
Introduction to TensorFlow
Mor Geva, Apr 2018

Introduction to TensorFlow
Mor Geva, Apr 2018

Plan
● Why TensorFlow

● Basic Code Structure

● Example: Learning Word Embeddings with Skip-gram

● Variable and Name Scopes

● Visualization with TensorBoard

Plan
● Why TensorFlow

● Basic Code Structure

● Example: Learning Word Embeddings with Skip-gram

● Variable and Name Scopes

● Visualization with TensorBoard

Disclaimer I’m not a TF expert,
just passing on knowledge I have

Goals
● Understand the basic structure of a TensorFlow program

● Be familiar with the main code components

● Understand how to assemble them to train a neural model

Why TensorFlow
● “TensorFlow™ is an open source software library for numerical computation

using data flow graphs.”

● One of many frameworks for deep learning computations

● Scalable and flexible

● Popular (= big community)

Basic Code Structure
● View functions as computational graphs

● First build a computational graph, and then use a session to execute

operations in the graph

● This is the basic approach, there is also a dynamic approach implemented in

the recently introduced eager mode

Basic Code Structure
● View functions as computational graphs

● First build a computational graph, and then use a session to execute

operations in the graph

● This is the basic approach, there is also a dynamic approach implemented in

the recently introduced eager mode

why graphs?

Basic Code Structure - Graphs
● Nodes are operators (ops), variables, and constants

● Edges are tensors
○ 0-d is a scalar
○ 1-d is a vector
○ 2-d is a matrix
○ Etc.

● TensorFlow = Tensor + Flow = Data + Flow

b

Add

a

4 5

9

Basic Code Structure - Graphs
● Constants are fixed value tensors - not trainable

● Variables are tensors initialized in a session - trainable

● Placeholders are tensors of values that are unknown during the graph

construction, but passed as input during a session

● Ops are functions on tensors

Basic Code Structure - Graphs

variable variable
ops placeholder

W

b

x

Mul

Add

Basic Code Structure - Sessions
● Session is the runtime environment of a graph, where operations are executed,

and tensors are evaluated

● a.eval() is equivalent to session.run(a), but in general, “eval” is limited to

executions of a single op and ops that returns a value

Basic Code Structure - Sessions
● Session is the runtime environment of a graph, where operations are executed,

and tensors are evaluated

● a.eval() is equivalent to session.run(a), but in general, “eval” is limited to

executions of a single op and ops that returns a value

● Upon op execution, only the subgraph required for calculating its value is

evaluated

Basic Code Structure - Sessions

variable variable
ops placeholder

W

b

x

Mul

Add

Example: Learning Word Embeddings with Skip-gram

Recall from
lecture 1

Example: Learning Word Embeddings with Skip-gram

● We will use Noise-Constructive Estimation (NCE) as our loss function, it is
similar to negative sampling that you implemented in HW 1

Example: Learning Word Embeddings with Skip-gram

1. Assembling the graph
○ Create placeholders

○ Create variables

○ Define a loss function

○ Define an optimizer

2. Training in a session
○ Start a session

○ Initialize variables

○ Run the optimizer over batches

Example: Assembling the Graph
import tensorflow as tf

graph = tf.Graph()
with graph.as_default():
 train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
 train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

 embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
 embed = tf.nn.embedding_lookup(embeddings, train_inputs)

 nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size)))
 nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
 loss = tf.reduce_mean(
 tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels,
 inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size))

 optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

 init = tf.global_variables_initializer()

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Example: Assembling the Graph
import tensorflow as tf

graph = tf.Graph()
with graph.as_default():
 train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
 train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

 embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
 embed = tf.nn.embedding_lookup(embeddings, train_inputs)

 nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size)))
 nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
 loss = tf.reduce_mean(
 tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels,
 inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size))

 optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

 init = tf.global_variables_initializer()

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Example: Assembling the Graph
import tensorflow as tf

graph = tf.Graph()
with graph.as_default():
 train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
 train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

 embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
 embed = tf.nn.embedding_lookup(embeddings, train_inputs)

 nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size)))
 nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
 loss = tf.reduce_mean(
 tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels,
 inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size))

 optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

 init = tf.global_variables_initializer()

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Example: Assembling the Graph
import tensorflow as tf

graph = tf.Graph()
with graph.as_default():
 train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
 train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

 embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
 embed = tf.nn.embedding_lookup(embeddings, train_inputs)

 nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size)))
 nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
 loss = tf.reduce_mean(
 tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels,
 inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size))

 optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

 init = tf.global_variables_initializer()

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Example: Assembling the Graph
import tensorflow as tf

graph = tf.Graph()
with graph.as_default():
 train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
 train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

 embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
 embed = tf.nn.embedding_lookup(embeddings, train_inputs)

 nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size)))
 nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
 loss = tf.reduce_mean(
 tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels,
 inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size))

 optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

 init = tf.global_variables_initializer()

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Example: Assembling the Graph

Example: Training in a Session

with tf.Session(graph=graph) as session:
 init.run()

 for step in xrange(num_steps):
 batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window)
 feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}

 _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Example: Training in a Session

with tf.Session(graph=graph) as session:
 init.run()

 for step in xrange(num_steps):
 batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window)
 feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}

 _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Example: Training in a Session
● You will probably want to save the model best parameters or store checkpoints

● Saving and restoring of session variables is done by creating a “saver” node,

with tf.train.Saver()

● Note that only session variables are stored, and not the graph itself

Example: Training in a Session

assembling the graph
...
saver = tf.train.Saver()

with tf.Session(graph=graph) as session:
 init.run()

 for step in xrange(num_steps):
 ...
 if step % 1000 == 0:
 saver.save(sess, save_path)

assembling the graph
...
saver = tf.train.Saver()

with tf.Session(graph=graph) as session:
 saver.restore(sess, save_path)

Example

Plan
● Why TensorFlow

● Basic Code Structure

● Example: Learning Word Embeddings with Skip-gram

● Variable and Name Scopes

● Visualization with TensorBoard

Variable and Name Scopes
● Scopes allow:

○ Grouping of nodes in the graph
○ Sharing variables between graph components

● This is useful as neural networks can become very complex

Variable and Name Scopes
● Scopes allow:

○ Grouping of nodes in the graph
○ Sharing variables between graph components

● This is useful as neural networks can become very complex

Variable and Name Scopes
● tf.Variable() creates a new variable under the current scope

● tf.get_variable() creates the shared variable if it does not exist yet, or reuse

it if it already exists

● The desired behavior is controlled by the current scope

Example from “Hands-on machine learning with Scikit-Learn and TensorFlow”

Variable and Name Scopes
● tf.Variable() creates a new variable under the current scope

● tf.get_variable() creates the shared variable if it does not exist yet, or reuse

it if it already exists

● The desired behavior is controlled by the current scope

Example from “Hands-on machine learning with Scikit-Learn and TensorFlow”

Variable and Name Scopes

1

2

Example from “Hands-on machine learning with Scikit-Learn and TensorFlow”

3

Variable and Name Scopes

Example from “Hands-on machine learning with Scikit-Learn and TensorFlow”

Variable and Name Scopes

Example from “Hands-on machine learning with Scikit-Learn and TensorFlow”

Variable and Name Scopes

Example from “Hands-on machine learning with Scikit-Learn and TensorFlow”

tf.name_scope is ignored
by tf.get_variable

Visualization with TensorBoard
● This is an awesome tool that

other frameworks use as well

● It enables browsing the

computational graph, monitoring

session nodes, and much more

https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard

https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard

Visualization with TensorBoard - Logging Stats
1. When assembling the graph:

○ Add summary ops

○ Add merge op

2. In a session:
○ Create a file writer

○ Run the merge op every time you want to log stats

○ Add the returned summary to the file writer

3. Load the log to TensorBoard

Visualization with TensorBoard - Logging Stats
import tensorflow as tf

graph = tf.Graph()
with graph.as_default():
 train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
 train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

 embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
 embed = tf.nn.embedding_lookup(embeddings, train_inputs)

 nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size)))
 nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
 loss = tf.reduce_mean(
 tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels,
 inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size))
 tf.summary.scalar('loss', loss)
 merged = tf.summary.merge_all()

 optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

 init = tf.global_variables_initializer()

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Visualization with TensorBoard - Logging Stats

with tf.Session(graph=graph) as session:
 writer = tf.summary.FileWriter(log_dir, session.graph)
 init.run()

 for step in xrange(num_steps):
 batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window)
 feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}

 _, summary, loss_val = session.run([optimizer, merged, loss], feed_dict=feed_dict)
 writer.add_summary(summary, step)

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Visualization with TensorBoard - Logging Stats

with tf.Session(graph=graph) as session:
 writer = tf.summary.FileWriter(log_dir, session.graph)
 init.run()

 for step in xrange(num_steps):
 batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window)
 feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}

 _, summary, loss_val = session.run([optimizer, merged, loss], feed_dict=feed_dict)
 writer.add_summary(summary, step)

Practically, it is better to avoid logging stats at
every step, since this would slow down training

Adapted from: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Plan
● Why TensorFlow

● Basic Code Structure

● Example: Learning Word Embeddings with Skip-gram

● Variable and Name Scopes

● Visualization with TensorBoard

Resources
● Code & Documentation

○ https://www.tensorflow.org/api_docs/

○ https://github.com/tensorflow

● Tutorials / Courses
○ Tensorflow official tutorials

○ CS 20: Tensorflow for Deep Learning Research

● Books
○ Géron, Aurélien. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools,

and techniques to build intelligent systems. " O'Reilly Media, Inc.", 2017.

https://www.tensorflow.org/api_docs/
https://github.com/tensorflow
https://www.tensorflow.org/tutorials/
http://web.stanford.edu/class/cs20si/index.html

Thank You!
morgeva@mail.tau.ac.il

