LEARNING
Node.|s

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . .. 1
Chapter 1: Getting started with NOde.JS........... ... 2
REMIAIKS . . 2
Y4157 0] I P 2
= 1] 0] [T 6
Hello WOrId HT TP SEIVET e e e e e e e e e 6
Hello World command [INE. e e e e 7
Installing and RUNNING NOGE.JS. e e et e e e e e 8
RUNNING @ NOAE Program 8
Deploying your application ONlINe. i et e 8
Debugging Your NOdeJS APPIICALION. e 9
Debugging NatiVely 9
Hello Woorld With EXPressS. ... oo 10
Hello WOrld basiC FOULING. ... oo e 10
TLS Socket: server and ClIEeNt. 12
How to Create a Key and Certificate..................... 12
I PO AN . 12
TLS SOCKEL SNV 12
TLS Socket Client 13
Hello World In the REP L. ... e e 14
COrE MOAUIES. . .. e 15
All core modules at-a-glance........... ... 15
How to get a basic HTTPS web serverup and running!. 19
Step 1 : Build a Certificate AUTNOKItY e 19
Step 2 : Install your certificate as a root certificate............ ... 20
Step 3 Starting YOUr NOUE SEIVET ettt e 20
Chapter 2: Arduino communicationwithnodeJs.......................... i, 22
T OTUCTION. ...t 22

B S . ..o 22

Node Js communication with Arduino via Serialport. o 22

NOAE JS COUB. ..o e 22
ANUINO COEB. e e 23
S AN U .o 23
AP Er 3 ASYNC, S 25
)Y 1= G U 25
BN S . ..o 25
Parallel : MUI-tasKINg.o e e e e 25
Call async.parallel() with an object........... ... 26
Resolving multiple values 26
Series : independent MoNo-tasking. 27
Call async.series() With an Object. ... 28
Waterfall : dependent mono-tasking. ... 28
async.times(To handle for loop in better way). ... 29
async.each(To handle array of data efficiently)...................o 29
async.series(To handle events ONE DY ONE)........veei i e 30
Chapter 4: ASYNC/AWaIL 31
I OAUCTION. . e 31
EX APl . .. 31
Async Functions with Try-Catch Error Handling. ... e e 31
Comparison between Promises and ASYNC/AWAIL.t e 32
Progression from CallDacks. 32
StOPS EXECULION AL QWAL oottt ettt et ettt e e 33
Chapter 5: Asynchronous programming............. ..o 34
o 0 T 1o o 34
) 1= G U 34

E XM S . .o 34
Callback fUNCHIONS.t et 34
Callback functions in JAVaSCIipt. 34
SYNChronoUs CallbacKs. 34

ASYNChronous CallDacKs. 35

Callback functions IN NOAE.[S. 36

COde BXAMPIE . . 37
ASYNC error NAaNAIING 38
Ty CAICN . 38
Working possibilities. 38
EVeNt NaNdIErS. .. 38
DOMAINS 38
Callback Nell. ... 39
NALIVE PrOMISES. . ..o e e e e e e 40
Chapter 6: Autoreload on Changes............ ... 42
= 1] 0] (= J 42
Autoreload on source code changes USiNng NOAEMON. i it 42
Installing nodemon globally.......... ... 42
Installing nodemon locally 42
USING NOGBMION 42
BIOW S I SYNIC . . .ottt et 42
OVBIVIBW 42
Installation. 42
WINAOWS USBIS. . e e e 43
BasSIC USa0e o 43
AQVAaNCEA USaQ e o 43
GTUNE S . . e 43
10][o N 44
APl 44
Chapter 7: Avoid callback hell. 45
e 1111 o [TP 45
ASYNC MOAUIE. .. e e e 45
ASYNC MOAUIE. . ..o e e 45
Chapter 8: Bluebird PromisSes. 47
E XM S . .o a7

Converting nodeback library 10 PromiSES.ttt e e e e e e e 47

FUNCHONAl PrOmMiSES. . . e e 47

(0fe] o]0 (o (ST (CT=T e (=T = 1 (0] £ FA 47
Automatic Resource Disposal (PromiSe.USING)oinii ittt et 48
EXECULING 1N SO S, .ttt ettt e e et e e e e e 48
Chapter 9: Callback t0 Promise. 49
E XM S . . o 49
Promisifying @ callDack. 49
Manually promisifying a callback. 50
SEtTIMEOUL PrOMISIIEU. et e e e e e e e e 50
Chapter 10: Cassandra Integration............................. 51
€= 10 1]] 5 51
Hello WK . . et e e 51
Chapter 10: CLL. ... 52
0] 52
EX APl . .. 52
CommaNd LINE OPtiONS. ottt e e e 52
Chapter 12: Client-server cOmmuNICatioN.............. ... 56
EX APl . .. 56
W EXPress, JQUEIY and JAOE.ooo ittt e 56
Chapter 13: Cluster ModUIe. 58
) 1= G U 58
REMIAIKS . . 58
BN S . ..o 58
Hello W OrId. . . 58
ClUStEr EXAMPIE. . ..o 59
Chapter 14: Connectto Mongodb 61
I OdUCTION. . e 61
117 61
€= 0 1]] 5 61
Simple example to Connect mongoDB from NOAE.JS. i e 61

Simple way to Connect mongoDB with core NOAe.JS. i e 61

Chapter 15: Creating a Node.js Library that Supports Both Promises and Error-First Callbac.....62

o0 T 1o o 62

E XM S . . oo 62
Example Module and Corresponding Program using Bluebird. 62
Chapter 16: Creating API's with Node.jS................... 65
= 10] 0] (S T 65
GET api USING EXPIOSS. . ..ottt e et e e e e e e e e 65
POST @pi USING EXPIESS . . oottt ettt e et ettt e e e e e e e e e e e 65
Chapter 17: CSV parser iNNOU JS....... ... 67
o0 T 1o o 67

E XM S . ..o 67
USINg FSto read in @ C OV . ..o e e e 67
Chapter 18: Database (MongoDB With MONQOOSE) ..ot 68
B S . ..o 68
1Y/ T g To oo 2= o'0] | 1= ox 1 o o 68
1Yo T 1= P 68
INSEIT UALA. . ..o 69
REA AALA.o 69
Chapter 19: Debugging Node.js application....................... 71
= 10] 0] (S 71
Core node.js debugger and NOde INSPECIOT. . ..o it e e e e 71
UsiNg Core debUgQgero 71
CommMaANd FEfEIBNCE. e 71
Using Built-in NOde INSPECIOr. o 72
UsSiNg NOAE INSPECIOT e 72
Chapter 20: Deliver HTML or any other sortoffile.......................... ... 75
)Y 1= G U 75

E XM S . ..o 75
Deliver HTML at specified path. o e e e 75
FOlder StrUCTUIE . . . e et e e 75

BTV B S . e 75

Chapter 21: Dependency INJECHON. 77

E XM S . . oo 77
Why Use DependencCy INJECHION. e ettt e e e 77
Chapter 22: Deploying Node.js application without downtime.. 78
E XM S . . oo 78
Deployment using PM2 without dOWNEIME. e 78
Chapter 23: Deploying Node.js applications in production.. 80
o= 10] o] [J 80
Setting NODE _ENV="prodUCHiON". 80
RUNIME flagS 80
DPENABNCIES 80
Manage app With ProCeSS MANAGET 81
P2 PrOCESS MaANAGETttt ettt e ettt e e et e e 81
DEploYMENt USING PV 2. . e e 82
Deployment USING PrOCESS MANAGETttt ettt e ettt e et e et e e e e e e e e 83

0T T 83
Using different Properties/Configuration for different environments like dev, qa, staging 83
Taking advantage Of CIUSIEIS. e e e e e e e e 84
Chapter 24: ECMAScript 2015 (ES6) with Node.js.................o 86
EX APl . . 86
CONSHIEt dECIAratiONS.t 86
AITOW TUNCHIONS . . . ettt e e e e e e e 86
ArrOW FUNCHON EXAMPDIE . .. o e e e e e e e e 86
AESIIUCTUNING . . . ettt et et et et e e e e e e e e e e e e e e e 87
O . 87

B S B ClaSS . . oottt 88
Chapter 25: ENVIFONMeNt 89
€= 0 1] 0] 5 89
ACCEeSSING ENVIFIONMENT VANADIES e e e e e e e 89
process.argv command liNE argUMENTSo ittt e et 89
Using different Properties/Configuration for different environments like dev, ga, staging ¢ 90

Loading environment properties from a "property file". 91

Chapter 26: EVent EMItterS 93

RIS . ..o 93

E XM S . .o 93
HTTP Analytics through an Event EMItter. o e 93

2 7 1T 94

Get the names of the events that are subscribed t0. e 95

Get the number of listeners registered to listen for a specificevent............ i, 95
Chapter 27: EVeNtOOP 97
I OAU G ON . .. 97

E XMl . .o 97
How the concept of event [00p EVOIVEQ.o i e 97
Eventloop in pSeUdO COAE.o 97
Example of a single-threaded HTTP server withnoeventloop.. 97
Example of a multi-threaded HTTP server withnoeventloop...........................o. 97
Example of a HTTP server with event loop................. 98
Chapter 28: Exception handling............ ... 100
B AL S . .. 100
Handling EXCeption 1N NOGE.JS. i e e e e e 100
Unhanded EXception Management. ettt et ettt e e 101
Silently Handling EXCEPLIONS. oo 102
Returning to INItial StAte. 102
Errors @nd PrOmMiSES.ttt e et et et e e e e 103
Chapter 29: Executing files or commands with Child Processes... 104
)Y 1= ¥ GO 104
RIS . . 104

E XM S . .o 104
Spawning a New Process to eXeCUte @ COMMANT.ttt ettt et 104
Spawning a shell to execute a CoOMMANG. e 105
Spawning a process to run an exXeCUtable. i 106
Chapter 30: Exporting and Consuming Modules.. 107

REMAIKS . . o 107

EX Al . .. 107

Loading and USiNg @ MOAUIE. e e e 107
Creating a hello-world.js Module.o 108
Invalidating the module Cache. 109
BUilding YOUr OWN MOAUIES o e e e e e e e 110
Every module iNJected ONlY ONCE. e e e 111
Module loading from node_MOAUIES. i e e 111
Folder as amodUle. oo 112
Chapter 31: Exporting and Importing Module innode.js........................... 113
= 1] 0] [J 113
Using a simple Module IN MO, S. e e e e e e 113
USING IMPOIS [N ESB. ... ittt e e e e e e e e e e 113
EXporting With ESB SYNTAX.ottt e e e 115
Chapter 32: File upload. 116
= 101 0] [116
Single File Upload UsSing MUILET. e e e e e 116

N O . . 117
How to filter upload by extension: 117
Using formidable MOdUIE. ... 117
Chapter 33: Filesystem /O 119
RIS . 119

E XAl S . .. 119
Writing to a file using writeFile or WrteFIleSYNC. o i 119
Asynchronously Read from Files. e 120
WIth ENCOING e 120
WithOUt ENCOING.o 120
RelatiVe PatNS. 120
Listing Directory Contents with readdir or readdirSYNC.t e 121
USING @ QENEIAION. ... e 121
Reading from a file SynChronouSIly. 122
ReEATING @ SHIING. e 122

Deleting a file using unlink or UNIINKSYNC. i e e e e 122

Reading a file into a Buffer USING StreamIS.ooo i e e 123

Check Permissions of @ File OF DIrECIOIYo e et e 123
ASYNCRIONOUSIY 123
SYNCNIONOUSIY 124

Avoiding race conditions when creating or using an existing directory.............................oiiia. 124
Checking if afile or a direCtory EXIStS. oo 125
ASYNCRIONOUSIY ... 125
SYNCNIONOUSIY ... 125

Cloning a file USING SIrEaIMS e et et e e e 126

Copying files by pIpINg StrEaMS. o e 126

Changing contents of atext file. 126

Determining the line count of atextfile.o 127
= o] 0151 P 127

Reading a file INe DY INe. ... 127
= 0] 0151 P 127
Chapter 34: Getting started with Nodes profiling.. 129
I OdUCTION. . e 129
RIS . 129
EX APl . .. 129

Profiling a simple Node appliCation. i e 129

Chapter 35: Good coding Style...... 132
REMIAIKS . . 132
B S . ..o 132

BasSIiC PrOgram fOr SIgNMUPottt ettt e e 132

Chapter 36: Graceful ShUtdOWN 136
B S . ..o 136

Graceful ShUtdown - SIGTERM e e e 136

Chapter 37 GIUN . 137
REMIAIKS . .. 137
= 1] 0] [137

INtrodUCHION TO GrUNLIS. .. .o e e e e e 137

INStalling GruntPIUGINS ot et e e 138

Chapter 38: HaCK. ... 140
B S . ..o 140
Add New exXteNSIONS T0 FEOUITE()ottt et e e e e e e e e e e 140
Chapter 39: Handling POST requestin Node.jS.................ooi 141
REMIAIKS . . 141
= 10] 0] [T 141
Sample node.js server that just handles POST reqUESES. ...ttt e e 141
Chapter 40: How modules are loaded..................... 143
E XM S . .o 143
Global MOOE. . .. 143
Loading MOTUIESot e 143
Loadinga Folder Module.............. ... 143
Chapter 40 Nt 145
= 1] 0] [145
LT 0 ST =T VT 145

DD Gl N, . 146
Chapter 42: Installing Node.|S................... 148
EX APl . .. 148
Install Node.js 0N UBUNLU. e e e e e e 148
Using the apt package manager........... ... 148
Using the latest of specific version (e.g. LTS 6.x) directly from nodesource.......................... 148
Installing Node.js ON WINAOWS.o e 148
Using Node Version Manager (NVIM) o e 149
Install Node.js From Source with APT package manager. ..., 150
Installing Node.js on Mac using package Manager.uuurrriiie e 150
HOME DI EW . .. 150
1Y = Lo o T PP 151
Installing using MacOS X INStaller.o oo 151
Checkif Nodeisinstalled. 151

Install Node.js from source on Centos, RHEL and Fedora..............coooiiiiiiiiiiiiiiiii 153
Installing Node.JS WIth M. ... 153
Chapter 43: Interacting with Console. 155
)Y 1= ¥ GO 155
= 1] 0] [J 155

0 o o 1T 155
Console ModUle. 155
CONSOIE. IO . ..o o 155
(o0 TST0] 1= =T ¢ o P 155
console.time, CONSOIE.IMEENT. e 155
Process ModuUle 156
FOormatting 156
GBNEIAL. . .. 156
FONE COl0rS. ..o 156
BacKgroUNd CoOl0rS. .. oo 157
Chapter 44: Keep a node application constantly running.............................. 158
= 10] 0] [J 158
UsSe PM2 8S @ PrOCESS MANAGETttt ettt ettt ettt et e e e e e e e e e e 158
Useful commands for monitoring the proCess. 158
Running and stopping a FOrever damON. e e e e e e 159
Continuous runNNING WIth NONUP. o e e e e e e e 160
Process Mangement With FOMEVET. e e e e e e e e e e 160
Chapter 45: Koa Framework V2. 161
= 1] 0] [T 161
Hello WOrld eXamiple. e e e e e e e 161
Handling errors using middIEWAre. e e 161
Chapter 46: Lodash 162
o0 T 1o o 162
= 1] 0] [J 162

Filter @ COllECtiON. 162

Chapter 47: Loopback - REST Based CONNecCtor. ... 163

o0 T 1o o 163
= 10] 0] [J 163
Adding aweb based CONNECLON. e 163
Chapter 48: metalsmith. ... 165
= 1] 0] [J 165
Build @ Simple DIOg. 165
Chapter 49: Mongodb integration........... 166
)Y 1= ¥ GO 166

P Al A OIS 166
= 1] 0] [T 167
CoNNECE 10 MONQODD B 167
MongoClient Method CONNECI(). e e e e e et 167
INSEIt @ OCUMENL. ...ttt et e e e e e e e e e 167
Collection Method INSEIONE()ottt e e e e e e e e e e e e 168
Read @ COlECHION. e 168
Collection Method fINA() oo e e e 168
UpPdate @ QOCUMIBNL.ttt ettt e e e e e e e e e e e e e 169
Collection Method UPateONE().ttt e e e e e e e e e 169
Delete @ QOCUMENT.ttt et et e 169
Collection method delete@ONE() e et e e e e e 170
Delete multiple dOCUMEBNLS. o et e et e e e e 170
Collection method deleteMany ().ot e 170
SIMPIE CONMNECT. . .. et et e e e e e e e e 171
Simple CoNNECT, USING PrOMISES.ottt et ettt et 171
Chapter 50: MongoDB Integration for Node.jS/EXPress.jS.............cooooviiiiiiiiiii 172
o0 T 1o o 172
REMIAIKS . .. 172

E XM S . ..o 172
INStalliNg MONQOD B et e e e 172
Creating a Mongoose MOAEL. e e e e e 172

Querying your Mongo Database.o 173

Chapter 51: Mongoose Library 175

= 10] 0] [175
Connect to MongoDB USING MONQOOSE.ttt ettt e e e e e e et 175
Save Data to MongoDB using Mongoose and EXpress.js ROULES. ...t 175

SO U . . 175
7 o [P 176
U S0 . . o 177

Find Data in MongoDB Using Mongoose and EXpress.jSROUtes. ...ttt 177
S U . 177
GO0 . . 177
U S0 . . 179

Find Data in MongoDB Using Mongoose, Express.js Routes and $text Operator.......................... 179
S tUD . 179
GO0 . 180
0 LT To [181

INdEXES IN MOEIS. e 182

Useful MONgOO0SE fUNCHIONS. e 184

find data in moNgOdb USING PrOMISES.o o 184

S tUP . 184
GO0 . . 184
0 LT To [185
Chapter 52: MSSQL Intergration........ 187

I OTUCTION. e e 187

REMIAIKS . . 187

= 10] 0] [187
Connecting with SQL via. mssgl npm module. 187

Chapter 53: Multithreading.................. 189

o0 T o o 189

REMIAIKS . .. 189

= 1] 0] [T 189

CIUS BT . oo e 189

Gl PrOCESS . . e 190
Chapter 54: Mysql Connection POOI........... ... 191
E XAl . .. 191
Using a connection pool without database.o e 191
Chapter 55: MySQL integration.................. 193
I OdUCTION. e 193
[1 11] o [TP 193
Query a connection object With parameters. 193
UsiNg @ CONNECHION POOL. e et e e e e e e e e 193

a. Running multiple queries at Same tiImMe. 193
b. Achieving multi-tenancy on database server with different databases hosted onit...................... 194
CONNECT 10 MY S Q. . . et ettt e e e 195
Query a connection object without parameters. 195
Run a number of queries with a single connection from a pool...............oo i 195
Return the qUErY WNEN @N EITOF OCCUIS. ...ttt ettt ettt et ettt et e 196
EXPOrt CoNNECHiON POOL. e e e 196
Chapter 56: N-A P .. 198
o0 T o o 198
= 1] 0] [J 198
Hello 10 N-A P e 198
Chapter 57: Node JS Localization.............. ... 200
[T OTUCTION. e 200
= 1] 0] [T 200
using i18n module to maintains localization iIN NOE JS PP i vttt e 200
Chapter 58: Node server without framework....................... 202
R MK . .. 202
= 111 0] (= 202
Framework-18SS NOUE SEIVET. e e 202
OVErcOMING CORS ISSUBS.ttt ettt e e e e e e e e e e e e e e 203
Chapter 59: Node.js (express.js) with angular.js Samplecode.. 204

I OTUCTI ON . . .o e 204

EX Al . .. 204

(1 ¢=T= 1] oo JRo 18 o] (o] [=]ox /3NN 204

Ok, but how we create the express skeleton project?.t e 204
HOW eXpress WOrKS, Driefly 2. 205
Installing Pug and updating Express template engine. ... 205
How AngulardS fits in all Of thisS 2.o 206
Chapter 60: Node.JS and MoNgoDB. 208
REMIAIKS . . 208
B S . ..o 208
Connecting To @ Database.ooi 208
Creating NeW CoOllECtiON. o e e e e e e 209
INSEIING DOCUMENES . ..ottt e e e e e e e e e e e e e e 209
REATING. ... 210
L]0 = o 210
MEENOOS 211
UPAAtE () . .o 211
UPdateONe 211
UpdateManyo 211
REPIACEONE 212
DIEtING. 212
Chapter 61: Node.js Architecture & Inner Workings......................oiiii i, 214
= 1] 0] [J 214
Node.js - UNder the NOOd. e e e e e e e e 214
NOGE. IS - IN MOLON . .. et e e e e e e e e e e e 214
Chapter 62: Node.js code for STDIN and STDOUT without using any library........................ 216
I OTUCTION. ...t 216
= 10] 0] [T 216
PO g A . . e e e 216
Chapter 63: Node.js Design Fundamental............................ i, 217
= 1] 0] [217

The NOde.jS PhilOSOPNY e e e e 217

Chapter 64: Node.js Error Management. 218

o0 T 1o o 218
= 10] 0] [J 218
Creating Error ODJeCt. o 218

T OWING EITOT . . ottt e e e e e e e e e 218

Iy, CatCN DIOCK. .. 219
Chapter 65: Node.js PerformancCe.............. ... 221
[1 11] o [TP 221
Y7 o 1 T o 221
Blocking Operation EXample. ... 221
Non-Blocking IO Operation EXample. 221
Performance Considerations........... ... 222
INCrEe@SE MAXSOCKETS. e e 222

B SIS . . 222
Setting YoUr OWN ANt 222
Turning off Socket Pooling entirely..................... 223
Pl 223
ENADIE GZiP . .o 223
Chapter 66: Node.js v6 New Features and Improvement............................ooiiiiii ., 225
I OdUCTION. . e 225
E XAl S . .. 225
Default FUNCHION Parameters. e e 225
RESE ParamMeterS. . .o 225
SPread OPEIALOL.ttt et 225
AITOW FUNCHIONS 226
"ThIS™ IN AITOW FUNCHION. . ..ottt e e e e 226
Chapter 67: Node.js With CORS 228
= 1011 5 228
ENADIE COR S N BX IS, S . o .ttt ittt ettt et et e e e e e e e e e e e e 228
Chapter 68: Node.JSWIth ES6............ ... 229

I OTUCT ON . . o e e 229

EX Al . .. 229

Node ES6 Support and creating a project with Babel........... ... 229
USE JS €56 0N YOUI NOGBIS @ ..ottt ettt et et e e e e e e e e e e e e e e 230

P ErEqUISIEES: 230
Chapter 69: Node.jsWith Oracle. ... 233
B S . ..o 233
Connectto Oracle DB. 233
Query a connection object Without parameters. ... 233
Using a local module for easier QUEIYING.ttt e e e e e 234
Chapter 70: NodeJS Beginner GUIde.............. ... 236
= 1] 0] [J 236
Hello W Orld L. 236
Chapter 71: NodeJS FrameWOrKS. 237
= 1] 0] (= T 237
Web Server Frameworks.o oo 237
B S S . et 237
0 L= 237
Command Line Interface Frameworks. oo 237
COMMIANAET S, ..ttt 237
VO DAL S 238
Chapter 72: Nodejs HistOryo 239
INETOAUCTION. . .. e e 239
E XM S . .o 239
KeY BVENTS IN ACKH YA e e e 239
2000 . 239
2000 239
200 L 239
200 239
2003 240
200 240

Qe 240
P 241
Qe 241
2006 . . 241
QLo 241
Q. 241
2 241
Qo 241
Chapter 73: NOdeJs ROULING ... 242
o0 T o o 242
REMIAIKS . . 242

B XM S . . oo 242
EXPress Webh Server ROULING. o e e e e e e e e e e 242
Chapter 74: NodeJS With Redis............ ... 247
R MK . .. 247

B AL S . .. 247
GEttiNG SHAMo 247
Storing Key-Value PairS. e 248
Some more important operations supported by node_redis.......... ... 250
AP el 75 NP . 252
It OTUCTION. ... et 252
)Y 1= ¥ GO 252

P Al A OIS, . .. 253

E XM S . .o 254
INStAlliNg PACKAGESt 254
INtrOdUCH ON. .. 254
Installing NP M . ..o 254
Howtoinstall packages.o 255
Installing dependencCies 257

NPM Behind A ProXy S@IVETo 258

SCOPES AN FEPOSI O IS . .. ettt 258

Uninstalling PaCKAGES. e 259
BasiC SEMANtIC VEISIONING 259
Setting up a package CoONfIQUIAtiON. o i e e 260
Publishing @ package. ... 261
RUNNING SCIIPES . . .o 261
Removing eXtran@ous PaCKagES. 262
Listing currently installed PaCKages. ... 263
Updating Nnpm and PaCKagES.uu 263
Locking modules to SPeCifiC VEISIONS. 264
Setting up for globally installed packages. 264
Linking projects for faster debugging and development. ... 265
HelD B X, 265
Steps for linking project dependenCIeS. 265
Steps for linking a global to0l. ... 265
Problems that May ariSe. ... 265
Chapter 76: nvm - Node Version Manager ... 266
REMIAIKS . .. 266
E XM S . . oo 266
INStall NV M e 266
ChECK NVM VEISION.ot e e e e e e e e e e 266
Installing an SPeCIfic NOGE VEISION e e e e e e e e e e 266
Using an already installed NOAE VEISION. i e e e e 266
INStall NVM 0N MAC OSX. .o e e 267
INSTALLATION PROCESSo e 267
TEST THAT NVM WAS PROPERLY INSTALLED. e 267
Setting alias for NOAE VEISION. e e e e e 268
Run any arbitrary command in a subshell with the desired versionof node.............. 268
Chapter 77: OAULN 2.0 ... 270
= 1] 0] [270

OAuth 2 with Redis Implementation - grant_type: password.t 270

Chapter 78: package.jSON. 278
REMIAIKS . . 278

E XM S . . oo 278
BasiC project defiNitioN. 278
DEPENAEBNCIES. . . .ttt e e 278
AeVDEPENAENCIES 279
ol 1] o] £ J 279
Pre-defined SCriPtS.o 279
User-defined SCHiptS. 280
Extended project definition. 280
EXPIOriNg PacCKage. JSON. 281
Chapter 79: Parsing command line arguments...................oiiiii i 286
= 10] 0] 1 286
Passing action (Verb) and ValUes. i 286
Passing boolean SWILCRES. 286
Chapter 80: Passportintegration......... ... 287
RIS . 287
EX APl . . 287
GEttING STAM oo e 287
Local aUtNENTICALION.ottt et e e 287
Facebook authentication. 289
Simple Username-Password Authentication. e 290
Google Passport authentiCation. i e e e e e e 291
Chapter 81 PASSPOIL. S 293
I OTUCTION. ...t 293
= 10] 0] [T 293
Example of LocalStrategy iN PaSSPOIT.[S.ttt et ettt e 293
Chapter 82: Performance challenges..................... 295
= 1] 0] [295

Processing long running queries With NOGE. o e 295

Chapter 83: PostgreSQL integration......... ... 299

= 10] 0] [299
CoNNECT TO POSIgrES Q. . . e e e 299
Query With ConNECtioN ODJECT. e e e e 299

Chapter 84: Project StrUCIUIe 300

o 0 T o o 300

REMIAIKS . . 300

B XM S . ..o 300
A simple nodejs application with MVC and AP 300

Chapter 85: Push notifications. 303

I OTUCTION. e e 303

P A M OIS 303

= 1] 0] [303
WD NOLIFICAtION. . .. o e 303
Y o] o] O 304

Chapter 86: Readline............. ... 305

R]2 305

EX APl . .. 305
Line-by-line file reading.o e 305
Prompting USer iNPUE VIA CLl. e e e e e e e 305

Chapter 87: Remote Debugging in Node.JS................ . 307

[1 11] o [T U 307
NOAEJIS ruUN CONfIQUIALION. o e ettt et e e e e e e e 307
IntelliJ/Webstorm ConfigUration. e e 307
Use the proxy for debugging via port 0N LINUX. e 308

Chapter 88: ReQUITE() 309

o0 T 1o o 309

)Y 1= G 309

REMIAIKS . .. 309

= 1] 0] [J 309

Beginning require() use with a function and file.......... 309

Beginning require() use with an NPM Package.ooouiiiiii e 310

Chapter 89: Restful APl Design: Best Practices......................... i 311
B S . ..o 311
Error Handling: GET @ll FESOUICES.ottt e e e e e e e e e e e e 311
Chapter 90: Route-Controller-Service structure for EXpressJS........................oiii 313
B S . ..o 313
Model-Routes-Controllers-Services DireCtory StrUCIUIE. ... oot 313
Model-Routes-Controllers-Services Code StUCIUIE.ttt et 313
USERMOAEL S o 313
US BT FOU S, S . ..t 313
USEI.CONITOIOS. S 314
ST S VI C S, Sttt 314
Chapter 91: Routing ajax requests with EXpress.JS........................... i 315
= 1011 5 315
A simple Implementation Of AJA X e e s 315
Chapter 92: Running Node.jS @S @ SeIVICE.......... ..ot 317
I OdUCTION. . e 317
EX APl . .. 317
NOde.jS @S @ SYSIEMA HEBMION ettt e e e e e e 317
Chapter 93: Securing Node.js applications........................... 319
EX APl . .. 319
Preventing Cross Site Request Forgery (CSRF) e 319

ST I SR T 1Y To 1= £ O 320
USING HT T P S e e et et e e e e e e e e e 321
Setting UP an HT TP S SOIV e . . .t e e e e e e e e e 321
Step 1 : Build a Certificate AUThOIIty o 321
Step 2 : Install your certificate as a root certificate................... i 322
Secure express.jS 3 APPIICALION. 322
Chapter 94: Send Web Notification........... ... 324
= 1] 0] [324

Send Web notification using GCM (Google Cloud Messaging SyStem)...... ...t 324

Chapter 95: Sending a file streamtoclient........................ ... 326

= 10] 0] [326
Using fs And pipe To Stream Static Files From The Server. 326
Streaming Using flUeNt-fimpeg.o 327

Chapter 96: SeqUEelIZe.JS. 328

B S . ..o 328
INSTAIIALION. 328
DEfiNING MOUIS. . ..o e e 329

1. sequelize.define(modelName, attributes, [options]).................... 329
2. sequelize.dmport(Path) 329
Chapter 97: Simple REST based CRUD APl 331

= 1] 0] [T 331

REST API for CRUD IN EXPIreSS 3. ..ottt e e e e e e e e e 331
Chapter 98: Socket.io commMUNICAtION............. 332

= 1] 0] [J 332

"Hello world!" wWith SOCKET MESSAQES.\ttt e e 332
Chapter 99: Synchronous vs Asynchronous programminginnodejs................................... 333

E XM S . ..o 333

USING GSYNC . .ottt et et e e e e e e e e s 333
Chapter 100: TCP SOCKeLS. 334

E XM S . . oo 334
A SIMPIE TCP SEIVETottt e e e e e e e e e e 334
A SIMpIe TCP ClaNt. .. e e e e e 334

Chapter 101: Template frameworks 336

E XM S . .o 336

NUNJUCKS . ..ttt e e e e e 336
Chapter 102: Uninstalling NOGe.JS. ... 338

= 1] 0] [T 338
Completely uninstall Node.js 0n Mac OSX. e 338
Uninstall Node.jS 0N WINAOWS.o ettt e e e 338

Chapter 103: Unit testing frameworks............. ... 339

EX Al . .. 339

MOCQhA SYNCNIONOUS.ottt e e e e e e e e e e e e 339
Mocha asynchronous (Callback).oo i e e 339
Mocha asynChronoUS (PrOMISE).ttt ettt et et e e ettt e e et 339
Mocha ASynchronous (aSYNCIAWAIL).ttt e e e et 339
Chapter 104: Use Cases Of NOAe.JS............oooiii 341
= 1] 0] [J 341

L I ST Y P 341
Console with CommMaNd PrOMPL.ttt e e e e 341
Chapter 105: Using Browserfiy to resolve 'required' error with browsers.............................. 343
= 1] 0] 1 T 343
EXAMPIE - FIlE. S, e 343
What is this snippet dOiNg 2. 343
InStall BrOWS eIy 343
I PO AN . .. 344
What does that MeaN?. ... 344
Chapter 106: Using IISNode to host Node.js Web AppsinlIS.. 345
RIS . . 345
Virtual Directory / Nested Application with Views Pitfall... 345
VOIS ONIS . .. 345
E XAl S . .. 345
GEttiNG SHAM Ao 345
REQUITEIM BN S .. 345
Basic Hello World EXample USING EXPIESS.ottt ettt e e e e e e et 346
PrOJECE SHIUCUI 346
server.js - Express Application........ 346
Configuration & Web.config. ... 346
CONfIQUIALION 347
[ISNOAE HaNAIET e e e 347
URL-ReWITE RUIES e 347

Using an IIS Virtual Directory or Nested Application Via.ot e 348

Using Socket.io With [ISNOAE.o e e e e e e e e e 349

Chapter 107: UsiNg StreamIS 350
P A M OIS 350
EX AL . .. 350

Read Data from TextFile With Streams. 350
PIPING ST A S . ..o 351
Creating your own readable/writable Stream. 351
VY St A 2 . . et 352

Chapter 108: Using WebSocket's with Node.JS...................... 355

E XM S . ..o 355
INStalling WD SOCKET S 355
Adding WebSO0CKet'S t0 YOUr fileS. e e 355
Using WebSocket's and WEDSOCKEE SEIVEI'S.o e 355
A Simple WebSocket Server EXample. o 355

Chapter 109: Web Apps With EXPIreSS. ...t 357
I OdUCTION. . e 357
)11 357
P A A B S . 357
[1 11] o [T U 357

GEttiNG SEAM Ao 357
BaSIC FOULING . .. oottt e e 358
Getting Info from the reqUEST. o e 359
Modular eXpress appliCatiON 360

More complicated @Xampleo 361
Using a Template ENQINe. ... 362
Using a Template ENQINe. ... 362
EJS Template EXamle. .. .o 363

JSON AP With EXPrESSTS . . e e e e e e e 363
SEIVING StALIC fIlES. ..o 364
MURIPIE fOIAEIS . . e e 365
Named routes iN DjangO-StYle. e s 365

Error Handlingo e e 366

Using middleware and the next callback. 366

Error NandliNg.o s 368
Hook: How to execute code before any req and afterany res...............o i 370
Handling POST REQUESTS.ttt e e e e e e e e e e 370
Setting COOKIES With COOKIE-PAISEY ettt e e e e e e e e e e e 371
Custom MIAAIEWArE 1N EXPIESS.ttt et et e e e e e e e e e e 371
Error handling IN EXPreSS o e e 372
AddING MIAAIBWATE.ottt e e 372
Hello World. ... 372
Chapter 110: Windows authentication under node.jS...................ooooiiii i, 374
REMIAIKS . . 374
= 1] 0] [374
USING ACHVEAITECIONYo .ottt e e e e e et et 374
InStallation 374
U S0 . . 374
Chapter 111: Yarn Package Manager......... ... 375
INTrOTUCTION. e e 375

E XAl S . .. 375
Yarn INStallation.o o 375
A O S . . 375
HOMI B O W . 375
Y= Lo 0 1 375
Adding Yarn t0 YoUr PATH. ..o o 375
WWINOOWS . .. 375
1Y 1T 375
(01 gToTole] F= 11) 375
X 376
Debian [UDUNTU.o 376
CentOS /Fedora/ RHEL. ... 376
o P 376

Al DS UL ONS . . . oo e 377

Alternative Method of Installation..................... 377
S 1= | o 1 o S 377
JLIE= 11 0 2= L 377
N . 377

POSt INStall. ... 377
Creating a basiC PaCKage. i 377
Install package With Yarn.o o 378

(04 (=70 [X 379

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: node-js

It is an unofficial and free Node.js ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Node.js.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/node-js
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with Node.|s

Remarks

Node.js is an event-based, non-blocking, asynchronous I/O framework that uses Google's V8
JavaScript engine. It is used for developing applications that make heavy use of the ability to run
JavaScript both on the client, as well as on server side and therefore benefit from the re-usability
of code and the lack of context switching. It is open-source and cross-platform. Node.js
applications are written in pure JavaScript and can be run within Node.js environment on
Windows, Linux etc...

Versions

Version | Release Date

v8.2.1 2017-07-20
v8.2.0 2017-07-19
v8.1.4 2017-07-11
v8.1.3 2017-06-29
v8.1.2 2017-06-15
v8.1.1 2017-06-13
v8.1.0 2017-06-08
v8.0.0 2017-05-30
v7.10.0 2017-05-02
v7.9.0 2017-04-11
v7.8.0 2017-03-29
v7.7.4 2017-03-21
v7.7.3 2017-03-14
v7.7.2 2017-03-08
v7.7.1 2017-03-02

v7.7.0 2017-02-28

https://riptutorial.com/

https://nodejs.org/en/blog/release/v8.2.1/
https://nodejs.org/en/blog/release/v8.2.0/
https://nodejs.org/en/blog/release/v8.1.4/
https://nodejs.org/en/blog/release/v8.1.3/

Version | Release Date

v7.6.0 2017-02-21
v7.5.0 2017-01-31
v7.4.0 2017-01-04
v7.3.0 2016-12-20
v7.2.1 2016-12-06
v7.2.0 2016-11-22
v7.1.0 2016-11-08
v7.0.0 2016-10-25
v6.11.0 2017-06-06
v6.10.3 2017-05-02
v6.10.2 2017-04-04
v6.10.1 2017-03-21
v6.10.0 2017-02-21
v6.9.5 2017-01-31
v6.9.4 2017-01-05
v6.9.3 2017-01-05
v6.9.2 2016-12-06
v6.9.1 2016-10-19
v6.9.0 2016-10-18
v6.8.1 2016-10-14
v6.8.0 2016-10-12
v6.7.0 2016-09-27
v6.6.0 2016-09-14
v6.5.0 2016-08-26

v6.4.0 2016-08-12

https://riptutorial.com/

Version | Release Date

v6.3.1 2016-07-21
v6.3.0 2016-07-06
v6.2.2 2016-06-16
v6.2.1 2016-06-02
v6.2.0 2016-05-17
v6.1.0 2016-05-05
v6.0.0 2016-04-26
v5.12.0 2016-06-23
v5.11.1 2016-05-05
v5.11.0 2016-04-21
v5.10.1 2016-04-05

v5.10 2016-04-01

v5.9 2016-03-16
v5.8 2016-03-09
V5.7 2016-02-23
v5.6 2016-02-09
v5.5 2016-01-21
v5.4 2016-01-06
v5.3 2015-12-15
v5.2 2015-12-09
v5.1 2015-11-17
v5.0 2015-10-29
v4.4 2016-03-08
v4.3 2016-02-09
v4.2 2015-10-12

https://riptutorial.com/

Version | Release Date

v4.l 2015-09-17
v4.0 2015-09-08
i0.js v3.3 2015-09-02
i0.jsv3.2 2015-08-25
io.jsv3.1 2015-08-19
i0.js v3.0 2015-08-04
i0.jsv2.5 2015-07-28
i0.jsv2.4 2015-07-17
io.jsv2.3 2015-06-13
i0.jsv2.2 2015-06-01
i0.jsv2.1 2015-05-24
i0.jsv2.0 2015-05-04
i0.jsv1.8 2015-04-21
io.jsv1l.7 2015-04-17
i0.jsv1.6 2015-03-20
io.jsvl.5 2015-03-06
io.jsvl.4 2015-02-27
i0.jsv1.3 2015-02-20
io.jsvl.2 2015-02-11
io.jsvli.l 2015-02-03
io.jsv1.0 2015-01-14
v0.12 2016-02-09
v0.11 2013-03-28
v0.10 2013-03-11

v0.9 2012-07-20

https://riptutorial.com/

Version | Release Date

v0.8 2012-06-22
v0.7 2012-01-17
v0.6 2011-11-04
v0.5 2011-08-26
v0.4 2011-08-26
v0.3 2011-08-26
v0.2 2011-08-26
v0.1 2011-08-26
Examples

Hello World HTTP server

First, install Node.js for your platform.

In this example we'll create an HTTP server listening on port 1337, which sends seiio, worid! to
the browser. Note that, instead of using port 1337, you can use any port number of your choice
which is currently not in use by any other service.

The nttp module is a Node.js core module (a module included in Node.js's source, that does not
require installing additional resources). The nttp module provides the functionality to create an
HTTP server using the ntcp.createserver () method. To create the application, create a file
containing the following JavaScript code.

const http = require('http'); // Loads the http module

http.createServer ((request, response) => {
// 1. Tell the browser everything is OK (Status code 200), and the data is in plain text
response.writeHead (200, {

'Content-Type': 'text/plain'
}) i

// 2. Write the announced text to the body of the page
response.write ('Hello, World!\n');

// 3. Tell the server that all of the response headers and body have been sent
response.end () ;

}).listen(1337); // 4. Tells the server what port to be on

Save the file with any file name. In this case, if we name it ne110. 35 We can run the application by
going to the directory the file is in and using the following command:

https://riptutorial.com/

http://www.riptutorial.com/node-js/topic/1294/installing-node-js
http://www.riptutorial.com/node-js/example/30139/core-modules
https://nodejs.org/api/http.html#http_http_createserver_requestlistener

node hello. js

The created server can then be accessed with the URL http://localhost:1337 or
http://127.0.0.1:1337 in the browser.

A simple web page will appear with a “Hello, World!” text at the top, as shown in the screenshot
below.

Q0@ < localhost:1337) & i >

Hello, World!

Editable online example.
Hello World command line

Node.js can also be used to create command line utilities. The example below reads the first
argument from the command line and prints a Hello message.

To run this code on an Unix System:

1. Create a new file and paste the code below. The filename is irrelevant.
2. Make this file executable with chmod 700 FILE_NAME
3. Run the app with ./app_navE David

On Windows you do step 1 and run it with node app_NaME David

#!/usr/bin/env node
'use strict';

/*
The command line arguments are stored in the “process.argv’ array,
which has the following structure:
[0] The path of the executable that started the Node.js process
[1] The path to this application
[2-n] the command line arguments

https://riptutorial.com/

http://localhost:1337
http://127.0.0.1:1337
https://i.stack.imgur.com/Oq3Y4.png
https://glitch.com/edit/#!/node-hello-world

Example: ['/bin/node', '/path/to/yourscript', 'argl', ‘'arg2', ...]
src: https://nodejs.org/api/process.html#process_process_argv

*/

// Store the first argument as username.
var username = process.argv|[2];

// Check if the username hasn't been provided.
if (!'username) {

// Extract the filename
var appName = process.argv|[l].split (require('path').sep) .pop();

// Give the user an example on how to use the app.
console.error ('Missing argument! Example: %$s YOUR_NAME', appName);

// Exit the app (success: 0, error: 1).

// An error will stop the execution chain. For example:
// ./app.js && ls -> won't execute ls

// ./app.js David && 1ls —> will execute 1ls
process.exit (1) ;

}

// Print the message to the console.
console.log('Hello %s!', username);

Installing and Running Node.|s

To begin, install Node.js on your development computer.
Windows: Navigate to the download page and download/run the installer.

Mac: Navigate to the download page and download/run the installer. Alternatively, you can install
Node via Homebrew using brew install node. HOmebrew is a command-line package mananger
for Macintosh, and more information about it can be found on the Homebrew website.

Linux: Follow the instructions for your distro on the command line installation page.

Running a Node Program

To run a Node.js program, simply run node app.js Of nodejs app.js, Where app. js is the filename of
your node app source code. You do not need to include the . ;s suffix for Node to find the script
you'd like to run.

Alternatively under UNIX-based operating systems, a Node program may be executed as a
terminal script. To do so, it needs to begin with a shebang pointing to the Node interpreter, such
as #!/usr/bin/env node. The file also has to be set as executable, which can be done using chmoq.
Now the script can be directly run from the command line.

Deploying your application online

https://riptutorial.com/

https://nodejs.org/en/download/
https://nodejs.org/en/download/
http://brew.sh/
https://nodejs.org/en/download/package-manager/

When you deploy your app to a (Node.js-specific) hosted environment, this environment usually
offers a rorT-environment variable that you can use to run your server on. Changing the port
number to process.env.rorT allows you to access the application.

For example,

http.createServer (function (request, response) {
// your server code
}) .listen (process.env.PORT) ;

Also, if you would like to access this offline while debugging, you can use this:

http.createServer (function (request, response) {
// your server code
}) .listen (process.env.PORT || 3000);

where 3000 is the offline port number.

Debugging Your NodeJS Application

You can use the node-inspector. Run this command to install it via npm:
npm install -g node-inspector

Then you can debug your application using
node-debug app.js

The Github repository can be found here: hitps://github.com/node-inspector/node-inspector

Debugging natively
You can also debug node.js natively by starting it like this:
node debug your-script.js

To breakpoint your debugger exactly in a code line you want, use this:

debugger;

For more information see here.

In node.js 8 use the following command:

node —--inspect-brk your-script.js

https://riptutorial.com/

https://github.com/node-inspector/node-inspector
https://nodejs.org/api/debugger.html

Then open about: //inspect iN a recent version of Google Chrome and select your Node script to
get the debugging experience of Chrome's DevTools.

Hello World with Express

The following example uses Express to create an HTTP server listening on port 3000, which
responds with "Hello, World!". Express is a commonly-used web framework that is useful for
creating HTTP APIs.

First, create a new folder, e.g. myapp. GO into myapp and make a new JavaScript file containing the
following code (let's name it ne110. js for example). Then install the express module using npm
install --save express from the command line. Refer to this documentation for more information
on how to install packages.

// Import the top-level function of express
const express = require ('express');

// Creates an Express application using the top-level function
const app = express();

// Define port number as 3000
const port = 3000;

// Routes HTTP GET requests to the specified path "/" with the specified callback function
app.get ('/', function (request, response) {
response.send('Hello, World!');

}) i

// Make the app listen on port 3000
app.listen (port, function() {

console.log('Server listening on http://localhost:' + port);
1)

From the command line, run the following command:

node hello. js

Open your browser and navigate t0 nttp://localhost:3000 Of http://127.0.0.1:3000 tO See the
response.

For more information about the Express framework, you can check the \Web Apps With Express
section

Hello World basic routing

Once you understand how to create an HTTP Server with node, it's important to understand how
to make it "do" things based on the path that a user has navigated to. This phenomenon is called,
"routing”.

The most basic example of this would be to check if (request.url === 'some/path/here’), and then
call a function that responds with a new file.

https://riptutorial.com/ 10

http://www.riptutorial.com/node-js/example/1588/installing-packages
http://www.riptutorial.com/node-js/topic/483/web-apps-with-express
http://www.riptutorial.com/node-js/example/1169/hello-world-http-server

An example of this can be seen here:

const http = require('http');

function index (request, response) {
response.writeHead (200);
response.end('Hello, World!");

http.createServer (function (request, response) {
if (request.url === '/') {
return index (request, response);
response.writeHead (404);
response.end (http.STATUS_CODES[404]) ;
}).listen (1337);

If you continue to define your "routes” like this, though, you'll end up with one massive callback
function, and we don't want a giant mess like that, so let's see if we can clean this up.

First, let's store all of our routes in an object:

var routes = {
'/': function index (request, response) {
response.writeHead (200);
response.end('Hello, World!");

b
'/foo': function foo (request, response) {

response.writeHead (200);
response.end ('You are now viewing "foo"');

Now that we've stored 2 routes in an object, we can now check for them in our main callback:

http.createServer (function (request, response) {
if (request.url in routes) {
return routes|[request.url] (request, response);
response.writeHead (404) ;
response.end (http.STATUS_CODES[404]) ;
}).1listen (1337);
Now every time you try to navigate your website, it will check for the existence of that path in your

routes, and it will call the respective function. If no route is found, the server will respond with a
404 (Not Found).

And there you have it--routing with the HTTP Server API is very simple.

https://riptutorial.com/ 11

TLS Socket: server and client

The only major differences between this and a regular TCP connection are the private Key and the
public certificate that you'll have to set into an option object.

How to Create a Key and Certificate

The first step in this security process is the creation of a private Key. And what is this private key?
Basically, it's a set of random noise that's used to encrypt information. In theory, you could create
one key, and use it to encrypt whatever you want. But it is best practice to have different keys for
specific things. Because if someone steals your private key, it's similar to having someone steal
your house keys. Imagine if you used the same key to lock your car, garage, office, etc.

openssl genrsa -out private-key.pem 1024

Once we have our private key, we can create a CSR (certificate signing request), which is our
request to have the private key signed by a fancy authority. That is why you have to input
information related to your company. This information will be seen by the signing authority, and
used to verify you. In our case, it doesn’t matter what you type, since in the next step we're going
to sign our certificate ourselves.

openssl req —new -—-key private-key.pem -out csr.pem
Now that we have our paper work filled out, it's time to pretend that we're a cool signing authority.
openssl x509 -req -in csr.pem -signkey private-key.pem -out public-cert.pem

Now that you have the private key and the public cert, you can establish a secure connection
between two NodeJS apps. And, as you can see in the example code, it is a very simple process.

Important!

Since we created the public cert ourselves, in all honesty, our certificate is worthless, because we
are nobodies. The NodeJS server won't trust such a certificate by default, and that is why we need
to tell it to actually trust our cert with the following option rejectUnauthorized: false. Very
important: never set this variable to true in a production environment.

TLS Socket Server

'use strict';

var tls = require('tls');
var fs = require('fs');

const PORT
const HOST

1337;
'127.0.0.1"

https://riptutorial.com/ 12

var options = {
key: fs.readFileSync ('private-key.pem'),
cert: fs.readFileSync('public-cert.pem')
bi

var server = tls.createServer (options, function (socket) {

// Send a friendly message
socket.write ("I am the server sending you a message.");

// Print the data that we received
socket.on('data', function (data) {

console.log('Received: %s [it is %d bytes longl',
data.toString() .replace (/ (\n)/gm,""),
data.length);

1)

// Let us know when the transmission is over
socket.on('end', function() {

console.log('EOT (End Of Transmission)');

1)

// Start listening on a specific port and address
server.listen (PORT, HOST, function() {

console.log("I'm listening at %s, on port %s", HOST, PORT);

1)

// When an error occurs, show it.
server.on('error', function(error) {

console.error (error) ;

// Close the connection after the error occurred.
server.destroy () ;

1)

TS Socket Client

'use strict';

var tls = require('tls');
var fs = require('fs');

const PORT = 1337;
const HOST '127.0.0.1"

// Pass the certs to the server and let it know to process even unauthorized certs.
var options = ({
key: fs.readFileSync ('private-key.pem'),

https://riptutorial.com/

13

}i

var

P

cert: fs.readFileSync('public-cert.pem'),

rejectUnauthorized: false

client = tls.connect (PORT, HOST, options, function() {

// Check if the authorization worked
if (client.authorized) {

console.log("Connection authorized by a Certificate Authority.");
} else {
console.log("Connection not authorized: " + client.authorizationError)

// Send a friendly message
client.write ("I am the client sending you a message.");

client.on("data", function (data) {

P

console.log('Received: %s [it is %d bytes long]',
data.toString() .replace (/ (\n)/gm,""),
data.length);

// Close the connection after receiving the message
client.end();

client.on('close', function() {

P

console.log("Connection closed");

// When an error ocoures, show it.

client.on('error', function(error) {

P

console.error (error) ;

// Close the connection after the error occurred.
client.destroy () ;

Hello World in the REPL

When called without arguments, Node.js starts a REPL (Read-Eval-Print-Loop) also known as the
“Node shell”.

At a command prompt type node.

$ node

>

At the Node shell prompt > type "Hello World!"

https://riptutorial.com/

14

$ node
> "Hello World!"
'Hello World!'

Core modules

Node.js is a Javascript engine (Google's V8 engine for Chrome, written in C++) that allows to run
Javascript outside the browser. While numerous libraries are available for extending Node's
functionalities, the engine comes with a set of core modules implementing basic functionalities.

There's currently 34 core modules included in Node:

["assert',
'buffer',
'c/c++_addons',
'child_process',
'cluster',
'console',
'crypto’,
'deprecated_apis’,
'dns',
'domain',
'Events',

'fs',
'http',
'https',
'module’,
'net',

'os',
'path’,
'punycode’',
'querystring',
'readline’',
'repl',
'stream',
'string_decoder',
'timers',
'tls_(ssl) ',
'tracing',
"tty',
'dgram',
'url',
'util',
'v8',

'vm',

'z1lib']

This list was obtained from the Node documentation API hitps://nodejs.org/api/all.htm! (JSON file:

https://nodejs.org/api/all.json).

All core modules at-a-glance

assert

https://riptutorial.com/

15

https://nodejs.org/api/all.html
https://nodejs.org/api/all.json

The assert module provides a simple set of assertion tests that can be used to test invariants.
buffer

Prior to the introduction of typoearrray in ECMASCcript 2015 (ES6), the JavaScript language had no
mechanism for reading or manipulating streams of binary data. The surrer class was introduced
as part of the Node.js API to make it possible to interact with octet streams in the context of things
like TCP streams and file system operations.

Now that typ-aar-ay has been added in ES6, the surrer class implements the vin csarray APlLiN a
manner that is more optimized and suitable for Node.js' use cases.

c/c++ _addons

Node.js Addons are dynamically-linked shared objects, written in C or C++, that can be loaded into
Node.js using the require () function, and used just as if they were an ordinary Node.js module.
They are used primarily to provide an interface between JavaScript running in Node.js and C/C++
libraries.

child_process

The child_process module provides the ability to spawn child processes in a manner that is similar,
but not identical, to popen(3).

cluster

A single instance of Node.js runs in a single thread. To take advantage of multi-core systems the
user will sometimes want to launch a cluster of Node.js processes to handle the load. The cluster
module allows you to easily create child processes that all share server ports.

console

The conso1e module provides a simple debugging console that is similar to the JavaScript console
mechanism provided by web browsers.

crypto

The crypto module provides cryptographic functionality that includes a set of wrappers for
OpenSSL's hash, HMAC, cipher, decipher, sign and verify functions.

deprecated_apis

Node.js may deprecate APIs when either: (a) use of the API is considered to be unsafe, (b) an
improved alternative API has been made available, or (c) breaking changes to the API are
expected in a future major release.

dns
The ans module contains functions belonging to two different categories:

1. Functions that use the underlying operating system facilities to perform name resolution, and

https://riptutorial.com/ 16

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Refer%0D%0Aence/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArra%0D%0Ay
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
http://www.riptutorial.com/node-js/topic/2817/cluster-module

that do not necessarily perform any network communication. This category contains only one
funCﬂon:dns.lookup(L

2. Functions that connect to an actual DNS server to perform name resolution, and that always
use the network to perform DNS queries. This category contains all functions in the dans
module except dns. 1ookup ().

domain

This module is pending deprecation. Once a replacement API has been finalized, this module
will be fully deprecated. Most end users should not have cause to use this module. Users who
absolutely must have the functionality that domains provide may rely on it for the time being but
should expect to have to migrate to a different solution in the future.

Events

Much of the Node.js core API is built around an idiomatic asynchronous event-driven architecture
in which certain kinds of objects (called "emitters") periodically emit named events that cause
Function objects ("listeners") to be called.

fs

File 1/0 is provided by simple wrappers around standard POSIX functions. To use this module do
require ('£s'). All the methods have asynchronous and synchronous forms.

http

The HTTP interfaces in Node.js are designed to support many features of the protocol which have
been traditionally difficult to use. In particular, large, possibly chunk-encoded, messages. The
interface is careful to never buffer entire requests or responses--the user is able to stream data.

https
HTTPS is the HTTP protocol over TLS/SSL. In Node.js this is implemented as a separate module.
module

Node.js has a simple module loading system. In Node.js, files and modules are in one-to-one
correspondence (each file is treated as a separate module).

net

The net module provides you with an asynchronous network wrapper. It contains functions for
creating both servers and clients (called streams). You can include this module with

require('net');.
0s
The os module provides a number of operating system-related utility methods.

path

https://riptutorial.com/ 17

http://www.riptutorial.com/node-js/topic/1623/event-emitters
http://www.riptutorial.com/node-js/topic/2973/http

The path module provides utilities for working with file and directory paths.

punycode

The version of the punycode module bundled in Node.js is being deprecated.
guerystring

The querystring module provides utilities for parsing and formatting URL query strings.
readline

The reada1ine module provides an interface for reading data from a Readable stream (such as
process.stdin) one line at a time.

repl

The rep1 module provides a Read-Eval-Print-Loop (REPL) implementation that is available both as
a standalone program or includible in other applications.

stream

A stream is an abstract interface for working with streaming data in Node.js. The stream module
provides a base API that makes it easy to build objects that implement the stream interface.

There are many stream objects provided by Node.js. For instance, a request to an HTTP server
and process.stdout are both stream instances.

string_decoder

The string_decoder module provides an API for decoding surrer Objects into strings in a manner
that preserves encoded multi-byte UTF-8 and UTF-16 characters.

timers

The timer module exposes a global API for scheduling functions to be called at some future period
of time. Because the timer functions are globals, there is no need to call require ('timers') tO USE
the API.

The timer functions within Node.js implement a similar API as the timers API provided by Web
Browsers but use a different internal implementation that is built around the Node.js Event Loop.

tls_(ssl)

The t1s module provides an implementation of the Transport Layer Security (TLS) and Secure
Socket Layer (SSL) protocols that is built on top of OpenSSL.

tracing

Trace Event provides a mechanism to centralize tracing information generated by V8, Node core,
and userspace code.

https://riptutorial.com/ 18

http://www.riptutorial.com/node-js/topic/1431/readline
http://www.riptutorial.com/node-js/topic/2974/using-streams
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick

Tracing can be enabled by passing the —-trace-events-enabled flag when starting a Node.js
application.

tty

The tty module provides the tty.readstream and tty.writestrean Classes. In most cases, it will not
be necessary or possible to use this module directly.

dgram

The agram module provides an implementation of UDP Datagram sockets.
url

The ur1 module provides utilities for URL resolution and parsing.

util

The wti1 module is primarily designed to support the needs of Node.js' own internal APIs.
However, many of the utilities are useful for application and module developers as well.

v8

The vs module exposes APIs that are specific to the version of V8 built into the Node.js binary.
Note: The APIs and implementation are subject to change at any time.

vm

The vm module provides APIs for compiling and running code within V8 Virtual Machine contexts.
JavaScript code can be compiled and run immediately or compiled, saved, and run later.

Note: The vm module is not a security mechanism. Do not use it to run untrusted code.
zlib
The z1ib module provides compression functionality implemented using Gzip and Deflate/Inflate.

How to get a basic HTTPS web server up and running!

Once you have node.js installed on your system, you can just follow the procedure below to get a
basic web server running with support for both HTTP and HTTPS!

Step 1: Build a Certificate Authority

1. create the folder where you want to store your key & certificate :

mkdir conf

https://riptutorial.com/ 19

https://developers.google.com/v8/

2. go to that directory :

cd conf

3. grab this ca.cnr file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https—authorized-clients/master/keys/ca.cnf

4. create a new certificate authority using this configuration :

openssl req —new -x509 -days 9999 -config ca.cnf -keyout ca-key.pem -out ca-cert.pem

5. now that we have our certificate authority in ca-key.pem and ca-cert.pen, let's generate a
private key for the server :

openssl genrsa —-out key.pem 4096

6. grab this server.cnt file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https—-authorized-
clients/master/keys/server.cnf

7. generate the certificate signing request using this configuration :

openssl req -new -config server.cnf -key key.pem -out csr.pem

8. sign the request :

openssl x509 -req -extfile server.cnf -days 999 -passin "pass:password" —-in csr.pem —-CA ca-
cert.pem —-CAkey ca-key.pem —-CAcreateserial -out cert.pem

Step 2 : Install your certificate as a root certificate

1. copy your certificate to your root certificates' folder :

sudo cp ca-crt.pem /usr/local/share/ca-certificates/ca-crt.pem

2. update CA store :

sudo update-ca-certificates

Step 3 : Starting your node server

First, you want to create a server. js file that contains your actual server code.

https://riptutorial.com/ 20

The minimal setup for an HTTPS server in Node.js would be something like this :

var https = require('https');
var fs = require('fs');

var httpsOptions = {
key: fs.readFileSync ('path/to/server-key.pem'),
cert: fs.readFileSync ('path/to/server—crt.pem')
bi

var app = function (req, res) {
res.writeHead (200) ;
res.end("hello world\n");

https.createServer (httpsOptions, app).listen(4433);

If you also want to support http requests, you need to make just this small modification :

var http = require('http');
var https = require('https');
var fs = require('fs');

var httpsOptions = {
key: fs.readFileSync ('path/to/server-key.pem'),
cert: fs.readFileSync ('path/to/server-crt.pem')

bi
var app = function (req, res) {

res.writeHead (200) ;
res.end ("hello world\n");

http.createServer (app) .1listen (8888);
https.createServer (httpsOptions, app).listen(4433);

1. go to the directory where your server. js IS located :

cd /path/to

2.run server.js .

node server.js

Read Getting started with Node.|s online: https://riptutorial.com/node-js/topic/340/getting-started-
with-node-js

https://riptutorial.com/

21

https://riptutorial.com/node-js/topic/340/getting-started-with-node-js
https://riptutorial.com/node-js/topic/340/getting-started-with-node-js

C_hapter 2. Arduino communication with
nodeds

Introduction

Way to show how Node.Js can communicate with Arduino Uno.

Examples

Node Js communication with Arduino via serialport

Node js code

Sample to start this topic is Node.js server communicating with Arduino via serialport.

npm install express —--save
npm install serialport —--save

Sample app.js:

const express = require ('express');
const app = express();

var SerialPort = require("serialport");
var port = 3000;

var arduinoCOMPort = "COM3";

var arduinoSerialPort = new SerialPort (arduinoCOMPort, ({
baudrate: 9600
}) i

arduinoSerialPort.on('open', function () {
console.log('Serial Port ' + arduinoCOMPort + ' is opened.');
1)
app.get ('/', function (req, res) {
return res.send('Working');
})
app.get ('/:action', function (req, res) {
var action = reg.params.action || reqg.param('action');
if (action == 'led") {

arduinoSerialPort.write ("w") ;
return res.send('Led light is on!'");

https://riptutorial.com/

22

if (action == 'off') {

arduinoSerialPort.write("t");

return res.send("Led light is off!");
}
return res.send('Action: ' + action);
1)
app.listen (port, function () {

console.log('Example app listening on port http://0.0.0.0:' + port +
1)

Starting sample express server:

node app.js

Arduino code

// the setup function runs once when you press reset or power the board
void setup () {
// initialize digital pin LED_BUILTIN as an output.

Serial.begin(9600); // Begen listening on port 9600 for serial
pinMode (LED_BUILTIN, OUTPUT),;

digitalWrite (LED_BUILTIN, LOW);

// the loop function runs over and over again forever
void loop () {

if (Serial.available() > 0) // Read from serial port
{
char ReaderFromNode; // Store current character
ReaderFromNode = (char) Serial.read();
convertToState (ReaderFromNode); // Convert character to state
}
delay (1000) ;

void convertToState (char chr) {

if (chr=="o") {
digitalWrite (LED_BUILTIN, HIGH);
delay (100);

}

if (chr=="f") {
digitalWrite (LED_BUILTIN, LOW);
delay (100);

Starting Up

1)

https://riptutorial.com/

23

1. Connect the arduino to your machine.
2. Start the server

Control the build in led via node js express server.

To turn on the led:
http://0.0.0.0:3000/1ed
To turn off the led:
http://0.0.0.0:3000/0ff

Read Arduino communication with nodeJs online: https://riptutorial.com/node-
js/topic/10509/arduino-communication-with-nodejs

https://riptutorial.com/

24

https://riptutorial.com/node-js/topic/10509/arduino-communication-with-nodejs
https://riptutorial.com/node-js/topic/10509/arduino-communication-with-nodejs

C_hapter 3: async.|s

Syntax

» Each callback must be written with this syntax:
« function callback(err, result [, argl], ...]])

» This way, you are forced to return the error first, and can't ignore handling them later
on. null is the convention in absence of errors

* callback(null, myResult);

* Your callbacks can contain more arguments than err and result, but it's useful only for

a specific set of functions (waterfall, seq, ...
« callback(null, myResult, myCustomArgument);

* And, of course, send errors. You must do it, and handle errors (or at least log them).

 callback(err);

Examples

Parallel : multi-tasking

async.parallel(tasks, afterTasksCallback) will execute a set of tasks in parallel and wait the end of

all tasks (reported by the call of callback function).

When tasks are finished, async call the main callback with all errors and all results of tasks.

function shortTimeFunction (callback) {
setTimeout (function () {

callback (null, 'resultOfShortTime');

}, 200);
}

function mediumTimeFunction (callback) {
setTimeout (function () {

callback (null, 'resultOfMediumTime') ;

}, 500);
}

function longTimeFunction (callback) {

setTimeout (function () {
callback (null, 'resultOfLongTime');
}, 1000);

async.parallel ([
shortTimeFunction,

https://riptutorial.com/

25

http://caolan.github.io/async/docs.html#.parallel

mediumTimeFunction,
longTimeFunction
I
function(err, results) {
if (err) {
return console.error (err);

console.log(results);
P

Result : ["resultOfShortTime", "resultOfMediumTime", "resultOfLongTime"].

Call .opmepemero WIth @an object

You can replace the tasks array parameter by an object. In this case, results will be also an object
with the same keys than tasks.

It's very useful to compute some tasks and find easily each result.

async.parallel ({

short: shortTimeFunction,
medium: mediumTimeFunction,
long: longTimeFunction

}y

function (err, results) {
if (err) {

return console.error (err);

console.log(results);
1)

Result : {short: "resultOfShortTime", medium: "resultOfMediumTime", long: "resultOfLongTime"}.

Resolving multiple values

Each parallel function is passed a callback. This callback can either return an error as the first
argument or success values after that. If a callback is passed several success values, these
results are returned as an array.

async.parallel ({
short: function shortTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfShortTimel', 'resultOfShortTime2');
}, 200);
by
medium: function mediumTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfMediumTimel', 'resultOfMeiumTime2');
}, 500);

https://riptutorial.com/ 26

b
function(err, results) {
if (err) {
return console.error (err);

console.log(results);
P

Result :

short: ["resultOfShortTimel", "resultOfShortTime2"],
medium: ["resultOfMediumTimel", "resultOfMediumTime2"]

Series : independent mono-tasking

async.series(tasks, afterTasksCallback) will execute a set of tasks. Each task are executed after
another. If a task fails, async stops immediately the execution and jump into the main
callback.

When tasks are finished successfully, async call the "master"” callback with all errors and all results

of tasks.

function shortTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfShortTime');
}, 200);

function mediumTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfMediumTime') ;
}, 500);

function longTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfLongTime');
}, 1000);

async.series ([

mediumTimeFunction,
shortTimeFunction,
longTimeFunction

1y

function(err, results) {
if (err) {

return console.error (err);

console.log(results);

https://riptutorial.com/

27

http://caolan.github.io/async/docs.html#.series

P

Result : ["resultOfMediumTime", "resultOfShortTime", "resultOfLongTime"].

Call .oyne.cemies0 With an object

You can replace the tasks array parameter by an object. In this case, results will be also an object

with the same keys than tasks.

It's very useful to compute some tasks and find easily each result.

async.series ({

short: shortTimeFunction,
medium: mediumTimeFunction,
long: longTimeFunction

}y

function(err, results) {
if (err) {

return console.error (err);

console.log(results);

)i

Result : {short: "resultOfShortTime", medium:

Waterfall : dependent mono-tasking

"resultOfMediumTime",

long: "resultOfLongTime"}.

async.waterfall(tasks, afterTasksCallback) will execute a set of tasks. Each task are executed
after another, and the result of a task is passed to the next task. As async.series(), if a task
fails, async stop the execution and call immediately the main callback.

When tasks are finished successfully, async call the "master” callback with all errors and all results

of tasks.

function getUserRequest (callback) {

// We simulate the request with a timeout

setTimeout (function () {
var userResult = {
name : 'Aamu'

}i

callback (null, userResult);
}, 500);

function getUserFriendsRequest (user,

callback)

// Another request simulate with a timeout

setTimeout (function () {
var friendsResult = [];
if (user.name === "Aamu") {
friendsResult = [{

{

https://riptutorial.com/

28

http://caolan.github.io/async/docs.html#.waterfall

name : 'Alice'

boo A
name: 'Bob'

1

callback (null, friendsResult);
}, 500);

async.waterfall ([
getUserRequest,
getUserFriendsRequest
1,
function(err, results) {
if (err) {

return console.error (err);

console.log (JSON.stringify (results));
P

Result: resuits contains the second callback parameter of the last function of the waterfall, which
iS friendsresult in that case.

async.times(To handle for loop in better way)

To execute a function within a loop in node.js, it's fine to use a ror loop for short loops. But the
loop is long, using tor loop will increase the time of processing which might cause the node
process to hang. In such scenarios, you can use: asycn.times

function recursiveAction(n, callback)

{
//do whatever want to do repeatedly
callback (err, result);

}

async.times (5, function(n, next) {
recursiveAction (n, function(err, result) {

next (err, result);

1)

}, function(err, results) {
// we should now have 5 result

1)

This is called in parallel. When we want to call it one at a time, use: async.timesSeries
async.each(To handle array of data efficiently)

When we want to handle array of data, its better to use async.each. When we want to perform
something with all data & want to get the final callback once everything is done, then this method

will be useful. This is handled in parallel way.

function createUser (userName, callback)

{

https://riptutorial.com/ 29

//create user in db
callback (null)//or error based on creation

var arrayOfData = ['Ritu', 'Sid', 'Tom'];
async.each (arrayOfData, function (eachUserName, callback) {

// Perform operation on each user.

console.log('Creating user '+eachUserName) ;

//Returning callback is must. Else it wont get the final callback, even if we miss to
return one callback

createUser (eachUserName, callback);

}, function(err) {
//If any of the user creation failed may throw error.
if(err) {
// One of the iterations produced an error.
// All processing will now stop.
console.log('unable to create user');
} else {
console.log('All user created successfully');

1)
To do one at a time can use async.eachSeries
async.series(To handle events one by one)

/In async.series,all the functions are executed in series and the consolidated outputs of each
function is passed to the final callback. e.g/

var async = require(‘async’); async.series([function (callback) { console.log('First Execute..");
callback(null, 'userPersonalData’); }, function (callback) { console.log('Second Execute.. ");
callback(null, 'userDependentData’); }], function (err, result) { console.log(result); });

/[Output:
First Execute.. Second Execute.. [userPersonalData’,'userDependentData’] //result

Read async.js online: https://riptutorial.com/node-js/topic/3972/async-js

https://riptutorial.com/

30

https://riptutorial.com/node-js/topic/3972/async-js

C_hapter 4: Async/Await

Introduction

Async/await is a set of keywords that allows writing of asynchronous code in a procedural manner

without having to rely on callbacks (callback hell) or promise-chaining (.then () .then () .then()).

This works by using the await keyword to suspend the state of an async function, until the

resolution of a promise, and using the async keyword to declare such async functions, which return

a promise.

Async/await is available from node.js 8 by default or 7 using the flag --harmony-async-await.

Examples

Async Functions with Try-Catch Error Handling

One of the best features of async/await syntax is that standard try-catch coding style is possible,

just like you were writing synchronous code.

const myFunc = async (req, res) => {
try {
const result = await somePromise () ;

} catch (err) {
// handle errors here

}
)i

Here's an example with Express and promise-mysq|:

router.get ('/flags/:1d', async (req, res) => {
try {

const connection = await pool.createConnection();

try {

const sgl = 'SELECT f.id, f.width, f.height, f.code, f.filename
FROM flags £
WHERE f.id = ?
LIMIT 1°;

const flags = await connection.query(sgl, reqg.params.id);

if (flags.length === 0)

return res.status (404).send({ message: 'flag not found' });

return res.send({ flags([0] });

} finally {
pool.releaseConnection (connection);

https://riptutorial.com/

31

} catch (err) {
// handle errors here
}
1)

Comparison between Promises and Async/Await
Function using promises:

function myAsyncFunction () {
return aFunctionThatReturnsAPromise ()
// doSomething is a sync function
.then (result => doSomething(result))
.catch (handleError) ;

So here is when Async/Await enter in action in order to get cleaner our function:

async function myAsyncFunction () {
let result;

try {

result = await aFunctionThatReturnsAPromise () ;
} catch (error) {

handleError (error);

// doSomething is a sync function
return doSomething (result);

So the keyword async would be similar to write return new Promise ((resolve, reject) => {...

And await Similar to get your result in then callback.
Here | leave a pretty brief gif that will not left any doubt in mind after seeing it:

GIF
Progression from Callbacks
In the beginning there were callbacks, and callbacks were ok:

const getTemperature = (callback) => {
http.get ('www.temperature.com/current', (res) => {
callback (res.data.temperature)

})

const getAirPollution = (callback) => {
http.get ('www.pollution.com/current', (res) => {
callback (res.data.pollution)
}) i

https://riptutorial.com/

32

https://twitter.com/manekinekko/status/855824609299636230

getTemperature (function (temp) {
getAirPollution (function (pollution) {
console.log(the temp is ${temp} and the pollution is ${pollution}.’)
// The temp is 27 and the pollution is 0.5.
})
})

But there were a few really frustrating issues with callbacks so we all started using promises.

const getTemperature = () => {
return new Promise ((resolve, reject) => {
http.get ('www.temperature.com/current', (res) => {

resolve (res.data.temperature)
})
})

const getAirPollution = () => {
return new Promise ((resolve, reject) => {
http.get ('www.pollution.com/current', (res) => {
resolve (res.data.pollution)

b
b

getTemperature ()

.then (temp => console.log(the temp is S${temp}’))

.then(() => getAirPollution())

.then(pollution => console.log(and the pollution is ${pollution}’))
// the temp is 32

// and the pollution is 0.5

This was a bit better. Finally, we found async/await. Which still uses promises under the hood.

const temp = await getTemperature ()
const pollution = await getAirPollution ()

Stops execution at await
If the promise doesn't return anything, the async task can be completed using await.

try{
await User.findByIdAndUpdate (user._id, {
Spush: {
tokens: token
}
}) .exec ()
}catch (e) {
handleError (e)

Read Async/Await online: https://riptutorial.com/node-js/topic/6729/async-await

https://riptutorial.com/ 33

http://callbackhell.com
https://riptutorial.com/node-js/topic/6729/async-await

C_hapter 5: Asynchronous programming

Introduction

Node is a programming language where everything could run on an asynchronous way. Below you
could find some examples and the typical things of asynchronous working.

Syntax

» doSomething([args], function([argsCB]) { /* do something when done */});
» doSomething([args], ([argsCB]) => { /* do something when done */ });

Examples

Callback functions

Callback functions in JavaScript

Callback functions are common in JavaScript. Callback functions are possible in JavaScript
because functions are first-class citizens.

Synchronous callbacks.

Callback functions can be synchronous or asynchronous. Since Asynchronous callback functions
may be more complex here is a simple example of a synchronous callback function.

// a function that uses a callback named ‘cb’ as a parameter
function getSyncMessage (cb) {

cb ("Hello World!"™);
}

console.log("Before getSyncMessage call");
// calling a function and sending in a callback function as an argument.
getSyncMessage (function (message) {
console.log (message) ;
1)
console.log ("After getSyncMessage call");

The output for the above code is:

> Before getSyncMessage call
> Hello World!
> After getSyncMessage call

First we will step through how the above code is executed. This is more for those who do not

https://riptutorial.com/ 34

https://en.wikipedia.org/wiki/First-class_function

already understand the concept of callbacks if you do already understand it feel free to skip this
paragraph. First the code is parsed and then the first interesting thing to happen is line 6 is
executed which outputs sefore getsyncMessage call tO the console. Then line 8 is executed which
calls the function getsyncMessage Sending in an anonymous function as an argument for the
parameter named cb in the getsyncressage function. Execution is now done inside the
getSyncMessage function on line 3 which executes the function <o which was just passed in, this call
sends an argument string "Hello World" for the param named message in the passed in anonymous
function. Execution then goes to line 9 which logs re110 worid:! to the console. Then the execution
goes through the process of exiting the callstack (see also) hitting line 10 then line 4 then finally
back to line 11.

Some information to know about callbacks in general:

» The function you send in to a function as a callback may be called zero times, once, or
multiple times. It all depends on implementation.

» The callback function may be called synchronously or asynchronously and possibly both
synchronously and asynchronously.

» Just like normal functions the names you give parameters to your function are not important
but the order is. So for example on line 8 the parameter nessage could have been named
statement, msg, OF Iif you're being nonsensical something like je11ybean. SO you should know
what parameters are sent into your callback so you can get them in the right order with
proper names.

Asynchronous callbacks.

One thing to note about JavaScript is it is synchronous by default, but there are APIs given in the
environment (browser, Node.js, etc.) that could make it asynchronous (there's more about that
here).

Some common things that are asynchronous in JavaScript environments that accept callbacks:

e Events

» setTimeout
 setinterval

« the fetch API
e Promises

Also any function that uses one of the above functions may be wrapped with a function that takes
a callback and the callback would then be an asynchronous callback (although wrapping a
promises with a function that takes a callback would likely be considered an anti-pattern as there
are more preferred ways to handle promises).

So given that information we can construct an asynchronous function similar to the above
synchronous one.

// a function that uses a callback named ‘cb’ as a parameter
function getAsyncMessage (cb) {
setTimeout (function () { cb("Hello World!"™) 1}, 1000);

https://riptutorial.com/ 35

https://developer.mozilla.org/en-US/docs/Glossary/Call_Stack
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://stackoverflow.com/a/13806828/2066736

console.log("Before getSyncMessage call");
// calling a function and sending in a callback function as an argument.
getAsyncMessage (function (message) {

console.log (message) ;

1)
console.log ("After getSyncMessage call");

Which prints the following to the console:

> Before getSyncMessage call

> After getSyncMessage call

// pauses for 1000 ms with no output
> Hello World!

Line execution goes to line 6 logs "Before getSyncMessage call". Then execution goes to line 8
calling getAsyncMessage with a callback for the param c». Line 3 is then executed which calls
setTimeout with a callback as the first argument and the number 300 as the second argument.
setTimeout does whatever it does and holds on to that callback so that it can call it later in 1000
milliseconds, but following setting up the timeout and before it pauses the 1000 milliseconds it
hands execution back to where it left off so it goes to line 4, then line 11, and then pauses for 1
second and setTimeout then calls its callback function which takes execution back to line 3 where
getAsyncMessages Callback is called with value "Hello World" for its parameter message Which is then
logged to the console on line 9.

NodeJS has asynchronous callbacks and commonly supplies two parameters to your functions
sometimes conventionally called err and data. An example with reading a file text.

const fs = require("fs");

fs.readFile("./test.txt", "utf8", function(err, data) {
if (err) {
// handle the error
} else {
// process the file text given with data

)i

This is an example of a callback that is called a single time.

It's good practice to handle the error somehow even if your just logging it or throwing it. The else is
not necessary if you throw or return and can be removed to decrease indentation so long as you
stop execution of the current function in the if by doing something like throwing or returning.

Though it may be common to see err, data it may not always be the case that your callbacks will
use that pattern it's best to look at documentation.

https://riptutorial.com/ 36

Another example callback comes from the express library (express 4.x):

// this code snippet was on http://expressjs.com/en/4x/api.html
const express = require ('express');
const app = express();

// this app.get method takes a url route to watch for and a callback
// to call whenever that route is requested by a user.
app.get ('/', function(req, res) {
res.send('hello world');
1)

app.listen(3000);

This example shows a callback that is called multiple times. The callback is provided with two
objects as params named here as req and res these names correspond to request and response
respectively, and they provide ways to view the request coming in and set up the response that
will be sent to the user.

As you can see there are various ways a callback can be used to execute sync and async code in
JavaScript and callbacks are very ubiquitous throughout JavaScript.

Code example
Question: What is the output of code below and why?

setTimeout (function () {
console.log ("A");
}, 1000);

setTimeout (function () {
console.log("B");
o 0);

getDataFromDatabase (function (err, data) {
console.log("C");
setTimeout (function () {
console.log("D");
}, 1000);
1)

console.log ("E");

Output: This is known for sure: eeap. c is unknown when it will be logged.

Explanation: The compiler will not stop on the setTimeout and the getpatarrompatabase methodes.
So the first line he will log is =. The callback functions (first argument of setTimeout) Will run after
the set timeout on a asynchronous way!

More details:

1. £ has N0 setTimeout
2. 8 has a set timeout of O milliseconds
3. a has a set timeout of 1000 milliseconds

https://riptutorial.com/ 37

4. p must request a database, after it must o wait 1000 milliseconds so it comes after a.
5. cis unknown because it is unknown when the data of the database is requested. It could be
before or after a.

Async error handling

Try catch

Errors must always be handled. If you are using synchronous programming you could use a try
catch. But this does not work if you work asynchronous! Example:

try {
setTimeout (function () {
throw new Error("I'm an uncaught error and will stop the server!");
}, 100);
}

catch (ex) {

console.error ("This error will not be work in an asynchronous situation: " + ex);

Async errors will only be handled inside the callback function!

Working possibilities
v0.8

Event handlers

The first versions of Node.JS got an event handler.

process.on ("UncaughtException", function(err, data) {
if (err) {
// error handling

v0.8

Domains

Inside a domain, the errors are release via the event emitters. By using this are all errors, timers,
callback methodes implicitly only registrated inside the domain. By an error, be an error event
send and didn't crash the application.

var domain = require ("domain");
var dl = domain.create () ;
var d2 = domain.create();

https://riptutorial.com/ 38

dl.run (function() {
d2.add (setTimeout (function () {
throw new Error ("error on the timer of domain 2");

br 0))5
}) i
dl.on("error", function(err) {
console.log("error at domain 1: " + err);
}) i
d2.on ("error", function(err) {
console.log("error at domain 2: " + err);
}) i
Callback hell

Callback hell (also a pyramid of doom or boomerang effect) arises when you nest too many
callback functions inside a callback function. Here is an example to read a file (in ES6).

const fs = require('fs');
let filename = "${__ dirname}/myfile.txt’;

fs.exists (filename, exists => {
if (exists) {
fs.stat (filename, (err, stats) => {
if (err) {
throw err;
}
if (stats.isFile()) {
fs.readFile(filename, null, (err, data) => {
if (err) {
throw err;
}
console.log(data);
1)
}
else {
throw new Error ("This location contains not a file");

1)
}
else {
throw new Error ("404: file not found");

)i

How to avoid "Callback Hell"

It is recommended to nest no more than 2 callback functions. This will help you maintain code
readability and will me much easier to maintain in the future. If you have a need to nest more than
2 callbacks, try to make use of distributed events instead.

There also exists a library called async that helps manage callbacks and their execution available
on npm. It increases the readability of callback code and gives you more control over your callback
code flow, including allowing you to run them in parallel or in series.

https://riptutorial.com/ 39

https://nodejs.org/api/events.html
https://caolan.github.io/async/

Native Promises

v6.0.0

Promises are a tool for async programming. In JavaScript promises are known for their then
methods. Promises have two main states ‘pending’ and 'settled’. Once a promise is 'settled’ it
cannot go back to 'pending’. This means that promises are mostly good for events that only occur
once. The 'settled’ state has two states as well 'resolved’ and 'rejected'. You can create a new
promise using the new keyword and passing a function into the constructor new promise (function

(resolve, reject) {}).

The function passed into the Promise constructor always receives a first and second parameter
usually named reso1ve and reject respectively. The naming of these two parameters is
convention, but they will put the promise into either the 'resolved’ state or the 'rejected’ state.
When either one of these is called the promise goes from being '‘pending’ to 'settled’. resoive is
called when the desired action, which is often asynchronous, has been performed and reject IS
used if the action has errored.

In the below timeout is a function that returns a Promise.

function timeout (ms) {
return new Promise (function (resolve, reject) {
setTimeout (function () {
resolve ("It was resolved!");
}, ms)
}) i
}

timeout (1000) .then (function (dataFromPromise) {
// logs "It was resolved!"
console.log(dataFromPromise) ;

b

console.log("waiting...");

console output

waiting...
// << pauses for one second>>
It was resolved!

When timeout is called the function passed to the Promise constructor is executed without delay.
Then the setTimeout method is executed and its callback is set to fire in the next ns milliseconds,
in this case ms=1000. Since the callback to the setTimeout isn't fired yet the timeout function returns
control to the calling scope. The chain of then methods are then stored to be called later when/if
the Promise has resolved. If there were catch methods here they would be stored as well, but
would be fired when/if the promise 'rejects'.

The script then prints 'waiting...". One second later the setTimeout calls its callback which calls the
resolve function with the string "It was resolved!". That string is then passed into the then method's
callback and is then logged to the user.

https://riptutorial.com/ 40

In the same sense you can wrap the asynchronous setTimeout function which requires a callback
you can wrap any singular asynchronous action with a promise.

Read more about promises in the JavaScript documentation Promises.

Read Asynchronous programming online: https://riptutorial.com/node-js/topic/8813/asynchronous-
programming

https://riptutorial.com/ 41

http://www.riptutorial.com/javascript/topic/231/promises
https://riptutorial.com/node-js/topic/8813/asynchronous-programming
https://riptutorial.com/node-js/topic/8813/asynchronous-programming

C_hapter 6: Autoreload on changes

Examples

Autoreload on source code changes using nodemon

The nodemon package makes it possible to automatically reload your program when you modify
any file in the source code.

Installing nodemon globally

npm install —-g nodemon (or npm i -g nodemon)

Installing nodemon locally

In case you don't want to install it globally

npm install —--save-dev nodemon (Or npm i -D nodemon)

Using nodemon

Run your program with nodemon entry. js (Of nodemon entry)
This replaces the usual use of node entry.js (O node entry).

You can also add your nodemon startup as an npm script, which might be useful if you want to
supply parameters and not type them out every time.

Add package.json:

"scripts": {
"start": "nodemon entry.js —-devmode -something 1"

}
This way you can just use npm start from your console.

Browsersync

Overview

Browsersync is a tool that allows for live file watching and browser reloading. It's available as a
NPM package.

https://riptutorial.com/

42

https://browsersync.io
https://www.npmjs.com/package/browser-sync

Installation

To install Browsersync you'll first need to have Node.js and NPM installed. For more information
see the SO documentation on Installing and Running Node.|s.

Once your project is set up you can install Browsersync with the following command:

$ npm install browser-sync -D

This will install Browsersync in the local node_noduies directory and save it to your developer
dependencies.

If you'd rather install it globally use the -4 flag in place of the -o flag.

Windows Users

If you're having trouble installing Browsersync on Windows you may need to install Visual Studio
S0 you can access the build tools to install Browsersync. You'll then need to specify the version of
Visual Studio you're using like so:

$ npm install browser-sync —--msvs_version=2013 -D

This command specifies the 2013 version of Visual Studio.

Basic Usage

To automatically reload your site whenever you change a JavaScript file in your project use the
following command:

$ browser-sync start —--proxy "myproject.dev" --files "**/*_ js"

Replace myproject.dev With the web address that you are using to access your project.
Browsersync will output an alternate address that can be used to access your site through the

proxy.

Advanced Usage

Besides the command line interface that was described above Browsersync can also be used with
Grunt.js and Gulp.js.

Grunt.js

Usage with Grunt.js requires a plugin that can be installed like so:

https://riptutorial.com/ 43

https://nodejs.org/en/
http://www.riptutorial.com/node-js/topic/340/getting-started-with-node-js
http://stackoverflow.com/tags/gruntjs/info
http://stackoverflow.com/tags/gulp/info

$ npm install grunt-browser-sync -D

Then you'll add this line to your gruntfile. js:

grunt.loadNpmTasks ('grunt-browser-sync') ;

Gulp.js

Browsersync works as a CommonJS module, so there's no need for a Gulp.js plugin. Simply
require the module like so:

var browserSync = require ('browser-sync') .create();

You can now use the Browsersync AP to configure it to your needs.

API

The Browsersync API can be found here: https://browsersync.io/docs/api

Read Autoreload on changes online: https://riptutorial.com/node-js/topic/1743/autoreload-on-
changes

https://riptutorial.com/

44

http://stackoverflow.com/tags/commonjs/info
https://browsersync.io/docs/api
https://browsersync.io/docs/api
https://riptutorial.com/node-js/topic/1743/autoreload-on-changes
https://riptutorial.com/node-js/topic/1743/autoreload-on-changes

C_hapter 7. Avoid callback hell

Examples

Async module

The source is available for download from GitHub. Alternatively, you can install using npm:
$ npm install --save async

As well as using Bower:

$ bower install async

Example:

var async = require ("async");
async.parallel ([
function(callback) { ... },
function(callback) { ... }
], function (err, results) {
// optional callback
1)

Async Module

Thankfully, libraries like Async.js exist to try and curb the problem. Async adds a thin layer of
functions on top of your code, but can greatly reduce the complexity by avoiding callback nesting.

Many helper methods exist in Async that can be used in different situations, like series, parallel,
waterfall, etc. Each function has a specific use-case, so take some time to learn which one will
help in which situations.

As good as Async is, like anything, its not perfect. Its very easy to get carried away by combining
series, parallel, forever, etc, at which point you're right back to where you started with messy code.
Be careful not to prematurely optimize. Just because a few async tasks can be run in parallel
doesn't always mean they should. In reality, since Node is only single-threaded, running tasks in
parallel on using Async has little to no performance gain.

The source is available for download from https://github.com/caolan/async . Alternatively, you can
install using npm:

$ npm install --save async
As well as using Bower:

$ bower install async

https://riptutorial.com/ 45

https://github.com/caolan/async

Async's waterfall Example:

var fs = require('fs');
var async = require('async');
var myFile = '/tmp/test';

async.waterfall ([
function (callback) {
fs.readFile (myFile, 'utf8', callback);
by
function (txt, callback) {
txt = txt + '\nAppended something!"';
fs.writeFile (myFile, txt, callback);
}
], function (err, result) {
if (err) return console.log(err);
console.log('Appended text!');
1)

Read Avoid callback hell online: https://riptutorial.com/node-js/topic/10045/avoid-callback-hell

https://riptutorial.com/

46

https://riptutorial.com/node-js/topic/10045/avoid-callback-hell

C_hapter 8: Bluebird Promises

Examples
Converting nodeback library to Promises

const Promise = require('bluebird'),
fs = require('fs')

Promise.promisifyAll (fs)

// now you can use promise based methods on 'fs' with the Async suffix
fs.readFileAsync ('file.txt') .then (contents => {

console.log(contents)
}) .catch(err => {

console.error ('error reading', err)

})

Functional Promises
Example of map:

Promise.resolve([1, 2, 3]).map(el => {
return Promise.resolve(el * el) // return some async operation in real world

3]
Example of filter:

Promise.resolve ([1, 2, 3]).filter(el => {

)

return Promise.resolve(el % 2 === 0) // return some async operation in real world
}) .then (console.loqg)

Example of reduce:

Promise.resolve([1, 2, 3]).reduce((prev, curr) => {
return Promise.resolve (prev + curr) // return some async operation in real world
}) .then (console.loq)

Coroutines (Generators)

const promiseReturningFunction = Promise.coroutine (function* (file) {

const data = yield fs.readFileAsync(file) // this returns a Promise and resolves to the file

contents

return data.toString() .toUpperCase ()
})

promiseReturningFunction('file.txt') .then (console.loq)

https://riptutorial.com/

a7

Automatic Resource Disposal (Promise.using)

function somethingThatReturnsADisposableResource () {
return getSomeResourceAsync(...).disposer (resource => {
resource.dispose ()

})

Promise.using (somethingThatReturnsADisposableResource (), resource => ({
// use the resource here, the disposer will automatically close it when Promise.using exits

})

Executing in series

Promise.resolve([1l, 2, 31)

.mapSeries (el => Promise.resolve(el * el)) // in real world, use Promise returning async
function

.then (console.loq)

Read Bluebird Promises online: https://riptutorial.com/node-js/topic/6728/bluebird-promises

https://riptutorial.com/

48

https://riptutorial.com/node-js/topic/6728/bluebird-promises

C_hapter 9: Callback to Promise

Examples

Promisifying a callback

Callback-based:

db.notification.email.find({subject: 'promisify callback'}, (error, result) => {
if (error) {
console.log(error);

}

// normal code here

}) i

This uses bluebird's promisifyAll method to promisify what is conventionally callback-based code
like above. bluebird will make a promise version of all the methods in the object, those promise-
based methods names has Async appended to them:
let email = bluebird.promisifyAll (db.notification.email);
email.findAsync ({subject: 'promisify callback'}).then(result => ({
// normal code here

})

.catch (console.error);

If only specific methods need to be promisified, just use its promisify:

let find = bluebird.promisify(db.notification.email.find);
find({locationId: 168}) .then(result => {
// normal code here

)i
.catch (console.error);

There are some libraries (e.g., MassiveJS) that can't be promisified if the immediate object of the
method is not passed on second parameter. In that case, just pass the immediate object of the
method that need to be promisified on second parameter and enclosed it in context property.

let find = bluebird.promisify(db.notification.email.find, { context: db.notification.email });
find({locationId: 168}) .then(result => {
// normal code here

)i
.catch (console.error);

https://riptutorial.com/

Manually promisifying a callback

Sometimes it might be necessary to manually promisify a callback function. This could be for a
case where the callback does not follow the standard error-first format or if additional logic is
needed to promisify:

Example with fs.exists(path, callback):

var fs = require('fs');

var existsAsync = function (path) {
return new Promise (function (resolve, reject) {
fs.exists (path, function (exists) {

// exists is a boolean

if (exists) {
// Resolve successfully
resolve () ;

} else {
// Reject with error
reject (new Error ('path does not exist'));

// Use as a promise now

existsAsync ('/path/to/some/file') .then (function () {
console.log('file exists!');

}) .catch (function (err) {
// file does not exist
console.error (err);

}) i

setTimeout promisified

function wait (ms) {
return new Promise (function (resolve, reject) {
setTimeout (resolve, ms)

b

Read Callback to Promise online: https://riptutorial.com/node-js/topic/2346/callback-to-promise

https://riptutorial.com/

50

http://fredkschott.com/post/2014/03/understanding-error-first-callbacks-in-node-js/
https://nodejs.org/api/fs.html#fs_fs_exists_path_callback
https://riptutorial.com/node-js/topic/2346/callback-to-promise

C_hapter 10: Cassandra Integration

Examples

Hello world

For accessing Cassandra c-ssandra-driver module from DataStax can be used. It supports all the
features and can be easily configured.

const cassandra = require ("cassandra-driver");
const clientOptions = {
contactPoints: ["hostl", "host2"],

keyspace: "test"
bi

const client = new cassandra.Client (clientOptions) ;
const query = "SELECT hello FROM world WHERE name = ?";
client.execute (query, ["John"], (err, results) => {

if (err) {
return console.error (err);

console.log(results.rows);

)i

Read Cassandra Integration online: https://riptutorial.com/node-js/topic/5949/cassandra-
integration

https://riptutorial.com/ 51

https://github.com/datastax/nodejs-driver
https://riptutorial.com/node-js/topic/5949/cassandra-integration
https://riptutorial.com/node-js/topic/5949/cassandra-integration

Chapter 11: CLI

Syntax
* node [options] [v8 options] [script.js | -e "script"] [arguments]
Examples
Command Line Options
Added in: v0.1.3 Print node's version.
~-h, —-help

Added in: v0.1.3 Print node command line options. The output of this option is less detailed than
this document.

-e, ——eval "script"

Added in: v0.5.2 Evaluate the following argument as JavaScript. The modules which are
predefined in the REPL can also be used in script.

-p, —-print "script"
Added in: v0.6.4 Identical to -e but prints the result.
—-c, ——check
Added in: v5.0.0 Syntax check the script without executing.
-i, —-—-interactive
Added in: v0.7.7 Opens the REPL even if stdin does not appear to be a terminal.

-r, —--require module

Added in: v1.6.0 Preload the specified module at startup.

Follows require()'s module resolution rules. module may be either a path to a file, or a node
module name.

—-—-no—-deprecation

https://riptutorial.com/ 52

Added in: v0.8.0 Silence deprecation warnings.

—-—trace-deprecation

Added in: v0.8.0 Print stack traces for deprecations.

——throw-deprecation
Added in: v0.11.14 Throw errors for deprecations.
—-no-warnings
Added in: v6.0.0 Silence all process warnings (including deprecations).

—-—trace-warnings

Added in: v6.0.0 Print stack traces for process warnings (including deprecations).
—-—trace-sync-io

Added in: v2.1.0 Prints a stack trace whenever synchronous I/O is detected after the first turn of
the event loop.

—-—zero—-fill-buffers

Added in: v6.0.0 Automatically zero-fills all newly allocated Buffer and SlowBuffer instances.

——preserve-symlinks

Added in: v6.3.0 Instructs the module loader to preserve symbolic links when resolving and
caching modules.

By default, when Node.js loads a module from a path that is symbolically linked to a different on-
disk location, Node.js will dereference the link and use the actual on-disk "real path" of the module
as both an identifier and as a root path to locate other dependency modules. In most cases, this
default behavior is acceptable. However, when using symbolically linked peer dependencies, as
illustrated in the example below, the default behavior causes an exception to be thrown if moduleA
attempts to require moduleB as a peer dependency:

{appDir}
— app
| F— index.is
| L— node_modules
| — moduleA -> {appDir}/moduleA
| L— moduleB
| F— index.is
| L— package. json
L— moduleA

— index.js

https://riptutorial.com/ 53

L— package. json

The --preserve-symlinks command line flag instructs Node.js to use the symlink path for modules
as opposed to the real path, allowing symbolically linked peer dependencies to be found.

Note, however, that using --preserve-symlinks can have other side effects. Specifically,
symbolically linked native modules can fail to load if those are linked from more than one location
in the dependency tree (Node.js would see those as two separate modules and would attempt to
load the module multiple times, causing an exception to be thrown).

—-—track-heap-objects

Added in: v2.4.0 Track heap object allocations for heap snapshots.

—-—prof-process

Added in: v6.0.0 Process v8 profiler output generated using the v8 option --prof.
--v8-options
Added in: v0.1.3 Print v8 command line options.

Note: v8 options allow words to be separated by both dashes (-) or underscores ().

For example, --stack-trace-limit is equivalent to --stack_trace_limit.
——tls-cipher-list=1list

Added in: v4.0.0 Specify an alternative default TLS cipher list. (Requires Node.js to be built with
crypto support. (Default))

——enable-fips

Added in: v6.0.0 Enable FIPS-compliant crypto at startup. (Requires Node.js to be built with
Jconfigure --openssl-fips)

——force-fips

Added in: v6.0.0 Force FIPS-compliant crypto on startup. (Cannot be disabled from script code.)
(Same requirements as --enable-fips)

—-—icu-data-dir=file
Added in: v0.11.15 Specify ICU data load path. (overrides NODE_ICU_DATA)

Environment Variables

https://riptutorial.com/ 54

NODE_DEBUG=module [, ...]

Added in: v0.1.32 ','-separated list of core modules that should print debug information.
NODE_PATH=path[:..]

Added in: v0.1.32 ":-separated list of directories prefixed to the module search path.

Note: on Windows, this is a ';'-separated list instead.

NODE_DISABLE_COLORS=1

Added in: v0.3.0 When set to 1 colors will not be used in the REPL.

NODE_ICU_DATA=file

Added in: v0.11.15 Data path for ICU (Intl object) data. Will extend linked-in data when compiled
with small-icu support.

NODE_REPL_HISTORY=file

Added in: v5.0.0 Path to the file used to store the persistent REPL history. The default path is
~/.node_repl_history, which is overridden by this variable. Setting the value to an empty string ("™
or " ") disables persistent REPL history.

Read CLI online: https://riptutorial.com/node-js/topic/6013/cli

https://riptutorial.com/ 55

https://riptutorial.com/node-js/topic/6013/cli

C_hapter 12: Client-server communication

Examples

Iw Express, jQuery and Jade

//'client. jade'

//a button is placed down; similar in HTML
button (type='button', id='send_ by_button') Modify data

#modify Lorem ipsum Sender

//loading jQuery; it can be done from an online source as well
script (src='./Js/jquery-2.2.0.min.js")

//AJAX request using jQuery
script
S (function () {
S ('"#send_by_button') .click (function (e) {
e.preventDefault () ;

//test: the text within brackets should appear when clicking on said button
//window.alert ('You clicked on me. - jQuery');

//a variable and a JSON initialized in the code
var predeclared = "Katamori";
var data = {
Title: "Name_SenderTest",
Nick: predeclared,
FirstName: "Zoltan",
Surname: "Schmidt"
}i

//an AJAX request with given parameters
S.ajax ({

type: 'POST',

data: JSON.stringify (data),

contentType: 'application/json',

url: 'http://localhost:7776/domaintest"',

//on success, received data is used as 'data' function input
success: function (data) {
window.alert ('Request sent; data received.');

var Jjsonstr = JSON.stringify (data);
var Jjsonobj = JSON.parse (jsonstr);

//if the 'nick' member of the JSON does not equal to the predeclared
string (as it was initialized), then the backend script was executed, meaning that
communication has been established

if (data.Nick != predeclared) {

document .getElementById ("modify") .innerHTML = "JSON changed!\n" +
jsonstr;

}i

https://riptutorial.com/ 56

//'domaintest_route. js’

var express = require ('express');
var router = express.Router();

//an Express router listening to GET requests — in this case, it's empty, meaning that nothing
is displayed when you reach 'localhost/domaintest'
router.get ('/', function(req, res, next) {

}) i

//same for POST requests — notice, how the AJAX request above was defined as POST
router.post ('/', function(req, res) {
res.setHeader ('Content-Type', 'application/json');

//content generated here
var some_json = {
Title: "Test",

Item: "Crate"

}i

var result = JSON.stringify (some_json);
//content got 'client.jade'

var sent_data = reqg.body;

sent_data.Nick = "ttony33";

res.send (sent_data) ;

module.exports = router;

/Ibased on a personally used gist: hitps://gist.github.com/Katamori/5c9850102e4baf6e9896

Read Client-server communication online: https://riptutorial.com/node-js/topic/6222/client-server-
communication

https://riptutorial.com/

57

https://gist.github.com/Katamori/5c9850f02e4baf6e9896
https://riptutorial.com/node-js/topic/6222/client-server-communication
https://riptutorial.com/node-js/topic/6222/client-server-communication

C_hapter 13: Cluster Module

Syntax

e const cluster = require("cluster")
* cluster.fork()

* cluster.isMaster

* cluster.isWorker

* cluster.schedulingPolicy

* cluster.setupMaster(settings)

* cluster.settings

* cluster.worker // in worker

* cluster.workers // in master

Remarks

Note that c1uster.fork () Spawns a child process that begins executing the current script from the
beginning, in contrast to the rork () system call in C which clones the current process and
continues from the instruction after the system call in both parent and child process.

The Node.js Documentation has a more complete guide to clusters here

Examples

Hello World
This is your ciuster. js:

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus () .length;

if (cluster.isMaster) {
// Fork workers.
for (let i = 0; i < numCPUs; i++) {
cluster.fork () ;

cluster.on('exit', (worker, code, signal) => {
console.log(worker ${worker.process.pid} died’);
1)
} else {
// Workers can share any TCP connection
// In this case it i1s an HTTP server
require ('./server.js') ();

This is your main server. js:

https://riptutorial.com/

58

https://nodejs.org/api/cluster.html

const http = require('http');

function startServer () {
const server = http.createServer ((req, res) => {
res.writeHead (200) ;
res.end('Hello Http');
1)

server.listen (3000);

if (!module.parent) {
// Start server if file is run directly
startServer () ;

} else {
// Export server, if file is referenced via cluster
module.exports = startServer;

In this example, we host a basic web server, however, we spin up workers (child processes) using
the built-in cluster module. The number of processes forker depend on the number of CPU cores
available. This enables a Node.js application to take advantage of multi-core CPUs, since a single
instance of Node.js runs in a single thread. The application will now share the port 8000 across all
the processes. Loads will automatically be distributed between workers using the Round-Robin
method by default.

Cluster Example

A single instance of node. 55 runs in a single thread. To take advantage of multi-core systems,
application can be launched in a cluster of Node.js processes to handle the load.

The c1uster module allows you to easily create child processes that all share server ports.

Following example create the worker child process in main process that handles the load across
multiple cores.

Example

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length; //number of CPUS

if (cluster.isMaster) {
// Fork workers.
for (var i = 0; i < numCPUs; i++) {
cluster.fork(); //creating child process

}

//on exit of cluster
cluster.on('exit', (worker, code, signal) => {
if (signal) {
console.log(worker was killed by signal: ${signal}’);
} else if (code !== 0) {
console.log (' worker exited with error code: ${code}’);
} else {

https://riptutorial.com/ 59

console.log('worker success!');

1)
} else {
// Workers can share any TCP connection

// In this case it is an HTTP server
http.createServer ((req, res) => {
res.writeHead (200) ;
res.end('hello world\n');
}).1listen (3000) ;

Read Cluster Module online: https://riptutorial.com/node-js/topic/2817/cluster-module

https://riptutorial.com/

60

https://riptutorial.com/node-js/topic/2817/cluster-module

C_hapter 14: Connect to Mongodb

Introduction

MongoDB is a free and open-source cross-platform document-oriented database program.
Classified as a NoSQL database program, MongoDB uses JSON-like documents with schemas.

For more details go to https://www.mongodb.com/

Syntax

» MongoClient.connect('mongodb://127.0.0.1:27017/crud',function (err,db) {//do womething
here});

Examples
Simple example to Connect mongoDB from Node.JS

MongoClient.connect ('mongodb://localhost:27017/myNewDB', function (err,db) {
if (err)
console.log("Unable to connect DB. Error: " + err)
else
console.log('Connected to DB');

db.close();
1)

myNewDB is DB name, if it does not exists in database then it will create automatically with this
call.

Simple way to Connect mongoDB with core Node.JS

var MongoClient = require ('mongodb') .MongoClient;

//connection with mongoDB
MongoClient.connect ("mongodb://localhost:27017/MyDb", function (err, db) {
//check the connection
if (err) {
console.log("connection failed.");
lelse{
console.log("successfully connected to mongoDB.");
1)

Read Connect to Mongodb online: https://riptutorial.com/node-js/topic/6280/connect-to-mongodb

https://riptutorial.com/

https://www.mongodb.com/
https://riptutorial.com/node-js/topic/6280/connect-to-mongodb

C_hapter 15: Creating a Node.|s Library that
Supports Both Promises and Error-First
Callbacks

Introduction

Many people like working with promises and/or async/await syntax, but when writing a module it
would be useful to some programmers to support classic callback style methods as well. Rather
than creating two modules, or two sets of functions, or having the programmer promisify your

module, your module can support both programming methods at one using bluebird's asCallback()

or Q's nodeify().

Examples

Example Module and Corresponding Program using Bluebird
math.js

'use strict';
const Promise = require('bluebird');
module.exports = {

// example of a callback-only method
callbackSum: function(a, b, callback) {

if (typeof a !== 'number')

return callback (new Error ('"a" must be a number'));
if (typeof b !== 'number')

return callback (new Error ('"b" must be a number'));

return callback(null, a + b);
by

// example of a promise-only method
promiseSum: function(a, b) {
return new Promise (function (resolve, reject) {

if (typeof a !== 'number')

return reject (new Error ('"a" must be a number'));
if (typeof b !== 'number')

return reject (new Error ('"b" must be a number'));

resolve(a + b);
}) i
bo

// a method that can be used as a promise or with callbacks
sum: function(a, b, callback) {
return new Promise (function (resolve, reject) {
if (typeof a !== 'number')
return reject (new Error ('"a" must be a number'));

https://riptutorial.com/

62

if (typeof b !== 'number')

return reject (new Error ('"b" must be a number'));

resolve(a + b);

}) .asCallback (callback);

by

bi
index.js

'use strict';

const math = require('./math'");

// classic callbacks

math.callbackSum(l, 3, function(err, result) {

if (err)
console.log('Test 1: ' + err);
else
console.log('Test 1: the answer is ' + result);

}) i

math.callbackSum(l, 'd', function(err, result) {

if (err)
console.log('Test 2: '
else

console.log('Test 2: the answer is ' + result);

}) i

// promises

math.promiseSum (2, 5)

.then (function (result) {
console.log('Test 3: the

})

.catch (function (err) {
console.log('Test 3: ' +

}) i

math.promiseSum (1)

.then (function (result) {
console.log('Test 4: the

})

.catch (function (err) {
console.log('Test 4: ' +

}) i

// promise/callback method

math.sum (8, 2)

.then (function (result) {
console.log('Test 5: the

})

.catch (function (err) {
console.log('Test 5: ' +

}) i

+ err);

answer is ' 4+ result);

err);

answer is ' + result);

err);

used like a promise

answer is ' + result);

err);

https://riptutorial.com/

63

// promise/callback method used with callbacks

math.sum (7, 11, function(err, result) {

if (err)
console.log('Test 6: ' + err);
else
console.log('Test 6: the answer is ' + result);

}) i

// promise/callback method used like a promise with async/await syntax
(async () => {
try |
let x = await math.sum (6, 3);

console.log('Test 7a: ' + x);

let y = await math.sum (4, 's');
console.log('Test 7b: ' + vy);

} catch(err) {

console.log(err.message) ;

IDNON

Read Creating a Node.js Library that Supports Both Promises and Error-First Callbacks online:
https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-
and-error-first-callbacks

https://riptutorial.com/

64

https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-and-error-first-callbacks
https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-and-error-first-callbacks

C_hapter 16: Creating API's with Node.js

Examples

GET api using Express
Node. js @pis can be easily constructed in express web framework.

Following example creates a simple cer api for listing all users.

Example

var express = require ('express');
var app = express();

var users =[{
id: 1,
name: "John Doe",
age : 23,
email: "john@doe.com"

}1i

// GET /api/users
app.get ('/api/users', function(req, res) {
return res. json (users); //return response as JSON

}) i

app.listen('3000', function() {
console.log('Server listening on port 3000'");

}) i

POST api using Express

Following example create rost api using express. This example is similar to cer example except the
use of body-parser that parses the post data and add it to req.body.

Example

var express = require ('express');

var app = express|();

// for parsing the body in POST request
var bodyParser = require ('body-parser');

var users =[{

id: 1,

name: "John Doe",

age : 23,

email: "john@doe.com"

}1;

app.use (bodyParser.urlencoded ({ extended: false }));
app.use (bodyParser.json()) ;

https://riptutorial.com/ 65

// GET /api/users
app.get ('/api/users', function(req, res) {
return res.json (users);

}) i

/* POST /api/users
{

"user": {
"id": 3,
"name": "Test User",
"age" : 20,
"email": "test@test.com"
}
}
=)
app.post ('/api/users', function (req, res) {
var user = reqg.body.user;

users.push (user) ;

return res.send('User has been added successfully');

app.listen('3000', function () {
console.log('Server listening on port 3000'");

Read Creating API's with Node.js online: https://riptutorial.com/node-js/topic/5991/creating-api-s-
with-node-js

https://riptutorial.com/

https://riptutorial.com/node-js/topic/5991/creating-api-s-with-node-js
https://riptutorial.com/node-js/topic/5991/creating-api-s-with-node-js

C_hapter 17: csv parser in node |s

Introduction

Reading data in from a csv can be handled in many ways. One solution is to read the csv file into
an array. From there you can do work on the array.

Examples

Using FSto read in a CSV

fsis the File System APl in node. We can use the method readFile on our fs variable, pass it a
data.csv file, format and function that reads and splits the csv for further processing.

This assumes you have a file named data.csv in the same folder.

'use strict'

const fs = require('fs');

fs.readFile('data.csv', 'utf8', function (err, data) {
var dataArray = data.split (/\r?\n/);

console.log(dataArray) ;

)i

You can now use the array like any other to do work on it.

Read csv parser in node js online: https://riptutorial.com/node-js/topic/9162/csv-parser-in-node-js

https://riptutorial.com/

67

https://nodejs.org/api/fs.h
https://riptutorial.com/node-js/topic/9162/csv-parser-in-node-js

C_hapter 18: Database (MongoDB with
Mongoose)

Examples

Mongoose connection

Make sure to have mongodb running first! mongod --dbpath data/

package.json

"dependencies": {
"mongoose": ""4.5.5",

}

server.js (ECMA 6)

import mongoose from 'mongoose';
mongoose.connect ('mongodb://localhost:27017/stackoverflow—example') ;

const db = mongoose.connection;
db.on('error', console.error.bind(console, 'DB connection error!'));

server.js (ECMA 5.1)

var mongoose = require ('mongoose');
mongoose.connect ('mongodb://localhost:27017/stackoverflow—example"') ;

var db = mongoose.connection;
db.on('error', console.error.bind(console, 'DB connection error!'));

Model

Define your model(s):

app/models/user.js (ECMA 6)

import mongoose from 'mongoose';
const userSchema = new mongoose.Schema ({
name: String,

password: String

}) i

const User = mongoose.model ('User', userSchema);

export default User;

https://riptutorial.com/

68

app/model/user.js (ECMA 5.1)

var mongoose = require ('mongoose');
var userSchema = new mongoose.Schema ({

name: String,
password: String

var User = mongoose.model ('User', userSchema);

module.exports = User
Insert data
ECMA 6:
const user = new User ({
name: 'Stack',

password: 'Overflow',

) g

user.save ((err) => {
if (err) throw err;

console.log('User saved!');
}) i
ECMAS. 1.
var user = new User ({
name: 'Stack',

password: 'Overflow',
b

user.save (function (err) {
if (err) throw err;

console.log('User saved!');
)i

Read data

ECMAG:

User.findOne ({
name: 'stack'
}, (err, user) => {
if (err) throw err;

if (luser) {

console.log('No user was found');
} else {

console.log('User was found');

https://riptutorial.com/

69

}) i
ECMAS.1:

User.findOne ({
name: 'stack'

}, function (err, user) {
if (err) throw err;

if (l'user) {
console.log('No user was found');
} else {
console.log('User was found');
}
1)

Read Database (MongoDB with Mongoose) online: https://riptutorial.com/node-
js/topic/6411/database--mongodb-with-mongoose-

https://riptutorial.com/

70

https://riptutorial.com/node-js/topic/6411/database--mongodb-with-mongoose-
https://riptutorial.com/node-js/topic/6411/database--mongodb-with-mongoose-

C_hapter 19: Debugging Node.js application

Examples

Core node.js debugger and node inspector

Using core debugger

Node.js provides a build in non graphical debugging utility. To start the build in the debugger, start

the application with this command:

node debug filename. js

Consider the following simple Node.js application contained in the debugpemo. js

'use strict';
function addTwoNumber (a, b) {
// function returns the sum of the two numbers
debugger
return a + b;

}

var result = addTwoNumber (5, 9);
console.log(result) ;

The keyword debugger Will stop the debugger at that point in the code.

Command reference

1. Stepping

cont, ¢ - Continue execution
next, n - Step next

step, s - Step in

out, o - Step out

2. Breakpoints

setBreakpoint (), sb() - Set breakpoint on current line
setBreakpoint (line), sb(line) - Set breakpoint on specific line

To Debug the above code run the following command

node debug debugDemo. js

https://riptutorial.com/

71

Once the above commands runs you will see the following output. To exit from the debugger
interface, type process.exit ()

ankuranand: ~/workspace/nodejs/nodejsDebugging $ node debug debugDemo.js
< Debugger listening on port 5858
debug> . ok
break in debugDemo.js:3
1 // A Demo Code Showing the basic capabilities of the neodejs debugging module
2
> 3 "use strict';
4
5 function addTwoNumber(a, b){
debug> n
break in debugDemo.js:11
o }
18
»>11 let result = addTwoNumber(5, 9);
12 console.log(result);
13
debug> ¢
break in debughDemo.js:7
5 function addTwoMumber(a, b}{
6 // function returns the sum of the two numbers
> 7 debugger
3 return a + b;
9}
debug> c
< 14
debug> process.exit()
ankuranand: ~/workspace/nodejs/nodejsDebugging % I

Use watch (expression) cOmmand to add the variable or expression whose value you want to watch
and restart to restart the app and debugging.

Use rep1 to enter code interactively. The repl mode has the same context as the line you are
debugging. This allows you to examine the contents of variables and test out lines of code. Press
ctri+c to leave the debug repl.

Eng Built-in Node inspector

v6.3.0
You can run node's built in v8 inspector! The node-inspector plug-in is not needed anymore.

Simply pass the inspector flag and you'll be provided with a URL to the inspector

node —--inspect server.]js

mng Node inspector

https://riptutorial.com/ 72

https://i.stack.imgur.com/XSJMF.png
https://nodejs.org/api/debugger.html#debugger_v8_inspector_integration_for_node_js
https://github.com/node-inspector/node-inspector

Install the node inspector:

npm install —-g node-inspector

Run your app with the node-debug command:

node-debug filename. js

After that, hit in Chrome:

http://localhost:8080/debug?port=5858

Sometimes port 8080 might not be available on your computer. You may get the following error:
Cannot start the server at 0.0.0.0:8080. Error: listen EACCES.

In this case, start the node inspector on a different port using the following command.

Snode-inspector —--web-port=6500

You will see something like this:

B debugDemo.js x r

// A Demo Code Showing the basic capabilities of the nodejs debugging module v Watc
: A —rad Expres:
use strict’; P

function addTwoMumber{a, b){
/f function returns the sum of the two numbers
return a + b;

}

war result = addTwoNumber(S, 9);
console.log(result);

w Call .

L o I o S I S Yy N Iy

Functio

anonyn

©

IMaodule

e
Ry

Module
Module
Module
Module
listOnT
¥ Loca
“ariabl
&

L

> & a
[=Y
9 m

&

10:1 JavaScript Spaces:4 ﬂ P @re

https://riptutorial.com/ 73

https://i.stack.imgur.com/JpaL6.png

Read Debugging Node.js application online: https://riptutorial.com/node-js/topic/5900/debugging-
node-js-application

https://riptutorial.com/ 74

https://riptutorial.com/node-js/topic/5900/debugging-node-js-application
https://riptutorial.com/node-js/topic/5900/debugging-node-js-application

Chapter 20: Deliver HTML or any other sort of
file
Syntax
» response.sendFile(fileName, options, function (err) {});
Examples

Deliver HTML at specified path

Here's how to create an Express server and serve index.htm1 by default (empty path /), and
pagel.htmlfor/pagel pth.

Folder structure

project root
| server. js

| views

| index.html

| pagel.html
var express = require ('express');
var path = require('path');

var app = express|();

// deliver index.html if no file is requested
app.get ("/", function (request, response) {

response.sendFile (path.join(__dirname, 'views/index.html'));
1)

// deliver pagel.html if pagel is requested
app.get ('/pagel', function (request, response) {
response.sendFile (path. join(__dirname, 'views', 'pagel.html', function(error) {
if (error) {
// do something in case of error
console.log(err);
response.end (JSON.stringify ({error:"page not found"}));

app.listen(8080);

Note that sendrile () just streams a static file as response, offering no opportunity to modify it. If

https://riptutorial.com/ 75

you are serving an HTML file and want to include dynamic data with it, then you will need to use a
template engine such as Pug, Mustache, or EJS.

Read Deliver HTML or any other sort of file online: https://riptutorial.com/node-
js/topic/6538/deliver-html-or-any-other-sort-of-file

https://riptutorial.com/ 76

https://riptutorial.com/node-js/topic/6538/deliver-html-or-any-other-sort-of-file
https://riptutorial.com/node-js/topic/6538/deliver-html-or-any-other-sort-of-file

C_hapter 21: Dependency Injection

Examples

Why Use Dependency Injection

1. Fast Development process
2. Decoupling
3. Unit test writing

Fast Development process
When using dependency injection node developer can faster their development proceess because
after DI there is less code conflict and easy to manage all module.

Decoupling
Modules becomes less couple then it is easy to maintain.

Unit test writing
Hardcoded dependencies can pass them into the module then easy to write unit test for each
module.

Read Dependency Injection online: https://riptutorial.com/node-js/topic/7681/dependency-injection

https://riptutorial.com/ 7

https://riptutorial.com/node-js/topic/7681/dependency-injection

C_hapter 22: Deploying Node.|s application

without downtime.

Examples

Deployment using PM2 without downtime.

ecosystem. json

"name": "app-name",
"script": "server",
"exec_mode": "cluster",
"instances": 0,
"wait_ready": true
"listen_timeout": 10000,
"kill timeout": 5000,

wailt_ready

Instead of reload waiting for listen event, wait for process.send(‘ready");

listen_timeout

Time in ms before forcing a reload if app not listening.

kill timeout

Time in ms before sending a final SIGKLL.

server. js

const http = require('http');
const express = require ('express');

const app = express();
const server = http.Server (app);
const port = 80;

server.listen (port, function() {
process.send('ready');

}) i

process.on ('SIGINT', function() {
server.close (function () {
process.exit (0);
1)
1)

https://riptutorial.com/

78

You might need to wait for your application to have etablished connections with your
DBs/caches/workers/whatever. PM2 needs to wait before considering your application as online.
To do this, you need to provide wait_ready: true in a process file. This will make PM2 listen for
that event. In your application you will need to add process.send (' ready'); When you want your
application to be considered as ready.

When a process is stopped/restarted by PM2, some system signals are sent to your process in a
given order.

First a stcinT a signal is sent to your processes, signal you can catch to know that your process is
going to be stopped. If your application does not exit by itself before 1.6s (customizable) it will
receive a stckrLL Signal to force the process exit. So if your application need to clean-up
something states or jobs you can catch the sicint signal to prepare your application to exit.

Read Deploying Node.js application without downtime. online: https://riptutorial.com/node-
Jjs/topic/9752/deploying-node-js-application-without-downtime-

https://riptutorial.com/ 79

https://riptutorial.com/node-js/topic/9752/deploying-node-js-application-without-downtime-
https://riptutorial.com/node-js/topic/9752/deploying-node-js-application-without-downtime-

C_hapter 23: Deploying Node.|s applications In
production

Examples

Setting NODE_ENV="production"

Production deployments will vary in many ways, but a standard convention when deploying in
production is to define an environment variable called nooe_rnv and set its value to "production”.

Runtime flags

Any code running in your application (including external modules) can check the value of nope_gnv:

if (process.env.NODE_ENV === 'production') {
// We are running in production mode

} else {
// We are running in development mode

}

Ependencies

When the ~xope_env environment variable is set to 'production’ all devbependencies in your
package.json file will be completely ignored when running npm insta11. YOu can also enforce this
with a ——production'ﬂag:

npm install --production

For setting nooe_exv you can use any of these methods
method 1: set NODE_ENV for all node apps

Windows :
set NODE_ENV=production

Linux or other unix based system :
export NODE_ENV=production

This sets nope_env for current bash session thus any apps started after this statement will have

NoDE_ENV Set 10 production.

https://riptutorial.com/ 80

method 2: set NODE_ENV for current app

NODE_ENV=production node app.js

This will set vopr_env for the current app only. This helps when we want to test our apps on
different environments.

method 3: create .env file and use it
This uses the idea explained here. Refer this post for more detailed explanation.
Basically you create .env file and run some bash script to set them on environment.

To avoid writing a bash script, the env-cmd package can be used to load the environment
variables defined in the .env file.

env-cmd .env node app.js

method 4: Use cross-env package
This package allows environment variables to be set in one way for every platform.

After installing it with npm, you can just add it to your deployment script in package. json as follows:

"build:deploy": "cross-env NODE_ENV=production webpack"

Manage app with process manager

It's a good practice to run NodeJS apps controlled by process managers. Process manager helps
to keep application alive forever, restart on failure, reload without downtime and simplifies
administrating. Most powerful of them (like PMZ2) have a built-in load balancer. PM2 also enables
you to manage application logging, monitoring, and clustering.

PM2 process manager

Installing PM2:

npm install pm2 -g

Process can be started in cluster mode involving integrated load balancer to spread load between
processes:

pm2 start app.js -i 0 --name "api" (-I IS tO0 specify number of processes to spawn. If itis 0, then
process number will be based on CPU cores count)

While having multiple users in production, its must to have a single point for PM2. Therefore pm2
command must be prefixed with a location (for PM2 config) else it will spawn a new pm2 process
for every user with config in respective home directory. And it will be inconsistent.

https://riptutorial.com/ 81

http://stackoverflow.com/a/28821696/620039
https://www.npmjs.com/package/env-cmd
https://www.npmjs.com/package/cross-env
http://pm2.keymetrics.io/

leage:PM2_HOME=/etc/.pm2 pm2 start app.js

Deployment using PM2

pM2 IS @ production process manager for node. js applications, that allows you to keep applications

alive forever and reload them without downtime. PM2 also enables you to manage application
logging, monitoring, and clustering.

Install pm2 globally.

npm install —-g pm2

Then, run the node. 55 app using r2.

pm2 start server.js —-—-name "my-app"

Following commands are useful while working with pu2.

List all running processes:
pm2 list
Stop an app:
pmZ2 stop my-app
Restart an app:
pm2 restart my-app
To view detailed information about an app:
pm2 show my-app
To remove an app from PM2’s registry:

pm2 delete my-app

https://riptutorial.com/

82

http://i.stack.imgur.com/9L2zo.png

Deployment using process manager
Process manager is generally used in production to deploy a nodejs app. The main functions of a

process manager are restarting the server if it crashes, checking resource consumption, improving
runtime performance, monitoring etc.

Some of the popular process managers made by the node community are forever, pm2, etc.

Forvever

corever IS @ command-line interface tool for ensuring that a given script runs continuously. forever
's simple interface makes it ideal for running smaller deployments of xode. s apps and scripts.

forever MONItOrs your process and restarts it if it crashes.

Install forever globally

$ npm install -g forever

Run application :
$ forever start server.js
This starts the server and gives an id for the process(starts from 0).
Restart application :
$ forever restart 0
Here o is the id of the server.
Stop application :
$ forever stop 0

Similar to restart, o is the id the server. You can also give process id or script name in place of the
id given by the forever.

For more commands : https://www.npmjs.com/package/forever

Using different Properties/Configuration for different environments like dev,
ga, staging etc.

Large scale applications often need different properties when running on different environments.
we can achieve this by passing arguments to NodeJs application and using same argument in
node process to load specific environment property file.

https://riptutorial.com/ 83

https://github.com/foreverjs/forever
https://www.npmjs.com/package/forever

Suppose we have two property files for different environment.

e dev.json

"PORT": 3000,

"DB": {
"host": "localhost",
"user": "bob",
"password": "12345"

* ga.json

"PORT": 3001,

IIDBII . {
"host": "where_db_is_hosted",
"user": "bob",
"password": "54321"

Following code in application will export respective property file which we want to use.

process.argv.forEach (function (val) {
var arg = val.split("=");
if (arg.length > 0) {
if (arg[0] === 'env') {
var env = require('./' + arg[l] + '.json');
exports.prop = env;

1)
We give arguments to the application like following

node app.js env=dev

if we are using process manager like forever than it as simple as

forever start app.Jjs env=dev

Taking advantage of clusters

A single instance of Node.js runs in a single thread. To take advantage of multi-core systems the
user will sometimes want to launch a cluster of Node.s processes to handle the load.

https://riptutorial.com/ 84

var cluster = require('cluster');
var numCPUs = require('os') .cpus () .length;

if (cluster.isMaster) {
// In real life, you'd probably use more than just 2 workers,
// and perhaps not put the master and worker in the same file.
//
// You can also of course get a bit fancier about logging, and
// implement whatever custom logic you need to prevent DoS
// attacks and other bad behavior.
//
// See the options in the cluster documentation.
//
// The important thing is that the master does very little,
// increasing our resilience to unexpected errors.
console.log('your server is working on ' + numCPUs + ' cores');

for (var i = 0; 1 < numCPUs; i++) {
cluster.fork () ;

cluster.on('disconnect', function (worker) {
console.error ('disconnect!');
//clearTimeout (timeout) ;
cluster.fork () ;

1)

} else {
require ('./app.js');

Read Deploying Node.js applications in production online: https://riptutorial.com/node-
Jjs/topic/2975/deploying-node-js-applications-in-production

https://riptutorial.com/

85

https://riptutorial.com/node-js/topic/2975/deploying-node-js-applications-in-production
https://riptutorial.com/node-js/topic/2975/deploying-node-js-applications-in-production

C_hapter 24: ECMAScript 2015 (ES6) with
Node.|s

Examples

const/let declarations

Unlike var, const/1et are bound to lexical scope rather than function scope.

var x = 1 // will escape the scope
let vy = 2 // bound to lexical scope
const z = 3 // bound to lexical scope, constant

}

console.log(x) // 1
console.log(y) // ReferenceError: y is not defined
console.log(z) // ReferenceError: z is not defined

Run in RunKit
Arrow functions
Arrow functions automatically bind to the 'this' lexical scope of the surrounding code.

performSomething (result => {
this.someVariable = result

})
VS

performSomething (function (result) {
this.someVariable = result
}.bind (this))

Arrow Function Example
Let's consider this example, that outputs the squares of the numbers 3, 5, and 7:

let nums = [3, 5, 7]
let squares = nums.map (function (n) {
return n * n

})

console.log(squares)

Run in RunKit

The function passed to .map can also be written as arrow function by removing the function

https://riptutorial.com/

https://runkit.com/594bb4eaaac7e6001294132c/595433650a7efc0011ffcf09
https://runkit.com/594bb4eaaac7e6001294132c/595611661cba570012815901

keyword and instead adding the arrow =>:

let nums = [3, 5, 7]
let squares = nums.map((n) =>
return n * n

})

console.log (squares)

Run in RunKit

However, this can be written even more concise. If the function body consists of only one

{

statement and that statement computes the return value, the curly braces of wrapping the function

body can be removed, as well as the return keyword.

let nums = [3, 5, 7]
let squares = nums.map(n => n
console.log(squares)

Run in RunKit

destructuring

let [x,Vy, ...nums] = [0,
console.log(x, y, nums);

* 1)

1, 2, 3, 4

let {a, b, ...props} = {a:l, b:2, c:3,

console.log(a, b, props);

let dog = {name: 'fido', age:
let {name:n, age} = dog;
console.log(n, age);

flow

/* Q@flow */

function product (a: number, b:

return a * b;

const b = 3;
let c (2,20, 307 117
let d 3p

import request from 'request';

request ('http://dev.markitondemand.com/MODApis/Api/v2/Quote/json?symbol=AAPL",

payload)=>{

3ih;

number) {

’

payload = JSON.parse (payload);

let {LastPrice} = payload;
console.log(LastPrice);
}) i

r 5, 61;

d:{e:4}}

https://riptutorial.com/

87

https://runkit.com/594bb4eaaac7e6001294132c/595613101cba570012815999
https://runkit.com/594bb4eaaac7e6001294132c/59561361f9fe430012c7ab34

ES6 Class

class Mammel {

constructor (legs) {
this.legs = legs;

}

eat () {
console.log('eating..."');

}

static count () {
console.log('static count..."');

class Dog extends Mammel {

constructor (name, legs) {
super (legs) ;
this.name = name;

}

sleep () {
super.eat () ;
console.log('sleeping');

let d = new Dog('fido', 4);
d.sleep();

d.eat ();

console.log('d', d);

Read ECMAScript 2015 (ES6) with Node.js online: https://riptutorial.com/node-
js/topic/6732/ecmascript-2015--es6--with-node-js

https://riptutorial.com/

88

https://riptutorial.com/node-js/topic/6732/ecmascript-2015--es6--with-node-js
https://riptutorial.com/node-js/topic/6732/ecmascript-2015--es6--with-node-js

C_hapter 25. Environment

Examples

Accessing environment variables

The process.env property returns an object containing the user environment.

It returns an object like this one :

TERM: 'xterm-256color’',
SHELL: '/usr/local/bin/bash',
USER: 'maciej',
PATH: '~/.bin/:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin’',
PWD: '/Users/maciej',
EDITOR: 'vim',
SHLVL: '1'",
HOME: '/Users/maciej',
LOGNAME: 'maciej',
'/usr/local/bin/node'"

process.env.HOME // '/Users/maciej'

If you set environment variable roo t0 foobar, it Will be accessible with:

process.env.FOO // 'foobar'

process.argv command line arguments

process.argv is an array containing the command line arguments. The first element will be node,
the second element will be the name of the JavaScript file. The next elements will be any
additional command line arguments.

Code Example:
Output sum of all command line arguments
index. Jjs

var sum = 0;
for (i = 2; 1 < process.argv.length; i++) {
sum += Number (process.argv[i]);

}

console.log(sum) ;

Usage Exaple:

https://riptutorial.com/

89

https://nodejs.org/docs/latest/api/process.html#process_process_argv

node index.js 2 5 6 7

Output will be 20
A brief explanation of the code:

Here in for loop for (i = 2; i < process.argv.length; i++) lOOp begins with 2 because first two
elements in process.argv array always iS ['path/to/node.exe', 'path/to/js/file', ...]

Converting to number number (process.argviil) because elements in process.argv array always is
string

Using different Properties/Configuration for different environments like dev,
ga, staging etc.

Large scale applications often need different properties when running on different environments.

we can achieve this by passing arguments to NodeJs application and using same argument in
node process to load specific environment property file.

Suppose we have two property files for different environment.

* dev.json

PORT : 3000,

DB : {
host : "localhost",
user : "bob",
password : "12345"
}
}
* ga.json

PORT : 3001,

DB : {
host : "where_db_is_hosted",
user : "bob",
password : "54321"

Following code in application will export respective property file which we want to use.

Suppose the code is in environment.js

process.argv.forEach (function (val, index, array) {

https://riptutorial.com/ 90

var arg = val.split ("=");
if (arg.length > 0) {

if (arg[0] === 'env') {
var env = require('./' + arg[l] + '.json');
module.exports = env;

1)

We give arguments to the application like following
node app.js env=dev

if we are using process manager like forever than it as simple as
forever start app.Jjs env=dev

How to use the configuration file

var env= require ("environment.js");

Loading environment properties from a "property file"
* Install properties reader:

npm install properties-reader --save
» Create a directory env to store your properties files:

mkdir env
» Create environments.js:

process.argv.forEach (function (val, index, array) {
var arg = val.split("=");
if (arg.length > 0) {

if (arg[0] === 'env') {
var env = require('./env/' + arg[l] + '.properties');
module.exports = env;

)i

» Sample development.properties properties file:

Dev properties

[main]

Application port to run the node server
app.port=8080

[database]

https://riptutorial.com/

91

Database connection to mysqgl
mysqgl.host=localhost
mysqgl.port=2500

» Sample usage of the loaded properties:

var enviorment = require('./environments');
var PropertiesReader = require ('properties-reader');
var properties = new PropertiesReader (enviorment) ;

var someVal = properties.get ('main.app.port');

 Starting the express server

npm start env=development

or

npm start env=production

Read Environment online: https://riptutorial.com/node-js/topic/2340/environment

https://riptutorial.com/

https://riptutorial.com/node-js/topic/2340/environment

C_hapter 26: Event Emitters

Remarks

When an event "fires" (which means the same as "publishing an event" or "emitting an event"),
each listener will be called synchronously (source), along with any accompanying data that was
passed in to emit (), NO Matter how many arguments you pass in:

myDog.on ('bark', (howLoud, howLong, howIntense) => {
// handle the event

})
myDog.emit ('bark', 'loudly', '5 seconds long', 'fiercely')

The listeners will be called in the order they were registered:

myDog.on ('urinate', () => console.log('My first thought was "Oh-no"'))

myDog.on ('urinate', () => console.log('My second thought was "Not my lawn :)"'))

myDog.emit ('urinate')

// The console.logs will happen in the right order because they were registered in that order.

But if you need a listener to fire first, before all of the other listeners that have already been added,
YOU Can USe prependListener () like SO:

myDog.prependListener ('urinate', () => console.log('This happens before my first and second
thoughts, even though it was registered after them'))

If you need to listen to an event, but you only want to hear about it once, you can use once instead
of on, OI prependOncelistener instead of prependListener. After the event is fired and the listener gets
called, the listener will automatically be removed, and won't be called again the next time the
event is fired.

Finally, if you want to remove all of the listeners and start over, feel free to do just that:

myDog.removeAllListeners ()

Examples

HTTP Analytics through an Event Emitter
In the HTTP server code (e.g. server. js):

const EventEmitter = require('events')

const serverEvents = new EventEmitter ()

// Set up an HTTP server
const http = require('http')
const httpServer = http.createServer ((request, response) => ({

https://riptutorial.com/ 93

https://nodejs.org/dist/latest-v6.x/docs/api/events.html#events_asynchronous_vs_synchronous

// Handler the request...
// Then emit an event about what happened
serverEvents.emit ('request', request.method, request.url)

P

// Expose the event emitter
module.exports = serverEvents

In supervisor code (e.g. supervisor. js):

const server = require('./server.js')
// Since the server exported an event emitter, we can listen to it for changes:
server.on ('request', (method, url) => {
console.log(Got a request: ${method} ${url}’)
})

Whenever the server gets a request, it will emit an event called request Which the supervisor is
listening for, and then the supervisor can react to the event.

Basics

Event Emitters are built into Node, and are for pub-sub, a pattern where a publisher will emit
events, which subscribers can listen and react to. In Node jargon, publishers are called Event
Emitters, and they emit events, while subscribers are called listeners, and they react to the events.

// Require events to start using them

const EventEmitter = require('events') .EventEmitter;
// Dogs have events to publish, or emit

class Dog extends EventEmitter {};

class Food {};
let myDog = new Dog();

// When myDog is chewing, run the following function
myDog.on ('chew', (item) => {
if (item instanceof Food) {
console.log('Good dog');

} else {
console.log(Time to buy another ${item}’);
}
1)
myDog.emit ('chew', 'shoe'); // Will result in console.log('Time to buy another shoe')
const bacon = new Food();
myDog.emit ('chew', bacon); // Will result in console.log('Good dog')

In the above example, the dog is the publisher/EventEmitter, while the function that checks the
item was the subscriber/listener. You can make more listeners too:

myDog.on ('bark', () => {
console.log ('"WHO\'S AT THE DOOR?');
// Panic

1)

https://riptutorial.com/ 94

There can also be multiple listeners for a single event, and even remove listeners:

myDog.on ('chew', takeADeepBreathe);

myDog.on ('chew', calmDown) ;

// Undo the previous line with the next one:
myDog.removeListener ('chew', calmDown) ;

If you want to listen to a event only once, you can use:

myDog.once ('chew', pet);

Which will remove the listener automatically without race conditions.

Get the names of the events that are subscribed to

The function EventEmitter.eventNames() will return an array containing the names of the events

currently subscribed to.

const EventEmitter = require ("events");
class MyEmitter extends EventEmitter{}

var emitter = new MyEmitter () ;

emitter

.on ("message", function(){ //listen for message event
console.log("a message was emitted!");

})

.on ("message", function(){ //listen for message event
console.log("this is not the right message");

})

.on("data", function(){ //listen for data event

console.log("a data just occured!!");
)i
console.log(emitter.eventNames ()); //=> ["message","data"]
emitter.removeAllListeners ("data");//=> removeAllListeners to data event
console.log(emitter.eventNames ()); //=> ["message"]
Run in RunKit

Get the number of listeners registered to listen for a specific event

The function Emitter.listenerCount(eventName) will return the number of listeners that are

currently listening for the event provided as argument

const EventEmitter = require ("events");
class MyEmitter extends EventEmitter{}
var emitter = new MyEmitter();

emitter
.on("data", ()=>{ // add listener for data event
console.log("data event emitter");

)i

https://riptutorial.com/

95

https://runkit.com/594bb4eaaac7e6001294132c/594bb635aac7e600129413e7

console.log(emitter.listenerCount ("data")) // => 1
console.log(emitter.listenerCount ("message")) // => 0

emitter.on ("message", function mListener(){ //add listener for message event
console.log ("message event emitted");

1)

console.log(emitter.listenerCount ("data")) // => 1

console.log(emitter.listenerCount ("message")) // => 1

emitter.once ("data", (stuff)=>{ //add another listener for data event
console.log (' Tell me my S${stuff});
})

console.log(emitter.listenerCount ("data")) /] => 2
console.log(emitter.listenerCount ("message"))// => 1

Read Event Emitters online: https://riptutorial.com/node-js/topic/1623/event-emitters

https://riptutorial.com/

96

https://riptutorial.com/node-js/topic/1623/event-emitters

C_hapter 27: Eventloop

Introduction

In this post we are going to discuss how the concept of Eventloop emerged and how it can be
used for high performance servers and event driven applications like GUIs.

Examples

How the concept of event loop evolved.

Eventloop in pseudo code

An event loop is a loop that waits for events and then reacts to those events

while true:
wait for something to happen
react to whatever happened

E_xample of a single-threaded HTTP server
with no event loop

while true:

socket = wait for the next TCP connection

read the HTTP request headers from (socket)
file_contents = fetch the requested file from disk
write the HTTP response headers to (socket)

write the (file_contents) to (socket)

close (socket)

Here's a simple form of a HTTP server which is a single threaded but no event loop. The problem
here is that it waits until each request is finished before starting to process the next one. If it takes
a while to read the HTTP request headers or to fetch the file from disk, we should be able to start
processing the next request while we wait for that to finish.

The most common solution is to make the program multi-threaded.

Example of a multi-threaded HTTP server
with no event loop

https://riptutorial.com/ 97

function handle_connection (socket) :
read the HTTP request headers from (socket)
file_contents = fetch the requested file from disk
write the HTTP response headers to (socket)
write the (file_contents) to (socket)
close (socket)
while true:
socket = wait for the next TCP connection
spawn a new thread doing handle_connection (socket)

Now we have made our little HTTP server multi threaded. This way, we can immediately move on
to the next request because the current request is running in a background thread. Many servers,
including Apache, use this approach.

But it's not perfect. One limitation is that you can only spawn so many threads. For workloads
where you have a huge number of connections, but each connection only requires attention every
once in a while, the multi-threaded model won't perform very well. The solution for those cases is
to use an event loop:

Example of a HTTP server with event loop

while true:
event = wait for the next event to happen
if (event.type == NEW_TCP_CONNECTION) :
conn = new Connection
conn.socket = event.socket
start reading HTTP request headers from (conn.socket) with userdata = (conn)
else if (event.type == FINISHED_READING_FROM_SOCKET) :
conn = event.userdata
start fetching the requested file from disk with userdata = (conn)
else if (event.type == FINISHED_READING_FROM_DISK) :
conn = event.userdata
conn.file contents = the data we fetched from disk
conn.current_state = "writing headers"
start writing the HTTP response headers to (conn.socket) with userdata = (conn)
else if (event.type == FINISHED_WRITING_TO_SOCKET) :
conn = event.userdata
if (conn.current_state == "writing headers"):
conn.current_state = "writing file contents"
start writing (conn.file_contents) to (conn.socket) with userdata = (conn)
else if (conn.current_state == "writing file contents"):
close (conn.socket)

Hopefully this pseudocode is intelligible. Here's what's going on: We wait for things to happen.
Whenever a new connection is created or an existing connection needs our attention, we go deal
with it, then go back to waiting. That way, we perform well when there are many connections and
each one only rarely requires attention.

In a real application (not pseudocode) running on Linux, the "wait for the next event to happen"”
part would be implemented by calling the poll() or epoll() system call. The "start reading/writing
something to a socket" parts would be implemented by calling the recv() or send() system calls in
non-blocking mode.

https://riptutorial.com/ 98

Reference:

[1]. "How does an event loop work?" [Online]. Available : https://www.quora.com/How-does-an-
event-loop-work

Read Eventloop online: https://riptutorial.com/node-js/topic/8652/eventloop

https://riptutorial.com/

99

https://www.quora.com/How-does-an-event-loop-work
https://www.quora.com/How-does-an-event-loop-work
https://riptutorial.com/node-js/topic/8652/eventloop

C_hapter 28:. Exception handling

Examples

Handling Exception In Node.Js

Node.js has 3 basic ways to handle exceptions/errors:

1. try-catch block
2. error as the first argument to a caliback
3. emit &n error event using eventEmitter

try-catch is used to catch the exceptions thrown from the synchronous code execution. If the
caller (or the caller's caller, ...) used try/catch, then they can catch the error. If none of the callers
had try-catch than the program crashes.

If using try-catch on an async operation and exception was thrown from callback of async method
than it will not get caught by try-catch. To catch an exception from async operation callback, it is
preferred to use promises.

Example to understand it better

// ** Example - 1 **
function doSomeSynchronousOperation (req, res) {
if (reg.body.username === "'") {
throw new Error ('User Name cannot be empty');
}
return true;

}

// calling the method above
try {
// synchronous code
doSomeSynchronousOperation (req, res)
catch(e) {
//exception handled here
console.log(e.message) ;

}

// ** Example - 2 **
function doSomeAsynchronousOperation (req, res, cb) {
// imitating async operation
return setTimeout (function () {
cb(null, [1]);
},1000);

try {
// asynchronous code
doSomeAsynchronousOperation (req, res, function(err, rs) {
throw new Error ("async operation exception");
1)
} catch(e) {
// Exception will not get handled here
console.log(e.message) ;

https://riptutorial.com/ 100

}

// The exception is unhandled and hence will cause application to break

callbacks are mostly used in Node.js as callback delivers an event asynchronously. The user
passes you a function (the callback), and you invoke it sometime later when the asynchronous
operation completes.

The usual pattern is that the callback is invoked as a callback(err, result), where only one of err
and result is non-null, depending on whether the operation succeeded or failed.

function doSomeAsynchronousOperation (req, res, callback) {
setTimeout (function () {
return callback (new Error ('User Name cannot be empty'));
}, 1000);
return true;

doSomeAsynchronousOperation (req, res, function(err, result) {
if (err) {
//exception handled here
console.log(err.message) ;

//do some stuff with valid data
P

emit For more complicated cases, instead of using a callback, the function itself can return an
EventEmitter object, and the caller would be expected to listen for error events on the emitter.

const EventEmitter = require('events');

function doSomeAsynchronousOperation (req, res) {

let myEvent = new EventEmitter();

// runs asynchronously
setTimeout (function () {

myEvent .emit ('error', new Error ('User Name cannot be empty'));
}, 1000);

return myEvent;
// Invoke the function
let event = doSomeAsynchronousOperation (req, res);
event.on('error', function(err) {
console.log(err);
}) i
event.on ('done', function (result) {

console.log(result); // true
)i

Unhanded Exception Management

Because Node.js runs on a single process uncaught exceptions are an issue to be aware of when

https://riptutorial.com/ 101

developing applications.

Silently Handling Exceptions

Most of the people let node.js server(s) silently swallow up the errors.

 Silently handling the exception

process.on ('uncaughtException', function (err) {
console.log(err);

}) i

This is bad, it will work but:

+ Root cause will remains unknown, as such will not contribute to resolution of what caused
the Exception (Error).

* In case of database connection (pool) gets closed for some reason this will result in
constant propagation of errors, meaning that server will be running but it will not reconnect to
db.

Returning to Initial state

In case of an " uncaughtException " it is good to restart the server and return it to its initial state,
where we know it will work. Exception is logged, application is terminated but since it will be
running in a container that will make sure that the server is running we will achieve restarting of
the server (returning to the initial working state) .

* Installing the forever (or other CLI tool to make sure that node server runs continuously)

npm install forever -g

» Starting the server in forever

forever start app.Js

Reason why is it started and why we use forever is after the server is terminated
forever process will start the server again.

» Restarting the server

process.on ('uncaughtException', function (err) {
console.log(err);

// some logging mechanisam

I cooo

process.exit (1); // terminates process

https://riptutorial.com/ 102

On a side note there was a way also to handle exceptions with Clusters and Domains.

Domains are deprecated more information here.

Errors and Promises
Promises handle errors differently to synchronous or callback-driven code.

const p = new Promise (function (resolve, reject) ({
reject (new Error ('Oops'));

)i

// anything that is “reject ' ed inside a promise will be available through catch

// while a promise is rejected, ~.then' will not be called

p
.then(() => {
console.log("won't be called");

})
.catch(e => {
console.log(e.message); // output: Oops

})

// once the error is caught, execution flow resumes
.then(() => {
console.log('hello!"'); // output: hello!

)i

currently, errors thrown in a promise that are not caught results in the error being swallowed,
which can make it difficult to track down the error. This can be solved using linting tools like eslint
or by ensuring you always have a catch clause.

This behaviour is deprecated in node 8 in favour of terminating the node process.

Read Exception handling online: https://riptutorial.com/node-js/topic/2819/exception-handling

https://riptutorial.com/ 103

https://nodejs.org/api/domain.html
https://www.npmjs.com/package/eslint-plugin-promise
http://eslint.org/
https://nodejs.org/dist/latest-v8.x/docs/api/deprecations.html#deprecations_dep0018_unhandled_promise_rejections
https://riptutorial.com/node-js/topic/2819/exception-handling

C_hapter 29: Executing files or commands
with Child Processes

Syntax

 child_process.exec(command], options][, callback])
 child_process.execFile(file[, args][, options][, callback])
 child_process.fork(modulePath[, args][, options])
 child_process.spawn(command][, args][, options])
 child_process.execFileSync(file[, args][, options])
 child_process.execSync(command[, options])
 child_process.spawnSync(command|, args][, options])

Remarks

When dealing with child processes, all of the asynchronous methods will return an instance of
chilarrocess, While all the synchronous versions will return the output of whatever was run. Like
other synchronous operations in Node.js, if an error occurs, it will throw.

Examples

Spawning a new process to execute a command

To spawn a new process in which you need unbuffered output (e.g. long-running processes which
might print output over a period of time rather than printing and exiting immediately), use

child_process.spawn ().

This method spawns a new process using a given command and an array of arguments. The
return value is an instance of chi1arrocess, which in turn provides the stdout and stderr properties.
Both of those streams are instances of st ream.readable.

The following code is equivalent to using running the command 1s -1n /usr.

const spawn = require('child_process') .spawn;
const 1ls = spawn('ls', ['-1h', '"/usr']);
ls.stdout.on('data', (data) => {

console.log(stdout: ${data}’);
)i

ls.stderr.on('data', (data) => {
console.log(stderr: ${data}’);
)i

ls.on('close', (code) => {
console.log(child process exited with code ${code}’);

https://riptutorial.com/ 104

https://nodejs.org/api/child_process.html#child_process_class_childprocess
https://nodejs.org/dist/latest/docs/api/child_process.html#child_process_class_childprocess
https://nodejs.org/dist/latest/docs/api/stream.html#stream_class_stream_readable

1)
Another example command:
zip -Ovr "archive" ./image.png
Might be written as:

spawn ('zip', ['-Ovr', '"archive"',k6 './image.png']);

Spawning a shell to execute a command

To run a command in a shell, in which you required buffered output (i.e. it is not a stream), use

child_process.exec. FOr example, if you wanted to run the command cat *.3s file | wec -1, With nO

options, that would look like this:

const exec = require('child_process') .exec;
exec('cat *.js file | wc -1', (err, stdout, stderr) => {
if (err) {
console.error (" exec error: S${err}’);
return;

console.log(stdout: ${stdout}’);
console.log(stderr: ${stderr}’);
)i

The function accepts up to three parameters:

child_process.exec (command[, options] [, callback]);

The command parameter is a string, and is required, while the options object and callback are
both optional. If no options object is specified, then exec will use the following as a default:

encoding: 'utf8',
timeout: O,

maxBuffer: 200*1024,
killSignal: 'SIGTERM',
cwd: null,

env: null

The options object also supports a she11 parameter, which is by default /in/sh on UNIX and
cmd.exe ON Windows, a uia option for setting the use