURE 12-9 The model shows the expanded bridge table, with the relationship on the Date.

At this point, the measures will no longer compute correct results, because the filter from the 
bridge table is no longer propagated to Date and to Product. It is now worth remembering the  theory 
you learned in Chapter 10, “Advanced evaluation context,” about expanded tables. The  expanded 
version of the bridge table contains all the columns of both Date and Product tables. You can use the 
bridge table to filter the Date and the Product tables by using the following pattern:

CALCULATE ( 
    …, 
    CALCULATETABLE ( 
        Product, 
        BridgePromotionProduct 
    ), 
    CALCULATETABLE ( 
        'Date', 
        BridgePromotionProduct 
    ) 
)
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Let’s briefl y recall what is happening here: By using BridgePromotionProduct as a fi lter 
 argument in CALCULATE, you are referring to the expanded bridge table. Because the expanded 
 BridgePromotionProduct table contains the columns of Product (and Date), each CALCULATETABLE 
returns the products (or dates) referenced by the bridge table. The BridgePromotionProduct table, 
in turn, is already fi ltered in the fi lter context, showing only the promotions selected by the user. 
Thus, each CALCULATETABLE returns the set of products and dates of the given promotion. Once 
you use these two CALCULATETABLE to generate the fi lter context of the outer CALCULATE, they will 
work together as a fi lter on the Sales table, making it possible to aggregate sales related to the given 
 promotion. The fi rst version of the many-to-many formulas is the following one: 

Sales Amount :=
CALCULATE ( 
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ), 
    CALCULATETABLE ( Product, BridgePromotionProduct ),
    CALCULATETABLE ( 'Date', BridgePromotionProduct )
) 

If you use this formula in a report and you select a single promotion, it works just fi ne and 
 produces the correct result. Nevertheless, when used in a report that shows many promotions, such 
as the ones we have seen so far, it suffers from a major problem. The formula fi lters Product and 
Date separately, putting the fi lters in a logical AND on the fact table. Yet the two fi lters are computed 
 separately. 

Now imagine two promotions (A, B) and two products (P1, P2). P1 is in promotion A in January and 
February, whereas P2 is in promotion B only in February, as shown in Table 12-1. 

Table 12-1 Sample set of promotions with overlapping dates. 

 Promotion Product Date

 A P1 January

 A P1 February

 B P2 February

If both promotions A and B are visible in the fi lter context, then the resulting fi lter context from the 
pair of CALCULATETABLE contains (January, February) for Date and (P1, P2) for Product. The two fi lters, 
put in AND, fi lter the entire fact table, resulting in a total amount that contains sales of all products 
over all periods. What you should compute, on the other hand, are the sales of January and February 
for P1, but only January for P2. This is because P2, in January, was not present in any  promotion. 

What you have to do is maintain the relationship between products and dates that is present in the 
bridge table, by summarizing it instead of separating it into two fi lters. The correct formulation for 
Sales Amount is the following one: 

Sales Amount :=
CALCULATE (
   SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ),
   CALCULATETABLE ( Product, BridgePromotionProduct ),
   CALCULATETABLE ( 'Date', BridgePromotionProduct )

)
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[Sales Amount] := 
CALCULATE (  
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ),  
    SUMMARIZE (  
        BridgePromotionProduct, 
        Product[ProductKey], 
        'Date'[DateKey] 
    ) 
)

SUMMARIZE returns the pairs of product/date that are present in the visible promotions. It will 
filter the fact table because the expanded version of Sales contains both product and date keys.

As you have seen, in using SUMMARIZE you have a finer control over how relationships 
are  propagated. Actually, this technique gives you the option of implementing many-to-many 
 relationships without leveraging the bidirectional propagation, which is available only in certain 
versions of products supporting DAX. This technique was widely used to implement many-to-many 
before the availability of bidirectional relationships, but you can still use it whenever you design data 
models with complex relationships not natively supported by the engine.

Moreover, it is worth noting that leveraging further the theory of expanded tables, you can write a 
more compact version of the same expression, namely:

[Sales Amount] := 
CALCULATE (  
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ),  
    BridgePromotionProduct 
)

In fact, SUMMARIZE is not really useful there. Due to its nature, BridgePromotionProduct contains 
the pair of ProductKey and DateKey that filters Sales based on the selected promotions. You do not 
really have to use SUMMARIZE, because the pairs are already there, ready to be used. The expanded 
version of BridgePromotionProduct contains all the columns of Product and Date tables. Thus, using 
BridgePromotionProduct as a filter condition in CALCULATE provides the same result as SUMMARIZE.

SUMMARIZE can still be useful in case you want to further restrict the propagation of the filter 
from the bridge table to only a reduced number of relationships defined in the data model.

Using relationships with different granularities
Let’s continue the description of dynamic relationships with a common example of relationships at 
different granularities. Typically, you set relationships with the primary key of the target table, but 
you might have to create a relationship with a different column, which is not the primary key or, to be 
more generic, with nonunique values. A common scenario is a data model including budgets.
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For instance, suppose you have budget data at the category and month levels, instead of product 
and day levels that you have for sales data. In fact, you cannot easily forecast how many products 
you will sell of an individual product, while it makes much more sense to predict the number of 
 products of a specific category. Moreover, it might be the case that you plan to sell new products, 
which are not even part of your products table, just because they do not exist yet. The same happens 
to the time dimension. It is nearly impossible (if not even useful) to forecast the sales on a single day, 
whereas it makes sense to predict sales at the month level.

As an example, look at the data model in Figure 12-10, where the Forecast table contains budget 
information at the category, brand, and month level.

FIGURE 12-10 The model shows a typical budgeting scenario, with Forecast at a different granularity than Sales.

As you can see in the model, there are physical relationships between Forecast and both Product 
Category and Date. The relationship to Date is set at the first day of the month by using the Forecast-
Date calculated column, because—originally—Forecast had only the month number. The problem is 
with the Brand, which is a column in Product, and Country, which is a column in Store. Both columns 
are not primary keys of the respective tables. Thus, you cannot create any physical relationship 
 between these two tables.

As a result, if you build a report based on the Country, for example, you do not get meaningful 
results, as you can see in Figure 12-11.
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FIGURE 12-11 In this report, due to the missing relationship, the pivot table repeats the same value for all the 
rows.

The behavior is a very common one: Since there is no relationship between the field on the rows 
and the table used by Sum of Forecast in the values area, the pivot table repeats the same value in all 
the rows. Because you cannot set the physical relationship, you have to create a virtual one.

The technique to use requires you to consider the current filter on the Country column in the Store 
table and use it to generate an equivalent filter on the Forecast table. Namely, you want to take the 
current filter on Store and transform it into a corresponding filter on Forecast. If you modify Sum of 
Forecast using the following code, you reach this first goal:

[Sum of Forecast] := 
CALCULATE ( 
    SUM ( Forecast[Forecast] ), 
    FILTER ( 
        VALUES ( Forecast[Country] ), 
        CONTAINS ( 
            VALUES ( Store[Country] ), 
            Store[Country], 
            Forecast[Country] 
        ) 
    ) 
)

The core of the formula is the innermost CONTAINS. It checks if the value of the currently  iterated 
Forecast[Country] (iterated by FILTER) is contained in the list of visible Store[Country] values. As a 
result, it returns the forecast countries that belong to visible store countries.
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Note It is not yet time to speak about performance but, looking at the code, you 
can already make some performance considerations. FILTER iterates the values of 
Forecast[Country] and, for each value, it checks its presence in the values of Store[Country]. 
Thus, the complexity of this formula depends on the number of countries squared. In 
 reality, since CONTAINS is faster than a full scan (you can expect logarithmic complexity on 
search), the complexity should be O ( N * LOG ( N ) ) where N is the number of countries. 
With a limited number of countries, the formula should work very fast.

This technique of using CONTAINS to generate a filter based on another table, is very  common 
whenever you need to create virtual relationships moving a filter from one table to another one. The 
formula, by itself, does not solve the complete budgeting pattern. There are many other consider-
ations that you should take into account to build a complete budgeting solution. Nevertheless, in this 
chapter we are only interested in how to manage different types of relationships. If you want to learn 
more about the complete budgeting solution, go to http://www.daxpatterns.com/budget-patterns/, 
which describes budget patterns in depth.

Before leaving the topic, it is worth looking at a version of the same formula that takes advantage 
of set functions and is very elegant:

[Sum of Forecast] := 
CALCULATE ( 
    SUM ( Forecast[Forecast] ), 
    INTERSECT ( 
        VALUES ( Forecast[Country] ), 
        VALUES ( Store[Country] ) 
    ) 
)

INTERSECT performs the set operation we need by making a set intersection. INTERSECT is avail-
able only in the latest versions of DAX, thus the version with CONTAINS might still be useful, if you 
need to work with an older version of DAX. It is only important to note that ForeCast[Country] needs 
to be the first column used in INTERSECT, because this is the column that DAX will use for lineage.

Differences between physical and virtual relationships
Virtual relationships are a powerful way to generate complex models. Working with complex scenarios, 
you face the choice between building a physical (maybe calculated) relationship or a virtual one.

Generally, physical relationships are a better option. There is no difference, in terms of query 
performance, between a standard relationship, based on a column, and a calculated one, based on a 
calculated column. The engine computes calculated columns at process time (when data is refreshed), 
so it does not really matter how complex your expression is, the relationship is a physical one and the 
engine can take full advantage of it.

http://www.daxpatterns.com/budget-patterns/
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Later in Chapter 15, “Analyzing query plans,” you will learn about the Formula Engine (FE) and 
Storage Engine (SE), and you will learn that the Storage Engine is typically faster than the Formula 
Engine. Here we only anticipate that Storage Engine can use physical relationships (either calculated 
or not) during low-level VertiPaq queries, producing better results in terms of speed.

Virtual relationships, on the other hand, are resolved at query time. Moreover, they are not 
real  relationships, so the engine cannot make assumptions on them and optimize the query using 
the  notion of a relationship. Thus, whenever you have the option of doing that, prefer a physical 
 relationship against a virtual one.

In the middle, between physical and virtual relationships, there are many-to-many  relationships. 
You can define many-to-many relationships in the model, through bidirectional relationships (in 
that sense, they are physical relationships) and during calculations, leveraging table expansion. 
There are no differences between the two approaches. In fact, even if the relationship is marked as 
a  bidirectional one, when the engine needs to traverse it in the opposite way, it performs the same 
steps that you implement using table expansion.

Therefore, regarding performance, you should choose:

1. Physical (either calculated or not) relationships to get best performance and the best use of 
the VertiPaq engine.

2. Bidirectional relationships or many-to-many with table expansion, as a second option. You get 
good performance and a good use of the engine, although not the best.

3. Virtual relationships, as the least option, because you are in danger of bad performance. Note 
that being in danger does not mean you will experience performance issues, but only that you 
need to care about different aspects of the query, which you will learn in the next chapters 
about optimization.

Finding missing relationships

So far, you have seen many different kinds of relationships, both physical and virtual ones. All these 
examples have one feature in common: You were interested in computing values when the relation-
ship was in place. Occasionally you are interested in the opposite information, which is to compute 
values when the relationship does not hold.

Stated in this way, it might look surprising. In reality, missing relationships are—after all—more 
interesting than existing ones. Think, for example, about sales of products. If you put some  products 
on sale, then you want to compute how many products you have sold with that special price. 
 Nevertheless, there is another piece of information that is extremely useful: How many of those 
 products (on sale) did not result in any sale? Because there are no sales for those products, you 
 cannot expect to find information in the fact table about them. Yet you want to find what those 
 products are and, maybe, evaluate the potential loss of sales.
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Missing relationships is a variant that you can apply to any kind of relationship, either physical or 
virtual.

Computing number of products not sold
This first example where you learn about missing relationships is a somewhat simple one: finding the 
products not sold in a selected period. The Sales table contains information about sold products. If 
you want to compute the number of sold products, you can easily compute it using a measure such as 
the following one:

[NumOfProductsSold] := DISTINCTCOUNT ( Sales[ProductKey] )

At this point, computing the number of not sold products is as easy as subtracting, from the total 
number of products, the number of sold ones:

[NumOfProductsNotSold] := COUNTROWS ( Product ) – DISTINCTCOUNT ( Sales[ProductKey] )

This technique is a good choice if your goal is counting products. However, as you learn later in 
this section, there are many other calculations for which you do not only need to count them, but also 
to identify them. In NumOfProductsNotSold, you do not really identify the products not sold. Instead, 
you take advantage of the fact that you can compute the number of products not sold by a simple 
subtraction.

Moreover, this formula has another major drawback. If Product was a type 2 slowly changing 
dimension, then counting the product key in the fact table does not really produce the number of 
products. Instead, it computes the number of versions of products, leading to a wrong result.  Instead 
of counting the product keys, you solve this issue by counting the number of product codes (or 
names), taking advantage of table expansion with CALCULATE. Consider the following formula:

[NumOfProductsSold] := CALCULATE ( DISTINCTCOUNT ( Product[Product Code] ), Sales )

The expansion of Sales produces a filter on Product, so that you count only the codes of prod-
ucts referenced by Sales. Therefore, the previous expression, although probably a bit slower than 
 DISTINCTCOUNT of the product key, has two advantages:

■■ It counts the correct number of products, even in the case where Product is a slowly changing 
dimension of type 2.

■■ It effectively identifies the products. By leveraging table expansion, it moves the filter from 
Sales to Product through CALCULATE.
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The second point is interesting because it lays out a way to compute the products not sold by 
performing set operations, instead of mathematical subtraction:

[NumOfProductsNotSold] :=  
CALCULATE ( 
    DISTINCTCOUNT ( Product[Product Code ), 
    EXCEPT ( 
        VALUES ( Product[ProductKey] ), 
        CALCULATETABLE ( 
            VALUES ( Product[ProductKey] ), 
            Sales  
        ) 
    ) 
)

This version of NumOfProductNotSold computes the set difference between the product keys 
and the set of product keys referenced by the fact table. It is worth noting that in this case, unlike in 
the previous example about different granularities, you are intersecting two sets built on top of the 
same column. Therefore, lineage is maintained and the resulting table can be used by CALCULATE 
to  produce a filter context on ProductKey. Once the filter is in place, DISTINCTCOUNT computes the 
product codes for only the products not referenced by the fact table. In other words, with this pattern 
you can now navigate through a negated relationship and compute any kind of value.

Computing new and returning customers
Another example of a missing relationship is that of new and returning customers. You can use a pat-
tern that is very similar to that of products to compute the number of customers in a period of time 
(that is, the distinct count of customers), the number of new customers (customers who never bought 
before), and returning customers (customers who bought before, and returned to buy  something 
else).

All these calculations are very easy to author when you get used to set functions. Given a period, 
we use these definitions:

■■ Customer Somebody who made a purchase in the current period.

■■ New customer A customer who made a purchase in the current period and who never made 
purchases before the beginning of the current period.

■■ Returning customer A customer who made a purchase in the current period and already 
made other purchases before the beginning of the current period.

Given the previous definitions, you can define two sets:

■■ Current Customers Customers who made a purchase in the current period.

■■ Previous Customers Customers who made a purchase before the current period.
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You can compute these two sets by taking advantage of table expansion:

VAR CurrentCustomers =  
    CALCULATETABLE ( Customer, Sales ) 
 
VAR PreviousCustomers =  
    CALCULATETABLE (  
        Customer,  
        CALCULATETABLE (  
            Sales,  
            FILTER (  
                ALL ( 'Date' ),  
                'Date'[Date] < MIN ( 'Date'[Date] )  
            ) 
        ) 
    )

CurrentCustomer is easy to grab at first sight. PreviousCustomers, on the other hand, uses the same 
technique (table expansion) but, instead of using Sales, it takes advantage of CALCULATETABLE to 
compute Sales for periods before the beginning of the currently selected one. Note that you need to 
use ALL ( ‘Date’ ) to gain access to dates that are outside the current filter context.

Note In this example, we are not considering selection of products. If you use these 
 measures by filtering some products, you apply the notion of new and returning  customers 
to the subset of considered products. In case you need another definition, you have to 
change the filter over products in the formulas. You can find a broader discussion of these 
patterns and their variations on http://www.daxpatterns.com/new-and-returning-customers/.

The two sets compute tables of Customer, so you can use set functions like INTERSECT, UNION, 
and EXCEPT to generate new filters based on them. At this point, computing the number of new 
 customers and returning customers is a basic implementation of set logic, as you can see in the 
 following definitions:

[NewCustomers] :=  
CALCULATE (  
    COUNTROWS ( Customer ), 
    EXCEPT ( CurrentCustomers, PreviousCustomers ) 
) 
 
[ReturningCustomers] := 
CALCULATE ( 
    COUNTROWS ( Customer ), 
    INTERSECT ( CurrentCustomers, PreviousCustomers ) 
)

http://www.daxpatterns.com/new-and-returning-customers/
http://www.daxpatterns.com/new-and-returning-customers/
http://www.daxpatterns.com/new-and-returning-customers/
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Note Set functions have been available since the 2015 version of DAX. In previous 
 versions, computing these values was more complex, because you had to find an  
 optimized way of performing set logic, without leveraging the set functions. If you  
are interested in these calculations for previous versions of DAX, you can find them  
on http://www.daxpatterns.com/new-and-returning-customers/. 

It is important to note that, because these set functions identify the customers, you can use the same 
pattern to calculate other values. For instance, if you want to compute the sales of new customers, and 
compare them with the sales of returning customers, you can author measures such as the following 
ones:

[SalesNewCustomers] :=  
CALCULATE (  
    SUM ( Sales[Amount] ), 
    EXCEPT ( CurrentCustomers, PreviousCustomers ) 
) 
 
[SalesOfReturningCustomers] := 
CALCULATE ( 
    SUM ( Sales[Amount] ), 
    INTERSECT ( CurrentCustomers, PreviousCustomers ) 
)

The only difference between these two measures and the previous ones is the expression 
 computed by CALCULATE. The filtering part is the same set of new or returning customers you  
have seen previously.

Examples of complex relationships

In this final section about the DAX language, we show you some more examples of DAX code using 
complex relationships and most of the functionalities you have learned so far. At the cost of repeating 
ourselves, please keep in mind that these are not super-optimized patterns that will solve a specific 
scenario. Instead, we want to show you different approaches to different scenarios, with the goal of 
letting you gain familiarity with DAX.

Performing currency conversion
Another example of complex relationships you are going to learn about is how to handle currency 
conversion in DAX. There are many techniques to implement currency conversion, and we do not 
pretend to explain the definitive one, because business requirements are very different when it comes 
to this problem. Nevertheless, because it is a good exercise, we are going to describe a solution based 
on the techniques you have learned so far.

http://www.daxpatterns.com/new-and-returning-customers/
http://www.daxpatterns.com/new-and-returning-customers/
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There are three possible scenarios where currency conversion comes into play:

■■ Data collected in a single currency and you want to show, in a report, results in different 
 currencies.

■■ Data collected in the original currency (that is, many of them) and you want to display results 
in a single one, to make comparisons.

■■ Data collected in the original currency (that is, many of them) and you want to display results 
in many currencies.

This list is just the beginning of the pain that comes when dealing with currency. Because all of 
the three scenarios require currency conversion, the first question is which date are you going to use 
to perform the conversion? Here the business rules become very complex. If the order was placed 
in  Euros on December 1, you might be tempted to use the currency exchange rate of December 1 
to perform the conversion. However, it turns out that the customer paid in Euros on December 12; 
money has been left in a Euro account until the end of the month and only on December 31 was it 
converted to USD. Which rate is the right one? December 1, 12, or 31? Only end users can advise you 
and decide on a business rule. Nevertheless, because we need to define a scenario and we want to 
use Contoso, we consider the following requirements for our example:

■■ Amounts stored in the fact table are always in USD. Conversion happened during the 
 population of Sales as part of the data preparation process (ETL).

■■ You want to report information about sales in a user-selected currency using two different 
currency exchange rates:

• At the date of the order, thus a different exchange for each order. In the demo database 
 (Contoso), exchange rates are available at the month level. So we will use the beginning of  
the next month.

• Using the last available exchange rate (which, when in production, is the current exchange 
rate).

As we said, this is an educational example. In the real world, business rules might be different and, 
in that case, you have to change the formulas and the techniques to fit your specific needs. Let’s start 
reviewing the initial model in Figure 12-12.

There are two important points to check, regarding the data model:

■■ You will need two currency tables: one to select the currency of the order, which acts as a 
 filter on the Sales table and is already visible in the diagram, and the other one to select the 
 reporting currency. In fact, the reporting currency does not filter Sales. Instead, you use it to 
select the target currency for the report.

■■ Because currency exchange information is stored with monthly granularity, whereas orders 
have a daily granularity, you cannot set a relationship between Sales and ExchangeRate based 
on the order date.
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FIGURE 12-12 The starting data model for currency conversion includes Date, Sales, Order Currency, and Ex-
changeRate tables.

Figure 12-13 shows the data model we use for this example, where we added the Report Currency 
and the relationship with ExchangeRate.

 
FIGURE 12-13 The data model to convert using the latest exchange rate is a simple variation of the basic one.

It is worthwhile to note that there are no relationships between Sales and ExchangeRate, because 
the conversion of sales from the original currency to USD already happened, and you no longer care 
about what was the order currency. Since you need to convert USD to a given currency, you can 
 simply compute, for each currency, the latest exchange rate and finally multiply that number by the 
total sales expressed in USD.

Let’s start describing the simplest kind of conversion: You have all sales in USD (already converted) 
and you want to report them using a different currency, applying the latest conversion rate.
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The following query reports the total sales in all the different currencies:

DEFINE 
    MEASURE Sales[SalesUSD] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ) 
EVALUATE 
ADDCOLUMNS ( 
    ADDCOLUMNS ( 
        VALUES ( 'Report Currency'[Currency] ), 
        "LastAvailableExchange", 
        VAR LastAvailableDate = 
            CALCULATE ( MAX ( ExchangeRate[DateKey] ) ) 
        RETURN 
            CALCULATE ( 
                VALUES ( ExchangeRate[EndOfDayRate] ), 
                ExchangeRate[DateKey] = LastAvailableDate 
            ) 
    ), 
    "Sales in USD", [SalesUSD], 
    "Currency Sales", [SalesUSD] * [LastAvailableExchange] 
)

You can see the result of the query in Figure 12-14.

FIGURE 12-14 The report shows total sales converted using the last available exchange rate for each currency.
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It’s useful to note that the query computes the last available date for each currency. Actually, for 
any reason, the last available date of currency conversion might be different for different currencies. 
Thus, you cannot rely on the maximum date in the entire table. You have to compute it inside the 
iteration over currencies created by ADDCOLUMNS over the values of Currency. 

The scenario becomes slightly more complex if you want to report the value of sales in the  original 
currency. In that case, you need to perform the conversion of sales with the exchange rate that was 
effective at the order date, because the number stored in the Sales table is the amount already 
 converted in USD. The tricky part, here, is determining in an effi cient way what the exchange rate was 
at the time of the order. The topic is worth elaborating a bit. 

Exchange Rate contains rates at the month level, one row for each month and currency. The rate is 
stored on the fi rst day of the month. So for each sale, you can use the exchange rate of the fi rst date 
of the month (using the beginning of the next month would work fi ne, too, but you would have issues 
in the last month, for which there is no “next month” available). This would work well if you were sure 
that the exchange rate is available for each month and currency. However, if data was gathered in an 
imperfect way (something you should fi x during ETL, if possible), then you could have some holes in 
the exchange rates. In that case, you can either raise an error, or use the latest exchange rate available 
at that date. 

As you see, the calculation is not a simple one. Determining the date for each sale to use for the 
 exchange rate is not trivial. This is a perfect scenario where calculated columns come to help. The code will 
be executed during the model process time, and you do not have to worry too much about performance. 

You can easily compute a calculated column containing the original amount in the order currency 
using the following defi nition: 

Sales[OriginalAmount] = 
DIVIDE (
    SUMX(Sales, Sales[Quantity] * Sales[Net Price]),
    CALCULATE (
        VALUES ( ExchangeRate[EndOfDayRate] ),
        TOPN (
            1,
            CALCULATETABLE (
                VALUES ( ExchangeRate[DateKey] ),
                ExchangeRate[CurrencyKey] = EARLIER ( Sales[CurrencyKey] ),
                ExchangeRate[DateKey] <= EARLIER ( Sales[Order Date] )
            ),
            ExchangeRate[DateKey]
        ),
        ExchangeRate[CurrencyKey] = EARLIER ( Sales[CurrencyKey] )
    )
) 

TOPN, in this case, is necessary to retrieve the latest available exchange rate at the date of the 
order, for the given currency. It is worth noting that TOPN fi lters only DateKey. This is the reason why 
we have to duplicate the condition on the CurrencyKey. 

Sales[OriginalAmount] =
DIVIDE (
    SUMX(Sales, Sales[Quantity] * Sales[Net Price]),
    CALCULATE (
        VALUES ( ExchangeRate[EndOfDayRate] ),
        TOPN (
            1,
            CALCULATETABLE (
                VALUES ( ExchangeRate[DateKey] ),
                ExchangeRate[CurrencyKey] = EARLIER ( Sales[CurrencyKey] ),
                ExchangeRate[DateKey] <= EARLIER ( Sales[Order Date] )
            ),
            ExchangeRate[DateKey]
        ),
        ExchangeRate[CurrencyKey] = EARLIER ( Sales[CurrencyKey] )
    )
)



 CHAPTER 12 Advanced relationships 391

If you read the code carefully, you will recognize the calculated physical relationship pattern, 
where we denormalized the exchange rate to compute the original amount.

This is a suitable solution mainly because the request was to compute the value in the original 
 currency. The scenario becomes much more complex if you need a report containing a user-defined 
currency, performing the conversion at the date of the order (or with the latest conversion rate at the 
order date). The complexity comes from the fact that, this time, you cannot rely on calculated columns, 
which work fine only if you need a single currency. If the report currency is selected by the user (through 
a slicer, or any other means), then you have to perform a similar calculation dynamically at query time.

In the following query, you can see that the execution path is a mix of the two previous scenarios:

DEFINE 
    MEASURE Sales[SalesUSD] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( 'Report Currency'[Currency] ), 
    "Sales in USD", [SalesUSD], 
    "Currency Sales",  
    SUMX ( 
        ADDCOLUMNS ( 
            SUMMARIZE ( 
                Sales, 
                Sales[CurrencyKey], 
                'Date'[Calendar Year Month Number] 
            ), 
            "MonthlySalesInCurrency", CALCULATE ( 
                VALUES ( ExchangeRate[EndOfDayRate] ), 
                TOPN ( 
                    1, 
                    CALCULATETABLE ( 
                        ExchangeRate, 
                        FILTER ( 
                           VALUES ( ExchangeRate[DateKey] ), 
                           ExchangeRate[DateKey] <= CALCULATE ( MAX ( 'Date'[Date] ) ) 
                        ) 
                    ), 
                    ExchangeRate[DateKey] 
                ) 
            ) 
            * [SalesUSD] 
        ), 
        [MonthlySalesInCurrency] 
    ) 
)

The complexity of the query is all in the calculation of Currency Sales. SUMMARIZE group sales 
by currency key and month number. This table, containing currency and month, is iterated by 
 ADDCOLUMNS, which computes the MonthlySalesInCurrency by multiplying the sales in USD by the 
last available exchange rate. 
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You might notice that, this time, when searching for the last available date, we do not filter by 
currency. The reason is that the full code of MonthlySalesInCurrency is included in CALCULATE, which 
consolidates not only the row context introduced by ADDCOLUMNS over the summarized fact table 
but, at the same time, the row context introduced by the outermost ADDCOLUMNS, which is  iterating 
over the Report Currency. ExchangeRate is already filtered to show only the exchange rates of the 
given currency.

The result of all the monthly currency sales is aggregated by SUMX and transformed in a value that 
ADDCOLUMNS merges with the currency names and finally produces the result, which you can see in 
Figure 12-15.

FIGURE 12-15 The report shows total sales converted using the exchange rate at the order date.

Frequent itemset search
Basket analysis is a very powerful analysis technique, which aims to check the correlation  between 
sales of different products. You typically implement basket analysis using machine-learning 
 algorithms, which are beyond the scope of this book. What we want to share here is a simplified 
 technique of basket analysis that you can implement in DAX, creating extremely powerful data 
models. We call it Frequent Itemset Search because it searches for sets of products frequently sold 
together.
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Imagine that you want to perform an analysis of which products frequently appear together in 
sales transactions made by the same customer. By ”frequently,” you might mean different concepts. In 
some businesses frequently means in the same shopping bag, while in other ones the same concept 
might mean in the same year. In the example we provide, we do not care about time. Thus, we search 
for pairs of products frequently sold together to the same customer, no matter when.

The question we want to answer is the following: Given a product A, which are the most probable 
products the customer is willing to buy, if he bought A? For example, we want to discover that if a 
customer is buying a large laptop, he might be interested in a backpack, too. Well, to be honest, we 
would love our algorithm to find something more useful than this, but we hope the example made 
the idea clear.

This time, instead of showing results in a pivot table, we want to run a query that returns, for each 
product in a given category, the set of the five most probable products that will be in other customer 
purchases.

Before writing the DAX code, let’s define the variables we want to compute:

■■ Support (A) is the number of customers who bought product A.

■■ Support (A and B) is the number of customers who bought product A together with  
product B. Due to the nature of Contoso, we do not mind when A and B were sold. We  
are only interested in finding that the same customer bought both.

■■ Confidence (A, B) indicates the confidence that a customer who bought A will buy B, too. We 
compute it as Support (A and B) / Support (A).

The first issue in this data model is that the user selects two products (or, more generally, two  
categories of products). A typical question might be “show me what computer accessories (product B)  
are likely to be bought by a customer who is buying a laptop (product A).” In order to let the user 
select different products, we provide two different product tables in the data model.

Note Multiple selection in the same product table would define an OR condition between 
different products, whereas the goal of this analysis is to define an AND condition between 
products bought by the same customer in different operations recorded in the Sales table. 
For this reason, two product tables are necessary.

Because both tables are related to Sales, the two relationships have to be kept inactive. Otherwise, 
when you select two different products in the two tables, all the rows in Sales will disappear because, 
obviously, no single sale can reference two different products at the same time. In Figure 12-16 you 
can see the data model of this example.
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FIGURE 12-16 The relationships with the two Product tables need to be inactive.

The first measure to compute is Support (A). There are many ways to compute Support of a 
 product. The most intuitive one is to count the values of CustomerKey in Sales, in a CALCULATE 
 invocation that activates the correct relationship with product A, as you can see in the following code:

[Support A] := 
COUNTROWS ( 
    CALCULATETABLE ( 
        VALUES ( Sales[CustomerKey] ), 
        USERELATIONSHIP ( Sales[ProductKey], 'Product A'[ProductKey] ) 
    ) 
)

This formula works well if Customer is not a slowly changing dimension, because it counts the cus-
tomer keys, not the customer codes. A better approach is to use SUMMARIZE to retrieve the customer 
keys from the fact table and use them to filter Customer, as in the following code:

[Support A] := 
CALCULATE ( 
    COUNTROWS ( Customer ), 
    CALCULATETABLE ( 
        SUMMARIZE ( Sales, Customer[CustomerKey] ), 
        USERELATIONSHIP ( Sales[ProductKey], 'Product A'[ProductKey] ) 
    ) 
)
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This latter formula has the advantage of clearly separating calculation from filtering: filter hap-
pens in CALCULATETABLE and computation happens in CALCULATE. In this instance, we use a simple 
COUNTROWS to count the customers but, in a real-world scenario, you would count the number of 
distinct customers using the natural key.

Computing Support (A and B) is as easy as using INTERSECT prior to applying the filters to the 
calculation, as you can see in the following code:

[Support A and B] := 
   CALCULATE ( 
       COUNTROWS ( Customer ), 
       INTERSECT ( 
           CALCULATETABLE ( 
               SUMMARIZE ( Sales, Customer[CustomerKey] ), 
               USERELATIONSHIP ( Sales[ProductKey], 'Product A'[ProductKey] ) 
           ), 
           CALCULATETABLE ( 
               SUMMARIZE ( Sales, Customer[CustomerKey] ), 
               USERELATIONSHIP ( Sales[ProductKey], 'Product B'[ProductKey] ) 
           ) 
       ) 
   )

INTERSECT works on tables containing only Customer[CustomerKey]. It returns a table of the  customer 
keys who bought both products. You use the intersection result as a filter argument to CALCULATE.

Note If you want the customers who bought product A but not B, this formula can be 
 easily modified to return Support (A and NOT B) by using EXCEPT instead of INTERSECT.  
As usual, set functions in DAX provide extreme flexibility to your formulas. This is the 
 reason why they are definitely worth learning.

At this point, you can easily define Confidence using DIVIDE:

[Confidence] := DIVIDE ( [Support A and B], [Support A] )

Now that we have seen the code of the measures, let’s go back to our initial scenario: We want 
to run a query that returns, for each product of a given subcategory, the set of products of another 
subcategory that is more likely to be in the itemset. Here is the query:
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CALCULATETABLE ( 

    GENERATE ( 

        ADDCOLUMNS ( 

            VALUES ( 'Product A'[Product Name A] ), 

            "Support A", [Support A] 

        ), 

        TOPN ( 

            5, 

            ADDCOLUMNS ( 

                VALUES ( 'Product B'[Product Name B] ), 

                "Support A and B", [Support A and B], 

                "Confidence", ROUND ( DIVIDE ( [Support A and B], [Support A] ) * 100, 2 ) 

            ), 

            [Confidence] 

        ) 

    ), 

    'Product A'[Category A] = "Computers", 

    'Product A'[Subcategory A] = "Laptops", 

    'Product B'[Category B] = "Computers", 

    'Product B'[Subcategory B] = "Computers Accessories" 

)

These are the steps executed by this query:

1. The outermost CALCULATETABLE sets the filter on category and subcategory of both  Product 
A and Product B (if customer buys a laptop, we want to see which accessories he or she is 
likely to buy).

2. The first ADDCOLUMNS generates a table with all products in the Laptop subcategory, adding 
a column that computes Support (A). It is useful to compute the column at this stage, because 
the number of rows is still small.

3. GENERATE iterates the list of products and, for each one, it creates a new table containing the 
top five products in Product B (the accessories), sorted by Confidence.

The result of this query is the list of all products in the Laptop subcategory and, for each, the five 
most likely itemset of two products, as you can see in Figure 12-17.

FIGURE 12-17 This is the result of the itemset detection on the Contoso database.



 CHAPTER 12 Advanced relationships 397

The important concepts you learned in this example are as follows:

■■ The use of inactive relationships if—as in this case—you need to add technical tables to the 
model and you then want to activate relationships on demand.

■■ Use of set functions to find complex conditions, such as the one we used on customers, mixing 
the two on-demand relationships with INTERSECT. In other scenarios, you can use different set 
functions to compute different sets.
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C H A P T E R  1 3

The VertiPaq engine

At this point in the book, you have a solid understanding of the DAX language. The next step, 
apart from the necessary experience that you need to gain by yourself, is not only being able 

to write DAX, but also to write efficient DAX. Writing efficient DAX, that is, code that runs at its best 
 possible speed, requires you to understand the internals of the engine. The next chapters aim to 
 provide the essential knowledge to measure and improve performance of DAX code.

More specifically, this chapter is dedicated to the internal architecture of the VertiPaq engine: the 
in-memory columnar database that stores and hosts your model. 

Before continuing with the dissertation, it is worth mentioning a quick note. The official name of 
the engine on top of which DAX runs is “xVelocity in-memory Analytical Engine.” The name appeared 
later, when the engine was ready to market. During its development, it was code-named “VertiPaq.” 
Because of the late change in the name, many white papers referred to the engine as the VertiPaq 
engine, and all the early adopters learned its name as VertiPaq. Moreover, internally, the engine is still 
known as VertiPaq (in fact, as you learn later, its query engine executes VertiPaq queries, not xVelocity 
queries). In order to avoid confusion in sentences such as “the xVelocity engine executes a VertiPaq 
query,” which mixes both names in a single sentence, we decided to use VertiPaq only.

There is another important note to our readers. Starting from this chapter, we somewhat deviate 
from DAX and begin to discuss some low-level technical details about the implementation of DAX 
and the VertiPaq engine. Although this is an important topic, you need to be aware of two facts:

■■ Implementation details change often. We did our best to show information at a level which is 
not likely to change soon, carefully balancing detail level and usefulness with consistency over 
time. The most up-to-date information will always be available in blog posts and articles on 
the web.

■■ All the considerations about the engine and optimization techniques are useful if you rely on 
the VertiPaq engine. In case you are using DirectQuery, then the content of the last chapters 
of this book is nearly useless in your specific scenario. However, we suggest that you read and 
understand it anyway, because it shows many details that will help you in choosing the best 
engine for your analytical scenario.
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Understanding database processing

DAX runs in SQL Server Analysis Services (SSAS) Tabular, Power BI service (both on server and on the 
local Power BI Desktop), and in the Power Pivot for Microsoft Excel add-in. Technically, Power Pivot 
for Excel runs a local instance of SSAS Tabular, whereas Power BI uses a separate process running a 
special instance of Analysis Services. Thus, speaking about different engines is somewhat artificial: 
Power Pivot is SSAS, even if it runs in a “hidden mode” inside Excel. In this book, we make no differ-
ences between these engines and, when we speak about SSAS, you might always mentally replace 
SSAS with Power Pivot or Power BI. If there are differences worth highlighting, then we will note them 
in the specific section.

When SSAS loads the content of a source table in memory, we say that it processes the table. This 
happens during the process operation of SSAS or the data refresh in Power Pivot for Excel and Power 
BI. During processing, the engine reads the content of your data source and transforms it in the 
 internal VertiPaq data structure.

The steps that happen during processing are as follows:

1. Reading of the source dataset, transformation into a columnar data structure of VertiPaq, 
encoding and compressing each column.

2. Creation of dictionaries and indexes for each column.

3. Creation of the data structures for relationships.

4. Computation and compression of all the calculated columns.

The last two steps are not necessarily sequential. In fact, you can create a relationship based on 
a calculated column, or have calculated columns that depend on a relationship because they use 
RELATED or CALCULATE; SSAS creates a complex graph of dependencies to execute the steps in the 
correct order.

In the next sections, you learn many more details about these steps and the format of internal 
structures created by SSAS during the transformation of the data source into the VertiPaq model.

Introduction to columnar databases

VertiPaq is an in-memory columnar database. Being in-memory means that all of the data handled 
by a model reside in RAM, and it is an easy concept to learn. We briefly introduced the concept of a 
columnar database in Chapter 5, “Understanding CALCULATE and CALCULATETABLE.” Now it is time 
to perform a deeper analysis of it.

We think of a table as a list of rows, where each row is divided into columns. Let’s take, as an 
 example, the Product table in Figure 13-1.
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FIGURE 13-1 The figure shows the Product table, with four columns and nine rows.

If you think of a table as a set of rows, then you are using the most natural visualization of a 
table structure, also known as a row store. In a row store, data is organized in rows and, when stored 
in memory, you might think that the value of the column Name in the first row is adjacent to the 
 columns ID and Color in the same row. On the other hand, the column Name in the second row is 
slightly farther from Name in the first row because, in the middle, there are Color, Unit Price in the 
first row, and ID in the second row.

For example, if you need to compute the sum of Unit Price, you have to scan the entire table, 
 reading many values that you are not interested in seeing. You can imagine that scanning the 
memory of the database sequentially: in order to read the first value of Unit Price, you have to read 
(and skip) ID, Name, and Color of the first row. Only then you will find an interesting value. The same 
process repeats for all the rows: You need to read and ignore many columns to find the interesting 
values to sum.

Reading and ignoring values takes time. In fact, if we asked you to compute the sum of Unit Price, 
you would not follow that algorithm. Instead, as a human being, you would probably scan the first 
row searching for the position of Unit Price, and then move your eyes vertically, reading only the 
 values one at a time and mentally accumulating their values to produce the sum. The reason for this 
very natural behavior is that you save time by reading vertically instead of on a row-by-row basis.

In a columnar database, data is organized in such a way to optimize vertical scanning. To obtain 
this result, you need a way to make the different values of a column adjacent one to the other. In 
Figure 13-2 you can see the same Product table as organized by a columnar database.
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FIGURE 13-2 The Product table organized on a column-by-column basis.

When stored in a columnar database, each column has its own data structure, and it is physically 
separated from the others. Thus, the different values of Unit Price are adjacent one to the other and 
distant from Color, Name, and ID.

On this data structure, computing the sum of Unit Price is much easier, because you  immediately 
go to the column containing the Unit Price and then find, very near, all the values you need to 
 perform the computation. In other words, you do not have to read and ignore other column values: In 
a single scan, you obtain only useful numbers and you can quickly aggregate them.

Now, imagine that, instead of asking you the sum of Unit Price, we asked you to compute the 
sum of Unit Price for only the Red products. Try that before you continue reading; it will help in 
 understanding the algorithm. 

This is not so easy anymore, because you cannot obtain such a number by simply scanning the 
Unit Price column. What you probably did is a scan of the Color column and, whenever it was Red, you 
grabbed the corresponding value of Unit Price. At the end, you summed up all the values to compute 
the result. This algorithm, although very natural, required you to constantly move your eyes from 
one column to another, possibly guiding your finger to keep the last scanned position of Color. It is 
 definitely not an optimized way of computing the value! A better way, that only computers use, is to 
first scan the Color column, find the row numbers where the color is Red and then, once you know the 
row numbers, scan the Unit Price column summing only the rows you identified in the previous step.

This last algorithm is much better, because it lets you perform one scan of the first column and 
one scan of the second column, always accessing memory locations that are adjacent one to the other 
(apart from the jump between the scan of the first and second column).

For a more complex expression, such as the sum of all products that are either Blue or Black 
 Console with a price higher than USD 50, things are even worse. This time, you have no chance of 
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scanning the column one at a time, because the condition depends on many columns. As usual, if you 
try it on paper, it helps in understanding it better.

The simplest algorithm to produce such a result is to scan the table not on a column basis but, 
instead, on a row basis. You probably scanned the table row by row, even if the storage organization 
is column by column. Although it is a very simple operation when executed on paper by a human, the 
same operation is extremely expensive if executed by a computer in RAM, because it requires a lot of 
random reads of memory, leading to a worse performance than if computed doing a sequential scan.

Columnar databases provide very quick access to a single column but, as soon as you need a 
 calculation that involves many columns, they need to spend some time—after having read the 
 column content—to reorganize the information in such a way that the final expression can be 
computed. Even if this example was a very simple one, it is already very useful to highlight the most 
important characteristics of column stores:

■■ Single-column access is very fast, because it reads a single block of memory, and then it 
 computes whatever aggregation you need on that memory block.

■■ If an expression uses many columns, the algorithm is more complex because it requires the 
engine to access different memory areas at different times, keeping track of the progress in 
some temporary area.

■■ The more columns you need to compute an expression, the harder it becomes to produce a 
final value, up to a point where it is easier to rebuild the row storage out of the column store 
to compute the expression.

Column stores aim to reduce the read time. However, they spend more CPU cycles to rearrange 
the data when many columns from the same table are used. Row stores, on the other hand, have a 
more linear algorithm to scan data, but they result in many useless reads. As a general rule, reducing 
reads at the cost of increasing CPU usage is a good deal, because with modern computers it is always 
easier (and cheaper) to increase the CPU speed versus reducing I/O (or memory access) time.

Moreover, as you learn in the next sections, columnar databases have more options to reduce the 
amount of time spent scanning data, that is, compression.

Understanding VertiPaq compression

In the previous section, you learned that VertiPaq stores each column in a separate data  structure. 
This simple fact allows the engine to implement some extremely important compressions and 
 encoding that you are about to learn in this section.

Note Please note that the actual details of the compression algorithm of VertiPaq are 
proprietary and, of course, we cannot publish them in a book. Yet what we explain in this 
chapter is already a good approximation of what really happens in the engine and you can 
use it, to all effects, to understand how the VertiPaq engine stores data.
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VertiPaq compression algorithms aim to reduce the memory footprint of your data model. 
 Reducing the memory usage is a very important task for two very good reasons:

■■ A smaller model makes a better use of your hardware. Why spend money on 1 TB of RAM 
when the same model, once compressed, can be hosted in 256 GB? Saving RAM is always a 
good option, if feasible.

■■ A smaller model is faster to scan. As simple as this rule is, it is very important when  speaking 
about performance. If a column is compressed, the engine will scan less RAM to read its 
 content, resulting in better performance.

Understanding value encoding
Value encoding is the first kind of encoding that VertiPaq might use to reduce the memory of a 
column. Imagine you have a column containing the price of products, stored as integer values. The 
column contains many different values and, to represent all of them, you need a defined number of 
bits.

In the Figure 13-3 example, the maximum value of Unit Price is 216. Therefore, you need at least 8 
bits to store each value. Nevertheless, by using a simple mathematical operation, you can reduce the 
storage to 5 bits.

FIGURE 13-3 By using simple mathematical operations, VertiPaq can reduce the number of bits needed for a 
column.



 CHAPTER 13 The VertiPaq engine 405

In the example, VertiPaq discovered that by subtracting the minimum value (194) from all the 
values of the column, it could modify the range of the column, reducing it to a range from 0 to 22. 
Storing numbers up to 22 requires less bits than storing numbers up to 216. While 3 bits might seem 
a very small saving, when you multiply this for a few billion rows, it is easy to see that the difference 
can be an important one.

The VertiPaq engine is much more sophisticated than this. It can discover mathematical 
 relationships between the values of a column and, when it finds them, it can use them to modify 
the storage, reducing its memory footprint. Obviously, when using the column, it has to re-apply 
the transformation in the opposite direction to again obtain the original value (depending on the 
 transformation, this can happen before or after aggregating the values). Again, this will increase the 
CPU usage and reduce the amount of reads, which, as we already discussed, is a very good option.

Value encoding happens only for integer columns because, obviously, it cannot be applied on 
strings or floating-point values. Please consider that VertiPaq stores the currency data type of DAX in 
an integer value.

Understanding dictionary encoding
Dictionary encoding is another technique used by VertiPaq to reduce the number of bits required to 
store a column. Dictionary encoding builds a dictionary of the distinct values of a column and then it 
replaces the column values with indexes to the dictionary. Let’s see this with an example. In Figure 13-4 
you can see the Color column, which uses strings and, thus, cannot be value-encoded.

FIGURE 13-4 Dictionary encoding consists of building a dictionary and replacing values with indexes.

When VertiPaq encodes a column with dictionary encoding, it

■■ Builds a dictionary, containing the distinct values of the column.

■■ Replaces the column values with integer numbers, where each number is the dictionary index 
of the original value.
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There are some advantages in using dictionary encoding:

■■ All columns contain only integer values; this makes it simpler to optimize the internal code of 
the engine. Moreover, it basically means that VertiPaq is datatype independent.

■■ The number of bits used to store a single value is the minimum number of bits necessary to 
store an index entry. In the example provided, having only four different values, 2 bits are 
 sufficient.

These two aspects are of paramount importance for VertiPaq. It does not matter whether you use 
a string, a 64-bit integer, or a floating point to represent a value. All these datatypes will be  dictionary 
encoded, providing the same performance, both in terms of speed of scanning and of storage 
space. The only difference might be in the size of the dictionary, which is typically very small when 
 compared with the size of the column itself.

The primary factor to determine the column size is not the datatype, but it is the number of 
distinct values of the column. We refer to the number of distinct values of a column as its cardinality. 
Repeating a concept so important is always a good thing: Of all the various factors of an individual 
column, the most important one when designing a data model is its cardinality.

The lower the cardinality, the smaller the number of bits required to store a single value and, as a 
consequence, the smaller the memory footprint of the column. If a column is smaller, not only will it 
be possible to store more data in the same amount of RAM, but it will also be much faster to scan it 
whenever you need to aggregate its values in a DAX expression.

Understanding Run Length Encoding (RLE)
Dictionary encoding and value encoding are two very good alternative compression techniques. 
However, there is another complementary compression technique used by VertiPaq: Run Length 
Encoding (RLE). This technique aims to reduce the size of a dataset by avoiding repeated values. 
For example, consider a column containing the calendar quarter of a sale, stored in the Sales table. 
This column might have the string “Q1” repeated many times in contiguous rows, for all the sales in 
the same quarter. In such a case, VertiPaq avoids storing repeating values and replaces them with a 
slightly more complex structure that contains the value only once, with the number of contiguous 
rows having the same value, as you can see in Figure 13-5.

In Figure 13-5, you see Quarter, Start, and Count. In reality, Start is not required because VertiPaq 
can compute it by summing all the previous values of Count, again saving precious bytes of RAM.

RLE’s efficiency strongly depends on the repetition pattern of the column. Some columns will 
have the same value repeated for many rows, resulting in a great compression ratio. Some others, 
with quickly changing values, will produce a lower compression ratio. Sorting of data is extremely 
 important in order to improve the compression ratio of RLE, as you will see later in this chapter.
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FIGURE 13-5 RLE replaces repeating values with the number of contiguous rows with the same value.

Finally, you might have a column in which content changes so often that, if you try to compress 
it using RLE, you end up using more space than its original one. Think, for example, of the primary 
key of a table. It has a different value for each row, resulting in an RLE version larger than the  column 
itself. In such a case, VertiPaq skips the RLE compression and stores the column as it is. Thus, the 
 VertiPaq storage of a column will never exceed the original column size. At worst, it is the same.

In the example, we have shown RLE working on the Quarter column containing strings. In reality, 
RLE processes the already dictionary-encoded version of the column. In fact, each column can have 
both RLE and dictionary or value encoding. Therefore, the VertiPaq storage for a column compressed 
with dictionary encoding consists of two distinct entities: the dictionary and the data rows. The latter 
is the RLE-encoded result of the dictionary-encoded version of the original column, as you can see in 
Figure 13-6.
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FIGURE 13-6 RLE is applied to the dictionary-encoded version of a column.

VertiPaq applies RLE also to value-encoded columns. In this case, obviously, the dictionary is 
 missing because the column already contains value-encoded integers.

The factors to consider working with a Tabular model, regarding its compression ratio, are, in order 
of importance:

■■ The cardinality of the column, which defines the number of bits used to store a value.

■■ The number of repetitions, that is, the distribution of data in a column. A column with many 
repeated values will be compressed more than a column with very frequently changing ones.

■■ The number of rows in the table.

■■ The datatype of the column (it affects only the dictionary size).

Given all these considerations, you can see that it is nearly impossible to predict the compression 
ratio of a table. Moreover, while you have full control over some aspects of a table (you can limit the 
number of rows and change the datatypes), they are the least important ones. Yet as you will learn in 
the next chapter, you can work on cardinality and repetitions too, to improve the performance of a 
model.

Finally, it is worth noting that if you reduce the cardinality of a column, you are also increasing 
the chances of repetitions. For example, if you store a time column at the second granularity, then 
you have up to 86,400 distinct values in the column. If, on the other hand, you store the same time 
column at the hour granularity, then you have not only reduced the cardinality, but you have also 
introduced repeating values (3.600 seconds converts to the same hour), resulting in a much better 
compression ratio. However, changing the datatype from DateTime to Integer or also String has an 
irrelevant impact on the column size.
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Understanding re-encoding
SSAS has to decide which algorithm to use in order to encode each column. Specifically, it needs to decide 
whether to use value or dictionary encoding. In reality, the patented algorithms used by SSAS are much 
more complex and this description is a simplification of them, yet it is enough to get a solid understanding. 
Anyway, how does SSAS choose the best way to compress a column? It reads a sample of rows during the 
first scan of the source and, depending on the values found, it chooses an algorithm.

■■ If the datatype of the column is not integer, then the choice is straightforward: it goes for 
dictionary encoding.

■■ For integer values, it uses some heuristics, for example:

• If the numbers in the column increase linearly, it is probably a primary key, and value 
 encoding is the best option.

• If all numbers are in a defined range of values, then value encoding is the way to go.

• If the numbers are in a very wide range of values, with values very different from another, 
then dictionary encoding is the best choice.

Once the decision is made, SSAS starts to compress the column using the chosen algorithm. 
 Unfortunately, it might have made the wrong decision and discover it only very late during 
 processing. For example, SSAS might read a few million rows where the values are in the range 
100–201, so that value encoding is the best choice. After those millions of rows, suddenly an  outlier 
appears, such as a large number like 60,000,000. Obviously, the choice was wrong because the 
 number of bits needed to store such a large number is huge. What to do then? Instead of continuing 
with the wrong choice, SSAS can decide to re-encode the column. This means that the whole column 
is re-encoded using, in this case, dictionary encoding. This process might last for a long time, because 
it needs to reprocess the whole column.

For very large datasets, where processing time is important, a best practice is to provide to SSAS a 
good sample of data distribution in the first set of rows it reads, to reduce re-encoding to a minimum. 
You do so by providing a good sample in the first partition processed.

Finding the best sort order
As we already said in the previous pages, RLE’s efficiency strongly depends on the sort order of the 
table. Obviously, all the columns in the same table are sorted in the same way because, at some point 
during the querying, VertiPaq might have to match different columns for the same row. So in large 
tables it could be important to determine the best sorting of your data to improve efficiency of RLE 
and reduce the memory footprint of your model.

When SSAS reads your table, it tries different sort orders to improve the compression. In a table 
with many columns, this is a very expensive operation. SSAS then sets an upper limit to the time it can 
spend finding the best sort order. The default can change with different versions of the engine, cur-
rently it is 10 seconds per million rows. You can modify its value in the ProcessingTimeboxSecPerMRow 
entry in the configuration file of the SSAS service. If using Power Pivot, you cannot change this value.
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Note SSAS searches for the best sort order in data using a heuristic algorithm that 
 certainly also considers the physical order of the rows it receives. For this reason, even if 
you cannot force the sort order used by VertiPaq for RLE, you can provide to the engine 
data sorted in an arbitrary way. The VertiPaq engine will certainly include such a sort order 
in the options to consider.

In order to obtain the maximum compression, you can set the value to 0, which means SSAS stops 
searching only when it finds the best compression factor. The benefit in terms of space usage and 
query speed can be very high but, at the same time, processing will take much longer.

Generally, you should try to put the least changing columns first in the sort order, because they 
are likely to generate many repeating values. Keep in mind, anyway, that finding the best sort order 
is a very complex task, and it makes sense to spend time on it only when your data model is really 
a large one (in the order of a few billion rows). Otherwise, the benefit you get from these extreme 
 optimizations is limited.

Once all the columns are compressed, SSAS completes the processing by building calculated 
columns, hierarchies, and relationships. Hierarchies and relationships are additional data structures 
needed by VertiPaq to execute queries, whereas calculated columns are added to the model by using 
DAX expressions.

Calculated columns, like all other columns, are compressed after they are computed. Nevertheless, 
they are not exactly the same as standard columns. In fact, they are compressed during the final stage 
of processing, when all the other columns have already finished their compression. Consequently, 
VertiPaq does not consider them when choosing the best sort order for your table.

Imagine you create a calculated column that results in a Boolean value. Having only two values, it 
can be compressed very well (1 bit is enough to store a Boolean value) and it is a very good  candidate 
to be first in the sort order list, so that the table shows first all the TRUE values and later only the 
FALSE ones. But, being a calculated column, the sort order is already defined and it might be the case 
that, with the defined sort order, the column frequently changes its value. In such a case, the column 
 results in less-than-optimal compression.

Whenever you have the chance to compute a column in DAX or in SQL, keep in mind that 
 computing it in SQL results in slightly better compression. Obviously, many other factors may drive 
you to choose DAX instead of SQL to calculate the column. For example, the engine automatically 
computes a calculated column in a large table depending on a column in a small table, whenever 
such a small table has a partial or full refresh. This happens without having to reprocess the entire 
large table, which would be necessary if the computation was in SQL. If you are seeking for optimal 
compression, this is something you have to consider.

Understanding hierarchies and relationships
As we said in the previous sections, at the end of table processing, SSAS builds two additional data 
structures: hierarchies and relationships.
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Hierarchies are of two types: attribute hierarchies and user hierarchies. They are data structures 
used to improve performance of MDX queries. Because DAX does not have the concept of hierarchy 
in the language, hierarchies are not interesting for the topics of this book.

Relationships, on the other hand, play an important role in the VertiPaq engine and, for some 
 extreme optimizations, it is important to understand how they work. Later in this chapter, we will 
cover the role of relationships in a query. Here we are only interested in defining what relationships 
are, in terms of VertiPaq.

A relationship is a data structure that maps IDs in one table to row numbers in another table. For 
example, consider the columns ProductKey in Sales and ProductKey in Products, used to build a relation-
ship between the two tables. Product[ProductKey] is a primary key. You know that it used value encoding 
and no compression at all, because RLE could not reduce the size of a column without duplicated values. 
On the other end, Sales[ProductKey] is likely dictionary encoded and compressed, because it probably 
contains many repetitions. The data structures of the two columns are completely different.

Moreover, because you created the relationship, VertiPaq knows that you are likely to use it very 
often, placing a filter on Product and expecting to filter Sales, too. If every time it needs to move a 
filter from Product to Sales, VertiPaq had to retrieve values of Product[ProductKey], search them in the 
dictionary of Sales[ProductKey], and finally retrieve the IDs of Sales[ProductKey] to place the filter, then 
it would result in slow queries.

To improve query performance, VertiPaq stores relationships as pairs of IDs and row numbers. 
Given the ID of a Sales[ProductKey], it can immediately find the corresponding rows of Product that 
match the relationship. Relationships are stored in memory, as any other data structure of VertiPaq. In 
Figure 13-7 you can see how the relationship between Sales and Product is stored.

FIGURE 13-7 The figure shows the relationship between Sales and Product.
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Understanding segmentation and partitioning

As you might imagine, compressing a table of several billion rows in a single step would be extremely 
memory-intensive and time-consuming. In fact, the table is not processed as a whole. Instead, during 
processing SSAS reads it into segments that, by default, contain 8 million rows each. When a segment 
is completely read, the engine starts to compress it while, in the meantime, it reads the next segment.

You can configure the segment size on SSAS using the DefaultSegmentRowCount entry in the 
configuration file of the service (or in the server properties in Management Studio). In Power Pivot, 
the segment size has a fixed value of 1 million rows. You cannot change it, because Power Pivot is 
optimized for smaller datasets.

Segmentation is important for several reasons:

■■ When querying a table, VertiPaq uses the segments as the basis for parallelism: it uses one 
core per segment when scanning a column. By default, SSAS always uses one single thread to 
scan a table with 8 million rows or less. You start observing parallelism in action only on much 
larger tables.

■■ The larger the segment, the better the compression. Having the option of analyzing more 
rows in a single compression step, VertiPaq can achieve better compression levels. On very 
large tables, it is important to test different segment sizes and measure the memory usage, so 
to achieve optimal compression. Keep in mind that increasing the segment size can negatively 
affect processing time: the larger the segment, the slower the processing.

■■ Although the dictionary is global to the table, bit-sizing happens at the segment level. Thus, if 
a column has 1,000 distinct values but, in a specific segment, only two of them are used, then 
that column will be compressed to a single bit for that segment.

■■ If segments are too small, then the parallelism at query time is increased. This is not always 
a good thing. In fact, while it is true that scanning the column is faster, VertiPaq needs more 
time at the end of the scan to aggregate partial results computed by the different threads. If 
a partition is too small, then the time required for managing task switching and final aggre-
gation is more than the time needed to scan the data, with a negative impact to the overall 
query performance.

During processing, the first segment has a special treatment if the table has only one partition. In 
fact, the first segment can be larger than DefaultSegmentRowCount. VertiPaq reads twice the size of 
DefaultSegmentRowCount and starts to segment a table only if it contains more rows (but remember 
that this does not apply to a table with more than one partition). Therefore, a table with 10 million 
rows will be stored as a single segment, whereas a table with 20 million rows will use three segments: 
two containing 8 million rows, and one with only 4 million rows.

Segments cannot exceed the partition size. If you have a partitioning schema on your model that 
creates partitions of only 1 million rows, then all of your segments will be smaller than 1 million rows 
(namely, they will be same as the partition size). Over-partitioning of tables is a very common mistake of 
naïve VertiPaq users: remember that creating too many small partitions can only lower the performance.
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Using Dynamic Management Views

SSAS lets you discover all the information about the data model using Dynamic Management Views 
(DMV). DMVs are extremely useful to explore how your model is compressed, the space used by 
 different columns and tables, the number of segments in a table, or the number of bits used by 
 columns in different segments.

You can run DMVs from inside SQL Server Management Studio or, better, using DAX Studio. 
 Moreover, DAX Studio offers you the list of all DMV in a simpler way, without the need to remember 
them or to reopen this book looking for the DMV name you forgot. You can also use the free tool 
VertiPaq Analyzer (http://www.sqlbi.com/tools/vertipaq-analyzer/ ) to automatically retrieve data from 
DMVs and see them in useful reports.

Although DMVs use an SQL-like syntax, you cannot use full SQL syntax to query them, because 
they do not run inside SQL Server, they are a convenient way to discover the status of SSAS and to 
gather information about data models. Moreover, DMVs were created when SSAS supported only 
Multidimensional, so the information provided is not optimized for Tabular. For example, when you 
query the column information, you get as a result CUBE_NAME, MEASURE_GROUP_NAME, and 
 DIMENSION_NAME, although in VertiPaq there is no concept of cube, measure group, or dimension.

There are different DMVs, divided in two main categories:

■■ SCHEMA views. These return information about SSAS metadata, such as database names, 
tables, and individual columns. They do not provide statistical information. Instead, they are 
used to gather information about datatypes, names, and similar data.

■■ DISCOVER views. They are intended to gather information about the SSAS engine and/or 
 discover statistics information about objects in a database. For example, you can use views in 
the discover area to enumerate the DAX keywords, the number of connections and sessions 
that are currently open, or the traces running.

In this book, we do not want to describe the details of all those views, because they would be 
 off-topic. If you need more information, you can find it in Microsoft documentation on the web. 
 Instead, we want to give some hints and point out the most useful DMVs related to databases used  
by DAX, which are in the DISCOVER area.

Moreover, while many DMVs report useful information in many columns, in this book we describe 
the most interesting ones related to the internal structure. For example, there are DMVs to discover 
the datatypes of all columns, which is not interesting information from the modeling point of view 
(it might be useful for client tools, but it is useless for the modeler of a solution). On the other hand, 
knowing the number of bits used for a column in a segment is very technical and definitely useful to 
optimize a model, so we highlighted it.

http://www.sqlbi.com/tools/vertipaq-analyzer/
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Using DISCOVER_OBJECT_MEMORY_USAGE
The first, and probably the most useful DMV lets you discover the memory usage of all the objects in 
the SSAS instance. This DMV returns information about all the objects in all the databases in the SSAS 
instance, and it is not limited to the current database.

SELECT * FROM $SYSTEM.DISCOVER_OBJECT_MEMORY_USAGE

The output of the DMV is a table containing many rows that are very hard to read, because the 
structure is a parent/child hierarchy that starts with the instance name and ends with individual 
 column information.

The most useful columns in the dataset are as follows:

■■ OBJECT_ID: Is the ID of the object of which it is reporting memory usage. By itself, it is not a 
key for the table. You need to combine it with the OBJECT_PARENT_PATH to make it a unique 
value working as a key.

■■ OBJECT_PARENT_PATH: Is the full path of the parent in the parent/child hierarchy.

■■ OBJECT_MEMORY_NON_SHRINKABLE: Is the amount of memory used by the object.

As we said, the raw dataset is nearly impossible to read. However, you can build a Power Pivot data 
model on top of this query, implementing the parent/child hierarchy structure and browse the full 
memory map of your instance. Kasper De Jonge published a workbook on his blog that does exactly 
this, and you can find it here: http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-
analysis-server-instance/

Using DISCOVER_STORAGE_TABLES
The DISCOVER_STORAGE_TABLES DMV is useful to quickly discover tables in a model. It returns only 
the tables of the current model. In reality, despite its name, it returns tables, hierarchies, and relation-
ships, but the important information is the set of tables.

The most important columns are as follows:

■■ DIMENSION_NAME: Even if it is named “dimension,” for Tabular models it is the table name.

■■ TABLE_ID: The internal ID of the table, which might be useful to create relationships, because it 
contains the GUID used by SSAS as a suffix on most table names. Hierarchies and relationships, 
reported by the same DMV, have an ID starting with H$ and R$, respectively.

■■ TABLE_PARTITIONS_COUNT: This represents the number of partitions of the table.

■■ ROWS_COUNT: It is the total number of rows of the table.

http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance/
http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance/
http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance/
http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance/
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A typical usage of this DMV is to run a query similar to the following one, which returns table 
name and number of rows for only the tables (by checking the first characters of DIMENSION_NAME 
and TABLE_ID).

SELECT  
    DIMENSION_NAME AS TABLE_NAME,  
    ROWS_COUNT AS ROWS_IN_TABLE 
FROM  $SYSTEM.DISCOVER_STORAGE_TABLES 
WHERE DIMENSION_NAME = LEFT ( TABLE_ID, LEN ( DIMENSION_NAME ) ) 
ORDER BY DIMENSION_NAME

Note The previous query might not work on Power BI Designer and Power Pivot, because 
the LEFT and LEN functions could be not supported. Please consider filtering the result of 
the DMV in a different way in case you cannot use this technique to obtain only the rows 
you want.

Using DISCOVER_STORAGE_TABLE_COLUMNS
This DMV gives you detailed information about individual columns, either in tables or in relationships 
and hierarchies. It is useful to discover, for example, the size of the dictionary, its datatype, and the 
kind of encoding used for the column.

Most of the information is useful for columns, while it is of less use for hierarchies (either user or 
system hierarchies). Specifically, for hierarchies, the only useful information is the total size, because 
other attributes depend directly on the columns they use.

The most relevant columns are as follows:

■■ DIMENSION_NAME: Even if it is named “dimension,” for Tabular models it is the table name.

■■ TABLE_ID: The internal ID of the table, which might be useful to create relationships, because it 
contains the GUID used by SSAS as a suffix on most table names. Hierarchies and relationships, 
reported by the same DMV, have an ID starting with H$ or R$.

■■ COLUMN_ID: For columns, it is the column name, while for hierarchies it indicates ID_TO_POS 
or POS_TO_ID, which are internal names for hierarchy structures.

■■ COLUMN_TYPE: Indicates the type of column. Standard columns contain BASIC_DATA, whereas 
hierarchies contain different internal names of no interest for this book.

■■ COLUMN_ENCODING: Indicates the encoding used for the column: 1 stands for hash (diction-
ary encoding), 2 is value encoding.

■■ DICTIONARY_SIZE: Is the size, in bytes, of the dictionary of the column.
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For example, to retrieve table name, column name, and dictionary size of all columns in your 
model, you can run this query:

SELECT 
    DIMENSION_NAME AS TABLE_NAME,  
    COLUMN_ID AS COLUMN_NAME,  
    DICTIONARY_SIZE AS DICTIONARY_SIZE_BYTES 
FROM   
    $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMNS 
WHERE COLUMN_TYPE = 'BASIC_DATA'

Using DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS
Among the various DMVs, this is the most detailed one, because it reports information about indi-
vidual segments and partitions of columns. Its content is very detailed and might be overwhelming. 
Thus, it makes sense to use this information only when you are interested in squeezing the size of a 
large table, or in performing some kind of extreme optimization. 

The most relevant columns are as follows:

■■ DIMENSION_NAME: Even if it is named “dimension,” for Tabular models it is the table name.

■■ TABLE_ID: The internal ID of the table.

■■ COLUMN_ID: For columns, it is the column name, whereas for hierarchies it indicates ID_TO_
POS or POS_TO_ID, which are internal names for hierarchy structures.

■■ SEGMENT_NUMBER: The number of the segment reported, zero-based.

■■ TABLE_PARTITION_NUMBER: The number of the partition to which the segment belongs.

■■ RECORDS_COUNT: The number of rows in the segment.

■■ ALLOCATED_SIZE: The size allocated for the segment.

■■ USED_SIZE: The size actually used for the segment.

■■ COMPRESSION_TYPE: Indicates the compression algorithm used for the column in the 
 segment. Its content is private and not documented, because the algorithm is patented.

■■ BITS_COUNT: Number of bits used to represent the column in the segment.

■■ VERTIPAQ_STATE: can be SKIPPED, COMPLETED, or TIMEBOXED: And it indicates if the  engine 
had the option to find the optimal sorting for the segment (COMPLETED), if it used the best 
found during the time it was allowed to use but stopped before finding the optimal one 
(TIMEBOXED), or if the sorting step was skipped (SKIPPED).
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Understanding materialization

Now that you have a basic understanding of how VertiPaq stores data in memory, you need to 
learn what materialization is. Materialization is a step in query resolution that happens when using 
 columnar databases. Understanding when and how it happens is of paramount importance.

In order to understand what materialization is, look at this simple query:

EVALUATE 
ROW ( 
    "Result", COUNTROWS ( SUMMARIZE ( Sales, Sales[ProductKey] ) ) 
)

The result is the distinct count of product keys in the Sales table. Even if we have not yet covered 
the query engine (we will, in Chapter 15, “Analyzing DAX query plans” and Chapter 16,  “Optimizing 
DAX”), you can already imagine how VertiPaq can execute this query. Because the only column 
 queried is ProductKey, it can scan that column only, finding all the values in the compressed  structure 
of the column. While scanning, it keeps track of values found in a bitmap index and, at the end, it 
only has to count the bits that are set. Thanks to parallelism at the segment level, this query can run 
 extremely fast on very large tables and the only memory it has to allocate is the bitmap index to 
count the keys.

The previous query runs on the compressed version of the column. In other words, there is no 
need to decompress the columns and to rebuild the original table to resolve it. This optimizes the 
memory usage at query time and reduces the memory reads.

The same scenario happens for more complex queries, too. Look at the following one:

EVALUATE 
ROW ( 
    "Result", CALCULATE ( 
        COUNTROWS ( Sales ), 
        Product[Brand] = "Contoso" 
    ) 
)

This time, we are using two different tables: Sales and Product. Solving this query requires a bit 
more effort. In fact, because the filter is on Product and the table to aggregate is Sales, you cannot 
scan a single column.

If you are not yet used to columnar databases, you probably think that, to solve the query, you 
have to iterate the Sales table, follow the relationship with Products, and sum 1 if the product brand is 
Contoso, 0 otherwise. Thus, you might think of an algorithm similar to this one:
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EVALUATE 
ROW ( 
    "Result", SUMX ( 
        Sales, 
        IF ( RELATED ( Product[Brand] ) = "Contoso", 1, 0 ) 
    ) 
)

This is a simple algorithm, but it hides much more complexity than expected. In fact, if you 
 carefully think of the columnar nature of VertiPaq, this query involves three different columns:

■■ Product[Brand] used to filter the Product table.

■■ Product[ProductKey] used to follow the relationship between Product and Sales.

■■ Sales[ProductKey] used on the Sales side to follow the relationship.

Iterating over Sales[ProductKey], searching the row number in Products scanning 
Product[ProductKey], and finally gathering the brand in Product[Brand] would be extremely expensive 
and require a lot of random reads to memory, negatively affecting performance. In fact, VertiPaq uses 
a completely different algorithm, optimized for columnar databases.

First, it scans Product[Brand] and retrieves the row numbers where Product[Brand] is Contoso. As 
you can see in Figure 13-8, it scans the Brand dictionary (1), retrieves the encoding of Contoso, and 
finally scans the segments (2) searching for the row numbers where ID equals to 0, returning the 
indexes to the rows found (3).

FIGURE 13-8 The output of a brand scan is the list of rows where Brand equals Contoso.
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At this point, VertiPaq knows which rows in the Product table have the given brand. The relation-
ship between Product and Sales is based on Products[ProductKey] and, at this point VertiPaq knows 
only the row numbers. Moreover, it is important to remember that the filter will be placed on Sales, 
not on Products. Thus, in reality, VertiPaq does not need the values of Products[ProductKey], what it 
really needs is the set of values of Sales[ProductKey], that is, the data IDs in the Sales table, not the 
ones in Product.

You might remember, at this point, that VertiPaq stores relationships as pairs of row numbers in 
Product and data IDs in Sales[ProductKey]. It turns out that this is the perfect data structure to move 
the filter from row numbers in Products to ProductKeys in Sales. In fact, VertiPaq performs a lookup 
of the selected row numbers to determine the values of Sales[ProductKey] valid for those rows, as you 
can see in Figure 13-9.

FIGURE 13-9 VertiPaq scans the product key to retrieve the IDs where brand equals Contoso.

The last step is to apply the filter on the Sales table. Since we already have the list of values of 
Sales[ProductKey], it is enough to scan the Sales[ProductKey] column to transform this list of values 
into row numbers and finally count them. If, instead of computing a COUNTROWS, VertiPaq had to 
perform the SUM of a column, then it would perform another step transforming row numbers into 
column values to perform the last step.

As you can see, this process is made up of simple table scanning where, at each step, you access a 
single column. However, because data in a column is in the same memory area, VertiPaq sequentially 
reads blocks of memory and performs simple operations on it, producing every time as output a 
small data structure that is used in the following step.

The process of resolving a query in VertiPaq is very different from what common sense would 
 suggest. At the beginning, it is very hard to think in terms of columns instead of tables. The 
 algorithms of VertiPaq are optimized for column scanning; the concept of a table is a second-class 
citizen in a columnar database.
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Yet there are scenarios where the engine cannot use these algorithms and reverts to table 
 scanning. Look, for example, at the following query:

EVALUATE 
ROW ( 
    "Result", COUNTROWS ( 
        SUMMARIZE ( Sales, Sales[ProductKey], Sales[CustomerKey] ) 
    ) 
)

This query looks very innocent, and in its simplicity it shows the limits of columnar databases 
(but also a row-oriented database faces the same challenge presented here). The query returns the 
count of unique pairs of product and customer. This query cannot be solved by scanning separately 
ProductKey and CustomerKey. The only option here is to build a table containing the unique pairs of 
ProductKey and CustomerKey, and finally count the rows in it. Putting it differently, this time VertiPaq 
has to build a table, even if with only a pair of columns, and it cannot execute the query directly on 
the original store.

This step, that is, building a table with partial results, which is scanned later to compute the final 
value, is known as materialization. Materialization happens for nearly every query and, by itself, it is 
neither good nor bad. It all depends on the size of the table materialized. In fact, temporary tables 
generated by materialization are not compressed (compressing them would take a lot of time, and 
materialization happens at query time, when latency is extremely important).

It is significant to note that materialization does not happen when you access multiple columns 
from a table. It all depends on what you have to do with those columns. For example, a query such as 
the following does not need any materialization, even if it accesses two different columns:

EVALUATE 
ROW ( 
    "Result", SUMX ( 
        Sales, Sales[Quantity] * Sales[Net Price] 
    ) 
)

VertiPaq computes the sum performing the multiplication while scanning the two columns, so 
there is no need to materialize a table with Quantity and Net Price. Nevertheless, if the expression 
becomes much more complex, or if you need the table for further processing (as it was the case in the 
previous example, which required a COUNTROWS), then materialization might be required.

In extreme scenarios, materialization might use huge amounts of RAM (sometimes more than the 
whole database) and generate very slow queries. When this happens, your only chance is to rewrite 
the calculation or modify the model in such a way that VertiPaq does not need to materialize tables 
to answer your queries. You will see some examples of these techniques in the following chapters of 
this book.
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Choosing hardware for VertiPaq

Choosing the right hardware is critical for a solution based on SSAS. Spending more does not always 
mean having a better machine. This final section in the chapter describes how to choose the right 
server and, as you will see, the perfect Tabular server is not expensive.

Since the introduction of Analysis Services 2012, we helped several companies adopting the 
new Tabular model in their solutions. A very common issue was that, when going into production, 
 performance was lower than expected. Worse, sometimes it was lower than in the development 
 environments. Most of the times, the reason for that was incorrect hardware sizing, especially when 
the server was in a virtualized environment. As you will see, the problem is not the use of a virtual 
machine by itself, but the technical specs of the underlying hardware. A very complete and detailed 
hardware-sizing guide for Analysis Services Tabular is available in the whitepaper “Hardware Sizing 
a Tabular Solution (SQL Server Analysis Services)” (http://msdn.microsoft.com/en-us/library/jj874401.
aspx). The goal of this section is to provide a shorter quick guide that will help you understand the 
issues  affecting many data centers when they have to host a Tabular solution. If you use Power Pivot or 
Power BI Desktop on a personal computer, you might skip details about Non-Uniform Memory Access 
(NUMA) support, but all the other considerations are equally true for choosing the right hardware.

Can you choose hardware?
The first question is whether you can choose the hardware or not. The problem of using a virtual 
machine for a Tabular solution is that often the hardware has already been selected and installed, and 
you can only influence the number of cores and the amount of RAM that are assigned to your server. 
Unfortunately, these parameters are not so relevant for the performance. If you will have these limited 
choices, you should collect information about the CPU model and clock of your host server as soon 
as possible. If you do not have access to this information, ask a small virtual machine running on the 
same host server and run the Task Manager: in the Performance tab, you will see the CPU model and 
the clock rate. With this information, you can predict whether the performance will be worse than 
an average modern laptop. Unfortunately, chances are that you will be in that position, so you have 
to sharpen your political skills to convince the right people that running Tabular on that server is a 
bad idea. If you find that your host server is okay, you will only have to avoid the pitfall of running a 
Virtual Machine on different NUMA nodes (more on that later).

Set hardware priorities
Assuming that you can influence the hardware selection, keep in mind that you have to set priorities 
in this order:

1. CPU Clock and Model

2. Memory Speed

3. Number of Cores

4. Memory Size

http://msdn.microsoft.com/en-us/library/jj874401.aspx
http://msdn.microsoft.com/en-us/library/jj874401.aspx
http://msdn.microsoft.com/en-us/library/jj874401.aspx
http://msdn.microsoft.com/en-us/library/jj874401.aspx
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As you see, disk I/O performance is not in the list, because it is not important at all. There is a 
 condition (paging) where disk I/O affects performance, and we discuss it later in this section.  However, 
you should size the RAM of the system so that you will not have paging at all. Allocate your budget 
on CPU and memory speed, memory size, and do not waste money on disk I/O bandwidth. 

CPU model
The most important factors that affect the speed of code running in the VertiPaq are CPU clock 
and model. Different CPU models might have a different performance at the same clock rate, 
so  considering the clock alone is not enough. The best practice is to run your own benchmark, 
 measuring the different performance in queries that stress the formula engine. An example of such a 
query, on a model derived by Adventure Works, is the following:

EVALUATE 
ROW ( 
    "Test", COUNTROWS ( 
        GENERATE ( 
            TOPN ( 
                8000, 
                CROSSJOIN ( 
                    ALL ( Reseller[ResellerKey] ), 
                    ALL ( Reseller[GeographyKey] ) 
                ), 
                Reseller[ResellerKey] 
            ), 
            ADDCOLUMNS ( 
                SUMMARIZE ( 
                    Sales, 
                    OrderDate[FullDate], 
                    Products[ProductKey] 
                ), 
                "Sales", CALCULATE ( SUM ( Sales[SalesAmount] ) ) 
            ) 
        ) 
    ) 
)

You can download the sample workbook to test this query on your hardware here: http://www.sqlbi.
com/articles/choose-the-right-hardware-for-analysis-services-tabular/. Just open the Excel workbook 
and run the previous query in DAX Studio, measuring the performance (more on this in Chapter 15).

You can try this query (which is intentionally slow and does not produce any meaningful result) 
or similar ones. Using a query of a typical workload for your data model is certainly better, because 
performance might vary on different hardware depending on the memory allocated to materialize 
intermediate results (the query in the preceding code block has a minimal use of memory).

For example, this query runs in 8.1 seconds on an Intel i7-4770K 3.5 GHz, and in 12.4 seconds on 
an Intel i7-2860QM 2.5 GHz. These CPUs run a desktop workstation and a notebook, respectively. 

http://www.sqlbi.com/articles/choose-the-right-hardware-for-analysis-services-tabular/
http://www.sqlbi.com/articles/choose-the-right-hardware-for-analysis-services-tabular/
http://www.sqlbi.com/articles/choose-the-right-hardware-for-analysis-services-tabular/
http://www.sqlbi.com/articles/choose-the-right-hardware-for-analysis-services-tabular/
http://www.sqlbi.com/articles/choose-the-right-hardware-for-analysis-services-tabular/
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Do not presume that a server might run faster. Do your test and look at the results, because they are 
often surprising. If you do not have Excel on the server, you can restore the Power Pivot model on 
Analysis Services Tabular and run the query on SQL Server Management Studio if you do not have 
DAX Studio.

In general, Intel Xeon processors used on a server are E5 and E7 series, and it is very common to 
find clock speed around 2 GHz, even with a very high number of cores available. You should look for 
a clock speed of 3 GHz or more, whenever possible. Another important factor is the L2 and L3 cache 
size: the larger, the better. This is especially important for large tables and relationships between 
tables based on columns that have more than 1 million unique values.

Memory speed
The memory speed is an important factor for VertiPaq. Every operation made by the engine  accesses 
memory at a very high speed. When the RAM bandwidth is the bottleneck, you see CPU usage 
 instead of I/O waits. Unfortunately, we do not have a performance counter that monitors the time 
spent a waiting the RAM access. In Tabular, this amount of time can be relevant and it is hard to 
 measure.

In general, you should get RAM that has at least 1,600 MHz, but if the hardware platform permits 
you should select faster RAM (1,833, 2,133, or 2,400 MHz). At the time of this writing (June 2015), 
1,833 MHz is a fast standard on a server, whereas it is hard to find 2,133 MHz, and impossible to find 
2,400 MHz unless you buy a desktop optimized to play videogames (by the way, did we mention that 
gaming machines are the top performers for VertiPaq?).

Number of cores
VertiPaq splits execution on multiple threads only when the table involved has multiple segments. 
Each segment contains 8 million rows by default (1 million on Power Pivot). If you have eight cores, 
you will not see all of them involved in a query unless you have at least 64 million rows.

For these reasons, scalability over multiple cores is effective only for very large tables. Raising  
the number of cores will improve performance for a single query only when it hits a large table  
(200 million of rows or more). In terms of scalability (number of concurrent users), a higher number of 
cores might not improve performance if users access the same tables (they would contend access to 
shared RAM). A better way to increase the number of concurrent users is to use more servers in a load 
 balancing configuration.

The best practice is to get the maximum number of cores you can have on a single socket,  getting 
the highest clock rate available. It is not good having two or more sockets on the same server. 
 Analysis Services Tabular does not recognize the NUMA architecture, which splits memory between 
different sockets. NUMA requires a more expensive intersocket communication whenever a thread 
running on a socket accesses memory allocated by another socket—you can find more details about 
NUMA architecture in Hardware Sizing a Tabular Solution (SQL Server Analysis Services) at  
http://msdn.microsoft.com/en-us/library/jj874401.aspx.

http://msdn.microsoft.com/en-us/library/jj874401.aspx
http://msdn.microsoft.com/en-us/library/jj874401.aspx
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Memory size
You have to store the entire database in memory. You also need RAM to execute process  operations 
(unless you use a separate process server) and to execute queries. Usually optimized queries do not 
have a high request of RAM, but a single query can materialize temporary tables that could be very 
large (database tables have a high compression rate, whereas materialization of  intermediate tables 
during a single query generates uncompressed data).

Having enough memory only guarantees that your queries will end returning a result, but 
 increasing available RAM does not produce any performance improvement. Cache used by Tabular 
does not increase just because of more RAM available. However, a condition of low available memory 
might affect query performance in a negative way if the server starts paging data. You should simply 
have enough memory to store all the data of your database and to avoid materialization during query 
execution.

Disk I/O and paging
You should not allocate budget on storage I/O for Analysis Services Tabular. This is very  different from 
Multidimensional, where random I/O operation on disk occurs very frequently, especially in certain 
measures. In Tabular, there are no direct storage I/O operations during a query. The only event when 
this might happen is when you have a low memory condition. However, it is less expensive and more 
effective to provide more RAM to a server than trying to improve performance by increasing storage 
I/O throughput when you have a systematic paging caused by low memory available.

Conclusions
You should measure performance before choosing the hardware for SSAS Tabular. It is common to 
observe a server running twice as slow as a development workstation, even if the server is a very 
new one. This is because a server designed to be scalable (especially for virtual machines) does not 
usually perform very well for activities made by a single thread. However, this type of workload is 
very  common in VertiPaq. You will need time and numbers (do your benchmark) to convince your 
 company that a “standard server” could be the weak point of the entire BI solution. Nevertheless, 
before convincing anybody else, keep in mind that you need to convince yourself. In this chapter, we 
gave you some insights about the engine. In Chapter 15, you will learn how to measure performance 
of queries. Take your time and do your tests. We bet they will surprise you.
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C H A P T E R  1 4

Optimizing data models

In the previous chapter, you have seen some of the internals of VertiPaq. This knowledge is  useful 
when you design a data model and you want to optimize it for quick execution of DAX queries. 

While the previous chapter was more a theoretical one, in this chapter we move on to the more 
practical side. In fact, this chapter describes the most important guidelines for saving memory and 
thereby improving performance when creating data models. As you learn here, your main objective 
will be that of reducing the cardinality of columns in order to decrease the dictionary size, improve 
the compression, and speed up any iteration and filter.

The final goal of the chapter is optimizing a model. However, before going there, the first and 
most important skill to learn is being able to measure the pros and cons of each design choice. You 
do not have to follow any rules blindly without being able to evaluate their impact. For this reason, 
the first part of the chapter illustrates how to measure the size of each object of a model in memory, 
so you can evaluate the impact of each optimization, evaluating whether it was worth the effort or 
not.

Before moving on with the description, let us stress once more this important concept: Test all of 
the techniques we show on your specific data model. You already learned how data distribution is 
important in VertiPaq. The very same Sales table, for two different customers, may be compressed 
in different ways because of data distribution. Thus, any technique we show might have a different 
impact on different data models. Do not learn best practices. Instead, learn how to build your own 
best practices by learning different optimization techniques, knowing in advance that not all of them 
will be applicable in your specific scenario.

Gathering information about the data model

The first step for optimizing a data model is gathering information about the cost of the objects you 
have in the database. This section describes the tools and the techniques you have to use in order 
to collect all the data that will help you in prioritizing the possible optimizations of the physical 
 structure.

You can see in Table 14-1 a list of information you should collect from each object in a database.
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TABLE 14-1 Information to collect for each object in a database.

Object Information to collect

Table Number of rows

Column Number of unique values
Size of dictionary
Size of data (total size of all segments)

Hierarchy Size of hierarchy structure

Relationship Size of relationship structure

In general, the size of all the objects strongly depends on the number of unique values in columns 
used or referenced. For this reason, the number of unique values of a column (also known as column 
cardinality) is the single most important information that you should gather from your database.

As you have seen in Chapter 13, “The VertiPaq engine,” you can use Dynamic Management Views 
(DMVs) to retrieve information about the objects in the database. You can query a DMV using a SQL 
syntax that you can run in a connection to Analysis Services from SQL Server Management Studio or 
DAX Studio (which also allows you to connect to a Power Pivot model). For example, you can use this 
DMV query to retrieve the number of rows of each table:

SELECT DIMENSION_NAME, TABLE_ID, ROWS_COUNT 
FROM  $SYSTEM.DISCOVER_STORAGE_TABLES 

The result of this query includes both tables and hierarchies. Every column in a table is, by default, 
a hierarchy that is browsable in MDX queries. In that case, the number in a ROWS_COUNT column 
minus 3 (for internal use) corresponds to the number of unique values of the column corresponding 
to the hierarchy. The following is an example of the result of the previous query:

DIMENSION_NAME TABLE_ID ROWS_COUNT

Currency Currency_dd3bc081-2c2c-4980-a725-5c481e0f6354 105

Currency H$Currency_dd3bc081-2c2c-4980-a725-5c481e0f6354$CurrencyKey 108

Currency H$Currency_dd3bc081-2c2c-4980-a725-5c481e0f6354$CurrencyName 108

Currency H$Currency_dd3bc081-2c2c-4980-a725-
5c481e0f6354$CurrencyAlternateKey 108

Customer Customer_08b41bba-8733-438e-a584-9894998b2f69 18,484

Customer H$Customer_08b41bba-8733-438e-a584-9894998b2f69$MiddleName 46

Customer H$Customer_08b41bba-8733-438e-a584-9894998b2f69$Gender 5

You can filter the information related to the table names by checking whether the first part of the 
TABLE_ID column corresponds to the table name. The SQL support for the DMVs is very  limited and 
depending on the engine running DAX, certain functions might be supported or not. For  example, 
only Analysis Services supports the following query (but neither Microsoft Excel nor Power BI Desktop 
support it):
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SELECT  
    DIMENSION_NAME AS TABLE_NAME,  
    ROWS_COUNT AS ROWS_IN_TABLE 
FROM  $SYSTEM.DISCOVER_STORAGE_TABLES 
WHERE DIMENSION_NAME = LEFT ( TABLE_ID, LEN ( DIMENSION_NAME ) ) 
ORDER BY DIMENSION_NAME

Such a query produces the following result:

TABLE_NAME ROWS_IN_TABLE

Currency 105

Customer 18,484

Date 2,191

Employee 296

Geography 655

Internet Sales 60,398

You can use another query (supported only in Analysis Services) that returns the number of unique 
values in each column, filtering the hierarchies based on initial name and subtracting 3 from the rows 
count, as in the following query:

-- Get number of rows for each column (remove GUID) 
SELECT 
    DIMENSION_NAME AS TABLE_NAME,  
    RIGHT ( TABLE_ID, LEN ( TABLE_ID ) - 40 - LEN ( DIMENSION_NAME ) ) AS COLUMN_NAME, 
    ROWS_COUNT - 3 AS COLUMN_CARDINALITY 
FROM $SYSTEM.DISCOVER_STORAGE_TABLES 
WHERE LEFT ( TABLE_ID, 2 ) = 'H$' 
ORDER BY TABLE_ID

The result is the following:

TABLE_NAME COLUMN_NAME COLUMN_CARDINALITY

Currency CurrencyAlternateKey 105

Currency CurrencyKey 105

Currency CurrencyName 105

Customer AddressLine1 12,797

Customer AddressLine2 166

Customer BirthDate 8,252

Customer LastName 375

Customer Phone 8,890
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Note Analysis Services 2016 introduces the ability to disable the construction of a hierarchy 
on a column basis. In that case, you have to use a DAX query to retrieve the distinct count of 
values in a column.

You can also retrieve the size (in bytes) of the dictionary of each column by using the following 
query:

SELECT 
    DIMENSION_NAME AS TABLE_NAME,  
    COLUMN_ID AS COLUMN_NAME,  
    DICTIONARY_SIZE AS DICTIONARY_SIZE_BYTES 
FROM  $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMNS 
WHERE COLUMN_TYPE = 'BASIC_DATA'

The result is the following:

TABLE_NAME COLUMN_NAME DICTIONARY_SIZE_BYTES

Currency RowNumber 88

Currency CurrencyKey 2,796

Currency CurrencyAlternateKey 18,616

Currency CurrencyName 20,520

Customer RowNumber 88

Customer CustomerKey 598,552

Customer GeographyKey 9,872

In case you cannot use the DMVs, you can run simple DAX queries to retrieve the number of rows 
in a table and the number of unique values in a column, but there is no way to create a generic DAX 
query that retrieves these values for all the tables and columns in a database.

For example, you can evaluate the number of rows in a table using COUNTROWS:

EVALUATE  
ROW (  
    "Rows in Internet Sales",  
    COUNTROWS ( 'Internet Sales' )  
)
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You can get the number of unique values in a column using DISTINCTCOUNT:

EVALUATE  
ROW (  
    "Unique Values in Internet Sales",  
    DISTINCTCOUNT ( 'Internet Sales'[Sales Order Number] )  
)

However, a DAX query can only provide information about the cardinality of tables and columns. 
You need to use a DMV in order to retrieve the size of each column. The DMV used by the following 
query retrieves this information for all the hierarchies and relationships; the condition in the WHERE 
clause filters only the size of the data for each column, which can be split among partitions and 
 segments:

SELECT  
    DIMENSION_NAME AS TABLE_NAME,  
    COLUMN_ID AS COLUMN_NAME,  
    SEGMENT_NUMBER,  
    TABLE_PARTITION_NUMBER,  
    RECORDS_COUNT, USED_SIZE 
FROM $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS 
WHERE MEASURE_GROUP_NAME = LEFT ( TABLE_ID, LEN ( MEASURE_GROUP_NAME ) )  

The following is an example of the result of the previous query, where the table Internet Sales has 
several partitions.

TABLE_NAME COLUMN_NAME SEGMENT_NUMBER
TABLE_ 

PARTITION_
NUMBER

RECORDS_
COUNT

USED_
SIZE

Internet Sales SalesOrderNumber 0 0 1,013 1,352

Internet Sales SalesOrderNumber 1 1 2,677 4,288

Internet Sales SalesOrderNumber 2 2 24,443 48,888

Internet Sales SalesOrderNumber 3 3 32,265 64,536

Internet Sales SalesOrderNumber 4 4 0 8

Internet Sales SalesOrderNumber 5 5 0 8

Internet Sales SalesOrderLineNumber 0 0 1,013 8

Internet Sales SalesOrderLineNumber 1 1 2,677 8

Internet Sales SalesOrderLineNumber 2 2 24,443 184

Internet Sales SalesOrderLineNumber 3 3 32,265 208

You obtain the total size used by a column by summing the USED_SIZE value for all the rows 
related to the same COLUMN_NAME. For example, the SalesOrderNumber column uses a total of 
119,064 bytes, resulting from the sum of USED_SIZE for all the segments in all the partitions for the 
same COLUMN_NAME.
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The last information related to columns is the cost of the column hierarchy. The hierarchy 
 structures for a column in a tabular model allow the navigation in hierarchy values using MDX 
 metadata and queries. A column with a high cardinality can have a high memory cost for these 
 hierarchies. The following query retrieves the size of the structures used by a column hierarchy. 

SELECT  
    DIMENSION_NAME AS TABLE_NAME,  
    RIGHT ( TABLE_ID, LEN ( TABLE_ID ) - LEN ( DIMENSION_NAME ) - 40 ) AS COLUMN_NAME, 
    COLUMN_ID AS STRUCTURE_NAME, 
    SEGMENT_NUMBER,  
    TABLE_PARTITION_NUMBER,  
    USED_SIZE, 
    TABLE_ID AS COLUMN_HIERARCHY_ID 
FROM $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS 
WHERE LEFT ( TABLE_ID, 2 ) = 'H$'

The following table shows an example of the result of this DMV query. As you see, the size of the 
hierarchy is larger for columns with a higher cardinality (the Phone column has more unique values 
than the LastName column, and results in a larger column hierarchy, too).

TABLE_ 
NAME

COLUMN_ 
NAME

STRUCTURE_
NAME

SEGMENT_
NUMBER

TABLE_ 
PARTITION_ 
NUMBER

USED_
SIZE

COLUMN_HIERARCHY_ID

Customer LastName POS_TO_ID 0 0 1,504 H$Customer_08b41bba-
8733-438e-a584-
9894998b2f69$LastName

Customer LastName POS_TO_ID 1 0 16 H$Customer_08b41bba-
8733-438e-a584-
9894998b2f69$LastName

Customer LastName ID_TO_POS 0 0 1,504 H$Customer_08b41bba-
8733-438e-a584-
9894998b2f69$LastName

Customer LastName ID_TO_POS 1 0 16 H$Customer_08b41bba-
8733-438e-a584-
9894998b2f69$LastName

Customer Phone POS_TO_ID 0 0 35,568 H$Customer_08b41bba-8733-
438e-a584-9894998b2f69$Phone

Customer Phone POS_TO_ID 1 0 16 H$Customer_08b41bba-8733-
438e-a584-9894998b2f69$Phone

Customer Phone ID_TO_POS 0 0 35,568 H$Customer_08b41bba-8733-
438e-a584-9894998b2f69$Phone

Customer Phone ID_TO_POS 1 0 16 H$Customer_08b41bba-8733-
438e-a584-9894998b2f69$Phone
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Note Analysis Services 2016 can disable the creation of a column hierarchy. If a column 
has a high cardinality and it is used only in measures but not as a filter condition, then 
disabling its column hierarchy will save the memory reported by the previous DMV query. 
Moreover, by disabling hierarchies for some columns, you also reduce process time, 
 because these data structures will not be created.

Each table might have other two structures not strictly related to the columns. First, you can have 
user hierarchies, which usually combine two or more columns in a predefined path of navigation. 
Such a structure is used only by MDX queries, whereas DAX does not take advantage of it (a DAX 
 client only uses the metadata of user hierarchies). The following query retrieves information from user 
hierarchies:

SELECT  
    DIMENSION_NAME AS TABLE_NAME,  
    RIGHT ( TABLE_ID, LEN ( TABLE_ID ) - LEN ( DIMENSION_NAME ) - 40 ) AS HIERARCHY_NAME, 
    COLUMN_ID AS STRUCTURE_NAME, 
    USED_SIZE, 
    TABLE_ID AS HIERARCHY_ID 
FROM $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS 
WHERE LEFT ( TABLE_ID, 2 ) = 'U$'

You can see in the following result that each user hierarchy has four related structures, the size of 
which depends on the cardinality of the columns involved in the hierarchy itself.

TABLE_
NAME

HIERARCHY_
NAME

STRUCTURE_NAME USED_SIZE HIERARCHY_ID

Date Fiscal MULTI_LEVEL_ID 9,232 U$Date_d2c7ec3d-c72c-435d-bd43-
8283714cc2dd$Fiscal

Date Fiscal PARENT_POS 9,232 U$Date_d2c7ec3d-c72c-435d-bd43-
8283714cc2dd$Fiscal

Date Fiscal FIRST_CHILD_POS 9,232 U$Date_d2c7ec3d-c72c-435d-bd43-
8283714cc2dd$Fiscal

Date Fiscal CHILD_COUNT 9,232 U$Date_d2c7ec3d-c72c-435d-bd43-
8283714cc2dd$Fiscal

Date Calendar MULTI_LEVEL_ID 9,224 U$Date_d2c7ec3d-c72c-435d-bd43-
8283714cc2dd$Calendar

Date Calendar PARENT_POS 9,224 U$Date_d2c7ec3d-c72c-435d-bd43-
8283714cc2dd$Calendar

Date Calendar FIRST_CHILD_POS 9,224 U$Date_d2c7ec3d-c72c-435d-bd43-
8283714cc2dd$Calendar

Date Calendar CHILD_COUNT 9,224 U$Date_d2c7ec3d-c72c-435d-bd43-
8283714cc2dd$Calendar
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The second structure not related to columns is relationships. You can retrieve their number and 
memory size by using the following query:

SELECT  
    DIMENSION_NAME AS TABLE_NAME,  
    USED_SIZE, 
    TABLE_ID AS RELATIONSHIP_ID 
FROM $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS 
WHERE LEFT ( TABLE_ID, 2 ) = 'R$'

The information provided by this DMV does not include the columns involved in the relationship. 
You can see the result of the previous DMV query in the following table.

TABLE_NAME USED_SIZE RELATIONSHIP_ID

Product 40 R$Product_11920c93-05ae-4f1c-980e-466dfbcfca2a$9b8024a2-e51d-4a2b-
9a8f-6a2199d1d2ea

Product Subcategory 8 R$Product Subcategory_ca7d6f4b-ec2c-41fa-a7e1-d771c69ec1ac$46425cb9-
382b-4dfb-9b79-63bc5082c42b

Reseller 880 R$Reseller_d52b9c6f-8d2d-4e23-ae4c-2fc57c1d968a$b32d6ef8-a309-4c10-
8d36-0f0e2ae84901

Internet Sales 8 R$Internet Sales_fdac9a13-4019-4773-b193-7cca3a4883eb$b3d9edf1-1e10-
436b-b870-80029b0ee4f3

Internet Sales 36,976 R$Internet Sales_fdac9a13-4019-4773-b193-7cca3a4883eb$90d94b82-0243-
4632-b9f7-99de63279961

Internet Sales 48,168 R$Internet Sales_fdac9a13-4019-4773-b193-7cca3a4883eb$f5617b1d-9840-
4978-8860-f337cb5f852d

Internet Sales 216 R$Internet Sales_fdac9a13-4019-4773-b193-7cca3a4883eb$a5016faf-9af5-
4750-92ff-505d05aefe68

In order to get the complete picture of the cost of each column in your data model, it is a good 
idea to collect in a single place the information from the DMVs you have seen so far. For example, we 
created a Power Pivot data model that connects to an Analysis Services database and executes the 
DMV queries presented in this chapter, organizing the result in a few Excel tables. In Figure 14-1 you 
can see the content of the Columns table, which provides the size used by the structures related to 
each column in the data model. 

FIGURE 14-1 Each row of the Columns table shows the costs associated to each column in the data model.
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If you want to see the total cost of a table, you have to sum the total size of the corresponding 
columns, plus the size of user hierarchies and relationships. The result is visible in Figure 14-2.

FIGURE 14-2 The TABLE_SIZE column in the Tables table sums the cost of corresponding columns, user 
 hierarchies, and relationships.

You can find the complete Power Pivot data model in the DMV Size Contoso Excel workbook included 
in the companion content. You can change the connection string pointing to a database in your Analysis 
Services server and refresh the tables in the data model in order to see statistics of another database. You 
can also download updated version of this model from http://www.sqlbi.com/tools/vertipaq-analyzer/.

The DMVs you have seen so far can provide more details. For example, you can see the compres-
sion type and number of bits using VertiPaq encoding for each segment and each column using the 
DMV named DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS. Its columns COMPRESSION_TYPE 
and BITS_COUNT describe the choices made by VertiPaq by compressing a column in a particular 
segment.

An alternative approach is using the DMV named DISCOVER_OBJECT_MEMORY_USAGE, which 
provides a hierarchical information about all the objects allocated in memory. Querying this DMV, 
you obtain a list of all the objects allocated on the server for all the databases online. Because of the 
hierarchical structure, its usage in a simple table is not easy. Consider the following query:

SELECT  
    OBJECT_PARENT_PATH,  
    OBJECT_ID,  
    OBJECT_MEMORY_NONSHRINKABLE,  
    OBJECT_MEMORY_CHILD_NONSHRINKABLE  
FROM $SYSTEM.DISCOVER_OBJECT_MEMORY_USAGE 
ORDER BY OBJECT_MEMORY_NONSHRINKABLE DESC

It returns the following result: the OBJECT_PARENT_PATH column contains the hierarchical position of 
the object, but it is not easy to navigate. You can see in the following table that the OBJECT_MEMORY_ 
NONSHRINKABLE shows the amount of memory used by the specific object in the row, and OBJECT_
MEMORY_CHILD_NONSHRINKABLE shows the memory cost summing all the child objects, at any level 
of the hierarchy.

http://www.sqlbi.com/tools/vertipaq-analyzer/
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OBJECT_PARENT_PATH OBJECT_ID OBJECT_ 
MEMORY_ 
NONSHRINKABLE

OBJECT_ 
MEMORY_ 
CHILD_
NONSHRINKABLE

HP8\TAB14.Databases.Contoso.Dimensions.
Sales_001b8a59-0b80-4210-9567-facdae2142ec.
In-Memory Table.Columns.OrderDateKey

Segments 3,399,392 0

HP8\TAB14.Databases.Contoso.Dimensions.
Sales_001b8a59-0b80-4210-9567-facdae2142ec.
In-Memory Table.Columns.Order Date

Segments 3,399,392 0

Global 2,454,866 109,194,683

HP8\TAB14.Databases.Contoso.Dimensions.
Customer_93737598-2e17-4d54-a6c1-
17f028353d90.In-Memory Table.Columns

Name 954,442 37,104

HP8\TAB14.Databases.Contoso.Cubes Model 642,878 616,804

HP8\TAB14.Databases.Contoso.Dimensions.
Customer_93737598-2e17-4d54-a6c1-
17f028353d90.In-Memory Table.Columns

CustomerKey 600,540 37,872

Global GeneralPurpose 495,726 0

A better way to see this data is using the BISM Server Memory Report, an Excel workbook created 
by Kasper De Jonge that transforms the parent-child hierarchy described in the OBJECT_PARENT_PATH 
column into a regular hierarchy of a Power Pivot data model. You can download this workbook and 
read the entire article describing its behavior at http://www.powerpivotblog.nl/what-is-using-all-that-
memory-on-my-analysis-server-instance/, and you can see an example of its output in Figure 14-3.

Note At the moment of writing, there is a plan for a feature in DAX Studio to retrieve size 
and cardinality of all the columns in a database, but it is not implemented yet. Please check 
whether a recent version of DAX Studio implements such a feature.

You have a number of ways to retrieve information about a data model. The most important 
 information is always the cardinality of tables and columns, which you can retrieve with simple 
DAX queries. However, using DMVs can be faster and easier, providing a complete picture of all the 
 columns and tables in a data model.

Denormalization

The first optimization you can apply to a data model is to denormalize data. Every relationship has an 
additional cost in terms of memory and an additional overhead when the engine transfers the filter 
from one table to another. We might think that an optimal model, from a pure performance point of 
view, would be one made of a single table. However, such an approach would be less than usable and 
would force having a single granularity for all of the measures. Thus, an optimal data model is the one 
organized as a star schema around each table defined for measures sharing the same granularity. For 
this reason, you should denormalize unnecessary related tables reducing the number of columns and 
relationships in the data model.

http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance/
http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance/
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FIGURE 14-3 BISM Server Memory Report displays the memory used by objects in a hierarchical way.

The denormalization required in a data model for DAX is usually counterintuitive for anyone with 
some experience in data modeling for a relational database. For instance, consider a simple data 
model where you have a Payment table with two columns, Payment Code and Payment Description. 
In a relational database, you often use a Code and Description table to avoid duplicating the descrip-
tion content into another table. For example, you want to avoid the duplication in a Transactions table 
of identical Payment Description values in different rows that have the same Payment Code value. By 
storing only the Payment Code, you would save space in a relational model.
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Consider Table 14-2, which shows a denormalized version of the Transactions table. You can see 
the duplication of Credit Card and Cash strings in different rows.

TABLE 14-2 Transactions table with Payment Type denormalized in Code and Description columns.

Date Amount Payment Type Code Payment Type Description

2015-06-21 100 00 Cash

2015-06-21 100 02 Credit Card

2015-06-22 200 02 Credit Card

2015-06-23 200 00 Cash

2015-06-23 100 03 Wire Transfer

2015-06-24 200 02 Credit Card

2015-06-25 100 00 Cash

If you use a separate table containing all the payment types, you can store only the Payment Type 
Code in the Transactions table, as you see in Table 14-3.

TABLE 14-3 Transactions table normalized, with Payment Type Code only.

Date Amount Payment Type Code

2015-06-21 100 00

2015-06-21 100 02

2015-06-22 200 02

2015-06-23 200 00

2015-06-23 100 03

2015-06-24 200 02

2015-06-25 100 00

You store the description of payment types in a separate table (see Table 14-4), which has one row 
for each payment type code. Such a table in a relational database reduces the total amount of space 
required, avoiding the duplication of a long string in the Transactions table.

TABLE 14-4 Payment Type table that normalizes Code and Description.

Payment Type Code Payment Type Description

00 Cash

01 Debit Card

02 Credit Card

03 Wire Transfer
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However, this optimization for a relational database might be a bad choice in a data model for 
DAX. The VertiPaq engine automatically creates a dictionary for each column, which means that the 
Transactions table will not pay a cost for duplicated descriptions as it happens in a relational model.

Note Compression techniques based on dictionaries are available also in certain relational 
databases. For example, Microsoft SQL Server offers this feature in the Enterprise edition 
(through the clustered columnstore indexes). However, the default behavior of a relational 
database is to store data without compression.

In terms of space saving, you can easily compute that denormalization is always better if you 
denormalize a single column (please note that the denormalization of more columns might be more 
expensive than using a normalized model). For example, the memory cost for a normalized model is 
as follows:

NormalizedMemoryCost =  
    ColumnCost( Transactions[Type Code] ) + ColumnCost( Payments[Type Code] ) +  
    ColumnCost( Payments[Type Description] ) + RelationshipCost( Transactions[Type Code] )

The cost for the denormalized model is the following:

DenormalizedMemoryCost =  
    ColumnCost( Transactions[Type Code] ) + ColumnCost( Transactions[Type Description] )

As you see, by denormalizing the model you remove the cost of the column Payments[Type Code] 
and the cost of the relationship on Transactions[Type Code]. However, you might observe that the cost 
of the column Type Description is different between Transactions and Payments tables. This is certainly  
true, and in a very large table, the difference might be in favor of the normalized model. However, 
in terms of performance, when you aggregate a column usually you see better performance with a 
filter applied on another column of the same table, rather than a filter on a column in another table 
 connected through a relationship. Does this justify a complete denormalization of the data model 
into a single table? Absolutely not! In terms of usability, you should always consider adopting a star 
schema, which is a good tradeoff in terms of resource usage and performance. 

In a star schema, you have a table for each entity (such as Customers and Products), and all the 
attributes related to an entity are completely denormalized in such tables. For example, the Products 
table should have attributes such as Category, Subcategory, Model, and Color. This model works well 
whenever the cardinality of the relationship is not too large. By large, we mean more than 1 million 
unique values in the entity key, but when you have more than 100,000 unique values, you already 
enter into a warning area in terms of performance.
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In order to understand why the cardinality of a relationship is important for performance, you 
have to know what happens when you apply a filter on a column. Consider the schema in Figure 14-4, 
where you have the Sales table with relationships to the Product, Customer, and Date tables. When you 
query the data model filtering customers by gender, the engine transfers the filter from  Customer to 
Sales by specifying the list of customer keys that belong to each gender type included in the query. If 
you have 10,000 customers, any list generated by a filter cannot be larger than this number.  However, 
if you have 6 million customers, a filter by a single gender type might generate a list of unique keys, 
resulting in around 3 million unique values. A large number of keys involved in a  relationship always 
has an impact in performance, even if in absolute terms; such impact depends also on the version of 
the engine and on the hardware (CPU clock, cache size, RAM speed) that you are using.

FIGURE 14-4 The Sales table has relationships with Product, Customer, and Date tables.

What can you do in order to optimize the data model when a relationship involves millions of 
unique values? Once you measure performance degradation not compatible with your requirements, 
you can consider some form of denormalization that reduces the cardinality of the relationship, or 
that removes the need of a relationship at all in certain queries. In the previous example, you might 
consider to denormalize the Gender column in the Sales table, in the event it is the only case where 
you need to optimize performance. If you have more columns to optimize, you might consider 
 creating another table with the columns of Customer table that users query often and that have a low 
cardinality (and a low selectivity).

For instance, you can create a table with Gender, Occupation, and Education. If the cardinality of these 
columns is 2, 5, and 5 values, respectively, a table with all the possible combinations will have 50 rows  
(2 x 5 x 5). A query on any of these columns will be much faster because the filter applied to Sales will 
have a very short list of values. In terms of usability, the user will see two groups of  attributes for the same 
entity, corresponding to the two tables, Customer and Customer Info. This is not an ideal situation. For this 
reason, you should consider this optimization only when strictly  necessary. It is important that both tables 
have a direct relationship with the Sales table, as you can see in Figure 14-5.
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FIGURE 14-5 Both Customer and Customer Info tables have a relationship with Sales.

You should evaluate the CustomerInfoKey added to the Sales table before importing data in a large 
Sales table, so that it is a native column (as you have seen in Chapter 13, native columns are better 
compressed than calculated ones). However, you might obtain it in a calculated column using the 
 following DAX expression:

Sales[CustomerInfoKey] =  
LOOKUPVALUE ( 
    'Customer Info'[CustomerInfoKey],  
    'Customer Info'[Gender], RELATED ( Customer[Gender] ), 
    'Customer Info'[Occupation], RELATED ( Customer[Occupation] ), 
    'Customer Info'[Education], RELATED ( Customer[Education] ) 
)

Talking about user experience, you should hide from the Customer table the columns denormal-
ized in the Customer Info table. Showing the same attributes (Gender, Occupation, and Education) 
in two tables would generate confusion. However, if you hide these attributes from the client in the 
Customer table, you cannot show in a query (and especially in a pivot table) the list of Customers with 
a certain Occupation. If you do not want to lose this possibility, you have to complicate the model 
with one inactive relationship, activating it in case of need. In Figure 14-6 you can see that the  
Customer Info table has an active relationship with the Sales table and an inactive relationship with 
the Customer table.
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FIGURE 14-6 An inactive relationship connects Customer and Customer Info tables.

You can enable the relationship between Customer Info and Customer in case you have any other 
filter active in the Customer table. For example, consider the following definition of the Sales measure:

[Sales] :=  
IF (  
    ISCROSSFILTERED ( Customer[CustomerKey] ), 
    CALCULATE (  
        [Sales Internal], 
        USERELATIONSHIP ( Customer[CustomerInfoKey], 'Customer Info'[CustomerInfoKey] ) 
    ), 
    [Sales Internal] 
)

The only reason why you can have an active cross filter in the Customer table (if you are not using 
the bidirectional filter) is when you apply a filter on any column of the Customer table. When this 
is true, you enable the relationship between Customer and Customer Info, automatically disabling 
the other relationship between Customer Info and Sales. The idea is that, since the engine has to 
process a list of CustomerKey values in any case, it is better to reduce such a filter by including also 
the attributes you moved in Customer Info. However, if you filter columns in Customer Info and not 
in Customer, the default active relationship uses a better relationship made with a lower number of 
unique values. Unfortunately, in order to optimize the usage of Customer-Sales relationship when you 
use both Customer Info and Customer columns in a query, you have to apply this DAX pattern to all 
the measures that might involve Customer Info attributes.
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There is another common scenario where you have a high cardinality in a relationship and you 
should carefully consider some denormalization. This happens when you have a relationship between 
two large tables. For example, consider the data model you can see in Figure 14-7, using two tables, 
Sales Header and Sales Detail.

FIGURE 14-7 The Customer table filters Sales Detail transactions through relationships in Sales Header.

This situation is common because many normalized relational databases have the same design. 
However, the relationship between Sales Header and Sales Detail is particularly dangerous for a DAX 
query, because of the high number of unique values that it has. Any query grouping the Quantity 
column (from Sales Detail) by Customer Gender will transfer a filter from Sales Header to Sales Detail 
through the SalesOrderNumber column. You can obtain a better design by denormalizing in Sales 
Detail all the relationships you have in Sales Header. In practice, you create two star schemas sharing 
the same dimensions. The only purpose of the normalization is to avoid passing a filter through the 
relationship between Sales Header and Sales Detail, which no longer exists in the new design, as you 
can see in Figure 14-8.
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FIGURE 14-8 The Sales Header and Sales Detail tables have direct relationships with Customer and Calendar.

You have to use the right degree of denormalization in a data model for DAX, especially for 
 performance reasons. Using the best practices described in this section, you will obtain a good 
 balance between usability and performance.

Columns cardinality

The cardinality of a column is the number of unique values that the column contains. You have seen 
that this number is important to reduce the size of the column, which has a direct impact on scan 
performance. Another reason why you should reduce the cardinality of a column to the necessary 
minimum is that many DAX operations (such as iterations and filters) have an execution time that 
directly depends on this number. Often, cardinality of a column is more important than the number 
of rows of the table containing the column.

When you design a data model, you should identify the cardinality of a column and consider 
possible optimizations if you will use the column in relationships, filters, or calculations. There are a 
number of common scenarios to consider:

■■ Key of a relationship: You cannot change the cardinality of this column unless you modify 
the cardinality of the related table (see the “Denormalization” section in this chapter).

■■ Numeric value aggregated in a measure: You do not change the precision of a number 
if you have a number representing quantity or amount of a monetary transaction. However, 
if a number represents a measure with a floating-point value, you might consider removing 
the decimals that are not relevant. For example, if you are collecting temperatures, you might 
round the value down to the closest decimal digit (what you remove is probably lower than 
the precision of the measuring tool).
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■■ Text description: The only impact is on dictionary size in case the column has many unique 
values. There are no advantages in moving the column in a separate table, because the 
 dictionary would be the same. Keep this column if users will use it.

■■ Text notes: Potentially different for every row of the table, but it is not an issue if most of the 
rows have a BLANK value.

■■ Pictures: This column is required if you want to display graphics in Power View and Power BI 
(for example, the picture of a product). Consider a lower resolution in order to compress the 
space required, especially if you have many of them.

■■ Transaction ID: This column has a high cardinality in a large table. Consider removing it if it 
is not necessary in DAX queries. If used in drill-through operations, for example, to see the 
transactions that form a particular aggregation, consider splitting the number/string in two or 
more parts, each one with a smaller number of unique values.

■■ Date and time: Consider splitting the column in two parts (see the following section in this 
chapter, “Handling date and time”).

■■ Audit columns: A table in a relational database often has standard columns used for  auditing 
purposes (for instance, timestamp and user of last update). You should not import these 
columns in a data model, unless required for drill-through (in that case, consider splitting the 
timestamp following the same rules applied to date and time).

As a rule of thumb, you should consider that reducing the cardinality of a column will save 
 memory and improve performance. Because reducing cardinality might imply losing information  
and/or accuracy, you have to be careful in considering the implications of these optimizations.

Handling date and time
Almost any data model has one or more date columns. Every so often, the time is also an interesting 
dimension of analysis. Usually these columns come from original Datetime columns in the data source. 
You should apply a number of best practices to these cases in order to optimize your data model.

First and most important, you should always split date and time in two separate columns. You do 
not have to use calculated columns to do this split. It should happen reading the original column in 
two different columns of the data model: one for the date, the other for the time. For example, if you 
are reading a TransactionExecution column from a table in SQL Server, you should use the following 
syntax in a T-SQL query to create two columns, TransactionDate and TransactionTime:

   ... 
   CAST ( TransactionExecution AS DATE ) AS TransactionDate, 
   CAST ( TransactionExecution AS TIME ) AS TransactionTime, 
   ...

It is very important to do this split operation; otherwise you would import a column in which 
dictionary and cardinality would increase every day. Moreover, analyzing a timestamp in Tabular is 



444 The Definitive Guide to DAX

very hard. If you have a Date table, you need an exact match with the date, and the Datetime column 
would not work correctly in a relationship with the Date column of a Date table.

A Date column usually has a good granularity: 10 years correspond to less than 3,700 unique 
values, and even 100 years are still in a manageable order of magnitude. Moreover, time intelligence 
functions require a complete calendar for each year considered, so removing days (for example, 
 keeping only one day per month) is not an optimization to consider.

The Time column, on the other hand, should be subject to more considerations. When you have a 
Time column, you should consider creating a Time table, which contains one row for each point in the 
granularity you choose. You should also round the time to the same granularity you chose for the Time 
table. The Time table will make it easy to consider different periods: for example,  morning and evening, 
or intervals of 15 minutes. Depending on the data and the analysis required, you might choose to round 
the data down to the closest hour or to the milliseconds (even if the latter is very  unlikely). In Table 14-5 
you can see the different cardinality corresponding to different precision levels.

TABLE 14-5 Cardinality corresponding to different precision levels for a Time column.

Precision Cardinality

Hour 24

15 Minutes 96

5 Minutes 288

Minute 1,440

Second 86,400

Millisecond 86,400,000

It is clear that choosing the millisecond precision is usually the worst choice, and the precision down to 
the second has still a relative high number of unique values. Most of the time, you will choose a  precision 
ranging between hour and minutes. At this point, you might think that the minute precision is a safe 
choice, because it has a relatively low cardinality. However, you have to remember that the  compression 
of a column depends on the presence of duplicated values in contiguous rows. Thus, moving from 
 minute to 15-minute precision can have a big impact in compression of large tables.

When you are working with time, you might choose to round to the closest second/minute, or 
to truncate the detail that you do not need for the analysis. The choice between these two options 
depends on your analytical requirements. Here is an example of the T-SQL code that truncates a time 
to different precision levels:

-- Truncate to the second 
DATEADD (  
    MILLISECOND,  
    - DATEPART (  
        MILLISECOND,  
        CAST ( TransactionExecution AS TIME )  
    ),  
    CAST ( TransactionExecution AS TIME )  
) 
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-- Truncate to the minute 
DATEADD ( MINUTE, DATEDIFF ( MINUTE, 0, CAST ( TransactionExecution AS TIME ), 0 )  
 
-- Truncate to 5 minute 
DATEADD (  
    MINUTE,  
    ( DATEDIFF ( MINUTE, 0, CAST ( TransactionExecution AS TIME ) ) / 5 ) * 5,  
    0 
) 
  
-- Truncate to 15 minute 
DATEADD (  
    MINUTE,  
    ( DATEDIFF ( MINUTE, 0, CAST ( TransactionExecution AS TIME ) ) / 15 ) * 15,  
    0 
) 
 
-- Truncate to hour 
DATEADD ( HOUR, DATEDIFF ( HOUR, 0, CAST ( TransactionExecution AS TIME ) ), 0 )

If you want rounding time instead of truncating, you can use the following T-SQL code:

-- Round to the second 
DATEADD (  
    MILLISECOND,  
    500 - DATEPART (  
        MILLISECOND,  
        CAST ( TransactionExecution AS TIME ) + '00:00:00.500' 
    ),  
    CAST ( TransactionExecution AS TIME )  
) 
 
-- Round to the minute 
DATEADD (  
    MINUTE,  
    DATEDIFF (  
        MINUTE,  
        0,  
        DATEADD (  
            SECOND,  
            30 - DATEPART (  
                SECOND,  
                TransactionExecution + '00:00:30.000' 
            ),  
            CAST ( TransactionExecution AS TIME )  
        ) 
    ), 
    0  
)  
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-- Round to 5 minute 
DATEADD (  
    MINUTE,  
 

 
    ( DATEDIFF (  
        MINUTE,  
        0,  
        DATEADD (  
            SECOND,  
            150 - DATEPART (  
                SECOND,  
                TransactionExecution + '00:02:30.000' 
            ),  
            CAST ( TransactionExecution AS TIME )  
        ) 
    ) / 5 ) * 5, 
    0  
) 
 
-- Round to 15 minute 
DATEADD (  
    MINUTE,  
    ( DATEDIFF (  
        MINUTE,  
        0,  
        DATEADD (  
            SECOND,  
            150 - DATEPART (  
                SECOND,  
                TransactionExecution + '00:02:30.000' 
            ),  
            CAST ( TransactionExecution AS TIME )  
        ) 
    ) / 15 ) * 15, 
    0  
) 
 
-- Round to the hour 
DATEADD (  
    HOUR,  
    DATEDIFF (  
        HOUR,  
        0,  
        DATEADD (  
            MINUTE,  
            30 - DATEPART (  
                MINUTE,  
                TransactionExecution + '00:30:00.000' 
            ),  
            CAST ( TransactionExecution AS TIME )  
        ) 
    ), 
    0  
)
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When you store millions of new rows every day in a single table, these details can make a big 
difference in memory usage and performance. At the same time, do not spend too much time over 
optimizing a data model that does not require such a level of compression—after all, reducing the 
precision means removing some information that will be not available for deeper insights in case of 
need.

Calculated columns

A calculated column persists the result of a DAX expression evaluated row by row when you refresh a 
table. For this reason, you might consider it as a possible way to optimize query execution time. How-
ever, a calculated column has hidden costs and it is a good optimization technique only in specific 
conditions.

You should consider using a calculated column in these two situations:

■■ Group or filter data: If a calculated column returns a value used to group or filter data, you 
do not have any alternative other than creating the same value before importing data in the 
data model. For example, you might classify the price of a product in Low, Medium, and High 
categories, based on the product price. This value is usually a string, especially when the user 
displays it to make a selection.

■■ Pre-calculate complex formulas: You can store in a calculated column the result of a 
 complex calculation that is not sensitive to filters made at query time. However, it is very hard 
to establish when this produces a real computational advantage, and you have to measure the 
presence of a real advantage at query time in order to justify its use.

You should not make the wrong assumption that any calculated column is faster than  doing 
the same computation at query time. This is often simply a wrong statement. Other times, the 
 advantage is barely measurable, and does not balance the cost of the calculated column. You should 
get a  relevant performance improvement at query time in order to justify a calculated column for 
 optimization  reasons. There are also many factors to consider when you evaluate the cost/benefit 
ratio of a  calculated column against an equivalent calculation made at run time in a measure.

A calculated column is not as optimized as a native column. It might have a lower compression rate 
compared to native columns of the table, because it does not take part in the heuristic that VertiPaq 
executes to find the optimal sort order of the data in each segment. Only a column storing a very 
low number of unique values might benefit from a good compression, but this is usually the result of 
 logical conditions, and not of numeric expressions.

For example, consider the case of a simple calculated column:

 Sales[Amount] = Sales[Quantity] * Sales[Price]
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If you have 100 unique values in a Quantity column, and 1,000 unique values in a Price column, 
the resulting Amount column might have a cardinality included between 1 and 100,000 unique 
values, depending on the actual values in the columns and in their distribution across table rows. 
Usually, the larger the number of rows in the table, the higher is the number of unique values you will 
find in the Amount column (because of statistical distribution). With a dictionary that is one or two 
orders of magnitude larger than the original columns, the compression is usually worse. What about 
query  performance? It depends, and you should measure it case by case in order to get a correct 
answer, considering the two possible calculations (one based on a calculated column and the other 
 completely dynamic and based on measures).

You can sum the Amount calculated column in a simple measure:

[TotalAmountCC] := SUM ( Sales[Amount] )

The alternative dynamic implementation transfers the expressions of the calculated column in an 
iterator over the table:

[TotalAmountM] := SUMX ( Sales, Sales[Quantity] * Sales[Price] )

Is the cost of scanning the single column (Sales[Amount]) smaller than scanning the two original 
columns (Sales[Quantity] and Sales[Price])? It is impossible to estimate this in advance, so you have 
to measure it. Usually the difference between these two options will be visible only in very large 
tables. In small tables, the performance might be very close, so the calculated column is not worth its 
memory footprint.

Most of the time, you can replace calculated columns (used to compute aggregated values) by 
using the same expressions in iterators such as SUMX and AVERAGEX. In the previous example, 
TotalAmountM is a measure that executes dynamically the same expression defined in the calculated 
Amount column, used by the simple aggregation in TotalAmountCC.

A different evaluation is necessary when a context transition is present in an iterator. For example, 
consider the following DAX measure in a model with SalesHeader and SalesDetail tables connected 
through a relationship:

[AverageOrder] :=  
AVERAGEX (  
    SalesHeader,  
    CALCULATE (  
        SUMX (  
            SalesDetail,  
            SalesDetail[Quantity] * SalesDetail[Unit Price]  
        ), 
        ALLEXCEPT ( SalesDetail, SalesHeader )  
    )  
)
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In this case, the context transition within the loop can be very expensive, especially if the 
 SalesHeader table has millions of rows or more. In this case, storing the value in a calculated  
column will probably save a lot of execution time.

SalesHeader[Amount] =  
CALCULATE (  
    SUMX (  
        SalesDetail,  
        SalesDetail[Quantity] * SalesDetail[Unit Price]  
    ), 
    ALLEXCEPT ( SalesDetail, SalesHeader )  
) 
 
[AverageOrder] :=  
AVERAGEX ( 
    SalesHeader,  
    SalesHeader[Amount]  
)

We will never be tired of repeating that these examples are just indications. You should measure 
the performance improvements of a calculated column, and its related memory cost, in order to make 
a decision about using it or not.

Consider that you can avoid a calculated column if you create the same value for a native column 
in the data source when you populate the table (for example, using an SQL statement, or a Power 
Query transformation). The calculated column should leverage the VertiPaq engine, providing a faster 
and more flexible way to compute a column than reading the entire table again from the data source. 
Usually this happens when the calculated column expression aggregates rows of different tables other 
than the one to which it belongs.

Finally, a calculated column increases the time to refresh a data model. Even a partial refresh of a 
table (for example, by processing a single partition) requires recomputing all the calculated columns 
referencing any column of such a table. Moreover, the calculated column is computed always for the 
entire table, even when you refresh only one partition, and the calculated column does not depend 
on different data than other columns of the same row. For this reason, creating a calculated  column 
in a large table with millions of rows is not a good idea. The process of a calculated column is a 
single-thread job, which iterates all the rows of the table to compute the column expression. In case 
there are several calculated columns, they are evaluated one at a time, making the entire operation a 
process bottleneck for large tables.

At this point, it should be clear that calculated columns are expensive for two reasons:

■■ Memory: The values are persisted using a nonoptimal compression.

■■ Duration of Refresh: The process of calculated columns is a sequential operation using a 
single thread, which results in a nonscalable operation also in large servers.
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With that said, calculated columns turn useful in many scenarios. We do not want to pass on the 
message that calculated columns are always to be avoided. Instead, you need to be aware of their 
cost and make an educated decision on whether to use them or not. In the next section we describe a 
good example where calculated columns really shine in improving performance.

Optimizing complex filters with Boolean calculated columns
It is worth it to mention a specific case of optimization using calculated columns. You can consolidate 
a logical expression used to filter a high cardinality column using a calculated column that stores the 
result of the logical expression.

For example, consider the following measure:

[ExpensiveTransactions] :=  
COUNTROWS (  
    FILTER (  
        Sales,  
        RELATED ( Product[Unit Cost] ) * Sales[Quantity] > 10 
    ) 
)

In case you have millions of rows in the Sales table, the filter iteration would be expensive. If 
the expression used in the filter does not depend on the existing filter context, as in this case, you 
can consolidate its result in a calculated column and apply a filter on that column in a CALCULATE 
 statement instead. For example, you can rewrite the previous operation in this way:

Sales[CostGreaterThan10] = RELATED ( Product[Unit Cost] ) * Sales[Quantity] > 10 
 
[ExpensiveTransactions] :=  
CALCULATE (  
    COUNTROWS ( Sales ), 
    Sales[CostGreaterThan10] = TRUE 
)

The calculated column containing a logical value (TRUE or FALSE) usually benefits from a good 
compression and has a low memory cost. It is also very effective at execution time, because it applies 
a direct filter to the scan of the Sales table required to count the rows. In this case, the benefit at 
query time is usually evident. You just have to consider if it is worth the longer processing time for the 
column (which you have to measure before making a final decision).
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Choosing the right columns to store

In the previous section about calculated columns, you have seen that storing a column that you can 
compute row-by-row using other columns of the same table is not always an advantage. The same 
consideration is valid also for native columns of the table. When you choose the columns to store in a 
table, you should consider the size and the query performance. You can optimize resource allocation 
(and memory in particular) by doing the right evaluation in this area.

We consider the following types of columns in a table:

■■ Primary or alternate keys: The column contains a unique value for each row of the table.

■■ Qualitative attributes: The column can be text or number, used to group and/or filter rows in 
a table (for instance, name, color, city, country)

■■ Quantitative attributes: The number is a value used both as a filter (for example, less than a 
value) and as an argument in a calculation (such as price, amount, quantity).

■■ Descriptive attributes: The column contains text providing additional information about 
a row, but its content is never used to filter or to aggregate rows (for example, notes, com-
ments).

■■ Technical attributes: Information recorded in the database for technical reasons, without a 
business value (such as username of last update, timestamp, GUID for replication).

The general principle is trying to minimize the cardinality of the columns imported in a table, not 
importing columns that have a high cardinality and that are not relevant for the analysis. However, 
every type of column deserves additional considerations.

You need the columns for primary or alternate keys if there are one or more one-to-many 
relationships with other tables. For instance, the product code and the product key columns of a table 
of products are certainly required columns. However, you should not include in a table a primary 
or alternate key column not used on the one-side of a relationship with other tables. For example, 
the Sales table might have a unique identifier for each row in the original table. Such a column has a 
cardinality that corresponds to the number of rows of the Sales table. Moreover, such a column is not 
necessary, because no tables target Sales for a relationship. For this reason, it is a useless column and 
very expensive in terms of memory and you should not import it in the data model.

You should always include in a table qualitative attributes that have a low cardinality, because 
they have a good compression and might be useful for the analysis. For example, the product 
 category is a column that has a low cardinality, related to the Product table. In case there is a high 
cardinality, you should consider carefully whether to import the column or not, because its  storage 
memory cost can be high. The high selectivity might justify the cost, but you have to check that 
filters in queries usually select a low number of values in that column. For instance, the production lot 
 number might be an information included in the Sales table that you want to be able to filter at query 
time. Its high cost might be justified by the business need of applying this filter in certain queries.
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All of the quantitative attributes are generally imported to guarantee any future, although you 
might consider skipping columns providing redundant information. Consider the  columns Quantity, 
Price, and Amount of a Sales table, where the Amount column contains the result of the product 
between Quantity and Price. You probably want to create measures that aggregate each of these 
columns, but you will probably calculate the Price as a weighted average considering sum of amount 
and quantity, instead of a simple average of the Price considering each transaction at the same level. 
This is an example of the measure you want to define:

[Sum of Quantity] := SUM ( Sales[Quantity] ) 
 
[Sum of Amount] := SUM ( Sales[Amount] ) 
 
[Average Price] := DIVIDE ( [Sum of Amount], [Sum of Quantity] )

If you look at the measures defined, you would say that you have to import only Quantity and 
Amount in the data model, and you can avoid importing the Price column, not used by these mea-
sures. However, if you consider the cardinality of the columns, you should have some doubt. If you 
have 100 unique values in the Quantity column, and you have 10,000 unique values in the Price col-
umn, you might have up to 1,000,000 unique values in the Amount column. At this point, you might 
have doubts about importing only the Quantity and Price columns, using the following definition 
of the measures in the data model (only Sum of Amount changes, the other two measures did not 
change):

[Sum of Quantity] := SUM ( Sales[Quantity] ) 
 
[Sum of Amount] := SUMX ( Sales, Sales[Quantity] * Sales[Price] ) 
 
[Average Price] := DIVIDE ( [Sum of Amount], [Sum of Quantity] )

The new definition of the Sum of Amount measure might be slower, because it has to scan two 
columns instead of one. However, these columns might be smaller than the original Amount. Trying 
to predict what will be the faster option is very hard, because you should consider also the distribu-
tion of the values in the table, and not only the cardinality of the column. We suggest you measure 
the space used and the performance in the two cases before making a final decision. Based on our 
experience, removing the Amount column in a small data model can be more important for Power 
Pivot, because the memory available in computers running Excel is usually more limited and you have 
a faster loading time opening the file. At any rate, in a large table with billions of rows stored in an 
Analysis Services Tabular model, the performance penalty of the multiplication between two columns 
(Quantity and Price) could be larger than the increased memory scan time for the Amount column. In 
this case, the better response time for the queries justifies the higher memory cost to store the single 
column. Regardless, you should measure size and performance in each specific case, because the 
distribution of data has a key role in compression and affects any decision about this topic.
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You should consider whether to import descriptive attributes or not. In general, they have a high 
storage cost for the dictionary of the column. A few examples of descriptive attributes are the Notes 
field in an invoice, and the Description column in the Product table. You use these attributes mainly 
to provide additional information about a specific entity. You hardly ever use this type of column 
to filter data. The only issue of including these columns in the data model is their memory storage 
cost, mainly related to the column dictionary. If the column has many blank values and a low number 
of rows with content in the table, then its dictionary will be small and the column cost will be more 
 acceptable. Nevertheless, a column containing the transcription of conversations made in a call center 
is probably too expensive for a Service Calls table containing date, time, duration, and operator who 
managed the call.

A particular type of descriptive attribute is the information you want to provide as detail for 
transactions in a drill-through operation. For example, the invoice number or the order number of a 
transaction is an attribute that has a high cardinality, but that could be important for some reports. 
In this case, you should consider particular optimizations for drill-through attributes described in the 
next section.

Most of the time, there are no reasons to import columns for technical attributes such as 
 timestamp, date, time, and operator of the last update. This information is mainly for auditing and 
forensic requirements. Unless you have a data model specifically built for auditing requirements, the 
need for this information is usually low in an analytical solution.

Optimizing column storage

The best optimization for a column is to remove the column from a table entirely. You have seen in 
the previous section when this decision makes sense, based on the type of columns of a table. Once 
you define the set of columns that are part of the data model, you can still use some optimization 
techniques in order to reduce the memory used, even if each optimization has some side effect.

Column split optimization
You can reduce the memory footprint of a column by reducing its cardinality. In certain conditions, 
you can achieve this result by splitting the column in two or more parts. You have to split the column 
before importing it into the data model. For this reason, you will see examples of the split  operation 
in SQL, but you can use any other transformation tool (such as Power Query) to obtain the same 
result.

For instance, if you have a 10-character string (such as TransactionID), you can split the column in 
two parts, five characters each (as in, TransactionID_High and TransactionID_Low):

SELECT 
    LEFT ( TransactionID, 5 ) AS TransactionID_High, 
    SUBSTRING ( TransactionID, 6, LEN ( TransactionID ) - 5 ) ) AS TransactionID_Low, 
    ...
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In case of an integer value, you can use division and module for a number that creates an even 
distribution in the two columns. If you have an integer TransactionID column with numbers included 
between 0 and 100 million, you can divide by 10,000, as in the following example:

SELECT 
    TransactionID / 10000 AS TransactionID_High, 
    TransactionID % 10000 AS TransactionID_Low, 
    ...

You can use a similar technique for decimal numbers. An easy split is separating integer from 
decimal part, even if this might not produce an even distribution. For instance, you can transform a 
UnitPrice decimal number column into UnitPrice_Integer and UnitPrice_Decimal columns:

SELECT 
    FLOOR ( UnitPrice ) AS UnitPrice_Integer, 
    UnitPrice - FLOOR ( UnitPrice ) AS UnitPrice_Decimal, 
    ...

You can use the result of a column split as is in simple details reports, or measures that restore the 
original value during the calculation.

Important You might use a column split to optimize numbers aggregated in measures, 
using the separation between integer and decimal parts as in the previous example, or 
use similar techniques. However, consider that the aggregation operation will have to 
scan more than one column, and the total time of the operation is usually larger than 
with a  single column. If you are optimizing for performance, saving memory might be not 
 effective in this case, unless you remove a dictionary obtaining value encoding instead of 
hash encoding for a currency or integer data type. Do your own measurements to validate, 
if such optimization works for you also from a performance point of view.

Optimizing high cardinality columns
A column with a high cardinality has a high cost because of a large dictionary, a large hierarchy 
 structure, and a lower compression in encoding. If you have Analysis Services 2016, you can disable 
the construction of an attribute hierarchy for a column. Because this cost is relevant, you can reduce 
the memory footprint of a high cardinality column by setting the ColumnUsage property of the 
column to DAXUsage, which disables the creation of the hierarchy (the default is UnrestrictedUsage, 
which creates the hierarchy).
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If you cannot disable the hierarchy, or if this reduction is not enough for your requirements, you 
can consider applying the column split optimization to a high cardinality column used in a measure. 
You can hide this optimization to the user by hiding the split columns and by adapting the calculation 
in measures. For example, if you optimized UnitPrice using the column split, you can create the Sum of 
Amount measure in this way:

Sales[Sum of Amount] :=  
SUMX ( Sales, Sales[Quantity] * ( Sales[UnitPrice_Integer] + Sales[UnitPrice_Decimal] ) )

Remember that the calculation will be more expensive, and only an accurate measure of the 
 performance of the two models (with and without column split optimization) can provide you with 
the elements to evaluate which one is better for your requirements.

Optimizing drill-through attributes
If a column contains data used only for drill-through operations, you should consider applying a 
column split optimization. When you do not use the column in measures, you do not have to be 
 concerned about possible costs of the materialization of the original values. However, you cannot 
 rebuild the original value in a DAX syntax, so you have to accept the display of the original value in 
two columns, or you have to implement a better visualization client-side, combining the two split 
values in a single one.
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C H A P T E R  1 5

Analyzing DAX query plans

DAX is a functional language with a very fast execution engine. However, you can write the same 
calculation with different DAX expressions, possibly obtaining a different performance. In order 

to find a more efficient DAX expression, the first step is to identify the bottlenecks of an existing 
formula.

In this chapter, you will learn the architecture of the DAX query engine. You will also see how 
to obtain information about query plans and performance counters related to a particular DAX 
 expression and how to read the information provided by Microsoft SQL Server Profiler and other 
tools. This knowledge is fundamental to optimize any DAX formula.

Introducing the DAX query engine

The DAX query engine accepts queries in both MDX and DAX, and it can work in DirectQuery or 
In-Memory mode. If the query is in DirectQuery mode (supported only by DAX queries, not by MDX 
queries), the engine converts DAX into a single SQL statement, which is then sent to the external SQL 
Server data source. In DirectQuery mode the query engine does not perform any computation: It 
returns the same results obtained by the data source. In this scenario, the optimization effort is more 
on the external data source than in DAX coding and, as of the time of this writing, DirectQuery can 
be used only when the structure of DAX queries is trivial, otherwise the SQL code is so convoluted 
that any optimization is nearly impossible. We do not discuss DirectQuery in this book: We focus our 
attention on the In-Memory mode, which is probably the most widely used.

If, on the other hand, the query targets the in-memory storage, then the query engine uses the 
in-memory data (the VertiPaq storage you learned about in Chapter 13, “The VertiPaq engine”) to 
answer it. In doing so, the engine takes several steps:

1. Build Expression Tree. The engine transforms the query from a string to an expression tree, 
which is easier to manipulate for further optimizations.

2. Build Logical Query Plan. The engine produces a list of the logical operations required to 
execute the query. This tree of logical operators resembles the original DAX syntax. It is easy 
to find a correspondence between a DAX function and a similar operation in the logical query 
plan.
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3. Build Physical Query Plan. The engine transforms the logical query plan into a set of physical 
operations. A physical query plan is still a tree of operators, but the resulting tree can be different 
from the logical query plan. 

4. Execute Physical Query Plan. The engine finally executes the physical query plan, retrieving 
data from the storage engine and computing the query calculations.

Steps 1 and 4 are not of any interest, while steps 2 and 3 are very important; by reading them you 
will understand how the engine resolved your query. In other words, they are important to detect 
bottlenecks and optimization options. You will see later how to obtain and read the logical and 
 physical query plans because, before reading them, you need to learn about the two engines that 
cooperate to resolve any DAX query: formula engine (FE) and storage engine (SE). The two engines 
have different roles and behaviors, which you will learn about in the next sections.

Note Tabular does not translate MDX to DAX. MDX queries generate both a logical and 
a physical query plan just as DAX queries do. Keep in mind that the same query, written 
in DAX or in MDX, typically produces different query plans even if the result is the same. 
Here, we focus on the DAX language; nevertheless, you can use the information provided 
in this chapter to analyze how Tabular handles MDX queries as well.

Understanding the formula engine
The formula engine is the higher-level execution unit of the DAX query engine. It can handle all the 
operations requested by DAX functions and solve complex DAX expressions.

Each step in the physical query plan corresponds to a specific operation executed by the formula 
engine. Typical operators of the formula engine include joins between tables, filtering with complex 
conditions, aggregations, and lookups. These operators typically require data from columns of the 
data model. In these cases, the formula engine sends a request to the storage engine, which answers 
by returning a datacache. A datacache is a temporary storage area created by the storage engine and 
read by the formula engine. It is important to note, right from the beginning, that datacaches are not 
compressed (in other words, they are not VertiPaq column stores, they are plain in-memory tables).

The formula engine always works with datacaches returned by the storage engine or data 
 structures computed by other formula engine operators. The result of a formula engine operation 
is not persisted in memory across different executions, even within the same session. On the other 
hand, datacaches are persisted and can be reused in following queries. The formula engine does 
not have a cache system to reuse results between different queries, and DAX relies entirely on cache 
features of the storage engine.

Finally, the formula engine is single threaded. This means that any operation executed in the 
formula engine uses only one thread and one core, no matter how many are available. The formula 
engine performs requests to the storage engine in a sequential way, one query at a time. A certain 
degree of parallelism is available only within each request to the storage engine, which has a different 
architecture and can take advantage of multiple cores available, as you will see in the next section. 
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Understanding the storage engine (VertiPaq)
The storage engine is the lower-level execution unit of the DAX query engine. Its official name is 
 xVelocity In-Memory Analytical Engine, but it is also known as VertiPaq, which is its original code 
name during development.

The goal of the storage engine is to scan the VertiPaq storage and produce datacaches, which are 
then read by the formula engine. Every scan operation corresponds to an internal query described 
in a pseudo-SQL language internally called xmSQL. xmSQL is not a real query language but rather 
a  textual representation of a storage engine query, intended to give visibility into how the formula 
engine is querying VertiPaq. In fact, the storage engine does not really know anything about DAX. It 
executes only queries allowed by its limited set of operators. In case the calculation requires a more 
complex evaluation within an internal scan of data, a callback to the formula engine is possible.

The storage engine is multithreaded. The operations performed by the storage engine are very 
efficient and can scale up on multiple cores. A single storage engine query can increase its parallelism 
up to one thread for each segment of a table.

The storage engine receives requests only from the formula engine, which sends them synchro-
nously. Thus, FE waits for one SE query to be finished before sending the next one. Considering that 
the storage engine can use up to one thread per column segment, you can benefit from the paral-
lelism of the storage engine only when there are many segments involved in the query. In other 
words, if you have eight SE queries, running on a small table (one segment), they will run sequentially 
one  after the other, instead of all in parallel, because of the synchronous nature of communication 
between FE and SE.

A cache system stores the results produced by the storage engine, holding a limited number of 
results (typically the last 512 internal queries, but different versions of the engine might use a different 
number). When the storage engine receives an xmSQL query identical to one already in cache, it returns 
the corresponding datacache without doing any scan of data in memory. The cache is not involved in 
security considerations, because the row-level security system influences only the formula engine  
behavior, producing different xmSQL queries in case the user can see only certain rows in a table.

A scan operation made by the storage engine is usually faster than the equivalent scan performed 
by the formula engine, even with a single thread available. This is because the storage engine is more 
optimized for these operations, and because it iterates over compressed data, whereas the formula 
engine can only iterate datacaches, that is, uncompressed data that is usually the result of a storage 
engine query.

Introducing DAX query plans

Now that you are familiar with SE and FE, it is time to go back to the analysis of DAX query plans. As 
we said earlier, a DAX query generates both a logical and a physical query plan. These plans describe 
in detail the operations performed by the query engine. Unfortunately, the query plan is available 
only in textual representation, not graphical visualization. Because of the complexity and the length 
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of a typical query plan, you will often use other tools and techniques to optimize a DAX  expression, 
before starting to analyze the query plan in detail. However, it is important to understand the  basics 
of a DAX query plan, in order to both understand the behavior of the engine and quickly spot 
 potential bottlenecks in longer and more complex query plans.

As an example, consider this simple query:

EVALUATE 
ROW ( "Result", SUM ( Sales[Quantity] ) )

The result is a table with one row and one column (Result), filled with the sum of the column 
 Quantity for all the rows of the Sales table.

Result

17538016

In the next sections, you will see the query plans generated and executed by this DAX query. Later 
you will see how to obtain this information for any query. At this stage, just focus your attention on 
the role of the query plans, how they are structured, and the information they provide.

Logical query plan
The logical query plan is a close representation of the DAX query expression tree. This is the query 
plan of the previous query:

AddColumns: RelLogOp DependOnCols()() 0-0 RequiredCols(0)(''[Result]) 
 Sum_Vertipaq: ScaLogOp DependOnCols()() Integer DominantValue=BLANK  
                       Table='Sales' -BlankRow Aggregations(Sum) 
  Scan_Vertipaq: RelLogOp DependOnCols()() 0-127  
                                RequiredCols(104)('Sales'[Quantity])  
                                Table='Sales' –BlankRow 
  'Sales'[Quantity]: ScaLogOp DependOnCols(104)('Sales'[Quantity])  
                                    Integer DominantValue=NONE

Each line is an operator and the following lines, indented, are the parameters of the operator. If 
you ignore for a moment all of the parameters for each operator, you can envision a simpler structure:

AddColumns:  
 Sum_Vertipaq:  
  Scan_Vertipaq:  
  'Sales'[Quantity]: 

The outermost operator is AddColumns, which creates the one-row table with the Result column 
containing the value returned by the DAX query. The Sum_VertiPaq operator scans the Sales table and 
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sums the Sales[Quantity] column. The two operators included within Sum_Vertipaq are Scan_Vertipaq 
and a reference to the scanned column.

You can read this query plan, in plain English, as: “create a table with a column named Result, filled 
with the content of a SUM operation, performed by the storage engine by scanning the Quantity 
column in the Sales table.”

The logical query plan shows what the DAX query engine plans to do in order to compute the 
results. Not surprisingly, it scans Sales summarizing Quantity using SUM. Clearly, more complex query 
plans will be harder to decode.

Physical query plan
The physical query plan has a similar format to the logical one: Each line is an operator and its 
 parameters are in subsequent lines, indented with one tab. Apart from this aesthetic similarity, 
the two query plans use completely different operators, as you can see in the physical query plan 
 generated by the previous DAX query:

AddColumns: IterPhyOp IterCols(0)(''[Result]) 
 SingletonTable: IterPhyOp IterCols(0)(''[Result]) 
 Spool: LookupPhyOp Integer #Records=1 #KeyCols=128 #ValueCols=1  
                                               DominantValue=BLANK 
  AggregationSpool<Cache>: SpoolPhyOp #Records=1 
   VertipaqResult: IterPhyOp #FieldCols=0 #ValueCols=1

Again, we can build a simplified version of the query plan, removing the parameters of each 
 operator:

AddColumns:  
 SingletonTable:  
 Spool: LookupPhyOp  
  AggregationSpool<Cache>:  
   VertipaqResult: 

The first operator, AddColumns, builds the result table. Its first parameter is a SingletonTable, which 
is an operator returning a single-row table, generated by the ROW function. The second parameter, 
Spool, searches for a value in the datacache obtained by an xmSQL query sent to the storage engine. 
This is the most intricate part of DAX query plans. In fact, the physical query plan shows that it uses 
some data that was previously spooled by other storage engine queries, but it does not show exactly 
from which one. In other words, you cannot obtain the xmSQL code of a storage engine query by 
reading the DAX query plan. As you will see later, it is possible to retrieve the xmSQL queries sent to 
the storage engine, but you are able to match them with the exact point in the query plan only in 
simple DAX queries. In more complex (but realistic) DAX operations, this association might require 
longer analysis.
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Before moving forward, it is important to highlight some important information included in the 
query plan:

  AggregationSpool<Cache>: SpoolPhyOp #Records=1 
   VertipaqResult: IterPhyOp #FieldCols=0 #ValueCols=1

The VertipaqResult operator represents an xmSQL query sent to the storage engine (you will 
see that in the next section). The AggregationSpool<Cache> operator iterates the result of the 
xmSQL query and you can see the total number of rows iterated (one in this case; it is reported 
by the  #Records=1 parameter). This number is also the number of rows returned by the nested 
 VertipaqResult operator. 

Such a number is important for two reasons: 

■■ It provides you with the size (in rows) of the datacache created by VertiPaq. A large datacache 
consumes more memory at query time and takes more time to scan.

■■ The iteration performed by AggregationSpool<Cache> in the formula engine runs in a 
single thread. When a query is slow and this number is large, it could be the indication of a 
 bottleneck in the query execution.

Storage engine query
In the previous physical query plan, you have seen a VertipaqResult operator that represents an 
 internal xmSQL query sent to the storage engine. The following is the xmSQL query generated during 
the execution of the example DAX query:

SET DC_KIND="AUTO"; 
SELECT 
SUM([Sales_001b8a59-0b80-4210-9567-facdae2142ec].[Quantity]) 
FROM [Sales_001b8a59-0b80-4210-9567-facdae2142ec];

We can remove a few internal details that are not relevant by now. In this way, the query resembles 
a standard SQL syntax:

SELECT 
SUM ( Sales[Quantity] )  
FROM Sales;

This query aggregates all the rows of the Sales table, returning a single column with the sum of 
Quantity. The storage engine executes the entire aggregation operation, returning a small datacache 
(one row, one column) regardless of the size of the Sales table. The materialization required for this 
datacache is minimal. Moreover, the only data structures read by this query are those storing the 
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Quantity column in the Sales table. Even if the Sales table had hundreds of other columns, this would 
not affect the performance of this xmSQL query. The storage engine scans only columns included in 
the xmSQL query. 

As you will see later, measuring the execution time of each xmSQL query is an important part 
of the optimization process. Keep in mind that performance is related to the size of the columns 
involved in a query, and not only on the number of rows of the table. Different columns can have 
 different compression rates and different sizes in memory, resulting in different scan times.

Capturing profiling information

The previous section introduced you to DAX query plans. Here you learn how to capture these events 
and how to measure their duration, which are the first steps in DAX optimization.

The DAX engine has grown as part of Microsoft SQL Server Analysis Services. Such a service 
 provides trace events that you can capture with the SQL Server Profiler tool. When you use DAX in 
other products, such as Power Pivot and Power BI, you are always using the same engine, even if you 
might not have the same tools available as for Analysis Services to capture trace events. For example, 
Power Pivot for Excel and Power BI Desktop have diagnostic options that save trace events on a file, 
which you can open later with the same SQL Server Profiler tool. In order to simplify the process of 
collecting and analyzing information using SQL Server Profiler, you can also use tracing features of 
DAX Studio, described later in this chapter.

Using the SQL Server Profiler
The SQL Server Profiler tool is installed as part of the SQL Server Management tools. You can  connect 
SQL Server Profiler to an Analysis Services instance and collect all the events related to DAX query 
 execution. You can also load a file containing a trace session produced by the same SQL Server 
 Profiler, or by other services (such as Power Pivot for Excel and Power BI Desktop).

In order to catch DAX query plans and storage engine queries, you run a new trace session and 
configure it to grab the interesting events for a DAX query, as in Figure 15-1.
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FIGURE 15-1 SQL Server Profiler settings to capture DAX query plans and storage engine queries.

You need to capture four classes of events:

■■ Query End event fired at the end of a query. You might include the Query Begin event too, 
but we suggest for you to catch only Query End because it contains the execution time.

■■ DAX Query Plan event fired after the query engine computed the query plan. It contains a 
textual representation of the query plan. This event class includes two different subclasses, 
Logical Plan and Physical Plan. For each query, the engine generates both classes: one logical 
query plan and one physical query plan.

■■ VertiPaq SE Query Cache Match event fired when a VertiPaq query is resolved by looking at 
the cache data. It is very useful in order to see how much of your query performs real compu-
tations and how much of it just does cache lookups.

■■ VertiPaq SE Query End fired when the VertiPaq engine answers a query. As with the Query 
End event, to gather timing information, we suggest you grab the end event of the queries 
executed by the VertiPaq Storage Engine.

Tip Once you select the events you need, it is a good idea to organize columns  (pressing 
the Organize Columns button you see in Figure 15-1), and to save a template of the 
 selections made. You can save a trace template by using the File / Templates / New 
Template menu in SQL Server Profiler.
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Note In a production environment, you have to filter events of a single user session. 
Otherwise, you will see events of different queries executed at the same time, which 
makes it harder to analyze events related to a single query. If you run the Profiler in a 
 development or test environment where you are the only active user, you will see only the 
events you run without any “background noise.”

In order to see the sequence of events fired, we will analyze what happens when you run the 
 following query on a very large table with more than four billion rows:

EVALUATE 
ROW ( "Result", SUM ( Audience[Weight] ) )

You obtain the result shown in Figure 15-2 in the log window of the Profiler.

FIGURE 15-2 Trace events captured in a SQL Server Profiler session for a simple DAX query.

Even for such a simple query, the DAX engine fires five different events:

1. A DAX VertiPaq Logical Plan event, which is the logical query plan.

2. An internal VertiPaq scan event, which corresponds to a storage engine query. You might see 
more than one internal event (subclass 10) for each VertiPaq scan event (subclass 0).

3. A VertiPaq scan event, which describes a single storage engine query received by the formula 
engine.

4. A DAX VertiPaq Physical Plan event, which is the physical query plan.

5. A final Query End event, which returns the query duration of the complete DAX query. You 
should ignore the CPU time reported by this event (it should be close to the time spent in the 
formula engine, but is not as accurate as the calculation you will see later).

All of the events show both CPU time and duration, expressed in milliseconds. CPU Time is the 
amount of CPU time consumed to answer the query, whereas Duration is the time the user waited 
for getting the result. When the Duration is lower than CPU Time, the operation has been executed 
in parallel on many cores. When the Duration is higher than CPU Time, the operation had to wait for 
other operations (usually logged in different events) to be completed.



466 The Definitive Guide to DAX

 
Note The accuracy of the CPU Time and Duration columns is not very reliable for values 
lower than 16 milliseconds, and CPU Time can be less accurate than that in conditions of 
high parallelism. Moreover, these timings might depend on other operations in progress 
on the same server. It is a common practice to be running the same test multiple times 
in order to create an average of execution time of single operations, especially when you 
need accurate numbers. However, when you only look for an order of magnitude, you 
might just ignore differences under 100 milliseconds.

If you consider the sequence of events, the logical query plan precedes all of the storage engine 
queries (VertiPaq scans), and only after their execution can you see the physical query plan. In other 
words, the physical query plan is an actual query plan and not an estimated one. In fact, it contains 
the number of rows processed by any iteration in the formula engine, even if it does not provide 
information about the CPU time and duration of each step in the query plan.

Logical and physical query plans do not provide any timing information, which are available only in 
the other events we gathered in the Profiler. 

Analyzing CPU time, duration, and parallelism
Information provided in CPU Time and Duration columns is helpful to identify performance 
 bottlenecks in a query. The first thing you want to know is whether a query spends more time in 
the formula engine or in the storage engine, because each engine requires different optimization 
 techniques to improve performance.

The Query End event only provides you with the total elapsed time for a DAX query in the 
 Duration column, summing both formula engine and storage engine duration. The VertiPaq scan 
events  provide you with information about the time spent in the storage engine. You can evaluate 
the elapsed time in formula engine operations by subtracting the duration of all the storage engine 
queries from the duration of the entire DAX query (provided in the Query End event).

In Figure 15-2, you have seen that the Query End event had a Duration of 1,734 milliseconds. The 
time spent in the storage engine was 1,711 milliseconds. There was only one storage engine query, 
which lasted for 1,711 milliseconds (you only consider the VertiPaq Scan event, ignoring internal 
ones). The difference is 23 milliseconds, which is the amount of time spent in the formula engine. You 
can calculate the amount of time spent in the formula and storage engines by using the following 
formulas:
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Once you have measured the duration of an operation, you also have to understand the 
 parallelism degree of a query. This information is important to understand whether you can improve 
the duration by increasing the parallelism (spreading the execution across more cores). If you are 
executing a query that already uses all the cores available, you can only optimize the performance 
by creating a more efficient query plan. If the query does not use all of the cores, then increasing the 
parallelism (if possible) might reduce the duration.

A formula engine operation always runs in a single thread, so its CPU Time corresponds to its 
duration (which you computed with the previous formula). You cannot increase the parallelism of a 
formula engine operation.

You can evaluate the parallelism of a storage engine operation by dividing the CPU Time by its 
Duration, assuming that the server was not executing other queries or processes (in which case, right 
parallelism cannot be estimated). This fraction provides you with the average number of cores used in 
an operation, as defined by this formula:

For example, the only VertiPaq operation you saw in Figure 15-2 has a parallelism of 7.7,  obtained 
by dividing the CPU Time (13,109 milliseconds) by the Duration (1,711 milliseconds). When this 
 number is close to the total number of cores in the server, you cannot improve performance by 
increasing the parallelism. In this example, we used a system with eight cores. Thus, the query reached 
the limits of the hardware. A second concurrent user would not be able to get optimal performance 
executing a long-running query, and would slow down other users, too.

Reading saved Profiler trace sessions
You can connect SQL Server Profiler only to Analysis Services to analyze live queries. If you want to 
debug events generated by the DAX engine in Power Pivot for Excel, you can save the trace session 
on file, reading it later with SQL Server Profiler.

In Power Pivot for Excel, you can enable the Enable Power Pivot Tracing check box for the current 
Excel session, which is located in the Settings dialog box. This setting generates a TRC file (TRC is the 
extension for trace file), which you can open in SQL Server Profiler. You cannot customize the events 
captured in the profiler session, so you will see more event types than those we are describing here. 
You can ignore them for the sake of analyzing DAX query plans. 

Using DAX Studio
The community of BI developers provides a free open source tool to analyze DAX queries in a more 
efficient way. DAX Studio (available at http://daxstudio.codeplex.com) includes an editor that allows 
you to write and execute a query. It captures the same trace events you have seen in the SQL Server 
Profiler section, and displays the relevant information with a more productive user interface. DAX 
Studio can connect to Analysis Services Tabular, Power BI Desktop, and Power Pivot for Excel.

http://daxstudio.codeplex.com
http://daxstudio.codeplex.com
http://daxstudio.codeplex.com
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Before analyzing a query in DAX Studio, you have to enable the Query Plan and Server Timings 
options in the Traces section of the Home ribbon, as you see in Figure 15-3.

FIGURE 15-3 The Query Plan and Server Timings options enable the tracing features in DAX Studio.

Once you set these options you see a Query Plan and a Server Timings pane next to the Output 
and Results pane that are visible by default. DAX Studio connects to the DAX engine as if it were 
a profiler and it captures the same trace events described in the previous section. It automatically 
filters only the events related to the executed query, so you do not have to worry if there are other 
 concurrent users active on the same server.

The Query Plan pane displays the two query plans generated by the query, as you see in Figure 15-4.  
You see the physical query plan in the upper half of the pane, and the logical one in the lower half. 
The physical query plan is usually the most important to analyze when you look for a  performance 
 bottleneck in the formula engine. For this reason, this list also provides a column that contains the 
number of records iterated by a spool operation (which is an iteration performed by the formula engine, 
usually over a datacache). In this way, you can easily recognize which operations iterate over a large 
number of records in a complex query plan. You will see how to use this information later in Chapter 16, 
“Optimizing DAX.”

FIGURE 15-4 The Query Plan pane displays the Physical Query Plan and the Logical Query Plan.

The Server Timings pane in Figure 15-5 shows information related to storage engine queries and 
how the execution time splits between the formula engine and the storage engine. 
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FIGURE 15-5 The Server Timings pane displays a summary of timings information and the details of the storage 
engine queries.

On the left side of the Server Timings pane, you can see the following measures:

■■ Total Elapsed time for the complete DAX query. It corresponds to the Duration of the Query 
End event.

■■ SE CPU Sum of the CPU Time value for all the VertiPaq scan events. It also reports the degree 
of parallelism of VertiPaq operations (number of cores used in parallel).

■■ FE Time elapsed in the formula engine, in milliseconds and as a percentage of the Total time.

■■ SE Time elapsed in the storage engine, in milliseconds and as a percentage of the Total time.

■■ SE Queries Number of queries sent to the storage engine.

■■ SE Cache Number of storage engine queries resolved by the storage engine cache, displayed 
as an absolute number and as a percentage of the SE Queries value.

The list in the center shows the storage engine queries executed, and on the right side you see the 
complete xmSQL code of the storage engine query selected in the center list. By default, you see only 
one row for each query, hiding the VertiPaq Scan Internal events that you have seen in the SQL Server 
Profiler example. You can show/hide internal events by enabling the Internal button of the Server 
Timings section in the Home ribbon, as you see in Figure 15-6.

FIGURE 15-6 The Server Timings section includes options to show/hide details in the Server Timings pane.

Usually, a DAX performance analysis starts from the results displayed in the Server Timings pane. 
If more than 50 percent of the execution time is in FE, then you will analyze the query plans first, 
 looking for the most expensive operations in the formula engine. Otherwise, when most of the 
 execution time is in SE, then you will look for the most expensive storage engine queries in the center 
list of the Server Timings pane.
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The Duration and CPU columns correspond to the Duration and CPU Time columns of the  
VertiPaq scan events described in the SQL Server Profiler section. You can sort the list of storage 
 engine queries by Duration, so that you can easily find the most expensive one.

The xmSQL code displayed by DAX Studio is a simplified version of the original xmSQL query you 
can see in SQL Server Profiler. DAX Studio removes a few details, such as GUIDs included in object 
names, making the query easier to read.

DAX Studio makes the search of the bottlenecks in a DAX query more productive. It does not 
 optimize DAX by itself, but it makes your job faster. In the following section of the book, we will use 
DAX Studio as a reference, but you should be able to find the corresponding information using SQL 
Server Profiler, too.

Reading storage engine queries

In this section you will learn how to read the storage engine queries and understand what happens 
in VertiPaq to execute an xmSQL query. You will use this information every time you have to solve a 
bottleneck in the storage engine. However, over time you will realize that it could be better to check 
the storage engine queries first, even when you have a bottleneck in the formula engine.

The storage engine task is that of scanning the VertiPaq database and generating a datacache, so 
that the formula engine can later use it. 

Introducing xmSQL syntax
In the previous section, you have seen a simple storage engine query described in a simplified xmSQL 
syntax, which is the same as displayed by DAX Studio:

SELECT 
SUM ( Sales[Quantity] )  
FROM Sales;

This syntax would be quite similar in standard ANSI SQL:

SELECT 
SUM ( Quantity )  
FROM Sales;

Every xmSQL query involves a GROUP BY condition, even if this is not part of its syntax. For 
 example, the following DAX query returns the list of unique values of the Color column in the  
Product table:
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EVALUATE VALUES ( Product[Color] )

It results in this xmSQL query (note that no GROUP BY appears in the query):

SELECT Product[Color] 
FROM Product;

The corresponding query in ANSI SQL would have a GROUP BY condition:

SELECT Color 
FROM Product 
GROUP BY Color

The reason why we compare the xmSQL to an ANSI SQL query with GROUP BY instead of  DISTINCT 
(which would be possible for the previous example) is that most of the time xmSQL queries also 
 include aggregated calculations. For example, consider the following DAX query:

EVALUATE  
ADDCOLUMNS (  
    VALUES ( Sales[Order Date] ), 
    "Revenues", CALCULATE ( SUM ( Sales[Quantity] ) ) 
)

This is the corresponding xmSQL query sent to the storage engine:

SELECT Sales[Order Date], SUM ( Sales[Quantity] ) 
FROM Sales;

In ANSI SQL you would see a GROUP BY condition for the Order Date column:

SELECT [Order Date], SUM ( Quantity ) 
FROM Sales 
GROUP BY [Order Date]

An xmSQL query never returns duplicated rows. When you run a DAX query over a table that does 
not have a unique key, the xmSQL query includes a special RowNumber column that keeps the rows 
unique. However, you cannot access the RowNumber column in DAX. For example, consider this DAX 
query:



472 The Definitive Guide to DAX

 

 
EVALUATE Sales

It generates the following xmSQL code:

SELECT Sales[RowNumber], Sales[column1], Sales[column2], … ,Sales[columnN] 
FROM Sales

Aggregation functions
xmSQL includes the following aggregation operations:

■■ SUM: sums the values of a column.

■■ MIN: returns the minimum value of a column.

■■ MAX: returns the maximum value of a column.

■■ COUNT: counts the number of rows in the current GROUP BY.

■■ DCOUNT: counts the number of distinct values of a column.

The behavior of SUM, MIN, MAX, and DCOUNT is similar. For example, the following DAX query 
returns the number of unique customers for each order date:

EVALUATE  
ADDCOLUMNS (  
    VALUES ( Sales[Order Date] ),  
    "Customers", CALCULATE ( DISTINCTCOUNT ( Sales[CustomerKey] ) ) 
)

It generates the following xmSQL code:

SELECT Sales[Order Date], DCOUNT ( Sales[CustomerKey] ) 
FROM Sales;

Which corresponds to this ANSI SQL query:

SELECT [Order Date], COUNT ( DISTINCT CustomerKey ) 
FROM Sales 
GROUP BY [Order Date]
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The COUNT function does not have any argument. In fact, it computes the number of rows for the 
current group. For example, consider the following DAX query that counts the number of products for 
each color:

EVALUATE  
ADDCOLUMNS (  
    VALUES ( Product[Color] ), 
    "Products", CALCULATE ( COUNTROWS ( Product ) ) 
)

This is the xmSQL code sent to the storage engine:

SELECT Product[Color], COUNT ( ) 
FROM Product;

A corresponding ANSI SQL query could be the following:

SELECT Color, COUNT ( * ) 
FROM Product 
GROUP BY Color

Other aggregation functions in DAX do not have a corresponding xmSQL aggregation function. For 
example, consider the following DAX query using AVERAGE:

EVALUATE  
ADDCOLUMNS (  
    VALUES ( Product[Color] ), 
    "Average Unit Price", CALCULATE ( AVERAGE ( Product[Unit Price] ) ) 
)

The corresponding xmSQL code includes two aggregations, one for the numerator and the other for 
the denominator of the division that will compute a simple average in the formula engine:

SELECT Product[Color], SUM ( Product[Unit Price] ), COUNT ( ) 
FROM Product;

Converting the xmSQL query in ANSI SQL you would obtain:

SELECT Color, SUM ( [Unit Price] ), COUNT ( * ) 
FROM Product 
GROUP BY Color
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Arithmetical operations
xmSQL includes simple arithmetical operations: +, -, *, / (sum, subtraction, multiplication, division). 
These operations work on single rows, whereas the formula engine usually performs arithmetical 
operations between the results of aggregations. It is common to see arithmetical operations in the 
expression used by an aggregation function. For example, the following DAX query returns the sum 
of the product of quantity and unit price calculated row by row for the Sales table:

EVALUATE  
ROW (  
    "Result",  
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] )  
)

It generates the following xmSQL code:

SELECT 
SUM ( Sales[Quantity] * Sales[Unit Price] )  
FROM Sales;

Which corresponds to this ANSI SQL query:

SELECT SUM ( [Quantity] * [Unit Price] )  
FROM Sales

xmSQL can also execute casts between data types to perform arithmetical operations. It is impor-
tant to remember that these operations only happen within a row context, from the point of view of a 
DAX expression. 

Filter operations
An xmSQL query can include filters in a WHERE condition. The performance of a filter depends on 
the cardinality of the conditions applied (this will be discussed in more detail later in the section, 
 “Understanding scan time”).

For example, consider the following query that returns the sum of the Quantity column for all the 
sales having a unit price equal to 10:

EVALUATE 
CALCULATETABLE (  
    ROW ( "Result", SUM ( Sales[Quantity] ) ), 
    Sales[Unit Price] = 10 
)
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The resulting xmSQL query is the following:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales 
WHERE Sales[Unit Price] = 10;

The WHERE condition might include a test with more than one value. For example, consider a small 
variation of the previous query, where you sum the quantity or the sales having a unit price equal to 
10 or 20, as in the following DAX query:

EVALUATE 
CALCULATETABLE (  
    ROW ( "Result", SUM ( Sales[Quantity] ) ), 
    OR ( Sales[Unit Price] = 10, Sales[Unit Price] = 20 ) 
)

The xmSQL uses the IN operator to include a list of values:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales 
WHERE Sales[Unit Price] IN ( 10, 20 );

Any filter condition in xmSQL only includes existing values of the column. For example, if you apply 
to a DAX condition a value that does not exist in the column, the resulting xmSQL code will include 
a condition that will filter out all the rows. For example, if neither 10 nor 20 existed in the Sales table, 
the previous xmSQL query would become:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales 
WHERE Sales[Unit Price] IN (  );

The result of such an xmSQL query will be always empty.

It is important to remember that xmSQL is a textual representation of a storage engine query. The 
actual structure is more optimized. For example, when the list of values allowed for a column is very 
long, the xmSQL reports a few values, highlighting the total number of values passed internally to the 
query. This might happen more often than you can imagine. For example, consider the following DAX 
query that returns the sum of the quantity for one year of sales:
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EVALUATE 
CALCULATETABLE (  
    ROW ( "Result", SUM ( Sales[Quantity] ) ), 
    Sales[Order Date] >= DATE ( 2006, 1, 1 ) && Sales[Order Date] <= DATE ( 2006, 12, 31 ) 
)

Depending on the version of the DAX engine, it might generate the following xmSQL query:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales 
WHERE Sales[Order Date] >= 38718.000000 
 VAND Sales[Order Date] <= 39082.000000

DAX represents date and time values as floating point numbers. For this reason, you see that the 
comparison of the Order Date column happens with two numbers corresponding to the two dates 
used in the filter argument of the DAX expression.

However, a different version of the DAX engine might produce the following xmSQL query instead:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales 
WHERE Sales[Order Date] IN ( 38732.000000, 38883.000000, 38846.000000, 38997.000000, 
38809.000000, 38960.000000, 38789.000000, 38923.000000, 39074.000000, 38752.000000..[365 
total values, not all displayed] ) ;

In this case, instead of a range condition, the xmSQL query has a bitmap index that identifies all of 
the values included in the filter. The WHERE / IN condition represents such a bitmap index, reporting 
a sample of the values followed by the total number of values in the column. In order to obtain the 
list of values for a range, another xmSQL query might be executed before:

SELECT Sales[Order Date] 
FROM Sales 
WHERE Sales[Order Date] >= 38718.000000 
 VAND Sales[Order Date] <= 39082.000000

The actual xmSQL query generated in this last example might be more complex,  including 
a  callback to the formula engine in order to transform the result of the DATE function in the 
 corresponding floating-point value. You will find more information about these callbacks in the 
 section “Understanding CallbackDataID,” later in this chapter.
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Join operators
The xmSQL code can execute JOIN conditions when a DAX query involves multiple tables  connected 
by relationships in the data model. For example, consider the following DAX query  returning the sum 
of Quantity column in the Sales table for each Color name in the Product table:

EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product [Color] ), 
    "Sales", CALCULATE ( SUM ( Sales[Quantity] ) )  
)

If you have a one-to-many relationship between the Product and Sales tables in the data model, 
the xmSQL code you obtain includes a LEFT OUTER JOIN between the two tables, as you see in the 
following storage engine query:

SELECT Product[Color], SUM ( Sales[Quantity] )  
FROM Sales 
    LEFT OUTER JOIN Product ON Sales[ProductKey] = Product[ProductKey];

The ON condition of the JOIN automatically includes the columns that define the relationship in 
the data model. You have one join for each relationship involved in the query.

Understanding scan time
Now that you have seen the syntax of xmSQL queries, it is time to consider the work performed by 
the storage engine to execute such statements.

VertiPaq performs a complete scan of each column involved in a storage engine query. There 
could be more iterations for a column, depending on the request. Because there are no indexes, the 
time required to complete a scan depends on the memory footprint of the column, which depends 
on the number of unique values in the column, their distribution across the rows and on the number 
of rows in the table. The importance of these factors depends on the aggregation function used in 
the xmSQL query. For example, consider a large table with four columns: Date, Time, Age, and Score. 
The table has four billion rows, so that we can observe relevant differences in execution time. We 
 executed the following DAX queries for each column:

EVALUATE 
ROW ( "Sum", SUM ( Example[<column name>] ) ) 
 
EVALUATE 
ROW ( "Distinct Count", DISTINCTCOUNT ( Example[<column name>] ) )
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We are not interested in the values returned by these queries, but only in the time spent in the 
storage engine (which, for these simple queries, is always close to the entire execution time of the 
DAX queries). In Table 15-1 you can see the results where we reported, for each column:

■■ Memory (MB) the memory footprint of the column for the entire table (four billion rows).

■■ Distinct Values the number of unique values in the column, obtained by executing the 
 DISTINCTCOUNT aggregation function in DAX.

■■ SUM (ms) the execution time of the query that applies the SUM aggregation to the column.

■■ DISTINCTCOUNT (ms) the execution time of the query that applies the DISTINCTCOUNT 
 aggregation to the column.

TABLE 15-1 Column size, cardinality, and execution time of aggregation functions.

Column Memory (MB) Distinct Values SUM (ms) DISTINCTCOUNT (ms)

Date 0.37 1,588 13 17

Age 203.55 96 130 103

Score 2,690.35 1,467,394 700 1,986

Time 6,192.81 1,438 1,391 844

At first sight, a few results might appear counterintuitive. Usually, the larger the number of unique 
values in a column, the slower the query. In this case, Date is faster than Age, which has a smaller 
number of unique values. Moreover, the Time column, which has a number of unique values similar 
to Date, has a difference in performance of at least one order of magnitude. The reasons for these 
 differences are the different compression rates, derived by different sort orders of the columns.

The Date column always has the faster execution time. This is because the four billion rows have 
been processed as reading rows sorted by date. Even without partitioning, this created segments with 
one or two unique values each. Thus, all the rows in each segment had a very high compression rate, 
as it is clear from the memory used by the Date column.

The Age column has the second best performance for both SUM and DISTINCTCOUNT. This 
 column has a larger memory footprint than Date because there are different Age values for each 
Date, and rows are sorted by Date first. 

The Score and Time columns have a slower performance. Performance of SUM depends mainly on 
the memory footprint, whereas DISTINCTCOUNT is more sensitive to the number of distinct values in 
the column. The reason for that is the different calculation algorithm used for these two aggregations.

The important concept here is that you can obtain a different performance for a storage engine 
query depending on the memory footprint of a column. You can optimize a storage engine query 
by reducing the memory footprint of the columns used. You can obtain that by using columns with a 
smaller number of unique values, or with a different sort order of the data source, or by reducing the 
number of rows in the table, or by applying other techniques that you will see in the remaining part 
of this book.
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Understanding DISTINCTCOUNT internals
The use of the DISTINCTCOUNT function in a DAX expression generates multiple VertiPaq Scan 
Internal events for a single VertiPaq Scan event. You can show internal events by enabling the Internal 
button in the Server Settings section of DAX Studio.

Consider the following DAX query:

EVALUATE 
ROW ( "Result", DISTINCTCOUNT ( Example[Score] ) )

In Table 15-2 you can see the complete list of VertiPaq Scan events generated by the query above. 

TABLE 15-2 VertiPaq Scan events for a DAX query with DISTINCTCOUNT measure.

Line Subclass Duration CPU Query

1 Internal 3,974 28,422 SELECT Example[Score] FROM Example;

2 Internal 3,974 28,422 SELECT Example[Score] FROM Example;

3 Internal 8 28,422 SELECT COUNT( ) FROM $DCOUNT_DATACACHE;

4 Scan 3,982 28,422 SELECT DCOUNT ( Example[Score] ) FROM Example;

The last line includes the storage engine query requested by the formula engine. In reality, 
 internally the query is split into two subqueries. The first result is duplicated in two identical rows 
(see the content of Duration and CPU columns). You can see here the xmSQL code of the first internal 
subquery, which retrieves the list of unique values in the Score column of the Example table:

SELECT Example[Score] 
FROM Example;

The result of this storage engine query is a list of the unique values in the Score column of the 
Example table. The next step is to count how many rows are in this list. In other words, counting the 
rows returned by the internal query provides the correct result to the original query. This particular 
xmSQL query just references a special table named $DCOUNT_DATACACHE, which references the 
previous result from a storage engine query:

SELECT COUNT ( )  
FROM $DCOUNT_DATACACHE;

Table 15-2 also shows that the duration of the Scan event corresponds to the sum of the duration 
of the two internal events. As you see, the duplicated event counts only once. Regarding the CPU 
Time, it is always the same in all the events of the same query. The parallelism ratio (CPU Time divided 
by Duration) is around seven, which means that up to eight threads in parallel were executed. The 
next section includes a deeper discussion about the parallelism within a storage engine query.
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Understanding parallelism and datacache
Every storage engine query described by an xmSQL statement returns a result called datacache, which 
is a single uncompressed table in memory. The result of a storage engine query can be completely 
materialized in memory, or its rows can be consumed during the iteration without persisting them. 
Usually, we refer to a datacache when this result is materialized, which is the case most of the time in 
complex queries.

The execution of the storage engine query can be parallelized among many cores, using  different 
execution threads. The number of threads used depends on the hardware and on the physical 
 structure of the columns involved in the query. The VertiPaq engine assigns one thread for each 
 segment involved in a single scan operation (as you have seen in Chapter 13). When the operation 
runs on multiple threads, every thread creates a partial result. Only when all the threads complete 
their execution, VertiPaq will consolidate these results in a single final datacache. The formula engine 
will then consume the datacache in a single thread. Also for this reason, the result of a storage engine 
query requires such a consolidation. You can see the parallel processing and consolidation behavior 
described in a schema in Figure 15-7.

FIGURE 15-7 The final datacache is a consolidation of different datacaches created by concurrent VertiPaq 
 queries when the engine parallelizes execution.

A segment should not be too small, because the consolidation process requires time. The  efficiency 
of running scan operations in multiple threads should balance the overhead of the  consolidation, but 
this is not possible if the segments are too small. As a side effect, VertiPaq operations on small tables 
cannot get the benefits of multiple cores: The consolidation process would be more expensive than 
the gain provided by parallelization of small tables.



 CHAPTER 15 Analyzing DAX query plans 481

It is useful to remember that the storage engine query only provides data to the formula engine. In 
a simple scenario, we have the following steps:

1. The storage engine receives an xmSQL query.

2. The storage engine executes the scan operations potentially on many threads, creating one 
datacache per thread.

3. The storage engine consolidates the different datacaches into a single, final datacache.

4. The formula engine consumes the datacache in a single thread.

5. The formula engine can use the same datacache in different steps of the query plan.

In the Profiler, you will always see the storage engine events before the query plan. The physical 
query plan always appears at the end of the events related to a query. The logical query plan can be 
preceded by a few storage engine queries. When this is the case, it is because the DAX engine itself 
sends some queries to retrieve information about size and density of columns. The DAX engine uses 
this information to create a better query plan. Using DAX Studio, you cannot see such a behavior, be-
cause this tool shows query plans and storage engine queries in different parts of the user interface.

Understanding the VertiPaq cache
The DAX formula engine does not have any cache, whereas the VertiPaq storage engine has one: 
the VertiPaq cache. Its primary goal is to improve the performance of multiple requests of the same 
datacache within the same query. Its secondary goal is to improve the performance of different DAX 
queries requesting the same datacache. It is important to understand the goals of the VertiPaq cache 
in order to analyze its behavior and evaluate its efficiency.

For example, consider the following DAX query:

EVALUATE 
ADDCOLUMNS (  
    VALUES ( Example[Date] ), 
    "A", CALCULATE ( SUM ( Example[Score] ) ),  
    "B", 2 * CALCULATE ( SUM ( Example[Score] ) ) 
)

The result of the query includes two columns, A and B, both summing the Score column of the 
Example table for each Date. The difference between A and B is that B multiplies this result by 2. 
In Table 15-3 you see a possible sequence of Scan events (actual events depend on the version of 
the DAX engine—you might observe a different execution). Within the same query, there are two 
 VertiPaq queries that retrieve the same datacache. The second Scan operation (in Line 4) hits the 
cache, reusing (in Line 3) the previously computed datacache.
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TABLE 15-3 VertiPaq events for a DAX query with two similar expressions.

Line Class Subclass Duration CPU Query

1 SE Query Internal 2,527 18,250 SELECT Example[Date], SUM ( Example[Score] ), COUNT ( ) FROM 
Example;

2 SE Query Scan 2,528 18,250 SELECT Example[Date], SUM ( Example[Score] ) FROM Example;

3 SE Cache Cache 0 0 SELECT Example[Date], SUM ( Example[Score] ) FROM Example;

4 SE Cache Scan 0 0 SELECT Example[Date], SUM ( Example[Score] ) FROM Example;

5 SE Query Internal 213 1,484 SELECT Example[Date], COUNT ( ) FROM Example;

6 SE Query Scan 213 1,484 SELECT Example[Date] FROM Example;

In SQL Server Profiler, you see that a storage engine query retrieved data from the VertiPaq cache 
by capturing the event VertiPaq SE Query Cache Match. However, such an event class includes both 
the Scan and Cache subclasses (as you see in Lines 3 and 4 of Table 15-3). If you remove it from a 
 profiling session, you no longer see the entire scan event if it is resolved by the VertiPaq cache.

DAX Studio always captures both subclasses of this event. You can just hide or show the Cache 
subclass event, keeping the Scan event visible, by enabling the Cache button of the Server Timings 
section in the Home ribbon. If you disable both the Cache and Internal events, DAX Studio shows 
three events (as shown in Table 15-4), which are the same Scan events you have seen in Table 15-3. 
DAX Studio does not completely filter out the Scan subclass events of the VertiPaq SE Query Cache 
Match event class. When you analyze a single query, this visualization mode is more useful than the 
profiler one.

TABLE 15-4 VertiPaq Scan events for a DAX query with two similar expressions.

Line Class Subclass Duration CPU Query

2 SE Query Scan 2,528 18,250 SELECT Example[Date], SUM ( Example[Score] ) FROM Example;

4 SE Cache Scan 0 0 SELECT Example[Date], SUM ( Example[Score] ) FROM Example;

6 SE Query Scan 213 1,484 SELECT Example[Date] FROM Example;

The VertiPaq engine reuses data in cache only when the cardinality is the same and the columns 
are a subset of a previous query. This algorithm is very simple because the lookup in the VertiPaq 
cache must not be an overhead of the memory scan operation that it is trying to avoid. For this 
 reason, the VertiPaq cache keeps in memory only a limited number of datacaches. Therefore, there 
is no guarantee that a request will hit the cache, even when the query plan repeats the same storage 
query multiple times within the same DAX query. Nevertheless, in most conditions the  VertiPaq cache 
satisfies most of the requests that happen in a short period, also between different DAX queries.

VertiPaq ignores row-level security settings. The DAX formula engine manages the role-based 
security and generates different VertiPaq storage engine queries depending on security settings 
and user credentials. For this reason, the VertiPaq cache is a global resource and shares the results 
between different users and sessions. The formula engine guarantees the correctness of the result, 
generating different storage engine queries depending on the requirements.
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When analyzing performance, it is important to clear the cache before running a query. In order to 
find bottlenecks and areas of improvement for a query plan, it is better to observe the time required 
to complete a scan in memory, simulating the worst-case scenario (empty cache). Because of the 
reduced size of the VertiPaq cache, missing the cache is a frequent event on a busy server with many 
concurrent users running queries.

You can clear the cache in Analysis Services using the following XMLA command, which removes 
the cache of results related to the specified database (this example clears the cache of the Adventure 
Works DW database):

<ClearCache xmlns="http://schemas.microsoft.com/analysisservices/2003/engine"> 
    <Object> 
        <DatabaseID>Adventure Works DW</DatabaseID> 
    </Object> 
</ClearCache>

Note The clear cache command completely empties the VertiPaq cache of all the 
 databases in SQL Server Analysis Services 2012 and 2014. Newer versions of Analysis 
Services will respect the database scope of the clear cache command.

If you are using DAX Studio, you can use the Clear Cache button in the Home ribbon to send the 
same command to the DAX engine.

Understanding CallbackDataID
The storage engine only supports a limited set of operators and functions in xmSQL. Thus, it is a 
 formula engine task executing all the operations not directly supported by the storage engine. 
 However, when a calculation is required within a VertiPaq iterator, the storage engine may call the 
formula engine using a special xmSQL function called CallbackDataID.

The operators supported in xmSQL include the basic mathematical operations (sum, subtraction, 
multiplication, and division), but do not include mathematical functions such as square root (SQRT in 
DAX), or conditional logic such as the IF function. If you include an expression that is not supported 
by xmSQL in an iterator, then the query plan generates an xmSQL syntax that contains a special func-
tion called CallbackDataID. During the iteration, the storage engine calls the formula engine for every 
row, passing the DAX expression and the values of its members as arguments.

For example, consider the sum of squares in this DAX query:

EVALUATE 
ROW (  
    "Result", SUMX ( Example, SQRT ( Example[Delta] ) ) 
)

http://schemas.microsoft.com/analysisservices/2003/engine
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In this case, the query plan generates the following xmSQL statement:

SELECT 
SUM ( [ CallbackDataID ( SQRT ( Example[Delta] ) ) ] ( PFDATAID ( Example[Delta] ) ) ) 
FROM Example;

The CallbackDataID function contains the DAX expression that evaluates the square root of a 
value, which corresponds to the value of the Delta column in the Example table for the “current” row. 
(The PFDATAID syntax is not relevant for analyzing the logic we are describing now.) The storage 
engine calls the CallbackDataID function for each row of the Example table. The result of the xmSQL 
query is a datacache with only one row, corresponding to the aggregated result. Even if the formula 
engine is single threaded, when the storage engine calls the formula engine through CallbackDataID, 
the parallelism of the storage engine is not affected, because there could be multiple instances of the 
formula engine executed in parallel, one for each thread of the storage engine.

Parallelism of CallbackDataID and possible alternatives
In order to understand how the parallelism interacts with CallbackDataID and the associated 
cost, consider what could happen in case the CallbackDataID was not available. You might have 
a query plan requesting a datacache with the value of the Delta column for all the rows of the 
Example table, using an xmSQL query such as the following:

SELECT 
Example[Delta], COUNT( )  
FROM Example;

The datacache obtained by the formula engine would contain one row for each unique 
value of the Delta column, and the number of rows having such a value in the Example table. 
 Using this information, the formula engine would apply the square root to the value of Delta 
for each row of the datacache, multiplying such a result by the number of occurrences of such a 
Delta value in the Example table. The result provided by the formula engine would be  identical, 
but the storage engine should create a datacache much larger than the one-row datacache 
 obtained by the xmSQL query with the CallbackDataID function. Remember that the storage 
engine often materializes the entire datacache in memory, and this would be in an uncom-
pressed format. Then the formula engine would iterate this datacache sequentially in a single 
thread. This would result in poor performance.

The execution using CallbackDataID is less expensive in terms of memory (the datacache 
materialized has only one row), and is more scalable. If the VertiPaq Scan operation spans 
on multiple threads, calls made to the formula engine through CallbackDataID use a thread 
 instance of the formula engine. In other words, you can imagine that every running thread 
(even within the same query) has its own instance of the formula engine. The only sequential 
operation is the consolidation made by the storage engine on the datacaches created by the 
running threads. However, this operation will be very fast, because it consolidates different 
datacaches containing only one column each.
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From a performance point of view, CallbackDataID has three other implications:

■■ Expressions solved through CallbackDataID calls are more expensive than expressions solved 
by internal operators of the storage engine. There is an overhead associated with each call to 
CallbackDataID. 

■■ In a trace session, a VertiPaq Storage Engine event includes the time spent in the formula 
engine by a CallbackDataID call. This is not an issue, but you have to realize that optimizing a 
storage engine query that has a long execution time might require you to reduce or to remove 
the calls to CallbackDataID made by xmSQL queries.

■■ The storage engine cache does not persist any datacache produced by an xmSQL query 
containing one or more CallbackDataID calls. Therefore, the presence of CallbackDataID in an 
xmSQL function should be carefully evaluated when the storage executes it in an iteration.

Important The formula engine is single threaded, but when the storage engine calls the 
formula engine through CallbackDataID, the execution of the code in the formula engine 
is parallelized through the several threads created by the storage engine. The parallelism 
provided by this technique reduces overall Duration, but the CPU Time might increase 
 because of the CallbackDataID calls overhead.

In order to understand the performance impact of CallbackDataID, consider the following DAX 
query that sums the result of a division made row by row:

EVALUATE 
ROW ( 
    "Total", SUMX ( 
        Example, 
        IF ( 
            Example[Denominator] <> 0, 
            Example[Numerator] / Example[Denominator], 
            BLANK () 
        ) 
    ) 
)

The IF function avoids a calculation error in case one row contains a zero value in the denominator 
column. The xmSQL query sent to the storage engine is similar to the following one:
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SELECT 
SUM ( [ CallbackDataID ( 
    IF (  
        Example[Denominator] <> 0, 
        Example[Numerator] / Example[Denominator], 
        BLANK () 
    )   
) ' ( PFDATAID ( Example[Numerator] ) , PFDATAID ( Example[Denominator] )  )  )  
FROM Example;

We executed a corresponding DAX query on our Example table with four billion rows, obtaining 
the storage engine events that you can see in Table 15-5.

TABLE 15-5 VertiPaq Scan events with a CallbackDataID including an IF function in DAX.

Line Subclass Duration CPU Query

1 Internal 13,967 100,625 SELECT SUM ( [ CallbackDataID ( IF (Example[Denominator] <> 0, …

2 Scan 13,967 100,625 SELECT SUM ( [ CallbackDataID ( IF (Example[Denominator] <> 0, …

The parallelism ratio (CPU Time divided by Duration) is above seven, because we used a server with 
eight cores. The important point is that different threads executed parallel calls to the formula engine. 
In previous chapters, you have seen that in DAX the DIVIDE function can replace the specific IF condi-
tion used to check whether the denominator of a division is equal to zero. We can see what happens 
if we use DIVIDE instead of IF in this example. The DAX query is the following:

EVALUATE 
ROW ( 
    "Total", SUMX ( 
        Example, 
        DIVIDE ( Example[Numerator], Example[Denominator] ) 
    ) 
)

The DIVIDE function does not have a corresponding syntax in xmSQL, so also in this case we have 
a CallbackDataID in the corresponding xmSQL query sent to the storage engine:

SELECT 
SUM ( [ CallbackDataID ( 
    DIVIDE ( Example[Numerator], Example[Denominator] )   
) ' ( PFDATAID ( Example[Numerator] ) , PFDATAID ( Example[Denominator] )  )  )  
FROM Example;

In Table 15-6 you can see the storage engine events obtained from running the query over the 
same four billion rows table used in the previous example.
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TABLE 15-6 VertiPaq Scan events with a CallbackDataID including a DIVIDE function in DAX.

Line Subclass Duration CPU Query

1 Internal 11,662 84,203 SELECT SUM ( [ CallbackDataID ( DIVIDE ( Example[Numerator], …

2 Scan 11,662 84,203 SELECT SUM ( [ CallbackDataID ( DIVIDE ( Example[Numerator], …

Using DIVIDE instead of IF we obtained a 16 percent performance improvement in both  Duration 
and CPU Time. However, despite the parallelism achieved with this technique, the overhead of 
 CallbackDataID is still high, because the storage engine calls a function in the formula engine. If 
we remove the CallbackDataID completely, this overhead disappears. In this case, this is possible 
by  simply applying a filter so that the iteration will ignore rows containing zero in the  Denominator 
 column. This is possible with the following DAX query:

EVALUATE 
ROW ( 
    "Total", SUMX ( 
        FILTER ( Example, Example[Denominator] <> 0 ), 
        Example[Numerator] / Example[Denominator] 
    ) 
)

The entire DAX expression has a corresponding syntax in xmSQL without using CallbackDataID:

SELECT 
Example[Numerator] / Example[Denominator] 
FROM Example 
WHERE Example[Denominator] <> 0;

The resulting storage engine events that you can see in Table 15-7 show an improvement close to 
50 percent compared to the performance of the DIVIDE version.

TABLE 15-7 VertiPaq Scan events without CallbackDataID to execute a safe division in DAX.

Line Subclass Duration CPU Query

1 Internal 6,089 44,078 SELECT Example[Numerator] / Example[Denominator] …

2 Scan 6,089 44,078 SELECT Example[Numerator] / Example[Denominator] …

This last version also has another advantage by avoiding using CallbackDataID. The VertiPaq cache 
now keeps the datacache for future executions, which is not possible when the xmSQL query includes 
a CallbackDataID function. If you execute the last DAX query twice, the second execution produces 
the profiler events you can see in Table 15-8.
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TABLE 15-8  VertiPaq Scan events without CallbackDataID hitting the storage engine cache.

Line Subclass Duration CPU Query

1 Cache 0 0 SELECT Example[Numerator] / Example[Denominator] …

2 Scan 1 0 SELECT Example[Numerator] / Example[Denominator] …

In general, you should avoid or at least reduce to a minimum the number of calls to CallbackDataID 
made by the storage engine, as you will see in Chapter 16.

Profiler limitations for CallbackDataID in Analysis Services 2012/2014
There are important limitations in profiler events generated by Analysis Services 2012 and 
2014 when the xmSQL query includes CallbackDataID. The internal DAX expression passed to 
CallbackDataID might include subquery statements in DAX generating further requests to the 
storage engine. Unfortunately, versions of Analysis Services released before 2015 only provide 
information about these subqueries in the logical query plan. The physical query plan does not 
include the subexpression included within CallbackDataID. The storage engine queries executed 
to evaluate these subexpressions do not fire any event visible in the profiler. Analysis Services 
2016, Excel 2016, and Power BI Desktop do not have this problem.

Reading query plans

At the beginning of this chapter, you have seen that there are two types of query plans in DAX: logical 
and physical. In reality, you will not use these query plans often, because you will focus your atten-
tion on the storage engine queries first. You can analyze performance of the storage engine queries 
to find issues caused by the storage engine and/or by materialization of large datacaches in memory. 
Storage engine queries are much easier to read than DAX query plans.

In this section, you will see some of the important behaviors to check in a query plan in order to 
identify performance bottlenecks. A complete and detailed coverage of all the operators used in 
logical and physical query plans is beyond the scope of this book. The goal here is to understand the 
relationships between a query plan and the storage engine queries, improving your ability to find 
bottlenecks, and to improve query performances.

A query plan usually generates more than one storage engine query. The formula engine com-
bines the results of different datacaches, doing operations similar to joins between temporary tables. 
Consider the following DAX query that returns a table with the quantity sold for each product color:

EVALUATE 
ADDCOLUMNS ( 
    ALL ( Product[Color] ), 
    "Units", CALCULATE ( SUM ( Sales[Quantity] ) ) 
) 
ORDER BY Product[Color]
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This query returns a table with two columns similar to what you can see in Table 15-9. The point 
of attention is that the query includes unique values of Color column without any unit sold. In order 
to do that, the DAX engine has an approach that is different from the one you would have in plain 
SQL language because of the different technique used to join tables in the storage engine. We will 
highlight this difference later, but pay attention to the process for now.

TABLE 15-9  Number of units sold for each product color.

Color Units

Black 9843

Blue 3970

Grey

Multi 3926

NA 28919

Red 4949

Silver 3424

Silver/Black

White 568

Yellow 4799

The following logical query plan includes two Scan_Vertipaq operations that correspond to two 
datacaches provided by storage engine queries:

Order: RelLogOp DependOnCols()() 0-1 RequiredCols(0, 1)('Product'[Color], ''[Units]) 

    AddColumns: RelLogOp DependOnCols()() 0-1  

                RequiredCols(0, 1)('Product'[Color], ''[Units]) 

        Scan_Vertipaq: RelLogOp DependOnCols()() 0-0 RequiredCols(0)('Product'[Color]) 

        Sum_Vertipaq: ScaLogOp DependOnCols(0)('Product'[Color]) 

                      Integer DominantValue=BLANK 

            Scan_Vertipaq: RelLogOp DependOnCols(0)('Product'[Color]) 1-37  

                           RequiredCols(0, 20)('Product'[Color], 'Sales'[Quantity]) 

            'Sales'[Quantity]: ScaLogOp DependOnCols(20)('Sales'[Quantity]) 

                                    Integer DominantValue=NONE 

    'Product'[Color]: ScaLogOp DependOnCols(0)('Product'[Color]) String 

                       DominantValue=NONE

The two Scan_Vertipaq operations require different sets of columns. The first only uses the product 
color, whereas the second one includes product color and sales quantity, which are two columns in 
two different tables. When this happens, a join between two or more tables is required.
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After the logical query plan, the profiler receives the events from the storage engine. The corre-
sponding xmSQL queries of the VertiPaq SE Query events are the following:

SELECT 
    Product[Color], 
    SUM ( Sales[Quantity] )  
FROM Sales 
    LEFT OUTER JOIN Product ON Sales[ProductKey]=Product[ProductKey]; 
 
SELECT 
Product[Color] 
FROM Product;

The first storage engine query retrieves a table containing one row for each color that has at 
least one unit sold in the Sales table. In order to do that, the query joins Sales and Product  using 
the  ProductKey column. The second xmSQL statement returns the list of all the product colors, 
 independent of the Sales table. These two queries generate two different datacaches, one with two 
columns (product color and sum of quantity), and another one with only one column (the product 
color).

At this point, you might wonder why a second query is required. Why isn’t the first xmSQL enough? 
The reason is that the LEFT JOIN you see in xmSQL has Sales on the left side and Product on the right 
side. In plain SQL code, you probably would write the following query:

SELECT 
    Product.Color, 
    SUM ( Sales.Quantity )  
FROM Product 
    LEFT OUTER JOIN Sales ON Sales.ProductKey = Product.ProductKey 
GROUP BY Product.Color 
ORDER BY Product.Color;

Having the Product table on the left side of a LEFT JOIN would produce a result that includes all 
of the product colors. However, the storage engine can generate queries only between tables with 
a relationship in the data model, and the resulting join in xmSQL always puts the table that is at the 
many-side of the relationship on the left side of the join condition. This guarantees that, even if there 
are missing product keys in the Product table, the result will include sales for those missing products, 
too (these sales will be included in a row with a blank value for all the product attributes, in this case 
the product color).

Now that you know why the DAX engine produces two storage engine queries for the simple DAX 
query we wrote, you can read the physical query plan, where you will find more information about 
the query execution:



 CHAPTER 15 Analyzing DAX query plans 491

 

 

PartitionIntoGroups: IterPhyOp IterCols(0, 1)('Product'[Color], ''[Units])  

                     #Groups=1 #Rows=10 

    AggregationSpool<Order>: SpoolPhyOp #Records=1 

        AddColumns: IterPhyOp IterCols(0, 1)('Product'[Color], ''[Units]) 

            Spool_Iterator<Spool>: IterPhyOp IterCols(0)('Product'[Color]) #Records=10 

                                   #KeyCols=238 #ValueCols=0 

                AggregationSpool<Cache>: SpoolPhyOp #Records=10 

                    VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=0 

            Spool: LookupPhyOp LookupCols(0)('Product'[Color]) Integer #Records=8 

                   #KeyCols=238 #ValueCols=1 DominantValue=BLANK 

                AggregationSpool<Cache>: SpoolPhyOp #Records=8 

                    VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=1 

        ColPosition<'Product'[Color]>: LookupPhyOp LookupCols(0)('Product'[Color]) String

The physical query plan uses the VertipaqResult operator to indicate where it is consuming a 
datacache provided by the storage engine. You do not clearly see the corresponding xmSQL query for 
each operation. Nevertheless, at least in simple cases like the one we are considering, you can figure 
out this association by looking at other information. For example, one VertipaqResult only has one 
string column, whereas the other VertipaqResult has one string column and one integer column (the 
quantity). In the physical query plan, #ValueCols reports the number of numeric columns, whereas 
#FieldCols reports the number of other columns.

The AggregationSpool<Cache> operation consumes the datacaches corresponding to  VertipaqResult 
nodes in the physical query plan. Here you can see important information: the number of records 
 iterated, which corresponds to the number of rows in the datacache used. This number follows the 
 #Records attribute, highlighted in the query plan. You can find the same #Records attribute in parent 
nodes of the query plan.

The physical query plan you have seen does not show in a clear way the relationships with corre-
sponding operators in the logical query plan. This is not an issue for simple query plans, but it would 
be helpful information for queries that are more complex. New versions of the engine released after 
Analysis Services 2014 generate a richer physical query plan, such as the following one:

 PartitionIntoGroups: IterPhyOp IterCols(0, 1)('Product'[Color], ''[Units])  
                     #Groups=1 #Rows=10 
    AggregationSpool<Order>: SpoolPhyOp #Records=1 
        AddColumns: IterPhyOp IterCols(0, 1)('Product'[Color], ''[Units]) 
            Spool_Iterator<SpoolIterator>: IterPhyOp LogOp=Scan_Vertipaq  
                                           IterCols(0)('Products'[Color])  
                                           #Records=10 #KeyCols=37 #ValueCols=0 
                ProjectionSpool<ProjectFusion<>>: SpoolPhyOp #Records=10 
                    VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=0 
            SpoolLookup: LookupPhyOp LogOp=Sum_Vertipaq LookupCols(0)('Product'[Color]) 
                         Integer #Records=8 #KeyCols=238 #ValueCols=1 DominantValue=BLANK 
                ProjectionSpool<ProjectFusion<Sum>>: SpoolPhyOp #Records=8 
                    VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=1 
        ColValue<'Product'[Color]>: LookupPhyOp LookupCols(0)('Products'[Color]) String 
                                    LogOp=ColValue<'Products'[Color]>'Products'[Color] 
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The new version of the physical query plan uses ProjectionSpool operator instead of Aggregation-
Spool, specifying the aggregation performed by the engine if there is one. In this example, the second 
ProjectionSpool operation executed a sum aggregation. The other information added to the query 
plan is the argument LogOp, which specifies for each Spool operation the corresponding Vertipaq 
operation in the logical query plan (you can see the highlighted Scan_Vertipaq and Sum_Vertipaq 
operators in the last example).

At this point, we can recap what we are reading in the query plans and the storage engine queries 
we have:

1. The formula engine consumes two datacaches, corresponding to VertipaqResult operators in 
the physical query plan.

2. The formula engine iterates over the list of product colors, which is a table containing 10 rows 
and one column. This is the datacache obtained by the second storage engine query. (Do not 
make particular assumptions about the order of the storage engine queries in the profiler.)

3. For each row of this datacache (a product color), the formula engine executes a lookup in the 
other datacache containing the product colors and the quantity sold for each one.

The entire process executed by the formula engine is sequential and single threaded. The formula 
engine sends to the storage engine one request at a time. The storage engine might parallelize the 
query, but the formula engine does not send multiple requests in parallel to the storage engine.

Note The formula engine and the storage engine are components subject to optimiza-
tions and improvements made in new releases. The behavior described might be different 
in newer versions of the DAX engine.

The formula engine can combine different results by using the lookup operation described in the 
previous query plan, or other set operators. In any case, the formula engine executes this operation 
sequentially. For this reason, you might expect longer execution times by combining large datacaches, 
or by performing a lookup for millions of rows in a large lookup datacache. A simple and  effective 
way to identify these potential bottlenecks in the physical query plan is looking for the highest 
number of records in the operators of a logical query plan. For this reason, DAX Studio extracts such 
a number from the query plan, making it easier to sort query plan operators by using the number of 
records iterated. You can click the Records column shown in Figure 15-4 in order to sort the rows by 
this number. You will see a more detailed example of this approach in Chapter 16.

The presence of relationships in the data model is important to obtain better performance. We can 
examine the behavior of a join between two tables when a relationship is not available. For example, 
consider a query returning the same result of the previous example, but operating in a data model 
that does not have a relationship between Product and Sales tables. We need a DAX query such as 
the following one, which uses the virtual relationship pattern you have seen in Chapter 12, “Advanced 
relationships” in the section “Using relationships with different granularities”:
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DEFINE 
    MEASURE Sales[Units] = 
        CALCULATE ( 
            SUM ( Sales[Quantity] ), 
            FILTER ( 

                ALL ( Sales[ProductKey] ), 

                CONTAINS ( 

                    VALUES ( Product[ProductKey] ), 

                    Product[ProductKey], 'Sales'[ProductKey] 

                ) 

            ) 
        ) 
EVALUATE 
ADDCOLUMNS ( ALL ( Product[Color] ), "Units", [Units] ) 
ORDER BY Product[Color]

The function in the Units measure definition is equivalent to a relationship between Sales and 
Products. The resulting query plan is more complex than the previous one, because there are many 
more operations in both the logical and the physical query plan. Without doing a dump of the com-
plete query plan, which would be too long for a book, we can summarize the behavior of the query 
plan in these logical steps:

1. Retrieve the list of ProductKey values for each product color.

2. Sum the Quantity value for each ProductKey.

3. For each color, aggregate the Quantity of the related ProductKey values. 

The formula engine executes four storage engine queries, corresponding to the following xmSQL 
statements:

SELECT 
Sales[ProductKey] 
FROM Sales; 
 
SELECT 
Product[ProductKey], Product[Color] 
FROM Product; 
 
SELECT 
Sales[ProductKey], SUM ( Sales[Quantity] ) 
FROM Sales 
WHERE Sales[ProductKey] IN ( 490, 479, 528, 379, 359, 332, 374, 597, 387,  

                                484..[158 total values, not all displayed] ); 
 

SELECT 

Product[Color]  

FROM Product;
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The WHERE condition that you see in the third storage engine queries might seem useless, 
 because the DAX query does not apply a filter over products. However, in the real world usually you 
will have some other filter active on products or other tables. The query plan tries to extract only the 
 quantities sold of products that are relevant to the query, lowering the size of the datacache returned 
to the  formula engine. When you see a similar WHERE condition in the storage engine, the only 
concern is the size of the bitmap index moved back and forth between the formula engine and the 
storage engine.

Note Different versions of the DAX engine might generate different patterns of the filters. 
In particular, updated versions of the engine released in products newer than Analysis 
Services 2014 might generate a special subclass of events in the profiler (Batch VertiPaq 
Scan), which defines temporary tables in the storage engine reducing the number of  cases 
where this list of values returns to the formula engine for further processing.

Regardless of the technique used to retrieve the values from the storage engine, the formula 
 engine has to group all the products belonging to each color. The performance of this join performed 
at the formula engine level depends mainly on the number of products, and secondarily on the num-
ber of colors. Once again, the size of a datacache is the first and most important element to consider 
when you look for a performance bottleneck in the formula engine. In this case, the optimization is 
using a relationship, or reducing the number of rows to consider in the join.

Analyzing complex and longer query plans would require another book, even for the length of 
the query plans involved. More details about the internals of the query plans are available in the 
white papers “Understanding DAX Query Plans” (http://www.sqlbi.com/articles/understanding-dax-
query-plans/ ) and “Understanding Distinct Count in DAX Query Plans” (http://www.sqlbi.com/articles/ 
understanding-distinct-count-in-dax-query-plans/ ).

http://www.sqlbi.com/articles/understanding-dax-query-plans/
http://www.sqlbi.com/articles/understanding-dax-query-plans/
http://www.sqlbi.com/articles/understanding-distinct-count-in-dax-query-plans/
http://www.sqlbi.com/articles/understanding-dax-query-plans/
http://www.sqlbi.com/articles/understanding-dax-query-plans/
http://www.sqlbi.com/articles/understanding-distinct-count-in-dax-query-plans/
http://www.sqlbi.com/articles/understanding-distinct-count-in-dax-query-plans/
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C H A P T E R  1 6

Optimizing DAX

This is the last chapter of the book and it is time to use all the knowledge you have gained so far 
to approach the most fascinating topic about DAX: optimizing formulas. You learned how the 

 VertiPaq engine works, how to read a query plan and the internals of the formula engine and the 
storage engine. Now all the pieces are in place and you are ready to learn how to use that  information 
to write fast code.

However, before approaching this chapter, there is one very important warning. Do not expect 
to learn best practices or a simple way to write fast code. Simply stated: there is no way in DAX to 
write code that is always the fastest. The speed of a DAX formula depends on many factors, the most 
important of which, unfortunately, is not in DAX code: It is data distribution. You already learned that 
VertiPaq compression strongly depends on data distribution. The size of a column (hence, the speed 
to scan it) depends on its cardinality: the larger, the slower. Thus, the very same formula might behave 
differently when executed on one column or another.

You will learn how to measure the speed of a formula and we will provide you with several 
 examples where rewriting the expression in a different way leads to a faster execution time. Learn all 
these examples for what they are: examples that might help you in finding new ideas for your code. 
Do not take them as golden rules, because they are not.

We are not teaching you rules, we are trying to teach you how to find your own rules, in the very 
special scenario that is your data model. Be prepared to change them when the data model changes 
or when you approach a new customer. Flexibility is necessary when optimizing DAX code: flexibility, 
a deep technical knowledge of the engine and a good amount of madness, to be prepared to test 
formulas and expressions that are far from being intuitive.

Finally, all the information we provide in this book is valid at the time of printing. New versions of 
the engine come on the market frequently and the development team is always working on making 
the code better. So be prepared to measure different numbers in the version of the engine you will 
be running and, if this happens, be prepared to use different optimization methods. If, one day, you 
measure your code and reach the educated conclusion that “Marco and Alberto are wrong, this code 
runs much faster than their suggested one,” that will be our brightest day, because we would have 
been able to teach you all what we know, and you are moving forward in writing better DAX code 
than ours.
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Defining optimization strategy

The optimization process for a DAX query, expression, or measure, requires a strategy to reproduce a 
performance issue, identify the bottleneck, and remove it. Initially, you always observe a slowness in 
a complex query, but optimizing a complicated expression including several DAX measures is more 
involved than optimizing one measure at a time. For this reason, the approach we suggest is to isolate 
the slowest measure or expression first, optimizing it in a simpler query that can reproduce the issue 
with a shorter query plan.

This is a simple to-do list you should follow every time you want to optimize DAX:

1. Identify a single DAX expression to optimize.

2. Create a query that reproduces the issue.

3. Analyze server timings and query plan information.

4. Identify bottlenecks in the storage engine or formula engine.

5. Implement changes and rerun the test query.

You can see a more complete description of each of these steps in the following sections.

Identifying a single DAX expression to optimize
If you already know the slowest measure in your data model, you probably can skip this section and 
move to the following one. However, it is common to identify a performance issue initially in a report 
that might generate several queries, and in each of these queries, you might have several measures. 
The first step is to identify a single DAX expression to optimize, reducing the reproduction to a single 
query and possibly to a single measure exposed in the result.

A complete refresh of a report in Reporting Services, in Power View, in Power BI, or of a complete 
Microsoft Excel workbook, might generate more queries in either DAX or MDX (pivot tables and 
charts in Excel always generate the latter). When you have a complex report with many queries, you 
have to identify the slowest query. In general, you can optimize one query at a time, so you should 
reduce the optimization scope to a single query. Depending on the report source, you can measure 
the refresh time of each single object, or you have to collect Query End events in SQL Server Profiler 
and find the slowest one.

If you are using Excel, you might easily identify a single pivot table having a slow refresh time. 
Excel always generates MDX queries, which benefit from a formula engine cache that is not available 
for all the DAX expressions. This means that the simple refresh operation of a pivot table could be fast 
because of the MDX cache hiding an underlying performance issue in a DAX measure defined in the 
data model. In order to identify this, you should clear the cache before the refresh request by using 
the Clear Cache command in DAX Studio (which can work with Power Pivot, Power BI Desktop, and 
Analysis Services Tabular). If you cannot easily clear the cache, you can also try to navigate the pivot 
table, always choosing a different filter, and/or requesting a drill-down in a different hierarchy path. 
Once you identify the pivot table with low performance, you can extract the MDX query it  generates 
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by using OLAP PivotTable Extensions, a free Excel add-in available at http://olappivottableextend.
codeplex.com/.

Once you extract the DAX or MDX query that contains the expression to optimize (which is the 
internal definition of a DAX measure in case you have an MDX query), you have to identify and isolate 
such a DAX expression, so that you will concentrate your effort on the right area. If you are using 
a dynamic environment (such as a pivot table in Excel, or the canvas of a Power View or Power BI 
 report), the easiest way is to try the report with just one measure at a time, until you clearly identify 
the slowest one. When this is not easy or not possible, you can reduce the measures included in a 
query by modifying and executing it interactively in DAX Studio.

For example, consider the following DAX query generated by Power BI using a table result with 
four expressions (two sums and two averages) grouped by product color:

EVALUATE 
TOPN ( 
    102, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 'Product'[Color], "IsGrandTotalRowTotal" ), 
        "SumQuantity", CALCULATE ( SUM ( 'Sales'[Quantity] ) ), 
        "SumNet_Price", CALCULATE ( SUM ( 'Sales'[Net Price] ) ), 
        "AverageUnit_Cost", CALCULATE ( AVERAGE ( 'Sales'[Unit Cost] ) ), 
        "AverageUnit_Discount", CALCULATE ( AVERAGE ( 'Sales'[Unit Discount] ) ) 
    ), 
    [IsGrandTotalRowTotal], 
    0, 
    'Product'[Color], 
    1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 'Product'[Color]

You should reduce the query by trying one calculation at a time, to locate the slower one. In this 
specific case, it is enough to comment or remove three of the four columns calculated in the SUMMA-
RIZECOLUMNS function (SumQuantity, SumNet_Price, AverageUnit_Cost, and AverageUnit_Discount), 
finding the slowest one before proceeding. We captured this query using SQL Profiler, because we do 
not have a way to intercept the DAX measure generated by Power Query directly in DAX Studio.

Note You can connect SQL Profiler to Power BI Desktop and intercept all the Query End 
events. In order to do that, you need to know the local port used by a local instance of 
Analysis Services managed by Power BI Desktop. If you connect DAX Studio to Power BI 
Desktop, you can see such a number in the lower-right corner of the DAX Studio  windows 
once you open the connection. The name is localhost:<port number>, where <port 
 number> corresponds to an integer number that is different every time you open a new 
window with Power BI Desktop. When you run a trace with SQL Profiler, use this complete 
name (including the port number) as the server name.

http://olappivottableextend.codeplex.com/
http://olappivottableextend.codeplex.com/
http://olappivottableextend.codeplex.com/
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Another example is the following MDX query generated by the pivot table in Excel as seen in 
 Figure 16-1 (remember you can extract this query using the OLAP PivotTable Extension add-in):

SELECT 
{ [Measures].[Sales Amount], [Measures].[Sales Rows] }  
DIMENSION PROPERTIES PARENT_UNIQUE_NAME, MEMBER_VALUE, HIERARCHY_UNIQUE_NAME ON COLUMNS, 
NON EMPTY Hierarchize ( DrilldownMember (  
    { { DrilldownLevel ( { [Date].[Calendar].[All] }, , , INCLUDE_CALC_MEMBERS ) } },  
    { [Date].[Calendar].[Year].&[CY 2008] },  ,  , INCLUDE_CALC_MEMBERS ) )  
DIMENSION PROPERTIES PARENT_UNIQUE_NAME, MEMBER_VALUE, HIERARCHY_UNIQUE_NAME ON ROWS 
FROM [Model]  
CELL PROPERTIES VALUE, FORMAT_STRING, LANGUAGE, BACK_COLOR, FORE_COLOR, FONT_FLAGS

FIGURE 16-1 Simple pivot table in Excel that generates an MDX query with two measures.

You can reduce the measures either in the pivot table or directly in the MDX code. You can 
 manipulate the MDX code by reducing the list of measures included within braces. For example, you 
reduce the code to only the Sales Amount measure by modifying the list, as in the following initial 
part of the query:

SELECT 
{ [Measures].[Sales Amount] } 

DIMENSION PROPERTIES PARENT_UNIQUE_NAME, MEMBER_VALUE, HIERARCHY_UNIQUE_NAME ON COLUMNS, 
...

Regardless of the technique you use, once you identify the DAX expression (or measure) that is 
responsible for a performance issue, you need a reproduction query to use in DAX Studio.
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Creating a reproduction query
The optimization process requires a query that you can execute several times, possibly changing the 
definition of the measure in order to evaluate different performances. From this point of view, it is 
important to know how to define a measure that is local to the query, overriding the definition of the 
same measure in the data model.

If you captured a query in DAX or MDX, you already have a good starting point for the 
 reproduction (repro) query. You should try to simplify the query as much as you can, so that it will be 
easier to find the bottleneck. You only have to keep a complex query structure when it is fundamental 
to observe the performance issue.

In simpler cases, when a measure is constantly slow, you should be able to create a repro query 
producing a single value as a result. Using CALCULATE or CALCULATETABLE you can apply all the 
filters you need. For example, you can execute the Sales Amount measure for April 2008 using the 
 following code, obtaining the same result ($127,865.28) you see in Figure 16-1 for that month:

EVALUATE 
ROW ( 
    "Result", CALCULATE ( 
        [Sales Amount], 
        'Date'[Calendar Year] = "CY 2008", 
        'Date'[Calendar Year Month] = "April 2008" 
    ) 
)

You can also write the previous query using CALCULATETABLE instead of CALCULATE:

EVALUATE 
CALCULATETABLE ( 
    ROW ( "Result", [Sales Amount] ), 
    'Date'[Calendar Year] = "CY 2008", 
    'Date'[Calendar Year Month] = "April 2008" 
)

The two approaches produce the same result. You should consider CALCULATETABLE when the 
query you use to test the measure is more complex than a simple ROW function.

Once you have a repro for a specific measure defined in the data model, you should consider 
 writing the DAX expression of the measure as a local one in the query, using the MEASURE syntax.  
For example, you can transform the previous repro in the following one:
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DEFINE  

    MEASURE Sales[Sales Amount] = SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 

EVALUATE 
CALCULATETABLE ( 
    ROW ( "Result", [Sales Amount] ), 
    'Date'[Calendar Year] = "CY 2008", 
    'Date'[Calendar Year Month] = "April 2008" 
)

At this point, you can apply changes to the DAX expression assigned to the measure directly 
into the query statement. In this way, you do not have to deploy a change to the data model before 
 executing the query again. You can change the query, clear the cache, and run the query in DAX 
 Studio, immediately measuring the performance results of the modified expression.

In certain conditions, you have to use an MDX query to reproduce a problem that happens only 
in MDX and not in DAX. The same DAX measure, executed in a DAX or in an MDX query, generates 
different query plans, and it might show a different behavior depending on the language of the 
query. However, also in this case you can define the DAX measure local to the query, so that it is more 
efficient to change and run again. For instance, you can define the Sales Amount measure local to the 
MDX query using the WITH MEASURE syntax:

WITH 

    MEASURE Sales[Sales Amount] = SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 

SELECT 
{ [Measures].[Sales Amount], [Measures].[Sales Rows] }  
DIMENSION PROPERTIES PARENT_UNIQUE_NAME, MEMBER_VALUE, HIERARCHY_UNIQUE_NAME ON COLUMNS, 
NON EMPTY Hierarchize ( DrilldownMember (  
    { { DrilldownLevel ( { [Date].[Calendar].[All] }, , , INCLUDE_CALC_MEMBERS ) } },  
    { [Date].[Calendar].[Year].&[CY 2008] },  ,  , INCLUDE_CALC_MEMBERS ) )  
DIMENSION PROPERTIES PARENT_UNIQUE_NAME, MEMBER_VALUE, HIERARCHY_UNIQUE_NAME ON ROWS 
FROM [Model]  
CELL PROPERTIES VALUE, FORMAT_STRING, LANGUAGE, BACK_COLOR, FORE_COLOR, FONT_FLAGS

As you see, in MDX you have to use WITH instead of DEFINE; The following syntax for  MEASURE 
is identical in both cases, and you will follow the same optimization process. Regardless of the repro 
language (either DAX or MDX), you always have a DAX expression to optimize, which you can define 
within a local MEASURE definition.

Analyzing server timings and query plan information
Once you have a repro, you have to run it and collect information about execution time and query 
plan. You have seen in Chapter 15, “Analyzing DAX query plans,” how to read the information 
 provided by SQL Server Profiler, and how to use DAX Studio to collect the same information in an 
easier way. In this section, you will see how to analyze a simple query in DAX Studio, so that you can 
spend more time interpreting data instead of collecting it.
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For example, consider the following DAX query:

DEFINE  
    MEASURE Sales[Sales Amount] = SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( 'Date'[Calendar Year] ), 
    "Result", [Sales Amount]  
)

If you execute this query in DAX Studio after you cleared the cache and enabled Query Plan and 
Server Timings, you obtain a result with one row for each year in the Date table, and the total of Sales 
Amount for sales made in that year. The starting point for an analysis is always the Server Timings 
pane, which displays information about the entire query, as you can see in Figure 16-2.

FIGURE 16-2 Server Timings pane after simple query execution.

Our query returned the result in 23 ms (Total), and it spent 87 percent of this time in the storage 
engine (SE), whereas the formula engine (FE) used only 3 ms of the total time. This pane does not 
provide much information about the formula engine internals, but it is rich in more details for storage 
engine activity. For example, there were two storage engine queries (SE Queries), that consumed a 
total of 78 ms of processing time (SE CPU). The CPU time can be larger than Duration thanks to the 
parallelism of the storage engine. In fact, the engine used 78 ms of cores working in parallel, so that 
the duration time is a fraction of that number. The hardware used in this test had 8 cores, and the 
parallelism degree of this query (ratio between SE CPU and SE) is 3.9. You cannot reach a parallelism 
higher than the number of cores you have.

In Table 16-1 you can see the way we will represent these same counters in this chapter. We will 
use such a compact representation to simplify comparison between different executions and to put 
more content in the available pages.

TABLE 16-1 Server Timings counters corresponding to data shown in Figure 16-2.

Total FE SE SE CPU SE Queries

23 3 (13%) 20 (87%) 78 2
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The storage engine queries are available in the list, and you can see that a single storage engine 
operation (the first one) consumes the entire duration and CPU time. By enabling the display of 
 Internal and Cache subclass events, you can see in Figure 16-3 that the two storage engine queries 
were actually executed by the storage engine.

FIGURE 16-3 Server Timings pane with internal subclass events visible.

If you execute the same query again without clearing the cache, you see the results visible in 
 Figure 16-4. Both storage engine queries retrieved the values from the cache (SE cache), and the 
single storage engine queries resolved in the cache are visible in the Subclass column. 

FIGURE 16-4 Server Timings pane with cache subclass events visible, after second execution of the same DAX 
query.

Usually we will use the repro with a cold cache (clearing the cache before the execution), but in 
some cases it is important to evaluate whether a given DAX expression can leverage the cache in a 
following request or not. For this reason, the Cache visualization in DAX Studio is disabled by default 
and you enable it on request.

At this point, you can start looking at the query plans. In Figure 16-5 you see the physical and 
 logical query plans of the query used in the previous example.

The physical query plan is the one you will use more often. In the query of the previous  example, 
there are two datacaches, one for each storage engine query. Every VertipaqResult row in the 
 physical query plan consumes one of the datacaches available. However, you do not have a simple 
way to match the correspondence between a query plan operation and a datacache. You can infer 
the  datacache by looking at the columns used in the operations requiring a VertipaqResult (the rows 
Spool_Iterator and SpoolLookup in Figure 16-5).
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FIGURE 16-5 Query Plan pane showing physical and logical query plan.

An important piece of information you see in the physical query plan is the column showing the 
number of records processed. As you will see, when optimizing bottlenecks in the formula engine it 
could be useful to identify the slowest operation in the formula engine by searching for the line with 
the largest number of records. You can sort the rows by clicking the Records column header, as you 
see in Figure 16-6. You restore the original sort order by clicking Line column header.

FIGURE 16-6 Query Plan pane showing physical and logical query plans.

Identifying bottlenecks in the storage engine or formula engine
Usually a query has many possible optimizations. The first and most important decision is to identify 
whether a query spends most of the time in the formula engine or in the storage engine. You have 
a first indication in the percentages provided by DAX Studio for FE and SE. Usually this is a good 
 starting point, but you also have to identify the distribution of the workload in both the formula 
 engine and the storage engine. In complex queries, a large amount of time spent in the storage 
engine might correspond to a large number of small storage engine queries, or in a small number 
of storage engine queries that concentrate the largest amount of workload. As you will see, these 
 differences require different approaches in optimization strategy.
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When you identify the execution bottleneck of a query, you also have to prioritize the  optimization 
areas. For example, you might have different inefficiencies in the query plan producing a large 
 formula engine execution time. You should identify the most important one, and concentrate on that 
first. If you do not follow this approach, you might end up spending time optimizing an expression 
that affects the execution time in a marginal way only. Sometimes the more efficient optimizations 
are simple but hidden in unintuitive context transition or other details in DAX syntax. You should 
always measure execution time before and after each optimization attempt, making sure that you 
obtain a real advantage and are not just applying some optimization pattern you found on the web 
or in this book.

Finally, remember that even if you have an issue in the formula engine, you should always start 
your analysis by looking at the storage engine queries. They provide you with valuable informa-
tion about content and size of the datacaches used by the formula engine. Reading the query plan 
that describes the operations made by the formula engine is a very complex process. It is easier 
to  consider that the formula engine will use the content of datacaches and will have to do all the 
operations required to produce the result of a DAX query that has not been already produced by the 
storage engine. This approach is efficient especially for large and complex DAX queries, which might 
produce thousands of lines in a query plan, but a relatively small number of datacaches produced by 
storage engine queries.

Optimizing bottlenecks in the storage engine

A long execution time in the storage engine is usually the consequence of one or more of the 
 following reasons (already explained in more detail in Chapter 15):

■■ Long scan time Even for a simple aggregation, a DAX query has to scan one or more 
 columns. The cost for this scan depends on the size of the column, which depends on the 
number of unique values and data distribution. Different columns in the same table can have 
very different execution times.

■■ Large cardinality A large number of unique values in a column affects the DISTINCTCOUNT 
calculation and filter arguments of a CALCULATE statement.

■■ High frequency of CallbackDataID A large number of calls made by the storage engine to 
the formula engine can affect the overall performance of a query.

■■ Large materialization If a storage engine query produces a large datacache, its generation 
requires time (allocating and writing RAM). Moreover, its consumption (made by the formula 
engine) is also another potential bottleneck.

In the following sections, you will see several examples of optimizations at the storage engine level. 
Starting with the notion you learned in previous chapters, you will see a typical problem reproduced 
in a simpler query and optimized.
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Choosing ADDCOLUMNS vs. SUMMARIZE
A best practice writing DAX expressions is to use SUMMARIZE only to do joins between tables, 
 using it as a way to obtain the result of an equivalent SELECT DISTINCT syntax in SQL, without  using 
the  aggregation features available in SUMMARIZE. In order to aggregate data, you should use 
 ADDCOLUMNS and a context transition to aggregate only the desired group of rows. You can find a 
longer discussion at http://www.sqlbi.com/articles/best-practices-using-summarize-and-addcolumns/. 
However, it is important to understand how you can realize that the optimization is possible by 
 analyzing the query plan and server timings information.

Consider the following DAX query:

DEFINE  
    MEASURE Sales[Sales Amount] = SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
EVALUATE 
SUMMARIZE ( 
    Sales, 
    'Product Category'[Category], 
    "Sales", [Sales Amount] 
)

The result is a table with one row for each product category and two columns: the Category of 
products and the Sales Amount for each category. The server timings pane provides the information 
in Table 16-2. 

TABLE 16-2 Timing of a query using SUMMARIZE to group and aggregate data.

Query Total FE SE SE CPU SE Queries

Summarize 63 7 (11%) 59 (89%) 297 2

The bottleneck is the storage engine (89 percent), and drilling down you see that the second 
 storage engine query executes a request similar to the first one (see the two events in Table 16-3).  
The difference is that the second SE query has an higher cardinality.

TABLE 16-3 VertiPaq Scan events for query based on SUMMARIZE only (with simplified xmSQL code).

Line Subclass Duration CPU Query (xmSQL)

2 Scan 37 172 SELECT ‘Product Category’[Category],  
    SUM ( Sales[Quantity] * Sales[Unit Price] )  
FROM Sales LEFT JOIN Product  
LEFT JOIN ‘Product Subcategory’ LEFT JOIN ‘Product Category’;

4 Scan 19 125 SELECT ‘Product Category’[Category], Sales[ProductKey] 
    FROM Sales LEFT JOIN Product  
LEFT JOIN ‘Product Subcategory’ LEFT JOIN ‘Product Category’;

The first datacache has one row for every product category and two columns, Category and Sales. 
This corresponds to the cardinality of the expected result from the DAX query. The second  datacache 
provides a list of products used in the Sales table and two columns, ProductKey and Category. The 
number of rows provided by this datacache is larger: 2,516 instead of 8 in the example. You can 

http://www.sqlbi.com/articles/best-practices-using-summarize-and-addcolumns/
http://www.sqlbi.com/articles/best-practices-using-summarize-and-addcolumns/
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retrieve the exact number from the physical query plan (see the following example), looking at the 
number of records processed by operations (ProjectionSpool) consuming results from VertipaqResult:

Line    Records  Physical Query Plan 
1                AddColumns: IterPhyOp LogOp=AddColumns IterCols(0, 1) ... 
2       8            Spool_Iterator<SpoolIterator>: IterPhyOp ... 
3       8                AggregationSpool<GroupBy>: SpoolPhyOp #Records=8  
4       2516                 Spool_Iterator<SpoolIterator>: IterPhyOp ... 
5       2516                     ProjectionSpool<ProjectFusion<>>: SpoolPhyOp  ... 
6                                    VertipaqResult: IterPhyOp #FieldCols=2 #ValueCols=0 
7       8            SpoolLookup: LookupPhyOp LogOp=Sum_Vertipaq ... 
8       8                ProjectionSpool<ProjectFusion<Sum>>: SpoolPhyOp #Records=8 
9                            VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=1

When a datacache is several orders of magnitude larger than the DAX query result, you should 
 investigate the possible optimizations. For instance, in this case we can apply the best practice of 
 using ADDCOLUMNS instead of SUMMARIZE to aggregate data, keeping SUMMARIZE to obtain the 
list of categories used in the Sales table.

DEFINE 
    MEASURE Sales[Sales Amount] = SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
EVALUATE 
ADDCOLUMNS ( 
    SUMMARIZE ( Sales, 'Product Category'[Category] ), 
    "Sales", [Sales Amount] 
)

As you see in Table 16-4, we obtain a slightly better performance result.

TABLE 16-4 Timing of a query using ADDCOLUMNS and SUMMARIZE to group and aggregate data.

Query Total FE SE SE CPU SE Queries

Addcolumns 54 5 (9%) 49 (92%) 266 2

You see in Table 16-5 the details of the storage engine queries.

TABLE 16-5 VertiPaq Scan events for a query based on ADDCOLUMNS and SUMMARIZE.

Line Subclass Duration CPU Query (xmSQL)

2 Scan 38 188 SELECT ‘Product Category’[Category],  
    SUM ( Sales[Quantity] * Sales[Unit Price] )  
FROM Sales LEFT JOIN Product  
LEFT JOIN ‘Product Subcategory’ LEFT JOIN ‘Product Category’;

4 Scan 11 78 SELECT ‘Product Category’[Category] 
    FROM Sales LEFT JOIN Product  
LEFT JOIN ‘Product Subcategory’ LEFT JOIN ‘Product Category’;
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As you can see in the following physical query plan, the two datacaches have the same number 
of rows as a result (eight records), but a different number of columns. The first datacache has two 
columns, (Category and Sales), whereas the second datacache has one column only (Category).

Line    Records  Physical Query Plan 
1                AddColumns: IterPhyOp LogOp=AddColumns IterCols(0, 1) 
2       8            Spool_Iterator<SpoolIterator>: IterPhyOp  
3       8                ProjectionSpool<ProjectFusion<>>: SpoolPhyOp #Records=8 
4                            VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=0 
5       8            SpoolLookup: LookupPhyOp LogOp=Sum_Vertipaq  
6       8                ProjectionSpool<ProjectFusion<Sum>>: SpoolPhyOp #Records=8 
7                            VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=1

The formula engine receives two datasets that have the same cardinality (eight records) as the 
result. However, we still have a large amount of time spent in the storage engine, and it seems useless 
to execute two scans of the Sales table. One possible approach is avoiding the SUMMARIZE  operation, 
adding a FILTER that removes empty rows from the result.

DEFINE 
    MEASURE Sales[Sales Amount] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
EVALUATE 
FILTER ( 
    ADDCOLUMNS ( 
        VALUES ( 'Product Category'[Category] ), 
        "Sales", [Sales Amount] 
    ), 
    NOT ISBLANK ( [Sales] ) 
)

You obtain a 20 percent performance improvement, as you see in the total execution time shown 
in Table 16-6.

TABLE 16-6 Timing of a query using FILTER, ADDCOLUMNS, and VALUES.

Query Total FE SE SE CPU SE Queries

Filter 45 5 (11%) 40 (89%) 234 2

As you see in Table 16-7, the elimination of the scan on the Sales table in the second  storage 
 engine query produced the performance improvement. This approach is efficient because 
the  number of rows (unique values in Category) is relatively small. In this case, this results in a 
 materialization of the same number of rows, but it depends on data distribution, because now you 
materialize all the categories, regardless of their usage in the Sales table. In a different case, with a 
complex Sales measure and a large number of categories, the performance result could be worse 
than the previous one. You always have to consider the cardinality of the operations involved and the 
possible occurrence of materialization. 
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TABLE 16-7 VertiPaq Scan events for query based on ADDCOLUMNS and SUMMARIZE.

Line Subclass Duration CPU Query (xmSQL)

2 Scan 39 234 SELECT ‘Product Category’[Category],  
    SUM ( Sales[Quantity] * Sales[Unit Price] )  
FROM Sales LEFT JOIN Product  
LEFT JOIN ‘Product Subcategory’ LEFT JOIN ‘Product Category’;

4 Scan 1 0 SELECT ‘Product Category’[Category] 
FROM ‘Product Category’ 

If you are using a recent version of DAX, you can simplify the query by using SUMMARIZECOLUMNS, 
which removes the need of a second storage engine query. For example, consider the following DAX 
query:

DEFINE 
    MEASURE Sales[Sales Amount] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
EVALUATE 
SUMMARIZECOLUMNS ( 
    'Product Category'[Category], 
    "Sales", [Sales Amount] 
)

It produces the server timings shown in Table 16-8.

TABLE 16-8 Timing of a query using SUMMARIZECOLUMNS.

Query Total FE SE SE CPU SE Queries

SummarizeColumns 39 4 (10%) 35 (90%) 234 1

As you see also in Table 16-9, there is only one storage engine query in this case, obtaining better 
performance in all of the conditions.

TABLE 16-9 VertiPaq Scan events for a query based on SUMMARIZECOLUMNS.

Line Subclass Duration CPU Query (xmSQL)

2 Scan 35 234 SELECT ‘Product Category’[Category],  
    SUM ( Sales[Quantity] * Sales[Unit Price] )  
FROM Sales LEFT JOIN Product  
LEFT JOIN ‘Product Subcategory’ LEFT JOIN ‘Product Category’;

The improvement is visible also in the query plan, which has a simple scan of the single datacache 
produced by the storage engine query.

Line    Records  Physical Query Plan 
1                GroupSemijoin: IterPhyOp LogOp=GroupSemiJoin IterCols(0, 1) ... 
2       8            Spool_Iterator<SpoolIterator>: IterPhyOp  
3       8                ProjectionSpool<ProjectFusion<>>: SpoolPhyOp #Records=8 
4                    VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=1  
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The goal of this section was to introduce you to the analysis of query plans and server timings, in 
order to understand the behavior of different DAX queries. You should practice this exercise with your 
own queries, trying to understand all the steps executed by the engine in order to produce the result. 
Only with this knowledge will you be able to identify the more expensive part of an expression, trying 
to optimize it by changing the syntax and/or the calculation logic.

Reducing CallbackDataID impact
You have seen in Chapter 15 that the CallbackDataID function in a storage engine query can have a 
huge performance impact, because it slows down storage engine execution, and it disables the use of 
the storage engine cache for the datacache produced. Identifying the CallbackDataID is important, 
because this is often the reason of a bottleneck in the storage engine, especially for models that have 
only a few million rows in the largest table (scan time should be typically in the order of magnitude of 
10–100 milliseconds).

For example, consider the following query, where the Sales Amount computes its result rounding 
Unit Price to the nearest integer.

DEFINE 
    MEASURE Sales[Sales Amount] = 
        SUMX ( 
            Sales, 

            Sales[Quantity] * ROUND ( Sales[Unit Price], 0 ) 

        ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Color] ), 
    "Sales", [Sales Amount] 
)

You can see in Table 16-10 that the execution time of this query is slow, especially considering that 
the Sales table has only 12 million rows.

TABLE 16-10 Timing of a query using ROUND.

Query Total FE SE SE CPU SE Queries

Simple Round 401 4 (1%) 397 (99%) 2,391 2

A single storage engine query is responsible for the slow performance.

SELECT 'Product[Color]',  
        SUM ( Sales[Quantity] ) * [CallbackDataID ( ROUND ( Sales[Unit Price], 0 ) )] ) 
FROM Sales  
LEFT JOIN Product ON Sales[ProductKey] = Product[ProductKey]
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Even if the resulting datacache has only a few rows (one for each product color), the storage 
engine calls the formula engine more than 12 million times, one for each row in the Sales table. This 
happens in multiple threads, because every segment has one million rows in the example used, so the 
duration would be higher on a server with a lower number of cores.

You might consider creating a calculated column in the Sales table to store the result of ROUND 
function for every row. This is certainly a good approach, because it removes the need for a 
 CallbackDataID call at run time. However, this comes at the cost of memory usage and it could be too 
high, or simply not worth the effort, especially if there are other optimizations available. Instead of 
completely removing the need of CallbackDataID, we can try to reduce the number of calls.

The Sales table has a cardinality of more than 12 million rows, but the number of unique values in 
the Unit Price column is less than 500. So why call ROUND more than once for each unique value in 
the Unit Price column? You reduce the execution time rewriting the code in a way that reduces the 
number of calls to the ROUND function to the minimum required.

Note You should always use statistics of the data model during DAX optimization. A quick 
way to obtain these numbers for a data model is using VertiPaq Analyzer (http://www.sqlbi.
com/tools/vertipaq-analyzer/ ).

At first sight, the following query looks very inefficient, because it contains two nested  iterators 
over columns of the same table. The logic is to multiply the Unit Price by the sum of the  Quantity 
for all the rows in Sales with the same unit price. CALCULATE applies a context transition that 
 automatically filters the rows with the same unit price value.

DEFINE 
    MEASURE Sales[Sales Amount] = 
        SUMX ( 
            VALUES ( Sales[Unit Price] ), 

            ROUND ( Sales[Unit Price], 0 ) 

                * CALCULATE ( SUM ( Sales[Quantity] ) ) 

        ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Color] ), 
    "Sales", [Sales Amount] 
)

The initial idea is that the overhead of the double loop may be less expensive than 12  million 
ROUND invocations. As usual, you have to measure the performance in order to validate the 
 hypothesis. The numbers in Table 16-11 show that the duration is 90 percent smaller than in the 
 previous version.

http://www.sqlbi.com/tools/vertipaq-analyzer/
http://www.sqlbi.com/tools/vertipaq-analyzer/
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TABLE 16-11 Timing of a query by reducing the number of ROUND invocations.

Query Total FE SE SE CPU SE Queries

Optimized Round 36 7 (19%) 29 (81%) 172 2

The formula engine executes the external iterator (SUMX), whereas the storage engine only  aggregates 
the quantity value for each combination of product color and unit price, as you see in the following xmSQL 
query. For each row of this datacache, the formula engine will call the ROUND function directly, passing 
the Unit Price as an argument. In this way, there will be no CallbackDataID required.

SELECT 'Product[Color]', Sales[Unit Price], SUM ( Sales[Quantity] )  
FROM Sales  
LEFT JOIN Product ON Sales[ProductKey] = Product[ProductKey]

The storage engine query has now increased the datacache, which returns 1,600 rows (one for 
each existing combination of color and unit price), instead of 16 rows (one for each color). You can 
imagine that applying this same technique to another data model might worsen the performance. For 
example, a materialization of millions of rows would be more expensive than an equivalent number of 
CallbackDataID invocations.

Usually two or more nested iterators do not result in a single storage engine query, requiring 
materialization of data produced by the innermost iterators, so that the formula engine can complete 
the process. However, the best choice depends on data distribution and should be measured and 
evaluated on a case-by-case basis.

Finally, remember that most of the scalar DAX functions that do not aggregate data require a 
CallbackDataID if executed in an iterator. For example, DATE, VALUE, most of the type conversions, 
IFERROR, DIVIDE, and all of the rounding, mathematical, and date/time functions are all implemented 
in the formula engine only. Most of the time, their presence in an iterator generates a CallbackDataID 
invocation. However, you always have to check the xmSQL query to verify whether CallbackDataID is 
present or not.

CallbackDataID with constant values
Older versions of the DAX engine might not optimize evaluation of constant values within an 
iterator. For example, the following DAX expression invokes a CallbackDataID to ROUND for 
every row of the Sales table, even if the result is always the same:

SUMX ( Sales, ROUND ( 1.1, 0 ) * Sales[Quantity] )

Recent versions of the DAX engine optimize this calculation automatically. You should always 
check the xmSQL code of storage engine queries to verify whether it contains an invocation to 
DAX functions through CallbackDataID in expensive loops.
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Optimizing filter conditions
Applying a filter condition in an iterator or in a filter argument of a CALCULATE/CALCULATETABLE 
function might provide a different performance depending on the version of the engine. For example, 
consider the following implementations of a special Sales Amount measure, which ignores a particular 
customer:

Sales[Sales Amount Calculate] := 
CALCULATE ( 
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ), 
    Customer[Customer Code] <> "11954" 
) 
 
Sales[Sales Amount Filter] := 
SUMX ( 
    FILTER ( Sales, RELATED ( Customer[Customer Code] ) <> "11954" ), 
    Sales[Quantity] * Sales[Unit Price] 
)

The results are identical, whereas the query plan and the related storage engine queries might be 
different, depending on the version of the DAX engine used. In older versions of the DAX engine, the 
Sales Amount Calculate measure produces a storage engine query that receives a filter with a list of 
customers (all those with a Customer Code other than 11954), as you can see in the following example:

SELECT Product[Color], SUM ( Sales[Quantity] ) * Sales[Unit Price] )  
FROM Sales 
    LEFT OUTER JOIN Customer ON Sales[CustomerKey] = Customer[CustomerKey] 
    LEFT OUTER JOIN Product ON Sales[ProductKey] = Product[ProductKey] 
WHERE 
    Customer[Customer Code] IN ( '11024', '11036', '11041', '11043', '11928', '11938', 
'11954'..[18868 total values, not all displayed] )

In this case, applying a filter condition on a column that has millions of unique values can slow 
down execution of storage engine queries. If you use a FILTER statement over Sales instead of the 
CALCULATE statement, such as in Sales Amount Filter measure, the query plan includes the same 
logical condition, and you do not have to transfer a large filter back and forth between the formula 
engine and the storage engine.

SELECT Product[Color], SUM (  Sales[Quantity] ) * Sales[Unit Price] )  
FROM Sales 
    LEFT OUTER JOIN Customer ON Sales[CustomerKey] = Customer[CustomerKey] 
    LEFT OUTER JOIN Product ON Sales[ProductKey] = Product[ProductKey] 
WHERE Customer[Customer Code] <> '11954'

The performance of the two statements might be different depending on the number of rows 
in the Sales table and on the cardinality of the Customer Code column in the Customer table. For 



 CHAPTER 16 Optimizing DAX 513

 example, with 2 million customers and 10 million rows in Sales, the Sales Amount Filter measure is 
faster. However, recent versions of the DAX engine already optimize this condition. In general, it is a 
good idea to test these differences in a complex expression, because a different execution strategy 
for the two filters might be the result of complex query plans involving other conditions.

Optimizing IF conditions
An IF function is always executed by the formula engine. When you include IF within an iteration, 
you might see a CallbackDataID involved in the execution. Moreover, the engine might evaluate the 
arguments of the IF regardless of the result of the condition in the first argument. Even if the result is 
correct, you might pay the full cost of processing all the possible solutions. As usual, you can see dif-
ferent behaviors depending on the version of the DAX engine you use.

For example, consider the following DAX query:

DEFINE 
    MEASURE Sales[Sales Amount] = 
        SUMX ( 
            Sales, 
            Sales[Quantity] * Sales[Unit Price] 
                * IF ( Sales[Unit Price] > 10, 0.9, 1 ) 
        ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Color] ), 
    "Sales", [Sales Amount] 
)

The IF statement executed in the iterator produces a storage engine query with a CallbackDataID 
call, as you see in the following xmSQL code:

SELECT 'Product[Color]',  
        SUM ( Sales[Quantity] * Sales[Unit Price]  
              * [CallbackDataID ( IF ( Sales[Unit Price] > 10, 0.9, 1 ) )] ) 
FROM Sales  
LEFT JOIN Product ON Sales[ProductKey] = Product[ProductKey]

The iterator calls CallbackDataID for each row of the Sales table, producing the execution times 
shown in Table 16-12.

TABLE 16-12 Timing of a query using the IF condition in an iterator.

Query Total FE SE SE CPU SE Queries

IF in iterator 140 5 (4%) 135 (96%) 734 2
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In a similar case, you can try to split the original iterator in two different ones, filtering each one 
with the conditions of the IF statements, as in the following example:

DEFINE 
    MEASURE Sales[Sales Amount] = 
        CALCULATE ( 
            SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) * 0.9, 
            Sales[Unit Price] > 10 
        ) 
        + CALCULATE ( 
            SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) * 1, 
            NOT ( Sales[Unit Price] > 10 ) 
        ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Color] ), 
    "Sales", [Sales Amount] 
)

In this case, the result is a marginal optimization of the execution time, as you see in Table 16-13. 
The results might be different depending on the data model and on the version of the DAX engine.

TABLE 16-13 Timing of a query optimizing by unfolding the IF condition.

Query Total FE SE SE CPU SE Queries

Unfolded IF 104 6 (6%) 98 (94%) 672 3

This approach requires more storage engine queries, which are hopefully faster because of the lack 
of CallbackDataID calls. In fact, the following two storage engine queries replace the previous one 
that was using CallbackDataID:

SELECT 'Product[Color]',  
        SUM ( Sales[Quantity] * Sales[Unit Price] * 0.9 ) 
FROM Sales  
LEFT JOIN Product ON Sales[ProductKey] = Product[ProductKey] 
WHERE Sales[Unit Price] > 10 
 
SELECT 'Product[Color]',  
        SUM ( Sales[Quantity] * Sales[Unit Price] * 1 ) 
FROM Sales  
LEFT JOIN Product ON Sales[ProductKey] = Product[ProductKey] 
WHERE NOT ( Sales[Unit Price] > 10 )

This technique is particularly useful when an expensive operation is necessary only for a small 
 fraction of the rows involved in an aggregation. It is also worth remembering that the filter condition 
may affect performance depending on the cardinality of the column filtered.
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Note The SWITCH statement in DAX is similar to a series of nested IF functions, and can 
be optimized in a similar way. You can find a longer discussion and an example of that at 
http://sqlblog.com/blogs/marco_russo/archive/2014/08/18/possible-switch-optimization-in-
dax-powerpivot-dax-tabular.aspx.

Optimizing cardinality
Reducing the cardinality of any iterator in a DAX expression is always a best practice. Sometimes you 
can reach this goal by changing the DAX expression without changing the result. You have to think 
in terms of columnar storage, and always consider data distribution for a specific data model. For 
this reason, you will see here different techniques to write the same condition. Performance might 
be  different depending on cardinality of columns, on distribution of values across rows, and on the 
 version of the DAX engine used.

For example, consider the following DAX query that applies a logical OR condition between values 
of two columns. The Sales Filtered measure only considers rows that have a Unit Price greater than 10, 
or a Quantity greater or equal than 2.

DEFINE 
    MEASURE Sales[Sales Amount] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
    MEASURE Sales[Sales Filtered] = 
        CALCULATE ( 
            [Sales Amount], 
            FILTER ( 
                Sales, 
                OR ( Sales[Unit Price] > 10, Sales[Quantity] >= 2 ) 
            ) 
        ) 
EVALUATE 
ADDCOLUMNS ( 
    VALUES ( Product[Color] ), 
    "Sales", [Sales Filtered] 
)

You can see the server timings of this query in Table 16-14.

TABLE 16-14 Timing of a calculation using a table filter.

Query Total FE SE SE CPU SE Queries

Table filter 239 16 (8%) 219 (92%) 1,188 3

http://sqlblog.com/blogs/marco_russo/archive/2014/08/18/possible-switch-optimization-in-dax-powerpivot-dax-tabular.aspx
http://sqlblog.com/blogs/marco_russo/archive/2014/08/18/possible-switch-optimization-in-dax-powerpivot-dax-tabular.aspx
http://sqlblog.com/blogs/marco_russo/archive/2014/08/18/possible-switch-optimization-in-dax-powerpivot-dax-tabular.aspx
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This calculation requires three storage engine queries that you can see in Table 16-15. The first 
one retrieves the value of Sales Amount (quantity multiplied by unit price) for each combination 
of  product, quantity, and unit price. The second one generates a similar datacache that has the list 
of product key, quantity, and unit price for each product color. The materialization of these two 
 datacaches requires 9,973 rows each. The last storage engine query gets the list of product colors to 
display in the result.

TABLE 16-15 VertiPaq Scan events for a query based on SUMMARIZECOLUMNS.

Line Subclass Duration CPU Query (xmSQL)

2 Scan 116 672 SELECT Sales[ProductKey], Sales[Quantity], Sales[Unit Price],  
       SUM ( Sales[Quantity] * Sales[Unit Price] ) 
FROM Sales 
WHERE Sales[Unit Price] > 10 OR Sales[Quantity] >= 2

4 Scan 103 516 SELECT Product[Color], Product[ProductKey],  
        Sales[Quantity], Sales[Unit Price] 
FROM Sales 
    LEFT JOIN Product ON Sales[ProductKey] = Product[ProductKey] 
WHERE Sales[Unit Price] > 10 AND Sales[Quantity] >= 2

6 Scan 0 0 SELECT Product[Color] 
FROM Product

The bottleneck in this case is in the storage engine. Even if it splits the cost among three  different 
queries (as you see in Table 16-15), the reason is the need of materializing two datacaches with a 
larger cardinality than the result (9,973 rows each of the first two storage engine queries), and for 
each one requiring a complete scan of the Sales table (with more than 12 million rows). 

Having a filter on the entire Sales table seems to be the cause of the bottleneck for this DAX 
query. In this case, you cannot reduce the filter to a list of single column filters, because you have to 
 apply a filter over two columns with an OR condition. However, you can reduce the cardinality of the 
filter by creating a table with just two columns, and then using this table as a filter argument in the 
 CALCULATE function. You can obtain the table with the two columns to filter by using at least three 
different approaches: SUMMARIZE, ALL, and CROSSJOIN/VALUES. The following code shows these 
three variations of the Sales Filtered measure:

-- Filter two columns using SUMMARIZE 
    MEASURE Sales[Sales Filtered] = 
        CALCULATE ( 
            [Sales Amount], 
            FILTER ( 
                SUMMARIZE ( Sales, Sales[Unit Price], Sales[Quantity] ), 
                OR ( Sales[Unit Price] > 10, Sales[Quantity] >= 2 ) 
            ) 
        ) 
 
-- Filter two columns using ALL 
    MEASURE Sales[Sales Filtered] = 
        CALCULATE ( 
            [Sales Amount], 
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            FILTER ( 
                ALL ( Sales[Unit Price], Sales[Quantity] ), 
                OR ( Sales[Unit Price] > 10, Sales[Quantity] >= 2 ) 
            ) 
        ) 
 
-- Filter two columns using CROSSJOIN/VALUES 
    MEASURE Sales[Sales Filtered] = 
        CALCULATE ( 
            [Sales Amount], 
            FILTER ( 
                CROSSJOIN ( 
                    VALUES ( Sales[Unit Price] ), 
                    VALUES ( Sales[Quantity] ) 
                ), 
                OR ( Sales[Unit Price] > 10, Sales[Quantity] >= 2 ) 
            ) 
        )

In Table 16-16 you can see the performance results of these three measures applied to the original 
query.

TABLE 16-16 Timing of a calculation using three variations of Sales Filtered measure.

Query Total FE SE SE CPU SE Queries

Summarize 82 7 (8%) 75 (92%) 375 2

All 76 5 (7%) 71 (93%) 406 2

CrossJoin 143 12 (8%) 131 (92%) 625 4

It is important to remember that you do not have to consider as a best practice what is the best 
choice for this specific model, which is the filter based on ALL, even if SUMMARIZE in this case is very 
close. You might see that in other scenarios the CROSSJOIN option is the more efficient one, even if 
it is the worst in the previous example. The best choice depends on the context of the query and on 
data distribution of each specific model.

Optimizing nested iterators
As we have already mentioned in this chapter, nested iterators can be dangerous for performance, 
especially when there is a context transition between the two iterators. This condition seems simple 
to recognize and to avoid. In reality, it is one of the most common performance issues found in our 
engagements for performance optimization. The reason is that calculations split in different measures 
may hide this simple problem.
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First, it is useful to observe the issue in a trivial case. Consider the following DAX query:

EVALUATE 
ROW ( 
    "Result", SUMX ( 
        Product, 
        CALCULATE ( 
            SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
        ) 
    ) 
)

The result is a single value that sums all the rows of the Sales table, multiplying quantity and unit 
price row by row. The storage engine should resolve such a query completely, returning a datacache 
with just one row. However, this is not what happens. There are two storage engine queries in the 
server timings information, as you can see in Table 16-17.

TABLE 16-17 VertiPaq Scan events for nested iterators.

Line Subclass Duration CPU Query (xmSQL)

2 Scan 35 172 SELECT Product[ProductKey],  
       SUM ( Sales[Quantity] * Sales[Unit Price] ) 
FROM Sales 
    LEFT JOIN Product ON Sales[ProductKey] = Product[ProductKey]

4 Scan 2 0 SELECT SUM ( [CallbackDataID (  
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] )  
)] )  
FROM Product

The external iterator is converted into a storage engine query (the one at line 4 in Table 16-17), 
which contains a DAX expression requiring a callback to the formula engine. The innermost SUMX 
iterator is executed as a single storage engine query for all the products (see line 2 in Table 16-17), 
materializing a datacache of 2,516 rows (one for every product), as you see in the following physical 
query plan:

Line    Records  Physical Query Plan 
1                AddColumns: IterPhyOp LogOp=AddColumns IterCols(0)(''[Result]) 
2                    SingletonTable: IterPhyOp LogOp=AddColumns IterCols(0)(''[Result]) 
3       1            SpoolLookup: LookupPhyOp LogOp=Sum_Vertipaq Double  
4       1                ProjectionSpool<ProjectFusion<Sum>>: SpoolPhyOp #Records=1 
5                            VertipaqResult: IterPhyOp #FieldCols=0 #ValueCols=1 
6       2516                     SpoolLookup: LookupPhyOp LogOp=Sum_Vertipaq 
7       2516                         ProjectionSpool<ProjectFusion<Sum>>: SpoolPhyOp 
8                                      VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=1

It is clear that the following DAX query would be fast without any intermediate materialization:
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EVALUATE 
ROW ( 
    "Result", SUMX ( Sales, Sales[Quantity] * Sales[Unit Price]) 
)

However, this is almost never a possible solution. In fact, the nested iterators with context 
 transitions are something that most of the time happens in longer queries, where you call a measure 
within an iterator. For example, the following DAX query is identical to the first one presented in this 
section, but it uses measures instead of writing explicit calculations within the query:

DEFINE 
    MEASURE Sales[Sales Amount] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
    MEASURE Sales[Sales by Product] = 
        SUMX ( Product, [Sales Amount] ) 
EVALUATE 
ROW ( "Result", [Sales by Product] )

As you see, calling a measure within an iterator is a warning signal for performance. The engine has to 
materialize an intermediate result, and this might require more RAM depending on the granularity of the 
iterator. You can expect at least one row materialized for each row processed by the iterator, but there are 
conditions where this number can be higher. In general, if you cannot avoid the materialization (because it 
is required for a specific calculation), you should try to lower the granularity of the iterator. For instance, if 
we can assume that the Sales Amount measure can be aggregated by Product or by Brand producing the 
same result, we can rewrite the Sales by Product calculation iterating the Brand column:

DEFINE 
    MEASURE Sales[Sales Amount] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
    MEASURE Sales[Sales by Product] = 
        SUMX ( VALUES ( Product[Brand] ), [Sales Amount] ) 
EVALUATE 
ROW ( "Result", [Sales by Product] )

The execution requires only one storage engine query, as you see in Table 16-18.

TABLE 16-18 VertiPaq Scan events for nested iterators reducing granularity to brand instead of product.

Line Subclass Duration CPU Query (xmSQL)

2 Scan 35 188 SELECT Product[Brand],  
       SUM ( Sales[Quantity] * Sales[Unit Price] ) 
FROM Sales 
    LEFT JOIN Product ON Sales[ProductKey] = Product[ProductKey]

The execution time is similar, but the most important difference is that the datacache materialized 
has only 11 rows (one for every brand), instead of 2,516 (one for every product). When the cardinality 
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is in the order of magnitude of millions or more, saving two orders of magnitude in materialization 
makes the difference.

Line    Records  Physical Query Plan  
1                AddColumns: IterPhyOp LogOp=AddColumns IterCols(0)(''[Result]) 
2                    SingletonTable: IterPhyOp LogOp=AddColumns IterCols(0)(''[Result]) 
3       1            SpoolLookup: LookupPhyOp LogOp=SumX Double #Records=1 #KeyCols=0 
4       1                AggregationSpool<Sum>: SpoolPhyOp #Records=1 
5       11                   Spool_Iterator<SpoolIterator>: IterPhyOp LogOp=Sum_Vertipaq 
6       11                       ProjectionSpool<ProjectFusion<Sum>>: SpoolPhyOp 
7                                    VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=1

The difficulty of optimizing nested iterators is identifying them when they are not so visible. For 
example, consider the following query that converts the amount of every transaction from USD (the 
currency used to store data) to EUR, applying the currency conversion rate of the beginning of the 
month of the order date.

DEFINE 
    MEASURE Sales[AmountInUSD] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
    MEASURE Sales[AmountInEUR] = 
        SUMX ( 
            Sales, 
            [AmountInUSD] 
                * LOOKUPVALUE ( 
                    ExchangeRate[AverageRate], 
                    ExchangeRate[DateKey], IF ( 
                        MONTH ( Sales[Order Date] ) = 12, 
                        DATE ( YEAR ( Sales[Order Date] ) + 1, 1, 1 ), 
                        DATE ( YEAR ( Sales[Order Date] ),  
                               MONTH ( Sales[Order Date] ) + 1,  
                               1 ) 
                    ), 
                    ExchangeRate[CurrencyKey], CALCULATE ( 
                        VALUES ( Currency[CurrencyKey] ), 
                        Currency[Currency Code] = "EUR" 
                    ) 
                ) 
        ) 
EVALUATE 
ADDCOLUMNS ( 
    SUMMARIZE ( 
        Sales, 
        'Date'[Calendar Year], 
        'Date'[Month Number], 
        'Date'[Month] 
    ), 
    "Sales", [AmountInUSD], 
    "Sales in EUR", [AmountInEUR] 
) 
ORDER BY 
    'Date'[Calendar Year], 
    'Date'[Month Number]
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This query requires more than 50 seconds to complete; most of that time is spent in the storage 
engine, as you see in Table 16-19.

TABLE 16-19 Timing of currency conversion calculation applied to every Sales row.

Query Total FE SE SE CPU SE Queries

Currency Start 51,486 14,102 (8%) 37,384 (92%) 90,375 8

The real problem is visible in the physical query plan, even if it has 376 rows. If you sort the rows in 
DAX Studio by records in a descendant order, you see that many spool operators process more than 
12 million rows. Looking at the DAX query, you might imagine that the problem lies in LOOKUPVALUE 
called into an iterator. In reality, if you look at the measure AmountInUsd, you should realize that we 
have an identical situation as the one described in the previous example.

    MEASURE Sales[AmountInUSD] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
    MEASURE Sales[AmountInEUR] = 
        SUMX ( 
            Sales, 
            [AmountInUSD] 
               * LOOKUPVALUE ... 
        )

At this point, you can apply the same optimization we have seen before. We know that the 
exchange rate used in this model has the same value for one day. Thus, you can iterate Order Date 
instead of Sales, obtaining the same result.

    MEASURE Sales[AmountInUSD] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
    MEASURE Sales[AmountInEUR] = 
        SUMX ( 
            VALUES ( Sales[Order Date] ), 
            [AmountInUSD] 
               * LOOKUPVALUE ... 
        )

However, even if this optimization cuts 50 percent of execution time, it cannot avoid a materializa-
tion of the Sales table, still resulting in a long execution time, as shown in Table 16-20.

TABLE 16-20 Timing of currency conversion calculation with Order Date granularity.

Query Total FE SE SE CPU SE Queries

Currency by  
Order Date

23,075 6,019 (26%) 17,056 (92%) 42,642 8

The reason for the complete materialization is that, even if Order Date is the only column of 
the Sales table referenced in the complete DAX query, the relationship between Sales and Date 
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uses  another column, OrderDateKey. This is the reason why a complete materialization of Sales 
was required. The datacache required the Sales[OrderDateKey] column, which was not an explicit 
part of the iterator in the AmountInEUR measure. Even if there is a practical one-to-one relation-
ship between Sales[Order Date] and Sales[OrderDateKey], the DAX engine ignores it. You can add 
Sales[OrderDateKey] in the granularity of the iterator (see the following DAX code excerpt), in order to 
reduce the memory footprint of the materialization required by the two nested iterators.

    MEASURE Sales[AmountInUSD] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
    MEASURE Sales[AmountInEUR] = 
        SUMX ( 
            SUMMARIZE ( Sales, Sales[OrderDateKey], Sales[Order Date] ), 
            [AmountInUSD] 
               * LOOKUPVALUE ... 
        )

This time, the performance has a relevant improvement, reducing the execution time of two orders 
of magnitude, as you see in Table 16-21.

TABLE 16-21 Timing of currency conversion calculation with Order Date / OrderDateKey granularity.

Query Total FE SE SE CPU SE Queries

Currency by 
OrderDateKey

210 27 (13%) 183 (87%) 907 8

You can further refine the optimization, reducing the number of CallbackDataID calls and  trying 
to lower the cardinality of the intermediate result to one row per month, instead of one row per day. 
 However, you would obtain only a marginal improvement in this specific case. Remember to give  priority 
to optimizations that can save an order of magnitude of execution time. You should prioritize the 
 reduction of iterations and the number of context transitions (that often generate large materialization).

Optimizing bottlenecks in the formula engine

A bottleneck in the formula engine is typically the result of long iterations resolved in the  formula 
 engine, because they consume datacaches produced by the storage engine. For this reason, it 
is always a good idea to start the analysis in the storage engine, then get information about the 
 datacaches consumed by the formula engine. Once you have this knowledge, trying to read the 
physical query plan is more affordable.

You can practice optimization by starting with a query such as the following one, which shows the 
number of open orders for each date between December 20, 2009, and January 6, 2010. An open 
order is a row in the Sales table with an Order Date lower than the analyzed date, and a Delivery Date 
greater than the analyzed date:
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EVALUATE 
ADDCOLUMNS ( 
    DATESBETWEEN ( 
        'Date'[Date], 
        DATE ( 2009, 12, 20 ),  
        DATE ( 2010, 1, 6 ) 
    ), 
    "Open Orders", COUNTROWS ( 
        FILTER ( 
            Sales, 
            AND ( 
                Sales[Order Date] < 'Date'[Date], 
                Sales[Delivery Date] > 'Date'[Date] 
            ) 
        ) 
    ) 
)

You can see in Table 16-22 that the execution time of this query is more than 30 seconds, with 80 
percent of the time spent in the formula engine.

TABLE 16-22 Timing of open orders with a simple filter.

Query Total FE SE SE CPU SE Queries

Open Orders 1 33,723 26,943 (80%) 6,780 (20%) 13,469 2

The physical query plan shows in detail what the DAX query does: For each date returned by 
 DATESBETWEEN, it iterates all the rows in the Sales table and counts how many of them satisfy the 
condition for an open order, analyzing Order Date and Delivery Date. This requires more than 225 
million iterations, obtained by multiplying 18 days by more than 12 million rows in the Sales table.

Line    Records  Physical Query Plan 
1                AddColumns: IterPhyOp LogOp=AddColumns IterCols(0, 1) 
2                    DatesBetween: IterPhyOp LogOp=DatesBetween IterCols(0) 
3                        Extend_Lookup: IterPhyOp LogOp=Constant 
4                            SingletonTable: IterPhyOp LogOp=Constant 
5                            Constant: LookupPhyOp LogOp=Constant DateTime 12/20/2009 
6                        Constant: LookupPhyOp LogOp=Constant DateTime 1/6/2010 
7       18           SpoolLookup: LookupPhyOp LogOp=CountRows LookupCols(0) 
8       18               AggregationSpool<Count>: SpoolPhyOp #Records=18 
9                            Filter: IterPhyOp LogOp=Filter  
10                               Extend_Lookup: IterPhyOp LogOp=GreaterThan  
11                                   Filter: IterPhyOp LogOp=Filter  
12                                       Extend_Lookup: IterPhyOp LogOp=LessThan  
13                                           CrossApply: IterPhyOp LogOp=LessThan 
14                                               DatesBetween: IterPhyOp  
15                                                   Extend_Lookup: IterPhyOp  
16                                                       SingletonTable: IterPhyOp  
17                                                       Constant: LookupPhyOp  
18                                                   Constant: LookupPhyOp  
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19      12527442                                 Spool_Iterator<SpoolIterator>:  
20      12527442                                     ProjectionSpool<ProjectFusion<>>:  
21                                                       VertipaqResult: IterPhyOp  
22                                           LessThan: LookupPhyOp LogOp=LessThan 
23                                               ColValue<'Sales'[Order Date]>:  
24                                               ColValue<'Date'[Date]>: LookupPhyOp  
25                                   GreaterThan: LookupPhyOp LogOp=GreaterThan 
26                                       ColValue<'Sales'[Delivery Date]>: LookupPhyOp  
27                                       ColValue<'Date'[Date]>: LookupPhyOp 

The datacache materializes only a few columns from the Sales table: the internal row number, the 
Order Date, and the Delivery Date columns. Older versions of the DAX engine might also materialize 
other columns not used in the remaining part of the DAX query.

In order to avoid such a large materialization, the first attempt is to apply a filter over two  separate 
columns using a CALCULATE function, as in the following DAX query. The ALL function removes 
a possible filter applied by the relationship between Date and Sales with the context transition 
 generated by CALCULATE.

EVALUATE 
ADDCOLUMNS ( 
    DATESBETWEEN ( 
        'Date'[Date], 
        DATE ( 2009, 12, 20 ), 
        DATE ( 2010, 1, 6 ) 
    ), 
    "Open Orders", CALCULATE ( 
        COUNTROWS ( Sales ), 
        Sales[Order Date] < EARLIER ( 'Date'[Date] ), 
        Sales[Delivery Date] > EARLIER ( 'Date'[Date] ), 
        ALL ( 'Date' ) 
    ) 
)

In Table 16-24 you see that the reduction of execution time is three orders of magnitude.

TABLE 16-24 Timing of open orders with single-column filters.

Query Total FE SE SE CPU SE Queries

Open Orders 2 45 14 (31%) 31 (69%) 219 4

The strategy of the query plan is to get three lists of dates (Order Date, Delivery Date, and Date) 
and a datacache with Order Date, Delivery Date, and number of rows for each combination. It 
is the formula engine that scans this last datacache and checks whether the combination has to 
be  considered within open orders or not. You see in Table 16-25 the four storage engine queries 
 executed in this case.



 CHAPTER 16 Optimizing DAX 525

TABLE 16-25 VertiPaq Scan events for open orders with single-column filters.

Line Subclass Duration CPU Query (xmSQL)

2 Scan 6 16 SELECT Sales[Order Date],  
FROM Sales

4 Scan 1 0 SELECT Date[Date] 
FROM Date

6 Scan 8 109 SELECT Sales[Delivery Date],  
FROM Sales

8 Scan 16 94 SELECT Sales[Order Date], Sales[Delivery Date], COUNT ( )  
FROM Sales 
WHERE Sales[Order Date] IN (… 1096 total values) 
  AND Sales[Delivery Date] IN (… 21 total values)

The last datacache only contains combinations for values in Delivery Date that exist in a possible 
range of values, thanks to a previous query made on that column only and to the condition applied 
in the filter context in CALCULATE. Please note that this level of optimization might be not available 
in older versions of the DAX engine, and the result might contain combinations that are certainly not 
valid for the filter considered.

Because the materialization is limited to one row for each combination of Order Date and  Delivery 
Date, the storage engine execution is faster (smaller materialization) and the scan performed by the 
formula engine is faster, too. The query plan generated for the previous DAX query was a smart one. 
However, in scenarios that are more complex or in older versions of the DAX engine, it might be 
 necessary to modify the DAX query in order to explicitly request to aggregate data at a certain level 
of granularity, in order to reduce materialization and speed up the execution. For example, consider 
the following version of the DAX query to get open orders:

EVALUATE 
ADDCOLUMNS ( 
    DATESBETWEEN ( 
        'Date'[Date], 
        DATE ( 2009, 12, 20 ), 
        DATE ( 2010, 1, 6 ) 
    ), 
    "Open Orders", SUMX ( 
        FILTER ( 
            ADDCOLUMNS ( 
                SUMMARIZE ( Sales, Sales[Order Date], Sales[Delivery Date] ), 
                "Rows", CALCULATE ( 
                    COUNTROWS ( Sales ),  
                    ALL ( 'Date' ) 
                ) 
            ), 
            CONTAINS ( 
                DATESBETWEEN ( 
                    'Date'[Date], 
                    Sales[Order Date] + 1, 
                    Sales[Delivery Date] - 1 
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                ), 
                'Date'[Date], 'Date'[Date] 
            ) 
        ), 
        [Rows] 
    ) 
)

In this case, the result shown in Table 16-26 is slower than the previous version of the DAX query. 
However, you will see that this approach can be more convenient in different conditions.

TABLE 16-26 Timing of open orders with explicit grouping by Order Date and Delivery Date.

Query Total FE SE SE CPU SE Queries

Open Orders 3 108 31 (29%) 77 (71%) 437 3

There are only three storage engine queries for this query plan. You can see in Table 16-27 that 
two of them are very similar, differing only in the third column containing the number of rows 
 aggregated for each  combination of Order Date and Delivery Date. There are no filters pushed to the 
storage engine, so the two  datacaches with Order Date and Delivery Date have all the combinations 
of these two columns for the entire Sales table (6,576).

TABLE 16-27 VertiPaq Scan events for open orders with explicit grouping by Order and Delivery Date.

Line Subclass Duration CPU Query (xmSQL)

2 Scan 1 0 SELECT Date[Date] 
FROM Date 

4 Scan 42 234 SELECT Sales[Order Date], Sales[Delivery Date], COUNT ( )  
FROM Sales

6 Scan 34 203 SELECT Sales[Order Date], Sales[Delivery Date] 
FROM Sales

As anticipated, you should not think that the second solution is always better than the third. 
In fact, if you include 365 days in the result, the performance is better for the last solution, as you 
can see in Table 16-28. The queries are executed using a different filter for dates, as shown in the 
 following DAX code:

EVALUATE 
ADDCOLUMNS ( 
    DATESBETWEEN ( 
        'Date'[Date], 
        DATE ( 2009, 1, 1 ), 
        DATE ( 2009, 12, 31 ) 
    ), 
    ...
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TABLE 16-28 Timing of open orders queries for 365 days.

Query Total FE SE SE CPU SE Queries

Open Orders 2 207 169 (82%) 38 (18%) 109 3

Open Orders 3 111 38 (34%) 73 (66%) 329 3

Creating repro in MDX
You have seen many optimizations based on DAX queries. However, if users will query a data model using 
MDX, you have to verify that performances of the measures are good also in that language. For instance, 
consider the following repro for the second and the third versions of the calculation of open orders you 
have seen in the previous section. The measures provide the number of open orders in the last day of the 
period selected (so it works also for years and months, even if in the repro only days are used):

-- MDX – Open Orders 2 
WITH  
    MEASURE Sales[Open Orders] = CALCULATE ( 
        COUNTROWS ( Sales ), 
        FILTER ( ALL ( Sales[Order Date] ), Sales[Order Date] < MAX ( 'Date'[Date] ) ), 
        FILTER ( ALL ( Sales[Delivery Date] ), Sales[Delivery Date] > MAX ( 'Date'[Date] ) ), 
        ALL ( 'Date' ) 
    ) 
SELECT 
    Measures.[Open Orders] ON COLUMNS, 
    NON EMPTY [Date].[Date].[Date] ON ROWS 
FROM [Model] 
WHERE [Date].[Calendar Year].[CY 2008] 
 
 
-- MDX – Open Orders 3 
WITH  
    MEASURE Sales[Open Orders] =  
    SUMX ( 
        FILTER ( 
            ADDCOLUMNS ( 
                SUMMARIZE ( Sales, Sales[Order Date], Sales[Delivery Date] ), 
                "Rows", CALCULATE ( 
                    COUNTROWS ( Sales ),  
                    ALL ( 'Date' ) 
                ) 
            ), 
            CONTAINS ( 
                DATESBETWEEN ( 
                    'Date'[Date], 
                    Sales[Order Date] + 1, 
                    Sales[Delivery Date] - 1 
                ), 
                'Date'[Date], MAX ( 'Date'[Date] ) 
            ) 
        ), 
        [Rows] 
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    ) 
SELECT 
    Measures.[Open Orders] ON COLUMNS, 
    NON EMPTY [Date].[Date].[Date] ON ROWS 
FROM [Model] 
WHERE [Date].[Calendar Year].[CY 2008]

The third version performs better than the second one in MDX too, as you can see in the result in 
Table 16-29.

TABLE 16-29 Timing of open orders DAX measures tested in MDX queries for 365 days.

Query Total FE SE SE CPU SE Queries

Open Orders 2 307 263 (86%) 44 (14%) 219 7

Open Orders 3 121 28 (23%) 93 (77%) 547 6

You should always create a repro in MDX when you define measures for a data model. In fact, the 
behavior of MDX can be very different, especially for the non-empty calculation (which is a concept 
that does not exist in a native DAX query). Moreover, remember that the structure of the MDX query 
can affect the performance, especially when you cross several dimensions in the same query.

Reducing materialization
The formula engine executes all the DAX functions that the storage engine cannot handle. Because 
the storage engine only supports trivial aggregations, the formula engine has to compute complex 
set manipulations, including internal filter and sort operations. In this case, you have to consider how 
to lower the cardinality and the size of the in-memory datacaches produced by the storage engine, so 
that the formula engine can complete its task faster.

A good example of this problem is the TOPN function. For instance, consider the following query 
that returns the top 10 customers by sum of quantity in sales:

EVALUATE 
TOPN (  
    10,  
    Customer,  
    CALCULATE ( SUM ( Sales[Quantity] ) )  
)
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In Table 16-30 you see the server timings result. The cost of the query is relatively small because 
the Customer table has less than 20,000 rows, but it is interesting to analyze the number in more 
detail to imagine what could happen with a larger Customer table involved in this DAX query. The 
storage engine cost is slightly larger than the formula engine, but when you have a 60/40 split as in 
this case, you should not draw any easy conclusions.

TABLE 16-30 Timing of simple TOPN over Customer table.

Query Total FE SE SE CPU SE Queries

TOPN Customer 47 19 (40%) 28 (60%) 32 2

You can see the storage engine queries results in Table 16-31. In the columns Rows and Size you 
see the number of rows and the memory consumed by the datacache generated by each storage 
engine query.

TABLE 16-31 VertiPaq Scan events for TOPN over Customer table.

Line Subclass Duration CPU Rows Size Query (xmSQL)

2 Scan 19 16 18,869 301,952 SELECT Customer[CustomerKey], SUM ( Sales[Quantity] ) 
FROM Sales 
    LEFT JOIN Customer  
    ON Sales[CustomerKey] = Customer[CustomerKey]

4 Scan 9 16 18,869 1,962,376 SELECT $RowNumber, Customer[Key],  
    Customer[GeographyKey], … (all Customer columns) 
FROM Customer

Both storage engine queries return 18,896 rows, which correspond to the number of customers. 
Considering that you only have 10 rows in the result, you know that the filter operation is in charge 
of the formula engine. Moreover, the second query generates a datacache that materializes the entire 
Customer table, including all the columns. You might wonder why materializing all the values for rows 
that are not part of the result and are not necessary to establish who the top 10 customers are. This is 
exactly the problem of using TOPN over an entire table. You can see how the formula engine uses the 
two datacaches in the following physical query plan:

Line    Records  Physical Query Plan 
1                PartitionIntoGroups: IterPhyOp LogOp=TopN  
2       1           AggregationSpool<Top>: SpoolPhyOp #Records=1 
3       18869            Spool_Iterator<SpoolIterator>: IterPhyOp LogOp=Scan_Vertipaq 
4       18869                ProjectionSpool<ProjectFusion<>>: SpoolPhyOp 
5                                VertipaqResult: IterPhyOp #FieldCols=26 #ValueCols=0 
6       18869            SpoolLookup: LookupPhyOp LogOp=Sum_Vertipaq  
7       18869                ProjectionSpool<ProjectFusion<Sum>>: SpoolPhyOp 
8                                VertipaqResult: IterPhyOp #FieldCols=1 #ValueCols=1 
9                        Constant: LookupPhyOp LogOp=Constant Integer 10
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A first optimization is trying to reduce the number of rows iterated by the pivot table. The other 
is trying to reduce the materialization of the columns included in the result, doing that only for the 
customers included in the result. You can see an example of this approach in the following DAX query, 
which applies the TOPN only to the primary key of the Customer table (CustomerKey), so that the 
materialization of the result only affects 10 rows.

EVALUATE 
CALCULATETABLE ( 
    Customer, 
    TOPN ( 
        10, 
        VALUES ( Customer[CustomerKey] ), 
        CALCULATE ( SUM ( Sales[Quantity] ) ) 
    ) 
)

You can see the server timings in Table 16-32. The execution time is lower in both the storage 
engine and formula engine.

TABLE 16-32 Timing of simple TOPN over CustomerKey column.

Query Total FE SE SE CPU SE Queries

TOPN CustomerKey 35 15 (43%) 20 (57%) 94 3

The more important thing is looking at the storage engine queries executed in Table 16-33. Even if 
there is one more storage engine query, the overall size materialized by all the datacaches is 453,968 
bytes instead of 2,264,328 bytes, saving 80 percent of memory for materialization.

TABLE 16-33 VertiPaq Scan events for TOPN over CustomerKey column.

Line Subclass Duration CPU Rows Size Query (xmSQL)

2 Scan 18 94 18,869 301,952 SELECT Customer[CustomerKey], SUM ( Sales[Quantity] ) 
FROM Sales 
    LEFT JOIN Customer  
    ON Sales[CustomerKey] = Customer[CustomerKey]

4 Scan 0 0 18,869 150,976 SELECT Customer[Key]  
FROM Customer

6 Scan 2 0 10 1,040 SELECT $RowNumber, Customer[Key],  
    Customer[GeographyKey], … (all Customer columns) 
FROM Customer 
WHERE Customer[CustomerKey]  
        IN ( 19071, 19048..[10 total values, not all displayed] )
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Reducing the materialization is important when you manage large tables. Consider the following 
DAX query that returns the top 10 transactions in the Sales table for sales amount (resulting from the 
product of quantity by unit price):

EVALUATE 
TOPN ( 
    10,  
    Sales,  
    Sales[Quantity] * Sales[Unit Price]  
)

The result is probably more than 10 rows, in case you have several transactions with the same com-
bination of quantity and unit price. However, in a test with 12 million rows in the fact table, the result 
includes 1,458 rows, and it required 19 seconds to complete. You might wonder why this simple query 
takes so long. The server timings in Table 16-34 would suggest a bottleneck in the storage engine.

TABLE 16-34 Timing of simple TOPN over Sales table.

Query Total FE SE SE CPU SE Queries

TOPN Sales 19,062 3,689 (19%) 15,373 (81%) 37,422 1

The details of the only storage engine query shown in Table 16-35 clarify that the query plan 
 requested a materialization of the entire Sales table, requiring around 1 GB of RAM.

TABLE 16-35 VertiPaq Scan events for TOPN over Sales table.

Line Subclass Duration CPU Rows Size Query (xmSQL)

2 Scan 15,373 37,422 12,527,442 1,002,915,360 SELECT $RowNumber, Sales[OnlineSalesKey],  
      Sales[StoreKey], … (all Customer columns) 
 FROM Sales

If you have a primary key column in the Sales table, such as OnlineSalesKey in this example, you 
can apply the same technique to reduce the memory footprint of the materialization, as in this DAX 
query:

EVALUATE 
CALCULATETABLE ( 
    Sales, 
    TOPN ( 
        10, 
        VALUES ( Sales[OnlineSalesKey] ), 
        CALCULATE ( 
            SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) 
        ) 
    ) 
)
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Apparently, based on the Server Timings result in Table 16-36, this new approach does not save 
execution time, and we moved more workload on the formula engine.

TABLE 16-36 Timing of simple TOPN over OnlineSalesKey column.

Query Total FE SE SE CPU SE Queries

TOPN OnlineSalesKey 18,905 8,542 (45%) 10,363 (55%) 23,828 3

However, also in this case this approach saves 80 percent of memory for materialization, which 
requires around 200 MB instead of 1 GB, as you see from the storage engine queries in Table 16-37.

TABLE 16-37 VertiPaq Scan events for TOPN over CustomerKey column.

Line Subclass Duration CPU Rows Size Query (xmSQL)

2 Scan 5,520 12,906 12,527,442 150,329,304 SELECT Sales[OnlineSalesKey],  
        SUM ( Sales[Quantity] * Sales[Unit Price] ) 
FROM Sales

4 Scan 4,747 10,391 18,869 50,109,768 SELECT Sales[OnlineSalesKey]  
FROM Sales

6 Scan 2 96 1,458 1,116,640 SELECT $RowNumber, Sales[OnlineSalesKey],  
      Sales[StoreKey], … (all Customer columns) 
 FROM Sales 
WHERE Sales[OnlineSalesKey] IN (24447319, 
    28257231,..[1458 total values, not all displayed] )

Finding the right balance between materialization and formula engine is a complex decision. In 
this case, you always have a slow query, so probably a smaller materialization improves scalability 
for queries running by other users at the same time. If you do not have enough RAM on the server, 
reducing materialization is the only way to complete the query.

Optimizing complex bottlenecks

You can have conditions where the bottleneck is not easy to identify. Usually this happens in  complex 
queries, but you can learn how to interpret the information available in server settings and query 
plans, in order to identify the possible cause that could be shared between the formula engine 
and storage engine. In this section, you will see an example based on DISTINCTCOUNT, which is a 
 particular calculation that might hide some pitfalls.

Consider the following DAX query, which evaluates the number of unique invoices related to each 
product. The measure Count of Invoices only considers rows in the Sales table with a Quantity greater 
than zero. The presence of this filter condition is important to observe the behavior you will see 
shortly:
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DEFINE 
    MEASURE Sales[Count of Invoices] = 
        CALCULATE ( 
            DISTINCTCOUNT ( Sales[Order Number] ), 
            FILTER ( 'Sales', Sales[Quantity] > 0 )    -- Slow 
        ) 
EVALUATE 
CALCULATETABLE ( 
    ADDCOLUMNS ( 
        SUMMARIZE ( Sales, Product[ProductKey], Product[Product Name] ), 
        "Count of Invoices", [Count of Invoices] 
    ), 
    Product[Color] = "Red" 
)

The result is a table with 99 rows, one for each product of color Red. For each product, you can see 
the number of invoices in the last column.

ProductKey Product Name Count of Invoices

2505 Contoso Touch Stylus Pen E150 Red 232

1594 SV DVD 38 DVD Storage Binder E25 Red 980

1639 Contoso DVD 38 DVD Storage Binder E25 Red 948

1701 SV Hand Games for 12-16 boys E60 Red 12358

452 WWI Desktop PC1.60 E1600 Red 534

2039 Litware Microwave 1.6CuFt M125 Red 535

2359 Contoso Air conditioner 7000BTU E0260 Red 901

… … …

The execution of the query requires more than 4 seconds, 93 percent of it spent in the storage 
engine, as you see in Table 16-38.

TABLE 16-38 Timing of Distinct Count with filter on table.

Query Total FE SE SE CPU SE Queries

Distinct Count 
with Table Filter

4,475 327 (7%) 4,148 (93%) 21,513 101

At first sight, this seems that the DAX query has a bottleneck in the storage engine. However, you 
can already see in Table 16-38 that there are 101 queries to the storage engine, which is a high num-
ber for a simple DAX query such as this one. If you look at the storage engine queries in Table 16-39, 
you see that after the first two queries there are 99 queries that differ only for the filter applied to the 
ProductKey/Quantity tuple.
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TABLE 16-39 VertiPaq scan events for Distinct Count with filter on table.

Line Subclass Duration CPU Rows Size Query (xmSQL)

2 Scan 25 78 99 396 SELECT Product[ProductKey],  
    Sales[ProductKey], Sales[Quantity]  
FROM Sales 
    LEFT JOIN Product  
    ON Sales[ProductKey] = Product[ProductKey] 
WHERE Product[Color] = ‘Red’

4 Scan 34 234 396 1,584 SELECT Product[ProductKey], 
Product[ProductName] 
FROM Sales 
    LEFT JOIN Product  
    ON Sales[ProductKey] = Product[ProductKey] 
WHERE Product[ProductKey] IN (1889,  
           380, ..[99 total values, not all displayed] 
    VAND Product[Color] = ‘Red’ 
    VAND Sales[Quantity] > 0

8 Scan 39 172 1 12 SELECT DCOUNT ( Sales[Order Number] ) 
 FROM Sales 
WHERE Product[ProductKey] IN (1889,  
           380, ..[99 total values, not all displayed] 
    VAND Product[Color] = ‘Red’ 
    VAND Sales[Quantity] > 0 
    VAND ( Product[ProductKey], Sales[Quantity] ) 
    IN { (2040, 2), (2040, 3), (2040, 1), (2040, 4) }

… … … … … … …

400 Scan 38 250 1 12 SELECT DCOUNT ( Sales[Order Number] ) 
 FROM Sales 
WHERE Product[ProductKey] IN (1889,  
           380, ..[99 total values, not all displayed] 
    VAND Product[Color] = ‘Red’ 
    VAND Sales[Quantity] > 0 
    VAND ( Product[ProductKey], Sales[Quantity] ) 
    IN { (1700, 2), (1700, 3), (1700, 1), (1700, 4) }

In practice, there is one storage engine query for each row produced for the output of the DAX 
query. This is strange and certainly not efficient. The cost of every storage engine query is around 40 
milliseconds, so the query execution time depends on the number of products filtered. For example, 
if you filter Blue products instead of the Red ones, you wait more than 10 seconds for a result of 200 
rows. If you do not filter any color, returning all the products means waiting 118 seconds for 2,516 
rows. Moreover, because you have 2,518 queries to the storage engine, you have no hope that a 
second execution of the same query will use previous datacaches from the storage engine cache. The 
reason is that you are exceeding the maximum number of entries available there: The storage engine 
keeps the last 512 queries, but this number might vary in different versions of the DAX engine.

Remember, every storage engine query originates from the query plan, so you should analyze it to 
understand the reason for this behavior. The following physical query plan indicates that there is one 
storage engine query for each row returned by the DAX query.
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Line    Records  Physical Query Plan 
1                AddColumns: IterPhyOp LogOp=AddColumns  
2       99           Spool_Iterator<SpoolIterator>: IterPhyOp LogOp=GroupBy_Vertipaq  
3       99               ProjectionSpool<ProjectFusion<>>: SpoolPhyOp 
4                            VertipaqResult: IterPhyOp #FieldCols=2 #ValueCols=0 
5       99           SpoolLookup: LookupPhyOp LogOp=Calculate  
6       99               AggregationSpool<Copy>: SpoolPhyOp  
7       1                    Spool_Iterator<SpoolIterator>: IterPhyOp  
8       1                        AggregationSpool<Cache>: SpoolPhyOp #Records=1 
9                                    VertipaqResult: IterPhyOp #FieldCols=0 #ValueCols=1 
10      1                    Spool_Iterator<SpoolIterator>: IterPhyOp LogOp=DistinctCount 
11      1                        AggregationSpool<Cache>: SpoolPhyOp #Records=1 
12                                   VertipaqResult: IterPhyOp #FieldCols=0 #ValueCols=1 
...     ...                  ... 
301     1                    Spool_Iterator<SpoolIterator>: IterPhyOp LogOp=DistinctCount 
302     1                        AggregationSpool<Cache>: SpoolPhyOp #Records=1 
303                                  VertipaqResult: IterPhyOp #FieldCols=0 #ValueCols=1

The reason for this behavior is the filter over Sales rows, just to consider in the DISTINCTCOUNT 
operation only those sales having a quantity greater than zero (probably all the rows in Sales satisfy 
this condition, but the DAX engine is not able to remove such a condition from the query plan). You 
can obtain the same result using a column filter instead of a table filter, as in the following DAX query, 
which highlights the changed condition:

DEFINE 
    MEASURE Sales[Count of Invoices] = 
        CALCULATE ( 
            DISTINCTCOUNT ( Sales[Order Number] ), 
            FILTER ( ALL ( Sales[Quantity] ), Sales[Quantity] > 0 )    -- Fast 
        ) 
EVALUATE 
CALCULATETABLE ( 
    ADDCOLUMNS ( 
        SUMMARIZE ( Sales, Product[ProductKey], Product[Product Name] ), 
        "Count of Invoices", [Count of Invoices] 
    ), 
    Product[Color] = "Red" 
)

Note In the previous query, the code highlighted in bold is an explicit filter over the 
Quantity column of the Sales table:

FILTER ( ALL ( Sales[Quantity] ), Sales[Quantity] > 0 )    

This complete syntax is not necessary, but it was easier to compare with similar filters used in pre-
vious queries that had to be explicit. In this case, you can replace the filter with a  simpler syntax:

Sales[Quantity] > 0

We used the complete syntax for educational reasons only.
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This query produces a much faster execution, improving the response time of two orders of 
 magnitude, as you see in Table 16-40.

TABLE 16-40 Timing of Distinct Count with filter on column.

Query Total FE SE SE CPU SE Queries

Distinct Count 
with Column Filter

90 12 (13%) 78 (87%) 422 2

The storage engine is still responsible for most of the time spent by query execution, but you 
should focus your attention on the low number of SE queries (only two), other than the faster 
 response. Each storage engine query does not require more than a few hundred milliseconds, as you 
see in Table 16-41.

TABLE 16-41 VertiPaq scan events for Distinct Count with filter on column.

Line Subclass Duration CPU Rows Size Query (xmSQL)

2 Scan 25 125 99 396 SELECT Product[ProductKey], 
Product[ProductName] 
FROM Sales 
    LEFT JOIN Product  
    ON Sales[ProductKey] = Product[ProductKey] 
WHERE Product[Color] = ‘Red’

6 Scan 53 297 99 1,584 SELECT Product[ProductKey],  
       DCOUNT ( Sales[Order Number] ) 
FROM Sales 
    LEFT JOIN Product  
    ON Sales[ProductKey] = Product[ProductKey] 
WHERE Product[ProductKey] IN (1889,  
           380, ..[99 total values, not all displayed] 
    VAND Product[Color] = ‘Red’ 
    VAND Sales[Quantity] > 0

The key difference is that with a column filter, the query plan pushed all the filters (product color 
and sales quantity) into the same storage engine query. The semantics of the query using a table filter 
creates more constraints to the query plan in order to apply such optimization.

The lesson of this example (to be honest, of the entire book) is that you have to consider all the 
factors that affect a query plan in order to find the real bottleneck. Looking at the percentages of FE 
and SE shown in server timings is a good starting point, but you should always investigate the reason 
why you have certain numbers. The SQL Profiler and DAX Studio tools measure the effects of a bad 
query plan, but these are only clues and evidences to help you find the reason behind a slow query.

Welcome to the DAX world!
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variables and evaluation contexts, 118–119
working days, computing differences in, 150–151
year-, quarter-, and month-to-date, 168–171

CALCULATETABLE
filter conditions, optimization of, 512–513
FIRSTNOBLANK and LASTNOBLANK, 199–200
functions of, 93
introduction to, 98–101, 108–109
many-to-many relationships, filtering and, 376–378
Mark as Date Table, use of, 167–168
order of evaluation, 51
periods to date, understanding, 189–191
reproduction query, creation of, 499–500
understanding use of, 236–239
USERELATIONSHIP and, 161–162

calculations
aggregate functions, 35–37
calculated columns and measures, overview, 22–25
calculated columns and performance, 447–450
calculated physical relationships, use of, 367–371
calculated tables, use of, 50–51
conversion functions, overview, 41–42
data types, 18–21
date and time functions, overview, 42
DAX operators, 21–22
error handling, overview, 26–32
Excel users, DAX overview, 5–9
formatting DAX code, overview, 32–35
information functions, overview, 39
logical functions, overview, 37–38
mathematical functions, overview, 39–40
MDX developers, DAX overview, 14–15
relational functions, overview, 42–44
syntax, overview of, 17–22
text functions, overview, 40–41
trigonometric functions, overview, 40
variables, use of, 26

CALENDAR
Date table, building of, 156–157
use of, 157–160

Calendar table
static moving averages, computing of, 151–154
working days, computing differences, 150–151

CALENDARAUTO
Date table, building of, 156–157
use of, 157–160

calendars. See Date table; time intelligence
CallbackDataID

IF conditions, optimization of, 513–515
overview of, 483–488
performance optimization, reducing impact of, 

509–511
Cartesian products, CROSSJOIN, 267–269
CEILING, mathematical functions, 39–40
cells. See also evaluation contexts

Excel users, DAX overview, 5–7
filter context, overview, 97–98

chain, relationships, 3
CHISQBGBPDIST, 230
CHISQBGBPDISTBGBPRT, 230
CHISQBGBPINV, 230
CHISQBGBPINVBGBPRT, 230
circular dependencies, 119–122
closing balance over time, 178–188
CLOSINGBALANCE, 184–188
CLOSINGBALANCEYEAR, 185–188
COLUMN ENCODING, 415
COLUMN ID, 415–416
COLUMN TYPE, 415
columnar databases, introduction to, 400–403
columns. See also database processing; also evaluation 

contexts; also table functions
ABC (Pareto) classification, use of, 136–143
ADDCOLUMNS, 241–244
aggregate functions, 35–37
calculated columns and measures, overview, 22–25
calculated columns and performance, 447–450
column cardinality

defined, 426
finding number of unique values, 427–429
performance and, 442–447, 515–517

column storage, choosing columns for, 451–453
column storage, optimization of, 453–455
conversion functions, overview, 41–42
data models, gathering information about, 425–434

cost of a column hierarchy, 430–434
number of unique values per column, 427–429

date and time functions, overview, 42
DAX calculations, syntax overview, 17–22
derived columns, 309, 312
DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS, 

416
DISCOVER_STORAGE_TABLE_COLUMNS, 415–416
dynamic segmentation, use of, 371–373
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COMBIN

columns. See also database processing; also evaluation 
contexts; also table functions continued

Excel users, DAX overview, 5–7
expanded tables, understanding use of, 307–316
filtering columns, 308–316
formatting DAX code, overview, 32–35
information functions, overview, 39
lineage and relationships, overview of, 248–250
logical functions, overview, 37–38
MDX developers, DAX overview, 13–15
multiple column relationships, computing of, 

367–369
native columns, 309
parent-child hierarchies, handling of, 346–358
physical vs. virtual relationships, 381–382
relational functions, overview, 42–44
scanning, materialization and, 417–420
SELECTCOLUMNS, 243–246
Sort By Column, 48
SUMMARIZECOLUMNS, 250, 255–261, 497, 508–509
text functions, overview, 40–41
trigonometric functions, overview, 40
tuples and, 316–318
using in a measure, 68–69
using SUM in a calculated column, 67–68
VALUES, use of, 84
VertiPaq, as columnar database, 95–98

COMBIN, 230
COMBINA, 230
commas, formatting DAX code, 34
commas, text functions, 40–41
comparisons

computing differences over previous periods, 
174–175

computing periods from prior periods, 171–174
DAX operators, 21–22
moving annual total calculations, 175–178
over time, 168
year-, quarter-, and month-to-date, 168–171

complex filters. See arbitrarily shaped set (filter)
compound interest calculations, 225–229
compression algorithms. See also Dynamic Manage-

ment Views (DMV)
dictionary compression, 405–406
re-encoding, 409
Run Length Encoding (RLE), VertiPaq, 406–408
segmentation and partitioning, 412

value encoding, 404–405
VertiPaq, overview of, 403–411

COMPRESSION TYPE, 416
CONCATENATE, text functions, 40–41
conditions

logical functions, overview, 37–38
SQL developers, DAX overview, 12

CONFIDENCEBGBPNORM, 230
CONFIDENCEBGBPT, 230
CONTAINS, 278–280, 380–381
context transition

ALLSELECTED and, 286–294
CALCULATE and, 111–113
CALCULATE, evaluation order of, 117
CALCULATE, visible rows, 116–117
CALCULATE, with measures, 114–116
KEEPFILTERS and, 299–303
SetFilter, use of, 331–337

conversion errors, error handling overview, 26–32
conversion functions, syntax, 41–42
cores, VertiPaq hardware decisions, 423
COS, trigonometric functions, 40
COSH, trigonometric functions, 40
COT, trigonometric functions, 40
COTH, trigonometric functions, 40
COUNT, 36–37, 472–473
COUNTA, 36–37
COUNTAX, 37
COUNTBLANK, 36–37
COUNTROWS, 36–37, 46, 428
COUNTX, 37
CPU Time, for queries, 465–467, 479, 500–503
CPU, DAX Studio event tracing, 470
CPU, hardware selection, 422–423
CROSSJOIN

KEEPFILTERS, understanding use of, 299–303
sales per day granularity, 149–150
use of, 267–269
well-shaped filters and, 321–323

CROSSJOIN/VALUES, cardinality, 515–517
cross-references, calculated columns and measures, 25
cumulative totals, computing of, 132–136
Currency (Currency), syntax, 18–20
currency conversions, example of, 386–392
CURRENCY, conversion functions, 41–42
custom rollup formulas, 358
customers, new and returning, 384–386
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DATESBETWEEN

D
data models

calculated columns and performance, 447–450
column cardinality and performance, 442–447
column storage, choosing columns for, 451–453
column storage, optimization of, 453–455
denormalization, 434–442
gathering information about model, 425–434

cost of a column hierarchy, 430–434
dictionary size for each column, 428–429
number of rows in a table, 426–427
number of unique values per column, 427–429
total cost of table, 433–434

overview of, 1–3
relationship directions, 3–4
VertiPaq Analyzer, performance optimization and, 510

data types
aggregate functions, numeric and non-numeric 

values, 35–37
DAX syntax, overview of, 18–21
information functions, overview, 39

database processing
columnar databases, introduction to, 400–403
Dynamic Management Views, use of, 413–416
materialization, 417–420
segmentation and partitioning, 412
VertiPaq compression, 403–411

best sort order, finding of, 409–410
dictionary encoding, 405–406
hierarchies and relationships, 410–411
re-encoding, 409
Run Length Encoding (RLE), 406–408
value encoding, 404–405

VertiPaq, hardware selection, 421–424
VertiPaq, understanding of, 400

datacaches. See also formulas, optimization of
CallbackDataID, use of, 483–488
DAX Studio, event tracing with, 467–470
formula engine (FE), overview, 458
parallelism and datacache, understanding of, 480–481
query plans, reading of, 488–494
server timings and query plans, analysis of, 500–503
storage engine (VertiPaq), overview, 459
VertiPaq cache and, 481–483
VertiPaq SE query cache match, 464

date. See also Date table
column cardinality and performance, 443–447

date and time functions, overview, 42
sales per day calculations, 143–150
time intelligence, introduction to, 155
working days, computing differences in, 150–151

DATE
conversion functions, overview, 41–42
date and time functions, overview, 42
date table names, 157

Date (DateTime), syntax, 18, 20
Date table

aggregating and comparing over time, 168
computing differences over previous periods, 

174–175
computing periods from prior periods, 

171–174
year-, quarter-, and month-to-date, 168–171

CALENDAR and CALENDARAUTO, use of, 157–160
closing balance over time, 178–188
CLOSINGBALANCE, 184–188
custom calendars, 200–201

custom comparisons between periods, 
210–211

noncontiguous periods, computing over, 
206–209

weeks, working with, 201–204
year-, quarter-, and month-to-date, 204–205

DATEADD, use of, 191–196
drillthrough operations, 200
FIRSTDATE and LASTDATE, 196–199
FIRSTNOBLANK and LASTNOBLANK, 199–200
Mark as Date Table, use of, 166–168
moving annual total calculations, 175–178
multiple dates, working with, 160–164
naming of, 157
OPENINGBALANCE, 184–188
periods to date, understanding, 189–191
time intelligence, advanced functions, 188
time intelligence, introduction to, 155, 164–166

Date, cumulative total calculations, 134–136
DATEADD

previous year, month, quarter comparisons, 
171–174

use of, 191–196
Date[DateKey], Mark as Date Table, 166–168
DateKey, cumulative total calculations, 134–136
DATESBETWEEN

moving annual total calculations, 175–178
working days, computing differences, 151
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DATESMTD

DATESMTD, 189–191
DATESQTD, 189–191
DATESYTD, 168–171, 173, 189–191
DateTime

column cardinality and performance, 443–447
syntax, overview of, 18, 20

DATETIME, conversion functions, 41–42
DATEVALUE, date and time functions, 42
DAX

data models, overview of, 1–3
data relationships, direction of, 3–4
data types, overview, 18–21
evaluation order and nested calls, 51
for Excel users, overview, 5–9
formatting DAX code, overview, 32–35
MDX developers, overview for, 12–15
overview of, 1
SQL developers, overview, 9–12

DAX query engine
formula engine (FE), overview, 458
introduction to, 457–459
profiling information, capture of, 463–470
query plans, introduction to, 459–463
query plans, reading of, 488–494
storage engine (VertiPaq), overview, 459

xmSQL syntax, overview of, 470–477
storage engine queries, reading of, 470–488

aggregation functions, 472–473
arithmetical operations, 474
CallbackDataID and, 483–488
DISTINCTCOUNT internal events, 479
filter operations, 474–476
JOIN operators, 477
parallelism and datacache, understanding of, 

480–481
scan time and, 477–478
VertiPaq cache and, 481–483

DAX Studio
event tracing, 467–470, 497
Power BI Desktop and, 497
server timings and query plans, analysis of, 500–503

DAXFormatter.com, 33
DAY, 42. See also Date table
DCOUNT, xmSQL syntax, 472–473
debugging, DEFINE MEASURE, 47. See also performance 

concerns
Decimal Number (Float), 18–19

DEFINE MEASURE, 47, 233–236
DEGREES, trigonometric functions, 40
DeJonge, Kasper, 434–435
denormalization of data, 434–442
DENSE rank values, 213–214
derived columns, 309, 312
DESC, syntax, 48
descriptive attributes, columns, 451, 453
dictionary

dictionary compression, VertiPaq, 405–406
duplicated data and, 437
identifying size for each column, 428–429

DICTIONARY SIZE, 415
DIMENSION NAME, 414–416
DirectQuery, 188, 399, 457
DISCOVER views, 413
DISCOVER_OBJECT_MEMORY_USAGE, 414, 433
DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS, 416
DISCOVER_STORAGE_TABLE_COLUMNS, 415–416
DISCOVER_STORAGE_TABLES, 414–415
Distinct Values, 478
DISTINCT, table function overview, 58–59
DISTINCTCOUNT

aggregate functions, overview, 36–37
complex bottlenecks, optimization of, 532–536
number of unique values in column, determining, 

429
queries, internal events, 479
VALUES and, 84

DISTINCTCOUNT (ms), query execution time, 478
division

by zero, 27–28
DAX operators, 21–22
error handling, overview, 26–32
xmSQL syntax for, 474

DMV. See Dynamic Management Views (DMV)
drillthrough operations, 200
Duration, DAX Studio event tracing, 470
Duration, of queries, 465–467, 500–503
Dynamic Management Views (DMV), 413

DISCOVER_OBJECT_MEMORY_USAGE, 414, 433
DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS, 

416
DISCOVER_STORAGE_TABLE_COLUMNS, 415–416
DISCOVER_STORAGE_TABLES, 414–415
object information, retrieval of, 425–434

dynamic segmentation, use of, 371–373
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filter contexts

E
EARLIER, 70–74, 138–143
EDATE, 42
effective interest rate calculations, 227–228
empty or missing values

aggregate functions, overview, 36–37
error handling, overview, 28–30
information functions, overview, 39

empty row removal, 304–307
EOMONTH, date and time functions, 42
equal to, DAX operators, 21–22
error handing

circular dependencies, 121–122
errors in DAX expressions, overview, 26–32
IFERROR, 30–32, 37–38, 370–371
static segmentation, computing of, 370–371

EVALUATE
best practices, 250
ISONORAFTER and, 284
ORDER BY and, 48–50
syntax, 47–50
understanding use of, 233–236

evaluation contexts. See also formulas, optimization of
ALL, understanding use of, 74–76, 326–328
ALLSELECTED, understanding use of, 285–294
arbitrarily shaped filters, use of, 321–326
AutoExists, understanding use of, 306–307
CALCULATE, context transition and, 111–113
CALCULATE, introduction to, 98–101
CALCULATE, variables and evaluation context, 

118–119
columns, use in a measure, 68–69
EARLIER function, use of, 70–74
expanded tables, understanding use of, 307–316
FILTER and ALL context interactions, 74–76
filter context, 65–66
filter context and relationship, 80–83
filter context intersections, 318–320, 323–326
filter contexts, tuples and, 316–318
introduction to, 61–66
ISFILTERED and ISCROSSFILTERED, 85–88
KEEPFILTERS, understanding use of, 294–303
lineage, understanding use of, 329–331
OVERWRITE and, 320–321, 323–326
parameter table, creation of, 89–92
row context, 66–67, 69–70, 78–80
SetFilter, use of, 331–337

SUM, use in a calculated column, 67–68
summary of, 88–89
VALUES, use of, 84
well-shaped filters, 321–323
working with many tables, 77–80

evaluation order, 51
CALCULATE context transitions, 117
FILTER and, 52–54

EVEN, mathematical functions, 39–40
event tracing

DAX Studio, use of, 467–470
DISTINCTCOUNT internal events, 479
identifying expressions to optimize, 496–498
SQL Server Profiler, 463–467
VertiPaq cache and, 481–483

EXACT, text functions, 40–41
Excel. See Microsoft Excel
EXCEPT, 274–275, 385–386
EXP, mathematical functions, 39–40
expanded tables, understanding use of, 307–316
EXPONBGBPDIST, 230
expression trees, DAX query engine, 457
Extract, Transform & Load (ETL), 374

F
FACT, mathematical functions, 39–40
FALSE, logical functions, 37–38
FE. See formula engine (FE)
FE Time, DAX Studio, 469
FILTER

ABC (Pareto) classification, use of, 136–143
CALCULATE, filtering a single column, 104–106
calculated tables, use of, 50–51
EARLIER function, use of, 70–74
evaluation context interactions, 74–76
MDX developers, DAX overview, 14–15
overview, 46–47
SQL developers, DAX overview, 11–12
static segmentation, computing of, 369–371
syntax, 51–54
vsBGBP CALCULATETABLE, 237–239

filter contexts. See also data models; also evaluation 
contexts; also formulas, optimization of

ADDCOLUMNS, use of, 242–244
ALL, ALLEXCEPT, and ALLNOBLANKROW, 54–57
ALL, understanding use of, 55, 93–95, 326–328
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filter operations, xmSQL syntax for

filter contexts. See also data models; also evaluation 
contexts; also formulas, optimization of 
continued

ALLSELECTED, understanding use of, 123–125, 
285–294

arbitrarily shaped filters, 297, 299–303, 321–326
AutoExists, understanding use of, 75, 306–307
browsing depth and, 352–358
CALCULATE

context transition evaluation order, 117
context transitions and, 111–113
filtering with complex conditions, 106–109
introduction to, 98–101
rules for using, 122–123
single column filtering, 101–106

calculated columns and measures, overview, 22–25
calculated columns and performance, 447–450
complex filter, defined, 297, 299
computing percentages over hierarchies, 341–346
CONTAINS, use of, 278–280
cumulative total calculations, 132–136
data models, overview, 3
data relationships, direction of, 3–4
defined, 65–66, 97–98
drillthrough operations, 200
dynamic segmentation, use of, 371–373
expanded tables vs. filtering, 315–316
expanded tables, understanding use of, 307–316
filter conditions, optimization of, 512–513
filter context intersections, 318–320, 323–326
filter functions, understanding of, 236–240
filtering columns, 308–316
FIRSTDATE and LASTDATE, use of, 196–199
formula engine bottlenecks, optimization of, 

522–527
GROUPBY, 261–262
IF conditions, optimization of, 513–515
INTERSECT, use of, 272–274
ISFILTERED and ISCROSSFILTERED, use of, 85–88
ISONORAFTER, use of, 284
KEEPFILTERS, understanding use of, 294–303
lineage, understanding use of, 248–250, 329–331
LOOKUPVALUE, use of, 280–282
many-to-many relationships, use of, 376–378
Mark as Date Table, use of, 166–168
materialization, reducing, 528–532
MIN/MAX, use of, 196–199
moving annual total calculations, 175–178

OVERWRITE and, 320–321, 323–326
periods to date, understanding, 189–191
RANKX, common pitfalls, 216–219
RANKX, use of, 213–216
ratio and percentage calculations, 129–132
relationship and, 80–83, 248–250
relationships with different granularities, 378–381
SetFilter, use of, 331–337
static moving averages, computing of, 151–154
SUMMARIZE and, 250–255
SUMMARIZECOLUMNS and, 255–261
time intelligence, introduction to, 164–166
tuples, 316–318
understanding use of, 95–98
UNION, use of, 269–272
well-shaped filters, 321–323
working days, computing differences in, 150–151

filter operations, xmSQL syntax for, 474–476
FilterAll Version, 108–109
FIND, text functions, 40–41
FIRSTDATE, 196–199
FIRSTNOBLANK, 199–200, 240
fiscal years

Date table generation for, 158–160
previous year comparisons, 173–174
year-to-date measures, 171

FIXED, text functions, 40–41
Float, syntax, 18–19
FLOOR, mathematical functions, 39–40
foreign keys, SQL developers, 9–12
FORMAT

conversion functions, overview, 41–42
text functions, overview, 40–41

formatting DAX code, overview, 32–35. See also syntax; 
also specific function names

formula engine (FE)
bottlenecks

complex bottlenecks, optimization of, 532–536
identification of, 503–504, 522–527
IF conditions, optimization of, 513–515
materialization, reducing, 528–532
repro, creating in MDX, 527–528

event tracing, 463–470
iterations, AggregationSpoolCache, 462
overview, 458
query plans, reading of, 488–494
server timings and query plans, analysis of, 

500–503
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HOUR, date and time functions, overview

formulas. See also evaluation contexts; also formulas, 
optimization of

aggregate functions, 35–37
calculated columns and measures, overview, 22–25
circular dependencies, 119–122
conversion functions, overview, 41–42
data types, 18–21
date and time functions, overview, 42
DAX operators, 21–22
DAX syntax, overview of, 17–22
DEFINE MEASURE, 47
error handling, overview, 26–32
Excel users, DAX overview, 5–9
formatting DAX code, overview, 32–35
information functions, overview, 39
logical functions, overview, 37–38
mathematical functions, overview, 39–40
relational functions, overview, 42–44
text functions, overview, 40–41
trigonometric functions, overview, 40
variables, use of, 26

formulas, optimization of
complex bottlenecks, optimization of, 532–536
formula engine bottlenecks

identification of, 503–504, 522–527
materialization, reducing, 528–532
repro, creating in MDX, 527–528

identifying expressions to optimize, 496–498
optimization strategy, defining of, 496–504
overview, 495
reproduction query, creation of, 499–500
server timings and query plans, analysis of, 

500–503
storage engine bottlenecks

ADDCOLUMNS and SUMMARIZE, decisions 
about, 505–509

CallbackDataID, reducing impact of, 509–511
cardinality, optimization of, 515–517
filter conditions, optimization of, 512–513
identification of, 503–504
IF conditions, optimization of, 513–515
nested iterators, optimization of, 517–522

forward slash (/), use in hierarchies, 359
Frequent Itemset Search, 392–397
fully qualified names, 242–243, 246
function calls, SQL developers, 10–12
function parameters, SQL developers, 10–11
functional languages

Excel users, DAX overview, 8
formatting DAX code, overview, 32–35
SQL developers, DAX overview, 10–11

functions, DAX operators and, 22

G
GCD, mathematical functions, 39–40
GENERATE, 275–277
GENERATEALL, 275–277
GEOMEAN, 225–229
GEOMEANX, 225–229
geometric mean, calculation of, 225–229
granularity

relationships with different granularities, 378–381
sales per day calculations, 146–150

graphics, performance and, 443
greater than, DAX operators, 21–22
grouping functions

ADDMISSINGITEMS, 262–264
GROUPBY, 250, 261–262
overview of, 250
SUMMARIZE, 250–255
SUMMARIZECOLUMNS, 255–261

H
hardware decision, VertiPaq, 421–424
HASNOVALUE, 60, 214
HASONEVALUE, 91–92
HideMemberIf, 358
hierarchies

column hierarchies, determining cost of, 430–434
computing percentages over hierarchies, 339–346
data models, gathering information about, 

425–434
Date tables and, 160
MDX developers, DAX overview, 13–15
parent-child hierarchies, handling of, 346–358
unary operators

alternative implementations, 365–366
handling of, 358–366
implementing using DAX, 359–365
values and definitions list, 358–359

VertiPaq compression and, 410–411
HOUR, date and time functions, overview, 42
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IF

I
IF

ABC (Pareto) classification, use of, 139
computing percentages over hierarchies, 343
cumulative total calculations, 135–136
Excel users, DAX overview, 6
IF conditions, optimization of, 513–515
logical functions, overview, 37–38

IFERROR
intercepting errors, 30–32
logical functions, overview, 37–38
static segmentation, computing of, 370–371

IGNORE, 259
IN, xmSQL filter operations syntax, 474–476
IncrementalPct, 141–143
IncrementalProfit, 136–143
indexes, SUBSTITUTEWITHINDEX, 283
Infinity, division by zero, 27–28
information functions, syntax overview, 39
In-Memory. See VertiPaq (storage engine)
INT, conversion functions, 41–42
Integer, syntax, 18–19
interest calculations, 225–229
internal rate of return, calculation of, 227–228
INTERSECT, 272–274, 381, 385–386
inventory tables

closing balance over time, 179–184
CLOSINGBALANCE, 184–188
OPENINGBALANCE, 184–188

ISBLANK, 31–32, 39
ISCROSSFILTERED, 85–88
ISEMPTY, 370–371
ISERROR, 39
ISFILTERED, 85–88, 341–346
IsLeaf, 356–357
ISLOGICAL, 39
ISNONTEXT, 39
ISNUMBER, 39
ISO weeks, custom calendars, 201–204
ISONORAFTER, 284
ISSUBTOTAL, 254–255, 260–261
ISTEXT, 39
iterations

ADDCOLUMNS, use of, 241–244
CALCULATE, context transition with measures, 

114–116
calculated columns and performance, 448–450

CallbackDataID, reducing impact of, 509–511
CallbackDataID, use of, 483–488
cardinality, optimization of, 515–517
creating a row context, 69–70
EARLIER function, use of, 70–74
Excel users, DAX overview, 8
FILTER as, 104–106
formula engine bottlenecks, 462, 522–527
granularity, sales per day, 149–150
GROUPBY, use of, 261–262
IF conditions, optimization of, 513–515
KEEPFILTERS, understanding use of, 296–303
materialization and, 417–420
nested iterators, optimization of, 517–522

J
joining functions

CROSSJOIN, 267–269
JOIN, xmSQL syntax, 477
NATURALINNERJOIN, 265
NATURALLEFTOUTERJOIN, 266–267
overview of, 250
SQL developers, DAX overview, 9–12

K
KEEPFILTERS, 294–303
Key Performance Indicators (KPI), 172–173
keys of relationship

column cardinality and performance, 442, 451
column storage, choosing columns for, 451
data models, overview of, 2–3
multiple column relationships, computing of, 

367–369
relationships with different granularities, 378–381
static segmentation, computing of, 369–371

L
LASTDATE

closing balance over time, 179–184
moving annual total calculations, 175–178
nested calls and time intelligence functions, 

177–178
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memory

opening and closing balances, 184–188
use of, 196–199

LASTNOBLANK, 181–184, 199–200
LCM, mathematical functions, 39–40
Leaf, 356–357. See also parent-child (P/C) hierarchies
leaf-level-calculations, MDX developers, 15
leap year, 20
LEFT OUTER JOINS, SQL developers, 10
LEFT, text functions, 40–41
LEN, text functions, 40–41
less than, DAX operators, 21–22
lineage

CROSSJOIN and, 269
EXCEPT, use of, 274–275
INTERSECT and, 272–274
overview of, 248–250
SELECTCOLUMNS and, 245–246
understanding of, 329–331
UNION use of, 269–272

linear dependencies, 119–120
list of values, CALCULATE, 99–101
LN, mathematical functions, 39–40
localhost

port number, 497
LOG, mathematical functions, 39–40
LOG10, mathematical functions, 39–40
logical functions

information functions, overview, 39
logical operators, DAX, 21–22
syntax, overview, 37–38

Logical Plan event, 464–465
logical query plan

DAX query engine, overview of, 457
DAX Studio, event tracing with, 467–470
overview, 460–461
query plans, reading of, 488–494
server timings and query plans, analysis of, 

500–503
SQL Server Profiler, event tracing, 464

LOOKUPVALUE
multiple column relationships, computing of, 

368–369
parent-child hierarchies and, 349
use of, 280–282

Lotus 1-2-3, leap year bug, 20
LOWER, text functions, 40–41

M
many-side relationships

data models, overview of, 2–3
expanded tables, use of, 307–316

many-to-many relationships
physical vs. virtual relationships, 382
row contexts and, 78–80
use of, 373–378

many-to-one relationships, 78–80
Mark as Date Table, 166–168
MAT (moving annual total) calculations, 175–178
materialization

EVALUATE, use of, 233–236
formula engine bottlenecks and, 522–527
nested iterators, optimization of, 519–522
overview, 417–420
reducing materialization, 528–532

mathematical functions
syntax overview, 39–40
trigonometric functions, overview, 40

MAX
aggregate functions, overview, 35–37
cumulative total calculations, 134–136
dynamic segmentation, use of, 371–373
using in calculated columns, 68
xmSQL syntax, 472–473

MAXX, 37
MDX developers

AutoExists, understanding use of, 304–307
DAX overview, 12–15
DAX query engine, overview of, 458
identifying expressions to optimize, 498
repro, creation of, 527–528
reproduction query, creation of, 500

mean, geometric, 225–229
MEASURE, 499–500
measures

CALCULATE, context transitions and, 114–116
calculated columns and measures, overview, 22–25

MEDIAN, 223–225
MEDIANX, 223–225
memory. See also DAX query engine; also performance 

concerns
BISM Server Memory Report, 434–435
calculated columns and performance, 447–450



548

Memory (MB), query execution time

memory. See also DAX query engine; also performance 
concerns continued

CallbackDataID, use of, 484–488
column storage, choosing columns for, 451–453
column storage, optimization of, 453–455
data models, gathering information about, 425–434
DAX query engine, overview of, 457–459
denormalization of data, 434–442
hardware selection, VertiPaq, 423–424
materialization and, 417–420
parallelism and datacache, understanding of, 480–481

Memory (MB), query execution time, 478
Microsoft Excel

aggregate functions, overview, 35–37
BISM Server Memory Report, 434–435
cells vs. tables, 5–7
date and time functions, overview, 42
DAX overview, 5–9
debugging trace events in Power Pivot, 467
empty values, handling of, 29–30
leap year bug, 20
mathematical functions, overview, 39–40
median and percentile calculations, 224–225
NPV and XNPV, use of, 228–229
OLAP PivotTable Extension add-in, 498
Power Pivot add-in, 400
RANK.EQ, use of, 219–220
Show Values As, 339–340, 346
statistical functions available in DAX, 229–230
text functions, overview, 40–41
Top 10 filter, 301
XIRR calculations, 227–228

Microsoft Excel Slicer, calculated columns and  
measures, 25

Microsoft Press resources, 5555
MID, text functions, 40–41
MIN

aggregate functions, overview, 35–37
dynamic segmentation, use of, 371–373
using in calculated columns, 68
xmSQL syntax, 472–473

MIN/MAX, FIRSTDATE and LASTDATE use, 196–199
minus sign (–), use in hierarchies, 358–365
MINUTE, date and time functions, 42
MINX, aggregate functions, 37
missing values. See also BLANK

error handling, overview, 28–30
information functions, overview, 39

MOD, mathematical functions, 39–40
MONTH, 42. See also Date table
MonthSequentialNumber, 206–209
month-to-date calculations (MTD), 168–171, 189–191, 

204–205
moving annual total (MAT) calculations, 175–178
moving averages

calculation of, 220–221
static, computing of, 151–154

MROUND, mathematical functions, 39–40
multidimensional spaces, MDX developers, 12–15
multiplication

DAX operators, 21–22
xmSQL syntax for, 474

N
NaN (not a number), division by zero, 27–28
native columns, 309
natural hierarchies, Date tables and, 160. See also 

hierarchies
NATURALINNERJOIN, 265
NATURALLEFTOUTERJOIN, 266–267
nested calls

ALLSELECTED understanding use of, 290–294
EARLIER function, use of, 70–74
evaluation order, 51
FILTER, 52–54
nested iterators, optimization of, 517–522
SWITCH use of, 515
time intelligence functions and, 177–178

net present value formula, 228–229
new customers, computing, 384–386
NEXTDAY, 177–178
Nodes, 356–357. See also Parent-child (P/C) hierarchies
noncontiguous periods, computing over, 206–209
non-numeric values

aggregate functions, overview, 35–37
information functions, overview, 39

nonstandard calendars, time intelligence, 188
not equal to, DAX operators, 21–22
NOT, logical functions, 37–38
NOW, date and time functions, 42
number of products not sold, computing, 383–384
numeric values

aggregate functions, overview, 35–37
parameter tables, creation of, 89–92
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performance concerns

O
objects

data models, gathering information about, 425–434
OBJECT MEMORY NON SHRINKABLE, 414
OBJECT PARENT PATH, 414
OBJECT_ID, 414
OBJECT_MEMORY_CHILD_NONSHRINKABLE, 433
OBJECT_MEMORY_NONSHRINKABLE, 433
OBJECT_PARENT_PATH, 433

ODD, mathematical functions, 39–40
OLAP PivotTable Extension add-in, 498
one-side relationships. See also relationships

data models, overview of, 2–3
expanded tables, understanding use of, 307–316

one-to-many relationships, 78–80
OnHandQuantity, 179–184
OPENINGBALANCE, 184–188
operating overloading, 18
operators

DAX syntax, overview of, 21–22
error handling, overview, 26–32

OR
CALCULATETABLE and, 110–111
DAX operators, 21–22
logical functions, overview, 37–38

ORDER BY, 48–50
order of evaluation, 51. See also evaluation contexts

FILTER and, 52–54
OVERWRITE, 320–321, 323–326

P
P/C. See Parent-child (P/C) hierarchies
parallelism and datacache

CallbackDataID, use of, 483–488
parallelism degree of query, 467
understanding of, 480–481

PARALLELPERIOD, 171–172
parameter table, creation of, 89–92
parameters, SQL developers, 10–11
parent-child (P/C) hierarchies

handling of, 346–358
PATH function, use of, 348–349
unary operators, implementing in DAX, 359–365

parenthesis, DAX operators, 21–22
Pareto (ABC) classification, 136–143

partitions
determining size of table columns, 429
partitioning, VertiPaq and, 412

PATH, 348–349
PATHITEM, 349
percentages

computing of, 129–132
computing percentages over hierarchies, 339–346
differences over previous periods, 174–175

PERCENTILEBGBPEXE, 223–225
PERCENTILEBGBPINC, 223–225
performance concerns. See also query engine, DAX

calculated columns and performance, 447–450
column cardinality and performance, 442–447
column storage, choosing columns for, 451–453
column storage, optimization of, 453–455
data models, gathering information about, 425–434

cost of a column hierarchy, 430–434
dictionary size for each column, 428–429
number of rows in a table, 426–427
number of unique values per column, 427–429
total cost of table, 433–434

denormalization of data, 434–442
formula engine bottlenecks

complex bottlenecks, optimization of, 532–536
identification of, 503–504, 522–527
materialization, reducing, 528–532
repro, creating in MDX, 527–528

hardware selection, VertiPaq, 421–424
hierarchies and relationships, VertiPaq compression 

and, 411
materialization, 417–420
optimizing formulas

identifying expressions to optimize, 496–498
optimization strategy, defining of, 496–504
overview of, 495
reproduction query, creation of, 499–500
server timings and query plans, analysis of, 

500–503
physical vs. virtual relationships, 382
query plans, reading of, 488–494
segmentation and partitioning, VertiPaq, 412
star schemas, benefits of, 437
storage engine bottlenecks

ADDCOLUMNS and SUMMARIZE, decisions 
about, 505–509

CallbackDataID, reducing impact of, 509–511
cardinality, optimization of, 515–517
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PERMUT

performance concerns. See also query engine, DAX 
continued
complex bottlenecks, optimization of, 532–536
filter conditions, optimization of, 512–513
identification of, 503–504
IF conditions, optimization of, 513–515
nested iterators, optimization of, 517–522

VertiPaq Analyzer, optimization and, 510
PERMUT, 230
Physical Plan event, 464–465
physical query plan, 461–462

DAX query engine, overview of, 458–459
DAX Studio, event tracing with, 467–470
formula engine (FE), overview, 458
query plans, reading of, 488–494
server timings and query plans, analysis of, 500–503

PI, mathematical functions, 39
Pi, trigonometric functions, 40
pictures, performance and, 443
pivot tables. See also evaluation contexts

ABC (Pareto) classification, use of, 136–143
ALL statements and filters, 56–57
ALLSELECTED, overview, 123–125, 215
AutoExists, understanding use of, 304–307
browsing depth, filter context and, 352–358
calculated columns and measures, overview, 22–25
cumulative total calculations, 132–136
FILTER and ALL context interactions, 74–76
filter context and relationship, 80–83
filter context, overview of, 94–98
ISFILTERED and ISCROSSFILTERED, use of, 85–88
multiple date tables, use of, 163–164
OLAP PivotTable Extension add-in, 498
Power Pivot, debugging trace events, 467
ratio and percentage calculations, 132
relationships, direction of, 3–4
removing unwanted rows, 352–354
sales per day calculations, 143–150

plus sign (+)
implementing in DAX, 359–365
use in hierarchies, 358–359

POISSONBGBPDIST, 230
Power BI

database processing, overview, 400
DISCOVER_STORAGE_TABLES, use of, 415
graphics display, 443
hardware for VertiPaq and, 421
optimizing DAX expressions, 496–498

profiling information, capture of, 463
refresh reports, 496
SUBSTITUTEWITHINDEX, matrix charts and, 283
unary operators and, 365

Power BI Desktop, Query End event capture, 497
Power Pivot, 400

debugging trace events, 467
POWER, mathematical functions, 39–40
precedence

CALCULATE context transitions, 117
DAX operators, overview of, 21–22

previous customers, computing, 384–386
previous year, month, quarter comparisons, 171–175
primary key

CALCULATE and context transitions, 116–117
column storage, choosing columns for, 451

prior time period comparisons (year, month), 171–174
PRODUCT, interest calculations, 225–229
products not sold, computing of, 383–384
PRODUCTX

aggregate functions, overview, 37
interest calculations, 225–229

profiling information, capture of, 463–470
programming languages

MDX developers, DAX overview, 13–15
SQL developers, DAX overview, 11

projection functions, 241–247
PY YTD, 173–174

Q
qualitative attributes, columns, 451
quantitative attributes, columns, 451–452
quarter-to-date calculations (QTD), 168–171, 189–191

custom calendars, 204–205
queries. See also formulas, optimization of; also table 

functions
AutoExists, understanding use of, 304–307
data models, gathering information about, 425–434
EVALUATE statements, 47–50
evaluation order, 51–54
KEEPFILTERS, understanding of, 302–303
lineage, understanding use of, 329–331
materialization, 417–420
MDX developers, DAX overview, 13–15
reproduction query, creation of, 499–500
SAMPLE function, 230–232
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RIGHT, text functions

segmentation and partitioning, performance and, 412
SQL developers, DAX overview, 9–12, 457
table expressions, overview, 45–47

Query End, 464–465, 497
query engine, DAX

formula engine (FE), overview, 458
introduction to, 457–459
profiling information, capture of, 463–470
query plans, introduction to, 459–463
query plans, reading of, 488–494
storage engine (VertiPaq), overview, 459

xmSQL syntax, overview of, 470–477
storage engine queries, reading of, 470–488

aggregation functions, 472–473
arithmetical operations, 474
CallbackDataID and, 483–488
DISTINCTCOUNT internal events, 479
filter operations, 474–476
JOIN operators, 477
parallelism and datacache, understanding of, 

480–481
scan time and, 477–478
VertiPaq cache and, 481–483

Query Plan and Server Timings, DAX Studio analysis of, 
500–503

Query Plan, DAX Studio, 467–470
QUOTIENT, mathematical functions, 39–40

R
RADIANS, trigonometric functions, 40
RAND, mathematical functions, 39–40
RANDBETWEEN, mathematical functions, 39–40
RANKBGBPEQ, use of, 219–220
ranking, ABC (Pareto) classification and, 136–143
RANKX

common pitfalls, 216–219
introduction to using, 213–216

ratios, computing of, 129–132
RECORDS COUNT, 416
re-encoding, VertiPaq, 409
refresh

calculated columns and performance, 449–450
identifying expressions to optimize, 496–497

RELATED, 249–250
relational functions, overview, 42–44
table expansion vs. filtering, 315–316

vsBGBP LOOKUPVALUE, 282
working with many tables, row contexts and, 78–80

RELATEDTABLE
calculated tables, use of, 50–51
FIRSTNOBLANK and LASTNOBLANK, 199–200
relational functions, overview, 42–44
working with many tables, row contexts and, 78–80

relational functions
filter context and, 80–83
syntax overview, 42–44

relationships
arbitrarily shaped filters and, 323–326
calculated physical relationships, use of, 367–371
column cardinality and performance, 442–447
column hierarchies, determining cost of, 430–434
currency conversions, 386–392
data models

direction of relationships, 3–4
gathering information about, 425–434
overview, 1–3

expanded tables, understanding use of, 307–316
finding missing relationships, 382–386
Frequent Itemset Search, 392–397
MDX developers, DAX overview, 13–15
multiple column relationships, computing of, 367–369
NATURALINNERJOIN, 265
NATURALLEFTOUTERJOIN, 266–267
overview of, 248–250
physical vs. virtual relationships, 381–382
query plans, reading of, 492–494
SQL developers, DAX overview, 9–12
static segmentation, computing of, 369–371
USERELATIONSHIP, 123–127, 161–162
VertiPaq compression and, 410–411
virtual relationships, use of, 371–382

dynamic segmentation, use of, 371–373
many-to-many relationships, 373–378
relationships with different granularities, 

378–381
REMOVEFILTERS, 326–328
REPLACE, text functions, 40–41
Reporting Services, MDX developers, 13–14
repro, creating in MDX, 527–528
reproduction query, creation of, 499–500
REPT, text functions, 40–41
resources, Microsoft Press, 5555
returning customers, computing, 384–386
RIGHT, text functions, 40–41
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RLE (Run Length Encoding), VertiPaq

RLE (Run Length Encoding), VertiPaq, 406–408
role-playing dimension approach, 162–164
ROLLUP, 260–261
rollup formulas, custom, 358
roll-up rows, SUMMARIZE and, 252–255
ROLLUPADDISSUBTOTAL, 260–261
ROLLUPGROUP, 260–261
ROUND

CallbackDataID, reducing impact of, 510–511
mathematical functions, overview, 39–40

ROUNDDOWN, mathematical functions, 39–40
ROUNDUP, mathematical functions, 39–40
row context, 66–67

CALCULATE, context transitions and, 111–113
creating with iterators, 69–70
EARLIER function, use of, 70–74
expanded tables, understanding use of, 307–316
working with many tables, relationships and, 78–80

ROW, use of, 247
rows. See also database processing; also evaluation 

contexts; also table functions
calculated columns and measures, overview, 22–25
CONTAINS, use of, 278–280
data models, gathering information about, 425–434

number of rows in a table, 426–427
SUMMARIZE and, 252–255

ROWS COUNT, 414
Run Length Encoding (RLE), VertiPaq, 406–408

S
sales per day calculations, 143–150
SAMEPERIODLASTYEAR, 171–174, 176–178
SAMPLE, 230–232
scalar expressions, defined, 45
scalar functions, defined, 46
scalar values

parameter table, creation of, 89–92
table expressions and, 46–47, 60
VALUES as a scalar value, 59–60

scan time, storage engine (VertiPaq) queries and, 477–478
SCHEMA views, 413
SCOPE, MDX developers, 15
SE Cache, DAX Studio, 469
SE CPU, DAX Studio, 469. See also storage engine (SE) 

(VertiPaq)

SE Queries, DAX Studio, 469. See also storage engine 
(SE) (VertiPaq)

SE Time, DAX Studio, 469. See also storage engine (SE) 
(VertiPaq)

SEARCH, text functions, 40–41
SECOND, date and time functions, 42
SEGMENT NUMBER, 416
segmentations, VertiPaq and, 412
SELECT, SQL developers, 10–11
SELECTCOLUMNS, 243–246
Server Timings pane, DAX Studio, 467–470
SetFilter, use of, 331–337
SIGN, mathematical functions, 39–40
SIN, trigonometric functions, 40
SINH, trigonometric functions, 40
SKIP, rank value, 213–214
sorting

ABC (Pareto) classification, use of, 136–143
ORDER BY, 48–50
RANKX, use of, 213–216
SAMPLE function, use of, 230–232
Sort By Column, 48
Top 10 filter, 301
TOPN, use of, 239–240
VertiPaq compression, best sort order, 409–410

SQL developers
DAX overview, 9–12
empty values, handling of, 29–30
GENERATE and GENERATEALL, use of, 277
GROUPBY, use of, 262
xmSQL, 459

SQL Server Analysis Services (SSAS)
AutoExists, understanding use of, 304–307
best sort order, 409–410

SQL Server Analysis Services (SSAS) Tabular
Date table, use of, 155
HideMemberIf, 358
MDX developers, DAX overview, 13–15
MDX queries, 458
VertiPaq database processing, 400

SQL Server Profiler, 463–467
Query End events, capture of, 497

SQRT, mathematical functions, 39–40
SQRTPI, trigonometric functions, 40
SSAS. See SQL Server Analysis Services (SSAS)
standard deviation calculations, 222–223
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SUM function

star schema
Date table, use of, 155
performance benefits of, 437

START AT, 48–50
ISONORAFTER and, 284

static moving averages, computing of, 151–154
static segmentation, computing of, 369–371
statistical functions. See also specific function names

average and moving average calculations, 35–37, 
151–154, 220–221, 250, 473

Excel functions, use of, 229–230
interest calculations, 225–229
median and percentiles, 223–225
RANKBGBPEQ, use of, 219–220
RANKX, common pitfalls, 216–219
RANKX, use of, 213–216
SAMPLE, 230–232
variance and standard deviation calculations, 

35–37, 222–223
STDEV

aggregate functions, overview, 35–37
use of, 222–223

stocks, static moving average calculations, 151–154
Storage Engine (SE), 382
storage engine (SE) (VertiPaq), 459

best sort order, finding of, 409–410
bottlenecks

ADDCOLUMNS and SUMMARIZE, decisions 
about, 505–509

CallbackDataID, reducing impact of, 509–511
complex bottlenecks, optimization of, 532–536
filter conditions, optimization of, 512–513
identification of, 503–504
IF conditions, optimization of, 513–515
materialization, reducing, 528–532
nested iterators, optimization of, 517–522

columnar databases, introduction to, 400–403
compression, understanding of, 403–411
database processing, understanding of, 400
DAX query engine, overview of, 457–459
dictionary encoding, 405–406
DirectQuery and, 399
Dynamic Management Views (DMV), use of, 413–416
event tracing, 463–470
filter contexts and, 95–98
formula engine (FE), overview, 458
hardware selection, 421–424
hierarchies and relationships, understanding of, 

410–411

materialization, understanding of, 417–420
physical query plan and, 382, 462–463
queries, reading of, 470–488

aggregation functions, 472–473
arithmetical operations, 474
CallbackDataID and, 483–488
DISTINCTCOUNT internal events, 479
filter operations, 474–476
JOIN operators, 477
parallelism and datacache, understanding of, 

480–481
scan time and, 477–478
VertiPaq cache and, 481–483
xmSQL syntax, overview of, 470–477

query cache match, 464
query end, 464
query plans, reading of, 488–494
re-encoding, 409
Run Length Encoding (RLE), 406–408
segmentation and partitioning, 412
server timings and query plans, analysis of, 500–503
use of term, 399
value encoding, 404–405
VertipaqResult, 462–463

storage tables
DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS, 416
DISCOVER_STORAGE_TABLE_COLUMNS, 415–416
DISCOVER_STORAGE_TABLES, 414–415

strings
syntax, overview of, 18–21
text concatenation, 21–22

subqueries, SQL developers, 12
SUBSTITUTE, text functions, 40–41
SUBSTITUTEWITHINDEX, 283
subtraction

DAX operators, 21–22
xmSQL syntax for, 474

sum. See also aggregation
DAX operators, 21–22
xmSQL syntax for, 474

SUM (ms), query execution time, 478
SUM function

ABC (Pareto) classification, use of, 136–143
aggregate functions, overview, 35–37
cumulative total calculations, 132–136
Excel users, DAX overview, 7
using a calculated column, 67–68
xmSQL syntax, 472–473
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SUMMARIZE

SUMMARIZE
cardinality, optimization of, 515–517
many-to-many relationships, filtering and, 377–378
performance decisions for use, 505–509
SQL developers, DAX overview, 10
syntax, 250–251
table expansion vs. filtering, 315–316
understanding use of, 250–255

SUMMARIZECOLUMNS, 250, 255–261, 497, 508–509
SUMX

ABC (Pareto) classification, use of, 136–143
aggregate functions, overview, 37
best practices, 250
sales per day calculations, 143–150

SWITCH, 37–38, 515
syntax. See also formulas, optimization of; also specific 

function names
aggregate functions, 35–37, 472–473
automatic context transition, 115
binary large objects (BLOBs), 18, 21
calculated tables, use of, 50–51
calculations, error handling, 26–32
calculations, overview, 17–22
conversion functions, overview, 41–42
data types, 18–21
date and time functions, overview, 42
date table names, 157
DAX operators, 21–22
error handling, overview, 26–32
formatting DAX code, 32–35
information functions, overview, 39
logical functions, overview, 37–38
mathematical functions, overview, 39–40
relational functions, overview, 42–44
text functions, overview, 40–41
trigonometric functions, overview, 40
variables, use of, 26
xmSQL syntax overview, 470–477
year-to-date (YTD) calculations, 170

T
table functions. See also specific function names

ADDCOLUMNS, 241–244
ADDMISSINGITEMS, 262–264
ALL, ALLEXCEPT, and ALLNOBLANKROW, 54–57
calculated tables, use of, 50–51

CALCULATETABLE, 236–239
CROSSJOIN, 267–269
EVALUATE, 233–236
EXCEPT, 274–275
expanded tables, understanding use of, 307–316
filter functions, 236–240
FILTER, overview of, 51–54, 237–239
FIRSTNOBLANK, 240
GENERATE and GENERATEALL, 275–277
GROUPBY, 261–262
grouping/joining functions, 250–267
INTERSECT, 272–274
ISONORAFTER, 284
lineage and relationships, overview of, 248–250
LOOKUPVALUE, 280–282
NATURALINNERJOIN, 265
NATURALLEFTOUTERJOIN, 266–267
overview of, 45–47
projection functions, 241–247
ROW, 247
SELECTCOLUMNS, 243–246
set functions, 267–277
SUBSTITUTEWITHINDEX, 283
SUMMARIZE, 250–255
SUMMARIZECOLUMNS, 255–261
table expansion vs. filtering, 315–316
TOPN, 239–240
UNION, 269–272
utility functions, 278–284
VALUES and DISTINCT, 58–59
VALUES as a scalar value, 59–60

TABLE ID, 414–416
TABLE PARTITION COUNT, 414
TABLE PARTITION NUMBER, 416
tables. See also database processing; also evaluation 

contexts
aggregate functions, 35–37
calculated columns and measures, overview, 22–25
calculation error handing, overview, 26–32
conversion functions, overview, 41–42
data models

gathering information about, 425–434
overview, 1–3
total cost of table, 433–434

data types, 18–21
date and time functions, overview, 42
DAX calculations, syntax overview, 17–22
denormalization of data, 434–442
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trace events

DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS, 
416

DISCOVER_STORAGE_TABLE_COLUMNS, 415–416
DISCOVER_STORAGE_TABLES, 414–415
Excel users, DAX overview, 5–7
filter context, overview of, 97–98
formatting DAX code, overview, 32–35
information functions, overview, 39
logical functions, overview, 37–38
MDX developers, DAX overview, 13–15
naming of, 17–18
parameter table, creation of, 89–92
relational functions, overview, 42–44
relationships, advanced

calculated physical relationships, use of, 367–371
currency conversions, 386–392
dynamic segmentation, use of, 371–373
finding missing relationships, 382–386
Frequent Itemset Search, 392–397
many-to-many relationships, 373–378
multiple column relationships, computing of, 

367–369
physical vs. virtual relationships, 381–382
relationships with different granularities, 

378–381
static segmentation, computing of, 369–371
virtual relationships, use of, 371–382

scanning, materialization and, 417–420
text functions, overview, 40–41
trigonometric functions, overview, 40
variables, use of, 26
VertiPaq, as columnar database, 95–98

Tabular. See SQL Server Analysis Services (SSAS) Tabular
TAN, trigonometric functions, 40
TANH, trigonometric functions, 40
technical attributes, columns, 451, 453
text

aggregate functions, overview, 35–37
AVERAGEA, use of, 220
column cardinality and performance, 443
information functions, overview, 39
text concatenation, DAX operators, 21–22
text functions, overview, 40–41

Text (String), syntax of, 20–21
Text, syntax of, 18
TIME

conversion functions, overview, 41–42
date and time functions, overview, 42

time intelligence
advanced functions, use of, 188
aggregating and comparing over time, 168

computing differences over previous periods, 
174–175

computing periods from prior periods, 171–174
moving annual total calculations, 175–178
year-, quarter-, and month-to-date, 168–171

CALENDAR and CALENDARAUTO, use of, 157–160
closing balance over time, 178–188
CLOSINGBALANCE, 184–188
custom calendars, 200–201

custom comparisons between periods, 210–211
noncontiguous periods, computing over, 

206–209
weeks, working with, 201–204
year-, quarter-, and month-to-date, 204–205

date and time functions, overview, 42
Date table, use of, 156–157
Date tables, working with multiple dates, 160–164
DATEADD, use of, 191–196
drillthrough and, 200
FIRSTDATE and LASTDATE, 196–199
FIRSTNOBLANK and LASTNOBLANK, 199–200
introduction to, 155, 164–166
Mark as Date Table, use of, 166–168
OPENINGBALANCE, 184–188
periods to date, understanding, 189–191
working days, computing differences in, 150–151

time, performance and
column cardinality and performance, 443–447
CPU Time and Duration, 465–467
DAX Studio event tracing, 470
rounding vs. truncating, 444–447
scan time, storage engine (VertiPaq) queries, 477–478
server timings and query plans, analysis of, 500–503
Total Elapsed Time, DAX Studio, 469

TIMEVALUE, date and time functions, 42
TODAY, date and time functions, 42
Top 10 filter, Excel, 301
TOPCOUNT, 301
TOPN, 239–240, 301, 528–532
Total Elapsed Time, DAX Studio, 469
TotalProfit, 139–143
totals, cumulative, 132–136
trace events

DAX Studio, use of, 467–470
DISTINCTCOUNT internal events, 479
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transaction ID

trace events continued
identifying expressions to optimize, 496–498
SQL Server Profiler, 463–467
VertiPaq cache and, 481–483

transaction ID, 443
trigonometric functions, syntax overview, 40
TRIM, text functions, 40–41
TRUE, logical functions, 37–38
TRUE/FALSE

information functions, overview, 39
syntax, overview of, 18, 20–21

TRUNC, mathematical functions, 39–40
tuple, overview of, 316–318
Twitter, Microsoft Press, 5555

U
unary operators

alternative implementations, 365–366
handling of, 358–366
implementing using DAX, 359–365
values and definitions, list of, 358–359

Unicode, string syntax, 20–21
UNION

new and returning customers, computing, 385–386
use of, 269–272

UPPER, text functions, 40–41
USED_SIZE, 416, 429
USERELATIONSHIP, 125–127, 161–162

V
VALUE

conversion functions, overview, 41–42
text functions, overview, 40–41

value encoding, VertiPaq, 404–405
VALUES

as a scalar value, 59–60
evaluation context and, 84
grouped columns and, 259–260
KEEPFILTERS, understanding use of, 296–303
parameter table, creation of, 92
ratio and percentage calculations, 130–132
static moving averages, computing of, 154
static segmentation, computing of, 369–371
table function overview, 58–59

values between 0 and 1, use in hierarchies, 359
VAR

aggregate functions, overview, 35–37
syntax for, 222, 235
use in EVALUATE, 235–236
use of, 222–223

variables. See also formulas; also formulas, optimization of
CALCULATE, variables and evaluation context, 118–119
context transition, avoidance of, 336–337
EARLIER, use of, 138–143
EVALUATE and, 235–236

variance calculations, 222–223
VertiPaq (storage engine), 459

best sort order, finding of, 409–410
bottlenecks

ADDCOLUMNS and SUMMARIZE, decisions 
about, 505–509

CallbackDataID, reducing impact of, 509–511
complex bottlenecks, optimization of, 532–536
filter conditions, optimization of, 512–513
identification of, 503–504
IF conditions, optimization of, 513–515
materialization, reducing, 528–532
nested iterators, optimization of, 517–522

columnar databases, introduction to, 400–403
compression, understanding of, 403–411
database processing, understanding of, 400
DAX query engine, overview of, 457–459
dictionary encoding, 405–406
DirectQuery and, 399
Dynamic Management Views (DMV), use of, 413–416
event tracing, 463–470
filter contexts and, 95–98
hardware selection, 421–424
hierarchies and relationships, understanding of, 

410–411
materialization, understanding of, 417–420
physical query plan and, 382, 462–463
query cache match, 464
query end, 464
query plans, reading of, 488–494
re-encoding, 409
Run Length Encoding (RLE), 406–408
segmentation and partitioning, 412
server timings and query plans, analysis of, 500–503
storage engine queries, reading of, 470–488

aggregation functions, 472–473
arithmetical operations, 474
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year-to-date calculations (YTD)

CallbackDataID and, 483–488
DISTINCTCOUNT internal events, 479
filter operations, 474–476
JOIN operators, 477
parallelism and datacache, understanding of, 

480–481
scan time and, 477–478
VertiPaq cache and, 481–483
xmSQL syntax, overview of, 470–477

use of term, 399
value encoding, 404–405
VertipaqResult, 462–463

VertiPaq Analyzer, 510
VertiPaq cache, 481–483
VertiPaq Logical Plan event, 464–465
VertiPaq Physical Plan event, 465
VertiPaq Scan, 479
VertiPaq scan event, 465
VertiPaq Scan Internal, 479
VERTIPAQ STATE, 416
virtual relationships, 371

dynamic segmentation, use of, 371–373
many-to-many relationships, 373–378
physical vs. virtual relationships, 381–382
relationships with different granularities, 378–381

W
WEEKDAY, date and time functions, 42
WEEKNUM, date and time functions, 42
weeks, custom calendars, 201–204

WHERE
determining size of table columns, 429
SQL developers, DAX overview, 11
xmSQL filter operations syntax, 474–476

Whole Number (Integer), syntax, 18–19
WITHMEASURE, 500
working day

computing differences in, 150–151
sales per day calculations, 143–150
static moving averages, computing of, 151–154

X
XIRR, internal rate of return calculations, 227–228
xmSQL, 459. See also syntax

aggregation functions, syntax for, 472–473
arithmetic operations, syntax for, 474
filter operations syntax, 474–476
JOIN operators syntax, 477
syntax, overview of, 470–477

xVelocity In-Memory Analytical Engine, 399. See also 
VertiPaq (storage engine)

Y
YEAR, 42. See also Date table
YEARFRAC, date and time functions, 42
year-over-year differences, calculation of, 174–175
year-to-date calculations (YTD), 168–171, 189–191

custom calendars, 204–205
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